Numbers which are the cube roots of the product of their proper divisors

From Rosetta Code
Revision as of 04:29, 4 October 2022 by Chunes (talk | contribs) (Add Factor)
Numbers which are the cube roots of the product of their proper divisors is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Example

Consider the number 24. Its proper divisors are: 1, 2, 3, 4, 6, 8 and 12. Their product is 13,824 and the cube root of this is 24. So 24 satisfies the definition in the task title.

Task

Compute and show here the first 50 positive integers which are the cube roots of the product of their proper divisors.

Also show the 500th and 5,000th such numbers.

Stretch

Compute and show the 50,000th such number.

Reference
Note

OEIS considers 1 to be the first number in this sequence even though, strictly speaking, it has no proper divisors. Please therefore do likewise.


ALGOL 68

As with the second Wren sample, uses the observation on the OEIS page to reduce the problem to finding numbers that are 1 or have 8 divisors (or 7 proper divisors).

BEGIN # find some numbers which are the cube roots of the product of their   #
      #      proper divisors                                                 #
      # the Online Encyclopedia of Integer Sequences states that these       #
      # numbers are 1 and those with eight divisors                          #
      # NB: numbers with 8 divisors have 7 proper divisors                   #
    INT max number = 500 000; # maximum number we will consider              #
    # form a table of proper divisor counts - assume the pdc of 1 is 7       #
    [ 1 : max number ]INT pdc; FOR i TO UPB pdc DO pdc[ i ] := 1 OD;
    pdc[ 1 ] := 7;
    FOR i FROM 2 TO UPB pdc DO
        FOR j FROM i + i BY i TO UPB pdc DO pdc[ j ] +:= 1 OD
    OD;
    # show the numbers which are the cube root of their proper divisor       #
    # product - equivalent to finding the numbers with a proper divisor      #
    # count of 7 ( we have "cheated" and set the pdc of 1 to 7 )             # 
    INT next show := 500;
    INT c count   := 0;
    FOR n TO UPB pdc DO
        IF pdc[ n ] = 7 THEN
            # found a suitable number                                        #
            IF ( c count +:= 1 ) <= 50 THEN
                print( ( " ", whole( n, -3 ) ) );
                IF c count MOD 10 = 0 THEN print( ( newline ) ) FI
            ELIF c count = next show THEN
                print( ( whole( c count, -9 ), "th: ", whole( n, 0 ), newline ) );
                next show *:= 10
            FI
        FI
    OD
END
Output:
   1  24  30  40  42  54  56  66  70  78
  88 102 104 105 110 114 128 130 135 136
 138 152 154 165 170 174 182 184 186 189
 190 195 222 230 231 232 238 246 248 250
 255 258 266 273 282 285 286 290 296 297
      500th: 2526
     5000th: 23118
    50000th: 223735

BASIC

BASIC256

Translation of: FreeBASIC
arraybase 1
limite = 500000
dim pdc(limite) fill 1
pdc[1] = 7
for i = 2 to pdc[?]
	for j = i + i to pdc[?] step i
		pdc[j] += 1
	next j
next i

n5 = 500
cont = 0
print "First 50 numbers which are the cube roots"
print "of the products of their proper divisors:"
for i = 1 to pdc[?]
	if pdc[i] = 7 then
		cont += 1
		if cont <= 50 then
			print rjust(string(i),5);
			if cont mod 10 = 0 then print
		else
			if cont = n5 then
				print
				print rjust(string(cont),9); "th: "; i;
				n5 *= 10
			end if
		end if
	end if
next i
Output:
Same as FreeBASIC entry.

True BASIC

Translation of: FreeBASIC
LET limite = 500000
DIM pdc(1 to 500000)
FOR i = 1 to ubound(pdc)
    LET pdc(i) = 1
NEXT i
LET pdc(1) = 7
FOR i = 2 to ubound(pdc)
    FOR j = i+i to ubound(pdc) step i
        LET pdc(j) = pdc(j)+1
    NEXT j
NEXT i

LET n5 = 500
LET count = 0
PRINT "First 50 numbers which are the cube roots"
PRINT "of the products of their proper divisors:"
FOR i = 1 to ubound(pdc)
    IF pdc(i) = 7 then
       LET count = count + 1
       IF count <= 50 THEN
          PRINT  using "####": i;
          IF remainder(count, 10) = 0 THEN PRINT
       ELSE
          IF count = n5 THEN
             PRINT
             PRINT USING "#########th:": count;
             PRINT i;
             LET n5 = n5*10
          END IF
       END IF
    END IF
NEXT i
END
Output:
Same as FreeBASIC entry.


XBasic

Works with: Windows XBasic
PROGRAM	"progname"
VERSION	"0.0000"

DECLARE FUNCTION  Entry ()

FUNCTION  Entry ()
limite = 500000
DIM pdc[limite] '(1 TO limite)
FOR i = 1 TO UBOUND(pdc[])
    pdc[i] = 1
NEXT i
pdc[1] = 7
FOR i = 2 TO UBOUND(pdc[])
    FOR j = i + i TO UBOUND(pdc[]) STEP i
        INC pdc[j]
    NEXT j
NEXT i

n5 = 500
cont = 0
PRINT "First 50 numbers which are the cube roots"
PRINT "of the products of their proper divisors:"
FOR i = 1 TO UBOUND(pdc[])
    IF pdc[i] = 7 THEN
        INC cont
        IF cont <= 50 THEN
            PRINT RJUST$ (STRING$(i), 4);
            IF cont MOD 10 = 0 THEN PRINT
        ELSE
            IF cont = n5 THEN
                PRINT "\n"; FORMAT$("#########", cont); "th: "; i;
                n5 = n5 * 10
            END IF
        END IF
    END IF
NEXT i

END FUNCTION
END PROGRAM
Output:
Same as FreeBASIC entry.

Yabasic

Translation of: FreeBASIC
limite = 500000
dim pdc(limite)

for i = 1 to arraysize(pdc(), 1)
    pdc(i) = 1 
next i
pdc(1) = 7
for i = 2 to arraysize(pdc(), 1)
    for j = i + i to arraysize(pdc(), 1) step i
        pdc(j) = pdc(j) + 1 
    next j
next i

n5 = 500
cont = 0
print "First 50 numbers which are the cube roots"
print "of the products of their proper divisors:"
for i = 1 to arraysize(pdc(), 1)
    if pdc(i) = 7 then
        cont = cont + 1
        if cont <= 50 then
            print i using("###");
            if mod(cont, 10) = 0  print
        else
		    if cont = n5 then
                print "\n", cont using("#########"), "th: ", i;
                n5 = n5 * 10
            end if
        end if
    end if
next i
Output:
Same as FreeBASIC entry.

C++

#include <iomanip>
#include <iostream>

unsigned int divisor_count(unsigned int n) {
    unsigned int total = 1;
    for (; (n & 1) == 0; n >>= 1)
        ++total;
    for (unsigned int p = 3; p * p <= n; p += 2) {
        unsigned int count = 1;
        for (; n % p == 0; n /= p)
            ++count;
        total *= count;
    }
    if (n > 1)
        total *= 2;
    return total;
}

int main() {
    std::cout.imbue(std::locale(""));
    std::cout << "First 50 numbers which are the cube roots of the products of "
                 "their proper divisors:\n";
    for (unsigned int n = 1, count = 0; count < 50000; ++n) {
        if (n == 1 || divisor_count(n) == 8) {
            ++count;
            if (count <= 50)
                std::cout << std::setw(3) << n
                          << (count % 10 == 0 ? '\n' : ' ');
            else if (count == 500 || count == 5000 || count == 50000)
                std::cout << std::setw(6) << count << "th: " << n << '\n';
        }
    }
}
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297
   500th: 2,526
 5,000th: 23,118
50,000th: 223,735

Factor

Works with: Factor version 0.99 2022-04-03
USING: formatting grouping io kernel lists lists.lazy math
prettyprint project-euler.common ;

: A111398 ( -- list )
    L{ 1 } 2 lfrom [ tau 8 = ] lfilter lappend-lazy ;

50 A111398 ltake list>array 10 group simple-table. nl
499 4999 49999
[ [ 1 + ] keep A111398 lnth "%5dth: %d\n" printf ] tri@
Output:
1   24  30  40  42  54  56  66  70  78
88  102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297

  500th: 2526
 5000th: 23118
50000th: 223735

FreeBASIC

Dim As Single limite = 500000
Dim As Integer pdc(1 To limite)
Dim As Integer i, j
For i = 1 To Ubound(pdc)
    pdc(i) = 1 
Next i
pdc(1) = 7
For i = 2 To Ubound(pdc)
    For j = i + i To Ubound(pdc) Step i
        pdc(j) += 1 
    Next j
Next i

Dim As Integer n5 = 500, cont = 0
Print "First 50 numbers which are the cube roots"
Print "of the products of their proper divisors:"
For i = 1 To Ubound(pdc)
    If pdc(i) = 7 Then
        cont += 1
        If cont <= 50 Then
            Print Using "####"; i;
            If cont Mod 10 = 0 Then Print
        Elseif cont = n5 Then
            Print Using !"\n#########th: &"; cont; i;
            n5 *= 10
        End If
    End If
Next i
Sleep
Output:
First 50 numbers which are the cube roots
of the products of their proper divisors:
   1  24  30  40  42  54  56  66  70  78
  88 102 104 105 110 114 128 130 135 136
 138 152 154 165 170 174 182 184 186 189
 190 195 222 230 231 232 238 246 248 250
 255 258 266 273 282 285 286 290 296 297

      500th: 2526
     5000th: 23118
    50000th: 223735

Forth

Works with: Gforth
Translation of: FreeBASIC
500000 constant limit
variable pdc limit cells allot

: main
  limit 0 do
    1 pdc i cells + !
  loop
  7 pdc !
  limit 2 +do
    limit i 2* 1- +do
      1 pdc i cells + +!
    j +loop
  loop
  ." First 50 numbers which are the cube roots" cr
  ." of the products of their proper divisors:" cr
  500 0
  limit 0 do
    pdc i cells + @ 7 = if
      1+
      dup 50 <= if
        i 1+ 3 .r
        dup 10 mod 0= if cr else space then
      else
        2dup = if
          cr over 5 .r ." th: " i 1+ .
          swap 10 * swap
        then
      then
    then
  loop
  2drop cr ;

main
bye
Output:
First 50 numbers which are the cube roots
of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297

  500th: 2526 
 5000th: 23118 
50000th: 223735 

J

Note that the cube root of the product of the proper divisors is the fourth root of the product of all divisors of a positive integer. That said, we do not need to find roots here -- we only need to inspect the powers of the prime factors of the number:

F=: 1 8 e.~_ */@:>:@q:"0 ]

Task examples:

   N=: 1+I.F 1+i.2^18
   5 10$N
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297
   499{N
2526
   4999{N
23118
   49999{N
223735

Perl

Library: ntheory
use v5.36;
use ntheory 'divisors';
use List::Util <max product>;

sub table ($c, @V) { my $t = $c * (my $w = 2 + length max @V); ( sprintf( ('%'.$w.'d')x@V, @V) ) =~ s/.{1,$t}\K/\n/gr }
sub proper_divisors ($n) { my @d = divisors($n); pop @d; @d }

sub is_N ($n) {
    state @N = 1;
    state $p = 1;
    do { push @N, $p if ++$p**3 == product proper_divisors($p); } until $N[$n];
    $N[$n-1]
}

say table 10, map { is_N $_ } 1..50;
printf "%5d %d\n", $_, is_N $_ for 500, 5000, 50000;
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297

  500 2526
 5000 23118
50000 223735

Phix

with javascript_semantics
sequence n50 = {}
integer count = 0, n = 1, n5 = 500
atom t0 = time()
printf(1,"First 50 numbers which are the cube roots\n")
printf(1," of the products of their proper divisors:\n")
while count<500000 do
--  if product(factors(n))=n*n*n then
    if n=1 or length(factors(n))=6 then -- safer/smidge faster
        count += 1
        if count<=50 then
            n50 &= n
            if count=50 then
                printf(1,"%s\n",join_by(n50,1,10,"",fmt:="%4d"))
            end if
        elsif count=n5 then
            printf(1,"%,8dth: %,d (%s)\n",{n5,n,elapsed(time()-t0)})
            n5 *= 10
        end if
    end if
    n += 1
end while

By default factors() does not include 1 and n, or I could use length(factors(n,1))=8, both 25% faster than using product(), which exceeds precision limits on 32-bit for n=180, and on 64bit for n=240, though since you'll get exactly the same precision error on the n*n*n it kinda "worked by chance".

Output:
First 50 numbers which are the cube roots
 of the products of their proper divisors:
   1  24  30  40  42  54  56  66  70  78
  88 102 104 105 110 114 128 130 135 136
 138 152 154 165 170 174 182 184 186 189
 190 195 222 230 231 232 238 246 248 250
 255 258 266 273 282 285 286 290 296 297

     500th: 2,526 (0.0s)
   5,000th: 23,118 (0.0s)
  50,000th: 223,735 (0.6s)
 500,000th: 2,229,229 (14.1s)

For comparison, the gcc/C++ entry gets the 500kth about 8* faster, roughly about what I'd expect... 🤥

PL/M

Solves the basic task by counting the proper divisors as per the OEIS page (the 50 000th number is too large for 16 bits).

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* FIND NUMBERS THAT ARE THE CUBE ROOT OF THEIR PROPER DIVISORS        */

   DECLARE FALSE LITERALLY '0', TRUE LITERALLY '0FFH';

   /* CP/M SYSTEM CALL AND I/O ROUTINES                                      */
   BDOS:      PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );  END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S );  END;
   PR$NL:     PROCEDURE;   CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
   PR$NUMBER: PROCEDURE( N ); /* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH  */
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;
   /* END SYSTEM CALL AND I/O ROUTINES                                       */

   DECLARE PDC  ( 5000 )ADDRESS;
   DECLARE ( I, I2, J, COUNT ) ADDRESS;

   DO I = 1 TO LAST( PDC ); PDC( I ) = 1; END;
   DO I = 2 TO LAST( PDC );
      I2 = I + I;
      DO J = I2 TO LAST( PDC ) BY I;
         PDC( J ) = PDC( J ) + 1;
      END;
   END;
   PDC( 1 ) = 7;

   COUNT, I = 0;
   DO WHILE COUNT < 500 AND I < LAST( PDC );
      I = I  + 1;
      IF PDC( I ) = 7 THEN DO;
         IF ( COUNT := COUNT + 1 ) < 51 THEN DO;
            CALL PR$CHAR( ' ' );
            IF I <   10 THEN CALL PR$CHAR( ' ' );
            IF I <  100 THEN CALL PR$CHAR( ' ' );
            IF I < 1000 THEN CALL PR$CHAR( ' ' );
            CALL PR$NUMBER( I );
            IF COUNT MOD 10 = 0 THEN CALL PR$NL;
            END;
         ELSE IF COUNT = 500 THEN DO;
            CALL PR$NUMBER( COUNT );
            CALL PR$STRING( .'TH: $' );
            CALL PR$NUMBER( I );
            CALL PR$NL;
         END;
      END;
   END;

EOF
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297
500TH: 2526

Alternative version, calculating the proper divisor products and cubes modulo 65536 (as PL/M uses unsigned 16 bit arithmetic and doesn't check for overflow, all calculations are modulo 65536). This is sufficient to detect the numbers apart from those where the product/cube is 0 mod 65536. To handle the zero cases, it uses Rdm's hints (see J sample and Discussion page) that if x = n^3 then the prime factors of x must be the same as the prime factors of n and the prime factors of x must have powers three times those of n - additionally, we don't have to calclate the product of the proper divisors, we only need to factorise them and aggregate their powers.
Using this technique, the first 50 numbers can be found in a few seconds but to find the 5000th takes several minutes. As the candidates increase, the proportion that have cubes that are 0 mod 65536 increases and the factorisation and aggregation is quite expensive (the code could doubtless be improved).

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* FIND NUMBERS THAT ARE THE CUBE ROOT OF THEIR PROPER DIVISORS        */

   DECLARE FALSE LITERALLY '0', TRUE LITERALLY '0FFH';

   /* CP/M SYSTEM CALL AND I/O ROUTINES                                      */
   BDOS:      PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );  END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S );  END;
   PR$NL:     PROCEDURE;   CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
   PR$NUMBER: PROCEDURE( N ); /* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH  */
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;
   /* END SYSTEM CALL AND I/O ROUTINES                                       */

   DECLARE MAX$PF LITERALLY '200';

   /* SETS PF$A AND PFC$A TO THE PRIME FACTORS AND COUNTS OF F, THE NUMBER   */
   /* NUMBER OF FACTORS IS RETURNED IN PF$POS$PTR                            */
   /* PF$POS$PTR MUST BE INITIALISED BEFORE THE CALL                         */
   FACTORISE: PROCEDURE( F, PF$POS$PTR, PF$A, PFC$A );
      DECLARE ( F, PF$POS$PTR, PF$A, PFC$A ) ADDRESS;
      DECLARE PF$POS BASED PF$POS$PTR ADDRESS;
      DECLARE PF  BASED PF$A  ( 0 )ADDRESS;
      DECLARE PFC BASED PFC$A ( 0 )ADDRESS;

      DECLARE ( FF, V, POWER ) ADDRESS;

      /* START WITH 2                                                        */
      V  = F;
      FF = 2;
      DO WHILE V > 1;
         IF V MOD FF = 0 THEN DO;
            /* FF IS A PRIME FACTOR OF V                                     */
            DECLARE P ADDRESS;
            POWER = 0;
            DO WHILE V MOD FF = 0;
               POWER = POWER + 1;
               V     = V / FF;
            END;
            P = 0;
            DO WHILE P < PF$POS AND PF( P ) <> FF;
               P = P + 1;
            END;
            IF P >= PF$POS THEN DO;
               /* FIRST TIME FF HAS APPEARED AS A PRIME FACTOR               */
               P        = PF$POS;
               PFC( P ) = 0;
               PF$POS   = PF$POS + 1;
            END;
            PF(  P ) = FF;
            PFC( P ) = PFC( P ) + POWER;
         END;
         IF FF = 2 THEN FF = 3; ELSE FF = FF + 2;
      END;
   END FACTORISE;

   /* RETURNS TRUE  THE PRODUCT OF THE PROPER DIVISORS OF N IS THE CUBE OF N */
   /*         FALSE OTHERWISE                                                */
   PD$PRODUCT$IS$CUBE: PROCEDURE( N )ADDRESS;
      DECLARE N ADDRESS;
      DECLARE IS$CUBE BYTE;

      IF N < 2
      THEN IS$CUBE = TRUE;
      ELSE DO;
         DECLARE ( I, PF$POS, NF$POS ) ADDRESS;
         DECLARE ( PF, PFC, NF, NFC ) ( MAX$PF ) ADDRESS;

         PFC( 0 ), PF( 0 ), PF$POS, NFC( 0 ), NF( 0 ), NF$POS = 0;

         /* FACTORISE N                                                      */
         CALL FACTORISE( N, .NF$POS, .NF, .NFC );
         /* COPY FACTORS BUT ZERO THE COUNTS SO WE CAN EASILY CHECK THE      */
         /* FACTORS OF N ARE THE SAME AS THOSE OF THE PROPER DIVISOR PRODUCT */
         DO I = 0 TO NF$POS - 1;
            PF(  I ) = NF( I );
            PFC( I ) = 0;
         END;

         /* FIND THE PROPER DIVISORS AND FACTORISE THEM, ACCUMULATING THE    */
         /* PRIME FACTOR COUNTS                                              */
         I = 2;
         DO WHILE I * I <= N;
            IF N MOD I = 0 THEN DO;
               /* I IS A DIVISOR OF N                                        */
               DECLARE ( F, G ) ADDRESS;
               F = I;                                        /* FIRST FACTOR */
               G = N / F;                                   /* SECOND FACTOR */
               /* FACTORISE F, COUNTING THE PRIME FACTORS                    */
               CALL FACTORISE( F, .PF$POS, .PF, .PFC );
               /* FACTORISE G, IF IT IS NOT THE SAME AS F                    */
               IF F <> G THEN CALL FACTORISE( G, .PF$POS, .PF, .PFC );
            END;
            I = I + 1;
         END;

         IS$CUBE = PF$POS = NF$POS;
         IF IS$CUBE THEN DO;
            /* N AND ITS PROPER DIVISOR PRODUCT HAVE THE SAME PRIME FACTOR   */
            /* COUNT - CHECK THE PRIME FACTLORS ARE THE SAME AND THAT THE    */
            /* PRODUCTS FACTORS APPEAR 3 TIMEs THOSE OF N                    */
            I = 0;
            DO WHILE I < PF$POS AND IS$CUBE;
               IS$CUBE = ( PF(  I ) = NF(  I )     )
                     AND ( PFC( I ) = NFC( I ) * 3 );
               I = I + 1;
            END;
         END;
      END;
      RETURN IS$CUBE;
   END;

   /* RETURNS THE PROPER DIVISOR PRODUCT OF N, MOD 65536                     */
   PDP: PROCEDURE( N )ADDRESS;
      DECLARE N ADDRESS;
      DECLARE ( I, I2, PRODUCT ) ADDRESS;

      PRODUCT = 1;
      I       = 2;
      DO WHILE ( I2 := I * I ) <= N;
         IF N MOD I = 0 THEN DO;
            PRODUCT = PRODUCT * I;
            IF I2 <> N THEN DO;
               PRODUCT = PRODUCT * ( N / I );
            END;
         END;
         I = I + 1;
      END;
      RETURN PRODUCT;
   END PDP;

   DECLARE ( I, I3, J, COUNT ) ADDRESS;

   COUNT, I = 0;
   DO WHILE COUNT < 5$000;
      I  = I  + 1;
      I3 = I * I * I;
      IF PDP( I ) = I3 THEN DO;
         /* THE PROPER DIVISOR PRODUCT MOD 65536 IS THE SAME AS N CUBED ALSO */
         /* MOD 65536, IF THE CUBE IS 0 MOD 65536, WE NEED TO CHECK THE      */
         /* PRIME FACTORS                                                    */
         DECLARE IS$NUMBER BYTE;
         IF I3 <> 0 THEN IS$NUMBER = TRUE;
                    ELSE IS$NUMBER = PD$PRODUCT$IS$CUBE( I );
         IF IS$NUMBER THEN DO;
            IF ( COUNT := COUNT + 1 ) < 51 THEN DO;
               CALL PR$CHAR( ' ' );
               IF I <   10 THEN CALL PR$CHAR( ' ' );
               IF I <  100 THEN CALL PR$CHAR( ' ' );
               IF I < 1000 THEN CALL PR$CHAR( ' ' );
               CALL PR$NUMBER( I );
               IF COUNT MOD 10 = 0 THEN CALL PR$NL;
               END;
            ELSE IF COUNT = 500 OR COUNT = 5000 THEN DO;
               IF COUNT < 1000 THEN CALL PR$CHAR( ' ' );
               CALL PR$STRING( .'    $' );
               CALL PR$NUMBER( COUNT );
               CALL PR$STRING( .'TH: $' );
               CALL PR$NUMBER( I );
               CALL PR$NL;
            END;
         END;
      END;
   END;

EOF
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297
     500TH: 2526
    5000TH: 23118

Python

''' Rosetta code rosettacode.org/wiki/Numbers_which_are_the_cube_roots_of_the_product_of_their_proper_divisors '''

from functools import reduce
from sympy import divisors


FOUND = 0
for num in range(1, 1_000_000):
    divprod = reduce(lambda x, y: x * y, divisors(num)[:-1])if num > 1 else 1
    if num * num * num == divprod:
        FOUND += 1
        if FOUND <= 50:
            print(f'{num:5}', end='\n' if FOUND % 10 == 0 else '')
        if FOUND == 500:
            print(f'\nFive hundreth: {num:,}')
        if FOUND == 5000:
            print(f'\nFive thousandth: {num:,}')
        if FOUND == 50000:
            print(f'\nFifty thousandth: {num:,}')
            break
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297

Five hundreth: 2,526

Five thousandth: 23,118

Fifty thousandth: 223,735

OEIS algorithm (see talk pages)

from sympy import divisors

numfound = 0
for num in range(1, 1_000_000):
    if num == 1 or len(divisors(num)) == 8:
        numfound += 1
        if numfound <= 50:
            print(f'{num:5}', end='\n' if numfound % 10 == 0 else '')
        if numfound == 500:
            print(f'\nFive hundreth: {num:,}')
        if numfound == 5000:
            print(f'\nFive thousandth: {num:,}')
        if numfound == 50000:
            print(f'\nFifty thousandth: {num:,}')
            break

Output same as first algorithm.

Raku

use Prime::Factor;
use Lingua::EN::Numbers;
my @cube-div = lazy 1, |(2..∞).hyper.grep: { .³ == [×] .&proper-divisors }

put "First 50 numbers which are the cube roots of the products of their proper divisors:\n" ~
  @cube-div[^50]».fmt("%3d").batch(10).join: "\n";

printf "\n%16s: %s\n", .Int.&ordinal.tc, comma @cube-div[$_ - 1] for 5e2, 5e3, 5e4;
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297

  Five hundredth: 2,526

 Five thousandth: 23,118

Fifty thousandth: 223,735

Wren

Library: Wren-math
Library: Wren-long
Library: Wren-fmt
import "./math" for Int, Nums
import "./long" for ULong, ULongs
import "./fmt" for Fmt

var numbers50 = []
var count = 0
var n = 1
var ln
var maxSafe = Num.maxSafeInteger.cbrt.floor
System.print("First 50 numbers which are the cube roots of the products of their proper divisors:")
while (true) {
    var pd = Int.properDivisors(n)
    if ((n <= maxSafe && Nums.prod(pd) == n * n * n) ||
        (ULongs.prod(pd.map { |f| ULong.new(f) }) == (ln = ULong.new(n)) * ln * ln )) {
        count = count + 1
        if (count <= 50) {
            numbers50.add(n)
            if (count == 50) Fmt.tprint("$3d", numbers50, 10)
        } else if (count == 500) {
            Fmt.print("\n500th   : $,d", n)
        } else if (count == 5000) {
            Fmt.print("5,000th : $,d", n)
        } else if (count == 50000) {
            Fmt.print("50,000th: $,d", n)
            break
        }
    }
    n = n + 1
}
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78 
 88 102 104 105 110 114 128 130 135 136 
138 152 154 165 170 174 182 184 186 189 
190 195 222 230 231 232 238 246 248 250 
255 258 266 273 282 285 286 290 296 297 

500th   : 2,526
5,000th : 23,118
50,000th: 223,735

Alternatively and a bit quicker, inspired by the C++ entry and the OEIS comment that (apart from 1) n must have exactly 8 divisors:

import "./fmt" for Fmt

var divisorCount = Fn.new { |n|
    var i = 1
    var k = (n%2 == 0) ? 1 : 2
    var count = 0
    while (i <= n.sqrt) {
        if (n%i == 0) {
            count = count + 1
            var j = (n/i).floor
            if (j != i) count = count + 1
        }
        i = i + k
    }
    return count
}

var numbers50 = []
var count = 0
var n = 1
System.print("First 50 numbers which are the cube roots of the products of their proper divisors:")
while (true) {
    var dc = divisorCount.call(n)
    if (n == 1 || dc == 8) {
        count = count + 1
        if (count <= 50) {
            numbers50.add(n)
            if (count == 50) Fmt.tprint("$3d", numbers50, 10)
        } else if (count == 500) {
            Fmt.print("\n500th   : $,d", n)
        } else if (count == 5000) {
            Fmt.print("5,000th : $,d", n)
        } else if (count == 50000) {
            Fmt.print("50,000th: $,d", n)
            break
        }
    }
    n = n + 1
}
Output:
Same as first version.