Parsing/RPN calculator algorithm

From Rosetta Code
Revision as of 13:31, 31 March 2019 by SqrtNegInf (talk | contribs) (→‎{{header|Perl}}: same logic, more readable)
Task
Parsing/RPN calculator algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Create a stack-based evaluator for an expression in   reverse Polish notation (RPN)   that also shows the changes in the stack as each individual token is processed as a table.


  • Assume an input of a correct, space separated, string of tokens of an RPN expression
  • Test with the RPN expression generated from the   Parsing/Shunting-yard algorithm   task:

        3 4 2 * 1 5 - 2 3 ^ ^ / +

  • Print or display the output here


Notes
  •   ^   means exponentiation in the expression above.
  •   /   means division.


See also



360 Assembly

Translation of: FORTRAN

For concision, only integer arithmetic is handled, but input numbers can be of any length. The formal task is not completed, but the spirit of it is. <lang 360asm>* RPN calculator RC 25/01/2019 REVPOL CSECT

        USING  REVPOL,R13         base register
        B      72(R15)            skip savearea
        DC     17F'0'             savearea
        STM    R14,R12,12(R13)    save previous context
        ST     R13,4(R15)         link backward
        ST     R15,8(R13)         link forward
        LR     R13,R15            set addressability
        XPRNT  TEXT,L'TEXT        print expression !?
        L      R4,0               js=0  offset in stack
        LA     R5,0               ns=0  number of stack items
        LA     R6,0               jt=0  offset in text
        LA     R7,TEXT            r7=@text
        MVC    CC,0(R7)           cc first char of token
      DO WHILE=(CLI,CC,NE,X'00')  do while cc<>'0'x
        MVC    CTOK,=CL5' '         ctok=
        MVC    CTOK(1),CC           ctok=cc
        CLI    CC,C' '              if cc=' '
        BE     ITERATE              then goto iterate
      IF CLI,CC,GE,C'0',AND,CLI,CC,LE,C'9' THEN
        MVC    DEED,=C'Load'        deed='Load'
        XDECI  R2,0(R7)             r2=cint(text); r1=@text
        ST     R2,STACK(R4)         stack(js)=cc
        SR     R1,R7                lt  length of token
        BCTR   R1,0                 lt-1
        EX     R1,MVCV              MVC CTOK("R1"),0(R7)
        AR     R6,R1                jt+=lt-1
        AR     R7,R1                @text+=lt-1
        LA     R4,4(R4)             js+=4
        LA     R5,1(R5)             ns++
      ELSE     ,                    else
        MVC    DEED,=C'Exec'        deed='Exec'
        LA     R9,STACK-8(R4)       @stack(j-1)
      IF CLI,CC,EQ,C'+' THEN        if cc='+' then
        L      R1,STACK-8(R4)         stack(j-1)
        A      R1,STACK-4(R4)         stack(j-1)+stack(j)
        ST     R1,0(R9)               stack(j-1)=stack(j-1)+stack(j)
      ENDIF    ,                    endif
      IF CLI,CC,EQ,C'-' THEN        if cc='-' then
        L      R1,STACK-8(R4)         stack(j-1)
        S      R1,STACK-4(R4)         stack(j-1)-stack(j)
        ST     R1,0(R9)               stack(j-1)=stack(j-1)-stack(j)
      ENDIF    ,                    endif
      IF CLI,CC,EQ,C'*' THEN        if cc='*' then
        L      R3,STACK-8(R4)         stack(j-1)
        M      R2,STACK-4(R4)         stack(j-1)*stack(j)
        ST     R3,0(R9)               stack(j-1)=stack(j-1)*stack(j)
      ENDIF    ,                    endif
      IF CLI,CC,EQ,C'/' THEN        if cc='/' then
        L      R2,STACK-8(R4)         stack(j-1)
        SRDA   R2,32                  for sign propagation
        D      R2,STACK-4(R4)         stack(j-1)/stack(j)
        ST     R3,0(R9)               stack(j-1)=stack(j-1)/stack(j)
      ENDIF    ,                    endif
      IF CLI,CC,EQ,C'^' THEN        if cc='^' then
        LA     R3,1                   r3=1
        L      R0,STACK-4(R4)         r0=stack(j) [loop count]

EXPONENT M R2,STACK-8(R4) r3=r3*stack(j-1)

        BCT    R0,EXPONENT            if r0--<>0 then goto exponent
        ST     R3,0(R9)               stack(j-1)=stack(j-1)^stack(j)
      ENDIF    ,                    endif
        S      R4,=F'4'             js-=4
        BCTR   R5,0                 ns--
      ENDIF    ,                  endif
        MVC    PG,=CL80' '          clean buffer
        MVC    PG(4),DEED           output deed
        MVC    PG+5(5),CTOK         output cc
        MVC    PG+11(6),=C'Stack:'  output
        LA     R2,1                 i=1
        LA     R3,STACK             @stack 
        LA     R9,PG+18             @buffer
      DO WHILE=(CR,R2,LE,R5)        do i=1 to ns
        L      R1,0(R3)               stack(i)
        XDECO  R1,XDEC                edit stack(i)
        MVC    0(5,R9),XDEC+7         output stack(i)
        LA     R2,1(R2)               i=i+1
        LA     R3,4(R3)               @stack+=4
        LA     R9,6(R9)               @buffer+=6
      ENDDO    ,                    enddo
        XPRNT  PG,L'PG              print

ITERATE LA R6,1(R6) jt++

        LA     R7,1(R7)             @text++
        MVC    CC,0(R7)             cc next char
      ENDDO    ,                  enddo
        L      R1,STACK           stack(1)
        XDECO  R1,XDEC            edit stack(1)
        MVC    XDEC(4),=C'Val='   output
        XPRNT  XDEC,L'XDEC        print stack(1)
        L      R13,4(0,R13)       restore previous savearea pointer
        LM     R14,R12,12(R13)    restore previous context
        XR     R15,R15            rc=0
        BR     R14                exit

MVCV MVC CTOK(0),0(R7) patern mvc TEXT DC C'3 4 2 * 1 5 - 2 3 ^ ^ / +',X'00' STACK DS 16F stack(16) DEED DS CL4 CC DS C CTOK DS CL5 PG DS CL80 XDEC DS CL12

        YREGS
        END    REVPOL</lang>
Output:
3 4 2 * 1 5 - 2 3 ^ ^ / +
Load 3     Stack:     3
Load 4     Stack:     3     4
Load 2     Stack:     3     4     2
Exec *     Stack:     3     8
Load 1     Stack:     3     8     1
Load 5     Stack:     3     8     1     5
Exec -     Stack:     3     8    -4
Load 2     Stack:     3     8    -4     2
Load 3     Stack:     3     8    -4     2     3
Exec ^     Stack:     3     8    -4     8
Exec ^     Stack:     3     8 65536
Exec /     Stack:     3     0
Exec +     Stack:     3
Val=       3


Ada

<lang Ada>with Ada.Text_IO, Ada.Containers.Vectors;

procedure RPN_Calculator is

 package IIO is new Ada.Text_IO.Float_IO(Float);
  package Float_Vec is new Ada.Containers.Vectors
    (Index_Type => Positive, Element_Type => Float);
  Stack: Float_Vec.Vector;
  Input: String := Ada.Text_IO.Get_Line;
  Cursor: Positive := Input'First;
  New_Cursor: Positive;

begin

  loop
     -- read spaces
     while Cursor <= Input'Last and then Input(Cursor)=' ' loop
        Cursor := Cursor + 1;
     end loop;
     exit when Cursor > Input'Last;
     New_Cursor := Cursor;
     while New_Cursor <= Input'Last and then Input(New_Cursor) /= ' ' loop
        New_Cursor := New_Cursor + 1;
     end loop;
     -- try to read a number and push it to the stack
     declare
        Last: Positive;
        Value: Float;
        X, Y: Float;
     begin
        IIO.Get(From => Input(Cursor .. New_Cursor - 1),
                Item => Value,
                Last => Last);
        Stack.Append(Value);
        Cursor := New_Cursor;
     exception -- if reading the number fails, try to read an operator token
        when others =>
           Y := Stack.Last_Element; Stack.Delete_Last; -- pick two elements
           X := Stack.Last_Element; Stack.Delete_Last; -- from the stack
           case Input(Cursor) is
              when '+' => Stack.Append(X+Y);
              when '-' => Stack.Append(X-Y);
              when '*' => Stack.Append(X*Y);
              when '/' => Stack.Append(X/Y);
              when '^' => Stack.Append(X ** Integer(Float'Rounding(Y)));
              when others => raise Program_Error with "unecpected token '"
                 & Input(Cursor) & "' at column" & Integer'Image(Cursor);
           end case;
           Cursor := New_Cursor;
     end;
     for I in Stack.First_Index .. Stack.Last_Index loop
        Ada.Text_IO.Put(" ");
        IIO.Put(Stack.Element(I), Aft => 5, Exp => 0);
     end loop;
     Ada.Text_IO.New_Line;
  end loop;
  Ada.Text_IO.Put("Result = ");
  IIO.Put(Item => Stack.Last_Element, Aft => 5, Exp => 0);


end RPN_Calculator;</lang>

Output:
3 4 2 * 1 5 - 2 3 ^ ^ / +
  3.00000
  3.00000  4.00000
  3.00000  4.00000  2.00000
  3.00000  8.00000
  3.00000  8.00000  1.00000
  3.00000  8.00000  1.00000  5.00000
  3.00000  8.00000 -4.00000
  3.00000  8.00000 -4.00000  2.00000
  3.00000  8.00000 -4.00000  2.00000  3.00000
  3.00000  8.00000 -4.00000  8.00000
  3.00000  8.00000 65536.00000
  3.00000  0.00012
  3.00012
Result =  3.00012

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.win32

<lang algol68># RPN Expression evaluator - handles numbers and + - * / ^ #

  1. the right-hand operand for ^ is converted to an integer #
  1. expression terminator #

CHAR end of expression character = REPR 12;

  1. evaluates the specified rpn expression #

PROC evaluate = ( STRING rpn expression )VOID: BEGIN

   [ 256 ]REAL   stack;
   INT           stack pos := 0;
   # pops an element off the stack #
   PROC pop = REAL:
   BEGIN
       stack pos -:= 1;
       stack[ stack pos + 1 ]
   END; # pop #
   INT rpn pos := LWB rpn expression;
   # evaluate tokens from the expression until we get the end of expression #
   WHILE
       # get the next token from the string #
       STRING token type;
       REAL   value;
       # skip spaces #
       WHILE rpn expression[ rpn pos ] = " "
       DO
           rpn pos +:= 1
       OD;
       # handle the token #
       IF rpn expression[ rpn pos ] = end of expression character
       THEN
           # no more tokens #
           FALSE
       ELSE
           # have a token #
           IF  rpn expression[ rpn pos ] >= "0"
           AND rpn expression[ rpn pos ] <= "9"
           THEN
               # have a number #
               # find where the nmumber is in the expression #
               INT  number start = rpn pos;
               WHILE (   rpn expression[ rpn pos ] >= "0"
                     AND rpn expression[ rpn pos ] <= "9"
                     )
                  OR rpn expression[ rpn pos ] = "."
               DO
                   rpn pos +:= 1
               OD;
               # read the number from the expression #
               FILE number f;
               associate( number f
                        , LOC STRING := rpn expression[ number start : rpn pos - 1 ]
                        );
               get( number f, ( value ) );
               close( number f );

               token type := "number"
           ELSE
               # must be an operator #
               CHAR op      = rpn expression[ rpn pos ];
               rpn pos    +:= 1;
               REAL arg1   := pop;
               REAL arg2   := pop;
               token type  := op;
               value := IF   op = "+"
                        THEN
                            # add the top two stack elements #
                            arg1 + arg2
                        ELIF op = "-"
                        THEN
                            # subtract the top two stack elements #
                            arg2 - arg1
                        ELIF op = "*"
                        THEN
                            # multiply the top two stack elements #
                            arg2 * arg1
                        ELIF op = "/"
                        THEN
                            # divide the top two stack elements #
                            arg2 / arg1
                        ELIF op = "^"
                        THEN
                            # raise op2 to the power of op1 #
                            arg2 ^ ENTIER arg1
                        ELSE
                            # unknown operator #
                            print( ( "Unknown operator: """ + op + """", newline ) );
                            0
                        FI
           FI;
           TRUE
       FI
   DO
       # push the new value on the stack and show the new stack #
       stack[ stack pos +:= 1 ] := value;
       print( ( ( token type + "            " )[ 1 : 8 ] ) );
       FOR element FROM LWB stack TO stack pos
       DO
           print( ( " ", fixed( stack[ element ], 8, 4 ) ) )
       OD;
       print( ( newline ) )
   OD;
   print( ( "Result is: ", fixed( stack[ stack pos ], 12, 8 ), newline ) )

END; # evaluate #

main: (

   # get the RPN expresson from the user #
   STRING rpn expression;
   print( ( "Enter expression: " ) );
   read( ( rpn expression, newline ) );
   # add a space to terminate the final token and an expression terminator #
   rpn expression +:= " " + end of expression character;
   # execute the expression #
   evaluate( rpn expression )

)</lang>

Output:
Enter expression: 3 4 2 * 1 5 - 2 3 ^ ^ / +
number    +3.0000
number    +3.0000  +4.0000
number    +3.0000  +4.0000  +2.0000
*         +3.0000  +8.0000
number    +3.0000  +8.0000  +1.0000
number    +3.0000  +8.0000  +1.0000  +5.0000
-         +3.0000  +8.0000  -4.0000
number    +3.0000  +8.0000  -4.0000  +2.0000
number    +3.0000  +8.0000  -4.0000  +2.0000  +3.0000
^         +3.0000  +8.0000  -4.0000  +8.0000
^         +3.0000  +8.0000 +65536.0
/         +3.0000  +0.0001
+         +3.0001
Result is:  +3.00012207

ANSI Standard BASIC

<lang ANSI Standard BASIC>1000 DECLARE EXTERNAL SUB rpn 1010 PUBLIC NUMERIC R(64)  ! stack 1020 PUBLIC STRING expn$  ! for keyboard input 1030 PUBLIC NUMERIC i, lenn, n, true, false  ! global values 1040 LET true = -1 1050 LET false = 0 1060 DO 1070 PRINT "enter an RPN expression:" 1080 INPUT expn$ 1090 IF LEN( expn$ ) = 0 THEN EXIT DO 1100 PRINT "expn: ";expn$ 1110 CALL rpn( expn$ ) 1120 LOOP 1130 END 1140 ! 1150 ! interpret reverse polish (postfix) expression 1160 EXTERNAL SUB rpn( expn$ ) 1170 DECLARE EXTERNAL FUNCTION is_digit, get_number 1180 DECLARE EXTERNAL SUB print_stack 1190 DECLARE STRING ch$ 1200 LET expn$ = expn$ & " "  ! must terminate line with space 1210 LET lenn = LEN( expn$ ) 1220 LET i = 0 1230 LET n = 1 1240 LET R(n) = 0.0  ! push zero for unary operations 1250 DO 1260 IF i >= lenn THEN EXIT DO  ! at end of line 1270 LET i = i + 1 1280 IF expn$(i:i) <> " " THEN  ! skip white spaces 1290 IF is_digit( expn$(i:i) ) = true THEN  ! push number onto stack 1300 LET n = n + 1 1310 LET R(n) = get_number 1320 CALL print_stack 1330 ELSEIF expn$(i:i) = "+" then  ! add and pop stack 1340 IF n < 2 THEN 1350 PRINT "stack underflow" 1360 ELSE 1370 LET R(n-1) = R(n-1) + R(n) 1380 LET n = n - 1 1390 CALL print_stack 1400 END IF 1410 ELSEIF expn$(i:i) = "-" then  ! subtract and pop stack 1420 IF n < 2 THEN 1430 PRINT "stack underflow" 1440 ELSE 1450 LET R(n-1) = R(n-1) - R(n) 1460 LET n = n - 1 1470 CALL print_stack 1480 END IF 1490 ELSEIF expn$(i:i) = "*" then  ! multiply and pop stack 1500 IF n < 2 THEN 1510 PRINT "stack underflow" 1520 ELSE 1530 LET R(n-1) = R(n-1) * R(n) 1540 LET n = n - 1 1550 CALL print_stack 1560 END IF 1570 ELSEIF expn$(i:i) = "/" THEN  ! divide and pop stack 1580 IF n < 2 THEN 1590 PRINT "stack underflow" 1600 ELSE 1610 LET R(n-1) = R(n-1) / R(n) 1620 LET n = n - 1 1630 CALL print_stack 1640 END IF 1650 ELSEIF expn$(i:i) = "^" THEN  ! raise to power and pop stack 1660 IF n < 2 THEN 1670 PRINT "stack underflow" 1680 ELSE 1690 LET R(n-1) = R(n-1) ^ R(n) 1700 LET n = n - 1 1710 CALL print_stack 1720 END IF 1730 ELSE 1740 PRINT REPEAT$( " ", i+5 ); "^ error" 1750 EXIT DO 1760 END IF 1770 END IF 1780 LOOP 1790 PRINT "result: "; R(n)  ! end of main program 1800 END SUB 1810 ! 1820 ! extract a number from a string 1830 EXTERNAL FUNCTION get_number 1840 DECLARE EXTERNAL FUNCTION is_digit 1850 LET j = 1  ! start of number string 1860 DECLARE STRING number$  ! buffer for conversion 1870 DO  ! get integer part 1880 LET number$(j:j) = expn$(i:i) 1890 LET i = i + 1 1900 LET j = j + 1 1910 IF is_digit( expn$(i:i) ) = false THEN 1920 IF expn$(i:i) = "." then 1930 LET number$(j:j) = expn$(i:i)  ! include decimal point 1940 LET i = i + 1 1950 LET j = j + 1 1960 DO WHILE is_digit( expn$(i:i) ) = true  ! get fractional part 1970 LET number$(j:j) = expn$(i:i) 1980 LET i = i + 1 1990 LET j = j + 1 2000 LOOP 2010 END IF 2020 EXIT DO 2030 END IF 2040 LOOP 2050 LET get_number = VAL( number$ ) 2060 END FUNCTION 2070 ! 2080 ! check for digit character 2090 EXTERNAL FUNCTION is_digit( ch$ ) 2100 IF "0" <= expn$(i:i) AND expn$(i:i) <= "9" THEN 2110 LET is_digit = true 2120 ELSE 2130 LET is_digit = false 2140 END IF 2150 END FUNCTION 2160 ! 2170 EXTERNAL SUB print_stack 2180 PRINT expn$(i:i);" "; 2190 FOR ptr=n TO 2 STEP -1 2200 PRINT USING "-----%.####":R(ptr); 2210 NEXT ptr 2220 PRINT 2230 END SUB</lang>

ANTLR

rpnC
rpnC
rpnC
rpnC
rpnC
rpnC


Java

<lang java> grammar rpnC ; // // rpn Calculator // // Nigel Galloway - April 7th., 2012 // @members { Stack<Double> s = new Stack<Double>(); } rpn : (WS* (num|op) (WS | WS* NEWLINE {System.out.println(s.pop());}))*; num : '-'? Digit+ ('.' Digit+)? {s.push(Double.parseDouble($num.text));}; Digit : '0'..'9'; op : '-' {double x = s.pop(); s.push(s.pop() - x);} | '/' {double x = s.pop(); s.push(s.pop() / x);} | '*' {s.push(s.pop() * s.pop());} | '^' {double x = s.pop(); s.push(Math.pow(s.pop(), x));} | '+' {s.push(s.pop() + s.pop());}; WS : (' ' | '\t'){skip()}; NEWLINE : '\r'? '\n'; </lang> Produces:

>java Test
3 4 2 * 1 5 - 2 3 ^ ^ / +
^Z
3.0001220703125

AutoHotkey

Works with: AutoHotkey_L

Output is in clipboard. <lang AHK>evalRPN("3 4 2 * 1 5 - 2 3 ^ ^ / +") evalRPN(s){ stack := [] out := "For RPN expression: '" s "'`r`n`r`nTOKEN`t`tACTION`t`t`tSTACK`r`n" Loop Parse, s If A_LoopField is number t .= A_LoopField else { If t stack.Insert(t) , out .= t "`tPush num onto top of stack`t" stackShow(stack) "`r`n" , t := "" If InStr("+-/*^", l := A_LoopField) { a := stack.Remove(), b := stack.Remove() stack.Insert( l = "+" ? b + a :l = "-" ? b - a :l = "*" ? b * a :l = "/" ? b / a :l = "^" ? b **a :0 ) out .= l "`tApply op " l " to top of stack`t" stackShow(stack) "`r`n" } } r := stack.Remove() out .= "`r`n The final output value is: '" r "'" clipboard := out return r } StackShow(stack){ for each, value in stack out .= A_Space value return subStr(out, 2) }</lang>

Output:
For RPN expression: '3 4 2 * 1 5 - 2 3 ^ ^ / +'

TOKEN		ACTION			STACK
3	Push num onto top of stack	3
4	Push num onto top of stack	3 4
2	Push num onto top of stack	3 4 2
*	Apply op * to top of stack	3 8
1	Push num onto top of stack	3 8 1
5	Push num onto top of stack	3 8 1 5
-	Apply op - to top of stack	3 8 -4
2	Push num onto top of stack	3 8 -4 2
3	Push num onto top of stack	3 8 -4 2 3
^	Apply op ^ to top of stack	3 8 -4 8
^	Apply op ^ to top of stack	3 8 65536
/	Apply op / to top of stack	3 0.000122
+	Apply op + to top of stack	3.000122

 The final output value is: '3.000122'

BBC BASIC

<lang bbcbasic> @% = &60B

     RPN$ = "3 4 2 * 1 5 - 2 3 ^ ^ / +"
     
     DIM Stack(1000)
     SP% = 0
     
     FOR i% = 1 TO LEN(RPN$)
       Token$ = MID$(RPN$,i%,1)
       IF Token$ <> " " THEN
         PRINT Token$ " :";
         CASE Token$ OF
           WHEN "+": PROCpush(FNpop + FNpop)
           WHEN "-": PROCpush(-FNpop + FNpop)
           WHEN "*": PROCpush(FNpop * FNpop)
           WHEN "/": n = FNpop : PROCpush(FNpop / n)
           WHEN "^": n = FNpop : PROCpush(FNpop ^ n)
           WHEN "0","1","2","3","4","5","6","7","8","9":
             PROCpush(VALMID$(RPN$,i%))
             WHILE ASCMID$(RPN$,i%)>=48 AND ASCMID$(RPN$,1)<=57
               i% += 1
             ENDWHILE
         ENDCASE
         FOR j% = SP%-1 TO 0 STEP -1 : PRINT Stack(j%); : NEXT
         PRINT
       ENDIF
     NEXT i%
     END
     
     DEF PROCpush(n)
     IF SP% > DIM(Stack(),1) ERROR 100, "Stack full"
     Stack(SP%) = n
     SP% += 1
     ENDPROC
     
     DEF FNpop
     IF SP% = 0 ERROR 100, "Stack empty"
     SP% -= 1
     = Stack(SP%)</lang>
Output:
3 :          3
4 :          4          3
2 :          2          4          3
* :          8          3
1 :          1          8          3
5 :          5          1          8          3
- :         -4          8          3
2 :          2         -4          8          3
3 :          3          2         -4          8          3
^ :          8         -4          8          3
^ :      65536          8          3
/ : 0.00012207          3
+ :    3.00012

Bracmat

<lang bracmat>( ( show

 =   line a
   .   \n:?line
     &   whl
       ' (!arg:%?a ?arg&!a " " !line:?line)
     & put$(str$!line)
 )

& :?stack & map

 $ ( (
     =   a b
       .   show$(!arg !stack)
         &     (     !arg
                   : ( "+"
                     | "-"
                     | "*"
                     | "/"
                     | "^"
                     )
                 & !stack:%?a %?b ?stack
                 & ( !arg:"+"&!a+!b
                   | !arg:"-"&-1*!a+!b
                   | !arg:"*"&!a*!b
                   | !arg:"/"&!a*!b^-1
                   | !a^!b
                   )
               | !arg
               )
               !stack
           : ?stack
     )
   . vap$((=.!arg).get'(,STR)." ")
   )

& out$!stack )</lang> Input from keyboard:

3 4 2 * 1 5 - 2 3 ^ ^ / +

Output:

3
3 4
3 4 2
3 4 2 *
3 8 1
3 8 1 5
3 8 1 5 -
3 8 -4 2
3 8 -4 2 3
3 8 -4 2 3 ^
3 8 -4 9 ^
3 8 1/6561 /
3 1/52488 +
157465/52488
{!} 157465/52488

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <string.h>
  3. include <math.h>

void die(const char *msg) { fprintf(stderr, "%s", msg); abort(); }

  1. define MAX_D 256

double stack[MAX_D]; int depth;

void push(double v) { if (depth >= MAX_D) die("stack overflow\n"); stack[depth++] = v; }

double pop() { if (!depth) die("stack underflow\n"); return stack[--depth]; }

double rpn(char *s) { double a, b; int i; char *e, *w = " \t\n\r\f";

for (s = strtok(s, w); s; s = strtok(0, w)) { a = strtod(s, &e); if (e > s) printf(" :"), push(a);

  1. define binop(x) printf("%c:", *s), b = pop(), a = pop(), push(x)

else if (*s == '+') binop(a + b); else if (*s == '-') binop(a - b); else if (*s == '*') binop(a * b); else if (*s == '/') binop(a / b); else if (*s == '^') binop(pow(a, b));

  1. undef binop

else { fprintf(stderr, "'%c': ", *s); die("unknown oeprator\n"); } for (i = depth; i-- || 0 * putchar('\n'); ) printf(" %g", stack[i]); }

if (depth != 1) die("stack leftover\n");

return pop(); }

int main(void) { char s[] = " 3 4 2 * 1 5 - 2 3 ^ ^ / + "; printf("%g\n", rpn(s)); return 0; }</lang>

It's also possible to parse RPN string backwards and recursively; good luck printing out your token stack as a table: there isn't one. <lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <ctype.h>
  3. include <string.h>
  4. include <math.h>
  1. define die(msg) fprintf(stderr, msg"\n"), abort();

double get(const char *s, const char *e, char **new_e) { const char *t; double a, b;

for (e--; e >= s && isspace(*e); e--); for (t = e; t > s && !isspace(t[-1]); t--);

if (t < s) die("underflow");

  1. define get2(expr) b = get(s, t, (char **)&t), a = get(s, t, (char **)&t), a = expr

a = strtod(t, (char **)&e); if (e <= t) { if (t[0] == '+') get2(a + b); else if (t[0] == '-') get2(a - b); else if (t[0] == '*') get2(a * b); else if (t[0] == '/') get2(a / b); else if (t[0] == '^') get2(pow(a, b)); else { fprintf(stderr, "'%c': ", t[0]); die("unknown token"); } }

  1. undef get2

*(const char **)new_e = t; return a; }

double rpn(const char *s) { const char *e = s + strlen(s); double v = get(s, e, (char**)&e);

while (e > s && isspace(e[-1])) e--; if (e == s) return v;

fprintf(stderr, "\"%.*s\": ", e - s, s); die("front garbage"); }

int main(void) { printf("%g\n", rpn("3 4 2 * 1 5 - 2 3 ^ ^ / +")); return 0; }</lang>

C++

<lang cpp>#include <vector>

  1. include <string>
  2. include <sstream>
  3. include <iostream>
  4. include <cmath>
  5. include <algorithm>
  6. include <iterator>
  7. include <cstdlib>

double rpn(const std::string &expr){

 std::istringstream iss(expr);
 std::vector<double> stack;
 std::cout << "Input\tOperation\tStack after" << std::endl;
 std::string token;
 while (iss >> token) {
   std::cout << token << "\t";
   double tokenNum;
   if (std::istringstream(token) >> tokenNum) {
     std::cout << "Push\t\t";
     stack.push_back(tokenNum);
   } else {
     std::cout << "Operate\t\t";
     double secondOperand = stack.back();
     stack.pop_back();
     double firstOperand = stack.back();
     stack.pop_back();
     if (token == "*")

stack.push_back(firstOperand * secondOperand);

     else if (token == "/")

stack.push_back(firstOperand / secondOperand);

     else if (token == "-")

stack.push_back(firstOperand - secondOperand);

     else if (token == "+")

stack.push_back(firstOperand + secondOperand);

     else if (token == "^")

stack.push_back(std::pow(firstOperand, secondOperand));

     else { //just in case

std::cerr << "Error" << std::endl; std::exit(1);

     }
   }
   std::copy(stack.begin(), stack.end(), std::ostream_iterator<double>(std::cout, " "));
   std::cout << std::endl;
 }
 return stack.back();

}

int main() {

 std::string s = " 3 4 2 * 1 5 - 2 3 ^ ^ / + ";
 std::cout << "Final answer: " << rpn(s) << std::endl;
 
 return 0;

}</lang>

Output:
Input	Operation	Stack after
3	Push		3 
4	Push		3 4 
2	Push		3 4 2 
*	Operate		3 8 
1	Push		3 8 1 
5	Push		3 8 1 5 
-	Operate		3 8 -4 
2	Push		3 8 -4 2 
3	Push		3 8 -4 2 3 
^	Operate		3 8 -4 8 
^	Operate		3 8 65536 
/	Operate		3 0.00012207 
+	Operate		3.00012 
Final answer: 3.00012

C#

<lang csharp>using System; using System.Collections.Generic; using System.Linq; using System.Globalization; using System.Threading;

namespace RPNEvaluator {

   class RPNEvaluator
   {
       static void Main(string[] args)
       {
           Thread.CurrentThread.CurrentCulture = CultureInfo.InvariantCulture;
           string rpn = "3 4 2 * 1 5 - 2 3 ^ ^ / +";
           Console.WriteLine("{0}\n", rpn);
           decimal result = CalculateRPN(rpn);
           Console.WriteLine("\nResult is {0}", result);
       }
       static decimal CalculateRPN(string rpn)
       {
           string[] rpnTokens = rpn.Split(' ');
           Stack<decimal> stack = new Stack<decimal>();
           decimal number = decimal.Zero;
           foreach (string token in rpnTokens)
           {
               if (decimal.TryParse(token, out number))
               {
                   stack.Push(number);
               }
               else
               {
                   switch (token)
                   {
                       case "^":
                       case "pow":
                           {
                               number = stack.Pop();
                               stack.Push((decimal)Math.Pow((double)stack.Pop(), (double)number));
                               break;
                           }
                       case "ln":
                           {
                               stack.Push((decimal)Math.Log((double)stack.Pop(), Math.E));
                               break;
                           }
                       case "sqrt":
                           {
                               stack.Push((decimal)Math.Sqrt((double)stack.Pop()));
                               break;
                           }
                       case "*":
                           {
                               stack.Push(stack.Pop() * stack.Pop());
                               break;
                           }
                       case "/":
                           {
                               number = stack.Pop();
                               stack.Push(stack.Pop() / number);
                               break;
                           }
                       case "+":
                           {
                               stack.Push(stack.Pop() + stack.Pop());
                               break;
                           }
                       case "-":
                           {
                               number = stack.Pop();
                               stack.Push(stack.Pop() - number);
                               break;
                           }
                       default:
                           Console.WriteLine("Error in CalculateRPN(string) Method!");
                           break;
                   }
               }
               PrintState(stack);
           }
           return stack.Pop();
       }
       static void PrintState(Stack<decimal> stack)
       {
           decimal[] arr = stack.ToArray();
           for (int i = arr.Length - 1; i >= 0; i--)
           {
               Console.Write("{0,-8:F3}", arr[i]);
           }
           
           Console.WriteLine();
       }
   }

}</lang>

Output:
3 4 2 * 1 5 - 2 3 ^ ^ / +

3.000
3.000   4.000
3.000   4.000   2.000
3.000   8.000
3.000   8.000   1.000
3.000   8.000   1.000   5.000
3.000   8.000   -4.000
3.000   8.000   -4.000  2.000
3.000   8.000   -4.000  2.000   3.000
3.000   8.000   -4.000  8.000
3.000   8.000   65536.000
3.000   0.000
3.000

Result is 3.0001220703125

Ceylon

<lang>import ceylon.collection {

ArrayList }

shared void run() {

value ops = map { "+" -> plus<Float>, "*" -> times<Float>, "-" -> ((Float a, Float b) => a - b), "/" -> ((Float a, Float b) => a / b), "^" -> ((Float a, Float b) => a ^ b) };

void printTableRow(String|Float token, String description, {Float*} stack) { print("``token.string.padTrailing(8)````description.padTrailing(30)````stack``"); }

function calculate(String input) {

value stack = ArrayList<Float>(); value tokens = input.split().map((String element) => if(ops.keys.contains(element)) then element else parseFloat(element));

print("Token Operation Stack");

for(token in tokens.coalesced) { if(is Float token) { stack.push(token); printTableRow(token, "push", stack); } else if(exists op = ops[token], exists first = stack.pop(), exists second = stack.pop()) { value result = op(second, first); stack.push(result); printTableRow(token, "perform ``token`` on ``formatFloat(second, 1, 1)`` and ``formatFloat(first, 1, 1)``", stack); } else { throw Exception("bad syntax"); } } return stack.pop(); }

print(calculate("3 4 2 * 1 5 - 2 3 ^ ^ / +")); }</lang>

Output:
Token   Operation                     Stack
3.0     push                          { 3.0 }
4.0     push                          { 3.0, 4.0 }
2.0     push                          { 3.0, 4.0, 2.0 }
*       perform * on 4.0 and 2.0      { 3.0, 8.0 }
1.0     push                          { 3.0, 8.0, 1.0 }
5.0     push                          { 3.0, 8.0, 1.0, 5.0 }
-       perform - on 1.0 and 5.0      { 3.0, 8.0, -4.0 }
2.0     push                          { 3.0, 8.0, -4.0, 2.0 }
3.0     push                          { 3.0, 8.0, -4.0, 2.0, 3.0 }
^       perform ^ on 2.0 and 3.0      { 3.0, 8.0, -4.0, 8.0 }
^       perform ^ on -4.0 and 8.0     { 3.0, 8.0, 65536.0 }
/       perform / on 8.0 and 65536.0  { 3.0, 1.220703125E-4 }
+       perform + on 3.0 and 0.0      { 3.0001220703125 }
3.0001220703125

Clojure

This would be a lot simpler and generic if we were allowed to use something other than ^ for exponentiation. ^ isn't a legal clojure symbol. <lang clojure> (ns rosettacode.parsing-rpn-calculator-algorithm

 (:require clojure.math.numeric-tower
           clojure.string
           clojure.pprint))

(def operators

 "the only allowable operators for our calculator"
 {"+" +
  "-" -
  "*" *
  "/" /
  "^" clojure.math.numeric-tower/expt})

(defn rpn

 "takes a string and returns a lazy-seq of all the stacks"
 [string]
 (letfn [(rpn-reducer [stack item] ; this takes a stack and one item and makes a new stack
           (if (contains? operators item)
             (let [operand-1 (peek stack) ; if we used lists instead of vectors, we could use destructuring, but stacks would look backwards
                   stack-1 (pop stack)]   ;we're assuming that all the operators are binary
               (conj (pop stack-1)
                     ((operators item) (peek stack-1) operand-1)))
             (conj stack (Long. item))))] ; if it wasn't an operator, we'll assume it's a long. Could choose bigint, or even read-line
   (reductions rpn-reducer [] (clojure.string/split string #"\s+")))) ;reductions is like reduce only shows all the intermediate steps

(let [stacks (rpn "3 4 2 * 1 5 - 2 3 ^ ^ / +")] ;bind it so we can output the answer separately.

 (println "stacks: ")
 (clojure.pprint/pprint stacks)
 (print "answer:" (->> stacks last first)))

</lang>

Output:

stacks: ([]

[3]
[3 4]
[3 4 2]
[3 8]
[3 8 1]
[3 8 1 5]
[3 8 -4]
[3 8 -4 2]
[3 8 -4 2 3]
[3 8 -4 8]
[3 8 65536]
[3 1/8192]
[24577/8192])

answer: 24577/8192

Common Lisp

<lang lisp>(setf (symbol-function '^) #'expt)  ; Make ^ an alias for EXPT

(defun print-stack (token stack)

   (format T "~a: ~{~a ~}~%" token (reverse stack)))

(defun rpn (tokens &key stack verbose )

 (cond
   ((and (not tokens) (not stack)) 0)
   ((not tokens) (car stack))
   (T 
     (let* ((current (car tokens))
            (next-stack (if (numberp current) 
                          (cons current stack)
                          (let* ((arg2 (car stack))
                                 (arg1 (cadr stack))
                                 (fun (car tokens)))
                            (cons (funcall fun arg1 arg2) (cddr stack))))))
       (when verbose
         (print-stack current next-stack))
       (rpn (cdr tokens) :stack next-stack :verbose verbose)))))</lang>
Output:
>(defparameter *tokens* '(3 4 2 * 1 5 - 2 3 ^ ^ / +))

*TOKENS*
> (rpn *tokens*)

24577/8192
> (rpn *tokens* :verbose T)
3: 3 
4: 3 4 
2: 3 4 2 
*: 3 8 
1: 3 8 1 
5: 3 8 1 5 
-: 3 8 -4 
2: 3 8 -4 2 
3: 3 8 -4 2 3 
^: 3 8 -4 8 
^: 3 8 65536 
/: 3 1/8192 
+: 24577/8192 
24577/8192

EchoLisp

<lang scheme>

RPN (postfix) evaluator

(lib 'hash)

(define OPS (make-hash)) (hash-set OPS "^" expt) (hash-set OPS "*" *) (hash-set OPS "/" //) ;; float divide (hash-set OPS "+" +) (hash-set OPS "-" -)

(define (op? op) (hash-ref OPS op))

algorithm
https://en.wikipedia.org/wiki/Reverse_Polish_notation#Postfix_algorithm

(define (calculator rpn S) (for ((token rpn)) (if (op? token) (let [(op2 (pop S)) (op1 (pop S))] (unless (and op1 op2) (error "cannot calculate expression at:" token)) (push S ((op? token) op1 op2)) (writeln op1 token op2 "→" (stack-top S))) (push S (string->number token)))) (pop S))

(define (task rpn)

(define S (stack 'S))
(calculator (text-parse rpn) S ))

</lang>

Output:
(task "3 4 2 * 1 5 - 2 3 ^ ^ / +")

4      *     2     →     8    
1      -     5     →     -4    
2      ^     3     →     8    
-4     ^     8     →     65536    
8     /     65536     →     0.0001220703125    
3     +     0.0001220703125     →     3.0001220703125  
  
    → 3.0001220703125

;; RATIONAL CALCULATOR
(hash-set OPS "/" /) ;; rational divide
(task "3 4 2 * 1 5 - 2 3 ^ ^ / +")

4      *     2     →     8    
1      -     5     →     -4    
2      ^     3     →     8    
-4     ^     8     →     65536    
8     /     65536     →     1/8192    
3     +     1/8192     →     24577/8192   
 
→ 24577/8192


Ela

<lang ela>open string generic monad io

type OpType = Push | Operate

 deriving Show

type Op = Op (OpType typ) input stack

 deriving Show

parse str = split " " str

eval stack [] = [] eval stack (x::xs) = op :: eval nst xs

 where (op, nst)  = conv x stack
       conv "+"@x = operate x (+)
       conv "-"@x = operate x (-) 
       conv "*"@x = operate x (*)
       conv "/"@x = operate x (/)
       conv "^"@x = operate x (**)
       conv x     = \stack -> 
         let n = gread x::stack in
         (Op Push x n, n)
       operate input fn (x::y::ys) =
         let n = (y `fn` x) :: ys in
         (Op Operate input n, n)

print_line (Op typ input stack) = do

 putStr input
 putStr "\t"
 put typ
 putStr "\t\t"
 putLn stack

print ((Op typ input stack)@x::xs) lv = print_line x `seq` print xs (head stack) print [] lv = lv

print_result xs = do

 putStrLn "Input\tOperation\tStack after"
 res <- return $ print xs 0
 putStrLn ("Result: " ++ show res)

res = parse "3 4 2 * 1 5 - 2 3 ^ ^ / +" |> eval [] print_result res ::: IO</lang>

Output:
Input	Operation	Stack after
3	Push		[3]
4	Push		[4,3]
2	Push		[2,4,3]
*	Operate		[8,3]
1	Push		[1,8,3]
5	Push		[5,1,8,3]
-	Operate		[-4,8,3]
2	Push		[2,-4,8,3]
3	Push		[3,2,-4,8,3]
^	Operate		[8,-4,8,3]
^	Operate		[65536,8,3]
/	Operate		[0.0001220703f,3]
+	Operate		[3.000122f]
Result: 3.000122f

D

Translation of: Go

<lang d>import std.stdio, std.string, std.conv, std.typetuple;

void main() {

   auto input = "3 4 2 * 1 5 - 2 3 ^ ^ / +";
   writeln("For postfix expression: ", input);
   writeln("\nToken            Action            Stack");
   real[] stack;
   foreach (tok; input.split()) {
       auto action = "Apply op to top of stack";
       switch (tok) {
           foreach (o; TypeTuple!("+", "-", "*", "/", "^")) {
               case o:
                   mixin("stack[$ - 2]" ~
                         (o == "^" ? "^^" : o) ~ "=stack[$ - 1];");
                   stack.length--;
                   break;
           }
           break;
           default:
               action = "Push num onto top of stack";
               stack ~= to!real(tok);
       }
       writefln("%3s    %-26s  %s", tok, action, stack);
   }
   writeln("\nThe final value is ", stack[0]);

}</lang>

Output:
For postfix expression: 3 4 2 * 1 5 - 2 3 ^ ^ / +

Token            Action            Stack
  3    Push num onto top of stack  [3]
  4    Push num onto top of stack  [3, 4]
  2    Push num onto top of stack  [3, 4, 2]
  *    Apply op to top of stack    [3, 8]
  1    Push num onto top of stack  [3, 8, 1]
  5    Push num onto top of stack  [3, 8, 1, 5]
  -    Apply op to top of stack    [3, 8, -4]
  2    Push num onto top of stack  [3, 8, -4, 2]
  3    Push num onto top of stack  [3, 8, -4, 2, 3]
  ^    Apply op to top of stack    [3, 8, -4, 8]
  ^    Apply op to top of stack    [3, 8, 65536]
  /    Apply op to top of stack    [3, 0.00012207]
  +    Apply op to top of stack    [3.00012]

The final value is 3.00012

Erlang

<lang erlang>-module(rpn). -export([eval/1]).

parse(Expression) ->

   parse(string:tokens(Expression," "),[]).

parse([],Expression) ->

   lists:reverse(Expression);

parse(["+"|Xs],Expression) ->

   parse(Xs,[fun erlang:'+'/2|Expression]);

parse(["-"|Xs],Expression) ->

   parse(Xs,[fun erlang:'-'/2|Expression]);

parse(["*"|Xs],Expression) ->

   parse(Xs,[fun erlang:'*'/2|Expression]);

parse(["/"|Xs],Expression) ->

   parse(Xs,[fun erlang:'/'/2|Expression]);

parse(["^"|Xs],Expression) ->

   parse(Xs,[fun math:pow/2|Expression]);

parse([X|Xs],Expression) ->

   {N,_} = string:to_integer(X),
   parse(Xs,[N|Expression]).

%% The expression should be entered as a string of numbers and %% operators separated by spaces. No error handling is included if %% another string format is used. eval(Expression) ->

   eval(parse(Expression),[]).

eval([],[N]) ->

   N;

eval([N|Exp],Stack) when is_number(N) ->

   NewStack = [N|Stack],
   print(NewStack),
   eval(Exp,NewStack);

eval([F|Exp],[X,Y|Stack]) ->

   NewStack = [F(Y,X)|Stack],
   print(NewStack),
   eval(Exp,NewStack).

print(Stack) ->

   lists:map(fun (X) when is_integer(X) -> io:format("~12.12b ",[X]);
                 (X) when is_float(X) -> io:format("~12f ",[X]) end, Stack),
   io:format("~n").</lang>
Output:
145> rpn:eval("3 4 2 * 1 5 - 2 3 ^ ^ / +").
           3
           4            3
           2            4            3
           8            3
           1            8            3
           5            1            8            3
          -4            8            3
           2           -4            8            3
           3            2           -4            8            3
    8.000000           -4            8            3
65536.000000            8            3
    0.000122            3
    3.000122
3.0001220703125

F#

Translation of: OCaml

As interactive script

<lang fsharp>let reduce op = function

 | b::a::r -> (op a b)::r
 | _ -> failwith "invalid expression"

let interprete s = function

 | "+" -> "add",    reduce ( + ) s
 | "-" -> "subtr",  reduce ( - ) s
 | "*" -> "mult",   reduce ( * ) s
 | "/" -> "divide", reduce ( / ) s
 | "^" -> "exp",    reduce ( ** ) s
 | str -> "push", (System.Double.Parse str) :: s

let interp_and_show s inp =

 let op,s = interprete s inp
 printf "%5s%8s " inp op
 List.iter (printf " %-6.3F") (List.rev s)
 printf "\n";
 s

let eval str =

 printfn "Token  Action  Stack";
 let ss = str.ToString().Split() |> Array.toList
 List.fold interp_and_show [] ss</lang>
Output:
> eval "3 4 2 * 1 5 - 2 3 ^ ^ / +";;
Token  Action  Stack
    3    push  3.000 
    4    push  3.000  4.000 
    2    push  3.000  4.000  2.000 
    *    mult  3.000  8.000 
    1    push  3.000  8.000  1.000 
    5    push  3.000  8.000  1.000  5.000 
    -   subtr  3.000  8.000  -4.000
    2    push  3.000  8.000  -4.000 2.000 
    3    push  3.000  8.000  -4.000 2.000  3.000 
    ^     exp  3.000  8.000  -4.000 8.000 
    ^     exp  3.000  8.000  65536.000
    /  divide  3.000  0.000 
    +     add  3.000 
val it : float list = [3.00012207]

Factor

Factor is a stack-based evaluator for an expression in reverse Polish notation. In the listener: <lang factor>IN: scratchpad 3 4 2 * 1 5 - 2 3 ^ ^ / +

--- Data stack: 3+1/8192</lang>

To show intermediate steps: <lang factor>{ 3 4 2 * 1 5 - 2 3 ^ ^ / + } [ 1quotation ] map [ dup pprint bl call datastack . ] each</lang>

Output:
[ 3 ] { 3 }
[ 4 ] { 3 4 }
[ 2 ] { 3 4 2 }
[ * ] { 3 8 }
[ 1 ] { 3 8 1 }
[ 5 ] { 3 8 1 5 }
[ - ] { 3 8 -4 }
[ 2 ] { 3 8 -4 2 }
[ 3 ] { 3 8 -4 2 3 }
[ ^ ] { 3 8 -4 8 }
[ ^ ] { 3 8 65536 }
[ / ] { 3 1/8192 }
[ + ] { 3+1/8192 }

Fortran

Since the project is to demonstrate the workings of the scheme to evaluate a RPN text sequence, and the test example contains only single-digit numbers and single-character operators, there is no need to escalate to reading full integers or floating-point numbers, the code for which would swamp the details of the RPN evaluator. As a result, it is easy to scan the text via a DO-loop that works one character at a time since there is no backstepping, probing ahead, nor multi-symbol items that must be combined into a single "token" with states that must be remembered from one character to the next. With multi-character tokens, the scan would be changed to invocations of NEXTTOKEN that would lurch ahead accordingly.

The method is simple (the whole point of RPN) and the function prints a schedule of actions at each step. Possibly this semi-tabular output is what is meant by "as a table". Conveniently, all the operators take two operands and return one, so the SP accountancy can be shared. Unlike ! for example.

The source style is essentially F77 except for the trivial use of the PARAMETER statement, and CYCLE to GO TO the end of the loop when a space is encountered. With the introduction of unfixed-format source style came also the possible use of semicolons to cram more than one statement part on a line so that the CASE and its action statement can be spread across the page rather than use two lines in alternation: for this case a tabular layout results that is easier to read and check. Because the F90 MODULE protocol is not used, the function's type should be declared in the calling routine but the default type suffices.<lang Fortran> REAL FUNCTION EVALRP(TEXT) !Evaluates a Reverse Polish string. Caution: deals with single digits only.

      CHARACTER*(*) TEXT	!The RPN string.
      INTEGER SP,STACKLIMIT		!Needed for the evaluation.
      PARAMETER (STACKLIMIT = 6)	!This should do.
      REAL*8 STACK(STACKLIMIT)		!Though with ^ there's no upper limit.
      INTEGER L,D		!Assistants for the scan.
      CHARACTER*4 DEED		!A scratchpad for the annotation.
      CHARACTER*1 C		!The character of the moment.
       WRITE (6,1) TEXT	!A function that writes messages... Improper.
   1   FORMAT ("Evaluation of the Reverse Polish string ",A,//	!Still, it's good to see stuff.
    1   "Char Token Action  SP:Stack...")	!Such as a heading for the trace.
       SP = 0			!Commence with the stack empty.
       STACK = -666		!This value should cause trouble.
       DO L = 1,LEN(TEXT)	!Step through the text.
         C = TEXT(L:L)			!Grab a character.
         IF (C.LE." ") CYCLE		!Boring.
         D = ICHAR(C) - ICHAR("0")	!Uncouth test to check for a digit.
         IF (D.GE.0 .AND. D.LE.9) THEN	!Is it one?
           DEED = "Load"			!Yes. So, load its value.
           SP = SP + 1				!By going up one.
           IF (SP.GT.STACKLIMIT) STOP "Stack overflow!"	!Or, maybe not.
           STACK(SP) = D			!And stashing the value.
          ELSE				!Otherwise, it must be an operator.
           IF (SP.LT.2) STOP "Stack underflow!"	!They all require two operands.
           DEED = "XEQ"		!So, I'm about to do so.
           SELECT CASE(C)		!Which one this time?
            CASE("+"); STACK(SP - 1) = STACK(SP - 1) + STACK(SP)	!A + B = B + A, so it is easy.
            CASE("-"); STACK(SP - 1) = STACK(SP - 1) - STACK(SP)	!A is in STACK(SP - 1), B in STACK(SP)
            CASE("*"); STACK(SP - 1) = STACK(SP - 1)*STACK(SP)		!Again, order doesn't count.
            CASE("/"); STACK(SP - 1) = STACK(SP - 1)/STACK(SP)		!But for division, A/B becomes A B /
            CASE("^"); STACK(SP - 1) = STACK(SP - 1)**STACK(SP)	!So, this way around.
            CASE DEFAULT		!This should never happen!
             STOP "Unknown operator!"	!If the RPN script is indeed correct.
           END SELECT			!So much for that operator.
           SP = SP - 1		!All of them take two operands and make one.
         END IF		!So much for that item.
         WRITE (6,2) L,C,DEED,SP,STACK(1:SP)	!Reveal the state now.
   2     FORMAT (I4,A6,A7,I4,":",66F14.6)	!Aligned with the heading of FORMAT 1.
       END DO			!On to the next symbol.
       EVALRP = STACK(1)	!The RPN string being correct, this is the result.
     END	!Simple enough!
     PROGRAM HSILOP
     REAL V
     V = EVALRP("3 4 2 * 1 5 - 2 3 ^ ^ / +")	!The specified example.
     WRITE (6,*) "Result is...",V
     END</lang>

Output...

Evaluation of the Reverse Polish string 3 4 2 * 1 5 - 2 3 ^ ^ / +

Char Token Action  SP:Stack...
   1     3   Load   1:      3.000000
   3     4   Load   2:      3.000000      4.000000
   5     2   Load   3:      3.000000      4.000000      2.000000
   7     *   XEQ    2:      3.000000      8.000000
   9     1   Load   3:      3.000000      8.000000      1.000000
  11     5   Load   4:      3.000000      8.000000      1.000000      5.000000
  13     -   XEQ    3:      3.000000      8.000000     -4.000000
  15     2   Load   4:      3.000000      8.000000     -4.000000      2.000000
  17     3   Load   5:      3.000000      8.000000     -4.000000      2.000000      3.000000
  19     ^   XEQ    4:      3.000000      8.000000     -4.000000      8.000000
  21     ^   XEQ    3:      3.000000      8.000000  65536.000000
  23     /   XEQ    2:      3.000000      0.000122
  25     +   XEQ    1:      3.000122
 Result is...   3.000122

FunL

<lang funl>def evaluate( expr ) =

 stack = []
 for token <- expr.split( \s+ )
   case number( token )
     Some( n ) ->
       stack = n : stack
       println( "push $token: ${stack.reversed()}" )
     None ->
       case {'+': (+), '-': (-), '*': (*), '/': (/), '^': (^)}.>get( token )
         Some( op ) ->
           stack = op( stack.tail().head(), stack.head() ) : stack.tail().tail()
           println( "perform $token: ${stack.reversed()}" )
         None -> error( "unrecognized operator '$token'" )
         
 stack.head()

res = evaluate( '3 4 2 * 1 5 - 2 3 ^ ^ / +' ) println( res + (if res is Integer then else " or ${float(res)}") )</lang>

Output:
push 3: [3]
push 4: [3, 4]
push 2: [3, 4, 2]
perform *: [3, 8]
push 1: [3, 8, 1]
push 5: [3, 8, 1, 5]
perform -: [3, 8, -4]
push 2: [3, 8, -4, 2]
push 3: [3, 8, -4, 2, 3]
perform ^: [3, 8, -4, 8]
perform ^: [3, 8, 65536]
perform /: [3, 1/8192]
perform +: [24577/8192]
24577/8192 or 3.0001220703125

Go

No error checking. <lang go>package main

import (

   "fmt"
   "math"
   "strconv"
   "strings"

)

var input = "3 4 2 * 1 5 - 2 3 ^ ^ / +"

func main() {

   fmt.Printf("For postfix %q\n", input)
   fmt.Println("\nToken            Action            Stack")
   var stack []float64
   for _, tok := range strings.Fields(input) {
       action := "Apply op to top of stack"
       switch tok {
       case "+":
           stack[len(stack)-2] += stack[len(stack)-1]
           stack = stack[:len(stack)-1]
       case "-":
           stack[len(stack)-2] -= stack[len(stack)-1]
           stack = stack[:len(stack)-1]
       case "*":
           stack[len(stack)-2] *= stack[len(stack)-1]
           stack = stack[:len(stack)-1]
       case "/":
           stack[len(stack)-2] /= stack[len(stack)-1]
           stack = stack[:len(stack)-1]
       case "^":
           stack[len(stack)-2] =
               math.Pow(stack[len(stack)-2], stack[len(stack)-1])
           stack = stack[:len(stack)-1]
       default:
           action = "Push num onto top of stack"
           f, _ := strconv.ParseFloat(tok, 64)
           stack = append(stack, f)
       }
       fmt.Printf("%3s    %-26s  %v\n", tok, action, stack)
   }
   fmt.Println("\nThe final value is", stack[0])

}</lang>

Output:
For postfix "3 4 2 * 1 5 - 2 3 ^ ^ / +"

Token            Action            Stack
  3    Push num onto top of stack  [3]
  4    Push num onto top of stack  [3 4]
  2    Push num onto top of stack  [3 4 2]
  *    Apply op to top of stack    [3 8]
  1    Push num onto top of stack  [3 8 1]
  5    Push num onto top of stack  [3 8 1 5]
  -    Apply op to top of stack    [3 8 -4]
  2    Push num onto top of stack  [3 8 -4 2]
  3    Push num onto top of stack  [3 8 -4 2 3]
  ^    Apply op to top of stack    [3 8 -4 8]
  ^    Apply op to top of stack    [3 8 65536]
  /    Apply op to top of stack    [3 0.0001220703125]
  +    Apply op to top of stack    [3.0001220703125]

The final value is 3.0001220703125

Groovy

<lang groovy>def evaluateRPN(expression) {

   def stack = [] as Stack
   def binaryOp = { action -> return { action.call(stack.pop(), stack.pop()) } }
   def actions = [
       '+': binaryOp { a, b -> b + a },
       '-': binaryOp { a, b -> b - a },
       '*': binaryOp { a, b -> b * a },
       '/': binaryOp { a, b -> b / a },
       '^': binaryOp { a, b -> b ** a }
   ]
   expression.split(' ').each { item ->
       def action = actions[item] ?: { item as BigDecimal }
       stack.push(action.call())
       println "$item: $stack"
   }
   assert stack.size() == 1 : "Unbalanced Expression: $expression ($stack)"
   stack.pop()

}</lang> Test <lang groovy>println evaluateRPN('3 4 2 * 1 5 - 2 3 ^ ^ / +')</lang>

Output:
3: [3]
4: [3, 4]
2: [3, 4, 2]
*: [3, 8]
1: [3, 8, 1]
5: [3, 8, 1, 5]
-: [3, 8, -4]
2: [3, 8, -4, 2]
3: [3, 8, -4, 2, 3]
^: [3, 8, -4, 8]
^: [3, 8, 65536]
/: [3, 0.0001220703125]
+: [3.0001220703125]
3.0001220703125

Haskell

Pure RPN calculator <lang Haskell>calcRPN :: String -> [Double] calcRPN = foldl interprete [] . words

interprete s x

 | x `elem` ["+","-","*","/","^"] = operate x s
 | otherwise = read x:s
 where
   operate op (x:y:s) = case op of
     "+" -> x + y:s
     "-" -> y - x:s
     "*" -> x * y:s
     "/" -> y / x:s
     "^" -> y ** x:s</lang>
λ> calcRPN "3 4 +"
[7.0]

λ> calcRPN "3 4 2 * 1 5 - 2 3 ^ ^ / +"
[3.0001220703125]

Calculation logging

Pure logging. Log as well as a result could be used as a data.

<lang haskell>calcRPNLog :: String -> ([Double],[(String, [Double])]) calcRPNLog input = mkLog $ zip commands $ tail result

 where result = scanl interprete [] commands
       commands = words input
       mkLog [] = ([], [])
       mkLog res = (snd $ last res, res)</lang>
λ> calcRPNLog "3 4 +"
([7.0],[("3",[3.0]),("4",[4.0,3.0]),("+",[7.0])])

λ> mapM_ print $ snd $ calcRPNLog "3 4 2 * 1 5 - 2 3 ^ ^ / +"
("3",[3.0])
("4",[4.0,3.0])
("2",[2.0,4.0,3.0])
("*",[8.0,3.0])
("1",[1.0,8.0,3.0])
("5",[5.0,1.0,8.0,3.0])
("-",[-4.0,8.0,3.0])
("2",[2.0,-4.0,8.0,3.0])
("3",[3.0,2.0,-4.0,8.0,3.0])
("^",[8.0,-4.0,8.0,3.0])
("^",[65536.0,8.0,3.0])
("/",[1.220703125e-4,3.0])
("+",[3.0001220703125])

Logging as a side effect. Calculator returns result in IO context: <lang haskell>import Control.Monad (foldM)

calcRPNIO :: String -> IO [Double] calcRPNIO = foldM (verbose interprete) [] . words

verbose f s x = write (x ++ "\t" ++ show res ++ "\n") >> return res

 where res = f s x</lang>
λ> calcRPNIO "3 4 +"
3	[3.0]
4	[4.0,3.0]
+	[7.0]
[7.0]

λ> calcRPNIO "3 4 2 * 1 5 - 2 3 ^ ^ / +"
3	[3.0]
4	[4.0,3.0]
2	[2.0,4.0,3.0]
*	[8.0,3.0]
1	[1.0,8.0,3.0]
5	[5.0,1.0,8.0,3.0]
-	[-4.0,8.0,3.0]
2	[2.0,-4.0,8.0,3.0]
3	[3.0,2.0,-4.0,8.0,3.0]
^	[8.0,-4.0,8.0,3.0]
^	[65536.0,8.0,3.0]
/	[1.220703125e-4,3.0]
+	[3.0001220703125]
[3.0001220703125]

Or even more general (requires FlexibleInstances and TypeFamilies extensions).

Some universal definitions: <lang haskell>class Monad m => Logger m where

 write :: String -> m ()

instance Logger IO where write = putStr instance a ~ String => Logger (Writer a) where write = tell

verbose2 f x y = write (show x ++ " " ++

                       show y ++ " ==> " ++
                       show res ++ "\n") >> return res
 where res = f x y</lang>

The use case: <lang haskell>calcRPNM :: Logger m => String -> m [Double] calcRPNM = foldM (verbose interprete) [] . words</lang>

Output:

in REPL

λ> calcRPNM "3 4 2 * 1 5 - 2 3 ^ ^ / +"
[] "3" ==> [3.0]
[3.0] "4" ==> [4.0,3.0]
[4.0,3.0] "2" ==> [2.0,4.0,3.0]
[2.0,4.0,3.0] "*" ==> [8.0,3.0]
[8.0,3.0] "1" ==> [1.0,8.0,3.0]
[1.0,8.0,3.0] "5" ==> [5.0,1.0,8.0,3.0]
[5.0,1.0,8.0,3.0] "-" ==> [-4.0,8.0,3.0]
[-4.0,8.0,3.0] "2" ==> [2.0,-4.0,8.0,3.0]
[2.0,-4.0,8.0,3.0] "3" ==> [3.0,2.0,-4.0,8.0,3.0]
[3.0,2.0,-4.0,8.0,3.0] "^" ==> [8.0,-4.0,8.0,3.0]
[8.0,-4.0,8.0,3.0] "^" ==> [65536.0,8.0,3.0]
[65536.0,8.0,3.0] "/" ==> [1.220703125e-4,3.0]
[1.220703125e-4,3.0] "+" ==> [3.0001220703125]
[3.0001220703125]

λ> runWriter $ calcRPNM "3 4 +"
([7.0],"[] \"3\" ==> [3.0]\n[3.0] \"4\" ==> [4.0,3.0]\n[4.0,3.0] \"+\" ==> [7.0]\n")

Icon and Unicon

<lang Icon>procedure main()

  EvalRPN("3 4 2 * 1 5 - 2 3 ^ ^ / +")

end

link printf invocable all

procedure EvalRPN(expr) #: evaluate (and trace stack) an RPN string

  stack := []
  expr ? until pos(0) do { 
     tab(many(' '))                         # consume previous seperator
     token := tab(upto(' ')|0)              # get token
     if token := numeric(token) then {      # ... numeric
        push(stack,token)                   
        printf("pushed numeric   %i : %s\n",token,list2string(stack))
        }
     else {                                 # ... operator
        every b|a := pop(stack)             # pop & reverse operands
        case token of {
           "+"|"-"|"*"|"^"   : push(stack,token(a,b))
           "/"               : push(stack,token(real(a),b))
           default           : runerr(205,token)
           }
        printf("applied operator %s : %s\n",token,list2string(stack))
        }
  }

end

procedure list2string(L) #: format list as a string

  every (s := "[ ") ||:= !L || " "
  return s || "]"

end</lang>

printf.icn provides formatting

Output:
pushed numeric   3 : [ 3 ]
pushed numeric   4 : [ 4 3 ]
pushed numeric   2 : [ 2 4 3 ]
applied operator * : [ 8 3 ]
pushed numeric   1 : [ 1 8 3 ]
pushed numeric   5 : [ 5 1 8 3 ]
applied operator - : [ -4 8 3 ]
pushed numeric   2 : [ 2 -4 8 3 ]
pushed numeric   3 : [ 3 2 -4 8 3 ]
applied operator ^ : [ 8 -4 8 3 ]
applied operator ^ : [ 65536 8 3 ]
applied operator / : [ 0.0001220703125 3 ]
applied operator + : [ 3.0001220703125 ]

J

This task's operations are all dyadic - having two arguments. So on each step we may either "shift" a number to the stack or "reduce" two topmost stack items to one.

Our implementation will be a monadic verb: it will take a single argument, which contains both the accumulated stack and the tokens to be processed. First, create initial state of the input: <lang J> a: , <;._1 ' ' , '3 4 2 * 1 5 - 2 3 ^ ^ / +' ┌┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐ ││3│4│2│*│1│5│-│2│3│^│^│/│+│ └┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘</lang> As an example, let's also add monadic operation _ which inverses the sign of the stack top element.

We're going to read tokens from input one by one. Each time we read a token, we're checking if it's a number - in this case we put the number to the stack - or an operation - in this case we apply the operation to the stack. The monad which returns 1 (true) for a token representing an operation and 0 (false) otherwise is "isOp". The dyad, which moves an input token to the stack, is "doShift". Applying the operation to the stack is "doApply".

There are 6 operations - one monadic "_" and five dyadic "+", "-", "*", "/", "^". For operation, we need to translate input token into operation and apply it to the stack. The dyad which converts the input token to the operation is "dispatch". It uses two miscellaneous adverbs, one for monadic operations - "mo" - and another for dyadic - "dy".

The RPN driver is the monad "consume", which handles one token. The output is the state of the program after the token was consumed - stack in the 0th box, and remaining input afterwards. As a side effect, "consume" is going to print the resulting stack, so running "consume" once for each token will produce intermediate states of the stack. <lang J> isOp=: '_+-*/^' e.~ {.@>@{.

  mo=: 1 :'(}: , u@{:) @ ['
  dy=: 1 :'(_2&}. , u/@(_2&{.)) @ ['
  dispatch=: (-mo)`(+dy)`(-dy)`(*dy)`(%dy)`(^dy)@.('_+-*/^' i. {.@>@])
  doShift=: (<@, ".@>@{.) , }.@]
  doApply=: }.@] ,~ [ <@dispatch {.@]
  consume=: [: ([ smoutput@>@{.) >@{. doShift`doApply@.(isOp@]) }.
  consume ^: (<:@#) a: , <;._1 ' ' , '3 4 2 * 1 5 - 2 3 ^ ^ / +'

3 3 4 3 4 2 3 8 3 8 1 3 8 1 5 3 8 _4 3 8 _4 2 3 8 _4 2 3 3 8 _4 8 3 8 65536 3 0.00012207 3.00012 ┌───────┐ │3.00012│ └───────┘

  consume ^: (<:@#) a: , <;._1 ' ' , '3 _ 4 +'

3 _3 _3 4 1 ┌─┐ │1│ └─┘</lang>

Alternate Implementation

<lang J>rpn=: 3 :0

 queue=. |.3 :'|.3 :y 0'::]each;: y
 op=. 1 :'2 (u~/@:{.,}.)S:0 ,@]'
 ops=. +op`(-op)`(*op)`(%op)`(^op)`(,&;)
 choose=. ((;:'+-*/^')&i.@[)
 ,ops@.choose/queue

)</lang>

Example use:

<lang J> rpn '3 4 2 * 1 5 - 2 3 ^ ^ / +' 3.00012</lang>

To see intermediate result stacks, use this variant (the only difference is the definition of 'op'):

<lang J>rpnD=: 3 :0

 queue=. |.3 :'|.3 :y 0'::]each;: y
 op=. 1 :'2 (u~/@:{.,}.)S:0 ,@([smoutput)@]'
 ops=. +op`(-op)`(*op)`(%op)`(^op)`(,&;)
 choose=. ((;:'+-*/^')&i.@[)
 ,ops@.choose/queue

)</lang>

In other words:

<lang J> rpnD '3 4 2 * 1 5 - 2 3 ^ ^ / +' ┌─────┐ │2 4 3│ └─────┘ 5 1 8 3 3 2 _4 8 3 8 _4 8 3 65536 8 3 0.00012207 3 3.00012</lang>

Note that the seed stack is boxed while computed stacks are not. Note that top of stack here is on the left. Note also that adjacent constants are bundled in the parsing phase. Finally, note that the result of rpn (and of rpnD - lines previous to the last line in the rpnD example here are output and not a part of the result) is the final state of the stack - in the general case it may not contain exactly one value.

Java

Works with: Java version 1.5+

Supports multi-digit numbers and negative numbers. <lang java5>import java.util.LinkedList;

public class RPN{ public static void evalRPN(String expr){ String cleanExpr = cleanExpr(expr); LinkedList<Double> stack = new LinkedList<Double>(); System.out.println("Input\tOperation\tStack after"); for(String token:cleanExpr.split("\\s")){ System.out.print(token+"\t"); Double tokenNum = null; try{ tokenNum = Double.parseDouble(token); }catch(NumberFormatException e){} if(tokenNum != null){ System.out.print("Push\t\t"); stack.push(Double.parseDouble(token+"")); }else if(token.equals("*")){ System.out.print("Operate\t\t"); double secondOperand = stack.pop(); double firstOperand = stack.pop(); stack.push(firstOperand * secondOperand); }else if(token.equals("/")){ System.out.print("Operate\t\t"); double secondOperand = stack.pop(); double firstOperand = stack.pop(); stack.push(firstOperand / secondOperand); }else if(token.equals("-")){ System.out.print("Operate\t\t"); double secondOperand = stack.pop(); double firstOperand = stack.pop(); stack.push(firstOperand - secondOperand); }else if(token.equals("+")){ System.out.print("Operate\t\t"); double secondOperand = stack.pop(); double firstOperand = stack.pop(); stack.push(firstOperand + secondOperand); }else if(token.equals("^")){ System.out.print("Operate\t\t"); double secondOperand = stack.pop(); double firstOperand = stack.pop(); stack.push(Math.pow(firstOperand, secondOperand)); }else{//just in case System.out.println("Error"); return; } System.out.println(stack); } System.out.println("Final answer: " + stack.pop()); }

private static String cleanExpr(String expr){ //remove all non-operators, non-whitespace, and non digit chars return expr.replaceAll("[^\\^\\*\\+\\-\\d/\\s]", ""); }

public static void main(String[] args){ evalRPN("3 4 2 * 1 5 - 2 3 ^ ^ / +"); } }</lang>

Output:
Input	Operation	Stack after
3	Push		[3.0]
4	Push		[4.0, 3.0]
2	Push		[2.0, 4.0, 3.0]
*	Operate		[8.0, 3.0]
1	Push		[1.0, 8.0, 3.0]
5	Push		[5.0, 1.0, 8.0, 3.0]
-	Operate		[-4.0, 8.0, 3.0]
2	Push		[2.0, -4.0, 8.0, 3.0]
3	Push		[3.0, 2.0, -4.0, 8.0, 3.0]
^	Operate		[8.0, -4.0, 8.0, 3.0]
^	Operate		[65536.0, 8.0, 3.0]
/	Operate		[1.220703125E-4, 3.0]
+	Operate		[3.0001220703125]
Final answer: 3.0001220703125

JavaScript

<lang javascript>var e = '3 4 2 * 1 5 - 2 3 ^ ^ / +' var s=[], e=e.split(' ') for (var i in e) { var t=e[i], n=+t if (n == t) s.push(n) else { var o2=s.pop(), o1=s.pop() switch (t) { case '+': s.push(o1+o2); break; case '-': s.push(o1-o2); break; case '*': s.push(o1*o2); break; case '/': s.push(o1/o2); break; case '^': s.push(Math.pow(o1,o2)); break; } } document.write(t, ': ', s, '
') }</lang>

Output:
3: 3
4: 3,4
2: 3,4,2
*: 3,8
1: 3,8,1
5: 3,8,1,5
-: 3,8,-4
2: 3,8,-4,2
3: 3,8,-4,2,3
^: 3,8,-4,8
^: 3,8,65536
/: 3,0.0001220703125
+: 3.0001220703125

With checks and messages

<lang javascript>var e = '3 4 2 * 1 5 - 2 3 ^ ^ / +' eval: { document.write(e, '
') var s=[], e=e.split(' ') for (var i in e) { var t=e[i], n=+t if (!t) continue if (n == t) s.push(n) else { if ('+-*/^'.indexOf(t) == -1) { document.write(t, ': ', s, '
', 'Unknown operator!
') break eval } if (s.length<2) { document.write(t, ': ', s, '
', 'Insufficient operands!
') break eval } var o2=s.pop(), o1=s.pop() switch (t) { case '+': s.push(o1+o2); break case '-': s.push(o1-o2); break case '*': s.push(o1*o2); break case '/': s.push(o1/o2); break case '^': s.push(Math.pow(o1,o2)) } } document.write(t, ': ', s, '
') } if (s.length>1) { document.write('Insufficient operators!
') } }</lang>

Output:
3 4 2 * 1 5 - 2 3 ^ ^ / +
3: 3
4: 3,4
2: 3,4,2
*: 3,8
1: 3,8,1
5: 3,8,1,5
-: 3,8,-4
2: 3,8,-4,2
3: 3,8,-4,2,3
^: 3,8,-4,8
^: 3,8,65536
/: 3,0.0001220703125
+: 3.0001220703125

Julia

(This code takes advantage of the fact that all of the operands and functions in the specified RPN syntax are valid Julia expressions, so we can use the built-in parse and eval functions to turn them into numbers and the corresponding Julia functions.) <lang julia>function rpn(s)

   stack = Any[]
   for op in map(eval, map(parse, split(s)))
       if isa(op, Function)
           arg2 = pop!(stack)
           arg1 = pop!(stack)
           push!(stack, op(arg1, arg2))
       else
           push!(stack, op)
       end
       println("$op: ", join(stack, ", "))
   end
   length(stack) != 1 && error("invalid RPN expression $s")
   return stack[1]

end rpn("3 4 2 * 1 5 - 2 3 ^ ^ / +")</lang>

Output:
3: 3
4: 3, 4
2: 3, 4, 2
*: 3, 8
1: 3, 8, 1
5: 3, 8, 1, 5
-: 3, 8, -4
2: 3, 8, -4, 2
3: 3, 8, -4, 2, 3
^: 3, 8, -4, 8
^: 3, 8, 65536
/: 3, 0.0001220703125
+: 3.0001220703125

(The return value is also 3.0001220703125.)

Kotlin

<lang scala>// version 1.1.2

fun rpnCalculate(expr: String) {

   if (expr.isEmpty()) throw IllegalArgumentException("Expresssion cannot be empty")
   println("For expression = $expr\n")
   println("Token           Action             Stack")
   val tokens = expr.split(' ').filter { it != "" }
   val stack = mutableListOf<Double>()
   for (token in tokens) {
       val d = token.toDoubleOrNull()
       if (d != null) {
           stack.add(d)
           println(" $d   Push num onto top of stack  $stack") 
       }
       else if ((token.length > 1) || (token !in "+-*/^")) {
           throw IllegalArgumentException("$token is not a valid token")
       }
       else if (stack.size < 2) {
           throw IllegalArgumentException("Stack contains too few operands")
       }
       else {
           val d1 = stack.removeAt(stack.lastIndex)
           val d2 = stack.removeAt(stack.lastIndex)
           stack.add(when (token) {
               "+"  -> d2 + d1
               "-"  -> d2 - d1
               "*"  -> d2 * d1
               "/"  -> d2 / d1
               else -> Math.pow(d2, d1)  
           })
           println(" $token     Apply op to top of stack    $stack")
       }
   }   
   println("\nThe final value is ${stack[0]}")

}

fun main(args: Array<String>) {

   val expr = "3 4 2 * 1 5 - 2 3 ^ ^ / +"
   rpnCalculate(expr)

}</lang>

Output:
For expression = 3 4 2 * 1 5 - 2 3 ^ ^ / +

Token           Action             Stack
 3.0   Push num onto top of stack  [3.0]
 4.0   Push num onto top of stack  [3.0, 4.0]
 2.0   Push num onto top of stack  [3.0, 4.0, 2.0]
 *     Apply op to top of stack    [3.0, 8.0]
 1.0   Push num onto top of stack  [3.0, 8.0, 1.0]
 5.0   Push num onto top of stack  [3.0, 8.0, 1.0, 5.0]
 -     Apply op to top of stack    [3.0, 8.0, -4.0]
 2.0   Push num onto top of stack  [3.0, 8.0, -4.0, 2.0]
 3.0   Push num onto top of stack  [3.0, 8.0, -4.0, 2.0, 3.0]
 ^     Apply op to top of stack    [3.0, 8.0, -4.0, 8.0]
 ^     Apply op to top of stack    [3.0, 8.0, 65536.0]
 /     Apply op to top of stack    [3.0, 1.220703125E-4]
 +     Apply op to top of stack    [3.0001220703125]

The final value is 3.0001220703125

Liberty BASIC

<lang lb> global stack$

expr$ = "3 4 2 * 1 5 - 2 3 ^ ^ / +" print "Expression:" print expr$ print

print "Input","Operation","Stack after"

stack$="" token$ = "#" i = 1 token$ = word$(expr$, i) token2$ = " "+token$+" "

do

   print "Token ";i;": ";token$,
   select case
   'operation
   case instr("+-*/^",token$)<>0
       print "operate",
       op2$=pop$()
       op1$=pop$()
       if op1$=""  then
           print "Error: stack empty for ";i;"-th token: ";token$
           end
       end if
       op1=val(op1$)
       op2=val(op2$)
       select case token$
       case "+"
           res = op1+op2
       case "-"
           res = op1-op2
       case "*"
           res = op1*op2
       case "/"
           res = op1/op2
       case "^"
           res = op1^op2
       end select
       call push str$(res)
   'default:number
   case else
       print "push",
       call push token$
   end select
   print "Stack: ";reverse$(stack$)
   i = i+1
   token$ = word$(expr$, i)
   token2$ = " "+token$+" "

loop until token$ =""

res$=pop$() print print "Result:" ;res$ extra$=pop$() if extra$<>"" then

   print "Error: extra things on a stack: ";extra$

end if end

'--------------------------------------- function reverse$(s$)

   reverse$ = ""
   token$="#"
   while token$<>""
       i=i+1
       token$=word$(s$,i,"|")
       reverse$ = token$;" ";reverse$
   wend

end function '--------------------------------------- sub push s$

   stack$=s$+"|"+stack$    'stack

end sub

function pop$()

   'it does return empty on empty stack
   pop$=word$(stack$,1,"|")
   stack$=mid$(stack$,instr(stack$,"|")+1)

end function </lang>

Output:
Expression:
3 4 2 * 1 5 - 2 3 ^ ^ / +

Input         Operation     Stack after
Token 1: 3    push          Stack:  3
Token 2: 4    push          Stack:  3 4
Token 3: 2    push          Stack:  3 4 2
Token 4: *    operate       Stack:  3 8
Token 5: 1    push          Stack:  3 8 1
Token 6: 5    push          Stack:  3 8 1 5
Token 7: -    operate       Stack:  3 8 -4
Token 8: 2    push          Stack:  3 8 -4 2
Token 9: 3    push          Stack:  3 8 -4 2 3
Token 10: ^   operate       Stack:  3 8 -4 8
Token 11: ^   operate       Stack:  3 8 65536
Token 12: /   operate       Stack:  3 0.12207031e-3
Token 13: +   operate       Stack:  3.00012207

Result:3.00012207

Lua

<lang lua> local stack = {} function push( a ) table.insert( stack, 1, a ) end function pop()

   if #stack == 0 then return nil end
   return table.remove( stack, 1 )

end function writeStack()

   for i = #stack, 1, -1 do
       io.write( stack[i], " " )
   end
   print()

end function operate( a )

   local s
   if a == "+" then
       push( pop() + pop() )
       io.write( a .. "\tadd\t" ); writeStack()
   elseif a == "-" then
       s = pop(); push( pop() - s )
       io.write( a .. "\tsub\t" ); writeStack()
   elseif a == "*" then
       push( pop() * pop() )
       io.write( a .. "\tmul\t" ); writeStack()
   elseif a == "/" then
       s = pop(); push( pop() / s )
       io.write( a .. "\tdiv\t" ); writeStack()
   elseif a == "^" then
       s = pop(); push( pop() ^ s )
       io.write( a .. "\tpow\t" ); writeStack()
   elseif a == "%" then
       s = pop(); push( pop() % s )
       io.write( a .. "\tmod\t" ); writeStack()
   else
       push( tonumber( a ) )
       io.write( a .. "\tpush\t" ); writeStack()
   end

end function calc( s )

   local t, a = "", ""
   print( "\nINPUT", "OP", "STACK" )
   for i = 1, #s do
       a = s:sub( i, i )
       if a == " " then operate( t ); t = ""
       else t = t .. a 
       end
   end
   if a ~= "" then operate( a ) end
   print( string.format( "\nresult: %.13f", pop() ) )

end --entry point -- calc( "3 4 2 * 1 5 - 2 3 ^ ^ / +" ) calc( "22 11 *" )</lang>

Output:
INPUT   OP      STACK
3       push    3
4       push    3 4
2       push    3 4 2
*       mul     3 8
1       push    3 8 1
5       push    3 8 1 5
-       sub     3 8 -4
2       push    3 8 -4 2
3       push    3 8 -4 2 3
^       pow     3 8 -4 8
^       pow     3 8 65536
/       div     3 0.0001220703125
+       add     3.0001220703125

result: 3.0001220703125

INPUT   OP      STACK
22      push    22
11      push    22 11
*       mul     242

result: 242.0000000000000

Mathematica

(This code takes advantage of the fact that all of the operands and functions in the specified RPN syntax can be used to form valid Mathematica expressions, so we can use the built-in ToExpression function to turn them into numbers and the corresponding Mathematica functions. Note that we need to add braces around arguments, otherwise "-4^8" would be parsed as "-(4^8)" instead of "(-4)^8".) <lang Mathematica>calc[rpn_] :=

 Module[{tokens = StringSplit[rpn], s = "(" <> ToString@InputForm@# <> ")" &, op, steps},
  op[o_, x_, y_] := ToExpression[s@x <> o <> s@y];
  steps = FoldList[Switch[#2, _?DigitQ, Append[#, FromDigits[#2]],
       _, Append[#;; -3, op[#2, #-2, #-1]]
       ] &, {}, tokens]2 ;;;
  Grid[Transpose[{# <> ":" & /@ tokens, 
     StringRiffle[ToString[#, InputForm] & /@ #] & /@ steps}]]];

Print[calc["3 4 2 * 1 5 - 2 3 ^ ^ / +"]];</lang>

Output:
3:   3

4:   3 4

2:   3 4 2

*:   3 8

1:   3 8 1

5:   3 8 1 5

-:   3 8 -4

2:   3 8 -4 2

3:   3 8 -4 2 3

^:   3 8 -4 8

^:   3 8 65536

/:   3 1/8192

+:   24577/8192

Maxima

<lang Maxima>rmod(i, j) := mod(j, i)$ rpow(x, y) := y^x$

rpn(sexpr) := (

   operands: [],
   expr: charlist(sexpr),
   
   for token in expr do (
       if token = "+" then (
           push(pop(operands) + pop(operands), operands)
       )
       elseif token = "-" then (
           push(-1 * (pop(operands) - pop(operands)), operands)
       )
       elseif token = "*" then (
           push(pop(operands) * pop(operands), operands)
       )
       elseif token = "/" then (
           push(1 / (pop(operands) / pop(operands)), operands)
       )
       elseif token = "%" then (
           push(rmod(pop(operands), pop(operands)), operands)
       )
       elseif token = "^" then (
           push(rpow(pop(operands), pop(operands)), operands)
       )
       elseif token # " " then (
           push(parse_string(token), operands)
       ),
       
       if token # " " then (
           print(token, " : ", operands)
       )
   ),
   pop(operands)

)$

rpn("3 4 2 * 1 5 - 2 3 ^ ^ / +"), numer;</lang>

Output

<lang>(%i5) ev(rpn("3 4 2 * 1 5 - 2 3 ^ ^ / +"),numer) 3  : [3] 4  : [4, 3] 2  : [2, 4, 3]

  • : [8, 3]

1  : [1, 8, 3] 5  : [5, 1, 8, 3] -  : [- 4, 8, 3] 2  : [2, - 4, 8, 3] 3  : [3, 2, - 4, 8, 3] ^  : [8, - 4, 8, 3] ^  : [65536, 8, 3] /  : [1.220703125e-4, 3] +  : [3.0001220703125] (%o5) 3.0001220703125</lang>

N/t/roff

Classically-oriented version

This implementation does not take advantage of GNU TROFF's ability to handle numerical registers of more than 2 characters.

Works with: GNU TROFF version 1.22.2

<lang N/t/roff>.ig

   RPN parser implementation in TROFF

.. .\" \(*A stack implementation .nr Ac 0 .af Ac 1 .de APUSH .if (\\n(Ac>=0)&(\\n(Ac<27) \{ \ . nr Ac +1 . af Ac A . nr A\\n(Ac \\$1 . af Ac 1 \} .. .de APOP .if (\\n(Ac>0)&(\\n(Ac<27) \{ \ . af Ac A . rr A\\n(Ac \\$1 . af Ac 1 . nr Ac -1 .. .\" Facility to print entire stack .de L2 .af Ac 1 .if \\n(Li<=\\n(Ac \{ \ . af Li A \\n(A\\n(Li . af Li 1 . nr Li +1 . L2 \} .. .de APRINT .nr Li 1 .L2 .br .. .\" Integer exponentiation algorithm .de L1 .if \\n(Li<\\$2 \{ \ . nr Rs \\n(Rs*\\$1 . nr Li +1 . L1 \\$1 \\$2 \} .. .de EXP .nr Li 0 .nr Rs 1 .L1 \\$1 \\$2 .. .\" RPN Parser .de REAP .af Ac A .nr O2 \\n(A\\n(Ac .af Ac 1 .nr Ai \\n(Ac-1 .af Ai A .nr O1 \\n(A\\n(Ai .APOP .APOP .. .de RPNPUSH .ie '\\$1'+' \{ \ . REAP . nr Rs \\n(O1+\\n(O2 \} .el \{ \ . ie '\\$1'-' \{ \ . REAP . nr Rs \\n(O1-\\n(O2 \} . el \{ \ . ie '\\$1'*' \{ \ . REAP . nr Rs \\n(O1*\\n(O2 \} . el \{ \ . ie '\\$1'/' \{ \ . REAP . nr Rs \\n(O1/\\n(O2 \} . el \{ \ . ie '\\$1'%' \{ \ . REAP . nr Rs \\n(O1%\\n(O2 \} . el \{ \ . ie '\\$1'^' \{ \ . REAP . EXP \\n(O1 \\n(O2 \} . el .nr Rs \\$1 \} \} \} \} \} .APUSH \\n(Rs .APRINT .. .de RPNPRINT .if \\n(Ac>1 .tm ERROR (rpn.roff): Malformed input expression. Evaluation stack size: \\n(Ac > 1 . \\n(AA .. .de RPNPARSE .RPNPUSH \\$1 .ie \\n(.$>1 \{ \ . shift . RPNPARSE \\$@ \} .el .RPNPRINT .. .RPNPARSE 3 4 2 * 1 5 - 2 3 ^ ^ / + \" Our input expression</lang>

Output

<lang> 3

3 4
3 4 2
3 8
3 8 1
3 8 1 5
3 8 ‐4
3 8 ‐4 2
3 8 ‐4 2 3
3 8 ‐4 8
3 8 16
3 0
3

3</lang>

Modern version

This version sees great improvement on syntax, stacks can now be as big as they want, and modern GNU Troff constructs are used.

Works with: GNU Troff version 1.22.2

<lang N/t/roff>.ig

===============
Array implementation
===============

.. .de end .. .de array . nr \\$1.c 0 1 . de \\$1.push end . nr \\$1..\\\\n+[\\$1.c] \\\\$1 . end . de \\$1.pop end . if \\\\n[\\$1.c]>0 \{ \ . rr \\$1..\\\\n[\\$1.c] . nr \\$1.c -1\ . \} . end . de \\$1.dump end . nr i 0 1 . rm ou . while \\\\n+i<=\\\\n[\\$1.c] \{ \ . as ou "\\\\n[\\$1..\\\\ni] . \} . tm \\\\*(ou . rr i . end .. .ig

==============
End array implementation
==============

.. .array stack .de hyper3 . nr rs 1 . nr i 0 1 . while \\n+i<=\\$2 .nr rs \\n(rs*\\$1 . rr i .. .de pop2 . nr O2 \\n[\\$1..\\n[\\$1.c]] . \\$1.pop . nr O1 \\n[\\$1..\\n[\\$1.c]] . \\$1.pop .. .de rpn . ie '\\$1'+' \{ \ . pop2 stack . nr rs \\n(O1+\\n(O2 . \} . el \{ \ . ie '\\$1'-' \{ \ . pop2 stack . nr rs \\n(O1-\\n(O2 . \} . el \{ \ . ie '\\$1'*' \{ \ . pop2 stack . nr rs \\n(O1*\\n(O2 . \} . el \{ \ . ie '\\$1'/' \{ \ . pop2 stack . nr rs \\n(O1/\\n(O2 . \} . el \{ \ . ie '\\$1'%' \{ \ . pop2 stack . nr rs \\n(O1%\\n(O2 . \} . el \{ \ . ie '\\$1'^' \{ \ . pop2 stack . hyper3 \\n(O1 \\n(O2 . \} . el .nr rs \\$1 . \}\}\}\}\} . . stack.push \\n(rs . stack.dump . . if \\n(.$>1 \{ \ . shift . rpn \\$@ . \} .. .rpn 3 4 2 * 1 5 - 2 3 ^ ^ / + .stack.dump</lang>

Output

<lang>3 3 4 3 4 2 3 8 3 8 1 3 8 1 5 3 8 -4 3 8 -4 2 3 8 -4 2 3 3 8 -4 8 3 8 16 3 0 3 3</lang>

NetRexx

Translation of: Java

<lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary

numeric digits 20

rpnDefaultExpression = '3 4 2 * 1 5 - 2 3 ^ ^ / +' EODAD = '.*'

parse arg rpnString

if rpnString = '.' then rpnString = rpnDefaultExpression if rpnString = then do

 say 'Enter numbers or operators [to stop enter' EODAD']:'
 loop label rpnloop forever
   rpnval = ask
   if rpnval == EODAD then leave rpnloop
   rpnString = rpnString rpnval
   end rpnloop
 end

rpnString = rpnString.space(1) say rpnString':' evaluateRPN(rpnString)

return

-- ----------------------------------------------------------------------------- method evaluateRPN(rpnString) public static returns Rexx

 stack = LinkedList()
 op = 0
 L = 'L'
 R = 'R'
 rpnString = rpnString.strip('b')
 say 'Input\tOperation\tStack after'
 loop label rpn while rpnString.length > 0
   parse rpnString token rest
   rpnString = rest.strip('b')
   say token || '\t\-'
   select label tox case token
     when '*' then do
       say 'Operate\t\t\-'
       op[R] = Rexx stack.pop()
       op[L] = Rexx stack.pop()
       stack.push(op[L] * op[R])
       end
     when '/' then do
       say 'Operate\t\t\-'
       op[R] = Rexx stack.pop()
       op[L] = Rexx stack.pop()
       stack.push(op[L] / op[R])
       end
     when '+' then do
       say 'Operate\t\t\-'
       op[R] = Rexx stack.pop()
       op[L] = Rexx stack.pop()
       stack.push(op[L] + op[R])
       end
     when '-' then do
       say 'Operate\t\t\-'
       op[R] = Rexx stack.pop()
       op[L] = Rexx stack.pop()
       stack.push(op[L] - op[R])
       end
     when '^' then do
       say 'Operate\t\t\-'
       op[R] = Rexx stack.pop()
       op[L] = Rexx stack.pop()
       -- If exponent is a whole number use Rexx built-in exponentiation operation, otherwise use Math.pow()
       op[R] = op[R] + 0
       if op[R].datatype('w') then stack.push(op[L] ** op[R])
       else stack.push(Rexx Math.pow(op[L], op[R]))
       end
     otherwise do
       if token.datatype('n') then do
         say 'Push\t\t\-'
         stack.push(token)
         end
       else do
         say 'Error\t\t\-'
         end
       end
     end tox
     calc = Rexx
     say stack.toString
   end rpn
   say
   calc = stack.toString
 return calc

</lang>

Output:
Input	Operation	Stack after
3	Push		[3]
4	Push		[4, 3]
2	Push		[2, 4, 3]
*	Operate		[8, 3]
1	Push		[1, 8, 3]
5	Push		[5, 1, 8, 3]
-	Operate		[-4, 8, 3]
2	Push		[2, -4, 8, 3]
3	Push		[3, 2, -4, 8, 3]
^	Operate		[8, -4, 8, 3]
^	Operate		[65536, 8, 3]
/	Operate		[0.0001220703125, 3]
+	Operate		[3.0001220703125]

3 4 2 * 1 5 - 2 3 ^ ^ / +: [3.0001220703125]

Nim

Translation of: Python

<lang nim>import math, rdstdin, strutils, tables

type Stack = seq[float]

proc lalign(s, x): string =

 s & repeatChar(x - s.len, ' ')

proc opPow(s: var Stack) =

 let b = s.pop
 let a = s.pop
 s.add a.pow b

proc opMul(s: var Stack) =

 let b = s.pop
 let a = s.pop
 s.add a * b

proc opDiv(s: var Stack) =

 let b = s.pop
 let a = s.pop
 s.add a / b

proc opAdd(s: var Stack) =

 let b = s.pop
 let a = s.pop
 s.add a + b

proc opSub(s: var Stack) =

 let b = s.pop
 let a = s.pop
 s.add a - b

proc opNum(s: var Stack, num) = s.add num

let ops = toTable({"^": opPow,

                  "*": opMul,
                  "/": opDiv,
                  "+": opAdd,
                  "-": opSub})

proc getInput(inp = ""): seq[string] =

 var inp = inp
 if inp.len == 0:
   inp = readLineFromStdin "Expression: "
 result = inp.strip.split

proc rpnCalc(tokens): auto =

 var s: Stack = @[]
 result = @[@["TOKEN","ACTION","STACK"]]
 for token in tokens:
   var action = ""
   if ops.hasKey token:
     action = "Apply op to top of stack"
     ops[token](s)
   else:
     action = "Push num onto top of stack"
     s.opNum token.parseFloat
   result.add(@[token, action, s.map(proc (x: float): string = $x).join(" ")])

let rpn = "3 4 2 * 1 5 - 2 3 ^ ^ / +" echo "For RPN expression: ", rpn let rp = rpnCalc rpn.getInput

var maxColWidths = newSeq[int](rp[0].len) for i in 0 .. rp[0].high:

 for x in rp:
   maxColWidths[i] = max(maxColWidths[i], x[i].len)

for x in rp:

 for i, y in x:
   stdout.write y.lalign(maxColWidths[i]), " "
 echo ""</lang>
Output:
For RPN expression: 3 4 2 * 1 5 - 2 3 ^ ^ / +
TOKEN ACTION                     STACK                
3     Push num onto top of stack 3.0                  
4     Push num onto top of stack 3.0 4.0              
2     Push num onto top of stack 3.0 4.0 2.0          
*     Apply op to top of stack   3.0 8.0              
1     Push num onto top of stack 3.0 8.0 1.0          
5     Push num onto top of stack 3.0 8.0 1.0 5.0      
-     Apply op to top of stack   3.0 8.0 -4.0         
2     Push num onto top of stack 3.0 8.0 -4.0 2.0     
3     Push num onto top of stack 3.0 8.0 -4.0 2.0 3.0 
^     Apply op to top of stack   3.0 8.0 -4.0 8.0     
^     Apply op to top of stack   3.0 8.0 65536.0      
/     Apply op to top of stack   3.0 0.0001220703125  
+     Apply op to top of stack   3.0001220703125

Objeck

<lang objeck> use IO; use Struct;

bundle Default {

 class RpnCalc {
   function : Main(args : String[]) ~ Nil {
     Caculate("3 4 2 * 1 5 - 2 3 ^ ^ / +");
   }
   
   function : native : Caculate(rpn : String) ~ Nil {
     rpn->PrintLine();
     
     tokens := rpn->Split(" ");
     stack := FloatVector->New();
     each(i : tokens) {
       token := tokens[i]->Trim();
       if(token->Size() > 0) {
         if(token->Get(0)->IsDigit()) {
           stack->AddBack(token->ToFloat());
         }
         else {
           right := stack->Get(stack->Size() - 1); stack->RemoveBack();
           left := stack->Get(stack->Size() - 1); stack->RemoveBack();
           select(token->Get(0)) {
             label '+': {
               stack->AddBack(left + right);
             }
             label '-': {
               stack->AddBack(left - right);
             }
             label '*': {
               stack->AddBack(left * right);
             }
             label '/': {
               stack->AddBack(left / right);
             }
             label '^': {
               stack->AddBack(right->Power(left));
             }
           };
         };  
         PrintStack(stack);
       };
     };
     Console->Print("result: ")->PrintLine(stack->Get(0));
   }
   function : PrintStack(stack : FloatVector) ~ Nil {
     "  ["->Print();
     each(i : stack) {
       stack->Get(i)->Print();
       if(i + 1< stack->Size()) {
         ", "->Print();
       };
     };
     ']'->PrintLine();
   }
 }

} </lang>

Output:
3 4 2 * 1 5 - 2 3 ^ ^ / +
  [3]
  [3, 4]
  [3, 4, 2]
  [3, 8]
  [3, 8, 1]
  [3, 8, 1, 5]
  [3, 8, -4]
  [3, 8, -4, 2]
  [3, 8, -4, 2, 3]
  [3, 8, -4, 8]
  [3, 8, 65536]
  [3, 0.00012207]
  [3.00012]
result: 3.00012

OCaml

<lang ocaml>(* binop : ('a -> 'a -> 'a) -> 'a list -> 'a list *) let binop op = function

 | b::a::r -> (op a b)::r
 | _ -> failwith "invalid expression"

(* interp : float list -> string -> string * float list *) let interp s = function

 | "+" -> "add",    binop ( +. ) s
 | "-" -> "subtr",  binop ( -. ) s
 | "*" -> "mult",   binop ( *. ) s
 | "/" -> "divide", binop ( /. ) s
 | "^" -> "exp",    binop ( ** ) s
 | str -> "push", (float_of_string str) :: s

(* interp_and_show : float list -> string -> float list *) let interp_and_show s inp =

 let op,s' = interp s inp in
 Printf.printf "%s\t%s\t" inp op;
 List.(iter (Printf.printf "%F ") (rev s'));
 print_newline ();
 s'

(* rpn_eval : string -> float list *) let rpn_eval str =

 Printf.printf "Token\tAction\tStack\n";
 let ss = Str.(split (regexp_string " ") str) in
 List.fold_left interp_and_show [] ss</lang>

Evaluation of the test expression:

# rpn_eval "3 4 2 * 1 5 - 2 3 ^ ^ / +";;
Token	Action	Stack
3	push	3. 
4	push	3. 4. 
2	push	3. 4. 2. 
*	mult	3. 8. 
1	push	3. 8. 1. 
5	push	3. 8. 1. 5. 
-	subtr	3. 8. -4. 
2	push	3. 8. -4. 2. 
3	push	3. 8. -4. 2. 3. 
^	exp	3. 8. -4. 8. 
^	exp	3. 8. 65536. 
/	divide	3. 0.0001220703125 
+	add	3.00012207031 
- : float list = [3.0001220703125]

Oforth

Oforth uses RPN and natively parse RPN.

<lang Oforth>"3 4 2 * 1 5 - 2 3 ^ ^ / +" eval println</lang>

Output:
3

To show the changes in the stack, we can use .l after evaluating each word :

<lang Oforth>: rpn(s) { s words apply(#[ eval .l ]) }

rpn("3 4 2 * 1 5 - 2 3 ^ ^ / +")</lang>

Output:
3 |
3 | 4 |
3 | 4 | 2 |
3 | 8 |
3 | 8 | 1 |
3 | 8 | 1 | 5 |
3 | 8 | -4 |
3 | 8 | -4 | 2 |
3 | 8 | -4 | 2 | 3 |
3 | 8 | -4 | 8 |
3 | 8 | 65536 |
3 | 0 |
3 |

ooRexx

<lang ooRexx>/* ooRexx *************************************************************

  • 10.11.2012 Walter Pachl translated from PL/I via REXX
                                                                                                                                            • /

fid='rpl.txt' ex=linein(fid) Say 'Input:' ex /* ex=' 3 4 2 * 1 5 - 2 3 ^ ^ / +' */ Numeric Digits 15 expr= st=.circularqueue~new(100) Say 'Stack contents:' do While ex<>

 Parse Var ex ch +1 ex
 expr=expr||ch;
 if ch<>' ' then do
   If pos(ch,'0123456789')>0 Then     /* a digit goes onto stack    */
     st~push(ch)
   Else Do                            /* an operator                */
     op=st~pull                       /* get top element            */
     select                           /* and modify the (now) top el*/
       when ch='+' Then st~push(st~pull +  op)
       when ch='-' Then st~push(st~pull -  op)
       when ch='*' Then st~push(st~pull *  op)
       when ch='/' Then st~push(st~pull /  op)
       when ch='^' Then st~push(st~pull ** op)
       end;
     Say st~string(' ','L')           /* show stack in LIFO order   */
     end
   end
 end

Say 'The reverse polish expression = 'expr Say 'The evaluated expression = 'st~pull</lang>

Output:
Input: 3 4 2 * 1 5 - 2 3 ^ ^ / +
Stack contents:
3 8
3 8 -4
3 8 -4 8
3 8 65536
3 0.0001220703125
3.0001220703125
The reverse polish expression = 3 4 2 * 1 5 - 2 3 ^ ^ / +
The evaluated expression = 3.0001220703125    

PARI/GP

Due to the nature of the language, it is not trivial to process an expression as a simple space-separated string. Though, this could be done if one calls an external shell program such as sed and pipes the result back hither.

<lang parigp>estack = [];

epush(x) = {

   estack = vector(#estack + 1, i, if(i <= #estack, estack[i], x));
   return(#estack);

};

epop() = {

   local(val = estack[#estack]);
   estack = vector(#estack - 1, i, estack[i]);
   return(val);

};

registerRPNToken(t) = {

   local(o1, o2);
   
   if(type(t) == "t_STR",
       if(t == "+", o2 = epop(); o1 = epop(); epush(o1 + o2),
       if(t == "-", o2 = epop(); o1 = epop(); epush(o1 - o2),
       if(t == "*", o2 = epop(); o1 = epop(); epush(o1 * o2),
       if(t == "/", o2 = epop(); o1 = epop(); epush(o1 / o2),
       if(t == "%", o2 = epop(); o1 = epop(); epush(o1 % o2),
       if(t == "^", o2 = epop(); o1 = epop(); epush(o1 ^ o2)
       )))))),
   if(type(t) == "t_INT" || type(t) == "t_REAL" || type(t) == "t_FRAC",
       epush(t))
   );
   print(estack);

};

parseRPN(s) = {

   estack = [];
   for(i = 1, #s, registerRPNToken(s[i]));
   if(#estack > 1, error("Malformed postfix expression."));
   return(estack[1]);

};

parseRPN([3, 4, 2, "*", 1, 5, "-", 2, 3, "^", "^", "/", "+"]); \\ Our input expression</lang>

Output

<lang>[3] [3, 4] [3, 4, 2] [3, 8] [3, 8, 1] [3, 8, 1, 5] [3, 8, -4] [3, 8, -4, 2] [3, 8, -4, 2, 3] [3, 8, -4, 8] [3, 8, 65536] [3, 1/8192] [24577/8192]</lang>

Whenever possible, PARI/GP tries to manipulate and return results in the simplest form it can. In this case, it deems fractions the most suitable form of output. Nonetheless, converting the fraction 24577/8192 yields 3.0001220703125 as expected.

Perl

<lang perl>use strict; use warnings; use feature 'say';

my $number = '[+-]?(?:\.\d+|\d+(?:\.\d*)?)'; my $operator = '[-+*/^]';

my @tests = ('3 4 2 * 1 5 - 2 3 ^ ^ / +');

for (@tests) {

   while (
       s/ \s* ((?<left>$number))     # 1st operand
          \s+ ((?<right>$number))    # 2nd operand
          \s+ ((?<op>$operator))     # operator
          (?:\s+|$)                  # more to parse, or done?
        /
          ' '.evaluate().' '         # substitute results of evaluation
        /ex
   ) {}
   say;

}

sub evaluate {

 (my $a = "($+{left})$+{op}($+{right})") =~ s/\^/**/;
 say $a;
 eval $a;

}</lang>

Output:
(4)*(2)
(1)-(5)
(2)**(3)
(-4)**(8)
(8)/(65536)
(3)+(0.0001220703125)
 3.0001220703125

Perl 6

Works with: rakudo version 2015-09-25

<lang perl6>my $proggie = '3 4 2 * 1 5 - 2 3 ^ ^ / +';

class RPN is Array {

   method binop(&op) { self.push: self.pop R[&op] self.pop }
   method run($p) {
       for $p.words {
           say "$_ ({self})";
           when /\d/ { self.push: $_ }
           when '+'  { self.binop: &[+] }
           when '-'  { self.binop: &[-] }
           when '*'  { self.binop: &[*] }
           when '/'  { self.binop: &[/] }
           when '^'  { self.binop: &[**] }
           default   { die "$_ is bogus" }
       }
       say self;
   }

}

RPN.new.run($proggie);</lang>

Output:
3 ()
4 (3)
2 (3 4)
* (3 4 2)
1 (3 8)
5 (3 8 1)
- (3 8 1 5)
2 (3 8 -4)
3 (3 8 -4 2)
^ (3 8 -4 2 3)
^ (3 8 -4 8)
/ (3 8 65536)
+ (3 0.0001220703125)
3.0001220703125

Phix

<lang Phix>procedure evalRPN(string s) sequence stack = {} sequence ops = split(s)

   for i=1 to length(ops) do
       string op = ops[i]
       switch op
           case "+": stack[-2] = stack[-2]+stack[-1]; stack = stack[1..-2]
           case "-": stack[-2] = stack[-2]-stack[-1]; stack = stack[1..-2]
           case "*": stack[-2] = stack[-2]*stack[-1]; stack = stack[1..-2]
           case "/": stack[-2] = stack[-2]/stack[-1]; stack = stack[1..-2]
           case "^": stack[-2] = power(stack[-2],stack[-1]); stack = stack[1..-2]
           default : stack = append(stack,scanf(op,"%d")[1][1])
       end switch
       ?{op,stack}
   end for

end procedure evalRPN("3 4 2 * 1 5 - 2 3 ^ ^ / +")</lang>

Output:
"started"
{"3",{3}}
{"4",{3,4}}
{"2",{3,4,2}}
{"*",{3,8}}
{"1",{3,8,1}}
{"5",{3,8,1,5}}
{"-",{3,8,-4}}
{"2",{3,8,-4,2}}
{"3",{3,8,-4,2,3}}
{"^",{3,8,-4,8}}
{"^",{3,8,65536}}
{"/",{3,0.0001220703125}}
{"+",{3.00012207}}

PHP

<lang php> <?php function rpn($postFix){

   $stack = Array();
   echo "Input\tOperation\tStack\tafter\n" ;

$token = explode(" ", trim($postFix)); $count = count($token);

   for($i = 0 ; $i<$count;$i++)

{

       echo $token[$i] ." \t";
       $tokenNum = "";
       if (is_numeric($token[$i])) {
           echo  "Push";

array_push($stack,$token[$i]);

       }
       else
       {
           echo "Operate";
           $secondOperand = end($stack);

array_pop($stack);

           $firstOperand = end($stack);
           array_pop($stack);
           if ($token[$i] == "*")

array_push($stack,$firstOperand * $secondOperand);

           else if ($token[$i] == "/")
               array_push($stack,$firstOperand / $secondOperand);
           else if ($token[$i] == "-")
               array_push($stack,$firstOperand - $secondOperand);
           else if ($token[$i] == "+")
               array_push($stack,$firstOperand + $secondOperand);
           else if ($token[$i] == "^")
               array_push($stack,pow($firstOperand,$secondOperand));
           else {
               die("Error");
           }
       }

echo "\t\t" . implode(" ", $stack) . "\n";

   }
   return end($stack);

}

echo "Compute Value: " . rpn("3 4 2 * 1 5 - 2 3 ^ ^ / + "); ?> </lang>

Output:
Input	Operation	Stack	after
3 	Push		3
4 	Push		3 4
2 	Push		3 4 2
* 	Operate		3 8
1 	Push		3 8 1
5 	Push		3 8 1 5
- 	Operate		3 8 -4
2 	Push		3 8 -4 2
3 	Push		3 8 -4 2 3
^ 	Operate		3 8 -4 8
^ 	Operate		3 8 65536
/ 	Operate		3 0.0001220703125
+ 	Operate		3.0001220703125
Compute Value: 3.0001220703125

PicoLisp

This is an integer-only calculator: <lang PicoLisp>(de rpnCalculator (Str)

  (let (^ **  Stack)  # Define '^' from the built-in '**'
     (prinl "Token  Stack")
     (for Token (str Str "*+-/\^")
        (if (num? Token)
           (push 'Stack @)
           (set (cdr Stack)
              ((intern Token) (cadr Stack) (pop 'Stack)) ) )
        (prin Token)
        (space 6)
        (println Stack) )
     (println (car Stack)) ) )</lang>

Test (note that the top-of-stack is in the left-most position): <lang PicoLisp>: (rpnCalculator "3 4 2 * 1 5 - 2 3 \^ \^ / +") Token Stack 3 (3) 4 (4 3) 2 (2 4 3)

  • (8 3)

1 (1 8 3) 5 (5 1 8 3) - (-4 8 3) 2 (2 -4 8 3) 3 (3 2 -4 8 3) ^ (8 -4 8 3) ^ (65536 8 3) / (0 3) + (3) 3 -> 3</lang>

PL/I

<lang PL/I>Calculator: procedure options (main); /* 14 Sept. 2012 */

  declare expression character (100) varying initial ();
  declare ch character (1);
  declare (stack controlled, operand) float (18);
  declare in file input;
  open file (in) title ('/CALCULAT.DAT,type(text),recsize(100)');
  on endfile (in) go to done;
  put ('Stack contents:');

main_loop:

  do forever;
     get file (in) edit (ch) (a(1));
     expression = expression || ch;
     if ch = ' ' then iterate;
     select (ch);
        when ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')
           do; allocate stack; stack = ch; iterate main_loop; end;
        when ('+') do; operand = stack; free stack; stack = stack +  operand; end;
        when ('-') do; operand = stack; free stack; stack = stack -  operand; end;
        when ('*') do; operand = stack; free stack; stack = stack *  operand; end;
        when ('/') do; operand = stack; free stack; stack = stack /  operand; end;
        when ('^') do; operand = stack; free stack; stack = stack ** operand; end;
     end;
     call show_stack;
  end;

done:

  put skip list ('The reverse polish expression = ' || expression);
  put skip list ('The evaluated expression = ' || stack);

end Calculator;</lang>

Stack contents: 
      3.0000000000      8.0000000000
      3.0000000000      8.0000000000     -4.0000000000
      3.0000000000      8.0000000000     -4.0000000000      8.0000000000
      3.0000000000      8.0000000000  65536.0000000000
      3.0000000000      0.0001220703
      3.0001220703
The reverse polish expression = 3 4 2 * 1 5 - 2 3 ^ ^ / + 
The evaluated expression =  3.00012207031250000E+0000 

The procedure to display the stack:

/* As the stack is push-down pop-up, need to pop it to see what's inside. */
show_stack: procedure;
   declare ts float (18) controlled;

   do while (allocation(stack) > 0);
      allocate ts; ts = stack; free stack;
   end;
   put skip;
   do while (allocation(ts) > 0);
      allocate stack; stack = ts; free ts; put edit (stack) (f(18,10));
   end;
end show_stack;

PowerShell

<lang PowerShell> function Invoke-Rpn {

 <#
   .SYNOPSIS
       A stack-based evaluator for an expression in reverse Polish notation.
   .DESCRIPTION
       A stack-based evaluator for an expression in reverse Polish notation.
       All methods in the Math and Decimal classes are available.
   .PARAMETER Expression
       A space separated, string of tokens.
   .PARAMETER DisplayState
       This switch shows the changes in the stack as each individual token is processed as a table.
   .EXAMPLE
       Invoke-Rpn -Expression "3 4 Max"
   .EXAMPLE
       Invoke-Rpn -Expression "3 4 Log2"
   .EXAMPLE
       Invoke-Rpn -Expression "3 4 2 * 1 5 - 2 3 ^ ^ / +"
   .EXAMPLE
       Invoke-Rpn -Expression "3 4 2 * 1 5 - 2 3 ^ ^ / +" -DisplayState
  1. >
   [CmdletBinding()]
   Param
   (
       [Parameter(Mandatory=$true)]
       [AllowEmptyString()]
       [string]
       $Expression,
       [Parameter(Mandatory=$false)]
       [switch]
       $DisplayState
   )
   Begin
   {
       function Out-State ([System.Collections.Stack]$Stack)
       {
           $array = $Stack.ToArray()
           [Array]::Reverse($array)
           $array | ForEach-Object -Process { Write-Host ("{0,-8:F3}" -f $_) -NoNewline } -End { Write-Host }
       }
       function New-RpnEvaluation
       {
           $stack = New-Object -Type System.Collections.Stack
           $shortcuts = @{
               "+" = "Add"; "-" = "Subtract"; "/" = "Divide"; "*" = "Multiply"; "%" = "Remainder"; "^" = "Pow"
           }
           :ARGUMENT_LOOP foreach ($argument in $args)
           {
               if ($DisplayState -and $stack.Count)
               {
                   Out-State $stack
               }
       
               if ($shortcuts[$argument])
               {
                   $argument = $shortcuts[$argument]
               }
               try
               {
                   $stack.Push([decimal]$argument)
                   continue
               }
               catch
               {
               }
               $argCountList = $argument -replace "(\D+)(\d*)",‘$2’
               $operation = $argument.Substring(0, $argument.Length – $argCountList.Length)
               foreach($type in [Decimal],[Math])
               {
                   if ($definition = $type::$operation)
                   {
                       if (-not $argCountList)
                       {
                           $argCountList = $definition.OverloadDefinitions |
                               Foreach-Object { ($_ -split ", ").Count } |
                               Sort-Object -Unique
                       }
                       foreach ($argCount in $argCountList)
                       {
                           try
                           {
                               $methodArguments = $stack.ToArray()[($argCount–1)..0]
                               $result = $type::$operation.Invoke($methodArguments)
                               $null = 1..$argCount | Foreach-Object { $stack.Pop() }
                               $stack.Push($result)
                               continue ARGUMENT_LOOP
                           }
                           catch
                           {
                               ## If error, try with the next number of arguments
                           }
                       }
                   }
               }
           }
           if ($DisplayState -and $stack.Count)
           {
               Out-State $stack
               if ($stack.Count)
               {
                   Write-Host "`nResult = $($stack.Peek())"
               }
           }
           else
           {
               $stack
           }
       }
   }
   Process
   {
       Invoke-Expression -Command "New-RpnEvaluation $Expression"
   }
   End
   {
   }

}

Invoke-Rpn -Expression "3 4 2 * 1 5 - 2 3 ^ ^ / +" -DisplayState </lang>

Output:
3.000   
3.000   4.000   
3.000   4.000   2.000   
3.000   8.000   
3.000   8.000   1.000   
3.000   8.000   1.000   5.000   
3.000   8.000   -4.000  
3.000   8.000   -4.000  2.000   
3.000   8.000   -4.000  2.000   3.000   
3.000   8.000   -4.000  8.000   
3.000   8.000   65536.000
3.000   0.000   
3.000   

Result = 3.0001220703125

Prolog

Works with SWI-Prolog. <lang Prolog>rpn(L) :- writeln('Token Action Stack'), parse(L, [],[X] ,[]), format('~nThe final output value is ~w~n', [X]).

% skip spaces parse([X|L], St) --> {char_type(X, white)}, parse(L, St).

% detect operators parse([Op|L], [Y, X | St]) --> { is_op(Op, X, Y, V), writef(' %s', Op), with_output_to(atom(Str2), writef('Apply %s on top of stack', Op)), writef(' %35l', [Str2]), writef('%w\n', St)}, parse(L, [V | St]).

% detect number parse([N|L], St) --> {char_type(N, digit)}, parse_number(L, [N], St).

% string is finished parse([], St) --> St.

% compute numbers parse_number([N|L], NC, St) --> {char_type(N, digit)}, parse_number(L, [N|NC], St).

parse_number(S, NC, St) --> { reverse(NC, RNC), number_chars(V, RNC), writef('%5r', [V]), with_output_to(atom(Str2), writef('Push num %w on top of stack', [V])), writef(' %35l', [Str2]), writef('%w\n', St)}, parse(S, [V|St]).

% defining operations is_op(42, X, Y, V) :- V is X*Y. is_op(43, X, Y, V) :- V is X+Y. is_op(45, X, Y, V) :- V is X-Y. is_op(47, X, Y, V) :- V is X/Y. is_op(94, X, Y, V) :- V is X**Y.</lang>

Output:
5 ?- rpn("3 4 2 * 1 5 - 2 3 ^ ^ / +").
Token  Action                             Stack
    3  'Push num 3 on top of stack'       [3]
    4  'Push num 4 on top of stack'       [4,3]
    2  'Push num 2 on top of stack'       [2,4,3]
    *  'Apply * on top of stack'          [8,3]
    1  'Push num 1 on top of stack'       [1,8,3]
    5  'Push num 5 on top of stack'       [5,1,8,3]
    -  'Apply - on top of stack'          [-4,8,3]
    2  'Push num 2 on top of stack'       [2,-4,8,3]
    3  'Push num 3 on top of stack'       [3,2,-4,8,3]
    ^  'Apply ^ on top of stack'          [8,-4,8,3]
    ^  'Apply ^ on top of stack'          [65536,8,3]
    /  'Apply / on top of stack'          [0.0001220703125,3]
    +  'Apply + on top of stack'          [3.0001220703125]

The final output value is 3.0001220703125
true .

Python

Version 1

<lang python>def op_pow(stack):

   b = stack.pop(); a = stack.pop()
   stack.append( a ** b )

def op_mul(stack):

   b = stack.pop(); a = stack.pop()
   stack.append( a * b )

def op_div(stack):

   b = stack.pop(); a = stack.pop()
   stack.append( a / b )

def op_add(stack):

   b = stack.pop(); a = stack.pop()
   stack.append( a + b )

def op_sub(stack):

   b = stack.pop(); a = stack.pop()
   stack.append( a - b )

def op_num(stack, num):

   stack.append( num )
   

ops = {

'^': op_pow,
'*': op_mul,
'/': op_div,
'+': op_add,
'-': op_sub,
}

def get_input(inp = None):

   'Inputs an expression and returns list of tokens'
   
   if inp is None:
       inp = input('expression: ')
   tokens = inp.strip().split()
   return tokens

def rpn_calc(tokens):

   stack = []
   table = ['TOKEN,ACTION,STACK'.split(',')]
   for token in tokens:
       if token in ops:
           action = 'Apply op to top of stack'
           ops[token](stack)
           table.append( (token, action, ' '.join(str(s) for s in stack)) )
       else:
           action = 'Push num onto top of stack'
           op_num(stack, eval(token))
           table.append( (token, action, ' '.join(str(s) for s in stack)) )
   return table

if __name__ == '__main__':

   rpn = '3 4 2 * 1 5 - 2 3 ^ ^ / +'
   print( 'For RPN expression: %r\n' % rpn )
   rp = rpn_calc(get_input(rpn))
   maxcolwidths = [max(len(y) for y in x) for x in zip(*rp)]
   row = rp[0]
   print( ' '.join('{cell:^{width}}'.format(width=width, cell=cell) for (width, cell) in zip(maxcolwidths, row)))
   for row in rp[1:]:
       print( ' '.join('{cell:<{width}}'.format(width=width, cell=cell) for (width, cell) in zip(maxcolwidths, row)))
   print('\n The final output value is: %r' % rp[-1][2])</lang>
Output:
For RPN expression: '3 4 2 * 1 5 - 2 3 ^ ^ / +'

TOKEN           ACTION                 STACK      
3     Push num onto top of stack 3                
4     Push num onto top of stack 3 4              
2     Push num onto top of stack 3 4 2            
*     Apply op to top of stack   3 8              
1     Push num onto top of stack 3 8 1            
5     Push num onto top of stack 3 8 1 5          
-     Apply op to top of stack   3 8 -4           
2     Push num onto top of stack 3 8 -4 2         
3     Push num onto top of stack 3 8 -4 2 3       
^     Apply op to top of stack   3 8 -4 8         
^     Apply op to top of stack   3 8 65536        
/     Apply op to top of stack   3 0.0001220703125
+     Apply op to top of stack   3.0001220703125  

 The final output value is: '3.0001220703125'

Version 2

<lang python>a=[] b={'+': lambda x,y: y+x, '-': lambda x,y: y-x, '*': lambda x,y: y*x,'/': lambda x,y:y/x,'^': lambda x,y:y**x} for c in '3 4 2 * 1 5 - 2 3 ^ ^ / +'.split():

   if c in b: a.append(b[c](a.pop(),a.pop()))
   else: a.append(float(c))
   print c, a</lang>
Output:
3 [3.0]
4 [3.0, 4.0]
2 [3.0, 4.0, 2.0]
* [3.0, 8.0]
1 [3.0, 8.0, 1.0]
5 [3.0, 8.0, 1.0, 5.0]
- [3.0, 8.0, -4.0]
2 [3.0, 8.0, -4.0, 2.0]
3 [3.0, 8.0, -4.0, 2.0, 3.0]
^ [3.0, 8.0, -4.0, 8.0]
^ [3.0, 8.0, 65536.0]
/ [3.0, 0.0001220703125]
+ [3.0001220703125]

Racket

<lang racket>

  1. lang racket

(define (calculate-RPN expr)

 (for/fold ([stack '()]) ([token expr])
   (printf "~a\t -> ~a~N" token stack)
   (match* (token stack)
    [((? number? n) s) (cons n s)]
    [('+ (list x y s ___)) (cons (+ x y) s)]
    [('- (list x y s ___)) (cons (- y x) s)]
    [('* (list x y s ___)) (cons (* x y) s)]
    [('/ (list x y s ___)) (cons (/ y x) s)]
    [('^ (list x y s ___)) (cons (expt y x) s)]
    [(x s) (error "calculate-RPN: Cannot calculate the expression:" 
                  (reverse (cons x s)))])))

</lang> Test case

-> (calculate-RPN '(3.0 4 2 * 1 5 - 2 3 ^ ^ / +))
3.0	 -> ()
4	 -> (3.0)
2	 -> (4 3.0)
*	 -> (2 4 3.0)
1	 -> (8 3.0)
5	 -> (1 8 3.0)
-	 -> (5 1 8 3.0)
2	 -> (-4 8 3.0)
3	 -> (2 -4 8 3.0)
^	 -> (3 2 -4 8 3.0)
^	 -> (8 -4 8 3.0)
/	 -> (65536 8 3.0)
+	 -> (1/8192 3.0)
3.0001220703125

Reading from a string: <lang racket> (calculate-RPN (in-port read (open-input-string "3.0 4 2 * 1 5 - 2 3 ^ ^ / +"))) </lang>

REXX

version 1

<lang rexx>/* REXX ***************************************************************

  • 09.11.2012 Walter Pachl translates from PL/I
                                                                                                                                            • /

fid='rpl.txt' ex=linein(fid) Say 'Input:' ex /* ex=' 3 4 2 * 1 5 - 2 3 ^ ^ / +' */ Numeric Digits 15 expr= st.=0 Say 'Stack contents:' do While ex<>

 Parse Var ex ch +1 ex
 expr=expr||ch;
 if ch<>' ' then do
   select
     When pos(ch,'0123456789')>0 Then Do
       Call stack ch
       Iterate
       End
     when ch='+' Then do; operand=getstack(); st.sti = st.sti +  operand; end;
     when ch='-' Then do; operand=getstack(); st.sti = st.sti -  operand; end;
     when ch='*' Then do; operand=getstack(); st.sti = st.sti *  operand; end;
     when ch='/' Then do; operand=getstack(); st.sti = st.sti /  operand; end;
     when ch='^' Then do; operand=getstack(); st.sti = st.sti ** operand; end;
     end;
   call show_stack
   end
 end

Say 'The reverse polish expression = 'expr Say 'The evaluated expression = 'st.1 Exit stack: Procedure Expose st. /* put the argument on top of the stack */

 z=st.0+1
 st.z=arg(1)
 st.0=z
 Return

getstack: Procedure Expose st. sti /* remove and return the stack's top element */

 z=st.0
 stk=st.z
 st.0=st.0-1
 sti=st.0
 Return stk

show_stack: procedure Expose st. /* show the stack's contents */

 ol=
 do i=1 To st.0
   ol=ol format(st.i,5,10)
   End
 Say ol
 Return</lang>
Output:
Input: 3 4 2 * 1 5 - 2 3 ^ ^ / +
Stack contents:
     3.0000000000     8.0000000000
     3.0000000000     8.0000000000    -4.0000000000
     3.0000000000     8.0000000000    -4.0000000000     8.0000000000
     3.0000000000     8.0000000000 65536.0000000000
     3.0000000000     0.0001220703
     3.0001220703
The reverse polish expression = 3 4 2 * 1 5 - 2 3 ^ ^ / +
The evaluated expression = 3.0001220703125

version 2

This REXX version handles tokens (not characters)   so that the RPN could be   (for instance):

3.0   .4e1   2e0   *   +1.   5   -   2   3   **   **   /   +

which is the essentially the same as the default used by the REXX program. <lang REXX>/*REXX program evaluates a ═════ Reverse Polish notation (RPN) ═════ expression. */ parse arg x /*obtain optional arguments from the CL*/ if x= then x= "3 4 2 * 1 5 - 2 3 ^ ^ / +" /*Not specified? Then use the default.*/ tokens=words(x) /*save the number of tokens " ". */ showSteps=1 /*set to 0 if working steps not wanted.*/ ox=x /*save the original value of X. */

           do i=1  for tokens;   @.i=word(x,i)  /*assign the input tokens to an array. */
           end   /*i*/

x=space(x) /*remove any superfluous blanks in X. */ L=max(20, length(x)) /*use 20 for the minimum display width.*/ numeric digits L /*ensure enough decimal digits for ans.*/ say center('operand', L, "─") center('stack', L+L, "─") /*display title*/ $= /*nullify the stack (completely empty).*/

      do k=1  for tokens;   ?=@.k;   ??=?       /*process each token from the  @. list.*/
      #=words($)                                /*stack the count (the number entries).*/
      if datatype(?,'N')  then do;  $=$ ?;   call show  "add to───►stack";  iterate;  end
      if ?=='^'           then ??= "**"         /*REXXify    ^ ───► **    (make legal).*/
      interpret 'y='word($,#-1)  ??  word($,#)  /*compute via the famous REXX INTERPRET*/
      if datatype(y,'N')  then y=y/1            /*normalize the number with ÷ by unity.*/
      $=subword($, 1, #-2)     y                /*rebuild the stack with the answer.   */
      call show ?                               /*display steps (tracing into),  maybe.*/
      end   /*k*/

say /*display a blank line, better perusing*/ say ' RPN input:' ox; say " answer──►"$ /*display original input; display ans.*/ parse source upper . y . /*invoked via C.L. or via a REXX pgm?*/ if y=='COMMAND' | \datatype($,"W") then exit /*stick a fork in it, we're all done. */

                                   else exit $  /*return the answer  ───►  the invoker.*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ show: if showSteps then say center(arg(1), L) left(space($), L); return</lang> output   when using the default input:

─────────operand───────── ──────────────────────stack───────────────────────
     add to───►stack      3
     add to───►stack      3 4
     add to───►stack      3 4 2
            *             3 8
     add to───►stack      3 8 1
     add to───►stack      3 8 1 5
            -             3 8 -4
     add to───►stack      3 8 -4 2
     add to───►stack      3 8 -4 2 3
            ^             3 8 -4 8
            ^             3 8 65536
            /             3 0.0001220703125
            +             3.0001220703125

 RPN input: 3 4 2 * 1 5 - 2 3 ^ ^ / +
 answer───► 3.0001220703125

version 3 (error checking)

This REXX version is the same as above, but also checks for various errors and allows more operators:

  •   checks for illegal operator
  •   checks for illegal number
  •   checks for illegal bit (logical) values
  •   checks for malformed RPN expression
  •   checks for division by zero
  •   allows alternative exponentiation symbol   **
  •   allows logical operations   &   &&   |
  •   allows alternative division symbol   ÷
  •   allows integer division   %
  •   allows remainder division   //
  •   allows concatenation   ||

<lang REXX>/*REXX program evaluates a ═════ Reverse Polish notation (RPN) ═════ expression. */ parse arg x /*obtain optional arguments from the CL*/ if x= then x= "3 4 2 * 1 5 - 2 3 ^ ^ / +" /*Not specified? Then use the default.*/ tokens=words(x) /*save the number of tokens " ". */ showSteps=1 /*set to 0 if working steps not wanted.*/ ox=x /*save the original value of X. */

           do i=1  for tokens;   @.i=word(x,i)  /*assign the input tokens to an array. */
           end   /*i*/

x=space(x) /*remove any superfluous blanks in X. */ L=max(20, length(x)) /*use 20 for the minimum display width.*/ numeric digits L /*ensure enough decimal digits for ans.*/ say center('operand', L, "─") center('stack', L+L, "─") /*display title*/ Dop= '/ // % ÷'; Bop='& | &&' /*division operators; binary operands.*/ Aop= '- + * ^ **' Dop Bop; Lop=Aop "||" /*arithmetic operators; legal operands.*/ $= /*nullify the stack (completely empty).*/

      do k=1  for tokens;   ?=@.k;   ??=?       /*process each token from the  @. list.*/
      #=words($);  b=word($, max(1, #) )        /*the stack count;  the last entry.    */
                   a=word($, max(1, #-1) )      /*stack's  "first"  operand.           */
      division  =wordpos(?, Dop)\==0            /*flag:  doing a some kind of division.*/
      arith     =wordpos(?, Aop)\==0            /*flag:  doing arithmetic.             */
      bitOp     =wordpos(?, Bop)\==0            /*flag:  doing some kind of binary oper*/
      if datatype(?, 'N')   then do; $=$ ?;  call show  "add to───►stack";  iterate;  end
      if wordpos(?, Lop)==0 then do; $=e 'illegal operator:' ?;      leave; end
      if w<2                then do; $=e 'illegal RPN expression.';  leave; end
      if ?=='^'             then ??= "**"       /*REXXify  ^ ──► **   (make it legal). */
      if ?=='÷'             then ??= "/"        /*REXXify  ÷ ──► /    (make it legal). */
      if division  &  b=0   then do; $=e 'division by zero.'      ;  leave; end
      if bitOp & \isBit(a)  then do; $=e "token isn't logical: " a;  leave; end
      if bitOp & \isBit(b)  then do; $=e "token isn't logical: " b;  leave; end
      interpret 'y='   a   ??   b               /*compute with two stack operands*/
      if datatype(y, 'W')   then y=y/1          /*normalize the number with ÷ by unity.*/
      _=subword($, 1, #-2);      $=_ y          /*rebuild the stack with the answer.   */
      call show ?                               /*display (possibly)  a working step.  */
      end   /*k*/

say /*display a blank line, better perusing*/ if word($,1)==e then $= /*handle the special case of errors. */ say ' RPN input:' ox; say " answer───►"$ /*display original input; display ans.*/ parse source upper . y . /*invoked via C.L. or via a REXX pgm?*/ if y=='COMMAND' | \datatype($,"W") then exit /*stick a fork in it, we're all done. */

                                   else exit $  /*return the answer  ───►  the invoker.*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ isBit: return arg(1)==0 | arg(1)==1 /*returns 1 if arg1 is a binary bit*/ show: if showSteps then say center(arg(1), L) left(space($), L); return</lang> output   is identical to the 2nd REXX version.

Ruby

See Parsing/RPN/Ruby <lang ruby>rpn = RPNExpression("3 4 2 * 1 5 - 2 3 ^ ^ / +") value = rpn.eval</lang>

Output:
for RPN expression: 3 4 2 * 1 5 - 2 3 ^ ^ / +
Term	Action	Stack
3	PUSH	[3]
4	PUSH	[3, 4]
2	PUSH	[3, 4, 2]
*	MUL	[3, 8]
1	PUSH	[3, 8, 1]
5	PUSH	[3, 8, 1, 5]
-	SUB	[3, 8, -4]
2	PUSH	[3, 8, -4, 2]
3	PUSH	[3, 8, -4, 2, 3]
^	EXP	[3, 8, -4, 8]
^	EXP	[3, 8, 65536]
/	DIV	[3, 0.0001220703125]
+	ADD	[3.0001220703125]
Value = 3.0001220703125

Run BASIC

<lang runbasic>prn$ = "3 4 2 * 1 5 - 2 3 ^ ^ / + "

j = 0 while word$(prn$,i + 1," ") <> "" i = i + 1

 n$ = word$(prn$,i," ")
 if n$ < "0" or n$ > "9" then 
   num1   = val(word$(stack$,s," "))
   num2   = val(word$(stack$,s-1," "))
   n      = op(n$,num2,num1)
   s      = s - 1
   stack$ = stk$(stack$,s -1,str$(n))
  print "Push Opr ";n$;" to stack:  ";stack$
else
 s = s + 1
 stack$ = stack$ + n$ + " "
 print "Push Num ";n$;" to stack:  ";stack$

end if wend

function stk$(stack$,s,a$) for i = 1 to s

 stk$ = stk$ + word$(stack$,i," ") + " "

next i stk$ = stk$ + a$ + " " end function

FUNCTION op(op$,a,b) if op$ = "*" then op = a * b if op$ = "/" then op = a / b if op$ = "^" then op = a ^ b if op$ = "+" then op = a + b if op$ = "-" then op = a - b end function</lang>

Push Num 3 to stack:  3 
Push Num 4 to stack:  3 4 
Push Num 2 to stack:  3 4 2 
Push Opr * to stack:  3 8 
Push Num 1 to stack:  3 8 1 
Push Num 5 to stack:  3 8 1 5 
Push Opr - to stack:  3 8 -4 
Push Num 2 to stack:  3 8 -4 2 
Push Num 3 to stack:  3 8 -4 2 3 
Push Opr ^ to stack:  3 8 -4 8 
Push Opr ^ to stack:  3 8 65536 
Push Opr / to stack:  3 1.22070312e-4 
Push Opr + to stack:  3.00012207

Scala

<lang Scala>object RPN {

 val PRINT_STACK_CONTENTS: Boolean = true
 def main(args: Array[String]): Unit = {
   val result = evaluate("3 4 2 * 1 5 - 2 3 ^ ^ / +".split(" ").toList)
   println("Answer: " + result)
 }
 def evaluate(tokens: List[String]): Double = {
   import scala.collection.mutable.Stack
   val stack: Stack[Double] = new Stack[Double]
   for (token <- tokens) {
     if (isOperator(token)) token match {
       case "+" => stack.push(stack.pop + stack.pop)
       case "-" => val x = stack.pop; stack.push(stack.pop - x)
       case "*" => stack.push(stack.pop * stack.pop)
       case "/" => val x = stack.pop; stack.push(stack.pop / x)
       case "^" => val x = stack.pop; stack.push(math.pow(stack.pop, x))
       case _ => throw new RuntimeException( s""""$token" is not an operator""")
     }
     else stack.push(token.toDouble)
     if (PRINT_STACK_CONTENTS) {
       print("Input: " + token)
       print(" Stack: ")
       for (element <- stack.seq.reverse) print(element + " ");
       println("")
     }
   }
   stack.pop
 }
 def isOperator(token: String): Boolean = {
   token match {
     case "+" => true; case "-" => true; case "*" => true; case "/" => true; case "^" => true
     case _ => false
   }
 }

}</lang>

Output:
Input: 3 Stack: 3.0 
Input: 4 Stack: 3.0 4.0 
Input: 2 Stack: 3.0 4.0 2.0 
Input: * Stack: 3.0 8.0 
Input: 1 Stack: 3.0 8.0 1.0 
Input: 5 Stack: 3.0 8.0 1.0 5.0 
Input: - Stack: 3.0 8.0 -4.0 
Input: 2 Stack: 3.0 8.0 -4.0 2.0 
Input: 3 Stack: 3.0 8.0 -4.0 2.0 3.0 
Input: ^ Stack: 3.0 8.0 -4.0 8.0 
Input: ^ Stack: 3.0 8.0 65536.0 
Input: / Stack: 3.0 1.220703125E-4 
Input: + Stack: 3.0001220703125 
Answer: 3.0001220703125

Sidef

Translation of: Perl 6

<lang ruby>var proggie = '3 4 2 * 1 5 - 2 3 ^ ^ / +'

class RPN(arr=[]) {

   method binop(op) {
       var x = arr.pop
       var y = arr.pop
       arr << y.(op)(x)
   }
   method run(p) {
       p.each_word { |w|
           say "#{w} (#{arr})"
           given (w) {
               when (/\d/) {
                   arr << Num(w)
               }
               when (<+ - * />) {
                   self.binop(w)
               }
               when ('^') {
                   self.binop('**')
               }
               default {
                   die "#{w} is bogus"
               }
           }
       }
       say arr[0]
   }

}

RPN.new.run(proggie)</lang>

Output:
3 ()
4 (3)
2 (3 4)
* (3 4 2)
1 (3 8)
5 (3 8 1)
- (3 8 1 5)
2 (3 8 -4)
3 (3 8 -4 2)
^ (3 8 -4 2 3)
^ (3 8 -4 8)
/ (3 8 65536)
+ (3 0.0001220703125)
3.0001220703125

Sinclair ZX81 BASIC

If you only have 1k of RAM, this program will correctly evaluate the test expression with fewer than 10 bytes to spare. (I know that because I tried running it with the first line modified to allow a stack depth of 7, i.e. allocating space for two more 40-bit floats, and it crashed with an "out of memory" error code before it could print the result of the final addition.) If we desperately needed a few extra bytes there are ways they could be shaved out of the current program; but this version works, and editing a program that takes up almost all your available RAM isn't very comfortable, and to make it really useful for practical purposes you would still want to have 2k or more anyway.

The ZX81 character set doesn't include ^, so we have to use ** instead. Note that this is not two separate stars, although that's what it looks like: you have to enter it by typing SHIFT+H.

No attempt is made to check for invalid syntax, stack overflow or underflow, etc.

<lang basic> 10 DIM S(5)

20 LET P=1
30 INPUT E$
40 LET I=0
50 LET I=I+1
60 IF E$(I)=" " THEN GOTO 110
70 IF I<LEN E$ THEN GOTO 50
80 LET W$=E$
90 GOSUB 150

100 STOP 110 LET W$=E$( TO I-1) 120 LET E$=E$(I+1 TO ) 130 GOSUB 150 140 GOTO 40 150 IF W$="+" OR W$="-" OR W$="*" OR W$="/" OR W$="**" THEN GOTO 250 160 LET S(P)=VAL W$ 170 LET P=P+1 180 PRINT W$; 190 PRINT ":"; 200 FOR I=P-1 TO 1 STEP -1 210 PRINT " ";S(I); 220 NEXT I 230 PRINT 240 RETURN 250 IF W$="**" THEN LET S(P-2)=ABS S(P-2) 260 LET S(P-2)=VAL (STR$ S(P-2)+W$+STR$ S(P-1)) 270 LET P=P-1 280 GOTO 180</lang>

Input:
3 4 2 * 1 5 - 2 3 ** ** / +
Output:
3: 3
4: 4 3
2: 2 4 3
*: 8 3
1: 1 8 3
5: 5 1 8 3
-: -4 8 3
2: 2 -4 8 3
3: 3 2 -4 8 3
**: 8 -4 8 3
**: 65536 8 3
/: .00012207031 3
+: 3.0001221

Swift

Translation of: Go

<lang Swift>let opa = [

   "^": (prec: 4, rAssoc: true),
   "*": (prec: 3, rAssoc: false),
   "/": (prec: 3, rAssoc: false),
   "+": (prec: 2, rAssoc: false),
   "-": (prec: 2, rAssoc: false),

]

func rpn(tokens: [String]) -> [String] {

   var rpn : [String] = []
   var stack : [String] = [] // holds operators and left parenthesis
   for tok in tokens {
       switch tok {
       case "(":
           stack += [tok] // push "(" to stack
       case ")":
           while !stack.isEmpty {
               let op = stack.removeLast() // pop item from stack
               if op == "(" {
                   break // discard "("
               } else {
                   rpn += [op] // add operator to result
               }
           }
       default:
           if let o1 = opa[tok] { // token is an operator?
               for op in stack.reverse() {
                   if let o2 = opa[op] {
                       if !(o1.prec > o2.prec || (o1.prec == o2.prec && o1.rAssoc)) {
                           // top item is an operator that needs to come off
                           rpn += [stack.removeLast()] // pop and add it to the result
                           continue
                       }
                   }
                   break
               }
               stack += [tok] // push operator (the new one) to stack
           } else { // token is not an operator
               rpn += [tok] // add operand to result
           }
       }
   }
   return rpn + stack.reverse()

}

func parseInfix(e: String) -> String {

   let tokens = e.characters.split{ $0 == " " }.map(String.init)
   return rpn(tokens).joinWithSeparator(" ")

}

var input : String

input = "3 + 4 * 2 / ( 1 - 5 ) ^ 2 ^ 3" "infix: \(input)" "postfix: \(parseInfix(input))"</lang>

Output:
"postfix: 3 4 2 * 1 5 - 2 3 ^ ^ / +"


Tcl

<lang tcl># Helper proc pop stk {

   upvar 1 $stk s
   set val [lindex $s end]
   set s [lreplace $s end end]
   return $val

}

proc evaluate rpn {

   set stack {}
   foreach token $rpn {

set act "apply" switch $token { "^" { # Non-commutative operation set a [pop stack] lappend stack [expr {[pop stack] ** $a}] } "/" { # Non-commutative, special float handling set a [pop stack] set b [expr {[pop stack] / double($a)}] if {$b == round($b)} {set b [expr {round($b)}]} lappend stack $b } "*" { # Commutative operation lappend stack [expr {[pop stack] * [pop stack]}] } "-" { # Non-commutative operation set a [pop stack] lappend stack [expr {[pop stack] - $a}] } "+" { # Commutative operation lappend stack [expr {[pop stack] + [pop stack]}] } default { set act "push" lappend stack $token } } puts "$token\t$act\t$stack"

   }
   return [lindex $stack end]

}

puts [evaluate {3 4 2 * 1 5 - 2 3 ^ ^ / +}]</lang>

Output:
3	push	3
4	push	3 4
2	push	3 4 2
*	apply	3 8
1	push	3 8 1
5	push	3 8 1 5
-	apply	3 8 -4
2	push	3 8 -4 2
3	push	3 8 -4 2 3
^	apply	3 8 -4 8
^	apply	3 8 65536
/	apply	3 0.0001220703125
+	apply	3.0001220703125
3.0001220703125

UNIX Shell

Please note that the asterisk * within the argument string needs to be escaped or quoted, otherwise the shell will interpret and expand it.

Technically, this implementation uses a string to represent a stack and lines to delimit each item of the stack, not spaces as you might expect. However, the input is parsed pretty much as a space-separated argument string, but only with the asterisk quoted.

<lang bash>#!/bin/sh

exp() {

   R=1
   local i=1
   while [ $i -le $2 ]; do
       R=$(($R * $1))
       i=$(($i + 1))
   done

}

rpn() {

   local O1 O2 stack
   while [ $# -ge 1 ]; do
       grep -iE '^-?[0-9]+$' <<< "$1" > /dev/null 2>&1
       if [ "$?" -eq 0 ]; then
           stack=`sed -e '$a'"$1" -e '/^$/d' <<< "$stack"`
       else
           grep -iE '^[-\+\*\/\%\^]$' <<< "$1" > /dev/null 2>&1
           if [ "$?" -eq 0 ]; then
               O2=`sed -n '$p' <<< "$stack"`
               stack=`sed '$d' <<< "$stack"`
               O1=`sed -n '$p' <<< "$stack"`
               case "$1" in
                   '+')
                       stack=`sed -e '$a'"$(($O1 + $O2))" -e '/^$/d' -e '$d' \
                           <<< "$stack"`;;
                   '-')
                       stack=`sed -e '$a'"$(($O1 - $O2))" -e '/^$/d' -e '$d' \
                           <<< "$stack"`;;
                   '*')
                       stack=`sed -e '$a'"$(($O1 * $O2))" -e '/^$/d' -e '$d' \
                           <<< "$stack"`;;
                   '/')
                       stack=`sed -e '$a'"$(($O1 / $O2))" -e '/^$/d' -e '$d' \
                           <<< "$stack"`;;
                   '%')
                       stack=`sed -e '$a'"$(($O1 % $O2))" -e '/^$/d' -e '$d' \
                           <<< "$stack"`;;
                   '^')
                       exp $O1 $O2
                       stack=`sed -e '$a'"$(($R))" -e '/^$/d' -e '$d' <<< \
                           "$stack"`;;
               esac
           else
               echo "Unknown RPN token \`\`$1"
           fi
       fi
       echo "$1" ":" $stack
       shift
   done
   sed -n '1p' <<< "$stack"
   if [ "`wc -l <<< "$stack"`" -gt 1 ]; then
       echo "Malformed input expression" > /dev/stderr
       return 1
   else
       return 0
   fi

}

rpn 3 4 2 '*' 1 5 '-' 2 3 '^' '^' '/' '+'</lang>

Output

<lang>3 : 3 4 : 3 4 2 : 3 4 2

  • : 3 8

1 : 3 8 1 5 : 3 8 1 5 - : 3 8 -4 2 : 3 8 -4 2 3 : 3 8 -4 2 3 ^ : 3 8 -4 8 ^ : 3 8 65536 / : 3 0 + : 3 3</lang>

VBA

Translation of: Liberty BASIC

<lang VBA>Global stack$

Function RPN(expr$) Debug.Print "Expression:" Debug.Print expr$ Debug.Print "Input", "Operation", "Stack after"

stack$ = "" token$ = "#" i = 1 token$ = Split(expr$)(i - 1) 'split is base 0 token2$ = " " + token$ + " "

Do

   Debug.Print "Token "; i; ": "; token$,
   'operation
   If InStr("+-*/^", token$) <> 0 Then
       Debug.Print "operate",
       op2$ = pop$()
       op1$ = pop$()
       If op1$ = "" Then
           Debug.Print "Error: stack empty for "; i; "-th token: "; token$
           End
       End If

       op1 = Val(op1$)
       op2 = Val(op2$)

       Select Case token$
       Case "+"
           res = CDbl(op1) + CDbl(op2)
       Case "-"
           res = CDbl(op1) - CDbl(op2)
       Case "*"
           res = CDbl(op1) * CDbl(op2)
       Case "/"
           res = CDbl(op1) / CDbl(op2)
       Case "^"
           res = CDbl(op1) ^ CDbl(op2)
       End Select

       Call push2(str$(res))
   'default:number
   Else
       Debug.Print "push",
       Call push2(token$)
   End If
   Debug.Print "Stack: "; reverse$(stack$)
   i = i + 1
   If i > Len(Join(Split(expr, " "), "")) Then
       token$ = ""
   Else
       token$ = Split(expr$)(i - 1) 'base 0
       token2$ = " " + token$ + " "
   End If

Loop Until token$ = ""

Debug.Print Debug.Print "Result:"; pop$() 'extra$ = pop$() If stack <> "" Then

   Debug.Print "Error: extra things on a stack: "; stack$

End If End End Function

'--------------------------------------- Function reverse$(s$)

   reverse$ = ""
   token$ = "#"
   While token$ <> ""
       i = i + 1
       token$ = Split(s$, "|")(i - 1) 'split is base 0
       reverse$ = token$ & " " & reverse$
   Wend

End Function '--------------------------------------- Sub push2(s$)

   stack$ = s$ + "|" + stack$ 'stack

End Sub

Function pop$()

   'it does return empty on empty stack
   pop$ = Split(stack$, "|")(0)
   stack$ = Mid$(stack$, InStr(stack$, "|") + 1)

End Function</lang>

Output:
?RPN("3 4 2 * 1 5 - 2 3 ^ ^ / +")
Expression:
3 4 2 * 1 5 - 2 3 ^ ^ / +
Input         Operation     Stack after
Token  1 : 3  push          Stack:  3 
Token  2 : 4  push          Stack:  3 4 
Token  3 : 2  push          Stack:  3 4 2 
Token  4 : *  operate       Stack:  3  8 
Token  5 : 1  push          Stack:  3  8 1 
Token  6 : 5  push          Stack:  3  8 1 5 
Token  7 : -  operate       Stack:  3  8 -4 
Token  8 : 2  push          Stack:  3  8 -4 2 
Token  9 : 3  push          Stack:  3  8 -4 2 3 
Token  10 : ^ operate       Stack:  3  8 -4  8 
Token  11 : ^ operate       Stack:  3  8  65536 
Token  12 : / operate       Stack:  3  .0001220703125 
Token  13 : + operate       Stack:   3.0001220703125 

Result: 3.0001220703125


Xojo

Translation of: VBA

<lang Xojo>

Function RPN(expr As String) As String

 Dim tokenArray() As String
 Dim stack() As String
 
 Dim Wert1 As Double
 Dim Wert2 As Double
 
 
 
 'Initialize array (removed later)
 ReDim tokenArray(1)
 ReDim stack(1)
 
 
 tokenArray = Split(expr, " ")
 
 Dim i As integer 
 i = 0
 
 While i <= tokenArray.Ubound    
   
   
   If  tokenArray(i) = "+" Then
     Wert2 = Val(stack.pop)
     Wert1 = Val(stack.pop)
     stack.Append(Str(Wert1+Wert2))
   ElseIf tokenArray(i) = "-" Then
     Wert2 = Val(stack.pop)
     Wert1 = Val(stack.pop)
     stack.Append(Str(Wert1-Wert2))
   ElseIf tokenArray(i) = "*" Then
     Wert2 = Val(stack.pop)
     Wert1 = Val(stack.pop)
     stack.Append(Str(Wert1*Wert2))
   ElseIf tokenArray(i) = "/" Then
     Wert2 = Val(stack.pop)
     Wert1 = Val(stack.pop)
     stack.Append(Str(Wert1/Wert2))
   ElseIf tokenArray(i) = "^" Then
     Wert2 = Val(stack.pop)
     Wert1 = Val(stack.pop)
     stack.Append(Str(pow(Wert1,Wert2)))
   Else
     stack.Append(tokenArray(i))
   End If
   
   
   i = i +1
   
 Wend
 
 
 Return stack(2)

End Function</lang>


Output:
?RPN("3 4 2 * 1 5 - 2 3 ^ ^ / +")
Expression:
3 4 2 * 1 5 - 2 3 ^ ^ / +

Input         Operation     Stack after
Token  1 : 3  push          Stack:  3 
Token  2 : 4  push          Stack:  3 4 
Token  3 : 2  push          Stack:  3 4 2 
Token  4 : *  operate       Stack:  3  8 
Token  5 : 1  push          Stack:  3  8 1 
Token  6 : 5  push          Stack:  3  8 1 5 
Token  7 : -  operate       Stack:  3  8 -4 
Token  8 : 2  push          Stack:  3  8 -4 2 
Token  9 : 3  push          Stack:  3  8 -4 2 3 
Token  10 : ^ operate       Stack:  3  8 -4  8 
Token  11 : ^ operate       Stack:  3  8  65536 
Token  12 : / operate       Stack:  3  .000122
Token  13 : + operate       Stack:   3.000122

Result: 3.000122



zkl

<lang zkl>var ops=D("^",True, "*",'*, "/",'/, "+",'+, "-",'-);

fcn parseRPN(e){

  println("\npostfix: ", e);
  stack:=L();
  foreach tok in (e.split()){
     op:=ops.find(tok);
     if(op){

y := stack.pop(); x := stack.pop(); if(True==op) x=x.pow(y); else x=op(x,y); stack.append(x);

     }
     else stack.append(tok.toFloat());
     println(tok," --> ",stack);
  }
  println("result: ", stack[0])

}</lang> <lang zkl>tests:=T("3 4 2 * 1 5 - 2 3 ^ ^ / +"); foreach t in (tests) { parseRPN(t) }</lang>

Output:
postfix: 3 4 2 * 1 5 - 2 3 ^ ^ / +
3 --> L(3)
4 --> L(3,4)
2 --> L(3,4,2)
* --> L(3,8)
1 --> L(3,8,1)
5 --> L(3,8,1,5)
- --> L(3,8,-4)
2 --> L(3,8,-4,2)
3 --> L(3,8,-4,2,3)
^ --> L(3,8,-4,8)
^ --> L(3,8,65536)
/ --> L(3,0.00012207)
+ --> L(3.00012)
result: 3.00012