Periodic table: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 299: Line 299:
sub fillarrays
sub fillarrays


dim a[8]
dim a[1, 2, 5, 13, 57, 72, 89, 104]
dim b[8]
dim b[-1, 15, 25, 35, 72, 21, 58, 7]

lets a[0] = 1, a[1] = 2, a[2] = 5, a[3] = 13, a[4] = 57, a[5] = 72, a[6] = 89, a[7] = 104
lets b[0] = -1, b[1] = 15, b[2] = 25, b[3] = 35, b[4] = 72, b[5] = 21, b[6] = 58, b[7] = 7


return
return

Revision as of 05:41, 5 January 2023

Task
Periodic table
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Display the row and column in the periodic table of the given atomic number.

The periodic table

Let us consider the following periodic table representation.

     __________________________________________________________________________ 
    |   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18 |
    |                                                                          |
    |1  H                                                                   He |
    |                                                                          |
    |2  Li  Be                                          B   C   N   O   F   Ne |
    |                                                                          |
    |3  Na  Mg                                          Al  Si  P   S   Cl  Ar |
    |                                                                          |
    |4  K   Ca  Sc  Ti  V   Cr  Mn  Fe  Co  Ni  Cu  Zn  Ga  Ge  As  Se  Br  Kr |
    |                                                                          |
    |5  Rb  Sr  Y   Zr  Nb  Mo  Tc  Ru  Rh  Pd  Ag  Cd  In  Sn  Sb  Te  I   Xe |
    |                                                                          |
    |6  Cs  Ba  *   Hf  Ta  W   Re  Os  Ir  Pt  Au  Hg  Tl  Pb  Bi  Po  At  Rn |
    |                                                                          |
    |7  Fr  Ra  °   Rf  Db  Sg  Bh  Hs  Mt  Ds  Rg  Cn  Nh  Fl  Mc  Lv  Ts  Og |
    |__________________________________________________________________________|
    |                                                                          |
    |                                                                          |
    |8  Lantanoidi* La  Ce  Pr  Nd  Pm  Sm  Eu  Gd  Tb  Dy  Ho  Er  Tm  Yb  Lu |
    |                                                                          |
    |9   Aktinoidi° Ak  Th  Pa  U   Np  Pu  Am  Cm  Bk  Cf  Es  Fm  Md  No  Lr |
    |__________________________________________________________________________|
Example test cases;
  •   1 -> 1 1
  •   2 -> 1 18
  •   29 -> 4 11
  •   42 -> 5 6
  •   57 -> 8 4
  •   58 -> 8 5
  •   72 -> 6 4
  •   89 -> 9 4
Details;

The representation of the periodic table may be represented in various way. The one presented in this challenge does have the following property : Lantanides and Aktinoides are all in a dedicated row, hence there is no element that is placed at 6, 3 nor 7, 3.

You may take a look at the atomic number repartitions here.

The atomic number is at least 1, at most 118.


See also



6502 Assembly

A lookup table is the simplest solution, for the following reasons:

  • The input value is guaranteed to be between 0 and 255
  • The data doesn't fit a pattern that the CPU can easily take advantage of.

Since the 6502 can't index an array larger than 256 bytes, we'll store all the "low bytes" in one table and all the "high bytes" in another. Both tables share the same index, so this lets us store up to 255 possible elements while taking the same amount of memory as a single table of 16-bit values. Right now, we can do this either way, but since we're close to 128 elements, may as well future-proof the code, right?

Lookup:      ;INPUT: X = atomic number of the element of interest.
LDA PeriodicTable_Column,x
STA $20                    ;store column number in memory (I chose $20 arbitrarily, you can store it anywhere)
LDA PeriodicTable_Row,x
STA $21                    ;store row number in memory
RTS

PeriodicTable_Column:
db $ff,$01,$18,$01,$02,$13,$14,$15,$16,$17,$18,...         ;I don't need to write them all out, the concept is self-explanatory enough.
PeriodicTable_Row:
db $ff,$01,$01,$02,$02,$02,$02,$02,$02,$02,$02,...

68000 Assembly

A lookup table is the simplest solution, as the data of interest doesn't have a pattern that a computer can take advantage of easily. It's quicker than using a formula, but takes up more memory as a result.

The table consists of 118 16-bit values. The high byte is the row number, the low byte is the column number. Both are stored as binary-coded decimal (i.e. hex values that look like base 10 numbers.)

Lookup:
;input: D0.W = the atomic number of interest.
LEA PeriodicTable,A0
ADD.W D0,D0        ;we're indexing a table of words, so double the index.
MOVE.W (A0,D0),D0  ;D0.W contains row number in the high byte and column number in the low byte.
RTS

PeriodicTable:
DC.W $FFFF ;padding since arrays start at zero in assembly.
DC.W $0101 ;HYDROGEN
DC.W $0118 ;HELIUM
DC.W $0201 ;LITHIUM
DC.W $0202 ;BERYLLIUM
DC.W $0213 ;BORON
DC.W $0214 ;CARBON
DC.W $0215 ;NITROGEN
DC.W $0216 ;OXYGEN
DC.W $0217 ;FLUORINE
DC.W $0218 ;NEON
;etc.

ALGOL 68

BEGIN # display the period and group number of an element, #
      # given its atomic number                            #
    INT max atomic number = 118; # highest known element   #
    # the positions are stored as:                         #
    #     ( group number * group multiplier ) + period     #
    INT group multiplier  = 100;
    [ 1 : max atomic number ]INT position;
    # construct the positions of the elements in the table #
    BEGIN
        STRING periodic table = "-                ="
                              + "--          -----="
                              + "--          -----="
                              + "-----------------="
                              + "-----------------="
                              + "--8--------------="
                              + "--9--------------="
                              ;
        INT period  := 1;
        INT group   := 1;
        INT element := 1;
        FOR t FROM LWB periodic table TO UPB periodic table DO
            CHAR p = periodic table[ t ];
            IF p = "8" OR p = "9" THEN
                # lantanoids or actinoids                   #
                INT series period = IF p = "8" THEN 8 ELSE 9 FI;
                INT series group := 4;
                FOR e TO 15 DO
                    position[ element ] := ( group multiplier * series group ) + series period;
                    element            +:= 1;
                    series group       +:= 1
                OD
            ELIF p /= " " THEN
                # there is a single element here            #
                position[ element ] := ( group multiplier * group ) + period;
                element            +:= 1;
                IF p = "=" THEN
                    # final element of the period           #
                    period +:= 1;
                    group   := 0
                FI
            FI;
            group +:= 1
        OD
    END;
    # display the period and group numbers of test elements #
    []INT test = ( 1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113 );
    FOR t FROM LWB test TO UPB test DO
        INT e = test[ t ];
        IF e < LWB position OR e > UPB position THEN
            print( ( "Invalid element: ", whole( e, 0 ), newline ) )
        ELSE
            INT period = position[ e ] MOD  group multiplier;
            INT group  = position[ e ] OVER group multiplier;
            print( ( "Element ", whole( e,      -3 )
                   , " -> ", whole( period,  0 ), ", ", whole( group,  -2 )
                   , newline
                   )
                 )
        FI
    OD
END
Output:
Element   1 -> 1,  1
Element   2 -> 1, 18
Element  29 -> 4, 11
Element  42 -> 5,  6
Element  57 -> 8,  4
Element  58 -> 8,  5
Element  59 -> 8,  6
Element  71 -> 8, 18
Element  72 -> 6,  4
Element  89 -> 9,  4
Element  90 -> 9,  5
Element 103 -> 9, 18
Element 113 -> 7, 13


BASIC

Applesoft BASIC

This program borrows from the Python solution but only PRINTs the results of the tests shown in the task. Each row and column from the tests are PLOTted in a COLORful table.

0 GR:HOME:COLOR=11:FORR=1TO7:FORC=1TO2:GOSUB7:NEXTC,R:COLOR=7:FORR=4TO7:FORC=3+(R>5)TO12:GOSUB7:NEXTC,R:COLOR=13:FORR=2TO7:FORC=13TO18:GOSUB7:NEXTC,R
1 forr=2to7:forc=13to18:GOSUB7:NEXTC,R:COLOR=14:R=8:FORC=4TO18:GOSUB7:NEXTC:COLOR=12:R=9:FORC=4TO18:GOSUB7:NEXTC:R=9:FORC=4TO18:GOSUB7:NEXTC:Z=2:R=7:C=3:GOSUB7:COLOR=14:R=6:C=3:GOSUB7:COLOR=15
2 S=14:W=18:FORI=1TO7:READN(I),I(I):NEXT:DATA2,0,10,0,18,0,36,0,54,0,86,57,118,89,1,1,1,2,1,18,29,4,11,42,5,6,57,8,4,58,8,5,72,6,4,89,9,4,59,8,6,71,8,18,90,9,5,103,9,18
3 FORT=1TO8:READA,Y,X:GOSUB4:PRINTRIGHT$("  "+STR$(A),3)"->"R" "LEFT$(STR$(C)+"  ",3);:GOSUB7:NEXTT:VTAB23:END
4 N=0:FORR=1TO7:P=N:N=N(R):IFA>NTHEN:NEXTR
5 E=N-P:K=A-P:IFI(R)AND(I(R)<=AANDA<=I(R)+S)THENR=R+2:C=K+1:RETURN
6 E=W-E:L=1+(N>2):C=K+E*(K>L):RETURN
7 K=C+(R=1ANDC=2)*16:VLINR*4+Z,R*4+2ATK*2+1:RETURN

ASIC

Translation of: Nascom BASIC
REM Periodic table
DIM A(7)
DIM B(7)
REM Arrays A, B.
DATA  1,  2,  5, 13, 57, 72, 89, 104
DATA -1, 15, 25, 35, 72, 21, 58,   7
REM Example elements (atomic numbers).
DATA 1, 2, 29, 42, 57, 58, 72, 89, 90, 103

GOSUB SetAB:
FOR J = 0 TO 9
  READ AtomicNum
  GOSUB ShowRowAndColumn:
NEXT J
END

SetAB:
FOR I = 0 TO 7
  READ A(I)
NEXT I
FOR I = 0 TO 7
  READ B(I)
NEXT I
RETURN

ShowRowAndColumn:
I = 7
WHILE A(I) > AtomicNum 
  I = I - 1
WEND
M = AtomicNum + B(I)
R = M / 18 
R = R + 1
C = M MOD 18 
C = C + 1
PRINT AtomicNum;
PRINT " ->";
PRINT R;
PRINT C
RETURN
Output:
     1 ->     1     1
     2 ->     1    18
    29 ->     4    11
    42 ->     5     6
    57 ->     8     4
    58 ->     8     5
    72 ->     6     4
    89 ->     9     4
    90 ->     9     5
   103 ->     9    18

BASIC256

Translation of: FreeBASIC
subroutine MostarPos(N)
    dim A = { 1,  2,  5, 13, 57, 72, 89, 104}
    dim B = {-1, 15, 25, 35, 72, 21, 58,   7}
    I = 7
    while A[I] > N
        I -= 1
    end while
    M = N + B[I]
    R = (M \ 18) +1
    C = (M % 18) +1
    print "Atomic number "; rjust(N,3); "-> "; R ; ", "; C
end subroutine

dim Element = {1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113}
for I = 0 to Element[?]-1
    call MostarPos(Element[I])
next I
Output:
Same as FreeBASIC entry.

Craft Basic

gosub fillarrays
gosub setupwindow

do

	if (forms) = 1 then

		gosub searchtable

	endif

	button k, 27

	wait

loop k <> 1

end

sub fillarrays

	dim a[1, 2, 5, 13, 57, 72, 89, 104]
	dim b[-1, 15, 25, 35, 72, 21, 58, 7]

return

sub setupwindow

	title "Periodic Table Search"

	resize 0, 0, 220,130
	center

	formid 1
	formtext "Search"
	buttonform 55, 40, 100, 20

	formid 2
	formtext ""
	staticform 1, 1, 220, 20

return

sub searchtable

	input "Atomic number", e

	let i = 8

	do

		let i = i - 1

	loop a[i] > e

	let m = e + b[i]
	let r = m / 18
	let r = int: r + 1
	let c = m % 18
	let c = int: c + 1

	formid 2
	formtext "Period: ", r ,comma," Group: ", c
	updateform

return

FreeBASIC

Translation of: XPL0
Sub MostarPos(N As Integer)
    Dim As Integer M, I, R, C
    Dim As Integer A(0 To 7) = { 1,  2,  5, 13, 57, 72, 89, 104} 'magic numbers
    Dim As Integer B(0 To 7) = {-1, 15, 25, 35, 72, 21, 58,   7}
    I = 7
    While A(I) > N 
        I -= 1
    Wend
    M = N + B(I)
    R = (M \ 18) +1
    C = (M Mod 18) +1
    Print Using "Atomic number ### -> #_, ##"; N; R; C
End Sub

Dim As Integer Element(0 To 12) = {1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113}
For I As Integer = 0 To Ubound(Element)
    MostarPos(Element(I))
Next I
Output:
Atomic number   1 -> 1, 1 
Atomic number   2 -> 1, 18
Atomic number  29 -> 4, 11
Atomic number  42 -> 5, 6 
Atomic number  57 -> 8, 4 
Atomic number  58 -> 8, 5 
Atomic number  59 -> 8, 6 
Atomic number  71 -> 8, 18
Atomic number  72 -> 6, 4 
Atomic number  89 -> 9, 4 
Atomic number  90 -> 9, 5 
Atomic number 103 -> 9, 18
Atomic number 113 -> 7, 13


Gambas

Sub MostarPos(N As Integer)       'Mostrar fila y columna para el elemento
    Dim M, I, R, C As Integer
    Dim A As Integer[] = [1, 2, 5, 13, 57, 72, 89, 104] 'magic numbers
    Dim B As Integer[] = [-1, 15, 25, 35, 72, 21, 58, 7] 
    I = 7 
    While A[I] > N
        Dec I
    Wend
    M = N + B[I]
    R = (M \ 18) + 1 
    C = (M Mod 18) + 1 
    Print "Atomic number "; Format(N, "###"); " -> "; R; ", "; C 
End 

Public Sub Main()

Dim Element As Integer[] = [1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113]
For e As Integer = 0 To 12
    MostarPos(Element[e])
Next

End
Output:
Same as FreeBASIC entry.

GW-BASIC

Translation of: Nascom BASIC
Works with: BASICA
10 REM Periodic table
20 DIM A(7), B(7)
30 GOSUB 200
40 FOR J% = 0 TO 9
50  READ ANUM%: GOSUB 400
60 NEXT J%
70 END
190 REM Set arrays A, B.
200 FOR I% = 0 TO 7: READ A(I%): NEXT I%
210 FOR I% = 0 TO 7: READ B(I%): NEXT I%
220 RETURN
390 REM Show row and column for element
400 I% = 7
410 WHILE A(I%) > ANUM%
420  I% = I% - 1
430 WEND
440 M% = ANUM% + B(I%)
450 R% = M% \ 18 + 1
460 C% = M% MOD 18 + 1
470 PRINT ANUM%;"->";R%;C%
480 RETURN
990 REM Data
1000 REM Arrays A, B.
1010 DATA  1,  2,  5, 13, 57, 72, 89, 104
1020 DATA -1, 15, 25, 35, 72, 21, 58,   7
1030 REM Example elements (atomic numbers).
1040 DATA 1, 2, 29, 42, 57, 58, 72, 89, 90, 103
Output:
 1 -> 1  1
 2 -> 1  18
 29 -> 4  11
 42 -> 5  6
 57 -> 8  4
 58 -> 8  5
 72 -> 6  4
 89 -> 9  4
 90 -> 9  5
 103 -> 9  18

Minimal BASIC

Translation of: Nascom BASIC
Works with: Commodore BASIC version 3.5
10 REM Periodic table
20 GOSUB 200
30 FOR J = 0 TO 9
40 READ N
50 GOSUB 400
60 NEXT J
70 END
190 REM Set arrays A, B.
200 DIM A(7), B(7)
210 FOR I = 0 TO 7
220 READ A(I)
230 NEXT I
240 FOR I = 0 TO 7
250 READ B(I)
260 NEXT I
270 RETURN
390 REM Show row and column for element
400 LET I = 7
410 IF A(I) <= N THEN 440
420 LET I = I-1
430 GOTO 410
440 LET M = N+B(I)
450 LET R = INT(M/18)+1
460 LET C = M-INT(M/18)*18+1
470 PRINT N; "->"; R; C
480 RETURN
990 REM Data.
1000 REM Arrays A, B.
1010 DATA  1,  2,  5, 13, 57, 72, 89, 104
1020 DATA -1, 15, 25, 35, 72, 21, 58,   7
1030 REM Example elements (atomic numbers).
1040 DATA 1, 2, 29, 42, 57, 58, 72, 89, 90, 103

Nascom BASIC

Works with: Nascom ROM BASIC version 4.7
10 REM Periodic table
20 GOSUB 200
30 FOR J=0 TO 9:READ ANUM:GOSUB 400:NEXT J
40 END
190 REM ** Set arrays A, B.
200 DIM A(7),B(7)
210 FOR I=0 TO 7:READ A(I):NEXT I
220 FOR I=0 TO 7:READ B(I):NEXT I
230 RETURN
390 REM ** Show row and column for element
400 I=7
410 IF A(I)>ANUM THEN I=I-1:GOTO 410
420 M=ANUM+B(I)
430 R=INT(M/18)+1
440 C=M-INT(M/18)*18+1
450 PRINT ANUM;"->";R;C
460 RETURN
990 REM  ** Data.
1000 REM ** Arrays A, B.
1010 DATA 1,2,5,13,57,72,89,104
1020 DATA -1,15,25,35,72,21,58,7
1030 REM ** Example elements (atomic numbers).
1040 DATA 1,2,29,42,57,58,72,89,90,103
Output:
 1 -> 1  1
 2 -> 1  18
 29 -> 4  11
 42 -> 5  6
 57 -> 8  4
 58 -> 8  5
 72 -> 6  4
 89 -> 9  4
 90 -> 9  5
 103 -> 9  18

QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Translation of: FreeBASIC
SUB MostarPos (N)
    DIM a(7)
    RESTORE a:
    FOR x = 0 TO 7: READ a(x): NEXT x
    DIM b(7)
    RESTORE b:
    FOR x = 0 TO 7: READ b(x): NEXT x

    I = 7
    WHILE a(I) > N
    I = I - 1
    WEND
    M = N + b(I)
    R = (M \ 18) + 1
    C = (M MOD 18) + 1
    PRINT USING "Atomic number ### -> #_, ##"; N; R; C
END SUB

DIM Element(0 TO 12)
RESTORE elements
elements:
DATA 1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113
FOR x = 0 TO 12: READ Element(x): NEXT x

FOR I = 0 TO UBOUND(Element)
    MostarPos (Element(I))
NEXT I

a:
DATA  1,  2,  5, 13, 57, 72, 89, 104
b:
DATA -1, 15, 25, 35, 72, 21, 58,   7
Output:
Same as FreeBASIC entry.

Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
Translation of: FreeBASIC
dim Element(12)
Element(0) =   1
Element(1) =   2
Element(2) =  29
Element(3) =  42
Element(4) =  57
Element(5) =  58
Element(6) =  59
Element(7) =  71
Element(8) =  72
Element(9) =  89
Element(10) =   90
Element(11) =  103
Element(12) =  113
for e = 0 to 12
    call MostarPos Element(e)
next e

sub MostarPos N
    dim A(7)
    A(0) =   1
    A(1) =   2
    A(2) =   5
    A(3) =  13
    A(4) =  57
    A(5) =  72
    A(6) =  89
    A(7) = 104
    dim B(7)
    B(0) = -1
    B(1) = 15
    B(2) = 25
    B(3) = 35
    B(4) = 72
    B(5) = 21
    B(6) = 58
    B(7) =  7
    
    I = 7
    while A(I) > N
        I = I - 1
    wend
    M = N + B(I)
    R = int(M / 18) +1
    C = (M mod 18) +1
    print "Atomic number "; using("###", N); " -> "; R; ", "; C
end sub
Output:
Same as FreeBASIC entry.

True BASIC

Translation of: FreeBASIC
SUB MostarPos (n)
    DIM a(0 TO 7)
    LET a(0) = 1
    LET a(1) = 2
    LET a(2) = 5
    LET a(3) = 13
    LET a(4) = 57
    LET a(5) = 72
    LET a(6) = 89
    LET a(7) = 104
    DIM b(0 TO 7)
    LET b(0) = -1
    LET b(1) = 15
    LET b(2) = 25
    LET b(3) = 35
    LET b(4) = 72
    LET b(5) = 21
    LET b(6) = 58
    LET b(7) = 7
    LET i = 7
    DO WHILE a(i) > n
       LET i = i - 1
    LOOP
    LET m = n + b(i)
    LET r = IP(m / 18) + 1
    LET c = REMAINDER(m, 18) + 1
    PRINT USING "Atomic number ###": n;
    PRINT " ->"; r; c
END SUB

DIM element(0 TO 12)
LET element(0) = 1
LET element(1) = 2
LET element(2) = 29
LET element(3) = 42
LET element(4) = 57
LET element(5) = 58
LET element(6) = 59
LET element(7) = 71
LET element(8) = 72
LET element(9) = 89
LET element(10) = 90
LET element(11) = 103
LET element(12) = 113
FOR e = 0 TO UBOUND(element)
    CALL MostarPos (element(e))
NEXT e
END
Output:
Similar to FreeBASIC entry.

XBasic

Works with: Windows XBasic
Translation of: FreeBASIC
PROGRAM  "Periodic table"

DECLARE FUNCTION  Entry ()
DECLARE FUNCTION  MostarPos (N)

FUNCTION  Entry ()
  DIM Element[12]
  Element[0] =   1
  Element[1] =   2
  Element[2] =  29
  Element[3] =  42
  Element[4] =  57
  Element[5] =  58
  Element[6] =  59
  Element[7] =  71
  Element[8] =  72
  Element[9] =  89
  Element[10] =   90
  Element[11] =  103
  Element[12] =  113

  FOR e = 0 TO 12 'UBOUND (Element())
    MostarPos (Element[e])
  NEXT

END FUNCTION

FUNCTION  MostarPos (N)
  DIM A[7]
  A[0] =   1
  A[1] =   2
  A[2] =   5
  A[3] =  13
  A[4] =  57
  A[5] =  72
  A[6] =  89
  A[7] = 104
  DIM B[7]
  B[0] = -1
  B[1] = 15
  B[2] = 25
  B[3] = 35
  B[4] = 72
  B[5] = 21
  B[6] = 58
  B[7] =  7
  I = 7
  DO WHILE A[I] > N
    DEC I
  LOOP
  M = N + B[I]
  R = (M \ 18) + 1
  C = (M MOD 18) + 1
  PRINT "Atomic number "; FORMAT$ ("###", N); " ->"; R; ","; C

END FUNCTION
END PROGRAM
Output:
Similar to FreeBASIC entry.

Yabasic

Translation of: FreeBASIC
// Rosetta Code problem: http://rosettacode.org/wiki/Periodic_table
// by Jjuanhdez, 06/2022

dim Element(12)
Element(0) =   1 : Element(1) =   2
Element(2) =  29 : Element(3) =  42
Element(4) =  57 : Element(5) =  58
Element(6) =  59 : Element(7) =  71
Element(8) =  72 : Element(9) =  89
Element(10) =  90
Element(11) =  103 : Element(12) =  113
for e = 0 to arraysize(Element(),1)
    MostarPos (Element(e))
next e
end

sub MostarPos (N)
    dim A(7)
    A(0) =   1 : A(1) =   2
    A(2) =   5 : A(3) =  13
    A(4) =  57 : A(5) =  72
    A(6) =  89 : A(7) = 104
    dim B(7)
    B(0) = -1 : B(1) = 15
    B(2) = 25 : B(3) = 35
    B(4) = 72 : B(5) = 21
    B(6) = 58 : B(7) =  7
    
    I = 7
    while A(I) > N
        I = I - 1
    wend
    M = N + B(I)
    R = int(M / 18) +1
    C = mod(M, 18) +1
    print "Atomic number ", N using("###"), " -> ", R, ", ", C
end sub
Output:
Same as FreeBASIC entry.


FutureBasic

_window = 1

void local fn BuildPeriodicTableArrays
  
  CFArrayRef periodicArr = @[@"",¬
  @"H",  @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"He",¬
  @"Li", @"Be", @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"B",  @"C",  @"N",  @"O",  @"F",  @"Ne",¬
  @"Na", @"Mg", @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"",   @"Al", @"Si", @"P",  @"S",  @"Cl", @"Ar",¬
  @"K",  @"Ca", @"Sc", @"Ti", @"V",  @"Cr", @"Mn", @"Fe", @"Co", @"Ni", @"Cu", @"Zn", @"Ga", @"Ge", @"As", @"Se", @"Br", @"Kr",¬
  @"Rb", @"Sr", @"Y",  @"Zr", @"Nb", @"Mo", @"Tc", @"Ru", @"Rh", @"Pd", @"Ag", @"Cd", @"In", @"Sn", @"Sb", @"Te", @"I",  @"Xe",¬
  @"Cs", @"Ba", @"Lu", @"Hf", @"Ta", @"W",  @"Re", @"Os", @"Ir", @"Pt", @"Au", @"Hg", @"Tl", @"Pb", @"Bi", @"Po", @"At", @"Rn",¬
  @"Fr", @"Ra", @"Lr", @"Rf", @"Db", @"Sg", @"Bh", @"Hs", @"Mt", @"Ds", @"Rg", @"Cn", @"Nh", @"Fl", @"Mc", @"Lv", @"Ts", @"Og",¬
  @"",   @"",   @"La", @"Ce", @"Pr", @"Nd", @"Pm", @"Sm", @"Eu", @"Gd", @"Tb", @"Dy", @"Ho", @"Er", @"Tm", @"Yb", @"",   @"",¬
  @"",   @"",   @"Ac", @"Th", @"Pa", @"U",  @"NP", @"Pu", @"Am", @"Cm", @"Bk", @"Cf", @"Es", @"Fm", @"Md", @"No", @"",   @""]
  AppSetProperty( @"periodicTable", periodicArr )
  
  CFArrayRef numbersArr = @[@"",¬
  @"1",  @"",   @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",     @"",     @"",     @"",    @"2",¬
  @"3",  @"4",  @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"5",   @"6",    @"7",    @"8",    @"9",   @"10",¬
  @"11", @"12", @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"",    @"13",  @"14",   @"15",   @"16",   @"17",  @"18",¬
  @"19", @"20", @"21",  @"22",  @"23",  @"24", @"25",   @"26",  @"27",  @"28",  @"29",  @"30",  @"31",  @"32",   @"33",   @"34",   @"35",  @"36",¬
  @"37", @"38", @"39",  @"40",  @"41",  @"42",  @"43",  @"44",  @"45",  @"46",  @"47",  @"48",  @"49",  @"50",   @"51",   @"52",   @"53",  @"54",¬
  @"55", @"56", @"71",  @"72",  @"73",  @"74",  @"75",  @"76",  @"77",  @"78",  @"79",  @"80",  @"81",  @"82",   @"83",   @"84",   @"85",  @"86",¬
  @"87", @"88", @"103", @"104", @"105", @"106", @"107", @"108", @"109", @"110", @"111", @"112", @"113", @"114",  @"114",  @"116",  @"117", @"118",¬
  @"",   @"",   @"57",  @"58",  @"59",  @"60",  @"61",  @"62",  @"63",  @"64",  @"65",  @"66",  @"67",  @"68",   @"59",   @"70",   @"",    @"",¬
  @"",   @"",   @"89",  @"90",  @"91",  @"92",  @"93",  @"94",  @"95",  @"96",  @"97",  @"98",  @"99",  @"100",  @"101",  @"102",  @"",    @""]
  AppSetProperty( @"periodicNumbers", numbersArr )
end fn

void local fn BuildWindow
  NSInteger   i, j, row
  CGRect      r
  CFArrayRef  periodicArr, numbersArr
  CFStringRef tempStr
  
  periodicArr = fn AppProperty( @"periodicTable"   )
  numbersArr  = fn AppProperty( @"periodicNumbers" )
  
  window _window, @"Periodic Table", ( 0, 0, 700, 400 )
  WindowSetBackgroundColor( _window, fn ColorWhite )
  
  j = 0 : row = 350
  r = fn CGRectMake( 10, row, 36, 40 )
  for i = 1 to 162
    if fn StringIsEqual( periodicArr[i], @"" ) then tempStr = @"" else tempStr = fn StringWithFormat( @"%@\n%@", numbersArr[i], periodicArr[i] )
    textfield i,, tempStr, r, _window
    TextFieldSetBackgroundColor( i, fn ColorBlue )
    TextFieldSetTextColor( i, fn ColorWhite )
    ControlSetFontWithName( i, @"Menlo", 12.0 )
    ControlSetAlignment(i, NSTextAlignmentCenter )
    r = fn CGRectOffset( r, 38, 0 )
    j++
    if ( j == 18 )
      row =  row - 42
      r = fn CGRectMake( 10, row, 36, 40 )
      j = 0
    end if
  next
  
  for i = 1 to 162
    if fn StringIsEqual( fn ControlStringValue( i ), @"" ) then ViewRemoveFromSuperview( i )
  next
end fn

fn BuildPeriodicTableArrays
fn BuildWindow

HandleEvents
Output:


Go

Translation of: Wren
package main

import (
    "fmt"
    "log"
)

var limits = [][2]int{
    {3, 10}, {11, 18}, {19, 36}, {37, 54}, {55, 86}, {87, 118},
}

func periodicTable(n int) (int, int) {
    if n < 1 || n > 118 {
        log.Fatal("Atomic number is out of range.")
    }
    if n == 1 {
        return 1, 1
    }
    if n == 2 {
        return 1, 18
    }
    if n >= 57 && n <= 71 {
        return 8, n - 53
    }
    if n >= 89 && n <= 103 {
        return 9, n - 85
    }
    var row, start, end int
    for i := 0; i < len(limits); i++ {
        limit := limits[i]
        if n >= limit[0] && n <= limit[1] {
            row, start, end = i+2, limit[0], limit[1]
            break
        }
    }
    if n < start+2 || row == 4 || row == 5 {
        return row, n - start + 1
    }
    return row, n - end + 18
}

func main() {
    for _, n := range []int{1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113} {
        row, col := periodicTable(n)
        fmt.Printf("Atomic number %3d -> %d, %-2d\n", n, row, col)
    }
}
Output:
Atomic number   1 -> 1, 1 
Atomic number   2 -> 1, 18
Atomic number  29 -> 4, 11
Atomic number  42 -> 5, 6 
Atomic number  57 -> 8, 4 
Atomic number  58 -> 8, 5 
Atomic number  59 -> 8, 6 
Atomic number  71 -> 8, 18
Atomic number  72 -> 6, 4 
Atomic number  89 -> 9, 4 
Atomic number  90 -> 9, 5 
Atomic number 103 -> 9, 18
Atomic number 113 -> 7, 13

J

Basically, here, we want a lookup table. For example:

PT=: (' ',.~[;._2) {{)n
   1   2   3   4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 1 H                                                     He
 2 Li  Be                                 B  C  N  O  F  Ne
 3 Na  Mg                                 Al Si P  S  Cl Ar
 4 K   Ca  Sc  Ti V  Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
 5 Rb  Sr  Y   Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I  Xe
 6 Cs  Ba  *   Hf Ta W  Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
 7 Fr  Ra  -   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 8 Lantanoidi* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
 9  Aktinoidi- Ak Th Pa U  Np Pu Am Cm Bk Cf Es Fm Md No Lr
}}

ptrc=: {{
  tokens=. (#~ (3>#)@> * */@(tolower~:toupper)@>) ~.,;:,PT
  ndx=. (>' ',L:0' ',L:0~tokens) {.@I.@E."1 ,PT
  Lantanoidi=. ndx{+/\'*'=,PT
  Aktinoidi=. ndx{+/\'-'=,PT
  j=. 13|3*Lantanoidi+3*Aktinoidi
  k=. {:$PT
  0,}."1/:~j,.(<.ndx%k),.1+(/:~@~. i. ])k|ndx
}}

rowcol=: ptrc''

In other words, start with a hand crafted representation of the periodic table. Elements here are tokens with 1 or 2 letters. Locate the position of each token in the table. Get an initial row and column number from the character positions in the table. Translate character column to periodic table column by enumerating the unique (sorted) list of column numbers and using the index in that list. Character row was already periodic table row. Most elements here were already in atomic number order, and we can fix the exceptions by temporarily prefixing each row,col value and sorting. (Here, we use 0 for the first 56 elements, 3 for the next 17 elements (after Lantanoidi, before Aktinoidi), 12 for the next 15 (after Aktinoidi), 2 for the next 15 (the Lantanoidi) and 11 for the final 15 elements (the Aktinoidi).)

Thus:

   1 2 29 42 57 58 72 89 { rowcol
1  1
1 18
4 11
5  6
8  4
8  5
6  4
9  4


Julia

Translation of: Wren
const limits = [3:10, 11:18, 19:36, 37:54, 55:86, 87:118]

function periodic_table(n)
    (n < 1 || n > 118) && error("Atomic number is out of range.")
    n == 1 && return [1, 1]
    n == 2 && return [1, 18]
    57 <= n <= 71 && return [8, n - 53]
    89 <= n <= 103 && return [9, n - 85]
    row, limitstart, limitstop = 0, 0, 0
    for i in eachindex(limits)
        if limits[i].start <= n <= limits[i].stop
            row, limitstart, limitstop = i + 1, limits[i].start, limits[i].stop
            break
        end
    end
    return (n < limitstart + 2 || row == 4 || row == 5) ?
        [row, n - limitstart + 1] : [row, n - limitstop + 18]
end

for n in [1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113]
    rc = periodic_table(n)
    println("Atomic number ", lpad(n, 3), " -> ($(rc[1]), $(rc[2]))")
end
Output:
Atomic number   1 -> (1, 1)
Atomic number   2 -> (1, 18)
Atomic number  29 -> (4, 11)
Atomic number  42 -> (5, 6)
Atomic number  57 -> (8, 4)
Atomic number  58 -> (8, 5)
Atomic number  59 -> (8, 6)
Atomic number  71 -> (8, 18)
Atomic number  72 -> (6, 4)
Atomic number  89 -> (9, 4)
Atomic number  90 -> (9, 5)
Atomic number 103 -> (9, 18)
Atomic number 113 -> (7, 13)

Mathematica/Wolfram Language

Mathematica and the Wolfram language include the period and group in the function ElementData but has slightly different definitions for the lantanides and aktinoides.

ClearAll[FindPeriodGroup]
FindPeriodGroup[n_Integer] := Which[57 <= n <= 70,
  {8, n - 53}
  ,
  89 <= n <= 102,
  {9, n - 85}
  ,
  1 <= n <= 118,
  {ElementData[n, "Period"], ElementData[n, "Group"]}
  ,
  True,
  Missing["Element does not exist"]
]
Row[{"Element ", #, " -> ", FindPeriodGroup[#]}] & /@ {1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113} // Column
Graphics[Text[#, {1, -1} Reverse@FindPeriodGroup[#]] & /@ Range[118]]
Output:
Element 1 -> {1,1}
Element 2 -> {1,18}
Element 29 -> {4,11}
Element 42 -> {5,6}
Element 57 -> {8,4}
Element 58 -> {8,5}
Element 59 -> {8,6}
Element 71 -> {6,3}
Element 72 -> {6,4}
Element 89 -> {9,4}
Element 90 -> {9,5}
Element 103 -> {7,3}
Element 113 -> {7,13}

[graphical representation of the periodic table positions]

Perl

Translation of: Raku
use strict;
use warnings; no warnings 'uninitialized';
use feature 'say';
use List::Util <sum head>;

sub divmod { int $_[0]/$_[1], $_[0]%$_[1] }

my $b = 18;
my(@offset,@span,$cnt);
push @span, ($cnt++) x $_ for <1 3 8 44 15 17 15 15>;
@offset = (16, 10, 10, (2*$b)+1, (-2*$b)-15, (2*$b)+1, (-2*$b)-15);

for my $n (<1 2 29 42 57 58 72 89 90 103 118>) {
    printf "%3d: %2d, %2d\n", $n, map { $_+1 } divmod $n-1 + sum(head $span[$n-1], @offset), $b;
}
Output:
  1:  1,  1
  2:  1, 18
 29:  4, 11
 42:  5,  6
 57:  8,  4
 58:  8,  5
 72:  6,  4
 89:  9,  4
 90:  9,  5
103:  9, 18

Phix

with javascript_semantics
constant match_wp = false

function prc(integer n)
    constant t = {0,2,10,18,36,54,86,118,119}
    integer row = abs(binary_search(n,t,true))-1,
            col = n-t[row]
    if col>1+(row>1) then
        col = 18-(t[row+1]-n)
        if match_wp then
            if col<=2 then return {row+2,col+14} end if
        else -- matches above ascii:
            if col<=2+(row>5) then return {row+2,col+15} end if
        end if
    end if
    return {row,col}
end function

sequence pt = repeat(repeat("   ",19),10)
pt[1][2..$] = apply(true,sprintf,{{"%3d"},tagset(18)})  -- column headings
for i=1 to 9 do pt[i+1][1] = sprintf("%3d",i) end for -- row numbers
for i=1 to 118 do
    integer {r,c} = prc(i)
    pt[r+1][c+1] = sprintf("%3d",i)
end for
if not match_wp then -- (ascii only:)
    pt[7][4] = " L*"
    pt[8][4] = " A*"
    pt[9][2..4] = {"Lanthanide:"}
    pt[10][2..4] = {"  Actinide:"}
end if
printf(1,"%s\n",{join(apply(true,join,{pt,{"|"}}),"\n")})
Output:

With match_wp set to true:

   |  1|  2|  3|  4|  5|  6|  7|  8|  9| 10| 11| 12| 13| 14| 15| 16| 17| 18
  1|  1|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  2
  2|  3|  4|   |   |   |   |   |   |   |   |   |   |  5|  6|  7|  8|  9| 10
  3| 11| 12|   |   |   |   |   |   |   |   |   |   | 13| 14| 15| 16| 17| 18
  4| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28| 29| 30| 31| 32| 33| 34| 35| 36
  5| 37| 38| 39| 40| 41| 42| 43| 44| 45| 46| 47| 48| 49| 50| 51| 52| 53| 54
  6| 55| 56| 71| 72| 73| 74| 75| 76| 77| 78| 79| 80| 81| 82| 83| 84| 85| 86
  7| 87| 88|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118
  8|   |   | 57| 58| 59| 60| 61| 62| 63| 64| 65| 66| 67| 68| 69| 70|   |
  9|   |   | 89| 90| 91| 92| 93| 94| 95| 96| 97| 98| 99|100|101|102|   |

Or with match_wp false:

   |  1|  2|  3|  4|  5|  6|  7|  8|  9| 10| 11| 12| 13| 14| 15| 16| 17| 18
  1|  1|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  2
  2|  3|  4|   |   |   |   |   |   |   |   |   |   |  5|  6|  7|  8|  9| 10
  3| 11| 12|   |   |   |   |   |   |   |   |   |   | 13| 14| 15| 16| 17| 18
  4| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28| 29| 30| 31| 32| 33| 34| 35| 36
  5| 37| 38| 39| 40| 41| 42| 43| 44| 45| 46| 47| 48| 49| 50| 51| 52| 53| 54
  6| 55| 56| L*| 72| 73| 74| 75| 76| 77| 78| 79| 80| 81| 82| 83| 84| 85| 86
  7| 87| 88| A*|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118
  8|Lanthanide:| 57| 58| 59| 60| 61| 62| 63| 64| 65| 66| 67| 68| 69| 70| 71
  9|  Actinide:| 89| 90| 91| 92| 93| 94| 95| 96| 97| 98| 99|100|101|102|103

alternate

constant ptxt = """
 __________________________________________________________________________ 
|   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18 |
|                                                                          |
|1  H                                                                   He |
|                                                                          |
|2  Li  Be                                          B   C   N   O   F   Ne |
|                                                                          |
|3  Na  Mg                                          Al  Si  P   S   Cl  Ar |
|                                                                          |
|4  K   Ca  Sc  Ti  V   Cr  Mn  Fe  Co  Ni  Cu  Zn  Ga  Ge  As  Se  Br  Kr |
|                                                                          |
|5  Rb  Sr  Y   Zr  Nb  Mo  Tc  Ru  Rh  Pd  Ag  Cd  In  Sn  Sb  Te  I   Xe |
|                                                                          |
|6  Cs  Ba  *   Hf  Ta  W   Re  Os  Ir  Pt  Au  Hg  Tl  Pb  Bi  Po  At  Rn |
|                                                                          |
|7  Fr  Ra  +   Rf  Db  Sg  Bh  Hs  Mt  Ds  Rg  Cn  Nh  Fl  Mc  Lv  Ts  Og |
|__________________________________________________________________________|
|                                                                          |
|                                                                          |
|8  Lantanoidi* La  Ce  Pr  Nd  Pm  Sm  Eu  Gd  Tb  Dy  Ho  Er  Tm  Yb  Lu |
|                                                                          |
|9   Aktinoidi+ Ak  Th  Pa  U   Np  Pu  Am  Cm  Bk  Cf  Es  Fm  Md  No  Lr |
|__________________________________________________________________________|
"""

function tablify(string ptxt)
    sequence lines = split(ptxt,"\n"),
             res = {}
    for l in lines do
        integer ln = l[2]-'0', c = 0
        if ln>=1 and ln<=9 then
            res = append(res,{})
            for j=5 to length(l) by 4 do
                c += 1
                if l[j]>='A' and l[j+2]<=' ' then
                    res[$] = append(res[$],{trim(l[j..j+1]),ln,c})
                end if
            end for
        end if
    end for
    res[7][3..2] = res[9]
    res[6][3..2] = res[8]
    res = join(res[1..7],{},{})
    return res
end function

constant pt = apply(true,sprintf,{{"(%s) is at %d, %d"},tablify(ptxt)})

for e in {1,2,29,42,57,58,59,71,72,89,90,103,113} do
    printf(1,"Element %d %s\n",{e,pt[e]})
end for
Output:
Element 1 (H) is at 1, 1
Element 2 (He) is at 1, 18
Element 29 (Cu) is at 4, 11
Element 42 (Mo) is at 5, 6
Element 57 (La) is at 8, 4
Element 58 (Ce) is at 8, 5
Element 59 (Pr) is at 8, 6
Element 71 (Lu) is at 8, 18
Element 72 (Hf) is at 6, 4
Element 89 (Ak) is at 9, 4
Element 90 (Th) is at 9, 5
Element 103 (Lr) is at 9, 18
Element 113 (Nh) is at 7, 13

PHP

Translation of: Nascom BASIC
<?php
// Periodic table

class PeriodicTable
{
    private $aArray = array(1, 2, 5, 13, 57, 72, 89, 104);
    
    private $bArray = array(-1, 15, 25, 35, 72, 21, 58, 7);
    
    public function rowAndColumn($n)
    {
        $i = 7;
        while ($this->aArray[$i] > $n)
            $i--;
        $m = $n + $this->bArray[$i];
        return array(floor($m / 18) + 1, $m % 18 + 1);
    }
}

$pt = new PeriodicTable();
// Example elements (atomic numbers).
foreach ([1, 2, 29, 42, 57, 58, 72, 89, 90, 103] as $n) {
    list($r, $c) = $pt->rowAndColumn($n);
    echo $n, " -> ", $r, " ", $c, PHP_EOL;
} 
?>
Output:
1 -> 1 1
2 -> 1 18
29 -> 4 11
42 -> 5 6
57 -> 8 4
58 -> 8 5
72 -> 6 4
89 -> 9 4
90 -> 9 5
103 -> 9 18

Python

A solution trying hard not to encode too much data about the table.

def perta(atomic) -> (int, int):

    NOBLES = 2, 10, 18, 36, 54, 86, 118
    INTERTWINED = 0, 0, 0, 0, 0, 57, 89
    INTERTWINING_SIZE = 14
    LINE_WIDTH = 18

    prev_noble = 0
    for row, noble in enumerate(NOBLES):
        if atomic <= noble:  # we are at the good row. We now need to determine the column
            nb_elem = noble - prev_noble  # number of elements on that row
            rank =  atomic - prev_noble  # rank of the input element among elements
            if INTERTWINED[row] and INTERTWINED[row] <= atomic <= INTERTWINED[row] + INTERTWINING_SIZE:  # lantanides or actinides
                row += 2
                col = rank + 1
            else:  # not a lantanide nor actinide
                # handle empty spaces between 1-2, 4-5 and 12-13.
                nb_empty = LINE_WIDTH - nb_elem  # spaces count as columns
                inside_left_element_rank = 2 if noble > 2 else 1
                col = rank + (nb_empty if rank > inside_left_element_rank else 0)
            break
        prev_noble = noble
    return row+1, col



# small test suite

TESTS = {
    1: (1, 1),
    2: (1, 18),
    29: (4,11),
    42: (5, 6),
    58: (8, 5),
    59: (8, 6),
    57: (8, 4),
    71: (8, 18),
    72: (6, 4),
    89: (9, 4),
    90: (9, 5),
    103: (9, 18),
}

for input, out in TESTS.items():
    found = perta(input)
    print('TEST:{:3d} -> '.format(input) + str(found) + (f' ; ERROR: expected {out}' if found != out else ''))

Raku

my $b = 18;
my @offset = 16, 10, 10, (2×$b)+1, (-2×$b)-15, (2×$b)+1, (-2×$b)-15;
my @span   = flat ^8 Zxx <1 3 8 44 15 17 15 15>;

for <1 2 29 42 57 58 72 89 90 103> -> $n {
    printf "%3d: %2d, %2d\n", $n, map {$_+1}, ($n-1 + [+] @offset.head(@span[$n-1])).polymod($b).reverse;
}
Output:
  1:  1,  1
  2:  1, 18
 29:  4, 11
 42:  5,  6
 57:  8,  4
 58:  8,  5
 72:  6,  4
 89:  9,  4
 90:  9,  5
103:  9, 18

Scheme

The following is a minimal recursive implementation. It calculates the position of the requested element by the position of the previous element.

(define (position-increment n)
  (cond
   ((= n   1) '( 0 .  17))
   ((= n   2) '( 1 . -17))
   ((= n   4) '( 0 .  11))
   ((= n  10) '( 1 . -17))
   ((= n  12) '( 0 .  11))
   ((= n  18) '( 1 . -17))
   ((= n  36) '( 1 . -17))
   ((= n  54) '( 1 . -17))
   ((= n  56) '( 2 .   2))
   ((= n  71) '(-2 . -14))
   ((= n  86) '( 1 . -17))
   ((= n  88) '( 2 .   2))
   ((= n 103) '(-2 . -14))
   (else      '( 0 .   1))))

(define (move p i)
  (cons (+ (car p) (car i))
        (+ (cdr p) (cdr i))))

(define (position n)
  (if (= n 1)
      '(1 . 1)
      (let ((m (- n 1)))
        (move (position m)
              (position-increment m)))))

(define (format-line n p)
  (display n)
  (display " -> ")
  (display (car p))
  (display " ")
  (display (cdr p))
  (newline))

(for-each (lambda (n)
            (format-line n (position n)))
          (list 1 2 29 42 57 58 72 89))

For successive calculations the above code is inefficient, because the position of 58 gets calculated by recalculating the position of 57, although is has already been calculated in the previous step. This can be enhanced by the use of memoization. The result of each calculation gets stored and whenever a position has to be calculated, the already calculated value gets used instead.

(define position*
  (let ((memo (make-vector 118 #f)))
    (lambda (n)
      (let* ((mi (- n 1))
             (mp (vector-ref memo mi)))
        (or mp
            (let ((p (position n)))
              (vector-set! memo mi p)
              p))))))
Output:
1 -> 1 1
2 -> 1 18
29 -> 4 11
42 -> 5 6
57 -> 8 4
58 -> 8 5
72 -> 6 4
89 -> 9 4

Wren

Library: Wren-fmt

There is a discrepancy between how the periodic table is arranged in the Wikipedia article and how it is arranged in the task description. I've used the latter in the following script.

import "./fmt" for Fmt

var limits = [3..10, 11..18, 19..36, 37..54, 55..86, 87..118]

var periodicTable = Fn.new { |n|
    if (n < 1 || n > 118) Fiber.abort("Atomic number is out of range.")
    if (n == 1) return [1, 1]
    if (n == 2) return [1, 18]
    if (n >= 57 && n <= 71)  return [8, n - 53]
    if (n >= 89 && n <= 103) return [9, n - 85]    
    var row
    var start
    var end
    for (i in 0...limits.count) {
        var limit = limits[i]
        if (n >= limit.from && n <= limit.to) {
            row = i + 2
            start = limit.from
            end = limit.to
            break
        }
    }
    if (n < start + 2 || row == 4 || row == 5) return [row, n - start + 1]
    return [row, n - end + 18]
}

for (n in [1, 2, 29, 42, 57, 58, 59, 71, 72, 89, 90, 103, 113]) {
    var rc = periodicTable.call(n)
    Fmt.print("Atomic number $3d -> $d, $-2d", n, rc[0], rc[1])
}
Output:
Atomic number   1 -> 1, 1 
Atomic number   2 -> 1, 18
Atomic number  29 -> 4, 11
Atomic number  42 -> 5, 6 
Atomic number  57 -> 8, 4 
Atomic number  58 -> 8, 5 
Atomic number  59 -> 8, 6 
Atomic number  71 -> 8, 18
Atomic number  72 -> 6, 4 
Atomic number  89 -> 9, 4 
Atomic number  90 -> 9, 5 
Atomic number 103 -> 9, 18
Atomic number 113 -> 7, 13

XPL0

proc ShowPosn(N);       \Show row and column for element
int  N, M, A, B, I, R, C;
[A:= [ 1,  2,  5, 13, 57, 72, 89, 104]; \magic numbers
 B:= [-1, 15, 25, 35, 72, 21, 58,   7];
I:= 7;
while A(I) > N do I:= I-1;
M:= N + B(I);
R:= M/18 +1;
C:= rem(0) +1;
IntOut(0, N);  Text(0, " -> ");
IntOut(0, R);  Text(0, ", ");
IntOut(0, C);  CrLf(0);
];

int Element, I;
[Element:= [1, 2, 29, 42, 57, 58, 72, 89, 90, 103];
for I:= 0 to 10-1 do ShowPosn(Element(I));
]
Output:
1 -> 1, 1
2 -> 1, 18
29 -> 4, 11
42 -> 5, 6
57 -> 8, 4
58 -> 8, 5
72 -> 6, 4
89 -> 9, 4
90 -> 9, 5
103 -> 9, 18