Numbers in base 10 that are palindromic in bases 2, 4, and 16: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎{{header|Wren}}: Minor tidy)
 
(24 intermediate revisions by 13 users not shown)
Line 4: Line 4:


<br><br>
<br><br>

=={{header|11l}}==
{{trans|Python}}

<syntaxhighlight lang="11l">F reverse(=n, base)
V r = 0
L n > 0
r = r * base + n % base
n I/= base
R r

F palindrome(n, base)
R n == reverse(n, base)

V cnt = 0
L(i) 25000
I all((2, 4, 16).map(base -> palindrome(@i, base)))
cnt++
print(‘#5’.format(i), end' " \n"[cnt % 12 == 0])

print()</syntaxhighlight>

{{out}}
<pre>
0 1 3 5 15 17 51 85 255 257 273 771
819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</pre>

=={{header|Action!}}==
<syntaxhighlight lang="action!">BYTE FUNC IsPalindrome(INT x BYTE base)
CHAR ARRAY digits="0123456789abcdef",s(16)
BYTE d,i,len

len=0
DO
d=x MOD base
len==+1
s(len)=digits(d+1)
x==/base
UNTIL x=0
OD
s(0)=len

FOR i=1 TO len/2
DO
IF s(i)#s(len-i+1) THEN
RETURN (0)
FI
OD
RETURN (1)

PROC Main()
INT i

FOR i=0 TO 24999
DO
IF IsPalindrome(i,16)=1 AND IsPalindrome(i,4)=1 AND IsPalindrome(i,2)=1 THEN
PrintI(i) Put(32)
FI
OD
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Numbers_in_base_10_that_are_palindromic_in_bases_2,_4,_and_16.png Screenshot from Atari 8-bit computer]
<pre>
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</pre>


=={{header|ALGOL 68}}==
=={{header|ALGOL 68}}==
<lang algol68>BEGIN # show numbers in decimal that are palindromic in bases 2, 4 and 16 #
<syntaxhighlight lang="algol68">BEGIN # show numbers in decimal that are palindromic in bases 2, 4 and 16 #
INT max number = 25 000; # maximum number to consider #
INT max number = 25 000; # maximum number to consider #
INT min base = 2; # smallest base needed #
INT min base = 2; # smallest base needed #
Line 47: Line 113:
END;
END;
# print the numbers in decimal that are palendromic in bases 2, 4 and 16 #
# print the numbers in decimal that are palendromic in bases 2, 4 and 16 #
# as noted by the REXX sample, even numbers ( other than 0 ) aren't #
FOR n FROM 0 TO max number DO
# applicable as even numbers end in 0 in base 2 so can't be palendromic #
print( ( " 0" ) ); # clearly, 0 is palendromic in all bases #
FOR n BY 2 TO max number DO
IF PALINDROMIC ( n DIGITS 16 ) THEN
IF PALINDROMIC ( n DIGITS 16 ) THEN
IF PALINDROMIC ( n DIGITS 4 ) THEN
IF PALINDROMIC ( n DIGITS 4 ) THEN
Line 56: Line 125:
FI
FI
OD
OD
END</lang>
END
</syntaxhighlight>
{{out}}
<pre>
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</pre>

=={{header|ALGOL W}}==
<syntaxhighlight lang="algolw">
begin % find numbers palendromic in bases 2, 4, and 16 %

% returns true if n is palendromic in the specified base, false otherwide %
logical procedure palendromic( integer value n, base ) ;
begin
integer array digit( 1 :: 32 );
integer dPos, v, lPos, rPos;
logical isPalendromic;
dPos := 0;
v := n;
while v > 0 do begin
dPos := dPos + 1;
digit( dPos ) := v rem base;
v := v div base
end while_v_gt_0 ;
isPalendromic := true;
lPos := 1;
rPos := dPos;
while rPos > lPos and isPalendromic do begin
isPalendromic := digit( lPos ) = digit( rPos );
lPos := lPos + 1;
rPos := rPos - 1
end while_rPos_gt_lPos_and_isPalendromic ;
isPalendromic
end palendromic ;
% as noted by the REXX sample, all even numbers end in 0 in base 2 %
% so 0 is the only possible even number, note 0 is palendromic in all bases %
write( " 0" );
for n := 1 step 2 until 24999 do begin
if palendromic( n, 16 ) then begin
if palendromic( n, 4 ) then begin
if palendromic( n, 2 ) then begin
writeon( i_w := 1, s_w := 0, " ", n )
end if_palendromic__n_2
end if_palendromic__n_4
end if_palendromic__n_16
end for_n
end.
</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 64: Line 180:
=={{header|APL}}==
=={{header|APL}}==
{{works with|Dyalog APL}}
{{works with|Dyalog APL}}
<lang apl>(⊢(/⍨)(2 4 16∧.((⊢≡⌽)(⊥⍣¯1))⊢)¨)0,⍳24999</lang>
<syntaxhighlight lang="apl">(⊢(/⍨)(2 4 16∧.((⊢≡⌽)(⊥⍣¯1))⊢)¨)0,⍳24999</syntaxhighlight>
{{out}}
{{out}}
<pre>0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>
<pre>0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>

=={{header|Arturo}}==

<syntaxhighlight lang="arturo">multiPalindromic?: function [n][
if (digits.base:2 n) <> reverse digits.base:2 n -> return false
if (digits.base:4 n) <> reverse digits.base:4 n -> return false
if (digits.base:16 n) <> reverse digits.base:16 n -> return false
return true
]

mpUpTo25K: select 0..25000 => multiPalindromic?

loop split.every: 12 mpUpTo25K 'x ->
print map x 's -> pad to :string s 5</syntaxhighlight>

{{out}}

<pre> 0 1 3 5 15 17 51 85 255 257 273 771
819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>

=={{header|AWK}}==
=={{header|AWK}}==
<syntaxhighlight lang="awk">
<lang AWK>
# syntax: GAWK -f NUMBERS_IN_BASE_10_THAT_ARE_PALINDROMIC_IN_BASES_2_4_AND_16.AWK
# syntax: GAWK -f NUMBERS_IN_BASE_10_THAT_ARE_PALINDROMIC_IN_BASES_2_4_AND_16.AWK
# converted from C
# converted from C
Line 91: Line 227:
return(r)
return(r)
}
}
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 101: Line 237:


=={{header|BASIC}}==
=={{header|BASIC}}==
<lang basic>10 DEFINT A-Z: DEFDBL R
<syntaxhighlight lang="basic">10 DEFINT A-Z: DEFDBL R
20 FOR I=1 TO 25000
20 FOR I=1 TO 25000
30 B=2: GOSUB 100: IF R<>I GOTO 70
30 B=2: GOSUB 100: IF R<>I GOTO 70
Line 113: Line 249:
120 R=R*B+N MOD B
120 R=R*B+N MOD B
130 N=N\B
130 N=N\B
140 GOTO 110</lang>
140 GOTO 110</syntaxhighlight>
{{out}}
{{out}}
<pre> 0 1 3 5 15
<pre> 0 1 3 5 15
Line 122: Line 258:


=={{header|BCPL}}==
=={{header|BCPL}}==
<lang bcpl>get "libhdr"
<syntaxhighlight lang="bcpl">get "libhdr"
manifest $( MAXIMUM = 25000 $)
manifest $( MAXIMUM = 25000 $)


Line 139: Line 275:
for i = 0 to MAXIMUM
for i = 0 to MAXIMUM
if palindrome(i,2) & palindrome(i,4) & palindrome(i,16)
if palindrome(i,2) & palindrome(i,4) & palindrome(i,16)
do writef("%N*N", i)</lang>
do writef("%N*N", i)</syntaxhighlight>
{{out}}
{{out}}
<pre>0
<pre>0
Line 166: Line 302:


=={{header|C}}==
=={{header|C}}==
<lang c>#include <stdio.h>
<syntaxhighlight lang="c">#include <stdio.h>
#define MAXIMUM 25000
#define MAXIMUM 25000


Line 192: Line 328:
printf("\n");
printf("\n");
return 0;
return 0;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre> 0 1 3 5 15 17 51 85 255 257 273 771
<pre> 0 1 3 5 15 17 51 85 255 257 273 771
Line 198: Line 334:


=={{header|COBOL}}==
=={{header|COBOL}}==
<lang cobol> IDENTIFICATION DIVISION.
<syntaxhighlight lang="cobol"> IDENTIFICATION DIVISION.
PROGRAM-ID. PALINDROMIC-BASE-2-4-16.
PROGRAM-ID. PALINDROMIC-BASE-2-4-16.
Line 241: Line 377:
ADD REV-DGT TO REVERSED
ADD REV-DGT TO REVERSED
MOVE REV-NEXT TO REV-REST
MOVE REV-NEXT TO REV-REST
GO TO REV-LOOP.</lang>
GO TO REV-LOOP.</syntaxhighlight>
{{out}}
{{out}}
<pre> 0
<pre> 0
Line 268: Line 404:


=={{header|Cowgol}}==
=={{header|Cowgol}}==
<lang cowgol>include "cowgol.coh";
<syntaxhighlight lang="cowgol">include "cowgol.coh";
const MAXIMUM := 25000;
const MAXIMUM := 25000;


Line 297: Line 433:
i := i + 1;
i := i + 1;
end loop;
end loop;
print_nl();</lang>
print_nl();</syntaxhighlight>
{{out}}
{{out}}
<pre>0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365
<pre>0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365
3855 4095 4097 4369 12291 13107 20485 21845</pre>
3855 4095 4097 4369 12291 13107 20485 21845</pre>

=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}


<syntaxhighlight lang="Delphi">

function GetRadixString(L: Integer; Radix: Byte): string;
{Converts integer a string of any radix}
const RadixChars: array[0..35] Of char =
('0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F',
'G','H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z');
var I: integer;
var S: string;
var Sign: string[1];
begin
Result:='';
If (L < 0) then
begin
Sign:='-';
L:=Abs(L);
end
else Sign:='';
S:='';
repeat
begin
I:=L mod Radix;
S:=RadixChars[I] + S;
L:=L div Radix;
end
until L = 0;
Result:=Sign + S;
end;


function IsPalindrome(N, Base: integer): boolean;
{Test if number is the same forward or backward}
{For a specific Radix}
var S1,S2: string;
begin
S1:=GetRadixString(N,Base);
S2:=ReverseString(S1);
Result:=S1=S2;
end;

function IsPalindrome2416(N: integer): boolean;
{Is N palindromic for bases 2, 4 and 16}
begin
Result:=IsPalindrome(N,2) and
IsPalindrome(N,4) and
IsPalindrome(N,16);
end;

procedure ShowPalindrome2416(Memo: TMemo);
{Show all numbers Palindromic for bases 2, 4 and 16}
var S: string;
var I,Cnt: integer;
begin
S:='';
Cnt:=0;
for I:=0 to 25000-1 do
if IsPalindrome2416(I) then
begin
Inc(Cnt);
S:=S+Format('%8D',[I]);
If (Cnt mod 5)=0 then S:=S+#$0D#$0A;
end;
Memo.Lines.Add('Count='+IntToStr(Cnt));
Memo.Lines.Add(S);
end;

</syntaxhighlight>
{{out}}
<pre>
Count=23
0 1 3 5 15
17 51 85 255 257
273 771 819 1285 1365
3855 4095 4097 4369 12291
13107 20485 21845
</pre>


=={{header|Euler}}==
'''begin'''
'''new''' palendromic; '''new''' n; '''label''' forN;
palendromic
&lt;- ` '''formal''' n; '''formal''' base;
'''begin'''
'''new''' v; '''new''' lPos; '''new''' rPos; '''new''' isPalendromic;
'''new''' digit;
'''label''' vGT0; '''label''' rGTl;
digit &lt;- '''list''' 64;
rPos &lt;- 0;
v &lt;- n;
vGT0: '''if''' v &gt; 0 '''then''' '''begin'''
rPos &lt;- rPos + 1;
digit[ rPos ] &lt;- v '''mod''' base;
v &lt;- v % base;
'''goto''' vGT0
'''end''' '''else''' 0;
isPalendromic &lt;- '''true''';
lPos &lt;- 1;
rGTl: '''if''' rPos &gt; lPos '''and''' isPalendromic '''then''' '''begin'''
isPalendromic &lt;- digit[ lPos ] = digit[ rPos ];
lPos &lt;- lPos + 1;
rPos &lt;- rPos - 1;
'''goto''' rGTl
'''end''' '''else''' 0;
isPalendromic
'''end'''
&apos;
;
'''out''' 0;
n &lt;- -1;
forN: '''if''' [ n &lt;- n + 2 ] &lt; 25000 '''then''' '''begin'''
'''if''' '''not''' palendromic( n, 16 ) '''then''' 0
'''else''' '''if''' '''not''' palendromic( n, 4 ) '''then''' 0
'''else''' '''if''' palendromic( n, 2 ) '''then''' '''out''' n
'''else''' 0
;
'''goto''' forN
'''end''' '''else''' 0
'''end''' $
{{out}}
<pre>
NUMBER 0
NUMBER 1
NUMBER 3
NUMBER 5
NUMBER 15
NUMBER 17
NUMBER 51
NUMBER 85
NUMBER 255
NUMBER 257
NUMBER 273
NUMBER 771
NUMBER 819
NUMBER 1285
NUMBER 1365
NUMBER 3855
NUMBER 4095
NUMBER 4097
NUMBER 4369
NUMBER 12291
NUMBER 13107
NUMBER 20485
NUMBER 21845
</pre>


=={{header|F_Sharp|F#}}==
=={{header|F_Sharp|F#}}==
<lang fsharp>
<syntaxhighlight lang="fsharp">
// Palindromic numbers in bases 2,4, and 16. Nigel Galloway: June 25th., 2021
// Palindromic numbers in bases 2,4, and 16. Nigel Galloway: June 25th., 2021
let fG n g=let rec fG n g=[yield n%g; if n>=g then yield! fG(n/g) g] in let n=fG n g in n=List.rev n
let fG n g=let rec fG n g=[yield n%g; if n>=g then yield! fG(n/g) g] in let n=fG n g in n=List.rev n
Seq.initInfinite id|>Seq.takeWhile((>)25000)|>Seq.filter(fun g->fG g 16 && fG g 4 && fG g 2)|>Seq.iter(printf "%d "); printfn ""
Seq.initInfinite id|>Seq.takeWhile((>)25000)|>Seq.filter(fun g->fG g 16 && fG g 4 && fG g 2)|>Seq.iter(printf "%d "); printfn ""
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 315: Line 610:
=={{header|Factor}}==
=={{header|Factor}}==
{{works with|Factor|0.99 2021-06-02}}
{{works with|Factor|0.99 2021-06-02}}
<lang factor>USING: io kernel math.parser prettyprint sequences ;
<syntaxhighlight lang="factor">USING: io kernel math.parser prettyprint sequences ;


25,000 <iota> [
25,000 <iota> [
{ 2 4 16 } [ >base ] with map [ dup reverse = ] all?
{ 2 4 16 } [ >base ] with map [ dup reverse = ] all?
] filter [ pprint bl ] each nl</lang>
] filter [ pprint bl ] each nl</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</pre>
</pre>

=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">function ispal( byval n as integer, b as integer ) as boolean
'determines if n is palindromic in base b
dim as string ns
while n
ns += chr(48+n mod b) 'temporarily represent as a string
n\=b
wend
for i as integer = 1 to len(ns)\2
if mid(ns,i,1)<>mid(ns,len(ns)-i+1,1) then return false
next i
return true
end function

for i as integer = 0 to 25000
if ispal(i,16) andalso ispal(i,4) andalso ispal(i,2) then print i;" ";
next i</syntaxhighlight>
{{out}}<pre>0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>


=={{header|Go}}==
=={{header|Go}}==
{{libheader|Go-rcu}}
{{libheader|Go-rcu}}
<lang go>package main
<syntaxhighlight lang="go">package main


import (
import (
Line 365: Line 679:
}
}
fmt.Println("\n\nFound", len(numbers), "such numbers.")
fmt.Println("\n\nFound", len(numbers), "such numbers.")
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 375: Line 689:


Found 23 such numbers.
Found 23 such numbers.
</pre>

=={{header|J}}==
<syntaxhighlight lang="j"> palinbase=: (-: |.)@(#.inv)"0
I. (2&palinbase * 4&palinbase * 16&palinbase) i.25e3
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</syntaxhighlight>

=={{header|jq}}==
{{works with|jq}}
'''Also works with gojq and fq, the Go implementations'''

'''With minor tweaks, also works with jaq, the Rust implementation'''

This entry, which uses a stream-oriented approach to illustrate an
economical use of memory, uses `tobase` as found in the Wikipedia article on jq; it works for
bases up to 36 inclusive.

Use gojq or fq for unbounded-precision integer arithmetic.
<syntaxhighlight lang=jq>
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

# nwise/2 assumes that null can be taken as the eos marker
def nwise(stream; $n):
foreach (stream, null) as $x ([];
if length == $n then [$x] else . + [$x] end;
if (.[-1] == null) and length>1 then .[:-1]
elif length == $n then .
else empty
end);

def tobase($b):
def digit: "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[.:.+1];
def mod: . % $b;
def div: ((. - mod) / $b);
def digits: recurse( select(. > 0) | div) | mod ;
# For jq it would be wise to protect against `infinite` as input, but using `isinfinite` confuses gojq
select( (tostring|test("^[0-9]+$")) and 2 <= $b and $b <= 36)
| if . == 0 then "0"
else [digits | digit] | reverse[1:] | add
end;

# boolean
def palindrome: explode as $in | ($in|reverse) == $in;

# boolean
def palindrome($b):
tobase($b) | palindrome;
def task($n):
"Numbers under \($n) in base 10 which are palindromic in bases 2, 4 and 16:",
(nwise(range(0;$n) | select(palindrome(2) and palindrome(4) and palindrome(16)); 5)
| map( lpad(6) ) | join(" "));

task(25000)
</syntaxhighlight>
{{output}}
<pre>
Numbers under 25000 in base 10 which are palindromic in bases 2, 4 and 16:
0 1 3 5 15
17 51 85 255 257
273 771 819 1285 1365
3855 4095 4097 4369 12291
13107 20485 21845
</pre>
</pre>


=={{header|Julia}}==
=={{header|Julia}}==
<lang julia>palinbases(n, bases = [2, 4, 16]) = all(b -> (d = digits(n, base = b); d == reverse(d)), bases)
<syntaxhighlight lang="julia">palinbases(n, bases = [2, 4, 16]) = all(b -> (d = digits(n, base = b); d == reverse(d)), bases)


foreach(p -> print(rpad(p[2], 7), p[1] % 11 == 0 ? "\n" : ""), enumerate(filter(palinbases, 1:25000)))
foreach(p -> print(rpad(p[2], 7), p[1] % 11 == 0 ? "\n" : ""), enumerate(filter(palinbases, 1:25000)))
</lang>{{out}}
</syntaxhighlight>{{out}}
<pre>
<pre>
1 3 5 15 17 51 85 255 257 273 771
1 3 5 15 17 51 85 255 257 273 771
819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</pre>
</pre>

=={{header|Lua}}==
<syntaxhighlight lang="lua">
do -- find numbers palendromic in bases 2, 4, and 16

local function palendromic( n, base )
local digits, v = "", n
while v > 0 do
local dPos = ( v % base ) + 1
digits = digits..string.sub( "0123456789abcdef", dPos, dPos )
v = math.floor( v / base )
end
return digits == string.reverse( digits )
end
-- as noted by the REXX sample, all even numbers end in 0 in base 2
-- so 0 is the only possible even number, note 0 is palendromic in all bases
io.write( " 0" )
for n = 1, 24999, 2 do
if palendromic( n, 16 ) then
if palendromic( n, 4 ) then
if palendromic( n, 2 ) then
io.write( " ", n )
end
end
end
end
end
</syntaxhighlight>
{{out}}
<pre>
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</pre>

=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">ClearAll[PalindromeBaseQ, Palindrom2416Q]
PalindromeBaseQ[n_Integer, b_Integer] := PalindromeQ[IntegerDigits[n, b]]
Palindrom2416Q[n_Integer] := PalindromeBaseQ[n, 2] \[And] PalindromeBaseQ[n, 4] \[And] PalindromeBaseQ[n, 16]
Select[Range[0, 24999], Palindrom2416Q]
Length[%]</syntaxhighlight>
{{out}}
<pre>{0, 1, 3, 5, 15, 17, 51, 85, 255, 257, 273, 771, 819, 1285, 1365, 3855, 4095, 4097, 4369, 12291, 13107, 20485, 21845}
23</pre>


=={{header|Nim}}==
=={{header|Nim}}==
<lang Nim>import strutils, sugar
<syntaxhighlight lang="nim">import strutils, sugar


type Digit = 0..15
type Digit = 0..15
Line 411: Line 831:


echo "Found ", list.len, " numbers which are palindromic in bases 2, 4 and 16:"
echo "Found ", list.len, " numbers which are palindromic in bases 2, 4 and 16:"
echo list.join(" ")</lang>
echo list.join(" ")</syntaxhighlight>


{{out}}
{{out}}
Line 419: Line 839:
=={{header|Perl}}==
=={{header|Perl}}==
{{libheader|ntheory}}
{{libheader|ntheory}}
<lang perl>use strict;
<syntaxhighlight lang="perl">use strict;
use warnings;
use warnings;
use ntheory 'todigitstring';
use ntheory 'todigitstring';
Line 425: Line 845:
sub pb { my $s = todigitstring(shift,shift); return $s eq join '', reverse split '', $s }
sub pb { my $s = todigitstring(shift,shift); return $s eq join '', reverse split '', $s }


pb($_,2) and pb($_,4) and pb($_,16) and print "$_ " for 1..25000;</lang>
pb($_,2) and pb($_,4) and pb($_,16) and print "$_ " for 1..25000;</syntaxhighlight>
{{out}}
{{out}}
<pre>1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>
<pre>1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>


=={{header|Phix}}==
=={{header|Phix}}==
<!--<lang Phix>(phixonline)-->
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">palindrome</span><span style="color: #0000FF;">(</span><span style="color: #004080;">string</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">reverse</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">palindrome</span><span style="color: #0000FF;">(</span><span style="color: #004080;">string</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">reverse</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
Line 440: Line 860:
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">apply</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">filter</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">tagset</span><span style="color: #0000FF;">(</span><span style="color: #000000;">25000</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">),</span><span style="color: #000000;">p2416</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">sprint</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">apply</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">filter</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">tagset</span><span style="color: #0000FF;">(</span><span style="color: #000000;">25000</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">),</span><span style="color: #000000;">p2416</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">sprint</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d found: %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">join</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d found: %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">join</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)})</span>
<!--</lang>-->
<!--</syntaxhighlight>-->
{{out}}
{{out}}
<pre>
<pre>
Line 447: Line 867:


=={{header|PL/M}}==
=={{header|PL/M}}==
<lang plm>100H:
<syntaxhighlight lang="plm">100H:
/* CP/M CALLS */
/* CP/M CALLS */
BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
Line 498: Line 918:
END;
END;
CALL EXIT;
CALL EXIT;
EOF</lang>
EOF</syntaxhighlight>
{{out}}
{{out}}
<pre>0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365
<pre>0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365
Line 504: Line 924:


=={{header|Python}}==
=={{header|Python}}==
<lang python>def reverse(n, base):
<syntaxhighlight lang="python">def reverse(n, base):
r = 0
r = 0
while n > 0:
while n > 0:
Line 520: Line 940:
print("{:5}".format(i), end=" \n"[cnt % 12 == 0])
print("{:5}".format(i), end=" \n"[cnt % 12 == 0])


print()</lang>
print()</syntaxhighlight>
{{out}}
{{out}}
<pre> 0 1 3 5 15 17 51 85 255 257 273 771
<pre> 0 1 3 5 15 17 51 85 255 257 273 771
819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>
819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845</pre>

=={{header|Quackery}}==

<syntaxhighlight lang="Quackery">
[ temp put
0
[ over 0 > while
temp share tuck *
dip /mod +
again ]
temp release
nip ] is rev ( n n --> n )

[ dip dup rev = ] is pal ( n n --> b )

[]
25000 times
[ i^ 16 pal while
i^ 4 pal while
i^ 2 pal while
i^ join ]
echo</syntaxhighlight>

{{out}}

<pre>[ 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845 ]</pre>


=={{header|Raku}}==
=={{header|Raku}}==
<lang perl6>put "{+$_} such numbers:\n", .batch(10)».fmt('%5d').join("\n") given
<syntaxhighlight lang="raku" line>put "{+$_} such numbers:\n", .batch(10)».fmt('%5d').join("\n") given
(^25000).grep: -> $n { all (2,4,16).map: { $n.base($_) eq $n.base($_).flip } }</lang>
(^25000).grep: -> $n { all (2,4,16).map: { $n.base($_) eq $n.base($_).flip } }</syntaxhighlight>
{{out}}
{{out}}
<pre>23 such numbers:
<pre>23 such numbers:
Line 543: Line 989:
This REXX version takes advantage that no &nbsp; ''even'' &nbsp; integers need be tested &nbsp; (except for the single exception: &nbsp; zero),
This REXX version takes advantage that no &nbsp; ''even'' &nbsp; integers need be tested &nbsp; (except for the single exception: &nbsp; zero),
<br>this makes the execution twice as fast.
<br>this makes the execution twice as fast.
<lang rexx>/*REXX pgm finds non─neg integers that are palindromes in base 2, 4, and 16, where N<25k*/
<syntaxhighlight lang="rexx">/*REXX pgm finds non─neg integers that are palindromes in base 2, 4, and 16, where N<25k*/
numeric digits 100 /*ensure enough dec. digs for large #'s*/
numeric digits 100 /*ensure enough dec. digs for large #'s*/
parse arg n cols . /*obtain optional argument from the CL.*/
parse arg n cols . /*obtain optional argument from the CL.*/
Line 580: Line 1,026:
base: procedure; parse arg #,t,,y; @= 0123456789abcdefghijklmnopqrstuvwxyz /*up to 36*/
base: procedure; parse arg #,t,,y; @= 0123456789abcdefghijklmnopqrstuvwxyz /*up to 36*/
@@= substr(@, 2); do while #>=t; y= substr(@, #//t + 1, 1)y; #= # % t
@@= substr(@, 2); do while #>=t; y= substr(@, #//t + 1, 1)y; #= # % t
end; return substr(@, #+1, 1)y</lang>
end; return substr(@, #+1, 1)y</syntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
<pre>
Line 594: Line 1,040:


=={{header|Ring}}==
=={{header|Ring}}==
<lang ring>
<syntaxhighlight lang="ring">
load "stdlib.ring"
load "stdlib.ring"
see "working..." + nl
see "working..." + nl
Line 637: Line 1,083:
binList = substr(binList,nl,"")
binList = substr(binList,nl,"")
return binList
return binList
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 649: Line 1,095:
Found 22 numbers
Found 22 numbers
done...
done...
</pre>

=={{header|RPL}}==
{{works with|HP|48}}
====Brute force====
« ""
OVER SIZE 1 '''FOR''' j
OVER j DUP SUB +
'''NEXT''' SWAP DROP
» '<span style="color:blue">REVSTR</span>' STO
« → base
« ""
'''WHILE''' OVER '''REPEAT'''
SWAP base MOD LASTARG / IP
"0123456789ABCDEF" ROT 1 + DUP SUB ROT +
'''END''' SWAP DROP
» » '<span style="color:blue">D→B</span>' STO
« '''CASE'''
HEX DUP R→B →STR 3 OVER SIZE SUB DUP <span style="color:blue">REVSTR</span> ≠ '''THEN''' DROP 0 '''END'''
DUP 4 <span style="color:blue">D→B</span> DUP <span style="color:blue">REVSTR</span> ≠ '''THEN''' DROP 0 '''END'''
BIN DUP R→B →STR 3 OVER SIZE SUB DUP <span style="color:blue">REVSTR</span> ==
'''END'''
» '<span style="color:blue">PAL2416</span>' STO
« { 0 }
1 25000 '''FOR''' n
'''IF''' n <span style="color:blue">PAL2416</span> '''THEN''' n + '''END'''
2 '''STEP'''
» '<span style="color:blue">TASK</span>' STO
Runs in 42 minutes on a HP-48SX.

====Much faster approach====
The task generates palindromes in base 16, which must then be verified as palindromes in the other two bases.
« BIN 1 SF
R→B →STR 3 OVER SIZE 1 - SUB
0 1 '''FOR''' b
'''IF''' DUP SIZE b 1 + MOD '''THEN''' "0" SWAP + '''END'''
""
OVER SIZE b - 1 '''FOR''' j
OVER j DUP b + SUB +
-1 b - '''STEP'''
'''IF''' OVER ≠ '''THEN''' 1 CF 1 'b' STO '''END'''
'''NEXT''' DROP
1 FS?
» '<span style="color:blue">PAL24?</span>' STO
« HEX R→B →STR → h
« "#"
h SIZE 1 - 3 '''FOR''' j
h j DUP SUB +
-1 '''STEP'''
"h" + STR→ B→R
» » ‘<span style="color:blue">REVHEX</span>’ STO
« { }
0 15 '''FOR''' b
'''IF''' b <span style="color:blue">PAL24?</span> '''THEN''' b + '''END NEXT'''
1 2 '''FOR''' x
-1 15 '''FOR''' m
16 x 1 - ^ 16 x ^ 1 - '''FOR''' b
b
'''IF''' m 0 ≥ '''THEN''' 16 * m + '''END'''
16 x ^ *
b <span style="color:blue">REVHEX</span> +
'''IF''' DUP <span style="color:blue">PAL24?</span> '''THEN''' +
'''ELSE IF''' 25000 ≥ '''THEN''' KILL '''END''' <span style="color:grey">@ not idiomatic but useful to exit 3 nested loops</span>
'''END'''
'''NEXT NEXT NEXT'''
SORT
» '<span style="color:blue">TASK</span>' STO

<span style="color:blue">TASK</span> SORT
Runs in 2 minutes 16 on a HP-48SX: 18 times faster than brute force!
{{out}}
<pre>
1: { 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845 }
</pre>

=={{header|Ruby}}==
<syntaxhighlight lang="ruby">res = (0..25000).select do |n|
[2, 4, 16].all? do |base|
b = n.to_s(base)
b == b.reverse
end
end
puts res.join(" ")</syntaxhighlight>
{{out}}
<pre>
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845
</pre>
</pre>


=={{header|Seed7}}==
=={{header|Seed7}}==
<lang seed7>$ include "seed7_05.s7i";
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";


const func boolean: palindrome (in string: input) is
const func boolean: palindrome (in string: input) is
Line 667: Line 1,204:
end if;
end if;
end for;
end for;
end func;</lang>
end func;</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 674: Line 1,211:


=={{header|Sidef}}==
=={{header|Sidef}}==
<lang ruby>say gather {
<syntaxhighlight lang="ruby">say gather {
for (var k = 0; k < 25_000; k = k.next_palindrome(16)) {
for (var k = 0; k < 25_000; k = k.next_palindrome(16)) {
take(k) if [2, 4].all{|b| k.is_palindrome(b) }
take(k) if [2, 4].all{|b| k.is_palindrome(b) }
}
}
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 686: Line 1,223:
=={{header|Wren}}==
=={{header|Wren}}==
{{libheader|Wren-fmt}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./fmt" for Conv, Fmt
{{libheader|Wren-seq}}
<lang ecmascript>import "/fmt" for Conv, Fmt
import "/seq" for Lst


System.print("Numbers under 25,000 in base 10 which are palindromic in bases 2, 4 and 16:")
System.print("Numbers under 25,000 in base 10 which are palindromic in bases 2, 4 and 16:")
Line 702: Line 1,237:
}
}
}
}
for (chunk in Lst.chunks(numbers, 8)) Fmt.print("$,6d", chunk)
Fmt.tprint("$,6d", numbers, 8)
System.print("\nFound %(numbers.count) such numbers.")</lang>
System.print("\nFound %(numbers.count) such numbers.")</syntaxhighlight>


{{out}}
{{out}}
Line 716: Line 1,251:


=={{header|XPL0}}==
=={{header|XPL0}}==
<lang XPL0>func Reverse(N, Base); \Reverse order of digits in N for given Base
<syntaxhighlight lang="xpl0">func Reverse(N, Base); \Reverse order of digits in N for given Base
int N, Base, M;
int N, Base, M;
[M:= 0;
[M:= 0;
Line 739: Line 1,274:
Text(0, " such numbers found.
Text(0, " such numbers found.
");
");
]</lang>
]</syntaxhighlight>


{{out}}
{{out}}

Latest revision as of 11:38, 6 January 2024

Numbers in base 10 that are palindromic in bases 2, 4, and 16 is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task
Find numbers in base 10 that are palindromic in bases 2, 4, and 16, where n < 25,000



11l

Translation of: Python
F reverse(=n, base)
   V r = 0
   L n > 0
      r = r * base + n % base
      n I/= base
   R r

F palindrome(n, base)
   R n == reverse(n, base)

V cnt = 0
L(i) 25000
   I all((2, 4, 16).map(base -> palindrome(@i, base)))
      cnt++
      print(‘#5’.format(i), end' " \n"[cnt % 12 == 0])

print()
Output:
    0     1     3     5    15    17    51    85   255   257   273   771
  819  1285  1365  3855  4095  4097  4369 12291 13107 20485 21845 

Action!

BYTE FUNC IsPalindrome(INT x BYTE base)
  CHAR ARRAY digits="0123456789abcdef",s(16)
  BYTE d,i,len

  len=0
  DO
    d=x MOD base
    len==+1
    s(len)=digits(d+1)
    x==/base
  UNTIL x=0
  OD
  s(0)=len

  FOR i=1 TO len/2
  DO
    IF s(i)#s(len-i+1) THEN
      RETURN (0)
    FI
  OD
RETURN (1)

PROC Main()
  INT i

  FOR i=0 TO 24999
  DO
    IF IsPalindrome(i,16)=1 AND IsPalindrome(i,4)=1 AND IsPalindrome(i,2)=1 THEN
      PrintI(i) Put(32)
    FI
  OD
RETURN
Output:

Screenshot from Atari 8-bit computer

0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

ALGOL 68

BEGIN # show numbers in decimal that are palindromic in bases 2, 4 and 16 #
    INT max number = 25 000;    # maximum number to consider #
    INT min base   = 2;         # smallest base needed #
    INT max digits = BEGIN      # number of digits max number has in the smallest base #
                         INT d := 1;
                         INT v := max number;
                         WHILE v >= min base DO
                             v OVERAB min base;
                             d PLUSAB 1
                         OD;
                         d
                     END;
    # returns the digits of n in the specified base #
    PRIO DIGITS = 9;
    OP   DIGITS = ( INT n, INT base )[]INT:
         IF   INT v := ABS n;
              v < base
         THEN v # single dogit #
         ELSE   # multiple digits #
            [ 1 : max digits ]INT result;
            INT d pos := UPB result + 1;
            INT v     := ABS n;
            WHILE v > 0 DO
                result[ d pos -:= 1 ] := v MOD base;
                v OVERAB base
            OD;
            result[ d pos : UPB result ]
         FI # DIGITS # ;
    # returns TRUE if the digits in d form a palindrome, FALSE otherwise #
    OP   PALINDROMIC = ( []INT d )BOOL:
         BEGIN
             INT  left := LWB d, right := UPB d;
             BOOL is palindromic := TRUE;
             WHILE left < right AND is palindromic DO
                 is palindromic := d[ left ] = d[ right ];
                 left          +:= 1;
                 right         -:= 1
             OD;
             is palindromic
         END;
    # print the numbers in decimal that are palendromic in bases 2, 4 and 16 #
    # as noted by the REXX sample, even numbers ( other than 0 ) aren't      #
    # applicable as even numbers end in 0 in base 2 so can't be palendromic  #
    print( ( " 0" ) );              # clearly, 0 is palendromic in all bases #
    FOR n BY 2 TO max number DO
        IF PALINDROMIC ( n DIGITS 16 ) THEN
            IF PALINDROMIC ( n DIGITS 4 ) THEN
                IF PALINDROMIC ( n DIGITS 2 ) THEN
                    print( ( " ", whole( n, 0 ) ) )
                FI
            FI
        FI
    OD
END
Output:
 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

ALGOL W

begin % find numbers palendromic in bases 2, 4, and 16                             %

    % returns true if n is palendromic in the specified base, false otherwide      %
    logical procedure palendromic( integer value n, base ) ;
    begin
        integer array digit( 1 :: 32 );
        integer dPos, v, lPos, rPos;
        logical isPalendromic;
        dPos := 0;
        v    := n;
        while v > 0 do begin
            dPos          := dPos + 1;
            digit( dPos ) := v rem base;
            v             := v div base
        end while_v_gt_0 ;
        isPalendromic := true;
        lPos          := 1;
        rPos          := dPos;
        while rPos > lPos and isPalendromic do begin
            isPalendromic := digit( lPos ) = digit( rPos );
            lPos          := lPos + 1;
            rPos          := rPos - 1
        end while_rPos_gt_lPos_and_isPalendromic ;
        isPalendromic
    end palendromic ;
    % as noted by the REXX sample, all even numbers end in 0 in base 2             %
    % so 0 is the only possible even number, note 0 is palendromic in all bases    %
    write( " 0" );
    for n := 1 step 2 until 24999 do begin
        if palendromic( n, 16 ) then begin
            if palendromic( n, 4 ) then begin
                if palendromic( n, 2 ) then begin
                    writeon( i_w := 1, s_w := 0, " ", n )
                end if_palendromic__n_2
            end if_palendromic__n_4
        end if_palendromic__n_16
    end for_n
end.
Output:
 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

APL

Works with: Dyalog APL
((/⍨)(2 4 16.((⊢≡⌽)(¯1)))¨)0,⍳24999
Output:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

Arturo

multiPalindromic?: function [n][
    if (digits.base:2 n) <> reverse digits.base:2 n -> return false
    if (digits.base:4 n) <> reverse digits.base:4 n -> return false
    if (digits.base:16 n) <> reverse digits.base:16 n -> return false
    return true
]

mpUpTo25K: select 0..25000 => multiPalindromic?

loop split.every: 12 mpUpTo25K 'x ->
    print map x 's -> pad to :string s 5
Output:
    0     1     3     5    15    17    51    85   255   257   273   771 
  819  1285  1365  3855  4095  4097  4369 12291 13107 20485 21845

AWK

# syntax: GAWK -f NUMBERS_IN_BASE_10_THAT_ARE_PALINDROMIC_IN_BASES_2_4_AND_16.AWK
# converted from C
BEGIN {
    start = 0
    stop = 24999
    for (i=start; i<stop; i++) {
      if (palindrome(i,2) && palindrome(i,4) && palindrome(i,16)) {
         printf("%5d%1s",i,++count%10?"":"\n")
      }
    }
    printf("\nBase 10 numbers that are palindromes in bases 2, 4, and 16: %d-%d: %d\n",start,stop,count)
    exit(0)
}
function palindrome(n,base) {
    return n == reverse(n,base)
}
function reverse(n,base,  r) {
    for (r=0; n; n=int(n/base)) {
      r = int(r*base) + n%base
    }
    return(r)
}
Output:
    0     1     3     5    15    17    51    85   255   257
  273   771   819  1285  1365  3855  4095  4097  4369 12291
13107 20485 21845
Base 10 numbers that are palindromes in bases 2, 4, and 16: 0-24999: 23

BASIC

10 DEFINT A-Z: DEFDBL R
20 FOR I=1 TO 25000
30 B=2: GOSUB 100: IF R<>I GOTO 70
40 B=4: GOSUB 100: IF R<>I GOTO 70
50 B=16: GOSUB 100: IF R<>I GOTO 70
60 PRINT I,
70 NEXT
80 END
100 R=0: N=I
110 IF N=0 THEN RETURN
120 R=R*B+N MOD B
130 N=N\B
140 GOTO 110
Output:
 0             1             3             5             15
 17            51            85            255           257
 273           771           819           1285          1365
 3855          4095          4097          4369          12291
 13107         20485         21845

BCPL

get "libhdr"
manifest $( MAXIMUM = 25000 $)

let reverse(n, base) = valof
$(  let r = 0
    while n > 0
    $(  r := r*base + n rem base
        n := n / base
    $)
    resultis r
$)

let palindrome(n, base) = n = reverse(n, base)

let start() be 
    for i = 0 to MAXIMUM
        if palindrome(i,2) & palindrome(i,4) & palindrome(i,16)
            do writef("%N*N", i)
Output:
0
1
3
5
15
17
51
85
255
257
273
771
819
1285
1365
3855
4095
4097
4369
12291
13107
20485
21845

C

#include <stdio.h>
#define MAXIMUM 25000

int reverse(int n, int base) {
    int r;
    for (r = 0; n; n /= base)
        r = r*base + n%base;
    return r;
}

int palindrome(int n, int base) {
    return n == reverse(n, base);
}

int main() {
    int i, c = 0;
    
    for (i = 0; i < MAXIMUM; i++) {
        if (palindrome(i, 2) &&
            palindrome(i, 4) &&
            palindrome(i, 16)) {
            printf("%5d%c", i, ++c % 12 ? ' ' : '\n');
        }
    }
    printf("\n");
    return 0;
}
Output:
    0     1     3     5    15    17    51    85   255   257   273   771
  819  1285  1365  3855  4095  4097  4369 12291 13107 20485 21845

COBOL

       IDENTIFICATION DIVISION.
       PROGRAM-ID. PALINDROMIC-BASE-2-4-16.
       
       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01 VARIABLES.
          02 CUR-NUM           PIC 9(5).
          02 REV-BASE          PIC 99.
          02 REV-REST          PIC 9(5).
          02 REV-NEXT          PIC 9(5).
          02 REV-DGT           PIC 99.
          02 REVERSED          PIC 9(5).
       
       01 OUTPUT-FORMAT.
          02 OUT-NUM           PIC Z(4)9.
       
       PROCEDURE DIVISION.
       BEGIN.
           PERFORM 2-4-16-PALINDROME
               VARYING CUR-NUM FROM ZERO BY 1
               UNTIL CUR-NUM IS NOT LESS THAN 25000.
           STOP RUN.
       
       2-4-16-PALINDROME.
           MOVE 16 TO REV-BASE, PERFORM REVERSE THRU REV-LOOP
           IF CUR-NUM IS EQUAL TO REVERSED
               MOVE 4 TO REV-BASE, PERFORM REVERSE THRU REV-LOOP
               IF CUR-NUM IS EQUAL TO REVERSED
                   MOVE 2 TO REV-BASE, PERFORM REVERSE THRU REV-LOOP
                   IF CUR-NUM IS EQUAL TO REVERSED
                       MOVE CUR-NUM TO OUT-NUM
                       DISPLAY OUT-NUM.
       
       REVERSE.
           MOVE ZERO TO REVERSED.
           MOVE CUR-NUM TO REV-REST.
       REV-LOOP.
           IF REV-REST IS GREATER THAN ZERO
               DIVIDE REV-BASE INTO REV-REST GIVING REV-NEXT
               COMPUTE REV-DGT = REV-REST - REV-NEXT * REV-BASE
               MULTIPLY REV-BASE BY REVERSED
               ADD REV-DGT TO REVERSED
               MOVE REV-NEXT TO REV-REST
               GO TO REV-LOOP.
Output:
    0
    1
    3
    5
   15
   17
   51
   85
  255
  257
  273
  771
  819
 1285
 1365
 3855
 4095
 4097
 4369
12291
13107
20485
21845

Cowgol

include "cowgol.coh";
const MAXIMUM := 25000;

sub reverse(n: uint16, base: uint16): (r: uint16) is
    r := 0;
    while n != 0 loop
        r := r * base + n % base;
        n := n / base;
    end loop;
end sub;

var i: uint16 := 0;
var c: uint8 := 0;
while i < MAXIMUM loop
    if reverse(i,2) == i
    and reverse(i,4) == i
    and reverse(i,16) == i 
    then
        c := c + 1;
        print_i16(i);
        if c == 15 then
            print_nl();
            c := 0;
        else
            print_char(' ');
        end if;
    end if;
    i := i + 1;
end loop;
print_nl();
Output:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365
3855 4095 4097 4369 12291 13107 20485 21845

Delphi

Works with: Delphi version 6.0


function GetRadixString(L: Integer; Radix: Byte): string;
{Converts integer a string of any radix}
const RadixChars: array[0..35] Of char =
    ('0', '1', '2', '3', '4', '5', '6', '7',
     '8', '9', 'A', 'B', 'C', 'D', 'E', 'F',
     'G','H', 'I', 'J', 'K', 'L', 'M', 'N',
     'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
     'W', 'X', 'Y', 'Z');
var I: integer;
var S: string;
var Sign: string[1];
begin
Result:='';
If (L < 0) then
	begin
	Sign:='-';
	L:=Abs(L);
	end
else Sign:='';
S:='';
repeat
	begin
	I:=L mod Radix;
	S:=RadixChars[I] + S;
	L:=L div Radix;
	end
until L = 0;
Result:=Sign + S;
end;


function IsPalindrome(N, Base: integer): boolean;
{Test if number is the same forward or backward}
{For a specific Radix}
var S1,S2: string;
begin
S1:=GetRadixString(N,Base);
S2:=ReverseString(S1);
Result:=S1=S2;
end;

function IsPalindrome2416(N: integer): boolean;
{Is N palindromic for bases 2, 4 and 16}
begin
Result:=IsPalindrome(N,2) and
	IsPalindrome(N,4) and
	IsPalindrome(N,16);
end;

procedure ShowPalindrome2416(Memo: TMemo);
{Show all numbers Palindromic for bases 2, 4 and 16}
var S: string;
var I,Cnt: integer;
begin
S:='';
Cnt:=0;
for I:=0 to 25000-1 do
 if IsPalindrome2416(I) then
	begin
	Inc(Cnt);
	S:=S+Format('%8D',[I]);
	If (Cnt mod 5)=0 then S:=S+#$0D#$0A;
	end;
Memo.Lines.Add('Count='+IntToStr(Cnt));
Memo.Lines.Add(S);
end;
Output:
Count=23
       0       1       3       5      15
      17      51      85     255     257
     273     771     819    1285    1365
    3855    4095    4097    4369   12291
   13107   20485   21845


Euler

begin

    new palendromic; new n; label forN;

    palendromic
        <- ` formal n; formal base;
             begin
                 new v; new lPos; new rPos; new isPalendromic;
                 new digit;
                 label vGT0; label rGTl;
                 digit <- list 64;
                 rPos  <- 0;
                 v     <- n;
vGT0:            if v > 0 then begin
                     rPos          <- rPos + 1;
                     digit[ rPos ] <- v mod base;
                     v             <- v  %  base;
                     goto vGT0
                 end else 0;
                 isPalendromic <- true;
                 lPos          <- 1;
rGTl:            if rPos > lPos and isPalendromic then begin
                     isPalendromic <- digit[ lPos ] = digit[ rPos ];
                     lPos          <- lPos + 1;
                     rPos          <- rPos - 1;
                     goto rGTl
                 end else 0;
                 isPalendromic
             end
           '
         ;

         out 0;
         n <- -1;
forN:    if [ n <- n + 2 ] < 25000 then begin
             if      not palendromic( n, 16 ) then 0
             else if not palendromic( n,  4 ) then 0
             else if     palendromic( n,  2 ) then out n
             else                                  0
             ;
             goto forN
         end else 0

end $

Output:
    NUMBER                   0
    NUMBER                   1
    NUMBER                   3
    NUMBER                   5
    NUMBER                  15
    NUMBER                  17
    NUMBER                  51
    NUMBER                  85
    NUMBER                 255
    NUMBER                 257
    NUMBER                 273
    NUMBER                 771
    NUMBER                 819
    NUMBER                1285
    NUMBER                1365
    NUMBER                3855
    NUMBER                4095
    NUMBER                4097
    NUMBER                4369
    NUMBER               12291
    NUMBER               13107
    NUMBER               20485
    NUMBER               21845

F#

// Palindromic numbers in bases 2,4, and 16. Nigel Galloway: June 25th., 2021
let fG n g=let rec fG n g=[yield n%g; if n>=g then yield! fG(n/g) g] in let n=fG n g in n=List.rev n
Seq.initInfinite id|>Seq.takeWhile((>)25000)|>Seq.filter(fun g->fG g 16 && fG g 4 && fG g 2)|>Seq.iter(printf "%d "); printfn ""
Output:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

Factor

Works with: Factor version 0.99 2021-06-02
USING: io kernel math.parser prettyprint sequences ;

25,000 <iota> [
    { 2 4 16 } [ >base ] with map [ dup reverse = ] all?
] filter [ pprint bl ] each nl
Output:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845 

FreeBASIC

function ispal( byval n as integer, b as integer ) as boolean
    'determines if n is palindromic in base b
    dim as string ns
    while n
        ns += chr(48+n mod b)       'temporarily represent as a string
        n\=b
    wend
    for i as integer = 1 to len(ns)\2
        if mid(ns,i,1)<>mid(ns,len(ns)-i+1,1) then return false
    next i
    return true
end function

for i as integer = 0 to 25000
    if ispal(i,16) andalso ispal(i,4) andalso ispal(i,2) then print i;"  ";
next i
Output:
0   1   3   5   15   17   51   85   255   257   273   771   819   1285   1365   3855   4095   4097   4369   12291   13107   20485   21845

Go

Library: Go-rcu
package main

import (
    "fmt"
    "rcu"
    "strconv"
)

func reverse(s string) string {
    chars := []rune(s)
    for i, j := 0, len(chars)-1; i < j; i, j = i+1, j-1 {
        chars[i], chars[j] = chars[j], chars[i]
    }
    return string(chars)
}

func main() {
    fmt.Println("Numbers under 25,000 in base 10 which are palindromic in bases 2, 4 and 16:")
    var numbers []int
    for i := int64(0); i < 25000; i++ {
        b2 := strconv.FormatInt(i, 2)
        if b2 == reverse(b2) {
            b4 := strconv.FormatInt(i, 4)
            if b4 == reverse(b4) {
                b16 := strconv.FormatInt(i, 16)
                if b16 == reverse(b16) {
                    numbers = append(numbers, int(i))
                }
            }
        }
    }
    for i, n := range numbers {
        fmt.Printf("%6s ", rcu.Commatize(n))
        if (i+1)%10 == 0 {
            fmt.Println()
        }
    }
    fmt.Println("\n\nFound", len(numbers), "such numbers.")
}
Output:
Numbers under 25,000 in base 10 which are palindromic in bases 2, 4 and 16:
     0      1      3      5     15     17     51     85    255    257 
   273    771    819  1,285  1,365  3,855  4,095  4,097  4,369 12,291 
13,107 20,485 21,845 

Found 23 such numbers.

J

   palinbase=: (-: |.)@(#.inv)"0
   I. (2&palinbase * 4&palinbase * 16&palinbase) i.25e3
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

jq

Works with: jq

Also works with gojq and fq, the Go implementations

With minor tweaks, also works with jaq, the Rust implementation

This entry, which uses a stream-oriented approach to illustrate an economical use of memory, uses `tobase` as found in the Wikipedia article on jq; it works for bases up to 36 inclusive.

Use gojq or fq for unbounded-precision integer arithmetic.

def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

# nwise/2 assumes that null can be taken as the eos marker
def nwise(stream; $n):
  foreach (stream, null) as $x ([];
    if length == $n then [$x] else . + [$x] end;
    if (.[-1] == null) and length>1 then .[:-1]
    elif length == $n then .
    else empty
    end);

def tobase($b):
  def digit: "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[.:.+1];
  def mod: . % $b;
  def div: ((. - mod) / $b);
  def digits: recurse( select(. > 0) | div) | mod ;
  # For jq it would be wise to protect against `infinite` as input, but using `isinfinite` confuses gojq
  select( (tostring|test("^[0-9]+$")) and 2 <= $b and $b <= 36)
  | if . == 0 then "0"
    else [digits | digit] | reverse[1:] | add
    end;

# boolean
def palindrome: explode as $in | ($in|reverse) == $in;

# boolean
def palindrome($b):
  tobase($b) | palindrome;
   
def task($n):
  "Numbers under \($n) in base 10 which are palindromic in bases 2, 4 and 16:",
  (nwise(range(0;$n) | select(palindrome(2) and palindrome(4) and palindrome(16)); 5)
   | map( lpad(6) ) | join(" "));

task(25000)
Output:
Numbers under 25000 in base 10 which are palindromic in bases 2, 4 and 16:
     0      1      3      5     15
    17     51     85    255    257
   273    771    819   1285   1365
  3855   4095   4097   4369  12291
 13107  20485  21845

Julia

palinbases(n, bases = [2, 4, 16]) = all(b -> (d = digits(n, base = b); d == reverse(d)), bases)

foreach(p -> print(rpad(p[2], 7), p[1] % 11 == 0 ? "\n" : ""), enumerate(filter(palinbases, 1:25000)))
Output:
1      3      5      15     17     51     85     255    257    273    771    
819    1285   1365   3855   4095   4097   4369   12291  13107  20485  21845

Lua

do -- find numbers palendromic in bases 2, 4, and 16

    local function palendromic( n, base )
        local digits, v = "", n
        while v > 0 do
            local dPos = ( v % base ) + 1
            digits = digits..string.sub( "0123456789abcdef", dPos, dPos )
            v = math.floor( v / base )
        end
        return digits == string.reverse( digits )
    end
    -- as noted by the REXX sample, all even numbers end in 0 in base 2
    -- so 0 is the only possible even number, note 0 is palendromic in all bases
    io.write( " 0" )
    for n = 1, 24999, 2 do
        if palendromic( n, 16 ) then
            if palendromic( n, 4 ) then
                if palendromic( n, 2 ) then
                    io.write( " ", n )
                end
            end
        end
    end
end
Output:
 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

Mathematica/Wolfram Language

ClearAll[PalindromeBaseQ, Palindrom2416Q]
PalindromeBaseQ[n_Integer, b_Integer] := PalindromeQ[IntegerDigits[n, b]]
Palindrom2416Q[n_Integer] := PalindromeBaseQ[n, 2] \[And] PalindromeBaseQ[n, 4] \[And] PalindromeBaseQ[n, 16]
Select[Range[0, 24999], Palindrom2416Q]
Length[%]
Output:
{0, 1, 3, 5, 15, 17, 51, 85, 255, 257, 273, 771, 819, 1285, 1365, 3855, 4095, 4097, 4369, 12291, 13107, 20485, 21845}
23

Nim

import strutils, sugar

type Digit = 0..15

func toBase(n: Natural; b: Positive): seq[Digit] =
  if n == 0: return @[Digit 0]
  var n = n
  while n != 0:
    result.add n mod b
    n = n div b

func isPalindromic(s: seq[Digit]): bool =
  for i in 1..(s.len div 2):
    if s[i-1] != s[^i]: return false
  result = true

let list = collect(newSeq):
             for n in 0..<25_000:
               if n.toBase(2).isPalindromic and
                  n.toBase(4).isPalindromic and
                  n.toBase(16).isPalindromic: n

echo "Found ", list.len, " numbers which are palindromic in bases 2, 4 and 16:"
echo list.join(" ")
Output:
Found 23 numbers which are palindromic in bases 2, 4 and 16:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

Perl

Library: ntheory
use strict;
use warnings;
use ntheory 'todigitstring';

sub pb { my $s = todigitstring(shift,shift); return $s eq join '', reverse split '', $s }

pb($_,2) and pb($_,4) and pb($_,16) and print "$_ " for 1..25000;
Output:
1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

Phix

with javascript_semantics
function palindrome(string s) return s=reverse(s) end function
function p2416(integer n)
    return palindrome(sprintf("%a",{{2,n}}))
       and palindrome(sprintf("%a",{{4,n}}))
       and palindrome(sprintf("%a",{{16,n}}))
end function
sequence res = apply(filter(tagset(25000,0),p2416),sprint)
printf(1,"%d found: %s\n",{length(res),join(res)})
Output:
23 found: 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

PL/M

100H:
/* CP/M CALLS */
BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; CALL BDOS(0,0); END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;

DECLARE MAXIMUM LITERALLY '25$000';

/* PRINT A NUMBER */
PRINT$NUMBER: PROCEDURE (N);
    DECLARE S (7) BYTE INITIAL ('..... $');
    DECLARE (N, P) ADDRESS, C BASED P BYTE;
    P = .S(5);
DIGIT:
    P = P - 1;
    C = N MOD 10 + '0';
    N = N / 10;
    IF N > 0 THEN GO TO DIGIT;
    CALL PRINT(P);
END PRINT$NUMBER;

/* REVERSE NUMBER GIVEN BASE */
REVERSE: PROCEDURE (N, B) ADDRESS;
    DECLARE (N, R) ADDRESS, B BYTE;
    R = 0;
    DO WHILE N > 0;
        R = R*B + N MOD B;
        N = N/B;
    END;
    RETURN R;
END REVERSE;

/* CHECK IF NUMBER IS PALINDROME */
PALIN: PROCEDURE (N, B) BYTE;
    DECLARE N ADDRESS, B BYTE;
    RETURN N = REVERSE(N, B);
END PALIN;

DECLARE I ADDRESS, C BYTE;
C = 0;
DO I = 0 TO MAXIMUM;
    IF PALIN(I,2) AND PALIN(I,4) AND PALIN(I,16) THEN DO;
        CALL PRINT$NUMBER(I);
        C = C + 1;
        IF C = 15 THEN DO;
            CALL PRINT(.(13,10,'$'));
            C = 0;
        END;
    END;
END;
CALL EXIT;
EOF
Output:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365
3855 4095 4097 4369 12291 13107 20485 21845

Python

def reverse(n, base):
    r = 0
    while n > 0:
        r = r*base + n%base
        n = n//base
    return r
    
def palindrome(n, base):
    return n == reverse(n, base)
    
cnt = 0
for i in range(25000):
    if all(palindrome(i, base) for base in (2,4,16)):
        cnt += 1
        print("{:5}".format(i), end=" \n"[cnt % 12 == 0])

print()
Output:
    0     1     3     5    15    17    51    85   255   257   273   771
  819  1285  1365  3855  4095  4097  4369 12291 13107 20485 21845

Quackery

  [ temp put
    0
    [ over 0 > while
      temp share tuck *
      dip /mod +
      again ]
    temp release
    nip ]               is rev ( n n --> n )

  [ dip dup rev = ]     is pal ( n n --> b )

  []
  25000 times
    [ i^ 16 pal while
      i^  4 pal while
      i^  2 pal while
      i^ join ]
  echo
Output:
[ 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845 ]

Raku

put "{+$_} such numbers:\n", .batch(10)».fmt('%5d').join("\n") given
(^25000).grep: -> $n { all (2,4,16).map: { $n.base($_) eq $n.base($_).flip } }
Output:
23 such numbers:
    0     1     3     5    15    17    51    85   255   257
  273   771   819  1285  1365  3855  4095  4097  4369 12291
13107 20485 21845

REXX

Programming note:   the conversions of a decimal number to another base (radix) was ordered such that the fastest
base conversion was performed before the other conversions.

The use of REXX's BIFs to convert decimal numbers to binary and hexadecimal were used   (instead of the   base  
function)   because they are much faster).

This REXX version takes advantage that no   even   integers need be tested   (except for the single exception:   zero),
this makes the execution twice as fast.

/*REXX pgm finds non─neg integers that are palindromes in base 2, 4, and 16, where N<25k*/
numeric digits 100                               /*ensure enough dec. digs for large #'s*/
parse arg n cols .                               /*obtain optional argument from the CL.*/
if    n=='' |    n==","  then   n = 25000        /*Not specified?  Then use the default.*/
if cols=='' | cols==","  then cols=    10        /* "      "         "   "   "     "    */
w= 10                                            /*width of a number in any column.     */
title= ' non-negative integers that are palindromes in base 2, 4, and 16,  where  N  < ' ,
       commas(n)
say ' index │'center(title, 1 + cols*(w+1)     ) /*display the title for the output.    */
say '───────┼'center(""   , 1 + cols*(w+1), '─') /*   "     a   sep   "   "     "       */
$= right(0, w+1)                                 /*list of numbers found  (so far).     */
found= 1                                         /*# of finds (so far), the only even #.*/
idx= 1                                           /*set the IDX  (index) to unity.       */
       do j=1  by 2  to n-1                      /*find int palindromes in bases 2,4,16.*/
          h= d2x(j)                              /*convert dec. # to hexadecimal.       */
       if h\==reverse(h)          then iterate   /*Hex    number not palindromic?  Skip.*/    /* ◄■■■■■■■■ a filter. */
          b= x2b( d2x(j) ) + 0                   /*convert dec. # to hex, then to binary*/
       if b\==reverse(b)          then iterate   /*Binary number not palindromic?  Skip.*/    /* ◄■■■■■■■■ a filter. */
          q= base(j, 4)                          /*convert a decimal integer to base 4. */
       if q\==reverse(q)          then iterate   /*Base 4 number not palindromic?  Skip.*/    /* ◄■■■■■■■■ a filter. */
       found= found + 1                          /*bump number of found such numbers.   */
       $= $  right( commas(j), w)                /*add the found number  ───►  $  list. */
       if found // cols \== 0     then iterate   /*have we populated a line of output?  */
       say center(idx, 7)'│'  substr($, 2); $=   /*display what we have so far  (cols). */
       idx= idx + cols                           /*bump the  index  count for the output*/
       end   /*j*/

if $\==''  then say center(idx, 7)"│"  substr($, 2)  /*possible display residual output.*/
say '───────┴'center(""   , 1 + cols*(w+1), '─')     /*display the foot sep for output. */
say
say 'Found '          found          title
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
base:   procedure; parse arg #,t,,y;  @= 0123456789abcdefghijklmnopqrstuvwxyz /*up to 36*/
        @@= substr(@, 2);    do while #>=t;   y= substr(@, #//t + 1, 1)y;         #= # % t
                             end;                       return substr(@, #+1, 1)y
output   when using the default inputs:
 index │             non-negative integers that are palindromes in base 2, 4, and 16,  where  N  <  25,000
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │          0          1          3          5         15         17         51         85        255        257
  11   │        273        771        819      1,285      1,365      3,855      4,095      4,097      4,369     12,291
  21   │     13,107     20,485     21,845
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  23  non-negative integers that are palindromes in base 2, 4, and 16,  where  N  <  25,000

Ring

load "stdlib.ring"
see "working..." + nl
see "Numbers in base 10 that are palindromic in bases 2, 4, and 16:" + nl

row = 0
limit = 25000

for n = 1 to limit
    base2 = decimaltobase(n,2)
    base4 = decimaltobase(n,4)
    base16 = hex(n)
    bool = ispalindrome(base2) and ispalindrome(base4) and ispalindrome(base16)
    if bool = 1
       see "" + n + " "
       row = row + 1
       if row%5 = 0
          see nl
       ok
    ok
next

see nl + "Found " + row + " numbers" + nl
see "done..." + nl

func decimaltobase(nr,base)
     decList = 0:15
     baseList = ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"]

     binList = [] 
     binary = 0
     remainder = 1
     while(nr != 0)
          remainder = nr % base
          ind = find(decList,remainder)
          rem = baseList[ind]
          add(binList,rem)
          nr = floor(nr/base) 
     end
     binlist = reverse(binList)
     binList = list2str(binList)
     binList = substr(binList,nl,"")  
     return binList
Output:
working...
Numbers in base 10 that are palindromic in bases 2, 4, and 16:
1 3 5 15 17 
51 85 255 257 273 
771 819 1285 1365 3855 
4095 4097 4369 12291 13107 
20485 21845 
Found 22 numbers
done...

RPL

Works with: HP version 48

Brute force

« "" 
  OVER SIZE 1 FOR j
    OVER j DUP SUB + 
  NEXT SWAP DROP
» 'REVSTR' STO 

« → base 
  « ""
    WHILE OVER REPEAT
       SWAP base MOD LASTARG / IP
       "0123456789ABCDEF" ROT 1 + DUP SUB ROT +
    END SWAP DROP
» » 'D→B' STO 

« CASE
     HEX DUP R→B →STR 3 OVER SIZE SUB DUP REVSTRTHEN DROP 0 END
     DUP 4 D→B DUP REVSTRTHEN DROP 0 END
     BIN DUP R→B →STR 3 OVER SIZE SUB DUP REVSTR ==
  END
» 'PAL2416' STO 

« { 0 }
  1 25000 FOR n
     IF n PAL2416 THEN n + END
  2 STEP
» 'TASK' STO 

Runs in 42 minutes on a HP-48SX.

Much faster approach

The task generates palindromes in base 16, which must then be verified as palindromes in the other two bases.

« BIN 1 SF 
  R→B →STR 3 OVER SIZE 1 - SUB 
  0 1 FOR b
     IF DUP SIZE b 1 + MOD THEN "0" SWAP + END
     "" 
     OVER SIZE b - 1 FOR j 
        OVER j DUP b + SUB +
    -1 b - STEP
    IF OVER ≠ THEN 1 CF 1 'b' STO END
 NEXT DROP
 1 FS?
» 'PAL24?' STO

« HEX R→B →STR → h 
  « "#"
    h SIZE 1 - 3 FOR j 
       h j DUP SUB + 
    -1 STEP
    "h" + STR→ B→R
» » ‘REVHEX’ STO

« { }
 0 15 FOR b 
    IF b PAL24? THEN b + END NEXT
 1 2 FOR x
    -1 15 FOR m
       16 x 1 - ^ 16 x ^ 1 - FOR b
          b
          IF m 0 ≥ THEN 16 * m + END
          16 x ^ *
          b REVHEX + 
          IF DUP PAL24? THEN +
          ELSE IF 25000 ≥ THEN KILL END  @ not idiomatic but useful to exit 3 nested loops
          END
 NEXT NEXT NEXT
 SORT
» 'TASK' STO 
TASK SORT

Runs in 2 minutes 16 on a HP-48SX: 18 times faster than brute force!

Output:
1: { 0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845 }

Ruby

res = (0..25000).select do |n|
  [2, 4, 16].all? do |base|
    b = n.to_s(base)
    b == b.reverse
  end
end
puts res.join(" ")
Output:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

Seed7

$ include "seed7_05.s7i";

const func boolean: palindrome (in string: input) is
  return input = reverse(input);

const proc: main is func
  local
    var integer: n is 1;
  begin
    write("0 ");
    for n range 1 to 24999 step 2 do
      if palindrome(n radix 2) and palindrome(n radix 4) and palindrome(n radix 16) then
        write(n <& " ");
      end if;
    end for;
  end func;
Output:
0 1 3 5 15 17 51 85 255 257 273 771 819 1285 1365 3855 4095 4097 4369 12291 13107 20485 21845

Sidef

say gather {
    for (var k = 0; k < 25_000; k = k.next_palindrome(16)) {
        take(k) if [2, 4].all{|b| k.is_palindrome(b) }
    }
}
Output:
[0, 1, 3, 5, 15, 17, 51, 85, 255, 257, 273, 771, 819, 1285, 1365, 3855, 4095, 4097, 4369, 12291, 13107, 20485, 21845]

Wren

Library: Wren-fmt
import "./fmt" for Conv, Fmt

System.print("Numbers under 25,000 in base 10 which are palindromic in bases 2, 4 and 16:")
var numbers = []
for (i in 0..24999) {
    var b2 = Conv.itoa(i, 2)
    if (b2 == b2[-1..0]) {
        var b4 = Conv.itoa(i, 4)
        if (b4 == b4[-1..0]) {
            var b16 = Conv.itoa(i, 16)
            if (b16 == b16[-1..0]) numbers.add(i)
        }
    }
}
Fmt.tprint("$,6d", numbers, 8)
System.print("\nFound %(numbers.count) such numbers.")
Output:
Numbers under 25,000 in base 10 which are palindromic in bases 2, 4 and 16:
     0      1      3      5     15     17     51     85
   255    257    273    771    819  1,285  1,365  3,855
 4,095  4,097  4,369 12,291 13,107 20,485 21,845

Found 23 such numbers.

XPL0

func Reverse(N, Base);  \Reverse order of digits in N for given Base
int  N, Base, M;
[M:= 0;
repeat  N:= N/Base;
        M:= M*Base + rem(0);
until   N=0;
return M;
];

int Count, N;
[Count:= 0;
for N:= 1 to 25000-1 do
    if N = Reverse(N, 2) &
       N = Reverse(N, 4) &
       N = Reverse(N, 16) then
        [IntOut(0, N);
        Count:= Count+1;
        if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);
        ];
CrLf(0);
IntOut(0, Count);
Text(0, " such numbers found.
");
]
Output:
1       3       5       15      17      51      85      255     257     273
771     819     1285    1365    3855    4095    4097    4369    12291   13107
20485   21845   
22 such numbers found.