N-queens problem: Difference between revisions

m
→‎Python: Backtracking on permutations: Restored the original look
m (→‎Python: Backtracking on permutations: Restored the original look)
(691 intermediate revisions by more than 100 users not shown)
Line 1:
{{Task}}
{{puzzle}}Solve the [[WP:Eight_queens_puzzle|eight queens puzzle]]. You can extend the problem to solve the puzzle with a board of side NxN.
[[File:chess_queen.jpg|400px||right]]
 
[[File:N_queens_problem.png|400px||right]]
 
Solve the [[WP:Eight_queens_puzzle|eight queens puzzle]].
 
 
You can extend the problem to solve the puzzle with a board of size &nbsp; <big>'''N'''x'''N'''</big>.
For the number of solutions for small values of &nbsp; '''N''', &nbsp; see &nbsp; [[oeis:A000170|OEIS: A000170]].
 
 
;Related tasks:
* [[A* search algorithm]]
* [[Solve a Hidato puzzle]]
* [[Solve a Holy Knight's tour]]
* [[Knight's tour]]
* [[Peaceful chess queen armies]]
* [[Solve a Hopido puzzle]]
* [[Solve a Numbrix puzzle]]
* [[Solve the no connection puzzle]]
<br><br>
 
=={{header|11l}}==
{{trans|Nim}}
 
<syntaxhighlight lang="11l">-V BoardSize = 8
 
F underAttack(col, queens)
I col C queens
R 1B
L(x) queens
I abs(col - x) == queens.len - L.index
R 1B
R 0B
 
F solve(n)
V result = [[Int]()]
[[Int]] newSolutions
L(row) 1 .. n
L(solution) result
L(i) 1 .. BoardSize
I !underAttack(i, solution)
newSolutions.append(solution [+] [i])
swap(&result, &newSolutions)
newSolutions.clear()
R result
 
print(‘Solutions for a chessboard of size ’String(BoardSize)‘x’String(BoardSize))
print()
 
L(answer) solve(BoardSize)
L(col) answer
V row = L.index
I row > 0
print(‘ ’, end' ‘’)
print(Char(code' ‘a’.code + row)‘’col, end' ‘’)
print(end' I L.index % 4 == 3 {"\n"} E ‘ ’)</syntaxhighlight>
 
{{out}}
<pre>
Solutions for a chessboard of size 8x8
 
a1 b5 c8 d6 e3 f7 g2 h4 a1 b6 c8 d3 e7 f4 g2 h5 a1 b7 c4 d6 e8 f2 g5 h3 a1 b7 c5 d8 e2 f4 g6 h3
a2 b4 c6 d8 e3 f1 g7 h5 a2 b5 c7 d1 e3 f8 g6 h4 a2 b5 c7 d4 e1 f8 g6 h3 a2 b6 c1 d7 e4 f8 g3 h5
a2 b6 c8 d3 e1 f4 g7 h5 a2 b7 c3 d6 e8 f5 g1 h4 a2 b7 c5 d8 e1 f4 g6 h3 a2 b8 c6 d1 e3 f5 g7 h4
a3 b1 c7 d5 e8 f2 g4 h6 a3 b5 c2 d8 e1 f7 g4 h6 a3 b5 c2 d8 e6 f4 g7 h1 a3 b5 c7 d1 e4 f2 g8 h6
a3 b5 c8 d4 e1 f7 g2 h6 a3 b6 c2 d5 e8 f1 g7 h4 a3 b6 c2 d7 e1 f4 g8 h5 a3 b6 c2 d7 e5 f1 g8 h4
a3 b6 c4 d1 e8 f5 g7 h2 a3 b6 c4 d2 e8 f5 g7 h1 a3 b6 c8 d1 e4 f7 g5 h2 a3 b6 c8 d1 e5 f7 g2 h4
a3 b6 c8 d2 e4 f1 g7 h5 a3 b7 c2 d8 e5 f1 g4 h6 a3 b7 c2 d8 e6 f4 g1 h5 a3 b8 c4 d7 e1 f6 g2 h5
a4 b1 c5 d8 e2 f7 g3 h6 a4 b1 c5 d8 e6 f3 g7 h2 a4 b2 c5 d8 e6 f1 g3 h7 a4 b2 c7 d3 e6 f8 g1 h5
a4 b2 c7 d3 e6 f8 g5 h1 a4 b2 c7 d5 e1 f8 g6 h3 a4 b2 c8 d5 e7 f1 g3 h6 a4 b2 c8 d6 e1 f3 g5 h7
a4 b6 c1 d5 e2 f8 g3 h7 a4 b6 c8 d2 e7 f1 g3 h5 a4 b6 c8 d3 e1 f7 g5 h2 a4 b7 c1 d8 e5 f2 g6 h3
a4 b7 c3 d8 e2 f5 g1 h6 a4 b7 c5 d2 e6 f1 g3 h8 a4 b7 c5 d3 e1 f6 g8 h2 a4 b8 c1 d3 e6 f2 g7 h5
a4 b8 c1 d5 e7 f2 g6 h3 a4 b8 c5 d3 e1 f7 g2 h6 a5 b1 c4 d6 e8 f2 g7 h3 a5 b1 c8 d4 e2 f7 g3 h6
a5 b1 c8 d6 e3 f7 g2 h4 a5 b2 c4 d6 e8 f3 g1 h7 a5 b2 c4 d7 e3 f8 g6 h1 a5 b2 c6 d1 e7 f4 g8 h3
a5 b2 c8 d1 e4 f7 g3 h6 a5 b3 c1 d6 e8 f2 g4 h7 a5 b3 c1 d7 e2 f8 g6 h4 a5 b3 c8 d4 e7 f1 g6 h2
a5 b7 c1 d3 e8 f6 g4 h2 a5 b7 c1 d4 e2 f8 g6 h3 a5 b7 c2 d4 e8 f1 g3 h6 a5 b7 c2 d6 e3 f1 g4 h8
a5 b7 c2 d6 e3 f1 g8 h4 a5 b7 c4 d1 e3 f8 g6 h2 a5 b8 c4 d1 e3 f6 g2 h7 a5 b8 c4 d1 e7 f2 g6 h3
a6 b1 c5 d2 e8 f3 g7 h4 a6 b2 c7 d1 e3 f5 g8 h4 a6 b2 c7 d1 e4 f8 g5 h3 a6 b3 c1 d7 e5 f8 g2 h4
a6 b3 c1 d8 e4 f2 g7 h5 a6 b3 c1 d8 e5 f2 g4 h7 a6 b3 c5 d7 e1 f4 g2 h8 a6 b3 c5 d8 e1 f4 g2 h7
a6 b3 c7 d2 e4 f8 g1 h5 a6 b3 c7 d2 e8 f5 g1 h4 a6 b3 c7 d4 e1 f8 g2 h5 a6 b4 c1 d5 e8 f2 g7 h3
a6 b4 c2 d8 e5 f7 g1 h3 a6 b4 c7 d1 e3 f5 g2 h8 a6 b4 c7 d1 e8 f2 g5 h3 a6 b8 c2 d4 e1 f7 g5 h3
a7 b1 c3 d8 e6 f4 g2 h5 a7 b2 c4 d1 e8 f5 g3 h6 a7 b2 c6 d3 e1 f4 g8 h5 a7 b3 c1 d6 e8 f5 g2 h4
a7 b3 c8 d2 e5 f1 g6 h4 a7 b4 c2 d5 e8 f1 g3 h6 a7 b4 c2 d8 e6 f1 g3 h5 a7 b5 c3 d1 e6 f8 g2 h4
a8 b2 c4 d1 e7 f5 g3 h6 a8 b2 c5 d3 e1 f7 g4 h6 a8 b3 c1 d6 e2 f5 g7 h4 a8 b4 c1 d3 e6 f2 g7 h5
</pre>
 
=={{header|360 Assembly}}==
{{trans|FORTRAN}}
Translated from the Fortran 77 solution.<br>
For maximum compatibility, this program uses only the basic instruction set (S/360).
<syntaxhighlight lang="360asm">* N-QUEENS PROBLEM 04/09/2015
MACRO
&LAB XDECO &REG,&TARGET
&LAB B I&SYSNDX branch around work area
P&SYSNDX DS 0D,PL8 packed
W&SYSNDX DS CL13 char
I&SYSNDX CVD &REG,P&SYSNDX convert to decimal
MVC W&SYSNDX,=X'40202020202020202020212060' nice mask
EDMK W&SYSNDX,P&SYSNDX+2 edit and mark
BCTR R1,0 locate the right place
MVC 0(1,R1),W&SYSNDX+12 move the sign
MVC &TARGET.(12),W&SYSNDX move to target
MEND
NQUEENS CSECT
SAVE (14,12) save registers on entry
BALR R12,0 establish addressability
USING *,R12 set base register
ST R13,SAVEA+4 link mySA->prevSA
LA R11,SAVEA mySA
ST R11,8(R13) link prevSA->mySA
LR R13,R11 set mySA pointer
LA R7,LL l
LA R6,1 i=1
LOOPI LR R1,R6 do i=1 to l
SLA R1,1 i*2
STH R6,A-2(R1) a(i)=i
LA R6,1(R6) i=i+1
BCT R7,LOOPI loop do i
OPENEM OPEN (OUTDCB,OUTPUT) open the printer file
LA R9,1 n=1 start of loop
LOOPN CH R9,L do n=1 to l
BH ELOOPN if n>l then exit loop
SR R8,R8 m=0
LA R10,1 i=1
LR R5,R9 n
SLA R5,1 n*2
BCTR R5,0 r=2*n-1
E40 CR R10,R9 if i>n
BH E80 then goto e80
LR R11,R10 j=i
E50 LR R1,R10 i
SLA R1,1 i*2
LA R6,A-2(R1) r6=@a(i)
LR R1,R11 j
SLA R1,1 j*2
LA R7,A-2(R1) r7=@a(j)
MVC Z,0(R6) z=a(i)
MVC Y,0(R7) y=a(j)
LR R3,R10 i
SH R3,Y -y
AR R3,R9 p=i-y+n
LR R4,R10 i
AH R4,Y +y
BCTR R4,0 q=i+y-1
MVC 0(2,R6),Y a(i)=y
MVC 0(2,R7),Z a(j)=z
LR R1,R3 p
SLA R1,1 p*2
LH R2,U-2(R1) u(p)
LTR R2,R2 if u(p)<>0
BNE E60 then goto e60
LR R1,R4 q
AR R1,R5 q+r
SLA R1,1 (q+r)*2
LH R2,U-2(R1) u(q+r)
C R2,=F'0' if u(q+r)<>0
BNE E60 then goto e60
LR R1,R10 i
SLA R1,1 i*2
STH R11,S-2(R1) s(i)=j
LA R0,1 r0=1
LR R1,R3 p
SLA R1,1 p*2
STH R0,U-2(R1) u(p)=1
LR R1,R4 q
AR R1,R5 q+r
SLA R1,1 (q+r)*2
STH R0,U-2(R1) u(q+r)=1
LA R10,1(R10) i=i+1
B E40 goto e40
E60 LA R11,1(R11) j=j+1
CR R11,R9 if j<=n
BNH E50 then goto e50
E70 BCTR R11,0 j=j-1
CR R11,R10 if j=i
BE E90 goto e90
LR R1,R10 i
SLA R1,1 i*2
LA R6,A-2(R1) r6=@a(i)
LR R1,R11 j
SLA R1,1 j*2
LA R7,A-2(R1) r7=@a(j)
MVC Z,0(R6) z=a(i)
MVC 0(2,R6),0(R7) a(i)=a(j)
MVC 0(2,R7),Z a(j)=z;
B E70 goto e70
E80 LA R8,1(R8) m=m+1
E90 BCTR R10,0 i=i-1
LTR R10,R10 if i=0
BZ ZERO then goto zero
LR R1,R10 i
SLA R1,1 i*2
LH R2,A-2(R1) r2=a(i)
LR R3,R10 i
SR R3,R2 -a(i)
AR R3,R9 p=i-a(i)+n
LR R4,R10 i
AR R4,R2 +a(i)
BCTR R4,0 q=i+a(i)-1
LR R1,R10 i
SLA R1,1 i*2
LH R11,S-2(R1) j=s(i)
LA R0,0 r0=0
LR R1,R3 p
SLA R1,1 p*2
STH R0,U-2(R1) u(p)=0
LR R1,R4 q
AR R1,R5 q+r
SLA R1,1 (q+r)*2
STH R0,U-2(R1) u(q+r)=0
B E60 goto e60
ZERO XDECO R9,PG+0 edit N
XDECO R8,PG+12 edit M
PUT OUTDCB,PG print buffer
LA R9,1(R9) n=n+1
B LOOPN loop do n
ELOOPN CLOSE (OUTDCB) close output
L R13,SAVEA+4 previous save area addrs
RETURN (14,12),RC=0 return to caller with rc=0
LTORG
SAVEA DS 18F save area for chaining
OUTDCB DCB DSORG=PS,MACRF=PM,DDNAME=OUTDD use OUTDD in jcl
LL EQU 14 ll<=16
L DC AL2(LL) input value
A DS (LL)H
S DS (LL)H
Z DS H
Y DS H
PG DS CL24 buffer
U DC (4*LL-2)H'0' stack
REGS make sure to include copybook jcl
END NQUEENS</syntaxhighlight>
{{out}}
<pre>
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
11 2680
12 14200
13 47600
14 365596
</pre>
 
=={{header|6502 Assembly}}==
{{trans|Java}}
A few optimization techniques are used in this implementation. One goal was to get 8-queens to run in under 2 seconds on a 1 MHz computer.
 
Zero page values are stored where frequent use of the immediate addressing mode can be used as a speed up. This can be seen where a byte is referenced as variablename+1. INC and DEC instructions are used instead of ADC and SBC instructions for the comparison offsets.
 
The solution count is a 64-bit little endian value stored in memory starting at $0020, or $0D20 if the [[#Zero Page stub|Zero Page stub]] routine is used.
 
<syntaxhighlight lang="6502asm">n equ 8 ; queens
maximum equ 32 ; only limited by time
place equ $00
count equ maximum+place ; 64 bits (8 bytes)
length equ maximum+8
org $80
start
LDY #n ; n queens on an n x n board
STY greater+1
DEY
STY safe+1
LDX #length
LDA #$00
clear
STA place,X
DEX
BPL clear
next
INX
LDA #$FF
STA place,X
loop
INC place,X
LDA place,X
greater
CMP #n
BCS max
STX index+1
index
LDY #$00 ; index+1
BEQ safe
DEY
STA compare+1
STA add+1 ; compare
STA sub+1 ; compare
issafe
LDA place,Y
compare
CMP #$00 ; compare+1
BEQ loop ; unsafe
INC add+1
add
CMP #$00 ; add+1
BEQ loop ; unsafe
DEC sub+1
sub
CMP #$00 ; sub+1
BEQ loop ; unsafe
DEY
BPL issafe
safe
CPX #n-1
BNE next
INC count ; 64 bits (8 bytes)
BNE loop
INC count+1
BNE loop
INC count+2
BNE loop
INC count+3
BNE loop
INC count+4
BNE loop
INC count+5
BNE loop
INC count+6
BNE loop
INC count+7
BNE loop
BRK
max
DEX
BPL loop
; RTS</syntaxhighlight>
The code was assembled using Merlin32. The code length is 104 bytes not including the final 6 cycle RTS instruction.
<pre> n solutions cycles
1 1 443
2 0 710
3 0 1440
4 2 4359
5 10 17134
6 4 75848
7 40 337161
8 92 1616054
9 352 8044019
10 724 41556729
11 2680 230829955
12 14200 1378660940
13 73712 8684130248
14 365596 58185218171
15 2279184 412358679630
</pre>
==== Zero Page stub ====
The 6502 N-queens problem code resides within the zero page starting at $80 which can make running the program a bit tricky on some platforms. A stub is provided to facilitate running the zero page code. The stub routine turns off interrupts and swaps the zero page memory with an area residing at $D00 to $DFF, runs the zero page code, and swaps memory again. The cycle counts listed above do not include the time to run this stub. With the final RTS instruction included, the 105 byte N-queens zero page code must be in memory starting at $D80.
<syntaxhighlight lang="6502asm"> org $C00
PHP
SEI
JSR swap
JSR $0080
JSR swap
PLP
jmp end
swap
LDX #$00
loop
LDY $D00,X
LDA $00,X
STY $00,X
STA $D00,X
INX
BNE loop
RTS
end
; RTS</syntaxhighlight>
=={{header|ABAP}}==
<syntaxhighlight lang="abap">
TYPES: BEGIN OF gty_matrix,
1 TYPE c,
2 TYPE c,
3 TYPE c,
4 TYPE c,
5 TYPE c,
6 TYPE c,
7 TYPE c,
8 TYPE c,
9 TYPE c,
10 TYPE c,
END OF gty_matrix,
gty_t_matrix TYPE STANDARD TABLE OF gty_matrix INITIAL SIZE 8.
 
DATA: gt_matrix TYPE gty_t_matrix,
gs_matrix TYPE gty_matrix,
gv_count TYPE i VALUE 0,
gv_solut TYPE i VALUE 0.
 
 
SELECTION-SCREEN BEGIN OF BLOCK b01 WITH FRAME TITLE text-b01.
PARAMETERS: p_number TYPE i OBLIGATORY DEFAULT 8.
SELECTION-SCREEN END OF BLOCK b01.
 
" Filling empty table
START-OF-SELECTION.
DO p_number TIMES.
APPEND gs_matrix TO gt_matrix.
ENDDO.
 
" Recursive Function
PERFORM fill_matrix USING gv_count 1 1 CHANGING gt_matrix.
BREAK-POINT.
*&---------------------------------------------------------------------*
*& Form FILL_MATRIX
*----------------------------------------------------------------------*
FORM fill_matrix USING p_count TYPE i
p_i TYPE i
p_j TYPE i
CHANGING p_matrix TYPE gty_t_matrix.
 
DATA: lv_i TYPE i,
lv_j TYPE i,
lv_result TYPE c LENGTH 1,
lt_matrix TYPE gty_t_matrix,
lv_count TYPE i,
lv_value TYPE c.
 
lt_matrix[] = p_matrix[].
lv_count = p_count.
lv_i = p_i.
lv_j = p_j.
 
WHILE lv_i LE p_number.
WHILE lv_j LE p_number.
CLEAR lv_result.
PERFORM check_position USING lv_i lv_j CHANGING lv_result lt_matrix.
IF lv_result NE 'X'.
MOVE 'X' TO lv_value.
PERFORM get_position USING lv_i lv_j 'U' CHANGING lv_value lt_matrix.
ADD 1 TO lv_count.
IF lv_count EQ p_number.
PERFORM show_matrix USING lt_matrix.
ELSE.
PERFORM fill_matrix USING lv_count lv_i lv_j CHANGING lt_matrix.
ENDIF.
lv_value = space.
PERFORM get_position USING lv_i lv_j 'U' CHANGING lv_value lt_matrix.
SUBTRACT 1 FROM lv_count.
ENDIF.
ADD 1 TO lv_j.
ENDWHILE.
ADD 1 TO lv_i.
lv_j = 1.
ENDWHILE.
ENDFORM. " FILL_MATRIX
 
*&---------------------------------------------------------------------*
*& Form CHECK_POSITION
*&---------------------------------------------------------------------*
FORM check_position USING value(p_i) TYPE i
value(p_j) TYPE i
CHANGING p_result TYPE c
p_matrix TYPE gty_t_matrix.
 
PERFORM get_position USING p_i p_j 'R' CHANGING p_result p_matrix.
CHECK p_result NE 'X'.
 
PERFORM check_horizontal USING p_i p_j CHANGING p_result p_matrix.
CHECK p_result NE 'X'.
 
PERFORM check_vertical USING p_i p_j CHANGING p_result p_matrix.
CHECK p_result NE 'X'.
 
PERFORM check_diagonals USING p_i p_j CHANGING p_result p_matrix.
 
ENDFORM. " CHECK_POSITION
 
*&---------------------------------------------------------------------*
*& Form GET_POSITION
*&---------------------------------------------------------------------*
FORM get_position USING value(p_i) TYPE i
value(p_j) TYPE i
value(p_action) TYPE c
CHANGING p_result TYPE c
p_matrix TYPE gty_t_matrix.
 
FIELD-SYMBOLS: <fs_lmatrix> TYPE gty_matrix,
<fs_lfield> TYPE any.
 
READ TABLE p_matrix ASSIGNING <fs_lmatrix> INDEX p_i.
ASSIGN COMPONENT p_j OF STRUCTURE <fs_lmatrix> TO <fs_lfield>.
 
CASE p_action.
WHEN 'U'.
<fs_lfield> = p_result.
WHEN 'R'.
p_result = <fs_lfield>.
WHEN OTHERS.
ENDCASE.
 
ENDFORM. " GET_POSITION
 
*&---------------------------------------------------------------------*
*& Form CHECK_HORIZONTAL
*&---------------------------------------------------------------------*
FORM check_horizontal USING value(p_i) TYPE i
value(p_j) TYPE i
CHANGING p_result TYPE c
p_matrix TYPE gty_t_matrix.
DATA: lv_j TYPE i,
ls_matrix TYPE gty_matrix.
 
FIELD-SYMBOLS <fs> TYPE c.
 
lv_j = 1.
READ TABLE p_matrix INTO ls_matrix INDEX p_i.
WHILE lv_j LE p_number.
ASSIGN COMPONENT lv_j OF STRUCTURE ls_matrix TO <fs>.
IF <fs> EQ 'X'.
p_result = 'X'.
RETURN.
ENDIF.
ADD 1 TO lv_j.
ENDWHILE.
ENDFORM. " CHECK_HORIZONTAL
 
*&---------------------------------------------------------------------*
*& Form CHECK_VERTICAL
*&---------------------------------------------------------------------*
FORM check_vertical USING value(p_i) TYPE i
value(p_j) TYPE i
CHANGING p_result TYPE c
p_matrix TYPE gty_t_matrix.
DATA: lv_i TYPE i,
ls_matrix TYPE gty_matrix.
 
FIELD-SYMBOLS <fs> TYPE c.
 
lv_i = 1.
WHILE lv_i LE p_number.
READ TABLE p_matrix INTO ls_matrix INDEX lv_i.
ASSIGN COMPONENT p_j OF STRUCTURE ls_matrix TO <fs>.
IF <fs> EQ 'X'.
p_result = 'X'.
RETURN.
ENDIF.
ADD 1 TO lv_i.
ENDWHILE.
ENDFORM. " CHECK_VERTICAL
 
*&---------------------------------------------------------------------*
*& Form CHECK_DIAGONALS
*&---------------------------------------------------------------------*
FORM check_diagonals USING value(p_i) TYPE i
value(p_j) TYPE i
CHANGING p_result TYPE c
p_matrix TYPE gty_t_matrix.
DATA: lv_dx TYPE i,
lv_dy TYPE i.
 
* I++ J++ (Up Right)
lv_dx = 1.
lv_dy = 1.
PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
CHECK p_result NE 'X'.
 
* I-- J-- (Left Down)
lv_dx = -1.
lv_dy = -1.
PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
CHECK p_result NE 'X'.
 
* I++ J-- (Right Down)
lv_dx = 1.
lv_dy = -1.
PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
CHECK p_result NE 'X'.
 
* I-- J++ (Left Up)
lv_dx = -1.
lv_dy = 1.
PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
CHECK p_result NE 'X'.
ENDFORM. " CHECK_DIAGONALS
 
*&---------------------------------------------------------------------*
*& Form CHECK_DIAGONAL
*&---------------------------------------------------------------------*
FORM check_diagonal USING value(p_i) TYPE i
value(p_j) TYPE i
value(p_dx) TYPE i
value(p_dy) TYPE i
CHANGING p_result TYPE c
p_matrix TYPE gty_t_matrix.
DATA: lv_i TYPE i,
lv_j TYPE i,
ls_matrix TYPE gty_matrix.
 
FIELD-SYMBOLS <fs> TYPE c.
 
lv_i = p_i.
lv_j = p_j.
WHILE 1 EQ 1.
ADD: p_dx TO lv_i, p_dy TO lv_j.
 
IF p_dx EQ 1.
IF lv_i GT p_number. EXIT. ENDIF.
ELSE.
IF lv_i LT 1. EXIT. ENDIF.
ENDIF.
 
IF p_dy EQ 1.
IF lv_j GT p_number. EXIT. ENDIF.
ELSE.
IF lv_j LT 1. EXIT. ENDIF.
ENDIF.
 
READ TABLE p_matrix INTO ls_matrix INDEX lv_i.
ASSIGN COMPONENT lv_j OF STRUCTURE ls_matrix TO <fs>.
IF <fs> EQ 'X'.
p_result = 'X'.
RETURN.
ENDIF.
ENDWHILE.
ENDFORM. " CHECK_DIAGONAL
*&---------------------------------------------------------------------*
*& Form SHOW_MATRIX
*----------------------------------------------------------------------*
FORM show_matrix USING p_matrix TYPE gty_t_matrix.
DATA: lt_matrix TYPE gty_t_matrix,
lv_j TYPE i VALUE 1,
lv_colum TYPE string VALUE '-'.
 
FIELD-SYMBOLS: <fs_matrix> TYPE gty_matrix,
<fs_field> TYPE c.
 
ADD 1 TO gv_solut.
 
WRITE:/ 'Solution: ', gv_solut.
 
DO p_number TIMES.
CONCATENATE lv_colum '----' INTO lv_colum.
ENDDO.
 
LOOP AT p_matrix ASSIGNING <fs_matrix>.
IF sy-tabix EQ 1.
WRITE:/ lv_colum.
ENDIF.
WRITE:/ '|'.
DO p_number TIMES.
ASSIGN COMPONENT lv_j OF STRUCTURE <fs_matrix> TO <fs_field>.
IF <fs_field> EQ space.
WRITE: <fs_field> ,'|'.
ELSE.
WRITE: <fs_field> COLOR 2 HOTSPOT ON,'|'.
ENDIF.
ADD 1 TO lv_j.
ENDDO.
lv_j = 1.
WRITE: / lv_colum.
ENDLOOP.
 
SKIP 1.
ENDFORM. " SHOW_MATRIX
</syntaxhighlight>
 
=={{header|Ada}}==
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO; use Ada.Text_IO;
 
procedure Queens is
Line 51 ⟶ 713:
end loop;
Put_Line (" A B C D E F G H");
end Queens;</langsyntaxhighlight>
{{out}}
Sample output:
<pre>
8|Q|/| |/| |/| |/|
Line 64 ⟶ 726:
A B C D E F G H
</pre>
 
=== Alternate solution ===
{{trans|Fortran}}
 
This one only counts solutions, though it's easy to do something else with each one (instead of the <code>M := M + 1;</code> line).
 
<syntaxhighlight lang="ada">with Ada.Text_IO;
use Ada.Text_IO;
 
procedure CountQueens is
function Queens (N : Integer) return Long_Integer is
A : array (0 .. N) of Integer;
U : array (0 .. 2 * N - 1) of Boolean := (others => true);
V : array (0 .. 2 * N - 1) of Boolean := (others => true);
M : Long_Integer := 0;
procedure Sub (I: Integer) is
K, P, Q: Integer;
begin
if N = I then
M := M + 1;
else
for J in I .. N - 1 loop
P := I + A (J);
Q := I + N - 1 - A (J);
if U (P) and then V (Q) then
U (P) := false;
V (Q) := false;
K := A (I);
A (I) := A (J);
A (J) := K;
Sub (I + 1);
U (P) := true;
V (Q) := true;
K := A (I);
A (I) := A (J);
A (J) := K;
end if;
end loop;
end if;
end Sub;
begin
for I in 0 .. N - 1 loop
A (I) := I;
end loop;
Sub (0);
return M;
end Queens;
begin
for N in 1 .. 16 loop
Put (Integer'Image (N));
Put (" ");
Put_Line (Long_Integer'Image (Queens (N)));
end loop;
end CountQueens;</syntaxhighlight>
 
=={{header|ALGOL 68}}==
{{trans|C}}
Line 72 ⟶ 790:
 
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8.8d.fc9.i386]}}
<langsyntaxhighlight Algol68lang="algol68">INT ofs = 1, # Algol68 normally uses array offset of 1 #
dim = 8; # dim X dim chess board #
[ofs:dim+ofs-1]INT b;
Line 81 ⟶ 799:
FOR i TO y - LWB b DO
t := b[y - i];
IF t = x THEN return_truebreak true
ELIF t = x - i THEN return_truebreak true
ELIF t = x + i THEN return_truebreak true
FI
OD;
FALSE EXIT
break true:
return_true:
TRUE
);
Line 110 ⟶ 828:
WHILE
b[y]+:=1;
# WHILEBREAK # IF b[y] <= UPB b THEN unsafe(y) ELSE FALSE FI
DO SKIP OD;
IF b[y] <= UPB b THEN
Line 122 ⟶ 840:
FI
OD
)</syntaxhighlight>
 
=={{header|APL}}==
{{works with|Dyalog APL}}
More or less copied from the "DFS" lesson on tryapl.org .
<syntaxhighlight lang="apl">
⍝Solution
accm←{⍺,((⍴⍵)=⍴⊃⍺)↑⊂⍵}
atk←{∪∊(⊂⍵)+¯1 0 1×⊂⌽⍳⍴⍵}
dfs←{⊃∇⍨/⌽(⊂⍺ ⍺⍺ ⍵),⍺ ⍵⍵ ⍵}
qfmt←{⍵∘.=⍳⍴⍵}
subs←{(⊂⍵),¨(⍳⍴⊃⍺)~atk ⍵}
queens←{qfmt¨(↓0 ⍵⍴0)accm dfs subs ⍬}
printqueens←{i←1⋄{⎕←'answer'i⋄⎕←⍵⋄i+←1}¨queens ⍵}
 
⍝Example
printqueens 6
</syntaxhighlight>
{{out}}
<pre>
answer 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
answer 2
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
answer 3
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
answer 4
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
</pre>
 
=={{header|AppleScript}}==
<syntaxhighlight lang="applescript">-- Finds all possible solutions and the unique patterns.
 
property Grid_Size : 8
 
property Patterns : {}
property Solutions : {}
property Test_Count : 0
 
property Rotated : {}
 
on run
local diff
local endTime
local msg
local rows
local startTime
set Patterns to {}
set Solutions to {}
set Rotated to {}
set Test_Count to 0
set rows to Make_Empty_List(Grid_Size)
set startTime to current date
Solve(1, rows)
set endTime to current date
set diff to endTime - startTime
set msg to ("Found " & (count Solutions) & " solutions with " & (count Patterns) & " patterns in " & diff & " seconds.") as text
display alert msg
return Solutions
end run
 
on Solve(row as integer, rows as list)
if row is greater than (count rows) then
Append_Solution(rows)
return
end if
repeat with column from 1 to Grid_Size
set Test_Count to Test_Count + 1
if Place_Queen(column, row, rows) then
Solve(row + 1, rows)
end if
end repeat
end Solve
 
on abs(n)
if n < 0 then
-n
else
n
end if
end abs
 
on Place_Queen(column as integer, row as integer, rows as list)
local colDiff
local previousRow
local rowDiff
local testColumn
repeat with previousRow from 1 to (row - 1)
set testColumn to item previousRow of rows
if testColumn is equal to column then
return false
end if
set colDiff to abs(testColumn - column) as integer
set rowDiff to row - previousRow
if colDiff is equal to rowDiff then
return false
end if
end repeat
set item row of rows to column
return true
end Place_Queen
 
on Append_Solution(rows as list)
local column
local rowsCopy
local testReflection
local testReflectionText
local testRotation
local testRotationText
local testRotations
copy rows to rowsCopy
set end of Solutions to rowsCopy
local rowsCopy
copy rows to testRotation
set testRotations to {}
repeat 3 times
set testRotation to Rotate(testRotation)
set testRotationText to testRotation as text
if Rotated contains testRotationText then
return
end if
set end of testRotations to testRotationText
set testReflection to Reflect(testRotation)
set testReflectionText to testReflection as text
if Rotated contains testReflectionText then
return
end if
set end of testRotations to testReflectionText
end repeat
repeat with testRotationText in testRotations
set end of Rotated to (contents of testRotationText)
end repeat
set end of Rotated to (rowsCopy as text)
set end of Rotated to (Reflect(rowsCopy) as text)
set end of Patterns to rowsCopy
end Append_Solution
 
on Make_Empty_List(depth as integer)
local i
local emptyList
set emptyList to {}
repeat with i from 1 to depth
set end of emptyList to missing value
end repeat
return emptyList
end Make_Empty_List
 
on Rotate(rows as list)
local column
local newColumn
local newRow
local newRows
local row
local rowCount
set rowCount to (count rows)
set newRows to Make_Empty_List(rowCount)
repeat with row from 1 to rowCount
set column to (contents of item row of rows)
set newRow to column
set newColumn to rowCount - row + 1
set item newRow of newRows to newColumn
end repeat
return newRows
end Rotate
 
on Reflect(rows as list)
local column
local newRows
set newRows to {}
repeat with column in rows
set end of newRows to (count rows) - column + 1
end repeat
return newRows
end Reflect</syntaxhighlight>
 
=={{header|Applesoft BASIC}}==
{{trans|Java}}
<syntaxhighlight lang="basic"> 1 READ N,T,M,R(0): FOR Y = 0 TO M STEP 0: FOR L = 0 TO T STEP 0:R(Y) = R(Y) + T:X = R(Y):C = NOT Y: IF NOT C THEN FOR I = T TO Y:A = R(Y - I): IF NOT (A = X OR A = X - I OR A = X + I) THEN NEXT I:C = T
2 L = R(Y) > N OR C: NEXT L:D = - (R(Y) > N): IF NOT D AND Y < N THEN R(Y + T) = M:D = D + T
3 S = S + NOT D:Y = Y + D: NEXT Y: PRINT "THERE " MID$ ("AREIS",4 ^ (S = 1),3)" "S" SOLUTION" MID$ ("S",1,S < > 1)" FOR "N + T" X "N + T: DATA7,1,-1,-1</syntaxhighlight>
{{out}}
<pre>THERE ARE 92 SOLUTIONS FOR 8 X 8
</pre>
 
=={{header|Arc}}==
This program prints out all possible solutions:
<syntaxhighlight lang="lisp">(def nqueens (n (o queens))
(if (< len.queens n)
(let row (if queens (+ 1 queens.0.0) 0)
(each col (range 0 (- n 1))
(let new-queens (cons (list row col) queens)
(if (no conflicts.new-queens)
(nqueens n new-queens)))))
(prn queens)))
 
; check if the first queen in 'queens' lies on the same column or diagonal as
; any of the others
(def conflicts (queens)
(let (curr . rest) queens
(or (let curr-column curr.1
(some curr-column (map [_ 1] rest))) ; columns
(some [diagonal-match curr _] rest))))
 
(def diagonal-match (curr other)
(is (abs (- curr.0 other.0))
(abs (- curr.1 other.1))))</syntaxhighlight>
{{out}}
The output is one solution per line, each solution in the form `((row col) (row col) (row col) ...)`:
<pre>arc> (nqueens 4)
((3 2) (2 0) (1 3) (0 1))
((3 1) (2 3) (1 0) (0 2))</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">result: new []
 
queens: function [n, i, a, b, c][
if? i < n [
loop 1..n 'j [
if all? @[
not? contains? a j
not? contains? b i+j
not? contains? c i-j
] ->
queens n, i+1, a ++ @[j], b ++ @[i+j], c ++ @[i-j]
]
]
else [
if n = size a ->
'result ++ @[a]
]
]
 
BoardSize: 6
 
queens BoardSize, 0, [], [], []
loop result 'solution [
loop solution 'col [
line: new repeat "-" BoardSize
line\[col-1]: `Q`
print line
]
print ""
]</syntaxhighlight>
 
{{out}}
 
<pre>-Q----
---Q--
-----Q
Q-----
--Q---
----Q-
 
--Q---
-----Q
-Q----
----Q-
Q-----
---Q--
 
---Q--
Q-----
----Q-
-Q----
-----Q
--Q---
 
----Q-
--Q---
Q-----
-----Q
---Q--
-Q----</pre>
 
=={{header|AWK}}==
Inspired by Raymond Hettinger's Python solution, but builds the vector incrementally.
<syntaxhighlight lang="awk">
#!/usr/bin/gawk -f
# Solve the Eight Queens Puzzle
# Inspired by Raymond Hettinger [https://code.activestate.com/recipes/576647/]
# Just the vector of row positions per column is kept,
# and filled with all possibilities from left to right recursively,
# then checked against the columns left from the current one:
# - is a queen in the same row
# - is a queen in the digonal
# - is a queen in the reverse diagonal
BEGIN {
dim = ARGC < 2 ? 8 : ARGV[1]
# make vec an array
vec[1] = 0
# scan for a solution
if (tryqueen(1, vec, dim))
result(vec, dim)
else
print "No solution with " dim " queens."
}
# try if a queen can be set in column (col)
function tryqueen(col, vec, dim, new) {
for (new = 1; new <= dim; ++new) {
# check all previous columns
if (noconflict(new, col, vec, dim)) {
vec[col] = new
if (col == dim)
return 1
# must try next column(s)
if (tryqueen(col+1, vec, dim))
return 1
}
}
# all tested, failed
return 0
}
 
# check if setting the queen (new) in column (col) is ok
# by checking the previous colums conflicts
function noconflict(new, col, vec, dim, j) {
for (j = 1; j < col; j++) {
if (vec[j] == new)
return 0 # same row
if (vec[j] == new - col + j)
return 0 # diagonal conflict
if (vec[j] == new + col - j)
return 0 # reverse diagonal conflict
}
# no test failed, no conflict
return 1
}
 
# print matrix
function result(vec, dim, row, col, sep, lne) {
# print the solution vector
for (row = 1; row <= dim; ++row)
printf " %d", vec[row]
print
# print a board matrix
for (row = 1; row <= dim; ++row) {
lne = "|"
for (col = 1; col <= dim; ++col) {
if (row == vec[col])
lne = lne "Q|"
else
lne = lne "_|"
}
print lne
}
}
 
 
</syntaxhighlight>
{{out}}
<pre>
1 5 8 6 3 7 2 4
|Q|_|_|_|_|_|_|_|
|_|_|_|_|_|_|Q|_|
|_|_|_|_|Q|_|_|_|
|_|_|_|_|_|_|_|Q|
|_|Q|_|_|_|_|_|_|
|_|_|_|Q|_|_|_|_|
|_|_|_|_|_|Q|_|_|
|_|_|Q|_|_|_|_|_|
</pre>
 
=={{header|ATS}}==
<syntaxhighlight lang="ats">
(* ****** ****** *)
//
// Solving N-queen puzzle
//
(* ****** ****** *)
//
// How to test:
// ./queens
// How to compile:
// patscc -DATS_MEMALLOC_LIBC -o queens queens.dats
//
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
//
#include
"share/HATS/atspre_staload_libats_ML.hats"
//
(* ****** ****** *)
 
fun
solutions(N:int) = let
//
fun
show
(
board: list0(int)
) : void =
(
list0_foreach<int>
( list0_reverse(board)
, lam(n) => ((N).foreach()(lam(i) => print_string(if i = n then " Q" else " _")); print_newline())
) ;
print_newline()
)
//
fun
safe
(
i: int, j: int, k: int, xs: list0(int)
) : bool =
(
case+ xs of
| nil0() => true
| cons0(x, xs) => x != i && x != j && x != k && safe(i, j+1, k-1, xs)
)
//
fun
loop
(
col: int, xs: list0(int)
) : void =
(N).foreach()
(
lam(i) =>
if
safe(i, i+1, i-1, xs)
then let
val xs = cons0(i, xs)
in
if col = N then show(xs) else loop(col+1, xs)
end // end of [then]
)
//
in
loop(1, nil0())
end // end of [solutions]
 
(* ****** ****** *)
 
val () = solutions(8)
 
(* ****** ****** *)
 
implement main0() = ()
 
(* ****** ****** *)
 
(* end of [queens.dats] *)
</syntaxhighlight>
 
=={{header|AutoHotkey}}==
=== Output to formatted Message box ===
{{trans|C}}
<syntaxhighlight lang="autohotkey">;
; Post: http://www.autohotkey.com/forum/viewtopic.php?p=353059#353059
; Timestamp: 05/may/2010
;
 
MsgBox % funcNQP(5)
MsgBox % funcNQP(8)
 
Return
 
;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;
; ** USED VARIABLES **
;
; Global: All variables named Array[???]
;
; Function funcNPQ: nQueens , OutText , qIndex
;
; Function Unsafe: nIndex , Idx , Tmp , Aux
;
; Function PutBoard: Output , QueensN , Stc , xxx , yyy
;
;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
funcNQP(nQueens)
{
Global
Array[0] := -1
Local OutText , qIndex := 0
While ( qIndex >= 0 )
{
Array[%qIndex%]++
While ( (Array[%qIndex%] < nQueens) && Unsafe(qIndex) )
Array[%qIndex%]++
If ( Array[%qIndex%] < nQueens )
{
If ( qIndex < nQueens-1 )
qIndex++ , Array[%qIndex%] := -1
Else
PutBoard(OutText,nQueens)
}
Else
qIndex--
}
Return OutText
}
 
;------------------------------------------
 
Unsafe(nIndex)
{
Global
Local Idx := 1 , Tmp := 0 , Aux := Array[%nIndex%]
While ( Idx <= nIndex )
{
Tmp := "Array[" nIndex - Idx "]"
Tmp := % %Tmp%
If ( ( Tmp = Aux ) || ( Tmp = Aux-Idx ) || ( Tmp = Aux+Idx ) )
Return 1
Idx++
}
Return 0
}
 
;------------------------------------------
 
PutBoard(ByRef Output,QueensN)
{
Global
Static Stc = 0
Local xxx := 0 , yyy := 0
Output .= "`n`nSolution #" (++Stc) "`n"
While ( yyy < QueensN )
{
xxx := 0
While ( xxx < QueensN )
Output .= ( "|" ( ( Array[%yyy%] = xxx ) ? "Q" : "_" ) ) , xxx++
Output .= "|`n" , yyy++
}
}</syntaxhighlight>
=== Includes a solution browser GUI ===
This implementation supports N = 4..12 queens, and will find ALL solutions
for each of the different sizes.
The screenshot shows the first solution of 10 possible solutions for N = 5 queens.
 
<syntaxhighlight lang="autohotkey">N := 5
Number: ; main entrance for different # of queens
SI := 1
Progress b2 w250 zh0 fs9, Calculating all solutions for %N% Queens ...
Gosub GuiCreate
Result := SubStr(Queens(N),2)
Progress Off
Gui Show,,%N%-Queens
StringSplit o, Result, `n
Fill: ; show solutions
GuiControl,,SI, %SI% / %o0%
Loop Parse, o%SI%, `,
{
C := A_Index
Loop %N%
GuiControl,,%C%_%A_Index% ; clear fields
GuiControl,,%C%_%A_LoopField%, r
}
Return ;-----------------------------------------------------------------------
 
Queens(N) { ; Size of the board
Local c, O ; global array r
r1 := 1, c := 2, r2 := 3, O := "" ; init: r%c% = row of Queen in column c
 
Right: ; move to next column
If (c = N) { ; found solution
Loop %N% ; save row indices of Queens
O .= (A_Index = 1 ? "`n" : ",") r%A_Index%
GOTO % --c ? "Down" : "OUT" ; for ALL solutions
}
c++, r%c% := 1 ; next column, top row
GoTo % BAD(c) ? "Down" : "Right"
Down: ; move down to next row
If (r%c% = N)
GoTo % --c ? "Down" : "OUT"
r%c%++ ; row down
GoTo % BAD(c) ? "Down" : "Right"
OUT:
Return O
} ;----------------------------------------------------------------------------
 
BAD(c) { ; Check placed Queens against Queen in row r%c%, column c
Loop % c-1
If (r%A_Index% = r%c% || ABS(r%A_Index%-r%c%) = c-A_Index)
Return 1
} ;----------------------------------------------------------------------------
 
GuiCreate: ; Draw chess board
Gui Margin, 20, 15
Gui Font, s16, Marlett
Loop %N% {
C := A_Index
Loop %N% { ; fields
R := A_Index, X := 40*C-17, Y := 40*R-22
Gui Add, Progress, x%X% y%Y% w41 h41 Cdddddd, % 100*(R+C & 1) ;% shade fields
Gui Add, Text, x%X% y%Y% w41 h41 BackGroundTrans Border Center 0x200 v%C%_%R%
}
}
Gui Add, Button, x%x% w43 h25 gBF, 4 ; forth (default)
Gui Add, Button,xm yp w43 h25 gBF, 3 ; back
 
Gui Font, bold, Comic Sans MS
Gui Add, Text,% "x62 yp hp Center 0x200 vSI w" 40*N-80
 
Menu FileMenu, Add, E&xit, GuiClose
Loop 9
Menu CalcMenu, Add, % "Calculate " A_Index+3 " Queens", Calculate ;%
Menu HelpMenu, Add, &About, AboutBox
Menu MainMenu, Add, &File, :FileMenu
Menu MainMenu, Add, &Calculate, :CalcMenu
Menu MainMenu, Add, &Help, :HelpMenu
Gui Menu, Mainmenu
Return ; ----------------------------------------------------------------------
 
AboutBox: ; message box with AboutText
Gui 1: +OwnDialogs
MsgBox, 64, About N-Queens, Many thanks ...
Return
 
Calculate: ; menu handler for calculations
N := A_ThisMenuItemPos + 3
Gui Destroy
GoTo Number ; -------------------------------------------------------------
 
BF:
SI := mod(SI+o0-2*(A_GuiControl=3), o0) + 1 ; left button text is "3"
GoTo Fill ; ----------------------------------------------------------------
 
GuiClose:
ExitApp</syntaxhighlight>
[[image:N-Queens_SolutionBrowserGUI.png]]
 
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
The total number of solutions is displayed in the title bar and one solution is displayed. The code could be adapted to display a selected solution or multiple solutions.
[[Image:queens8_bbc.gif|right]]
[[Image:queens9_bbc.gif|right]]
[[Image:queens10_bbc.gif|right]]
<syntaxhighlight lang="bbcbasic"> Size% = 8
Cell% = 32
VDU 23,22,Size%*Cell%;Size%*Cell%;Cell%,Cell%,16,128+8,5
*font Arial Unicode MS,16
GCOL 3,11
FOR i% = 0 TO Size%-1 STEP 2
RECTANGLE FILL i%*Cell%*2,0,Cell%*2,Size%*Cell%*2
RECTANGLE FILL 0,i%*Cell%*2,Size%*Cell%*2,Cell%*2
NEXT
num% = FNqueens(Size%, Cell%)
SYS "SetWindowText", @hwnd%, "Total " + STR$(num%) + " solutions"
REPEAT : WAIT 1 : UNTIL FALSE
END
DEF FNqueens(n%, s%)
LOCAL i%, j%, m%, p%, q%, r%, a%(), b%(), c%()
DIM a%(n%), b%(n%), c%(4*n%-2)
FOR i% = 1 TO DIM(a%(),1) : a%(i%) = i% : NEXT
m% = 0
i% = 1
j% = 0
r% = 2*n%-1
REPEAT
i% -= 1
j% += 1
p% = 0
q% = -r%
REPEAT
i% += 1
c%(p%) = 1
c%(q%+r%) = 1
SWAP a%(i%),a%(j%)
p% = i% - a%(i%) + n%
q% = i% + a%(i%) - 1
b%(i%) = j%
j% = i% + 1
UNTIL j% > n% OR c%(p%) OR c%(q%+r%)
IF c%(p%)=0 IF c%(q%+r%)=0 THEN
IF m% = 0 THEN
FOR p% = 1 TO n%
MOVE 2*s%*(a%(p%)-1)+6, 2*s%*p%+6
PRINT "♛";
NEXT
ENDIF
m% += 1
ENDIF
j% = b%(i%)
WHILE j% >= n% AND i% <> 0
REPEAT
SWAP a%(i%), a%(j%)
j% = j%-1
UNTIL j% < i%
i% -= 1
p% = i% - a%(i%) + n%
q% = i% + a%(i%) - 1
j% = b%(i%)
c%(p%) = 0
c%(q%+r%) = 0
ENDWHILE
UNTIL i% = 0
= m%</syntaxhighlight>
 
=={{header|BCPL}}==
<syntaxhighlight lang="bcpl">// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10.
 
GET "libhdr.h"
GLOBAL { count:ug; all }
)</lang>
LET try(ld, row, rd) BE TEST row=all
 
THEN count := count + 1
 
ELSE { LET poss = all & ~(ld | row | rd)
WHILE poss DO
{ LET p = poss & -poss
poss := poss - p
try(ld+p << 1, row+p, rd+p >> 1)
}
}
 
LET start() = VALOF
{ all := 1
FOR i = 1 TO 16 DO
{ count := 0
try(0, 0, 0)
writef("Number of solutions to %i2-queens is %i7*n", i, count)
all := 2*all + 1
}
 
RESULTIS 0
}
</syntaxhighlight>
The following is a re-implementation of the algorithm given above but
using the MC package that allows machine independent runtime generation
of native machine code (currently only available for i386 machines).
It runs about 25 times faster that the version given above.
 
<syntaxhighlight lang="bcpl">
GET "libhdr.h"
GET "mc.h"
 
MANIFEST {
lo=1; hi=16
dlevel=#b0000
 
// Register mnemonics
ld = mc_a
row = mc_b
rd = mc_c
poss = mc_d
p = mc_e
count = mc_f
}
 
LET start() = VALOF
{ // Load the dynamic code generation package
LET mcseg = globin(loadseg("mci386"))
LET mcb = 0
 
UNLESS mcseg DO
{ writef("Trouble with MC package: mci386*n")
GOTO fin
}
 
// Create an MC instance for hi functions with a data space
// of 10 words and code space of 40000
mcb := mcInit(hi, 10, 40000)
 
UNLESS mcb DO
{ writef("Unable to create an mci386 instance*n")
GOTO fin
}
 
mc := 0 // Currently no selected MC instance
mcSelect(mcb)
 
mcK(mc_debug, dlevel) // Set the debugging level
 
FOR n = lo TO hi DO
{ mcComment("*n*n// Code for a %nx%n board*n", n, n)
gencode(n) // Compile the code for an nxn board
}
 
mcF(mc_end) // End of code generation
 
writef("Code generation complete*n")
 
FOR n = lo TO hi DO
{ LET k = mcCall(n)
writef("Number of solutions to %i2-queens is %i9*n", n, k)
}
 
fin:
IF mc DO mcClose()
IF mcseg DO unloadseg(mcseg)
 
writef("*n*nEnd of run*n")
}
 
AND gencode(n) BE
{ LET all = (1<<n) - 1
mcKKK(mc_entry, n, 3, 0)
 
mcRK(mc_mv, ld, 0)
mcRK(mc_mv, row, 0)
mcRK(mc_mv, rd, 0)
mcRK(mc_mv, count, 0)
 
cmpltry(1, n, all) // Compile the outermost call of try
 
mcRR(mc_mv, mc_a, count) // return count
mcF(mc_rtn)
mcF(mc_endfn)
}
 
AND cmpltry(i, n, all) BE
{ LET L = mcNextlab()
 
mcComment("*n// Start of code from try(%n, %n, %n)*n", i, n, all)
 
mcRR(mc_mv, poss, ld) // LET poss = (~(ld | row | rd)) & all
mcRR(mc_or, poss, row)
mcRR(mc_or, poss, rd)
mcR (mc_not, poss)
mcRK(mc_and, poss, all)
 
mcRK(mc_cmp, poss, 0) // IF poss DO
TEST n-i<=2
THEN mcJS(mc_jeq, L) // (use a short jump if near the last row)
ELSE mcJL(mc_jeq, L)
 
TEST i=n
THEN { // We can place a queen in the final row.
mcR(mc_inc, count) // count := count+1
}
ELSE { // We can place queen(s) in a non final row.
LET M = mcNextlab()
 
mcL (mc_lab, M) // { Start of REPEATWHILE loop
 
mcRR(mc_mv, p, poss) // LET p = poss & -poss
mcR (mc_neg, p)
mcRR(mc_and, p, poss) // // p is a valid queens position
mcRR(mc_sub, poss, p) // poss := poss - p
 
 
mcR (mc_push, ld) // Save current state
mcR (mc_push, row)
mcR (mc_push, rd)
mcR (mc_push, poss)
// Call try((ld+p)<<1, row+p, (rd+p)>>1)
mcRR(mc_add, ld, p)
mcRK(mc_lsh, ld, 1) // ld := (ld+p)<<1
mcRR(mc_add, row, p) // row := row+p
mcRR(mc_add, rd, p)
mcRK(mc_rsh, rd, 1) // rd := (rd+p)>>1
 
cmpltry(i+1, n, all) // Compile code for row i+1
 
mcR (mc_pop, poss) // Restore the state
mcR (mc_pop, rd)
mcR (mc_pop, row)
mcR (mc_pop, ld)
 
mcRK(mc_cmp, poss, 0)
mcJL(mc_jne, M) // } REPEATWHILE poss
}
 
mcL(mc_lab, L)
mcComment("// End of code from try(%n, %n, %n)*n*n",
i, n, all)
}
</syntaxhighlight>
 
=={{header|Befunge}}==
 
This algorithm works with any board size from 4 upwards.
 
<syntaxhighlight lang="befunge"><+--XX@_v#!:-1,+55,g\1$_:00g2%-0vv:,+55<&,,,,,,"Size: "
"| Q"$$$>:01p:2%!00g0>>^<<!:-1\<1>00p::2%-:40p2/50p2*1+
!77**48*+31p\:1\g,::2\g:,\3\g,,^g>0g++40g%40g\-\40g\`*-
2g05\**!!%6g04-g052!:`\g05::-1/2<^4*2%g05\+*+1*!!%6g04-</syntaxhighlight>
 
{{out}}
 
<pre>Size: 8
 
+---+---+---+---+---+---+---+---+
| | | | | Q | | | |
+---+---+---+---+---+---+---+---+
| | | Q | | | | | |
+---+---+---+---+---+---+---+---+
| Q | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | Q | |
+---+---+---+---+---+---+---+---+
| | Q | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | Q |
+---+---+---+---+---+---+---+---+
| | | | | | Q | | |
+---+---+---+---+---+---+---+---+
| | | | Q | | | | |
+---+---+---+---+---+---+---+---+</pre>
 
=={{header|Bracmat}}==
<syntaxhighlight lang="bracmat">( ( printBoard
= board M L x y S R row line
. :?board
& !ups:? [?M
& whl
' ( !arg:(?x.?y) ?arg
& !M:?L
& :?row:?line
& whl
' ( !L+-1:~<0:?L
& !x+1:~>!M:?x
& "---+" !line:?line
& " |" !row:?row
)
& "---+" !line:?line
& " Q |" !row:?row
& whl
' ( !L+-1:~<0:?L
& "---+" !line:?line
& " |" !row:?row
)
& "\n|" !row "\n+" !line !board:?board
)
& str$("\n+" !line !board)
)
( queens
= hor ver up down ups downs a z A Z x y Q
. !arg:(?hor.?ver.?ups.?downs.?Q)
& !ver
: (
& 1+!solutions:?solutions
{ Comment the line below if you only want a count. }
& out$(str$("\nsolution " !solutions) printBoard$!Q)
& ~ { Fail! (and backtrack to find more solutions)}
| #%?y
( ?z
& !hor
: ?A
#%?x
( ?Z
& !x+!y:?up
& !x+-1*!y:?down
& ~(!ups:? !up ?)
& ~(!downs:? !down ?)
& queens
$ ( !A !Z
. !z
. !up !ups
. !down !downs
. (!x.!y) !Q
)
)
)
)
)
& 0:?solutions
& 1 2 3 4 5 6 7 8:?H:?V {You can edit this line to find solutions for other sizes.}
& ( queens$(!H.!V...)
| out$(found !solutions solutions)
)
);</syntaxhighlight>
{{out}} (tail):
<pre>
solution 91
 
+---+---+---+---+---+---+---+---+
| | | | | | | | Q |
+---+---+---+---+---+---+---+---+
| | | Q | | | | | |
+---+---+---+---+---+---+---+---+
| Q | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | Q | | |
+---+---+---+---+---+---+---+---+
| | Q | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | Q | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | Q | |
+---+---+---+---+---+---+---+---+
| | | | Q | | | | |
+---+---+---+---+---+---+---+---+
 
solution 92
 
+---+---+---+---+---+---+---+---+
| | | | | | | | Q |
+---+---+---+---+---+---+---+---+
| | | | Q | | | | |
+---+---+---+---+---+---+---+---+
| Q | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | Q | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | Q | | |
+---+---+---+---+---+---+---+---+
| | Q | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | Q | |
+---+---+---+---+---+---+---+---+
| | | | | Q | | | |
+---+---+---+---+---+---+---+---+
found 92 solutions</pre>
 
=={{header|C}}==
C99, compiled with <code>gcc -std=c99 -Wall</code>. Take one commandline argument: size of board, or default to 8. Shows the board layout for each solution.<syntaxhighlight lang="c">#include <stdio.h>
There is a solution on [[wp:Eight queens puzzle solutions#C|wikipedia]].
#include <stdlib.h>
 
int count = 0;
void solve(int n, int col, int *hist)
{
if (col == n) {
printf("\nNo. %d\n-----\n", ++count);
for (int i = 0; i < n; i++, putchar('\n'))
for (int j = 0; j < n; j++)
putchar(j == hist[i] ? 'Q' : ((i + j) & 1) ? ' ' : '.');
 
return;
}
 
# define attack(i, j) (hist[j] == i || abs(hist[j] - i) == col - j)
for (int i = 0, j = 0; i < n; i++) {
for (j = 0; j < col && !attack(i, j); j++);
if (j < col) continue;
 
hist[col] = i;
solve(n, col + 1, hist);
}
}
 
int main(int n, char **argv)
{
if (n <= 1 || (n = atoi(argv[1])) <= 0) n = 8;
int hist[n];
solve(n, 0, hist);
}</syntaxhighlight>
 
Similiar to above, but using bits to save board configurations and quite a bit faster:<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
 
typedef uint32_t uint;
uint full, *qs, count = 0, nn;
 
void solve(uint d, uint c, uint l, uint r)
{
uint b, a, *s;
if (!d) {
count++;
#if 0
printf("\nNo. %d\n===========\n", count);
for (a = 0; a < nn; a++, putchar('\n'))
for (b = 0; b < nn; b++, putchar(' '))
putchar(" -QQ"[((b == qs[a])<<1)|((a + b)&1)]);
#endif
return;
}
 
a = (c | (l <<= 1) | (r >>= 1)) & full;
if (a != full)
for (*(s = qs + --d) = 0, b = 1; b <= full; (*s)++, b <<= 1)
if (!(b & a)) solve(d, b|c, b|l, b|r);
}
 
int main(int n, char **argv)
{
if (n <= 1 || (nn = atoi(argv[1])) <= 0) nn = 8;
 
qs = calloc(nn, sizeof(int));
full = (1U << nn) - 1;
 
solve(nn, 0, 0, 0);
printf("\nSolutions: %d\n", count);
return 0;
}</syntaxhighlight>
Take that and unwrap the recursion, plus some heavy optimizations, and we have a very fast and very unreadable solution:
<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
 
typedef unsigned int uint;
uint count = 0;
 
#define ulen sizeof(uint) * 8
 
/* could have defined as int solve(...), but void may have less
chance to confuse poor optimizer */
void solve(int n)
{
int cnt = 0;
const uint full = -(int)(1 << (ulen - n));
register uint bits, pos, *m, d, e;
 
uint b0, b1, l[32], r[32], c[32], mm[33] = {0};
n -= 3;
/* require second queen to be left of the first queen, so
we ever only test half of the possible solutions. This
is why we can't handle n=1 here */
for (b0 = 1U << (ulen - n - 3); b0; b0 <<= 1) {
for (b1 = b0 << 2; b1; b1 <<= 1) {
d = n;
/* c: columns occupied by previous queens.
l: columns attacked by left diagonals
r: by right diagnoals */
c[n] = b0 | b1;
l[n] = (b0 << 2) | (b1 << 1);
r[n] = (b0 >> 2) | (b1 >> 1);
 
/* availabe columns on current row. m is stack */
bits = *(m = mm + 1) = full & ~(l[n] | r[n] | c[n]);
 
while (bits) {
/* d: depth, aka row. counting backwards
because !d is often faster than d != n */
while (d) {
/* pos is right most nonzero bit */
pos = -(int)bits & bits;
 
/* mark bit used. only put current bits
on stack if not zero, so backtracking
will skip exhausted rows (because reading
stack variable is sloooow compared to
registers) */
if ((bits &= ~pos))
*m++ = bits | d;
 
/* faster than l[d+1] = l[d]... */
e = d--;
l[d] = (l[e] | pos) << 1;
r[d] = (r[e] | pos) >> 1;
c[d] = c[e] | pos;
 
bits = full & ~(l[d] | r[d] | c[d]);
 
if (!bits) break;
if (!d) { cnt++; break; }
}
/* Bottom of stack m is a zero'd field acting
as sentinel. When saving to stack, left
27 bits are the available columns, while
right 5 bits is the depth. Hence solution
is limited to size 27 board -- not that it
matters in foreseeable future. */
d = (bits = *--m) & 31U;
bits &= ~31U;
}
}
}
count = cnt * 2;
}
 
int main(int c, char **v)
{
int nn;
if (c <= 1 || (nn = atoi(v[1])) <= 0) nn = 8;
 
if (nn > 27) {
fprintf(stderr, "Value too large, abort\n");
exit(1);
}
 
/* Can't solve size 1 board; might as well skip 2 and 3 */
if (nn < 4) count = nn == 1;
else solve(nn);
 
printf("\nSolutions: %d\n", count);
return 0;
}</syntaxhighlight>
 
A slightly cleaned up version of the code above where some optimizations were redundant. This version is also further optimized, and runs about 15% faster than the one above on modern compilers:
 
<syntaxhighlight lang="c">#include <stdio.h>
#define MAXN 31
 
int nqueens(int n)
{
int q0,q1;
int cols[MAXN], diagl[MAXN], diagr[MAXN], posibs[MAXN]; // Our backtracking 'stack'
int num=0;
//
// The top level is two fors, to save one bit of symmetry in the enumeration by forcing second queen to
// be AFTER the first queen.
//
for (q0=0; q0<n-2; q0++) {
for (q1=q0+2; q1<n; q1++){
int bit0 = 1<<q0;
int bit1 = 1<<q1;
int d=0; // d is our depth in the backtrack stack
cols[0] = bit0 | bit1 | (-1<<n); // The -1 here is used to fill all 'coloumn' bits after n ...
diagl[0]= (bit0<<1 | bit1)<<1;
diagr[0]= (bit0>>1 | bit1)>>1;
 
// The variable posib contains the bitmask of possibilities we still have to try in a given row ...
int posib = ~(cols[0] | diagl[0] | diagr[0]);
 
while (d >= 0) {
while(posib) {
int bit = posib & -posib; // The standard trick for getting the rightmost bit in the mask
int ncols= cols[d] | bit;
int ndiagl = (diagl[d] | bit) << 1;
int ndiagr = (diagr[d] | bit) >> 1;
int nposib = ~(ncols | ndiagl | ndiagr);
posib^=bit; // Eliminate the tried possibility.
 
// The following is the main additional trick here, as recognizing solution can not be done using stack level (d),
// since we save the depth+backtrack time at the end of the enumeration loop. However by noticing all coloumns are
// filled (comparison to -1) we know a solution was reached ...
// Notice also that avoiding an if on the ncols==-1 comparison is more efficient!
num += ncols==-1;
 
if (nposib) {
if (posib) { // This if saves stack depth + backtrack operations when we passed the last possibility in a row.
posibs[d++] = posib; // Go lower in stack ..
}
cols[d] = ncols;
diagl[d] = ndiagl;
diagr[d] = ndiagr;
posib = nposib;
}
}
posib = posibs[--d]; // backtrack ...
}
}
}
return num*2;
}
 
 
main(int ac , char **av)
{
if(ac != 2) {
printf("usage: nq n\n");
return 1;
}
int n = atoi(av[1]);
if(n<1 || n > MAXN) {
printf("n must be between 2 and 31!\n");
}
printf("Number of solution for %d is %d\n",n,nqueens(n));
}
</syntaxhighlight>
 
=={{header|C sharp|C#}}==
=== Roger Hui (1981) Algorithm ===
From Hui, Roger, The N Queens Problem, APL Quote-Quad, Volume 11, Number 3, 1981-03:-
 
"In a solution, each possible row (column) index must appear exactly once: an index occurring more than once means that two queens are on the same row (column); and the absence of an index means that some other index must occur more than once. Hence, we can specify an arrangement as a permutation of ⍳n , which are the column indices, with the row indices understood to be ⍳n . With this, the number of possibilities is reduced from n!n×n to !n . It remains to eliminate arrangements having two queens on the same diagonal.
 
If two queens occupy the same diagonal, the line connecting them has slope 1 or ¯1 . Conversely, if the line connecting two queens has slope 1 or ¯1 , the two queens share a diagonal. Therefore, we seek to eliminate all permutations specifying a pair of queens where
((change in y) ÷ (change in x)) ∊ 1 ¯1 , or (|change in y) = (|change in x)"
{{trans|J}}
{{works with|C sharp|C#|7}}
<!-- By Martin Freedman, 13/02/2018 -->
<syntaxhighlight lang="csharp">using System.Collections.Generic;
using static System.Linq.Enumerable;
using static System.Console;
using static System.Math;
 
namespace N_Queens
{
static class Program
{
static void Main(string[] args)
{
var n = 8;
var cols = Range(0, n);
var combs = cols.Combinations(2).Select(pairs=> pairs.ToArray());
var solved = from v in cols.Permutations().Select(p => p.ToArray())
where combs.All(c => Abs(v[c[0]] - v[c[1]]) != Abs(c[0] - c[1]))
select v;
WriteLine($"{n}-queens has {solved.Count()} solutions");
WriteLine("Position is row, value is column:-");
var first = string.Join(" ", solved.First());
WriteLine($"First Solution: {first}");
Read();
}
 
//Helpers
public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values)
{
if (values.Count() == 1)
return values.ToSingleton();
 
return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())), (v, p) => p.Prepend(v));
}
 
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> seq) =>
seq.Aggregate(Empty<T>().ToSingleton(), (a, b) => a.Concat(a.Select(x => x.Append(b))));
 
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> seq, int numItems) =>
seq.Combinations().Where(s => s.Count() == numItems);
 
public static IEnumerable<T> ToSingleton<T>(this T item) { yield return item; }
}
}</syntaxhighlight>
Output
<pre>8-queens has 92 solutions
Position is row, value is column:-
First Solution: 0 4 7 5 2 6 1 3
</pre>
===Hettinger Algorithm===
Compare this to the Hettinger solution used in the first Python answer. The logic is similar but the diagonal calculation is different and more expensive computationally (Both suffer from being unable to eliminate permutation prefixes that are invalid e.g. 0 1 ...)
<syntaxhighlight lang="csharp">
using System.Collections.Generic;
using static System.Linq.Enumerable;
using static System.Console;
using static System.Math;
 
namespace N_Queens
{
static class Program
{
static void Main(string[] args)
{
var n = 8;
var cols = Range(0, n);
var solved = from v in cols.Permutations().Select(p => p.ToArray())
where n == (from i in cols select v[i]+i).Distinct().Count()
where n == (from i in cols select v[i]-i).Distinct().Count()
select v;
 
WriteLine($"{n}-queens has {solved.Count()} solutions");
WriteLine("Position is row, value is column:-");
var first = string.Join(" ", solved.First());
WriteLine($"First Solution: {first}");
Read();
}
 
//Helpers from https://gist.github.com/martinfreedman/139dd0ec7df4737651482241e48b062f
 
public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values)
{
if (values.Count() == 1)
return values.ToSingleton();
 
return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())), (v, p) => p.Prepend(v));
}
 
public static IEnumerable<T> ToSingleton<T>(this T item) { yield return item; }
}
}</syntaxhighlight>
=== Amb solution===
This uses the second version of the [https://rosettacode.org/wiki/Amb#C.23 Amb C# class] in the Amb challenge. Really that is not McCarthy's Amb (Ambiguous function) and here it is used just as a simple general interface by lambdas to a standalone backtrack algorithm. Due to the specification of the Amb challenge, this, ironically (given the notion of ambiguous functions), only produces one solution not 92. It is trivial to update Amb (might be better called a backtracker rather than Amb too) but here it is just used to show how easy it is to go from a generate and prune Linq solution to a backtrack solution. The Linq filters becoming "amb" requirements.
{{works with|C sharp|C#|7.1}}
<!-- By Martin Freedman, 9/02/2018 -->
<syntaxhighlight lang="csharp">using static System.Linq.Enumerable;
using static System.Console;
 
namespace N_Queens
{
static class Program
{
static void Main(string[] args)
{
var n = 8;
var domain = Range(0, n).ToArray();
 
var amb = new Amb.Amb();
var queens = domain.Select(_ => amb.Choose(domain)).ToArray();
amb.Require(() => n == queens.Select(q=> q.Value).Distinct().Count());
amb.Require(() => n == domain.Select(i=> i + queens[i].Value).Distinct().Count());
amb.Require(() => n == domain.Select(i=> i - queens[i].Value).Distinct().Count());
 
if (amb.Disambiguate())
{
WriteLine("Position is row, value is column:-");
WriteLine(string.Join(" ", queens.AsEnumerable()));
}
else
WriteLine("amb is angry");
Read();
}
}
}</syntaxhighlight>
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">// Much shorter than the version below;
// uses C++11 threads to parallelize the computation; also uses backtracking
// Outputs all solutions for any table size
#include <vector>
#include <iostream>
#include <iomanip>
#include <thread>
#include <future>
 
// Print table. 'pos' is a vector of positions – the index in pos is the row,
// and the number at that index is the column where the queen is placed.
static void print(const std::vector<int> &pos)
{
// print table header
for (int i = 0; i < pos.size(); i++) {
std::cout << std::setw(3) << char('a' + i);
}
 
std::cout << '\n';
 
for (int row = 0; row < pos.size(); row++) {
int col = pos[row];
std::cout << row + 1 << std::setw(3 * col + 3) << " # ";
std::cout << '\n';
}
 
std::cout << "\n\n";
}
 
static bool threatens(int row_a, int col_a, int row_b, int col_b)
{
return row_a == row_b // same row
or col_a == col_b // same column
or std::abs(row_a - row_b) == std::abs(col_a - col_b); // diagonal
}
 
// the i-th queen is in the i-th row
// we only check rows up to end_idx
// so that the same function can be used for backtracking and checking the final solution
static bool good(const std::vector<int> &pos, int end_idx)
{
for (int row_a = 0; row_a < end_idx; row_a++) {
for (int row_b = row_a + 1; row_b < end_idx; row_b++) {
int col_a = pos[row_a];
int col_b = pos[row_b];
if (threatens(row_a, col_a, row_b, col_b)) {
return false;
}
}
}
 
return true;
}
 
static std::mutex print_count_mutex; // mutex protecting 'n_sols'
static int n_sols = 0; // number of solutions
 
// recursive DFS backtracking solver
static void n_queens(std::vector<int> &pos, int index)
{
// if we have placed a queen in each row (i. e. we are at a leaf of the search tree), check solution and return
if (index >= pos.size()) {
if (good(pos, index)) {
std::lock_guard<std::mutex> lock(print_count_mutex);
print(pos);
n_sols++;
}
 
return;
}
 
// backtracking step
if (not good(pos, index)) {
return;
}
 
// optimization: the first level of the search tree is parallelized
if (index == 0) {
std::vector<std::future<void>> fts;
for (int col = 0; col < pos.size(); col++) {
pos[index] = col;
auto ft = std::async(std::launch::async, [=]{ auto cpos(pos); n_queens(cpos, index + 1); });
fts.push_back(std::move(ft));
}
 
for (const auto &ft : fts) {
ft.wait();
}
} else { // deeper levels are not
for (int col = 0; col < pos.size(); col++) {
pos[index] = col;
n_queens(pos, index + 1);
}
}
}
 
int main()
{
std::vector<int> start(12); // 12: table size
n_queens(start, 0);
std::cout << n_sols << " solutions found.\n";
return 0;
}
</syntaxhighlight>
{{out}}Output for N = 4:
<pre> a b c d
1 #
2 #
3 #
4 #
a b c d
1 #
2 #
3 #
4 # </pre>
<syntaxhighlight lang="cpp">
// A straight-forward brute-force C++ version with formatted output,
// eschewing obfuscation and C-isms, producing ALL solutions, which
// works on any OS with a text terminal.
//
// Two basic optimizations are applied:
//
// It uses backtracking to only construct potentially valid solutions.
//
// It only computes half the solutions by brute -- once we get the
// queen halfway across the top row, any remaining solutions must be
// reflections of the ones already computed.
//
// This is a bare-bones example, without any progress feedback or output
// formatting controls, which a more complete program might provide.
//
// Beware that computing anything larger than N=14 might take a while.
// (Time gets exponentially worse the higher the number.)
 
// Copyright 2014 Michael Thomas Greer
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
 
#include <algorithm>
#include <ciso646>
#include <iomanip>
#include <iostream>
#include <set>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
 
 
// ///////////////////////////////////////////////////////////////////////////
struct queens
/////////////////////////////////////////////////////////////////////////// //
{
// TYPES -------------------------------------------------------------------
 
// A row or column index. (May be signed or unsigned.)
//
typedef signed char index_type;
 
// A 'solution' is a row --> column lookup of queens on the board.
//
// It has lexicographical order and can be transformed with a variety of
// reflections, which, when properly combined, produce all possible
// orientations of a solution.
//
struct solution_type: std::vector <index_type>
{
typedef std::vector <index_type> base_type;
 
// constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
solution_type( std::size_t N ): base_type( N, -1 ) { }
solution_type( const solution_type& s ): base_type( s ) { }
 
// compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bool operator < ( const solution_type& s ) const
{
auto mm = std::mismatch( begin(), end(), s.begin() );
return (mm.first != end()) and (*mm.first < *mm.second);
}
 
// transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .
void vflip() { std::reverse( begin(), end() ); }
 
void hflip() { for (auto& x : *this) x = size() - 1 - x; }
 
void transpose()
{
solution_type result( size() );
for (index_type y = 0; (std::size_t)y < size(); y++)
result[ (*this)[ y ] ] = y;
swap( result );
}
};
 
// MEMBER VALUES -----------------------------------------------------------
 
const int N;
std::set <solution_type> solutions;
 
// SOLVER ------------------------------------------------------------------
 
queens( int N = 8 ):
N( (N < 0) ? 0 : N )
{
// Row by row we create a potentially valid solution.
// If a queen can be placed in a valid spot by the time
// we get to the last row, then we've found a solution.
 
solution_type solution( N );
index_type row = 0;
while (true)
{
// Advance the queen along the row
++solution[ row ];
 
// (If we get past halfway through the first row, we're done.)
if ((row == 0) and (solution[ 0 ] > N/2)) break;
 
if (solution[ row ] < N)
{
// If the queen is in a good spot...
if (ok( solution, row, solution[ row ] ))
{
// ...and we're on the last row
if (row == N-1)
{
// Add the solution we found plus all it's reflections
solution_type
s = solution; solutions.insert( s );
s.vflip(); solutions.insert( s );
s.hflip(); solutions.insert( s );
s.vflip(); solutions.insert( s );
s.transpose(); solutions.insert( s );
s.vflip(); solutions.insert( s );
s.hflip(); solutions.insert( s );
s.vflip(); solutions.insert( s );
}
// otherwise begin marching a queen along the next row
else solution[ ++row ] = -1;
}
 
// When we get to the end of a row's columns then
// we need to backup a row and continue from there.
}
else --row;
}
}
 
// HELPER ------------------------------------------------------------------
// This routine helps the solver by identifying column locations
// that do not conflict with queens already placed in prior rows.
 
bool ok( const solution_type& columns, index_type row, index_type column )
{
for (index_type r = 0; r < row; r++)
{
index_type c = columns[ r ];
index_type delta_row = row - r;
index_type delta_col = (c < column) ? (column - c) : (c - column);
 
if ((c == column) or (delta_row == delta_col))
return false;
}
return true;
}
 
// OUTPUT A SINGLE SOLUTION ------------------------------------------------
//
// Formatted as (for example):
//
// d1 b2 g3 c4 f5 h6 e7 a8
// Q - - - - - - -
// - - - - Q - - -
// - - - - - - - Q
// - - - - - Q - -
// - - Q - - - - -
// - - - - - - Q -
// - Q - - - - - -
// - - - Q - - - -
//
friend
std::ostream&
operator << ( std::ostream& outs, const queens::solution_type& solution )
{
static const char* squares[] = { "- ", "Q " };
index_type N = solution.size();
 
// Display the queen positions
for (auto n = N; n--; )
outs << (char)('a' + solution[ n ]) << (N - n) << " ";
 
// Display the board
for (auto queen : solution)
{
outs << "\n";
for (index_type col = 0; col < N; col++)
outs << squares[ col == queen ];
}
return outs;
}
 
// OUTPUT ALL SOLUTIONS ----------------------------------------------------
//
// Display "no solutions" or "N solutions" followed by
// each individual solution, separated by blank lines.
 
friend
std::ostream&
operator << ( std::ostream& outs, const queens& q )
{
if (q.solutions.empty()) outs << "no";
else outs << q.solutions.size();
outs << " solutions";
 
std::size_t n = 1;
for (auto solution : q.solutions)
{
outs << "\n\n#" << n++ << "\n" << solution;
}
 
return outs;
}
};
 
 
/* ///////////////////////////////////////////////////////////////////////////
string_to <type> ( x )
/////////////////////////////////////////////////////////////////////////// */
 
template <typename T>
T string_to( const std::string& s )
{
T result;
std::istringstream ss( s );
ss >> result;
if (!ss.eof()) throw std::runtime_error( "to_string(): invalid conversion" );
return result;
}
 
template <typename T, T default_value>
T string_to( const std::string& s )
{
try { return string_to <T> ( s ); }
catch (...) { return default_value; }
}
 
 
/* ///////////////////////////////////////////////////////////////////////////
main program
/////////////////////////////////////////////////////////////////////////// */
 
int usage( const std::string& name )
{
std::cerr <<
"usage:\n " << name << " 8\n\n"
""
"Solve the N-Queens problem, brute-force,\n"
"and show all solutions for an 8x8 board.\n\n"
""
"(Specify a value other than 8 for the board size you want.)\n";
return 1;
}
 
int main( int argc, char** argv )
{
signed N =
(argc < 2) ? 8 :
(argc > 2) ? 0 : string_to <signed, 0> ( argv[ 1 ] );
 
if (N <= 0) return usage( argv[ 0 ] );
 
std::cout << queens( N ) << "\n";
}
</syntaxhighlight>
{{out}} for N=4:
<pre>
2 solutions
 
#1
c1 a2 d3 b4
- Q - -
- - - Q
Q - - -
- - Q -
 
#2
b1 d2 a3 c4
- - Q -
Q - - -
- - - Q
- Q - -
</pre>
=== Alternate version ===
Windows-only
<syntaxhighlight lang="cpp">
#include <windows.h>
#include <iostream>
#include <string>
 
//--------------------------------------------------------------------------------------------------
using namespace std;
 
//--------------------------------------------------------------------------------------------------
class point
{
public:
int x, y;
point(){ x = y = 0; }
void set( int a, int b ){ x = a; y = b; }
};
//--------------------------------------------------------------------------------------------------
class nQueens
{
public:
void solve( int c )
{
_count = c; int len = ( c + 1 ) * ( c + 1 ); _queens = new bool[len]; memset( _queens, 0, len );
_cl = new bool[c]; memset( _cl, 0, c ); _ln = new bool[c]; memset( _ln, 0, c );
point pt; pt.set( rand() % c, rand() % c ); putQueens( pt, c ); displayBoard();
delete [] _queens; delete [] _ln; delete [] _cl;
}
 
private:
void displayBoard()
{
system( "cls" ); string t = "+---+", q = "| Q |", s = "| |";
COORD c = { 0, 0 }; HANDLE h = GetStdHandle( STD_OUTPUT_HANDLE );
for( int y = 0, cy = 0; y < _count; y++ )
{
int yy = y * _count;
for( int x = 0; x < _count; x++ )
{
SetConsoleCursorPosition( h, c ); cout << t;
c.Y++; SetConsoleCursorPosition( h, c );
if( _queens[x + yy] ) cout << q; else cout << s;
c.Y++; SetConsoleCursorPosition( h, c );
cout << t; c.Y = cy; c.X += 4;
}
cy += 2; c.X = 0; c.Y = cy;
}
}
 
bool checkD( int x, int y, int a, int b )
{
if( x < 0 || y < 0 || x >= _count || y >= _count ) return true;
if( _queens[x + y * _count] ) return false;
if( checkD( x + a, y + b, a, b ) ) return true;
return false;
}
 
bool check( int x, int y )
{
if( _ln[y] || _cl[x] ) return false;
if( !checkD( x, y, -1, -1 ) ) return false;
if( !checkD( x, y, 1, -1 ) ) return false;
if( !checkD( x, y, -1, 1 ) ) return false;
if( !checkD( x, y, 1, 1 ) ) return false;
return true;
}
 
bool putQueens( point pt, int cnt )
{
int it = _count;
while( it )
{
if( !cnt ) return true;
if( check( pt.x, pt.y ) )
{
_queens[pt.x + pt.y * _count] = _cl[pt.x] = _ln[pt.y] = true;
point tmp = pt; if( ++tmp.x >= _count ) tmp.x = 0; if( ++tmp.y >= _count ) tmp.y = 0;
if( putQueens( tmp, cnt - 1 ) ) return true;
_queens[pt.x + pt.y * _count] = _cl[pt.x] = _ln[pt.y] = false;
}
if( ++pt.x >= _count ) pt.x = 0;
it--;
}
return false;
}
 
int _count;
bool* _queens, *_ln, *_cl;
};
//--------------------------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
nQueens n; int nq;
while( true )
{
system( "cls" ); cout << "Enter board size bigger than 3 (0 - 3 to QUIT): "; cin >> nq;
if( nq < 4 ) return 0; n.solve( nq ); cout << endl << endl;
system( "pause" );
}
return 0;
}
//--------------------------------------------------------------------------------------------------
</syntaxhighlight>
{{out}}
<pre>
+---+---+---+---+---+ +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| Q | | | | | | | | | Q | | | | | | | | | | | | | Q | | | |
+---+---+---+---+---+ +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | | Q | | | | | Q | | | | | | | | | | | | | | | | | Q | |
+---+---+---+---+---+ +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | | | | Q | | | | | | | | | Q | | | | | Q | | | | | | | |
+---+---+---+---+---+ +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | Q | | | | | | | | | | Q | | | | | Q | | | | | | | | | |
+---+---+---+---+---+ +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | | | Q | | | Q | | | | | | | | | | | | | Q | | | | | | |
+---+---+---+---+---+ +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | | Q | | | | | | | | | | | | | | | | | Q |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | | | | Q | | | | | Q | | | | | | | | | | |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | Q | | | | | Q | | | | | | | | |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+
| | | | | | Q | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | Q | | |
+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | Q | | | | |
+---+---+---+---+---+---+---+---+---+---+---+
</pre>
 
Version using Heuristics - explained here: [http://en.wikipedia.org/wiki/8_queens_puzzle#Solution_construction Solution_construction]
<syntaxhighlight lang="cpp">
#include <windows.h>
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
 
//--------------------------------------------------------------------------------------------------
using namespace std;
 
//--------------------------------------------------------------------------------------------------
typedef unsigned int uint;
 
//--------------------------------------------------------------------------------------------------
class nQueens_Heuristic
{
public:
void solve( uint n ) { makeList( n ); drawBoard( n ); }
 
private:
void drawBoard( uint n )
{
system( "cls" ); string t = "+---+", q = "| Q |", s = "| |";
COORD c = { 0, 0 }; HANDLE h = GetStdHandle( STD_OUTPUT_HANDLE );
uint w = 0;
for( uint y = 0, cy = 0; y < n; y++ )
{
for( uint x = 0; x < n; x++ )
{
SetConsoleCursorPosition( h, c ); cout << t;
c.Y++; SetConsoleCursorPosition( h, c );
if( x + 1 == solution[w] ) cout << q; else cout << s;
c.Y++; SetConsoleCursorPosition( h, c );
cout << t; c.Y = cy; c.X += 4;
}
cy += 2; c.X = 0; c.Y = cy; w++;
}
solution.clear(); odd.clear(); evn.clear();
}
 
void makeList( uint n )
{
uint r = n % 6;
for( uint x = 1; x <= n; x++ )
{
if( x & 1 ) odd.push_back( x );
else evn.push_back( x );
}
if( r == 2 )
{
swap( odd[0], odd[1] );
odd.erase( find( odd.begin(), odd.end(), 5 ) );
odd.push_back( 5 );
}
else if( r == 3 )
{
odd.erase( odd.begin() ); odd.erase( odd.begin() );
odd.push_back( 1 ); odd.push_back( 3 );
evn.erase( evn.begin() ); evn.push_back( 2 );
}
vector<uint>::iterator it = evn.begin();
while( it != evn.end() )
{
solution.push_back( ( *it ) );
it++;
}
it = odd.begin();
while( it != odd.end() )
{
solution.push_back( ( *it ) );
it++;
}
}
 
vector<uint> odd, evn, solution;
};
//--------------------------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
uint n; nQueens_Heuristic nQH;
while( true )
{
cout << "Enter board size bigger than 3 (0 - 3 to QUIT): "; cin >> n;
if( n < 4 ) return 0;
nQH.solve( n ); cout << endl << endl;
}
return 0;
}
//--------------------------------------------------------------------------------------------------
</syntaxhighlight>
 
=={{header|Clojure}}==
This produces all solutions by essentially a backtracking algorithm. The heart is the ''extends?'' function, which takes a partial solution for the first ''k<size'' columns and sees if the solution can be extended by adding a queen at row ''n'' of column ''k+1''. The ''extend'' function takes a list of all partial solutions for ''k'' columns and produces a list of all partial solutions for ''k+1'' columns. The final list ''solutions'' is calculated by starting with the list of 0-column solutions (obviously this is the list ''[ [] ]'', and iterates ''extend'' for ''size'' times.
<langsyntaxhighlight lisplang="clojure">(def size 8)
 
(defn extends? [v n]
Line 152 ⟶ 2,903:
(println s))
 
(println (count solutions) "solutions")</langsyntaxhighlight>
===Short Version===
<syntaxhighlight lang="clojure">(ns queens
(:require [clojure.math.combinatorics :as combo]
 
(defn queens [n]
(filter (fn [x] (every? #(apply distinct? (map-indexed % x)) [+ -]))
(combo/permutations (range 1 (inc n))))) </syntaxhighlight>
===Backtracking as Tree processing===
Each state of the board can be represented as a sequence of the row coordinate for a queen, the column being the index in the sequence (coordinates starting at 0). Each state can have 'children' states if it is legal (no conflict) and has less than n queens. A child state is the result of adding a new queen on the next column, there are as many children states as rows as we are trying all of them. A depth first traversal of this virtual tree of states gives us the solutions when we filter out the illegal states and the incomplete states. The sequence of states is lazy so we could read only one result and not have to compute the other states.
 
<syntaxhighlight lang="clojure">
(defn n-queens [n]
(let[children #(map (partial conj %) (range n))
no-conflict? (fn [x] (or (empty? x)
(every? #(apply distinct? (map-indexed % x))
[+ - (fn[_ v] v)])))]
(filter (every-pred no-conflict? #(= n (count %)))
(tree-seq (every-pred #(> n (count %))
no-conflict?)
children []))))
</syntaxhighlight>
 
=={{header|CLU}}==
{{trans|C}}
<syntaxhighlight lang="clu">n_queens = cluster is solve
rep = null
own hist: array[int] := array[int]$[]
own solutions: array[string] := array[string]$[]
attack = proc (i,j,col: int) returns (bool)
return(hist[j]=i | int$abs(hist[j]-i)=col-j)
end attack
cur_solution = proc ()
n: int := array[int]$size(hist)
ss: stream := stream$create_output()
for i: int in int$from_to(0,n-1) do
for j: int in int$from_to(0,n-1) do
if j=hist[i] then stream$putc(ss, 'Q')
elseif (i+j)//2 = 1 then stream$putc(ss, ' ')
else stream$putc(ss, '.')
end
end
stream$putc(ss, '\n')
end
array[string]$addh(solutions, stream$get_contents(ss))
end cur_solution
solve_rec = proc (col: int)
n: int := array[int]$size(hist)
if col=n then cur_solution() return end
for i: int in int$from_to(0,n-1) do
j: int := 0
while j<col cand ~attack(i,j,col) do j := j+1 end
if j<col then continue end
hist[col] := i
solve_rec(col+1)
end
end solve_rec
solve = proc (n: int) returns (sequence[string])
hist := array[int]$fill(0,n,0)
solutions := array[string]$[]
solve_rec(0)
return(sequence[string]$a2s(solutions))
end solve
end n_queens
 
start_up = proc()
N = 8
po: stream := stream$primary_output()
solutions: sequence[string] := n_queens$solve(N)
 
count: int := 0
for s: string in sequence[string]$elements(solutions) do
count := count + 1
stream$putl(po, "No. " || int$unparse(count) || "\n-------\n" || s)
end
end start_up</syntaxhighlight>
{{out}}
<pre style='height:50ex'>No. 1
-------
Q . . .
. .Q. .
. . . .Q
. . Q .
. Q . .
. . .Q.
.Q. . .
. Q . .
 
No. 2
-------
Q . . .
. . Q .
. . . .Q
.Q. . .
. . . Q
. Q . .
.Q. . .
. .Q. .
 
No. 3
-------
Q . . .
. . .Q.
. .Q. .
. . Q .
. . . .Q
Q . . .
. . Q .
.Q. . .
 
No. 4
-------
Q . . .
. . .Q.
. . Q .
. . . Q
.Q. . .
. Q . .
. . .Q.
.Q. . .
 
No. 5
-------
.Q. . .
. Q . .
. . .Q.
. . . Q
. Q . .
Q. . . .
. . . Q
. .Q. .
 
No. 6
-------
.Q. . .
. .Q. .
. . . Q
Q. . . .
. Q . .
. . . Q
. . .Q.
. Q . .
 
No. 7
-------
.Q. . .
. .Q. .
. . . Q
. Q . .
Q . . .
. . . Q
. . .Q.
.Q. . .
 
No. 8
-------
.Q. . .
. . Q .
Q . . .
. . .Q.
. .Q. .
. . . Q
. Q . .
. .Q. .
 
No. 9
-------
.Q. . .
. . Q .
. . . .Q
.Q. . .
Q . . .
. Q . .
. . . Q
. .Q. .
 
No. 10
-------
.Q. . .
. . .Q.
. Q . .
. . Q .
. . . .Q
. .Q. .
Q . . .
. Q . .
 
No. 11
-------
.Q. . .
. . .Q.
. . Q .
. . . Q
Q . . .
. Q . .
. . .Q.
.Q. . .
 
No. 12
-------
.Q. . .
. . . Q
. . .Q.
Q. . . .
. Q . .
. .Q. .
. . . Q
. Q . .
 
No. 13
-------
. Q . .
Q. . . .
. . . Q
. .Q. .
. . . .Q
Q . . .
. .Q. .
. . Q .
 
No. 14
-------
. Q . .
. .Q. .
.Q. . .
. . . Q
Q . . .
. . .Q.
. .Q. .
. . Q .
 
No. 15
-------
. Q . .
. .Q. .
.Q. . .
. . . Q
. . .Q.
. Q . .
. . . Q
Q. . . .
 
No. 16
-------
. Q . .
. .Q. .
. . . Q
Q. . . .
. .Q. .
Q . . .
. . . .Q
. . Q .
 
No. 17
-------
. Q . .
. .Q. .
. . . .Q
. Q . .
Q . . .
. . .Q.
.Q. . .
. . Q .
 
No. 18
-------
. Q . .
. . Q .
.Q. . .
. .Q. .
. . . .Q
Q. . . .
. . . Q
. Q . .
 
No. 19
-------
. Q . .
. . Q .
.Q. . .
. . .Q.
Q . . .
. Q . .
. . . .Q
. .Q. .
 
No. 20
-------
. Q . .
. . Q .
.Q. . .
. . .Q.
. . Q .
Q. . . .
. . . .Q
. Q . .
 
No. 21
-------
. Q . .
. . Q .
. .Q. .
Q. . . .
. . . .Q
. .Q. .
. . . Q
Q . . .
 
No. 22
-------
. Q . .
. . Q .
. .Q. .
Q . . .
. . . .Q
. .Q. .
. . . Q
Q. . . .
 
No. 23
-------
. Q . .
. . Q .
. . . .Q
Q. . . .
. .Q. .
. . .Q.
. . Q .
Q . . .
 
No. 24
-------
. Q . .
. . Q .
. . . .Q
Q. . . .
. . Q .
. . .Q.
.Q. . .
. Q . .
 
No. 25
-------
. Q . .
. . Q .
. . . .Q
Q . . .
. .Q. .
Q. . . .
. . . Q
. .Q. .
 
No. 26
-------
. Q . .
. . .Q.
.Q. . .
. . . Q
. . Q .
Q. . . .
. .Q. .
. . Q .
 
No. 27
-------
. Q . .
. . .Q.
.Q. . .
. . . Q
. . .Q.
. Q . .
Q . . .
. .Q. .
 
No. 28
-------
. Q . .
. . . Q
. .Q. .
. . .Q.
Q . . .
. . Q .
.Q. . .
. .Q. .
 
No. 29
-------
. .Q. .
Q. . . .
. . Q .
. . . Q
.Q. . .
. . .Q.
. Q . .
. . Q .
 
No. 30
-------
. .Q. .
Q. . . .
. . Q .
. . . Q
. . .Q.
.Q. . .
. . . Q
Q . . .
 
No. 31
-------
. .Q. .
Q . . .
. . Q .
. . . Q
. . .Q.
Q. . . .
. Q . .
. . .Q.
 
No. 32
-------
. .Q. .
Q . . .
. . . Q
.Q. . .
. . .Q.
. . . Q
Q . . .
. .Q. .
 
No. 33
-------
. .Q. .
Q . . .
. . . Q
.Q. . .
. . .Q.
. . . Q
. . Q .
Q. . . .
 
No. 34
-------
. .Q. .
Q . . .
. . . Q
. .Q. .
Q . . .
. . . Q
. . .Q.
.Q. . .
 
No. 35
-------
. .Q. .
Q . . .
. . . .Q
. .Q. .
. . . Q
Q. . . .
. Q . .
. . Q .
 
No. 36
-------
. .Q. .
Q . . .
. . . .Q
. . Q .
Q . . .
.Q. . .
. . Q .
. . .Q.
 
No. 37
-------
. .Q. .
. . Q .
Q . . .
. .Q. .
.Q. . .
. . . Q
. Q . .
. . .Q.
 
No. 38
-------
. .Q. .
. . Q .
. . . .Q
Q . . .
. . . Q
Q. . . .
. Q . .
. .Q. .
 
No. 39
-------
. .Q. .
. . Q .
. . . .Q
.Q. . .
Q . . .
. . .Q.
. . Q .
Q . . .
 
No. 40
-------
. .Q. .
. . .Q.
Q . . .
. . . Q
. . Q .
Q . . .
. . .Q.
.Q. . .
 
No. 41
-------
. .Q. .
. . .Q.
. Q . .
. . . Q
.Q. . .
. .Q. .
Q . . .
. . Q .
 
No. 42
-------
. .Q. .
. . .Q.
. . Q .
Q . . .
. . .Q.
Q. . . .
. Q . .
. . . Q
 
No. 43
-------
. .Q. .
. . .Q.
. . Q .
.Q. . .
Q . . .
. . Q .
. . . .Q
Q . . .
 
No. 44
-------
. .Q. .
. . . Q
Q . . .
.Q. . .
. . .Q.
Q . . .
. . . Q
. .Q. .
 
No. 45
-------
. .Q. .
. . . Q
Q . . .
. .Q. .
. . . Q
Q . . .
. . .Q.
.Q. . .
 
No. 46
-------
. .Q. .
. . . Q
. . Q .
.Q. . .
Q . . .
. . .Q.
.Q. . .
. . Q .
 
No. 47
-------
. . Q .
Q. . . .
. .Q. .
. . Q .
. . . .Q
Q . . .
. . . Q
.Q. . .
 
No. 48
-------
. . Q .
Q. . . .
. . . .Q
. Q . .
.Q. . .
. . .Q.
. Q . .
. . Q .
 
No. 49
-------
. . Q .
Q. . . .
. . . .Q
. . Q .
. Q . .
. . .Q.
.Q. . .
. Q . .
 
No. 50
-------
. . Q .
Q . . .
. .Q. .
. . Q .
. . . .Q
.Q. . .
Q . . .
. . .Q.
 
No. 51
-------
. . Q .
Q . . .
. .Q. .
. . .Q.
. Q . .
. . . Q
. . .Q.
Q. . . .
 
No. 52
-------
. . Q .
Q . . .
. . .Q.
Q. . . .
. . . Q
. Q . .
. . . .Q
.Q. . .
 
No. 53
-------
. . Q .
Q . . .
. . . .Q
Q. . . .
. .Q. .
. . .Q.
. Q . .
. . Q .
 
No. 54
-------
. . Q .
.Q. . .
Q . . .
. . Q .
. . . .Q
Q . . .
. .Q. .
. . .Q.
 
No. 55
-------
. . Q .
.Q. . .
Q . . .
. . .Q.
.Q. . .
. . . Q
. . .Q.
. Q . .
 
No. 56
-------
. . Q .
.Q. . .
. . . .Q
. Q . .
. . . Q
Q. . . .
. . .Q.
Q . . .
 
No. 57
-------
. . Q .
. . .Q.
Q . . .
.Q. . .
. . . .Q
. . Q .
. .Q. .
Q . . .
 
No. 58
-------
. . Q .
. . .Q.
Q . . .
. Q . .
.Q. . .
. . . Q
. . .Q.
.Q. . .
 
No. 59
-------
. . Q .
. . .Q.
.Q. . .
. Q . .
. . . .Q
Q. . . .
. Q . .
. . Q .
 
No. 60
-------
. . Q .
. . .Q.
.Q. . .
. . Q .
. Q . .
Q. . . .
. .Q. .
. . . Q
 
No. 61
-------
. . Q .
. . .Q.
.Q. . .
. . Q .
. Q . .
Q. . . .
. . . .Q
. Q . .
 
No. 62
-------
. . Q .
. . .Q.
. .Q. .
Q. . . .
. Q . .
. . . Q
. . .Q.
Q . . .
 
No. 63
-------
. . Q .
. . . Q
. .Q. .
Q. . . .
. Q . .
. . Q .
.Q. . .
. . .Q.
 
No. 64
-------
. . Q .
. . . Q
. .Q. .
Q. . . .
. . . Q
Q . . .
. . .Q.
.Q. . .
 
No. 65
-------
. . .Q.
Q. . . .
. . Q .
Q . . .
. . . .Q
.Q. . .
. . . Q
. Q . .
 
No. 66
-------
. . .Q.
Q . . .
. . . Q
Q. . . .
. Q . .
. .Q. .
. . . .Q
. Q . .
 
No. 67
-------
. . .Q.
Q . . .
. . . Q
Q. . . .
. .Q. .
. . . Q
. . Q .
.Q. . .
 
No. 68
-------
. . .Q.
.Q. . .
Q . . .
. . .Q.
. . Q .
. . . Q
.Q. . .
. Q . .
 
No. 69
-------
. . .Q.
.Q. . .
Q . . .
. . . Q
. .Q. .
Q . . .
. . . Q
. .Q. .
 
No. 70
-------
. . .Q.
.Q. . .
Q . . .
. . . Q
. . Q .
Q . . .
. .Q. .
. . .Q.
 
No. 71
-------
. . .Q.
.Q. . .
. . Q .
. . .Q.
Q . . .
. Q . .
.Q. . .
. . . Q
 
No. 72
-------
. . .Q.
.Q. . .
. . Q .
. . . Q
Q . . .
. Q . .
.Q. . .
. . .Q.
 
No. 73
-------
. . .Q.
.Q. . .
. . . Q
Q . . .
. .Q. .
. . . Q
Q . . .
. .Q. .
 
No. 74
-------
. . .Q.
.Q. . .
. . . Q
Q . . .
. . . .Q
. .Q. .
Q . . .
. Q . .
 
No. 75
-------
. . .Q.
.Q. . .
. . . Q
. Q . .
Q . . .
. . . Q
.Q. . .
. .Q. .
 
No. 76
-------
. . .Q.
. Q . .
Q . . .
. .Q. .
. . . .Q
Q . . .
. . . Q
.Q. . .
 
No. 77
-------
. . .Q.
. Q . .
.Q. . .
. . . Q
. . Q .
. . .Q.
Q . . .
.Q. . .
 
No. 78
-------
. . .Q.
. Q . .
. . . Q
Q. . . .
. Q . .
. .Q. .
.Q. . .
. . . Q
 
No. 79
-------
. . .Q.
. Q . .
. . . Q
Q. . . .
. . . .Q
Q . . .
. . Q .
.Q. . .
 
No. 80
-------
. . .Q.
. . . Q
.Q. . .
. Q . .
Q . . .
. . .Q.
. . Q .
.Q. . .
 
No. 81
-------
. . . Q
Q. . . .
. Q . .
. . . Q
. . .Q.
. Q . .
.Q. . .
. .Q. .
 
No. 82
-------
. . . Q
Q . . .
. .Q. .
Q. . . .
. . . .Q
. .Q. .
. Q . .
. . Q .
 
No. 83
-------
. . . Q
Q . . .
. . .Q.
.Q. . .
Q . . .
. Q . .
. . . .Q
. .Q. .
 
No. 84
-------
. . . Q
.Q. . .
Q . . .
. . Q .
. . . .Q
. .Q. .
.Q. . .
. Q . .
 
No. 85
-------
. . . Q
.Q. . .
. . . .Q
Q . . .
. . Q .
Q. . . .
. . .Q.
. Q . .
 
No. 86
-------
. . . Q
. Q . .
.Q. . .
. .Q. .
. . . .Q
Q. . . .
. Q . .
. . Q .
 
No. 87
-------
. . . Q
. Q . .
.Q. . .
. . . Q
. . .Q.
Q. . . .
. Q . .
. .Q. .
 
No. 88
-------
. . . Q
. .Q. .
. Q . .
Q. . . .
. . .Q.
. . . Q
.Q. . .
. Q . .
 
No. 89
-------
. . . .Q
Q . . .
. .Q. .
Q. . . .
. . . Q
. .Q. .
. Q . .
. . Q .
 
No. 90
-------
. . . .Q
Q . . .
. . Q .
.Q. . .
Q . . .
. . .Q.
. .Q. .
. . Q .
 
No. 91
-------
. . . .Q
.Q. . .
Q . . .
. . Q .
.Q. . .
. .Q. .
. . . Q
. Q . .
 
No. 92
-------
. . . .Q
. Q . .
Q . . .
.Q. . .
. . .Q.
Q . . .
. . . Q
. .Q. .</pre>
 
=={{header|CoffeeScript}}==
<syntaxhighlight lang="coffeescript">
# Unlike traditional N-Queens solutions that use recursion, this
# program attempts to more closely model the "human" algorithm.
#
# In this algorithm, the function keeps placing queens on the board
# until there is no longer a safe square. If the 8th queen has been
# placed, the solution is noted. If fewer than 8th queens have been
# placed, then you are at a dead end. In either case, backtracking occurs.
# The LAST queen placed on the board gets pulled, then it gets moved
# to the next safe square. (We backtrack even after a "good" attempt in
# order to get to a new solution.) This backtracking may repeat itself
# several times until the original misplaced queen finally is proven to
# be a dead end.
#
# Many N-Queens solutions use lazy logic (along with geometry shortcuts)
# to determine whether a queen is under attack. In this algorithm, we
# are more proactive, essentially updating a sieve every time we lay a
# queen down. To make backtracking easier, the sieve uses ref-counts vs.
# a simple safe/unsafe boolean.
#
# We precompute the "attack graph" up front, and then we essentially ignore
# the geometry of the problem. This approach, while perhaps suboptimal for
# queens, probably is more flexible for general "coexistence" problems.
nqueens = (n) ->
neighbors = precompute_neighbors(n)
 
board = []
num_solutions = 0
num_backtracks = 0
queens = []
pos = 0
 
for p in [0...n*n]
board.push 0
attack = (pos, delta=1) ->
for neighbor in neighbors[pos]
board[neighbor] += delta
backtrack = ->
pos = queens.pop()
attack pos, -1 # unattack queen you just pulled
pos += 1
num_backtracks += 1
 
# The following loop finds all 92 solutions to
# the 8-queens problem (for n=8).
while true
if pos >= n*n
if queens.length == 0
break
backtrack()
continue
 
# If a square is empty
if board[pos] == 0
attack pos
queens.push pos
if queens.length == n
num_solutions += 1
show_queens queens, n
backtrack()
pos += 1
console.log "#{num_solutions} solutions"
console.log "#{num_backtracks} backtracks"
 
 
precompute_neighbors = (n) ->
# For each board position, build a list of all
# the board positions that would be under attack if
# you placed a queen on it. This assumes a 1d array
# of squares.
neighbors = []
 
find_neighbors = (pos) ->
arr = []
row = Math.floor pos / n
col = pos % n
for i in [0...n]
if i != col
arr.push row*n + i
r1 = row + col - i
r2 = row + i - col
if 0 <= r1 and r1 < n
arr.push r1*n + i
if 0 <= r2 and r2 < n
arr.push r2*n + i
if i != row
arr.push i*n + col
arr
 
for pos in [0...n*n]
neighbors.push find_neighbors(pos)
neighbors
 
 
show_queens = (queens, n) ->
# precondition: queens is a sorted array of integers,
# and each row is represented
console.log "\n------"
for q in queens
col = q % n
s = ''
for c in [0...n]
if c == col
s += "Q "
else
s += "* "
console.log s + "\n"
 
nqueens(8)
</syntaxhighlight>
 
=={{header|Common Lisp}}==
<syntaxhighlight lang="lisp">(defun queens (n &optional (m n))
(if (zerop n)
(list nil)
(loop for solution in (queens (1- n) m)
nconc (loop for new-col from 1 to m
when (loop for row from 1 to n
for col in solution
always (/= new-col col (+ col row) (- col row)))
collect (cons new-col solution)))))
 
(defun print-solution (solution)
(loop for queen-col in solution
do (loop for col from 1 to (length solution)
do (write-char (if (= col queen-col) #\Q #\.)))
(terpri))
(terpri))
 
(defun print-queens (n)
(mapc #'print-solution (queens n)))</syntaxhighlight>
 
=== Alternate solution ===
Translation of Fortran 77
<syntaxhighlight lang="lisp">(defun queens1 (n)
(let ((a (make-array n))
(s (make-array n))
(u (make-array (list (- (* 4 n) 2)) :initial-element t))
y z (i 0) j p q (r (1- (* 2 n))) (m 0))
(dotimes (i n) (setf (aref a i) i))
(tagbody
L1
(if (>= i n) (go L5))
(setf j i)
L2
(setf y (aref a j) z (aref a i))
(setf p (+ (- i y) n -1) q (+ i y))
(setf (aref a i) y (aref a j) z)
(when (and (aref u p) (aref u (+ q r)))
(setf (aref s i) j (aref u p) nil (aref u (+ q r)) nil)
(incf i)
(go L1))
L3
(incf j)
(if (< j n) (go L2))
L4
(decf j)
(if (= j i) (go L6))
(rotatef (aref a i) (aref a j))
(go L4)
L5
(incf m)
L6
(decf i)
(if (minusp i) (go L7))
(setf p (+ (- i (aref a i)) n -1) q (+ i (aref a i)) j (aref s i))
(setf (aref u p) t (aref u (+ q r)) t)
(go L3)
L7)
m))
 
> (loop for n from 1 to 14 collect (cons n (queens1 n)))
((1 . 1) (2 . 0) (3 . 0) (4 . 2) (5 . 10) (6 . 4) (7 . 40) (8 . 92) (9 . 352)
(10 . 724) (11 . 2680) (12 . 14200) (13 . 73712) (14 . 365596))</syntaxhighlight>
 
As in Fortran, the iterative function above is equivalent to the recursive function below:
 
<syntaxhighlight lang="lisp">(defun queens2 (n)
(let ((a (make-array n))
(u (make-array (+ n n -1) :initial-element t))
(v (make-array (+ n n -1) :initial-element t))
(m 0))
(dotimes (i n) (setf (aref a i) i))
(labels ((sub (i)
(if (= i n)
;(push (copy-seq a) s)
(incf m)
(loop for k from i below n do
(let ((p (+ i (aref a k)))
(q (+ (- i (aref a k)) n -1)))
(when (and (aref u p) (aref v q))
(setf (aref u p) nil (aref v q) nil)
(rotatef (aref a i) (aref a k))
(sub (1+ i))
(setf (aref u p) t (aref v q) t)
(rotatef (aref a i) (aref a k))))))))
(sub 0))
m))</syntaxhighlight>
 
=={{header|Curry}}==
Three different ways of attacking the same problem. All copied from [http://web.cecs.pdx.edu/~antoy/flp/patterns/ A Catalog of Design Patterns in FLP]
<syntaxhighlight lang="curry">
-- 8-queens implementation with the Constrained Constructor pattern
-- Sergio Antoy
-- Fri Jul 13 07:05:32 PDT 2001
 
-- Place 8 queens on a chessboard so that no queen can capture
-- (and be captured by) any other queen.
 
-- Non-deterministic choice operator
 
infixl 0 !
X ! _ = X
_ ! Y = Y
 
-- A solution is represented by a list of integers.
-- The i-th integer in the list is the column of the board
-- in which the queen in the i-th row is placed.
-- Rows and columns are numbered from 1 to 8.
-- For example, [4,2,7,3,6,8,5,1] is a solution where the
-- the queen in row 1 is in column 4, etc.
-- Any solution must be a permutation of [1,2,...,8].
 
-- The state of a queen is its position, row and column, on the board.
-- Operation column is a particularly simple instance
-- of a Constrained Constructor pattern.
-- When it is invoked, it produces only valid states.
 
column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8
 
-- A path of the puzzle is a sequence of successive placements of
-- queens on the board. It is not explicitly defined as a type.
-- A path is a potential solution in the making.
 
-- Constrained Constructor on a path
-- Any path must be valid, i.e., any column must be in the range 1..8
-- and different from any other column in the path.
-- Furthermore, the path must be safe for the queens.
-- No queen in a path may capture any other queen in the path.
-- Operation makePath add column n to path c or fails.
 
makePath c n | valid c && safe c 1 = n:c
where valid c | n =:= column = uniq c
where uniq [] = True
uniq (c:cs) = n /= c && uniq cs
safe [] _ = True
safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)
where abs x = if x < 0 then -x else x
 
-- extend the path argument till all the queens are on the board
-- see the Incremental Solution pattern
 
extend p = if (length p == 8)
then p
else extend (makePath p x)
where x free
 
-- solve the puzzle
 
main = extend []
</syntaxhighlight>
 
Another approach from the same source.
 
<syntaxhighlight lang="curry">
-- N-queens puzzle implemented with "Distinct Choices" pattern
-- Sergio Antoy
-- Tue Sep 4 13:16:20 PDT 2001
-- updated: Mon Sep 23 15:22:15 PDT 2002
 
import Integer
 
queens x | y =:= permute x & void (capture y) = y where y free
 
capture y = let l1,l2,l3,y1,y2 free in
l1 ++ [y1] ++ l2 ++ [y2] ++ l3 =:= y & abs (y1-y2) =:= length l2 + 1
 
-- negation as failure (implemented by encapsulated search):
void c = (findall \_->c) =:= []
 
-- How does this permutation algorithm work?
-- Only the elements [0,1,...,n-1] can be permuted.
-- The reason is that each element is used as an index in a list.
-- A list, called store, of free variables of length n is created.
-- Then, the n iterations described below are executed.
-- At the i-th iteration, an element, say s,
-- of the initial list is non-deterministically selected.
-- This element is used as index in the store.
-- The s-th variable of the store is unified with i.
-- At the end of the iterations, the elements of the store
-- are a permutation of [0,1,...,n-1], i.e., the elements
-- are unique since two iterations cannot select the same index.
 
permute n = result n
where result n = if n==0 then [] else pick n store : result (n-1)
pick i store | store !! k =:= i = k where k = range n
range n | n > 0 = range (n-1) ! (n-1)
store = free
-- end
</syntaxhighlight>
 
Yet another approach, also from the same source.
 
<syntaxhighlight lang="curry">
-- 8-queens implementation with both the Constrained Constructor
-- and the Fused Generate and Test patterns.
-- Sergio Antoy
-- Fri Jul 13 07:05:32 PDT 2001
 
-- Place 8 queens on a chessboard so that no queen can capture
-- (and be captured by) any other queen.
 
-- Non-deterministic choice operator
 
infixl 0 !
X ! _ = X
_ ! Y = Y
 
-- A solution is represented by a list of integers.
-- The i-th integer in the list is the column of the board
-- in which the queen in the i-th row is placed.
-- Rows and columns are numbered from 1 to 8.
-- For example, [4,2,7,3,6,8,5,1] is a solution where the
-- the queen in row 1 is in column 4, etc.
-- Any solution must be a permutation of [1,2,...,8].
 
-- The state of a queen is its position, row and column, on the board.
-- Operation column is a particularly simple instance
-- of a Constrained Constructor pattern.
-- When it is invoked, it produces only valid states.
 
column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8
 
-- A path of the puzzle is a sequence of successive placements of
-- queens on the board. It is not explicitly defined as a type.
-- A path is a potential solution in the making.
 
-- Constrained Constructor on a path
-- Any path must be valid, i.e., any column must be in the range 1..8
-- and different from any other column in the path.
-- Furthermore, the path must be safe for the queens.
-- No queen in a path may capture any other queen in the path.
-- Operation makePath add column n to path c or fails.
 
makePath c n | valid c && safe c 1 = n:c
where valid c | n =:= column = uniq c
where uniq [] = True
uniq (c:cs) = n /= c && uniq cs
safe [] _ = True
safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)
where abs x = if x < 0 then -x else x
 
-- extend the path argument till all the queens are on the board
-- see the Incremental Solution pattern
 
extend p = if (length p == 8)
then p
else extend (makePath p x)
where x free
 
-- solve the puzzle
 
main = extend []
</syntaxhighlight>
Mainly [http://www-ps.informatik.uni-kiel.de/~pakcs/webpakcs/main.cgi?queens webpakcs], uses constraint-solver.
<syntaxhighlight lang="curry">import CLPFD
import Findall
 
queens n qs =
qs =:= [_ | _ <- [1..n]]
& domain qs 1 (length qs)
& allDifferent qs
& allSafe qs
& labeling [FirstFail] qs
 
allSafe [] = success
allSafe (q:qs) = safe q qs 1 & allSafe qs
 
safe :: Int -> [Int] -> Int -> Success
safe _ [] _ = success
safe q (q1:qs) p = q /=# q1+#p & q /=# q1-#p & safe q qs (p+#1)
 
-- oneSolution = unpack $ queens 8
-- allSolutions = findall $ queens 8</syntaxhighlight>
 
=={{header|D}}==
===Short Version===
This high-level version uses the second solution of the Permutations task.
<syntaxhighlight lang="d">void main() {
import std.stdio, std.algorithm, std.range, permutations2;
 
enum n = 8;
n.iota.array.permutations.filter!(p =>
n.iota.map!(i => p[i] + i).array.sort().uniq.count == n &&
n.iota.map!(i => p[i] - i).array.sort().uniq.count == n)
.count.writeln;
}</syntaxhighlight>
{{out}}
<pre>92</pre>
 
===Intermediate Version===
This version shows all the solutions.
{{trans|C}}
<syntaxhighlight lang="d">enum side = 8;
__gshared int[side] board;
 
bool isUnsafe(in int y) nothrow @nogc {
immutable int x = board[y];
foreach (immutable i; 1 .. y + 1) {
immutable int t = board[y - i];
if (t == x || t == x - i || t == x + i)
return true;
}
 
return false;
}
 
void showBoard() nothrow @nogc {
import core.stdc.stdio;
 
static int s = 1;
printf("\nSolution #%d:\n", s++);
foreach (immutable y; 0 .. side) {
foreach (immutable x; 0 .. side)
putchar(board[y] == x ? 'Q' : '.');
putchar('\n');
}
}
 
void main() nothrow @nogc {
int y = 0;
board[0] = -1;
 
while (y >= 0) {
do {
board[y]++;
} while (board[y] < side && y.isUnsafe);
 
if (board[y] < side) {
if (y < (side - 1))
board[++y] = -1;
else
showBoard;
} else
y--;
}
}</syntaxhighlight>
{{out}}
<pre>
Solution #1:
Q.......
....Q...
.......Q
.....Q..
..Q.....
......Q.
.Q......
...Q....
 
[...]
 
Solution #91:
.......Q
..Q.....
Q.......
.....Q..
.Q......
....Q...
......Q.
...Q....
 
Solution #92:
.......Q
...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...</pre>
 
===Fast Version===
{{trans|C}}
<syntaxhighlight lang="d">ulong nQueens(in uint nn) pure nothrow @nogc @safe
in {
assert(nn > 0 && nn <= 27,
"'side' value must be in 1 .. 27.");
} body {
if (nn < 4)
return nn == 1;
 
enum uint ulen = uint.sizeof * 8;
immutable uint full = uint.max - ((1 << (ulen - nn)) - 1);
immutable n = nn - 3;
 
typeof(return) count;
uint[32] l=void, r=void, c=void;
uint[33] mm; // mm and mmi are a stack.
 
// Require second queen to be left of the first queen, so
// we ever only test half of the possible solutions. This
// is why we can't handle n=1 here.
for (uint b0 = 1U << (ulen - n - 3); b0; b0 <<= 1) {
for (uint b1 = b0 << 2; b1; b1 <<= 1) {
uint d = n;
// c: columns occupied by previous queens.
c[n] = b0 | b1;
// l: columns attacked by left diagonals.
l[n] = (b0 << 2) | (b1 << 1);
// r: by right diagnoals.
r[n] = (b0 >> 2) | (b1 >> 1);
 
// Availabe columns on current row.
uint bits = full & ~(l[n] | r[n] | c[n]);
 
uint mmi = 1;
mm[mmi] = bits;
 
while (bits) {
// d: depth, aka row. counting backwards.
// Because !d is often faster than d != n.
while (d) {
// immutable uint pos = 1U << bits.bsf; // Slower.
immutable uint pos = -int(bits) & bits;
 
// Mark bit used. Only put current bits on
// stack if not zero, so backtracking will
// skip exhausted rows (because reading stack
// variable is slow compared to registers).
bits &= ~pos;
if (bits) {
mm[mmi] = bits | d;
mmi++;
}
 
d--;
l[d] = (l[d + 1] | pos) << 1;
r[d] = (r[d + 1] | pos) >> 1;
c[d] = c[d + 1] | pos;
 
bits = full & ~(l[d] | r[d] | c[d]);
 
if (!bits)
break;
if (!d) {
count++;
break;
}
}
 
// Bottom of stack m is a zero'd field acting as
// sentinel. When saving to stack, left 27 bits
// are the available columns, while right 5 bits
// is the depth. Hence solution is limited to size
// 27 board -- not that it matters in foreseeable
// future.
mmi--;
bits = mm[mmi];
d = bits & 31U;
bits &= ~31U;
}
}
}
 
return count * 2;
}
 
void main(in string[] args) {
import std.stdio, std.conv;
 
immutable uint side = (args.length >= 2) ? args[1].to!uint : 8;
writefln("N-queens(%d) = %d solutions.", side, side.nQueens);
}</syntaxhighlight>
{{out}}
<pre>N-queens(8) = 92 solutions.</pre>
With side = 17:
<pre>N-queens(17) = 95815104 solutions.</pre>
Run-time for side = 17 compiled with ldc2 is about 49.5 seconds.
<pre>N-queens(19) = 4968057848 solutions.</pre>
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">/**
Return true if queen placement q[n] does not conflict with
other queens q[0] through q[n-1]
*/
isConsistent(List q, int n) {
for (int i=0; i<n; i++) {
if (q[i] == q[n]) {
return false; // Same column
}
if ((q[i] - q[n]) == (n - i)) {
return false; // Same major diagonal
}
if ((q[n] - q[i]) == (n - i)) {
return false; // Same minor diagonal
}
}
return true;
}
 
/**
Print out N-by-N placement of queens from permutation q in ASCII.
*/
printQueens(List q) {
int N = q.length;
for (int i=0; i<N; i++) {
StringBuffer sb = new StringBuffer();
for (int j=0; j<N; j++) {
if (q[i] == j) {
sb.write("Q ");
} else {
sb.write("* ");
}
}
print(sb.toString());
}
print("");
}
 
/**
Try all permutations using backtracking
*/
enumerate(int N) {
var a = new List(N);
_enumerate(a, 0);
}
 
_enumerate(List q, int n) {
if (n == q.length) {
printQueens(q);
} else {
for (int i = 0; i < q.length; i++) {
q[n] = i;
if (isConsistent(q, n)){
_enumerate(q, n+1);
}
}
}
}
 
void main() {
enumerate(4);
}</syntaxhighlight>
{{out}}
<pre>* Q * *
* * * Q
Q * * *
* * Q *
 
* * Q *
Q * * *
* * * Q
* Q * *
</pre>
=={{header|Delphi}}==
{{libheader| System.SysUtils}}
{{Trans|Go}}
<syntaxhighlight lang="delphi">
program N_queens_problem;
 
{$APPTYPE CONSOLE}
 
uses
System.SysUtils;
 
var
i: Integer;
q: boolean;
a: array[0..8] of boolean;
b: array[0..16] of boolean;
c: array[0..14] of boolean;
x: array[0..8] of Integer;
 
procedure TryMove(i: Integer);
begin
var j := 1;
while True do
begin
q := false;
if a[j] and b[i + j] and c[i - j + 7] then
begin
x[i] := j;
a[j] := false;
b[i + j] := false;
c[i - j + 7] := false;
 
if i < 8 then
begin
TryMove(i + 1);
if not q then
begin
a[j] := true;
b[i + j] := true;
c[i - j + 7] := true;
end;
end
else
q := true;
end;
if q or (j = 8) then
Break;
inc(j);
end;
end;
 
begin
for i := 1 to 8 do
a[i] := true;
 
for i := 2 to 16 do
b[i] := true;
 
for i := 0 to 14 do
c[i] := true;
 
TryMove(1);
 
if q then
for i := 1 to 8 do
writeln(i, ' ', x[i]);
readln;
end.</syntaxhighlight>
 
=={{header|Draco}}==
{{trans|C}}
<syntaxhighlight lang="draco">byte SIZE = 8;
word count;
 
proc solve([*] int hist; int col) void:
int i, j, n;
n := dim(hist, 1);
if col = n then
count := count + 1;
writeln();
writeln("No. ", count);
writeln("-----");
for i from 0 upto n-1 do
for j from 0 upto n-1 do
write(if j=hist[i] then 'Q'
elif (i+j)&1 /= 0 then ' '
else '.' fi)
od;
writeln()
od
else
for i from 0 upto n-1 do
j := 0;
while j<col and not (hist[j]=i or |(hist[j]-i) = col-j) do
j := j + 1
od;
if j >= col then
hist[col] := i;
solve(hist, col+1)
fi
od
fi
corp
 
proc nonrec main() void:
[SIZE] int hist;
count := 0;
solve(hist, 0)
corp</syntaxhighlight>
{{out}}
<pre>No. 1
-----
Q . . .
. .Q. .
. . . .Q
. . Q .
. Q . .
. . .Q.
.Q. . .
. Q . .</pre>
...
<pre>No. 92
-----
. . . .Q
. Q . .
Q . . .
.Q. . .
. . .Q.
Q . . .
. . . Q
. .Q. .</pre>
 
=={{header|EasyLang}}==
 
<syntaxhighlight lang="easylang">
subr show_sol
print "Solution " & n_sol
print ""
for i = 1 to n
write " "
for j = 1 to n
if j = x[i]
write "Q "
else
write ". "
.
.
print ""
.
print ""
.
subr test
ok = 1
for i = 1 to y - 1
if x[y] = x[i] or abs (x[i] - x[y]) = abs (y - i)
ok = 0
.
.
.
n = 8
len x[] n
y = 1
x[1] = 1
while y >= 1
test
if ok = 1 and y + 1 <= n
y += 1
x[y] = 1
else
if ok = 1
n_sol += 1
if n_sol <= 1
show_sol
.
.
while y >= 1 and x[y] = n
y -= 1
.
if y >= 1
x[y] += 1
.
.
.
print n_sol & " solutions"
</syntaxhighlight>
{{out}}
<pre>Solution 1
 
Q . . . . . . .
. . . . Q . . .
. . . . . . . Q
. . . . . Q . .
. . Q . . . . .
. . . . . . Q .
. Q . . . . . .
. . . Q . . . .
 
92 solutions</pre>
 
=={{header|EchoLisp}}==
<syntaxhighlight lang="scheme">
;; square num is i + j*N
(define-syntax-rule (sq i j) (+ i (* j N)))
 
;; compute diag number for each square
(define (do-diag1 i0 j0 dnum into: dnum1 N) ;; ++i and ++j diags
(for [(i (in-range i0 N)) (j (in-range j0 N))]
;;(writeln i j 'diag1 dnum)
(vector-set! dnum1 (sq i j) dnum)))
(define (do-diag2 i0 j0 dnum into: dnum2 N) ;; --i and ++j diags
(for [(i (in-range i0 -1 -1)) (j (in-range j0 N))]
;; (writeln i j 'diag2 dnum)
(vector-set! dnum2 (sq i j) dnum)))
(define (init-diags dnum1 dnum2 N)
(define dnum 0)
(for ((j N)) (do-diag1 0 j dnum dnum1 N) (++ dnum))
(for ((i (in-range 1 N)))
(do-diag1 i 0 dnum dnum1 N) (++ dnum))
(set! dnum 0)
(for ((j N)) (do-diag2 (1- N) j dnum dnum2 N) (++ dnum))
(for ((i (1- N))) (do-diag2 i 0 dnum dnum2 N) (++ dnum)))
;; end boring diags part
(define (q-search i N col diag1 diag2 dnum1 dnum2 &hits (ns))
(cond
[(= i N) (set-box! &hits (1+ (unbox &hits))) ] ;; (writeln 'HIT col)
[else
(for ((j N))
(set! ns (sq i j))
#:continue (or [col j] [diag1 [dnum1 ns]] [diag2 [dnum2 ns]])
(vector-set! col j i) ;; move
(vector-set! diag1 [dnum1 ns] #t) ;; flag busy diagonal
(vector-set! diag2 [dnum2 ns] #t)
(q-search (1+ i) N col diag1 diag2 dnum1 dnum2 &hits)
(vector-set! col j #f) ;; unmove
(vector-set! diag1 [dnum1 ns] #f)
(vector-set! diag2 [dnum2 ns] #f))
]))
(define (q-count (N 8))
(define dnum1 (make-vector (* N N)))
(define dnum2 (make-vector (* N N )))
(init-diags dnum1 dnum2 N)
(define diag1 (make-vector (* 2 N) #f)) ; busy diag's
(define diag2 (make-vector (* 2 N) #f))
(define col (make-vector N #f))
(define &hits (box 0))
(q-search 0 N col diag1 diag2 dnum1 dnum2 &hits)
(unbox &hits))
(define (task up-to-n)
(for ((i up-to-n)) (writeln i ' ♕ (q-count i) 'solutions)))
</syntaxhighlight>
{{out}}
<pre>
(task 13)
 
0 ♕ 1 solutions
1 ♕ 1 solutions
2 ♕ 0 solutions
3 ♕ 0 solutions
4 ♕ 2 solutions
5 ♕ 10 solutions
6 ♕ 4 solutions
7 ♕ 40 solutions
8 ♕ 92 solutions
9 ♕ 352 solutions
10 ♕ 724 solutions
11 ♕ 2680 solutions
12 ♕ 14200 solutions
</pre>
 
=={{header|Ecstasy}}==
<syntaxhighlight lang="Ecstasy">/**
* A solver for the classic 8-queens problem.
*
* @see https://rosettacode.org/wiki/N-queens_problem
*/
module eightQueens {
void run() {
@Inject Console console;
Int count = new Board().solve(b -> console.print($"{b}\n"));
console.print($"{count} solutions found");
}
 
/**
* `Board` represents a chess board that holds only queens. The board
* is organized as columns 0 ("A") to 7 ("H"), and rows 0 (rank "1")
* to 7 (rank "8").
*/
const Board {
/**
* Construct an empty board.
*/
construct() {}
 
/**
* Internal: Construct a specifically-populated board.
*/
private construct(Int queens, Int claimed) {
this.queens = queens;
this.claimed = claimed;
}
 
/**
* Each bit of this 64-bit integer represents a queen.
*/
private Int queens;
/**
* Each bit of this 64-bit integer represents a queen or a threat.
*/
private Int claimed;
 
/**
* Translate a column and row to a bit-mask, used with the
* [queens] and [claimed] properties. Examples:
* * A1 is (0,0) => 0x0000000000000001
* * H8 is (7,7) => 0x8000000000000000
*/
private Int mask(Int col, Int row) = 1 << (row << 3) + col;
 
/**
* Determine if the specified square has a queen in it.
*/
Boolean occupied(Int col, Int row) {
return queens & mask(col, row) != 0;
}
 
/**
* Determine if the specified square is safe from the queens.
*/
Boolean safe(Int col, Int row) {
return claimed & mask(col, row) == 0;
}
 
/**
* Attempt to place a queen in a specified square.
*
* @return True iff a queen can be safely placed in the square
* @return (conditional) the new Board with the new queen on it
*/
conditional Board placeQueen(Int col, Int row) {
assert 0 <= col < 8 && 0 <= row < 8;
if (!safe(col, row)) {
return False;
}
 
Int newQueens = queens | mask(col, row);
Int newClaimed = claimed | queens;
// claim all threatened spaces
for (Int i : 0..7) {
newClaimed |= mask(i, row) | mask(col, i);
val diagDownRow = row + i - col;
if (0 <= diagDownRow < 8) {
newClaimed |= mask(i, diagDownRow);
}
val diagUpRow = row - i + col;
if (0 <= diagUpRow < 8) {
newClaimed |= mask(i, diagUpRow);
}
}
return True, new Board(newQueens, newClaimed);
}
 
/**
* Attempt to find all solutions to the n-queens problem.
*/
Int solve(function void(Board) yield) = solve(yield, 0);
 
/**
* Internal: Attempt to find all solutions to the n-queens problem,
* starting with the specified column and recursively solving by
* moving to the next column for each potential solution found in
* the specified column.
*/
private Int solve(function void(Board) yield, Int col) {
if (col == 8) {
// there is no column 8; we've found a solution
yield(this);
return 1;
}
 
Int count = 0;
for (Int rank : 8..1) {
val row = 8-rank;
if (Board afterPlacing := placeQueen(col, row)) {
count += afterPlacing.solve(yield, col + 1);
}
}
return count;
}
 
@Override String toString() {
val buf = new StringBuffer();
for (Int rank : 8..1) {
buf.append($"{rank} |");
val row = 8-rank;
for (Int col : 0..7) {
buf.add(occupied(col, row) ? 'q' : '_').add('|');
}
buf.add('\n');
}
return buf.append(" A B C D E F G H").toString();
}
}
}</syntaxhighlight>
<b>Output:</b>
<code><pre>
8 |q|_|_|_|_|_|_|_|
7 |_|_|_|_|_|_|q|_|
6 |_|_|_|_|q|_|_|_|
5 |_|_|_|_|_|_|_|q|
4 |_|q|_|_|_|_|_|_|
3 |_|_|_|q|_|_|_|_|
2 |_|_|_|_|_|q|_|_|
1 |_|_|q|_|_|_|_|_|
A B C D E F G H
 
8 |q|_|_|_|_|_|_|_|
7 |_|_|_|_|_|_|q|_|
6 |_|_|_|q|_|_|_|_|
5 |_|_|_|_|_|q|_|_|
4 |_|_|_|_|_|_|_|q|
3 |_|q|_|_|_|_|_|_|
2 |_|_|_|_|q|_|_|_|
1 |_|_|q|_|_|_|_|_|
A B C D E F G H
 
(...)
 
8 |_|_|q|_|_|_|_|_|
7 |_|_|_|_|_|q|_|_|
6 |_|_|_|q|_|_|_|_|
5 |_|q|_|_|_|_|_|_|
4 |_|_|_|_|_|_|_|q|
3 |_|_|_|_|q|_|_|_|
2 |_|_|_|_|_|_|q|_|
1 |q|_|_|_|_|_|_|_|
A B C D E F G H
 
92 solutions found
</pre></code>
 
=={{header|Eiffel}}==
<syntaxhighlight lang="eiffel">
class
QUEENS
 
create
make
 
feature {NONE}
counter: INTEGER
 
place_queens(board: ARRAY[INTEGER]; level: INTEGER)
local
i, j: INTEGER
safe: BOOLEAN
do
if level > board.count
then
counter := counter + 1
else
from
i := 1
until
i > board.count
loop
safe := True
from
j := 1
until
j = level or not safe
loop
if (board[j] = i)
or (j - level = i - board[j])
or (j - level = board[j] - i)
then
safe := False
end
j := j + 1
end
if safe
then
board[level] := i
place_queens(board, level + 1)
end
i := i + 1
end
end
end
 
feature
possible_positions_of_n_queens(n: INTEGER): INTEGER
local
board: ARRAY[INTEGER]
do
create board.make_filled (0, 1, n)
counter := 0
place_queens(board, 1)
Result := counter
end
 
make
local
n: INTEGER
do
io.put_string ("Please enter the number of queens: ")
io.read_integer
n := io.last_integer
print("%NPossible number of placings: " + possible_positions_of_n_queens(n).out + "%N")
end
end
</syntaxhighlight>
{{out}}
<pre>
Please enter the number of queens: 1
Possible number of placings: 1
 
Please enter the number of queens: 2
Possible number of placings: 0
 
Please enter the number of queens: 3
Possible number of placings: 0
 
Please enter the number of queens: 4
Possible number of placings: 2
 
Please enter the number of queens: 5
Possible number of placings: 10
 
Please enter the number of queens: 6
Possible number of placings: 4
 
Please enter the number of queens: 7
Possible number of placings: 40
 
Please enter the number of queens: 8
Possible number of placings: 92
 
Please enter the number of queens: 9
Possible number of placings: 352
 
Please enter the number of queens: 10
Possible number of placings: 724
</pre>
 
=={{header|Elixir}}==
{{trans|Ruby}}
<syntaxhighlight lang="elixir">defmodule RC do
def queen(n, display \\ true) do
solve(n, [], [], [], display)
end
defp solve(n, row, _, _, display) when n==length(row) do
if display, do: print(n,row)
1
end
defp solve(n, row, add_list, sub_list, display) do
Enum.map(Enum.to_list(0..n-1) -- row, fn x ->
add = x + length(row) # \ diagonal check
sub = x - length(row) # / diagonal check
if (add in add_list) or (sub in sub_list) do
0
else
solve(n, [x|row], [add | add_list], [sub | sub_list], display)
end
end) |> Enum.sum # total of the solution
end
defp print(n, row) do
IO.puts frame = "+" <> String.duplicate("-", 2*n+1) <> "+"
Enum.each(row, fn x ->
line = Enum.map_join(0..n-1, fn i -> if x==i, do: "Q ", else: ". " end)
IO.puts "| #{line}|"
end)
IO.puts frame
end
end
 
Enum.each(1..6, fn n ->
IO.puts " #{n} Queen : #{RC.queen(n)}"
end)
 
Enum.each(7..12, fn n ->
IO.puts " #{n} Queen : #{RC.queen(n, false)}" # no display
end)</syntaxhighlight>
 
{{out}}
<pre style="height: 80ex; overflow: scroll">
+---+
| Q |
+---+
1 Queen : 1
2 Queen : 0
3 Queen : 0
+---------+
| . . Q . |
| Q . . . |
| . . . Q |
| . Q . . |
+---------+
+---------+
| . Q . . |
| . . . Q |
| Q . . . |
| . . Q . |
+---------+
4 Queen : 2
+-----------+
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
+-----------+
+-----------+
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
+-----------+
+-----------+
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
+-----------+
+-----------+
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
+-----------+
+-----------+
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
+-----------+
+-----------+
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
+-----------+
+-----------+
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
+-----------+
+-----------+
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
+-----------+
+-----------+
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
+-----------+
+-----------+
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
+-----------+
5 Queen : 10
+-------------+
| . . . . Q . |
| . . Q . . . |
| Q . . . . . |
| . . . . . Q |
| . . . Q . . |
| . Q . . . . |
+-------------+
+-------------+
| . . . Q . . |
| Q . . . . . |
| . . . . Q . |
| . Q . . . . |
| . . . . . Q |
| . . Q . . . |
+-------------+
+-------------+
| . . Q . . . |
| . . . . . Q |
| . Q . . . . |
| . . . . Q . |
| Q . . . . . |
| . . . Q . . |
+-------------+
+-------------+
| . Q . . . . |
| . . . Q . . |
| . . . . . Q |
| Q . . . . . |
| . . Q . . . |
| . . . . Q . |
+-------------+
6 Queen : 4
7 Queen : 40
8 Queen : 92
9 Queen : 352
10 Queen : 724
11 Queen : 2680
12 Queen : 14200
</pre>
 
=={{header|Emacs Lisp}}==
<syntaxhighlight lang="lisp">
(let ((*result* '()))
(defun grid-cnt (n)
(* n n) )
(defun x-axis (n pos)
(/ pos n) )
(defun y-axis (n pos)
(% pos n) )
(defun chess-cnt (chess-map)
(seq-count (lambda (x) x) chess-map))
(defun check-conflict (n chess-map pos)
(let ((is-conflict nil))
(cl-loop for i from 0 to (1- (grid-cnt n)) while (not is-conflict) do
(when (aref chess-map i)
(when (or (= (x-axis n i) (x-axis n pos))
(= (y-axis n i) (y-axis n pos))
(= (abs (- (x-axis n i) (x-axis n pos)))
(abs (- (y-axis n i) (y-axis n pos))))
)
(setq is-conflict 't)
)
)
)
is-conflict )
)
(defun place-chess (n chess-map start-pos)
(if (< (chess-cnt chess-map) n)
(progn
(let ()
(cl-loop for i from start-pos to (1- (grid-cnt n)) do
(when (not (aref chess-map i)) ;; check if place is empty
;; check if place is on hold by other chess
(when (not (check-conflict n chess-map i))
(let ((map1 (copy-sequence chess-map)))
(aset map1 i 't)
(place-chess n map1 i)
)
)
)
)
)
)
(progn
(if *result* (nconc *result* (list chess-map)) (setq *result* (list chess-map)))
)
)
)
 
(defun show-result (n)
(let ()
(seq-map (lambda (map1)
(let ((map-txt ""))
(message ">>>>>>>>>>>>>>")
(seq-map-indexed (lambda (elm idx)
(if (= (% idx n) 0)
;;(setq map-text (concat map-txt "\n"))
(progn
(message map-txt)
(setq map-txt "") )
)
(setq map-txt
(concat map-txt (if elm "✓" "⓪")))
) map1)
(message "<<<<<<<<<<<<<<\n")
)
) *result*)
)
(message "%d solutions in total" (length *result*))
)
(defun start-calculate (n)
(let ((chess-map (make-vector (grid-cnt n) nil)))
(place-chess n chess-map 0)
)
(show-result n)
)
 
(start-calculate 8)
)
</syntaxhighlight>
 
{{out}}
<pre>
...
92 solutions in total
</pre>
 
=={{header|Erlang}}==
Instead of spawning a new process to search for each possible solution I backtrack.
<syntaxhighlight lang="erlang">
-module( n_queens ).
 
-export( [display/1, solve/1, task/0] ).
 
display( Board ) ->
%% Queens are in the positions in the Board list.
%% Top left corner is {1, 1}, Bottom right is {N, N}. There is a queen in the max column.
N = lists:max( [X || {X, _Y} <- Board] ),
[display_row(Y, N, Board) || Y <- lists:seq(1, N)].
 
solve( N ) ->
Positions = [{X, Y} || X <- lists:seq(1, N), Y <- lists:seq(1, N)],
try
bt( N, Positions, [] )
 
catch
_:{ok, Board} -> Board
 
end.
 
task() ->
task( 4 ),
task( 8 ).
 
 
 
bt( N, Positions, Board ) -> bt_reject( is_not_allowed_queen_placement(N, Board), N, Positions, Board ).
 
bt_accept( true, _N, _Positions, Board ) -> erlang:throw( {ok, Board} );
bt_accept( false, N, Positions, Board ) -> bt_loop( N, Positions, [], Board ).
 
bt_loop( _N, [], _Rejects, _Board ) -> failed;
bt_loop( N, [Position | T], Rejects, Board ) ->
bt( N, T ++ Rejects, [Position | Board] ),
bt_loop( N, T, [Position | Rejects], Board ).
 
bt_reject( true, _N, _Positions, _Board ) -> backtrack;
bt_reject( false, N, Positions, Board ) -> bt_accept( is_all_queens(N, Board), N, Positions, Board ).
 
diagonals( N, {X, Y} ) ->
D1 = diagonals( N, X + 1, fun diagonals_add1/1, Y + 1, fun diagonals_add1/1 ),
D2 = diagonals( N, X + 1, fun diagonals_add1/1, Y - 1, fun diagonals_subtract1/1 ),
D3 = diagonals( N, X - 1, fun diagonals_subtract1/1, Y + 1, fun diagonals_add1/1 ),
D4 = diagonals( N, X - 1, fun diagonals_subtract1/1, Y - 1, fun diagonals_subtract1/1 ),
D1 ++ D2 ++ D3 ++ D4.
 
diagonals( _N, 0, _Change_x, _Y, _Change_y ) -> [];
diagonals( _N, _X, _Change_x, 0, _Change_y ) -> [];
diagonals( N, X, _Change_x, _Y, _Change_y ) when X > N -> [];
diagonals( N, _X, _Change_x, Y, _Change_y ) when Y > N -> [];
diagonals( N, X, Change_x, Y, Change_y ) -> [{X, Y} | diagonals( N, Change_x(X), Change_x, Change_y(Y), Change_y )].
 
diagonals_add1( N ) -> N + 1.
 
diagonals_subtract1( N ) -> N - 1.
 
display_row( Row, N, Board ) ->
[io:fwrite("~s", [display_queen(X, Row, Board)]) || X <- lists:seq(1, N)],
io:nl().
 
display_queen( X, Y, Board ) -> display_queen( lists:member({X, Y}, Board) ).
display_queen( true ) -> " Q";
display_queen( false ) -> " .".
 
is_all_queens( N, Board ) -> N =:= erlang:length( Board ).
 
is_diagonal( _N, [] ) -> false;
is_diagonal( N, [Position | T] ) ->
Diagonals = diagonals( N, Position ),
T =/= (T -- Diagonals)
orelse is_diagonal( N, T ).
 
is_not_allowed_queen_placement( N, Board ) ->
Pieces = erlang:length( Board ),
{Xs, Ys} = lists:unzip( Board ),
Pieces =/= erlang:length( lists:usort(Xs) )
orelse Pieces =/= erlang:length( lists:usort(Ys) )
orelse is_diagonal( N, Board ).
 
task( N ) ->
io:fwrite( "N = ~p. One solution.~n", [N] ),
Board = solve( N ),
display( Board ).
</syntaxhighlight>
{{out}}
<pre>
22> n_queens:task().
N = 4. One solution.
. . Q .
Q . . .
. . . Q
. Q . .
N = 8. One solution.
Q . . . . . . .
. . . . . . Q .
. . . . Q . . .
. . . . . . . Q
. Q . . . . . .
. . . Q . . . .
. . . . . Q . .
. . Q . . . . .
</pre>
 
===Alternative Version===
<syntaxhighlight lang="erlang">
%%%For 8X8 chessboard with N queens.
-module(queens).
-export([queens/1]).
 
queens(0) -> [[]];
queens(N) ->
[[Row | Columns] || Columns <- queens(N-1),
Row <- [1,2,3,4,5,6,7,8] -- Columns,
safe(Row, Columns, 1)].
 
safe(_Row, [], _N) -> true;
safe(Row, [Column|Columns], N) ->
(Row /= Column + N) andalso (Row /= Column - N) andalso
safe(Row, Columns, (N+1)).
</syntaxhighlight>
 
=={{header|ERRE}}==
<syntaxhighlight lang="erre">
!------------------------------------------------
! QUEENS.R : solve queens problem on a NxN board
!------------------------------------------------
 
PROGRAM QUEENS
 
DIM COL%[15]
 
BEGIN
MAXSIZE%=15
PRINT(TAB(25);" --- PROBLEMA DELLE REGINE --- ")
PRINT
PRINT("Board dimension ";)
INPUT(N%)
PRINT
IF (N%<1 OR N%>MAXSIZE%)
THEN
PRINT("Illegal dimension!!")
ELSE
FOR CURCOLNBR%=1 TO N%
COL%[CURCOLNBR%]=0
END FOR
CURCOLNBR%=1
WHILE CURCOLNBR%>0 DO
PLACEDAQUEEN%=FALSE
I%=COL%[CURCOLNBR%]+1
WHILE (I%<=N%) AND NOT PLACEDAQUEEN% DO
PLACEDAQUEEN%=TRUE
J%=1
WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO
PLACEDAQUEEN%=COL%[J%]<>I%
J%=J%+1
END WHILE
IF PLACEDAQUEEN%
THEN
DIAGNBR%=I%+CURCOLNBR%
J%=1
WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO
PLACEDAQUEEN%=(COL%[J%]+J%)<>DIAGNBR%
J%=J%+1
END WHILE
ELSE
END IF
IF PLACEDAQUEEN%
THEN
DIAGNBR%=I%-CURCOLNBR%
J%=1
WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO
PLACEDAQUEEN%=(COL%[J%]-J%)<>DIAGNBR%
J%=J%+1
END WHILE
ELSE
END IF
IF NOT PLACEDAQUEEN%
THEN
I%=I%+1
ELSE
COL%[CURCOLNBR%]=I%
END IF
END WHILE
IF NOT PLACEDAQUEEN%
THEN
COL%[CURCOLNBR%]=0
CURCOLNBR%=CURCOLNBR%-1
ELSE
IF CURCOLNBR%=N%
THEN
NSOL%=NSOL%+1
PRINT("Soluzione";NSOL%;":";)
FOR I%=1 TO N%
PRINT(COL%[I%];)
END FOR
PRINT
ELSE
CURCOLNBR%=CURCOLNBR%+1
END IF
END IF
END WHILE
PRINT("Search completed")
REPEAT
GET(CH$)
UNTIL CH$<>""
END IF
END PROGRAM
</syntaxhighlight>
Note: The program prints solutions one per line. This version works well for the PC and the C-64. For PC only you can omit the % integer-type specificator with a <code>!$INTEGER</code> pragma directive.
 
=={{header|F Sharp}}==
<syntaxhighlight lang="fsharp">
let rec iterate f value = seq {
yield value
yield! iterate f (f value) }
 
let up i = i + 1
let right i = i
let down i = i - 1
 
let noCollisionGivenDir solution number dir =
Seq.forall2 (<>) solution (Seq.skip 1 (iterate dir number))
 
let goodAddition solution number =
List.forall (noCollisionGivenDir solution number) [ up; right; down ]
 
let rec extendSolution n ps =
[0..n - 1]
|> List.filter (goodAddition ps)
|> List.map (fun num -> num :: ps)
 
let allSolutions n =
iterate (List.collect (extendSolution n)) [[]]
 
// Print one solution for the 8x8 case
let printOneSolution () =
allSolutions 8
|> Seq.item 8
|> Seq.head
|> List.iter (fun rowIndex ->
printf "|"
[0..8] |> List.iter (fun i -> printf (if i = rowIndex then "X|" else " |"))
printfn "")
 
// Print number of solution for the other cases
let printNumberOfSolutions () =
printfn "Size\tNr of solutions"
[1..11]
|> List.map ((fun i -> Seq.item i (allSolutions i)) >> List.length)
|> List.iteri (fun i cnt -> printfn "%d\t%d" (i+1) cnt)
 
printOneSolution()
 
printNumberOfSolutions()
</syntaxhighlight>
 
The output:
 
<pre>
| | | |X| | | | | |
| |X| | | | | | | |
| | | | | | |X| | |
| | |X| | | | | | |
| | | | | |X| | | |
| | | | | | | |X| |
| | | | |X| | | | |
|X| | | | | | | | |
 
Size Nr of solutions
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
11 2680
</pre>
 
=={{header|Factor}}==
{{works with|Factor|0.98}}
<syntaxhighlight lang="factor">USING: kernel sequences math math.combinatorics formatting io locals ;
IN: queens
 
: /= ( x y -- ? ) = not ; inline
 
:: safe? ( board q -- ? )
[let q board nth :> x
q <iota> [
x swap
[ board nth ] keep
q swap -
[ + /= ]
[ - /= ] 3bi and
] all?
] ;
 
: solution? ( board -- ? )
dup length <iota> [ dupd safe? ] all? nip ;
 
: queens ( n -- l )
<iota> all-permutations [ solution? ] filter ;
 
: .queens ( n -- )
queens
[
[ 1 + "%d " printf ] each nl
] each ;</syntaxhighlight>
 
=={{header|Forth}}==
<langsyntaxhighlight lang="forth">variable solutions
variable nodes
 
Line 183 ⟶ 5,822:
solutions @ . ." solutions, " nodes @ . ." nodes" ;
 
8 queens \ 92 solutions, 1965 nodes</langsyntaxhighlight>
 
=== Alternate solution adapted from FD-V02N1.pdf ===
<syntaxhighlight lang="forth">
\ http://www.forth.org/fd/FD-V02N1.pdf
VOCABULARY nqueens ALSO nqueens DEFINITIONS
 
8 constant queens
 
\ Nqueen solution from FD-V02N1.pdf
: 1array CREATE 0 DO 1 , LOOP DOES> SWAP CELLS + ;
queens 1array a \ a,b & c: workspaces for solutions
queens 2* 1array b
queens 2* 1array c
queens 1array x \ trial solutions
 
: safe ( c i -- n )
SWAP
2DUP - queens 1- + c @ >R
2DUP + b @ >R
DROP a @ R> R> * * ;
 
: mark ( c i -- )
SWAP
2DUP - queens 1- + c 0 swap !
2DUP + b 0 swap !
DROP a 0 swap ! ;
 
: unmark ( c i -- )
SWAP
2DUP - queens 1- + c 1 swap !
2DUP + b 1 swap !
DROP a 1 swap ! ;
 
VARIABLE tries
VARIABLE sols
 
: .cols queens 0 DO I x @ 1+ 5 .r loop ;
: .sol ." Found on try " tries @ 6 .R .cols cr ;
 
: try
queens 0
DO 1 tries +!
DUP I safe
IF DUP I mark
DUP I SWAP x !
DUP queens 1- < IF DUP 1+ RECURSE ELSE sols ++ .sol THEN
DUP I unmark
THEN
LOOP DROP ;
 
: go 0 tries ! CR 0 try CR sols @ . ." solutions Found, for n = " queens . ;
go
</syntaxhighlight>
 
=={{header|Fortran}}==
{{works with|Fortran|95 and later}}
 
Using a back tracking method to find one solution
<syntaxhighlight lang="fortran">program Nqueens
implicit none
 
integer, parameter :: n = 8 ! size of board
integer :: file = 1, rank = 1, queens = 0
integer :: i
logical :: board(n,n) = .false.
 
do while (queens < n)
board(file, rank) = .true.
if(is_safe(board, file, rank)) then
queens = queens + 1
file = 1
rank = rank + 1
else
board(file, rank) = .false.
file = file + 1
do while(file > n)
rank = rank - 1
if (rank < 1) then
write(*, "(a,i0)") "No solution for n = ", n
stop
end if
do i = 1, n
if (board(i, rank)) then
file = i
board(file, rank) = .false.
queens = queens - 1
file = i + 1
exit
end if
end do
end do
end if
end do
 
call Printboard(board)
contains
 
function is_safe(board, file, rank)
logical :: is_safe
logical, intent(in) :: board(:,:)
integer, intent(in) :: file, rank
integer :: i, f, r
is_safe = .true.
do i = rank-1, 1, -1
if(board(file, i)) then
is_safe = .false.
return
end if
end do
f = file - 1
r = rank - 1
do while(f > 0 .and. r > 0)
if(board(f, r)) then
is_safe = .false.
return
end if
f = f - 1
r = r - 1
end do
 
f = file + 1
r = rank - 1
do while(f <= n .and. r > 0)
if(board(f, r)) then
is_safe = .false.
return
end if
f = f + 1
r = r - 1
end do
end function
 
subroutine Printboard(board)
logical, intent(in) :: board(:,:)
character(n*4+1) :: line
integer :: f, r
write(*, "(a, i0)") "n = ", n
line = repeat("+---", n) // "+"
do r = 1, n
write(*, "(a)") line
do f = 1, n
write(*, "(a)", advance="no") "|"
if(board(f, r)) then
write(*, "(a)", advance="no") " Q "
else if(mod(f+r, 2) == 0) then
write(*, "(a)", advance="no") " "
else
write(*, "(a)", advance="no") "###"
end if
end do
write(*, "(a)") "|"
end do
write(*, "(a)") line
end subroutine
end program</syntaxhighlight>
{{out}} for 8, 16 and 32 queens
<pre style="height:40ex;overflow:scroll">n = 8
+---+---+---+---+---+---+---+---+
| Q |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+
|###| |###| | Q | |###| |
+---+---+---+---+---+---+---+---+
| |###| |###| |###| | Q |
+---+---+---+---+---+---+---+---+
|###| |###| |###| Q |###| |
+---+---+---+---+---+---+---+---+
| |###| Q |###| |###| |###|
+---+---+---+---+---+---+---+---+
|###| |###| |###| | Q | |
+---+---+---+---+---+---+---+---+
| | Q | |###| |###| |###|
+---+---+---+---+---+---+---+---+
|###| |###| Q |###| |###| |
+---+---+---+---+---+---+---+---+
 
n = 16
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Q |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| | Q | |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| Q |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| Q |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| Q |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| | Q | |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| | Q | |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| Q |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| Q |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| Q |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| | Q |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| | Q | |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| | Q | |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| | Q | |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| | Q | |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| Q |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 
n = 32
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Q |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| | Q | |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| Q |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| Q |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| | Q | |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| Q |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| Q |###| |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| Q |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| Q |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| Q |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| Q |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| Q |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| Q |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| Q |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| Q |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| Q |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| Q |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |###| |###| |###| |###| |###| |###| |###| |###| |###| | Q | |###| |###| |###| |###| |###| |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| |###| |###| |###| |###| |###| |###| |###| |###| |###| |###| Q |###| |###| |###| |###| |###| |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+</pre>
 
===Alternate Fortran 77 solution===
<syntaxhighlight lang="fortran">C This one implements depth-first backtracking.
C See the 2nd program for Scheme on the "Permutations" page for the
C main idea.
C As is, the program only prints the number of n-queens configurations.
C To print also the configurations, uncomment the line after label 80.
program queens
implicit integer(a-z)
parameter(l=18)
dimension a(l),s(l),u(4*l-2)
do 10 i=1,l
10 a(i)=i
do 20 i=1,4*l-2
20 u(i)=0
do 110 n=1,l
m=0
i=1
r=2*n-1
go to 40
30 s(i)=j
u(p)=1
u(q+r)=1
i=i+1
40 if(i.gt.n) go to 80
j=i
50 z=a(i)
y=a(j)
p=i-y+n
q=i+y-1
a(i)=y
a(j)=z
if((u(p).eq.0).and.(u(q+r).eq.0)) goto 30
60 j=j+1
if(j.le.n) go to 50
70 j=j-1
if(j.eq.i) go to 90
z=a(i)
a(i)=a(j)
a(j)=z
go to 70
80 m=m+1
C print *,(a(k),k=1,n)
90 i=i-1
if(i.eq.0) go to 100
p=i-a(i)+n
q=i+a(i)-1
j=s(i)
u(p)=0
u(q+r)=0
go to 60
100 print *,n,m
110 continue
end
C Output
C 1 1
C 2 0
C 3 0
C 4 2
C 5 10
C 6 4
C 7 40
C 8 92
C 9 352
C 10 724
C 11 2680
C 12 14200
C 13 73712
C 14 365596
C 15 2279184
C 16 14772512
C 17 95815104
C 18 666090624
</syntaxhighlight>
 
<syntaxhighlight lang="fortran">!The preceding program implements recursion using arrays, since Fortran 77 does not allow recursive
!functions. The same algorithm is much easier to follow in Fortran 90, using the RECURSIVE keyword.
!Like previously, the program only counts solutions. It's pretty straightforward to adapt it to print
!them too: one has to replace the 'm = m + 1' instruction with a PRINT statement.
 
function numq(n)
implicit none
integer :: i, n, m, a(n), numq
logical :: up(2*n - 1), down(2*n - 1)
do i = 1, n
a(i) = i
end do
up = .true.
down = .true.
m = 0
call sub(1)
numq = m
contains
recursive subroutine sub(i)
integer :: i, j, k, p, q, s
do k = i, n
j = a(k)
p = i + j - 1
q = i - j + n
if(up(p) .and. down(q)) then
if(i == n) then
m = m + 1
else
up(p) = .false.
down(q) = .false.
s = a(i)
a(i) = a(k)
a(k) = s
call sub(i + 1)
up(p) = .true.
down(q) = .true.
s = a(i)
a(i) = a(k)
a(k) = s
end if
end if
end do
end subroutine
end function
 
program queens
implicit none
integer :: numq, n, m
do n = 4, 16
m = numq(n)
print *, n, m
end do
end program</syntaxhighlight>
 
===Alternate Fortran 95 solution with OpenMP===
This code is useful mainly for counting solutions. Here we use the same algorithm as with Fortran 77,
with an optimization: because of symmetry of the chess board, computations are divided by two.
The remaining is parallelized with OpenMP. The loop is done on the valid combinations of queens
in the first two columns. The original algorithm is slightly changed to start backtracking from
column three.
 
If using GCC, compile with ''gfortran -O2 -fopenmp queens.f90''. With Absoft Pro Fortran, ''af90 -O2 -openmp queens.f90'', and with Intel Fortran, ''ifort /fast /Qopenmp queens.f90''.
 
With some versions of GCC the function OMP_GET_WTIME is not known, which seems to be a bug. Then it's enough to comment out the two calls, and the program won't display timings.
 
<syntaxhighlight lang="fortran">program queens
use omp_lib
implicit none
integer, parameter :: long = selected_int_kind(17)
integer, parameter :: l = 18
integer, parameter :: nthreads = 16 ! Change to suit your processor
integer :: n, i, j, a(l*l, 2), k, p, q
integer(long) :: s, b(l*l)
real(kind(1d0)) :: t1, t2
! Edit : Added OPEN MP calls to set number of threads
CALL OMP_SET_DYNAMIC(.TRUE.)
CALL OMP_SET_NUM_THREADS(nthreads)
do n = 6, l
k = 0
p = n/2
q = mod(n, 2)*(p + 1)
do i = 1, n
do j = 1, n
if ((abs(i - j) > 1) .and. ((i <= p) .or. ((i == q) .and. (j < i)))) then
k = k + 1
a(k, 1) = i
a(k, 2) = j
end if
end do
end do
s = 0
t1 = omp_get_wtime()
!$omp parallel do schedule(dynamic)
do i = 1, k
b(i) = pqueens(n, a(i, 1), a(i, 2))
end do
!$omp end parallel do
t2 = omp_get_wtime()
print "(I4, I12, F12.3)", n, 2*sum(b(1:k)), t2 - t1
end do
contains
function pqueens(n, k1, k2) result(m)
implicit none
integer(long) :: m
integer, intent(in) :: n, k1, k2
integer, parameter :: l = 20
integer :: a(l), s(l), u(4*l - 2)
integer :: i, j, y, z, p, q, r
 
do i = 1, n
a(i) = i
end do
do i = 1, 4*n - 2
u(i) = 0
end do
m = 0
r = 2*n - 1
if (k1 == k2) return
 
p = 1 - k1 + n
q = 1 + k1 - 1
if ((u(p) /= 0) .or. (u(q + r) /= 0)) return
 
u(p) = 1
u(q + r) = 1
z = a(1)
a(1) = a(k1)
a(k1) = z
p = 2 - k2 + n
q = 2 + k2 - 1
if ((u(p) /= 0) .or. (u(q + r) /= 0)) return
 
u(p) = 1
u(q + r) = 1
if (k2 /= 1) then
z = a(2)
a(2) = a(k2)
a(k2) = z
else
z = a(2)
a(2) = a(k1)
a(k1) = z
end if
i = 3
go to 40
 
30 s(i) = j
u(p) = 1
u(q + r) = 1
i = i + 1
40 if (i > n) go to 80
j = i
 
50 z = a(i)
y = a(j)
p = i - y + n
q = i + y - 1
a(i) = y
a(j) = z
if ((u(p) == 0) .and. (u(q + r) == 0)) go to 30
60 j = j + 1
if (j <= n) go to 50
70 j = j - 1
if (j == i) go to 90
z = a(i)
a(i) = a(j)
a(j) = z
go to 70
!valid queens position found
80 m = m + 1
90 i = i - 1
if (i == 2) return
p = i - a(i) + n
q = i + a(i) - 1
j = s(i)
u(p) = 0
u(q + r) = 0
go to 60
end function
end program</syntaxhighlight>
 
===Fortran 2008 in a Lisp-like fashion===
{{works with|Fortran|2008 and later}}
The following program solves, stores, and prints all solutions to the n-queens problem, for board sizes given on the command line. To compile it, you need my modules that employ Fortran 2008’s type polymorphism to support Lisp-like CONS-pairs. The modules (and this program) are available at [https://sourceforge.net/p/chemoelectric/fortran-modules https://sourceforge.net/p/chemoelectric/fortran-modules] along with a GNU makefile, all under a permissive free software license. The makefile is written for GNU Fortran; compiler version 11.2.1 works. The programming style is essentially functional programming, and solutions are stored as a linked list of linked lists. One might notice how circular lists are used within the code to overcome Fortran’s limited ability to do closures.
 
Part of the intent here is to show that Fortran can do quite a few things people would not think it could, if it is given adequate library support.
<syntaxhighlight lang="fortran">program example__n_queens
 
use, intrinsic :: iso_fortran_env, only: output_unit
 
use, non_intrinsic :: garbage_collector
use, non_intrinsic :: cons_pairs
 
implicit none
 
! .true. is good for testing that necessary values are rooted.
! .false. to collect garbage only when the heap reaches a limit.
logical :: aggressive_garbage_collection = .true.
 
integer :: arg_count
integer :: stat
character(80) :: arg
 
type(gcroot_t) :: board_sizes
 
arg_count = command_argument_count ()
if (arg_count < 1) then
call print_usage (output_unit)
else
board_sizes = nil
block
integer :: i
integer :: board_size
do i = 1, arg_count
call get_command_argument (i, arg)
read (arg, *, iostat = stat) board_size
if (stat /= 0 .or. board_size < 1) then
board_size = -1
end if
board_sizes = cons (board_size, board_sizes)
end do
board_sizes = reversex (board_sizes)
end block
 
if (is_member (int_eq, -1, board_sizes)) then
call print_usage (output_unit)
else
! Use pair_for_each as a way to distinguish the last
! BOARD_SIZE from the others. The last entry will be the final
! pair, and so its CDR will *not* be a pair.
call pair_for_each (find_and_print_all_solutions, &
& circular_list (output_unit), &
& board_sizes)
end if
end if
 
contains
 
subroutine print_usage (outp)
integer, intent(in) :: outp
 
write (outp, '("Usage: example__n_queens BOARD_SIZE [BOARD_SIZE...]")')
write (outp, '("Each BOARD_SIZE must be at least 1.")')
write (outp, '("For each BOARD_SIZE, all solutions are computed before any is printed.")')
end subroutine print_usage
 
subroutine find_and_print_all_solutions (outp_pair, board_sizes)
class(*), intent(in) :: outp_pair
class(*), intent(in) :: board_sizes
 
integer :: n_outp
type(gcroot_t) :: all_solutions
 
n_outp = int_cast (car (outp_pair))
 
all_solutions = find_all_solutions (car (board_sizes))
call check_garbage
call print_all_solutions (n_outp, car (board_sizes), all_solutions)
call check_garbage
if (is_pair (cdr (board_sizes))) then
! Space between one BOARD_SIZE and another.
write (n_outp, '()')
end if
end subroutine find_and_print_all_solutions
 
function find_all_solutions (board_size) result (all_solutions)
class(*), intent(in) :: board_size
type(cons_t) :: all_solutions
 
class(*), allocatable :: solutions
 
call find_solutions_from_ranks_so_far (board_size, nil, solutions)
all_solutions = solutions
end function find_all_solutions
 
recursive subroutine find_solutions_from_ranks_so_far (board_size, ranks_so_far, solutions)
class(*), intent(in) :: board_size
class(*), intent(in) :: ranks_so_far
class(*), allocatable, intent(out) :: solutions
 
type(cons_t) :: ranks
 
if (length (ranks_so_far) == int_cast (board_size)) then
solutions = list (ranks_so_far)
else
ranks = find_legal_ranks_for_file (int_cast (board_size), ranks_so_far)
solutions = concatenatex (map (find_solutions_from_ranks_so_far, &
& circular_list (board_size), &
& map (kons, ranks, circular_list (ranks_so_far))))
end if
end subroutine find_solutions_from_ranks_so_far
 
function find_legal_ranks_for_file (board_size, ranks_so_far) result (ranks)
!
! Return a list of all the ranks in the next file, under the
! constraint that a queen placed in the position not be under
! attack.
!
integer, intent(in) :: board_size
class(*), intent(in) :: ranks_so_far
type(cons_t) :: ranks
 
ranks = iota (board_size, 1) ! All the possible ranks.
ranks = remove_illegal_ranks (ranks, ranks_so_far)
end function find_legal_ranks_for_file
 
function remove_illegal_ranks (new_ranks, ranks_so_far) result (legal_ranks)
class(*), intent(in) :: new_ranks
class(*), intent(in) :: ranks_so_far
type(cons_t) :: legal_ranks
 
legal_ranks = filter_map (keep_legal_rank, new_ranks, &
& circular_list (ranks_so_far))
end function remove_illegal_ranks
 
subroutine keep_legal_rank (rank, ranks_so_far, retval)
class(*), intent(in) :: rank
class(*), intent(in) :: ranks_so_far
class(*), allocatable, intent(out) :: retval
 
if (rank_is_legal (rank, ranks_so_far)) then
retval = rank
else
retval = .false.
end if
end subroutine keep_legal_rank
 
function rank_is_legal (new_rank, ranks_so_far) result (bool)
class(*), intent(in) :: new_rank
class(*), intent(in) :: ranks_so_far
logical :: bool
 
integer :: new_file
type(cons_t) :: files_so_far
 
new_file = int (length (ranks_so_far)) + 1
files_so_far = iota (new_file - 1, new_file - 1, -1)
bool = every (these_two_queens_are_nonattacking, &
& circular_list (new_file), &
& circular_list (new_rank), &
& files_so_far, &
& ranks_so_far)
end function rank_is_legal
 
function these_two_queens_are_nonattacking (file1, rank1, file2, rank2) result (bool)
class(*), intent(in) :: file1, rank1
class(*), intent(in) :: file2, rank2
logical :: bool
 
integer :: f1, r1
integer :: f2, r2
 
! The rank and the two diagonals must not be the same. (The files
! are known to be different.)
 
f1 = int_cast (file1)
r1 = int_cast (rank1)
f2 = int_cast (file2)
r2 = int_cast (rank2)
 
bool = (r1 /= r2 .and. r1 + f1 /= r2 + f2 .and. r1 - f1 /= r2 - f2)
end function these_two_queens_are_nonattacking
 
subroutine print_all_solutions (outp, board_size, all_solutions)
class(*), intent(in) :: outp
class(*), intent(in) :: board_size
class(*), intent(in) :: all_solutions
 
integer(size_kind) :: n
 
n = length (all_solutions)
write (int_cast (outp), '("For a board ", I0, " by ", I0, ", ")', advance = 'no') &
& int_cast (board_size), int_cast (board_size)
if (n == 1) then
write (int_cast (outp), '("there is ", I0, " solution.")') n
else
write (int_cast (outp), '("there are ", I0, " solutions.")') n
end if
call for_each (print_spaced_solution, circular_list (outp), &
& circular_list (board_size), all_solutions)
end subroutine print_all_solutions
 
subroutine print_spaced_solution (outp, board_size, solution)
class(*), intent(in) :: outp
class(*), intent(in) :: board_size
class(*), intent(in) :: solution
 
write (int_cast (outp), '()', advance = 'yes')
call print_solution (outp, board_size, solution)
end subroutine print_spaced_solution
 
subroutine print_solution (outp, board_size, solution)
class(*), intent(in) :: outp
class(*), intent(in) :: board_size
class(*), intent(in) :: solution
 
integer :: n_outp
integer :: n_board_size
integer :: rank
integer :: file
integer :: file_of_queen
 
n_outp = int_cast (outp)
n_board_size = int_cast (board_size)
 
do rank = n_board_size, 1, -1
do file = 1, n_board_size
write (n_outp, '("----")', advance = 'no')
end do
write (n_outp, '("-")', advance = 'yes')
 
file_of_queen = n_board_size - int (list_index0 (int_eq, circular_list (rank), solution))
 
do file = 1, n_board_size
if (file == file_of_queen) then
write (n_outp, '("| Q ")', advance = 'no')
else
write (n_outp, '("| ")', advance = 'no')
end if
end do
write (n_outp, '("|")', advance = 'yes')
end do
 
do file = 1, n_board_size
write (n_outp, '("----")', advance = 'no')
end do
write (n_outp, '("-")', advance = 'yes')
end subroutine print_solution
 
subroutine kons (x, y, xy)
class(*), intent(in) :: x
class(*), intent(in) :: y
class(*), allocatable, intent(out) :: xy
 
xy = cons (x, y)
end subroutine kons
 
pure function int_cast (x) result (val)
class(*), intent(in) :: x
integer :: val
 
select type (x)
type is (integer)
val = x
class default
error stop
end select
end function int_cast
 
pure function int_eq (x, y) result (bool)
class(*), intent(in) :: x
class(*), intent(in) :: y
logical :: bool
 
bool = (int_cast (x) == int_cast (y))
end function int_eq
 
subroutine check_garbage
if (aggressive_garbage_collection) then
call collect_garbage_now
else
call check_heap_size
end if
end subroutine check_garbage
 
end program example__n_queens</syntaxhighlight>
{{out}}$ ./example__n_queens 1 2 3 4
<pre style="height:40ex;overflow:scroll">
For a board 1 by 1, there is 1 solution.
 
-----
| Q |
-----
 
For a board 2 by 2, there are 0 solutions.
 
For a board 3 by 3, there are 0 solutions.
 
For a board 4 by 4, there are 2 solutions.
 
-----------------
| | Q | | |
-----------------
| | | | Q |
-----------------
| Q | | | |
-----------------
| | | Q | |
-----------------
 
-----------------
| | | Q | |
-----------------
| Q | | | |
-----------------
| | | | Q |
-----------------
| | Q | | |
-----------------
</pre>
 
=={{header|FreeBASIC}}==
Get slower for N > 14
<syntaxhighlight lang="freebasic">' version 13-04-2017
' compile with: fbc -s console
Dim Shared As ULong count, c()
 
Sub n_queens(row As ULong, n As ULong, show As ULong = 0)
 
Dim As ULong x, y
 
For x = 1 To n
For y = 1 To row -1
If c(y) = x OrElse ((row - y) - Abs(x - c(y))) = 0 Then
Continue For, For
End If
Next
c(row) = x
If row < n Then
n_queens(row +1 , n, show)
Else
count += 1
If show <> 0 Then
For y = 1 To n
Print Using "###"; c(y);
Next
Print
End If
End If
Next
 
End Sub
 
' ------=< MAIN >=------
 
Dim As ULong n = 5
ReDim c(n)
' n_queens(1, n, show = 0 only show total | show <> 0 show every solution
n_queens(1, n, 1)
Print Using "## x ## board, ##### solutions"; n; n; count
Print
 
For n = 1 To 14
ReDim c(n)
count = 0
n_queens(1, n)
Print Using "A ## x ## board has ######## solutions"; n; n; count
Next
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre> 1 3 5 2 4
1 4 2 5 3
2 4 1 3 5
2 5 3 1 4
3 1 4 2 5
3 5 2 4 1
4 1 3 5 2
4 2 5 3 1
5 2 4 1 3
5 3 1 4 2
5 x 5 board, 10 solutions
 
A 1 x 1 board has 1 solutions
A 2 x 2 board has 0 solutions
A 3 x 3 board has 0 solutions
A 4 x 4 board has 2 solutions
A 5 x 5 board has 10 solutions
A 6 x 6 board has 4 solutions
A 7 x 7 board has 40 solutions
A 8 x 8 board has 92 solutions
A 9 x 9 board has 352 solutions
A 10 x 10 board has 724 solutions
A 11 x 11 board has 2680 solutions
A 12 x 12 board has 14200 solutions
A 13 x 13 board has 73712 solutions
A 14 x 14 board has 365596 solutions</pre>
 
=== Alternate version : recursive ===
 
<syntaxhighlight lang="freebasic">Sub aux(n As Integer, i As Integer, a() As Integer, _
u() As Integer, v() As Integer, ByRef m As LongInt)
 
Dim As Integer j, k, p, q
If i > n Then
m += 1
For k = 1 To n : Print a(k); : Next : Print
Else
For j = i To n
k = a(j)
p = i - k + n
q = i + k - 1
If u(p) And v(q) Then
u(p) = 0 : v(q) = 0
a(j) = a(i) : a(i) = k
aux(n, i + 1, a(), u(), v(), m)
u(p) = 1 : v(q) = 1
a(i) = a(j) : a(j) = k
End If
Next
End If
End Sub
 
Dim As Integer n, i
Dim m As LongInt = 1
If Command(1) <> "" Then
n = CInt(Command(1))
ReDim a(1 To n) As Integer
ReDim u(1 To 2 * n - 1) As Integer
ReDim v(1 To 2 * n - 1) As Integer
For i = 1 To n
a(i) = i
Next
For i = 1 To 2 * n - 1
u(i) = 1
v(i) = 1
Next
m = 0
aux(n, 1, a(), u(), v(), m)
Print m
End If</syntaxhighlight>
 
=== Alternate version : iterative ===
 
<syntaxhighlight lang="freebasic">Dim As Integer n, i, j, k, p, q
Dim m As LongInt = 0
 
If Command(1) <> "" Then
n = CInt(Command(1))
ReDim a(1 To n) As Integer
ReDim s(1 To n) As Integer
ReDim u(1 To 2 * n - 1) As Integer
ReDim v(1 To 2 * n - 1) As Integer
For i = 1 To n
a(i) = i
Next
For i = 1 To 2 * n - 1
u(i) = 1
v(i) = 1
Next
m = 0
i = 1
L1: If i > n Then
m += 1
For k = 1 To n : Print a(k); : Next : Print
Goto L4
End If
j = i
L2: k = a(j)
p = i - k + n
q = i + k - 1
If u(p) And v(q) Then
u(p) = 0 : v(q) = 0
a(j) = a(i) : a(i) = k
s(i) = j
i += 1
Goto L1
End If
L3: j += 1 : If j <= n Goto L2
L4: i -= 1 : If i = 0 Then Print m : End
j = s(i)
k = a(i) : a(i) = a(j) : a(j) = k
p = i - k + n
q = i + k - 1
u(p) = 1 : v(q) = 1
Goto L3
End If</syntaxhighlight>
 
=={{header|Frink}}==
This example uses Frink's built-in <CODE>array.permute[]</CODE> method to generate possible permutations of the board efficiently.
<syntaxhighlight lang="frink">solution[board] :=
{
for q = 0 to length[board] - 1
for c = q+1 to length[board] - 1
if board@q == board@c + (c - q) or board@q == board@c - (c - q)
return false
return true
}
 
for b = array[1 to 8].permute[]
if solution[b]
println[b]</syntaxhighlight>
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/N-queens_problem}}
 
'''Solution'''
 
The following function:
 
* Is able to calculate solution for chessboards of any size (but it is slow for big chessboards)
* It does not detect rotated or reflected solutions
 
This is an example of backtracking:
 
[[File:Fōrmulæ - N-queens problem 01.png]]
 
[[File:Fōrmulæ - N-queens problem 02.png]]
 
[[File:Fōrmulæ - N-queens problem 03.png]]
 
'''Improvement.''' The following functions calls the previous one, but shows the solution on a more friendly way
 
[[File:Fōrmulæ - N-queens problem 04.png]]
 
[[File:Fōrmulæ - N-queens problem 05.png]]
 
[[File:Fōrmulæ - N-queens problem 06.png]]
 
=={{header|GAP}}==
 
Translation of Fortran 77. See also alternate Python implementation. One function to return the number of solutions, another to return the list of permutations.
 
<syntaxhighlight lang="gap">NrQueens := function(n)
local a, up, down, m, sub;
a := [1 .. n];
up := ListWithIdenticalEntries(2*n - 1, true);
down := ListWithIdenticalEntries(2*n - 1, true);
m := 0;
sub := function(i)
local j, k, p, q;
for k in [i .. n] do
j := a[k];
p := i + j - 1;
q := i - j + n;
if up[p] and down[q] then
if i = n then
m := m + 1;
else
up[p] := false;
down[q] := false;
a[k] := a[i];
a[i] := j;
sub(i + 1);
up[p] := true;
down[q] := true;
a[i] := a[k];
a[k] := j;
fi;
fi;
od;
end;
sub(1);
return m;
end;
 
Queens := function(n)
local a, up, down, v, sub;
a := [1 .. n];
up := ListWithIdenticalEntries(2*n - 1, true);
down := ListWithIdenticalEntries(2*n - 1, true);
v := [];
sub := function(i)
local j, k, p, q;
for k in [i .. n] do
j := a[k];
p := i + j - 1;
q := i - j + n;
if up[p] and down[q] then
if i = n then
Add(v, ShallowCopy(a));
else
up[p] := false;
down[q] := false;
a[k] := a[i];
a[i] := j;
sub(i + 1);
up[p] := true;
down[q] := true;
a[i] := a[k];
a[k] := j;
fi;
fi;
od;
end;
sub(1);
return v;
end;
 
NrQueens(8);
a := Queens(8);;
PrintArray(PermutationMat(PermList(a[1]), 8));
 
[ [ 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1 ],
[ 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0 ] ]</syntaxhighlight>
 
=={{header|Go}}==
===Niklaus Wirth algorithm (Wikipedia)===
<syntaxhighlight lang="go">// A fairly literal translation of the example program on the referenced
// WP page. Well, it happened to be the example program the day I completed
// the task. It seems from the WP history that there has been some churn
// in the posted example program. The example program of the day was in
// Pascal and was credited to Niklaus Wirth, from his "Algorithms +
// Data Structures = Programs."
package main
import "fmt"
var (
i int
q bool
a [9]bool
b [17]bool
c [15]bool // offset by 7 relative to the Pascal version
x [9]int
)
func try(i int) {
for j := 1; ; j++ {
q = false
if a[j] && b[i+j] && c[i-j+7] {
x[i] = j
a[j] = false
b[i+j] = false
c[i-j+7] = false
if i < 8 {
try(i + 1)
if !q {
a[j] = true
b[i+j] = true
c[i-j+7] = true
}
} else {
q = true
}
}
if q || j == 8 {
break
}
}
}
func main() {
for i := 1; i <= 8; i++ {
a[i] = true
}
for i := 2; i <= 16; i++ {
b[i] = true
}
for i := 0; i <= 14; i++ {
c[i] = true
}
try(1)
if q {
for i := 1; i <= 8; i++ {
fmt.Println(i, x[i])
}
}
}</syntaxhighlight>
 
{{out}}
<pre>
1 1
2 5
3 8
4 6
5 3
6 7
7 2
8 4
</pre>
 
=== Refactored Niklaus Wirth algorithm (clearer/Go friendly solution) ===
<syntaxhighlight lang="go">/*
* N-Queens Problem
*
* For an NxN chess board, 'safely' place a chess queen in every column and row such that none can attack another.
* This solution is based Wirth Pascal solution, although a tad cleaner, thus easier to understand as it uses Go/C
* style indexing and naming, and also prints the Queen using a Unicode 'rune' (which other languages do not handle natively).
*
* N rows by N columns are number left to right top to bottom 0 - 7
*
* There are 2N-1 diagonals (showing an 8x8)
* the upper-right to lower-left are numbered row + col that is:
* 0 1 2 3 4 5 6 7
* 1 2 3 4 5 6 7 8
* 2 3 4 5 6 7 8 9
* 3 4 5 6 7 8 9 10
* 4 5 6 7 8 9 10 11
* 5 6 7 8 9 10 11 12
* 6 7 8 9 10 11 12 13
* 7 8 9 10 11 12 13 14
*
* the upper-left to lower-right are numbered N-1 + row - col
* 7 6 5 4 3 2 1 0
* 8 7 6 5 4 3 2 1
* 9 8 7 6 5 4 3 2
* 10 9 8 7 6 5 4 3
* 11 10 9 8 7 6 5 4
* 12 11 10 9 8 7 6 5
* 13 12 11 10 9 8 7 6
* 14 13 12 11 10 9 8 7
*/
 
package main
 
import "fmt"
 
const N = 8
const HAS_QUEEN = false
const EMPTY = true
const UNASSIGNED = -1
const white_queen = '\u2655'
 
 
var row_num[N]int // results, indexed by row will be the column where the queen lives (UNASSIGNED) is empty
var right_2_left_diag[(2*N-1)]bool // T if no queen in diag[idx]: row i, column col is diag i+col
var left_2_right_diag[(2*N-1)]bool // T is no queen in diag[idx], row i, column col is N-1 + i-col
 
 
func printresults() {
for col := 0; col < N; col++ {
if col != 0 {
fmt.Printf(" ");
}
fmt.Printf("%d,%d", col, row_num[col])
}
fmt.Printf("\n");
for row := 0; row < N; row++ {
for col := 0; col < N; col++ {
if col == row_num[row] {
fmt.Printf(" %c ", white_queen)
} else {
fmt.Printf(" . ")
}
}
fmt.Printf("\n")
}
}
 
/*
* save a queen on the board by saving where we think it should go, and marking the diagonals as occupied
*/
func savequeen(row int, col int) {
row_num[row] = col // save queen column for this row
right_2_left_diag[row+col] = HAS_QUEEN // mark forward diags as occupied
left_2_right_diag[row-col+(N-1)] = HAS_QUEEN // mark backward diags as occupied
}
 
/*
* backout a previously saved queen by clearing where we put it, and marking the diagonals as empty
*/
 
func clearqueen(row int, col int) {
row_num[row] = UNASSIGNED
right_2_left_diag[row+col] = EMPTY
left_2_right_diag[row-col+(N-1)] = EMPTY
}
 
/*
* for each column try the solutions
*/
func trycol(col int) bool {
// check each row to look for the first empty row that does not have a diagonal in use too
for row := 0; row < N; row++ {
if row_num[row] == UNASSIGNED && // has the row been used yet?
right_2_left_diag[row+col] == EMPTY && // check for the forward diags
left_2_right_diag[row-col+(N-1)] == EMPTY { // check for the backwards diags
savequeen(row, col) // this is a possible solution
// Tricky part here: going forward thru the col up to but not including the rightmost one
// if this fails, we are done, no need to search any more
if col < N-1 && !trycol(col+1) {
// ok this did not work - we need to try a different row, so undo the guess
clearqueen(row, col)
} else {
// we have a solution on this row/col, start popping the stack.
return true
}
}
}
return false // not a solution for this col, pop the stack, undo the last guess, and try the next one
}
 
func main() {
for i := 0; i < N ; i++ {
row_num[i] = UNASSIGNED
}
for i := 0; i < 2*N-1 ; i++ {
right_2_left_diag[i] = EMPTY
}
for i := 0; i < 2*N-1 ; i++ {
left_2_right_diag[i] = EMPTY
}
trycol(0)
printresults()
}</syntaxhighlight>
{{out}}
<pre>
0,0 1,6 2,4 3,7 4,1 5,3 6,5 7,2
♕ . . . . . . .
. . . . . . ♕ .
. . . . ♕ . . .
. . . . . . . ♕
. ♕ . . . . . .
. . . ♕ . . . .
. . . . . ♕ . .
. . ♕ . . . . .
</pre>
 
===Dancing Links / Algorithm X===
Using Knuth's
[[WP:Dancing_Links|dancing links]] technique to implement his
[[WP:Algorithm_X|Knuth's Algorithm X]].
The Go code for this technique is in the
[[N-queens_problem/dlx_go|dlx packge]].
 
<syntaxhighlight lang="go">package main
 
import (
"flag"
"fmt"
"log"
"os"
"time"
 
"rosettacode.org/dlx" // or where ever you put the dlx package
)
 
func main() {
log.SetPrefix("N-queens: ")
log.SetFlags(0)
profile := flag.Bool("profile", false, "show DLX profile")
flag.Parse()
 
for N := 2; N <= 18; N++ {
err := nqueens(N, N == 8, *profile)
if err != nil {
log.Fatal(err)
}
}
}
 
func nqueens(N int, printFirst, profile bool) error {
// Build a new DLX matrix with 2N primary columns and 4N-6 secondary
// columns: R0..R(N-1), F0..F(N-1), A1..A(2N-3), B1..B(2N-3).
// We also know the number of cells and solution rows required.
m := dlx.NewWithHint(2*N, 4*N-6, N*N*4-4, 8)
 
s := solution{
N: N,
renumFwd: make([]int, 0, 2*N),
renumBack: make([]int, 2*N),
printFirst: printFirst,
}
 
// column indexes
iR0 := 0
iF0 := iR0 + N
iA1 := iF0 + N
iB1 := iA1 + 2*N - 3
 
// Use "organ-pipe" ordering. E.g. for N=8:
// R4 F4 R3 F3 R5 F5 R2 F2 R6 F6 R1 F1 R7 F7 R0 F0
// This can reduce the number of link updates required by
// almost half for large N; see Knuth's paper for details.
mid := N / 2
for off := 0; off <= N-mid; off++ {
i := mid - off
if i >= 0 {
s.renumBack[iR0+i] = len(s.renumFwd)
s.renumBack[iF0+i] = len(s.renumFwd) + 1
s.renumFwd = append(s.renumFwd, iR0+i, iF0+i)
}
if i = mid + off; off != 0 && i < N {
s.renumBack[iR0+i] = len(s.renumFwd)
s.renumBack[iF0+i] = len(s.renumFwd) + 1
s.renumFwd = append(s.renumFwd, iR0+i, iF0+i)
}
}
 
// Add constraint rows.
// TODO: pre-eliminate symetrical possibilities.
cols := make([]int, 4)
for i := 0; i < N; i++ {
for j := 0; j < N; j++ {
cols[0] = iR0 + i // Ri, rank i
cols[1] = iF0 + j // Fj, file j
a := (i + j) // A(i+j), diagonals
b := (N - 1 - i + j) // B(N-1-i+j), reverse diagonals
cols = cols[:2]
// Do organ-pipe reordering for R and F.
for i, c := range cols {
cols[i] = s.renumBack[c]
}
 
// Only add diagonals with more than one space; that
// is we omit the corners: A0, A(2N-2), B0, and B(2N-2)
if 0 < a && a < 2*N-2 {
cols = append(cols, iA1+a-1)
}
if 0 < b && b < 2*N-2 {
cols = append(cols, iB1+b-1)
}
 
m.AddRow(cols)
}
}
 
// Search for solutions.
start := time.Now()
err := m.Search(s.found)
if err != nil {
return err
}
elapsed := time.Since(start)
fmt.Printf("%d×%d queens has %2d solutions, found in %v\n", N, N, s.count, elapsed)
if profile {
m.ProfileWrite(os.Stderr)
}
return nil
}
 
type solution struct {
N int
count int
renumFwd []int // for "organ-pipe" column ordering
renumBack []int
printFirst bool
}
 
func (s *solution) found(m *dlx.Matrix) error {
s.count++
if s.printFirst && s.count == 1 {
fmt.Printf("First %d×%d queens solution:\n", s.N, s.N)
for _, cols := range m.SolutionIDs(nil) {
var r, f int
for _, c := range cols {
// Undo organ-pipe reodering
if c < len(s.renumFwd) {
c = s.renumFwd[c]
}
if c < s.N {
r = c + 1
} else if c < 2*s.N {
f = c - s.N + 1
}
}
fmt.Printf(" R%d F%d\n", r, f)
}
}
return nil
}</syntaxhighlight>
{{out}}
<pre>
2×2 queens has 0 solutions, found in 1.915µs
3×3 queens has 0 solutions, found in 1.22µs
4×4 queens has 2 solutions, found in 3.095µs
5×5 queens has 10 solutions, found in 7.15µs
6×6 queens has 4 solutions, found in 17.663µs
7×7 queens has 40 solutions, found in 54.08µs
First 8×8 queens solution:
R5 F1
R1 F4
R3 F5
R4 F3
R6 F6
R2 F7
R7 F8
R8 F2
8×8 queens has 92 solutions, found in 186.991µs
9×9 queens has 352 solutions, found in 580.225µs
10×10 queens has 724 solutions, found in 2.078235ms
11×11 queens has 2680 solutions, found in 8.186708ms
12×12 queens has 14200 solutions, found in 38.037841ms
13×13 queens has 73712 solutions, found in 183.846653ms
14×14 queens has 365596 solutions, found in 961.249859ms
15×15 queens has 2279184 solutions, found in 5.491853276s
16×16 queens has 14772512 solutions, found in 33.286561009s
17×17 queens has 95815104 solutions, found in 3m34.643824374s
18×18 queens has 666090624 solutions, found in 24m22.30241617s
</pre>
 
=={{header|Groovy}}==
===Distinct Solutions===
This solver starts with the N! distinct solutions to the N-Rooks problem and then keeps only the candidates in which all Queens are mutually diagonal-safe.
<syntaxhighlight lang="groovy">def listOrder = { a, b ->
def k = [a.size(), b.size()].min()
def i = (0..<k).find { a[it] != b[it] }
(i != null) ? a[i] <=> b[i] : a.size() <=> b.size()
}
 
def orderedPermutations = { list ->
def n = list.size()
(0..<n).permutations().sort(listOrder)
}
 
def diagonalSafe = { list ->
def n = list.size()
n == 1 || (0..<(n-1)).every{ i ->
((i+1)..<n).every{ j ->
!([list[i]+j-i, list[i]+i-j].contains(list[j]))
}
}
}
 
def queensDistinctSolutions = { n ->
// each permutation is an N-Rooks solution
orderedPermutations((0..<n)).findAll (diagonalSafe)
}</syntaxhighlight>
 
===Unique Solutions===
Unique solutions are equivalence classes of distinct solutions, factoring out all reflections and rotations of a given solution. See the [[WP:Eight_queens_puzzle|Wikipedia page]] for more details.
<syntaxhighlight lang="groovy">class Reflect {
public static final diag = { list ->
final n = list.size()
def tList = [0] * n
(0..<n).each { tList[list[it]] = it }
tList
}
public static final vert = { list ->
list.reverse()
}
public static final horiz = { list ->
final n = list.size()
list.collect { n - it - 1 }
}
}
 
enum Rotations {
r0([]),
r90([Reflect.vert, Reflect.diag]),
r180([Reflect.vert, Reflect.diag, Reflect.vert, Reflect.diag]),
r270([Reflect.diag, Reflect.vert]);
private final List operations
private Rotations(List ops) {
operations = ops ?: []
}
public static void eliminateDups(primary, solutions) {
(r0..r270).each { rot -> rot.eliminateDuplicates(primary, solutions) }
}
private void eliminateDuplicates(primary, solutions) {
def rotated = [] + primary
operations.each { rotated = it(rotated) }
solutions.removeAll([rotated, Reflect.vert(rotated)])
}
}
 
def queensUniqueSolutions = { start ->
assert start instanceof Number || start instanceof List
def qus = (start instanceof Number) \
? queensDistinctSolutions(start) \
: [] + start
for (def i = 0; i < qus.size()-1; i++) {
Rotations.eliminateDups(qus[i], qus[(i+1)..<(qus.size())])
}
qus
}</syntaxhighlight>
 
===Test and Results===
This script tests both distinct and unique solution lists.
<syntaxhighlight lang="groovy">(1..9).each { n ->
def qds = queensDistinctSolutions(n)
def qus = queensUniqueSolutions(qds)
println ([boardSize:n, "number of distinct solutions":qds.size(), "number of unique solutions":qus.size()])
if(n < 9) { qus.each { println it } }
else { println "first:${qus[0]}"; println "last:${qus[-1]}" }
println()
}</syntaxhighlight>
 
Interpreting the Results:
 
Each individual result is given as a list of N numbers. Each number represents a column number within the list-indexed row. So, the following 4-queens solution:
<pre>[1, 3, 0, 2]</pre>
should be interpreted as follows:
<pre>row 0 has a queen in column 1
row 1 has a queen in column 3
row 2 has a queen in column 0
row 3 has a queen in column 2</pre>
 
In other words, this:
<pre> ---- ---- ---- ----
3 | |////| ♛ |////|
---- ---- ---- ----
2 |/♛/| |////| |
---- ---- ---- ----
1 | |////| |/♛/|
---- ---- ---- ----
0 |////| ♛ |////| |
---- ---- ---- ----
0 1 2 3</pre>
 
Results:
<pre style="height:60ex;overflow:scroll;">[boardSize:1, number of distinct solutions:1, number of unique solutions:1]
[0]
 
[boardSize:2, number of distinct solutions:0, number of unique solutions:0]
 
[boardSize:3, number of distinct solutions:0, number of unique solutions:0]
 
[boardSize:4, number of distinct solutions:2, number of unique solutions:1]
[1, 3, 0, 2]
 
[boardSize:5, number of distinct solutions:10, number of unique solutions:2]
[0, 2, 4, 1, 3]
[1, 4, 2, 0, 3]
 
[boardSize:6, number of distinct solutions:4, number of unique solutions:1]
[1, 3, 5, 0, 2, 4]
 
[boardSize:7, number of distinct solutions:40, number of unique solutions:6]
[0, 2, 4, 6, 1, 3, 5]
[0, 3, 6, 2, 5, 1, 4]
[1, 3, 0, 6, 4, 2, 5]
[1, 4, 0, 3, 6, 2, 5]
[1, 4, 6, 3, 0, 2, 5]
[1, 5, 2, 6, 3, 0, 4]
 
[boardSize:8, number of distinct solutions:92, number of unique solutions:12]
[0, 4, 7, 5, 2, 6, 1, 3]
[0, 5, 7, 2, 6, 3, 1, 4]
[1, 3, 5, 7, 2, 0, 6, 4]
[1, 4, 6, 0, 2, 7, 5, 3]
[1, 4, 6, 3, 0, 7, 5, 2]
[1, 5, 0, 6, 3, 7, 2, 4]
[1, 5, 7, 2, 0, 3, 6, 4]
[1, 6, 2, 5, 7, 4, 0, 3]
[1, 6, 4, 7, 0, 3, 5, 2]
[2, 4, 1, 7, 0, 6, 3, 5]
[2, 4, 7, 3, 0, 6, 1, 5]
[2, 5, 1, 4, 7, 0, 6, 3]
 
[boardSize:9, number of distinct solutions:352, number of unique solutions:46]
first:[0, 2, 5, 7, 1, 3, 8, 6, 4]
last:[3, 1, 6, 8, 0, 7, 4, 2, 5]</pre>
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Control.Monad
import Data.List
 
-- given n, "queens n" solves the n-queens problem, returning a list of all the
Line 192 ⟶ 7,546:
-- located for each row
queens :: Int -> [[Int]]
queens n = map fst $ foldM oneMoreQueen ([],[1..n]) [1..n] where
-- foldM folds in the list monad, which is convenient for "nondeterminstically"
-- finding "all possible solutions" of something. the initial value [] corresponds
-- to the only safe arrangement of queens in 0 rows
 
-- foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
where -- given a safe arrangement y of queens in the first i rows,
-- foldM folds (from left to right) in the list monad, which is convenient for
-- "add_queen y _" returns a list of all the safe arrangements of queens
-- "nondeterminstically" finding "all possible solutions" of something. the
-- in the first (i+1) rows
-- initial value [] corresponds to the only safe arrangement of queens in 0 rows
oneMoreQueen y _ = [ x : y | x <- [1..n], safe x y 1]
 
-- "safe x y n" tests whether a queen at column x would be safe from previous
-- queens in y where the first element of y is n rows away from x, the second
-- element is (n+1) rows away from x, etc.
safe x [] n = True
safe x (c:y) n = and [ x /= c , x /= c + n , x /= c - n , safe x y (n+1)]
-- we only need to check for queens in the same column, and the same diagonals;
-- queens in the same row are not possible by the fact that we only pick one
-- queen per row
 
-- given a safe arrangement y of queens in the first i rows, and a list of
-- possible choices, "oneMoreQueen y _" returns a list of all the safe
-- arrangements of queens in the first (i+1) rows along with remaining choices
oneMoreQueen (y,d) _ = [(x:y, delete x d) | x <- d, safe x] where
 
-- "safe x" tests whether a queen at column x is safe from previous queens
safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] y]
 
-- prints what the board looks like for a solution; with an extra newline
printSolution y = do mapM_ (\x -> putStrLn [if z == x then 'Q' else '.' | z <- [1..n]]) y
let n = length putStrLn ""y
mapM_ (\x -> putStrLn [if z == x then 'Q' else '.' | z <- [1..n]]) y
where n = length y
putStrLn ""
 
-- prints all the solutions for 6 queens
main = mapM_ printSolution $ queens 6</langsyntaxhighlight>
 
If you just want one solution, simply take the <code>head</code> of the result of <code>queens n</code>; since Haskell is lazy, it will only do as much work as needed to find one solution and stop.
 
===Alternative version===
<syntaxhighlight lang="haskell">import Control.Monad (foldM)
import Data.List ((\\))
 
main :: IO ()
main = mapM_ print $ queens 8
 
queens :: Int -> [[Int]]
queens n = foldM f [] [1..n]
where
f qs _ = [q:qs | q <- [1..n] \\ qs, q `notDiag` qs]
q `notDiag` qs = and [abs (q - qi) /= i | (qi,i) <- qs `zip` [1..]]</syntaxhighlight>
 
===Using permutations===
This version uses permutations to generate unique horizontal and vertical position for each queen. Thus, we only need to check diagonals. However, it is less efficient than the previous version because it does not prune out prefixes that are found to be unsuitable.
<syntaxhighlight lang="haskell">import Data.List (nub, permutations)
 
-- checks if queens are on the same diagonal
-- with [0..] we place each queen on her own row
check f = length . nub . zipWith f [0..]
 
-- filters out results where 2 or more queens are on the same diagonal
-- with [0..n-1] we place each queeen on her own column
generate n = filter (\x -> check (+) x == n && check (-) x == n) $ permutations [0..n-1]
 
-- 8 is for "8 queens"
main = print $ generate 8</syntaxhighlight>
 
===In terms of foldr===
A back-tracking variant using the Prelude's plain '''foldr''':
{{Trans|JavaScript}}
<syntaxhighlight lang="haskell">import Data.List (intercalate, transpose)
 
--------------------- N QUEENS PROBLEM -------------------
 
queenPuzzle :: Int -> Int -> [[Int]]
queenPuzzle nRows nCols
| nRows <= 0 = [[]]
| otherwise =
foldr
(\x y -> y <> foldr (go x) [] [1 .. nCols])
[]
$ queenPuzzle (pred nRows) nCols
where
go qs iCol b
| safe (nRows - 1) iCol qs = b <> [qs <> [iCol]]
| otherwise = b
 
safe :: Int -> Int -> [Int] -> Bool
safe iRow iCol qs =
(not . or) $
zipWith
( \sc sr ->
(iCol == sc) || (sc + sr == (iCol + iRow))
|| (sc - sr == (iCol - iRow))
)
qs
[0 .. iRow - 1]
 
--------------------------- TEST -------------------------
-- 10 columns of solutions for the 7*7 board:
showSolutions :: Int -> Int -> [String]
showSolutions nCols nSize =
unlines
. fmap (intercalate " ")
. transpose
. map boardLines
<$> chunksOf nCols (queenPuzzle nSize nSize)
where
go r x
| r == x = '♛'
| otherwise = '.'
boardLines rows =
[ go r <$> [1 .. (length rows)]
| r <- rows
]
 
chunksOf :: Int -> [a] -> [[a]]
chunksOf i = splits
where
splits [] = []
splits l = take i l : splits (drop i l)
 
main :: IO ()
main = (putStrLn . unlines) $ showSolutions 10 7</syntaxhighlight>
{{Out}}
<pre>......♛ ......♛ ......♛ ......♛ .....♛. .....♛. .....♛. .....♛. .....♛. .....♛.
.♛..... ..♛.... ...♛... ....♛.. ♛...... .♛..... ..♛.... ..♛.... ..♛.... ...♛...
...♛... .....♛. ♛...... ..♛.... ..♛.... ....♛.. ......♛ ....♛.. ♛...... ......♛
.....♛. .♛..... ....♛.. ♛...... ....♛.. ♛...... ...♛... ......♛ ...♛... ♛......
♛...... ....♛.. .♛..... .....♛. ......♛ ...♛... ♛...... ♛...... ......♛ ..♛....
..♛.... ♛...... .....♛. ...♛... .♛..... ......♛ ....♛.. ...♛... ....♛.. ....♛..
....♛.. ...♛... ..♛.... .♛..... ...♛... ..♛.... .♛..... .♛..... .♛..... .♛.....
 
.....♛. ....♛.. ....♛.. ....♛.. ....♛.. ....♛.. ....♛.. ...♛... ...♛... ...♛...
...♛... ♛...... ♛...... .♛..... ..♛.... ......♛ ......♛ ♛...... ♛...... .♛.....
.♛..... .....♛. ...♛... .....♛. ♛...... .♛..... .♛..... ....♛.. ..♛.... ......♛
......♛ ...♛... ......♛ ..♛.... .....♛. ...♛... .....♛. .♛..... .....♛. ....♛..
....♛.. .♛..... ..♛.... ......♛ ...♛... .....♛. ..♛.... .....♛. .♛..... ..♛....
..♛.... ......♛ .....♛. ...♛... .♛..... ♛...... ♛...... ..♛.... ......♛ ♛......
♛...... ..♛.... .♛..... ♛...... ......♛ ..♛.... ...♛... ......♛ ....♛.. .....♛.
 
...♛... ...♛... ...♛... ..♛.... ..♛.... ..♛.... ..♛.... ..♛.... ..♛.... .♛.....
.....♛. ......♛ ......♛ ♛...... ♛...... ....♛.. .....♛. ......♛ ......♛ ...♛...
♛...... ....♛.. ..♛.... .....♛. .....♛. ......♛ .♛..... ...♛... .♛..... .....♛.
..♛.... .♛..... .....♛. .♛..... ...♛... .♛..... ....♛.. ♛...... ...♛... ♛......
....♛.. .....♛. .♛..... ....♛.. .♛..... ...♛... ♛...... ....♛.. .....♛. ..♛....
......♛ ♛...... ....♛.. ......♛ ......♛ .....♛. ...♛... .♛..... ♛...... ....♛..
.♛..... ..♛.... ♛...... ...♛... ....♛.. ♛...... ......♛ .....♛. ....♛.. ......♛
 
.♛..... .♛..... .♛..... .♛..... .♛..... .♛..... ♛...... ♛...... ♛...... ♛......
...♛... ....♛.. ....♛.. ....♛.. .....♛. ......♛ ..♛.... ...♛... ....♛.. .....♛.
♛...... ......♛ ..♛.... ♛...... ..♛.... ....♛.. ....♛.. ......♛ .♛..... ...♛...
......♛ ...♛... ♛...... ...♛... ......♛ ..♛.... ......♛ ..♛.... .....♛. .♛.....
....♛.. ♛...... ......♛ ......♛ ...♛... ♛...... .♛..... .....♛. ..♛.... ......♛
..♛.... ..♛.... ...♛... ..♛.... ♛...... .....♛. ...♛... .♛..... ......♛ ....♛..
.....♛. .....♛. .....♛. .....♛. ....♛.. ...♛... .....♛. ....♛.. ...♛... ..♛....</pre>
 
===Breadth-first search and Depth-first search===
<syntaxhighlight lang="haskell">import Control.Monad
import System.Environment
 
-- | data types for the puzzle
type Row = Int
type State = [Row]
type Thread = [Row]
 
-- | utility functions
empty = null
 
-- | Check for infeasible states
infeasible :: Int -> (State, Thread) -> Bool
infeasible n ([], _) = False
infeasible n ((r:rs),t) = length rs >= n || attack r rs || infeasible n (rs, t)
 
feasible n st = not $ infeasible n st
 
-- | Check if a row is attacking another row of a state
attack :: Row -> [Row] -> Bool
attack r rs = r `elem` rs
|| r `elem` (upperDiag rs)
|| r `elem` (lowerDiag rs)
where
upperDiag xs = zipWith (-) xs [1..]
lowerDiag xs = zipWith (+) xs [1..]
 
-- | Check if it is a goal state
isGoal :: Int -> (State, Thread) -> Bool
isGoal n (rs,t) = (feasible n (rs,t)) && (length rs == n)
 
-- | Perform a move
move :: Int -> (State, Thread) -> (State, Thread)
move x (s,t) = (x:s, x:t)
 
choices n = [1..n]
moves n = pure move <*> choices n
 
emptySt = ([],[])
 
-- | Breadth-first search
bfs :: Int -> [(State, Thread)] -> (State, Thread)
bfs n [] = error "Could not find a feasible solution"
bfs n sts | (not.empty) goal = head goal
| otherwise = bfs n sts2
where
goal = filter (isGoal n) sts2
sts2 = filter (feasible n) $ (moves n) <*> sts
 
-- | Depth-first search
dfs :: Int -> (State, Thread) -> [(State, Thread)]
dfs n st | isGoal n st = [st]
| infeasible n st = [emptySt]
| otherwise = do x <- [1..n]
st2 <- dfs n $ move x st
guard $ st2 /= emptySt
return st2
 
main = do
[narg] <- getArgs
let n = read narg :: Int
print (bfs n [emptySt])
print (head $ dfs n emptySt)</syntaxhighlight>
 
{{Out}}
<pre>([1,5,8,6,3,7,2,4],[1,5,8,6,3,7,2,4])
([4,2,7,3,6,8,5,1],[4,2,7,3,6,8,5,1])</pre>
 
=={{header|Heron}}==
<syntaxhighlight lang="heron">module NQueens {
inherits {
Heron.Windows.Console;
}
fields {
n : Int = 4;
sols : List = new List();
}
methods {
PosToString(row : Int, col : Int) : String {
return "row " + row.ToString() + ", col " + col.ToString();
}
AddQueen(b : Board, row : Int, col : Int)
{
if (!b.TryAddQueen(row, col))
return;
if (row < n - 1)
foreach (i in 0..n-1)
AddQueen(new Board(b), row + 1, i);
else
sols.Add(b);
}
Main() {
foreach (i in 0..n-1)
AddQueen(new Board(), 0, i);
foreach (b in sols) {
b.Output();
WriteLine("");
}
WriteLine("Found " + sols.Count().ToString() + " solutions");
}
}
}
 
class Board {
fields {
rows = new List();
}
methods {
Constructor() {
foreach (r in 0..n-1) {
var col = new List();
foreach (c in 0..n-1)
col.Add(false);
rows.Add(col);
}
}
Constructor(b : Board) {
Constructor();
foreach (r in 0..n-1)
foreach (c in 0..n-1)
SetSpaceOccupied(r, c, b.SpaceOccupied(r, c));
}
SpaceOccupied(row : Int, col : Int) : Bool {
return rows[row][col];
}
SetSpaceOccupied(row : Int, col : Int, b : Bool) {
rows[row][col] = b;
}
ValidPos(row : Int, col : Int) : Bool {
return ((row >= 0) && (row < n)) && ((col >= 0) && (col < n));
}
VectorOccupied(row : Int, col : Int, rowDir : Int, colDir : Int) : Bool {
var nextRow = row + rowDir;
var nextCol = col + colDir;
if (!ValidPos(nextRow, nextCol))
return false;
if (SpaceOccupied(nextRow, nextCol))
return true;
return VectorOccupied(nextRow, nextCol, rowDir, colDir);
}
TryAddQueen(row : Int, col : Int) : Bool {
foreach (rowDir in -1..1)
foreach (colDir in -1..1)
if (rowDir != 0 || colDir != 0)
if (VectorOccupied(row, col, rowDir, colDir))
return false;
SetSpaceOccupied(row, col, true);
return true;
}
Output() {
foreach (row in 0..n-1) {
foreach (col in 0..n-1) {
if (SpaceOccupied(row, col)) {
Write("Q");
}
else {
Write(".");
}
}
WriteLine("");
}
}
}
}</syntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
Here's a solution to the <tt>n = 8</tt> case:
<syntaxhighlight lang="icon">procedure main()
write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))
end
 
procedure q(c)
static udiag, ddiag, row
 
initial {
udiag := list(15, 0)
ddiag := list(15, 0)
row := list(8, 0)
}
 
every 0 = row[r := 1 to 8] = ddiag[r + c - 1] = udiag[8 + r - c] do # test if free
suspend row[r] <- ddiag[r + c - 1] <- udiag[8 + r - c] <- r # place and yield
end</syntaxhighlight>
 
Notes:
* Solution assumes attempting to place 8 queens on a standard chessboard, and is a simplification of a program in the [[:Category:Icon_Programming_Library|The Icon Programming Library (IPL)]] which is in the public domain.
* There are 15 left-side-down-diagonals and 15 left-side-up-diagonals represented in the lists. An unfilled row or diagonal has value 0, otherwise the row number is stored to indicate placement.
* The numeric equality operator '''=''', like all the comparators in Icon, yields the right argument as its solution, or fails. The chain of 0 = A = B = C therefore tests each of A B and C for equality with 0; these semantics read very naturally.
* '''every''' drives the chain of '''=''' tests to yield every possible result; the iterable component is the generator '''1 to 8''' which is progressively stored into '''r''' and will be backtracked if any of the equality tests fail. If all the placements are zero, the chain of equalities suceeds, and the suspend is invoked for that iteration.
* '''&lt;-''' is the "reversible assignment" operator. It restores the original value and fails if it is resumed by backtracking. The suspend will use it to temporarily consume the placements and then it will yield the value of the chosen row '''r'''.
* procedure q() attempts to place the c-th column queen into row 1 to 8 in turn, suspending only if that queen can be placed at [c,r]
* As the calls to q() are evaluated in main, each one will suspend a possible row, thereby allowing the next q(n) in main to be evaluated. If any of the q() fails to yield a row for the nth queen (or runs out of solutions) the previous, suspended calls to q() are backtracked progressively. If the final q(8) yields a row, the write() will be called with the row positions of each queen. Note that even the final q(8) will be suspended along with the other 7 calls to q(). Unless the write() is driven to produce more solutions (see next point) the suspended procedures will be closed at the "end of statement" ie after the write has "succeeded".
* If you want to derive all possible solutions, main() can be embellished with the '''every''' keyword:
<syntaxhighlight lang="icon">
procedure main()
every write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))
end
</syntaxhighlight>
This drives the backtracking to find more solutions.
 
The following is a general <tt>N</tt>-queens solution, adapted from
a solution placed into the public domain by Peter A. Bigot in 1990.
The program produces a solution for a specified value of <tt>N</tt>.
The comment explains how to modify the program to produce <i>all</i>
solutions for a given <tt>N</tt>.
<syntaxhighlight lang="icon">global n, rw, dd, ud
 
procedure main(args)
n := integer(args[1]) | 8
rw := list(n)
dd := list(2*n-1)
ud := list(2*n-1)
solvequeen(1)
end
 
procedure solvequeen(c)
if (c > n) then return show()
else suspend placequeen(c) & solvequeen(c+1)
end
 
procedure placequeen(c)
suspend (/rw[r := 1 to n] <- /dd[r+c-1] <- /ud[n+r-c] <- c)
end
 
procedure show()
static count, line, border
initial {
count := 0
line := repl("| ",n) || "|"
border := repl("----",n) || "-"
}
write("solution: ", count+:=1)
write(" ", border)
every line[4*(!rw - 1) + 3] <- "Q" do {
write(" ", line)
write(" ", border)
}
write()
return # Comment out to see all possible solutions
end</syntaxhighlight>
 
A sample run for <tt>N = 6</tt>:
<pre>->nq 6
solution: 1
-------------------------
| | | | Q | | |
-------------------------
| Q | | | | | |
-------------------------
| | | | | Q | |
-------------------------
| | Q | | | | |
-------------------------
| | | | | | Q |
-------------------------
| | | Q | | | |
-------------------------
 
-></pre>
{{libheader|Icon Programming Library}}
Two solutions are in the IPL [http://www.cs.arizona.edu/icon/library/progs/queens.htm queens] and [http://www.cs.arizona.edu/icon/library/progs/genqueen.htm genqueen].
 
=={{header|IS-BASIC}}==
<syntaxhighlight lang="is-basic">100 PROGRAM "NQueens.bas"
110 TEXT 80
120 DO
130 INPUT PROMPT "Size of board (2-12): ":N$
140 LET N=VAL(N$)
150 LOOP UNTIL N>1 AND N<13
160 NUMERIC A(1 TO N),X(1 TO N),B(2 TO 2*N),C(-N+1 TO N-1)
170 LET SOL=0
180 CALL INIT(A):CALL INIT(B):CALL INIT(C)
190 CALL TRY(1)
200 PRINT SOL;"solutions."
210 END
220 DEF WRITE
230 LET S$="":LET SOL=SOL+1
240 FOR K=1 TO N
250 LET S$=S$&CHR$(64+K)&STR$(X(K))&" "
260 NEXT
270 PRINT S$
280 END DEF
290 DEF TRY(I)
300 NUMERIC J
310 FOR J=1 TO N
320 IF A(J) AND B(I+J) AND C(I-J) THEN
330 LET X(I)=J:LET A(J),B(I+J),C(I-J)=0
340 IF I<N THEN
350 CALL TRY(I+1)
360 ELSE
370 CALL WRITE
380 END IF
390 LET A(J),B(I+J),C(I-J)=1
400 END IF
410 NEXT
420 END DEF
430 DEF INIT(REF T)
440 FOR I=LBOUND(T) TO UBOUND(T)
450 LET T(I)=1
460 NEXT
470 END DEF</syntaxhighlight>
 
=={{header|J}}==
 
This is one of several J solutions shown and explained on this [[J:Essays/N%20Queens%20Problem|J wiki page]]
 
<langsyntaxhighlight lang="j">perm =: ! A.&i. ] NB. all permutations of integers 0 to y
comb2 =: (, #: I.@,@(</)&i.)~ NB. all size 2 combinations of integers 0 to y
mask =: [ */@:~:&(|@-/) {
queenst=: comb2 (] #"1~ mask)&.|: perm</langsyntaxhighlight>
 
Note that the Roger Hui's approach (used here) matches the description attributed to Raymond Hettinger (in the Python implementation). (Both were posted years ago: 1981 for Hui's version which was used here, and 2009 for Hettinger's.) However they do use different diagonal queen clash elimination approaches -see [http://rosettacode.org/wiki/N-queens_problem#Roger_Hui_.281981.29_Algorithm C# Roger Hui Algorithm] for a comparison of the two approaches.
 
Example use:
 
<syntaxhighlight lang="j"> $queenst 8
92 8</syntaxhighlight>
 
92 distinct solutions for an 8 by 8 board.
 
<syntaxhighlight lang="j"> {.queenst 8
0 4 7 5 2 6 1 3</syntaxhighlight>
 
One of the solutions. Position indicates row number, the integer indicates column number (0..7) for each queen -- though of course you could just as validly think of that the other way around.
 
=={{header|Java}}==
<syntaxhighlight lang="java">public class NQueens {
{{trans|C}}
<lang java>public class NQueens {
 
private static int[] b = new int[8];
Line 280 ⟶ 8,064:
}
}
}</langsyntaxhighlight>
 
=={{header|Javascript}}==
===ES5===
Algorithm uses recursive Backtracking. Checks for correct position on subfields, whichs saves a lot position checks. Needs 15.720 position checks for a 8x8 field.
<syntaxhighlight lang="javascript">function queenPuzzle(rows, columns) {
if (rows <= 0) {
return [[]];
} else {
return addQueen(rows - 1, columns);
}
}
 
function addQueen(newRow, columns, prevSolution) {
var newSolutions = [];
var prev = queenPuzzle(newRow, columns);
for (var i = 0; i < prev.length; i++) {
var solution = prev[i];
for (var newColumn = 0; newColumn < columns; newColumn++) {
if (!hasConflict(newRow, newColumn, solution))
newSolutions.push(solution.concat([newColumn]))
}
}
return newSolutions;
}
 
function hasConflict(newRow, newColumn, solution) {
for (var i = 0; i < newRow; i++) {
if (solution[i] == newColumn ||
solution[i] + i == newColumn + newRow ||
solution[i] - i == newColumn - newRow) {
return true;
}
}
return false;
}
 
console.log(queenPuzzle(8,8));</syntaxhighlight>
 
===ES6===
Translating the ES5 version, and adding a function to display columns of solutions.
<syntaxhighlight lang="javascript">(() => {
"use strict";
 
// ---------------- N QUEENS PROBLEM -----------------
 
// queenPuzzle :: Int -> Int -> [[Int]]
const queenPuzzle = intCols => {
// All solutions for a given number
// of columns and rows.
const go = nRows =>
nRows <= 0 ? [
[]
] : go(nRows - 1).reduce(
(a, solution) => [
...a, ...(
enumFromTo(0)(intCols - 1)
.reduce((b, iCol) =>
safe(
nRows - 1, iCol, solution
) ? (
[...b, [...solution, iCol]]
) : b, [])
)
], []
);
 
 
return go;
};
 
// safe : Int -> Int -> [Int] -> Bool
const safe = (iRow, iCol, solution) =>
!zip(solution)(
enumFromTo(0)(iRow - 1)
)
.some(
([sc, sr]) => (iCol === sc) || (
sc + sr === iCol + iRow
) || (sc - sr === iCol - iRow)
);
 
// ---------------------- TEST -----------------------
// Ten columns of solutions to the 7*7 board
 
// main :: IO ()
const main = () =>
// eslint-disable-next-line no-console
console.log(
showSolutions(10)(7)
);
 
// --------------------- DISPLAY ---------------------
 
// showSolutions :: Int -> Int -> String
const showSolutions = nCols =>
// Display of solutions, in nCols columns
// for a board of size N * N.
n => chunksOf(nCols)(
queenPuzzle(n)(n)
)
.map(xs => transpose(
xs.map(
rows => rows.map(
r => enumFromTo(1)(rows.length)
.flatMap(
x => r === x ? (
"♛"
) : "."
)
.join("")
)
)
)
.map(cells => cells.join(" "))
)
.map(x => x.join("\n"))
.join("\n\n");
 
 
// ---------------- GENERIC FUNCTIONS ----------------
 
// chunksOf :: Int -> [a] -> [[a]]
const chunksOf = n => {
// xs split into sublists of length n.
// The last sublist will be short if n
// does not evenly divide the length of xs .
const go = xs => {
const chunk = xs.slice(0, n);
 
return Boolean(chunk.length) ? [
chunk, ...go(xs.slice(n))
] : [];
};
 
return go;
};
 
 
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
n => Array.from({
length: 1 + n - m
}, (_, i) => m + i);
 
 
// transpose_ :: [[a]] -> [[a]]
const transpose = rows =>
// The columns of the input transposed
// into new rows.
// Simpler version of transpose, assuming input
// rows of even length.
Boolean(rows.length) ? rows[0].map(
(_, i) => rows.flatMap(
v => v[i]
)
) : [];
 
 
// zip :: [a] -> [b] -> [(a, b)]
const zip = xs =>
// The paired members of xs and ys, up to
// the length of the shorter of the two lists.
ys => Array.from({
length: Math.min(xs.length, ys.length)
}, (_, i) => [xs[i], ys[i]]);
 
// MAIN ---
return main();
})();</syntaxhighlight>
{{Out}}
<pre>....... ....... ....... ....... ♛...... ♛...... ♛...... ♛...... ♛...... ♛......
.♛..... ..♛.... ...♛... ....♛.. ..♛.... ..♛.... ...♛... ...♛... ...♛... ....♛..
...♛... .....♛. ♛...... ..♛.... ....... ....♛.. ....... .♛..... .....♛. .♛.....
.....♛. .♛..... ....♛.. ♛...... .....♛. ....... ..♛.... ....... ..♛.... .....♛.
♛...... ....♛.. .♛..... .....♛. ...♛... .♛..... .....♛. .....♛. ....... ..♛....
..♛.... ♛...... .....♛. ...♛... .♛..... ...♛... .♛..... ..♛.... .♛..... .......
....♛.. ...♛... ..♛.... .♛..... ....♛.. .....♛. ....♛.. ....♛.. ....♛.. ...♛...
 
♛...... .♛..... .♛..... .♛..... .♛..... .♛..... .♛..... ..♛.... ..♛.... ..♛....
.....♛. ....... ....... ...♛... ....♛.. .....♛. .....♛. ....... ....... ♛......
...♛... ....♛.. ....♛.. .....♛. ♛...... ♛...... ..♛.... .♛..... ...♛... .....♛.
.♛..... ♛...... ..♛.... ♛...... ...♛... ..♛.... ....... ....♛.. ♛...... ...♛...
....... ...♛... ♛...... ..♛.... ....... ....♛.. ...♛... ♛...... ....♛.. .♛.....
....♛.. .....♛. .....♛. ....♛.. ..♛.... ....... ♛...... .....♛. .♛..... .......
..♛.... ..♛.... ...♛... ....... .....♛. ...♛... ....♛.. ...♛... .....♛. ....♛..
 
..♛.... ..♛.... ..♛.... ...♛... ...♛... ...♛... ...♛... ...♛... ...♛... ....♛..
....♛.. .....♛. .....♛. ....... ....... ♛...... .♛..... .....♛. .....♛. .......
....... .♛..... ...♛... ..♛.... ....♛.. ....♛.. ....... ♛...... ♛...... .♛.....
.♛..... ....♛.. ♛...... .....♛. ..♛.... .♛..... ....♛.. ..♛.... ....♛.. ...♛...
...♛... ♛...... ....♛.. .♛..... ♛...... .....♛. ..♛.... ....♛.. .♛..... .....♛.
.....♛. ...♛... ....... ....♛.. .....♛. ..♛.... ♛...... ....... ....... ♛......
♛...... ....... .♛..... ♛...... .♛..... ....... .....♛. .♛..... ..♛.... ..♛....
 
....♛.. ....♛.. ....♛.. ....♛.. ....♛.. ....♛.. .....♛. .....♛. .....♛. .....♛.
♛...... .♛..... .♛..... .♛..... ..♛.... ..♛.... ♛...... .♛..... ..♛.... ...♛...
...♛... ....... ...♛... .....♛. ♛...... .....♛. ..♛.... ....♛.. ....... .♛.....
....... ..♛.... .....♛. ..♛.... .....♛. ....... ....♛.. ♛...... ...♛... .......
..♛.... .....♛. ....... ....... ...♛... .♛..... ....... ...♛... ♛...... ....♛..
.....♛. ...♛... ..♛.... ...♛... .♛..... ...♛... .♛..... ....... ....♛.. ..♛....
.♛..... ♛...... ♛...... ♛...... ....... ♛...... ...♛... ..♛.... .♛..... ♛......</pre>
 
=={{header|jq}}==
====Single Solution====
{{works with|jq|1.4}}
This section presents a function for finding a single solution using
the formulae for explicit solutions at [[WP:Eight_queens_puzzle|Eight Queens Puzzle]].
<syntaxhighlight lang="jq">def single_solution_queens(n):
def q: "♛";
def init(k): reduce range(0;k) as $i ([]; . + ["."]);
def matrix(k): init(k) as $row | reduce range(0;k) as $i ([]; . + [$row]);
def place(stream; i; j):
# jq indexing is based on offsets but we are using the 1-based formulae:
reduce stream as $s (.; setpath([-1+($s|i), -1+($s|j)]; q) );
def even(k):
if ((k-2) % 6) != 0 then
place( range(1; 1+(k/2)); .; 2*. )
| place( range(1; 1+(k/2)); (k/2) + .; 2*. -1 )
else place( range(1; 1+(k/2)); .; 1 + ((2*. + (k/2) - 3) % k))
| place( range(1; 1+(n/2)); n + 1 - .; n - ((2*. + (n/2) - 3) % n))
end;
 
matrix(n) # the chess board
| if (n % 2) == 0 then even(n)
else even(n-1) | .[n-1][n-1] = q
end;
 
# Example:
def pp: reduce .[] as $row
(""; reduce $row[] as $x (.; . + $x) + "\n");
 
single_solution_queens(8) | pp</syntaxhighlight>
{{out}}
$ jq -M -n -r -f n-queens-single-solution.jq
<syntaxhighlight lang="sh">...♛....
.....♛..
.......♛
.♛......
......♛.
♛.......
..♛.....
....♛...</syntaxhighlight>
====Generate-and-test counter====
{{ works with|jq|1.4}}
'''Part 1: Generic functions'''
<syntaxhighlight lang="jq"># permutations of 0 .. (n-1)
def permutations(n):
# Given a single array, generate a stream by inserting n at different positions:
def insert(m;n):
if m >= 0 then (.[0:m] + [n] + .[m:]), insert(m-1;n) else empty end;
 
if n==0 then []
elif n == 1 then [1]
else
permutations(n-1) | insert(n-1; n)
end;
 
def count(g): reduce g as $i (0; .+1);</syntaxhighlight>
'''Part 2: n-queens'''
<syntaxhighlight lang="jq">def queens(n):
def sums:
. as $board
| [ range(0;length) | . + $board[.]]
| unique | length;
 
def differences:
. as $board
| [ range(0;length) | . - $board[.]]
| unique | length;
 
def allowable:
length as $n
| sums == $n and differences == $n;
 
count( permutations(n) | select(allowable) );
</syntaxhighlight>
'''Example''':
<syntaxhighlight lang="jq">queens(8)</syntaxhighlight>
{{out}}
92
 
=={{header|Julia}}==
 
<syntaxhighlight lang="ruby">"""
# EightQueensPuzzle
 
Ported to **Julia** from examples in several languages from
here: https://hbfs.wordpress.com/2009/11/10/is-python-slow
"""
module EightQueensPuzzle
 
export Board, solve!
 
mutable struct Board
cols::Int
nodes::Int
diag45::Int
diag135::Int
solutions::Int
 
Board() = new(0, 0, 0, 0, 0)
end
 
"Marks occupancy."
function mark!(b::Board, k::Int, j::Int)
b.cols ⊻= (1 << j)
b.diag135 ⊻= (1 << (j+k))
b.diag45 ⊻= (1 << (32+j-k))
end
 
"Tests if a square is menaced."
function test(b::Board, k::Int, j::Int)
b.cols & (1 << j) +
b.diag135 & (1 << (j+k)) +
b.diag45 & (1 << (32+j-k)) == 0
end
 
"Backtracking solver."
function solve!(b::Board, niv::Int, dx::Int)
if niv > 0
for i in 0:dx-1
if test(b, niv, i) == true
mark!(b, niv, i)
solve!(b, niv-1, dx)
mark!(b, niv, i)
end
end
else
for i in 0:dx-1
if test(b, 0, i) == true
b.solutions += 1
end
end
end
b.nodes += 1
b.solutions
end
 
end # module
 
using .EightQueensPuzzle
 
for n = 1:17
b = Board()
@show n
print("elapsed:")
solutions = @time solve!(b, n-1, n)
@show solutions
println()
end
</syntaxhighlight> {{out}}
<pre>
n = 1
elapsed: 0.000001 seconds
solutions = 1
 
n = 2
elapsed: 0.000001 seconds
solutions = 0
 
n = 3
elapsed: 0.000001 seconds
solutions = 0
 
n = 4
elapsed: 0.000001 seconds
solutions = 2
 
n = 5
elapsed: 0.000002 seconds
solutions = 10
 
n = 6
elapsed: 0.000006 seconds
solutions = 4
 
n = 7
elapsed: 0.000032 seconds
solutions = 40
 
n = 8
elapsed: 0.000168 seconds
solutions = 92
 
n = 9
elapsed: 0.000554 seconds
solutions = 352
 
n = 10
elapsed: 0.001804 seconds
solutions = 724
 
n = 11
elapsed: 0.008528 seconds
solutions = 2680
 
n = 12
elapsed: 0.049349 seconds
solutions = 14200
 
n = 13
elapsed: 0.292637 seconds
solutions = 73712
 
n = 14
elapsed: 1.734187 seconds
solutions = 365596
 
n = 15
elapsed: 10.550665 seconds
solutions = 2279184
 
n = 16
elapsed: 78.840067 seconds
solutions = 14772512
 
n = 17
elapsed:550.816089 seconds
solutions = 95815104
</pre>
 
=={{header|Kotlin}}==
{{trans|FreeBASIC}}
<syntaxhighlight lang="scala">// version 1.1.3
 
var count = 0
var c = IntArray(0)
var f = ""
 
fun nQueens(row: Int, n: Int) {
outer@ for (x in 1..n) {
for (y in 1..row - 1) {
if (c[y] == x) continue@outer
if (row - y == Math.abs(x - c[y])) continue@outer
}
c[row] = x
if (row < n) nQueens(row + 1, n)
else if (++count == 1) f = c.drop(1).map { it - 1 }.toString()
}
}
 
fun main(args: Array<String>) {
for (n in 1..14) {
count = 0
c = IntArray(n + 1)
f = ""
nQueens(1, n)
println("For a $n x $n board:")
println(" Solutions = $count")
if (count > 0) println(" First is $f")
println()
}
}</syntaxhighlight>
 
{{out}}
<pre>
For a 1 x 1 board:
Solutions = 1
First is [0]
 
For a 2 x 2 board:
Solutions = 0
 
For a 3 x 3 board:
Solutions = 0
 
For a 4 x 4 board:
Solutions = 2
First is [1, 3, 0, 2]
 
For a 5 x 5 board:
Solutions = 10
First is [0, 2, 4, 1, 3]
 
For a 6 x 6 board:
Solutions = 4
First is [1, 3, 5, 0, 2, 4]
 
For a 7 x 7 board:
Solutions = 40
First is [0, 2, 4, 6, 1, 3, 5]
 
For a 8 x 8 board:
Solutions = 92
First is [0, 4, 7, 5, 2, 6, 1, 3]
 
For a 9 x 9 board:
Solutions = 352
First is [0, 2, 5, 7, 1, 3, 8, 6, 4]
 
For a 10 x 10 board:
Solutions = 724
First is [0, 2, 5, 7, 9, 4, 8, 1, 3, 6]
 
For a 11 x 11 board:
Solutions = 2680
First is [0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9]
 
For a 12 x 12 board:
Solutions = 14200
First is [0, 2, 4, 7, 9, 11, 5, 10, 1, 6, 8, 3]
 
For a 13 x 13 board:
Solutions = 73712
First is [0, 2, 4, 1, 8, 11, 9, 12, 3, 5, 7, 10, 6]
 
For a 14 x 14 board:
Solutions = 365596
First is [0, 2, 4, 6, 11, 9, 12, 3, 13, 8, 1, 5, 7, 10]
</pre>
 
=={{header|Liberty BASIC}}==
Program uses permutation generator (stores all permutations) and solves tasks 4x4 to 9x9. It prints all the solutions.
<syntaxhighlight lang="lb">
'N queens
'>10 would not work due to way permutations used
'anyway, 10 doesn't fit in memory
Input "Input N for N queens puzzle (4..9) ";N
if N<4 or N>9 then print "N out of range - quitting": end
 
ABC$= " "
dash$ = ""
for i = 0 to N-1
ABC$=ABC$+" "+chr$(asc("a")+i)
dash$ = dash$+"--"
next
 
dim q(N)
t0=time$("ms")
 
fact = 1
for i = 1 to N
fact = fact*i
next
 
dim anagram$(fact)
global nPerms
print "Filling permutations array"
t0=time$("ms")
res$=permutation$("", left$("0123456789", N))
t1=time$("ms")
print "Created all possible permutations ";t1-t0
 
t0=time$("ms")
'actually fact = nPerms
for k=1 to nPerms
for i=0 to N-1
q(i)=val(mid$(anagram$(k),i+1,1))
'print q(i);
next
'print
 
fail = 0
for i=0 to N-1
for j=i+1 to N-1
'check rows are different
if q(i)=q(j) then fail = 1: exit for
'check diagonals are different
if i+q(i)=j+q(j) then fail = 1: exit for
'check other diagonals are different
if i-q(i)=j-q(j) then fail = 1: exit for
next
if fail then exit for
next
 
if not(fail) then
num=num+1
print " ";dash$
for i=0 to N-1
print N-i; space$(2*q(i));" *"
next
print " ";dash$
print ABC$
end if
 
next
 
t1=time$("ms")
print "Time taken ";t1-t0
print "Number of solutions ";num
 
'----------------------------------
'from
'http://babek.info/libertybasicfiles/lbnews/nl124/wordgames.htm
'Programming a Word Game by Janet Terra,
'The Liberty Basic Newsletter - Issue #124 - September 2004
Function permutation$(pre$, post$)
'Note the variable nPerms must first be stated as a global variable.
lgth = Len(post$)
If lgth < 2 Then
nPerms = nPerms + 1
anagram$(nPerms) = pre$;post$
Else
For i = 1 To lgth
tmp$=permutation$(pre$+Mid$(post$,i,1),Left$(post$,i-1)+Right$(post$,lgth-i))
Next i
End If
End Function
 
</syntaxhighlight>
 
=={{header|Locomotive Basic}}==
 
Uses the heuristic from the Wikipedia article to get one solution.
 
<syntaxhighlight lang="locobasic">10 mode 1:defint a-z
20 while n<4:input "How many queens (N>=4)";n:wend
30 dim q(n),e(n),o(n)
40 r=n mod 6
50 if r<>2 and r<>3 then gosub 320:goto 220
60 for i=1 to int(n/2)
70 e(i)=2*i
80 next
90 for i=1 to round(n/2)
100 o(i)=2*i-1
110 next
120 if r=2 then gosub 410
130 if r=3 then gosub 460
140 s=1
150 for i=1 to n
160 if e(i)>0 then q(s)=e(i):s=s+1
170 next
180 for i=1 to n
190 if o(i)>0 then q(s)=o(i):s=s+1
200 next
210 ' print board
220 cls
230 for i=1 to n
240 locate i,26-q(i):print chr$(238);
250 locate i,24-n :print chr$(96+i);
260 locate n+1,26-i :print i;
270 next
280 locate 1,1
290 call &bb06
300 end
310 ' the simple case
320 p=1
330 for i=1 to n
340 if i mod 2=0 then q(p)=i:p=p+1
350 next
360 for i=1 to n
370 if i mod 2 then q(p)=i:p=p+1
380 next
390 return
400 ' edit list when remainder is 2
410 for i=1 to n
420 if o(i)=3 then o(i)=1 else if o(i)=1 then o(i)=3
430 if o(i)=5 then o(i)=-1 else if o(i)=0 then o(i)=5:return
440 next
450 ' edit list when remainder is 3
460 for i=1 to n
470 if e(i)=2 then e(i)=-1 else if e(i)=0 then e(i)=2:goto 500
480 next
490 ' edit list some more
500 for i=1 to n
510 if o(i)=1 or o(i)=3 then o(i)=-1 else if o(i)=0 then o(i)=1:o(i+1)=3:return
520 next</syntaxhighlight>
 
[[File:Queens Puzzle, Locomotive Basic.png]]
[[File:20 Queens, Locomotive Basic.png]]
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to try :files :diag1 :diag2 :tried
if :files = 0 [make "solutions :solutions+1 show :tried stop]
localmake "safe (bitand :files :diag1 :diag2)
Line 299 ⟶ 8,743:
end
 
print queens 8 ; 92</langsyntaxhighlight>
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">N = 8
 
-- We'll use nil to indicate no queen is present.
grid = {}
for i = 0, N do
grid[i] = {}
end
 
function can_find_solution(x0, y0)
local x0, y0 = x0 or 0, y0 or 1 -- Set default vals (0, 1).
for x = 1, x0 - 1 do
if grid[x][y0] or grid[x][y0 - x0 + x] or grid[x][y0 + x0 - x] then
return false
end
end
grid[x0][y0] = true
if x0 == N then return true end
for y0 = 1, N do
if can_find_solution(x0 + 1, y0) then return true end
end
grid[x0][y0] = nil
return false
end
 
if can_find_solution() then
for y = 1, N do
for x = 1, N do
-- Print "|Q" if grid[x][y] is true; "|_" otherwise.
io.write(grid[x][y] and "|Q" or "|_")
end
print("|")
end
else
print(string.format("No solution for %d queens.\n", N))
end</syntaxhighlight>
 
=={{header|M2000 Interpreter}}==
{{trans|VBA}}
<syntaxhighlight lang="m2000 interpreter">
Module N_queens {
Const l = 15 'number of queens
Const b = False 'print option
Dim a(0 to l), s(0 to l), u(0 to 4 * l - 2)
Def long n, m, i, j, p, q, r, k, t
For i = 1 To l: a(i) = i: Next i
For n = 1 To l
m = 0
i = 1
j = 0
r = 2 * n - 1
Do {
i--
j++
p = 0
q = -r
Do {
i++
u(p) = 1
u(q + r) = 1
Swap a(i), a(j)
p = i - a(i) + n
q = i + a(i) - 1
s(i) = j
j = i + 1
} Until j > n Or u(p) Or u(q + r)
If u(p) = 0 Then {
If u(q + r) = 0 Then {
m++ 'm: number of solutions
If b Then {
Print "n="; n; "m="; m
For k = 1 To n {
For t = 1 To n {
Print If$(a(n - k + 1) = t-> "Q", ".");
}
Print
}
}
}
}
j = s(i)
While j >= n And i <> 0 {
Do {
Swap a(i), a(j)
j--
} Until j < i
i--
p = i - a(i) + n
q = i + a(i) - 1
j = s(i)
u(p) = 0
u(q + r) = 0
}
} Until i = 0
Print n, m 'number of queens, number of solutions
Next n
}
N_queens
</syntaxhighlight>
 
=={{header|m4}}==
The following program should work with any POSIX-compliant m4.
It finds one solution of the Eight Queens problem.
 
<syntaxhighlight lang="m4">divert(-1)
 
The following macro find one solution to the eight-queens problem:
 
define(`solve_eight_queens',`_$0(1)')
define(`_solve_eight_queens',
`ifelse(none_of_the_queens_attacks_the_new_one($1),1,
`ifelse(len($1),8,`display_solution($1)',`$0($1`'1)')',
`ifelse(last_is_eight($1),1,`$0(incr_last(strip_eights($1)))',
`$0(incr_last($1))')')')
 
It works by backtracking.
 
Partial solutions are represented by strings. For example, queens at
a7,b3,c6 would be represented by the string "736". The first position
is the "a" file, the second is the "b" file, etc. The digit in a given
position represents the queen's rank.
 
When a new queen is appended to the string, it must satisfy the
following constraint:
 
define(`none_of_the_queens_attacks_the_new_one',
`_$0($1,decr(len($1)))')
define(`_none_of_the_queens_attacks_the_new_one',
`ifelse($2,0,1,
`ifelse(two_queens_attack($1,$2,len($1)),1,0,
`$0($1,decr($2))')')')
 
The `two_queens_attack' macro, used above, reduces to `1' if the
ith and jth queens attack each other; otherwise it reduces to `0':
 
define(`two_queens_attack',
`pushdef(`file1',eval($2))`'dnl
pushdef(`file2',eval($3))`'dnl
pushdef(`rank1',`substr($1,decr(file1),1)')`'dnl
pushdef(`rank2',`substr($1,decr(file2),1)')`'dnl
eval((rank1) == (rank2) ||
((rank1) + (file1)) == ((rank2) + (file2)) ||
((rank1) - (file1)) == ((rank2) - (file2)))`'dnl
popdef(`file1',`file2',`rank1',`rank2')')
 
Here is the macro that converts the solution string to a nice display:
 
define(`display_solution',
`pushdef(`rule',`+----+----+----+----+----+----+----+----+')`'dnl
rule
_$0($1,8)
rule
_$0($1,7)
rule
_$0($1,6)
rule
_$0($1,5)
rule
_$0($1,4)
rule
_$0($1,3)
rule
_$0($1,2)
rule
_$0($1,1)
rule`'dnl
popdef(`rule')')
define(`_display_solution',
`ifelse(index($1,$2),0,`| Q ',`| ')`'dnl
ifelse(index($1,$2),1,`| Q ',`| ')`'dnl
ifelse(index($1,$2),2,`| Q ',`| ')`'dnl
ifelse(index($1,$2),3,`| Q ',`| ')`'dnl
ifelse(index($1,$2),4,`| Q ',`| ')`'dnl
ifelse(index($1,$2),5,`| Q ',`| ')`'dnl
ifelse(index($1,$2),6,`| Q ',`| ')`'dnl
ifelse(index($1,$2),7,`| Q ',`| ')|')
 
Here are some simple macros used above:
 
define(`last',`substr($1,decr(len($1)))') Get the last char.
define(`drop_last',`substr($1,0,decr(len($1)))') Remove the last char.
define(`last_is_eight',`eval((last($1)) == 8)') Is the last char "8"?
define(`strip_eights',
`ifelse(last_is_eight($1),1,`$0(drop_last($1))',
`$1')') Backtrack by removing all final "8" chars.
define(`incr_last',
`drop_last($1)`'incr(last($1))') Increment the final char.
 
The macros here have been presented top-down. I believe the program
might be easier to understand were the macros presented bottom-up;
then there would be no "black boxes" (unexplained macros) as one reads
from top to bottom.
 
I leave such rewriting as an exercise for the reader. :)
 
divert`'dnl
dnl
solve_eight_queens</syntaxhighlight>
 
{{out}}
<pre>+----+----+----+----+----+----+----+----+
| | | Q | | | | | |
+----+----+----+----+----+----+----+----+
| | | | | | Q | | |
+----+----+----+----+----+----+----+----+
| | | | Q | | | | |
+----+----+----+----+----+----+----+----+
| | Q | | | | | | |
+----+----+----+----+----+----+----+----+
| | | | | | | | Q |
+----+----+----+----+----+----+----+----+
| | | | | Q | | | |
+----+----+----+----+----+----+----+----+
| | | | | | | Q | |
+----+----+----+----+----+----+----+----+
| Q | | | | | | | |
+----+----+----+----+----+----+----+----+</pre>
 
=={{header|Maple}}==
 
{{trans|Python}}
 
<syntaxhighlight lang="maple">queens:=proc(n)
local a,u,v,m,aux;
a:=[$1..n];
u:=[true$2*n-1];
v:=[true$2*n-1];
m:=[];
aux:=proc(i)
local j,k,p,q;
if i>n then
m:=[op(m),copy(a)];
else
for j from i to n do
k:=a[j];
p:=i-k+n;
q:=i+k-1;
if u[p] and v[q] then
u[p]:=false;
v[q]:=false;
a[j]:=a[i];
a[i]:=k;
aux(i+1);
u[p]:=true;
v[q]:=true;
a[i]:=a[j];
a[j]:=k;
fi;
od;
fi;
end;
aux(1);
m
end:
 
for a in queens(8) do printf("%a\n",a) od;</syntaxhighlight>
 
{{out}}
 
<pre>[1, 5, 8, 6, 3, 7, 2, 4]
[1, 6, 8, 3, 7, 4, 2, 5]
[1, 7, 4, 6, 8, 2, 5, 3]
...
[8, 2, 5, 3, 1, 7, 4, 6]
[8, 3, 1, 6, 2, 5, 7, 4]
[8, 4, 1, 3, 6, 2, 7, 5]</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
This code recurses through the possibilities, using the "safe" method to check if the current set is allowed. The recursive method has the advantage that finding all possibilities is about as hard (code-wise, not computation-wise) as finding just one.
<langsyntaxhighlight Mathematicalang="mathematica">safe[q_List, n_] :=
With[{l = Length@q},
Length@Union@q == Length@Union[q + Range@l] ==
Length@Union[q - Range@l] == l]
nQueen[q_List: {}, n_] :=
If[safe[q, n],
If[Length[q] == n, {q},
Cases[Flatten[{nQueen[Append[q, #], n]}, 2] & /@ Range[n],
Except[{Null} | {}], {2}]], Null]</langsyntaxhighlight>
 
This returns a list of valid permutations by giving the queen's column number for each row. It can be displayed in a list of chess-board tables like this:
<langsyntaxhighlight Mathematicalang="mathematica">matrixView[n_] :=
Grid[Normal@
SparseArray[MapIndexed[{#, First@#2} -> "Q" &, #], {n, n}, "."],
Frame -> All] & /@ nQueen[n]
matrixView[6] // OutputForm</langsyntaxhighlight>
{{out}}
<pre>{. . . Q . ., . . . . Q ., . Q . . . ., . . Q . . .}
 
Line 330 ⟶ 9,042:
 
. . Q . . . . Q . . . . . . . . Q . . . . Q . .</pre>
 
Alternate Solution
This solution uses Permutations and subsets, also prints out a board representation.
 
<syntaxhighlight lang="mathematica">n=8;cnt=1;per=Permutations[Range[n],{n}];(* All Permutations of length n *)
Do[per[[q]]=Partition[Riffle[Reverse[Range[n]],per[[q]]],2],{q,1,Length[per]}];(* Riffled in the reverse of [range n] partitioned into pairs*)
Do[w=Subsets[per[[t]],{2}];(* This is a full subset of the previous set of pairs taken 2 at a time *)
tot=0;
Do[y=Abs[w[[q,1,1]]-w[[q,2,1]]];x=Abs[w[[q,1,2]]-w[[q,2,2]]];If[x==y,tot++],{q,1,Length[w]}];(* x and y are the abs values of x1-y1 and x2-y2 if equal they are on same diagonal *)
If[tot==0,g=Grid[Table[" ",{n},{n}],Alignment->Center,Frame->All,Spacings->{1.2,1}];(* If no clashing diagonals setup an array and print the permutation and the grid*)
Do[g[[1,per[[t,w,1]],per[[t,w,2]]]]="Q",{w,1,n}];
Print[cnt," ",per[[t]]," ",g];cnt++],{t,1,Length[per]}]</syntaxhighlight>
 
Alternative Solution using Linear Programming:
 
<syntaxhighlight lang="mathematica">
dispSol[sol_] := sol /. {1 -> "Q" , 0 -> "-"} // Grid
 
solveNqueens[n_] :=
Module[{c, m, b, vars}, c = cqueens[n]; m = mqueens[n];
vars = mqueens2[n]; b = bqueens[Length[m]];
Partition[LinearProgramming[c, m, b, vars, Integers], n]]
 
cqueens[n_] := Table[-1, {i, n^2}]
 
bqueens[l_] := Table[{1, -1}, {i, l}]
 
mqueens2[n_] := Table[{0, 1}, {i, n^2}]
 
mqueens[n_] :=
Module[{t, t2, t3, t4}, t = mqueensh[n]; t2 = Append[t, mqueensv[n]];
t3 = Append[t2, mqueensd[n]]; t4 = Append[t3, mqueensdm[n]];
Partition[Flatten[t4], n^2]]
 
mqueensh[n_] :=
Module[{t}, t = Table[0, {i, n}, {j, n^2}];
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++, t[[i, ((i - 1)*n) + j]] = 1]]; t]
 
mqueensv[n_] :=
Module[{t}, t = Table[0, {i, n}, {j, n^2}];
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++, t[[j, ((i - 1)*n) + j]] = 1]]; t]
 
mqueensd[n_] :=
Module[{t}, t = Table[0, {i, (2*n) - 1}, {j, n^2}];
For[k = 2, k <= 2 n, k++,
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++,
If[i + j == k, t[[k - 1, ((i - 1)*n) + j]] = 1]]]]; t]
 
mqueensdm[n_] :=
Module[{t}, t = Table[0, {i, Sum[1, {i, 1 - n, n - 1}]}, {j, n^2}];
For[k = 1 - n, k <= n - 1, k++,
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++,
If[i == j - k, t[[k + n, ((i - 1)*n) + j]] = 1]]]]; t]
 
 
solveNqueens[8] // dispSol
</syntaxhighlight>
<pre>- - - - Q - - -
- Q - - - - - -
- - - - - Q - -
Q - - - - - - -
- - - - - - Q -
- - - Q - - - -
- - - - - - - Q
- - Q - - - - -</pre>
 
=={{header|MATLAB}}==
This solution is inspired by Raymond Hettinger's permutations based solution which was made in Python: https://code.activestate.com/recipes/576647/
<syntaxhighlight lang="matlab">n=8;
solutions=[[]];
v = 1:n;
P = perms(v);
for i=1:length(P)
for j=1:n
sub(j)=P(i,j)-j;
add(j)=P(i,j)+j;
end
if n==length(unique(sub)) && n==length(unique(add))
solutions(end+1,:)=P(i,:);
end
end
 
fprintf('Number of solutions with %i queens: %i', n, length(solutions));
 
if ~isempty(solutions)
%Print first possible solution
board=solutions(1,:);
s = repmat('-',n);
for k=1:length(board)
s(k,board(k)) = 'Q';
end
s
end</syntaxhighlight>
{{out}}
<pre>
Number of solutions with 8 queens: 92
 
'-------Q'
'---Q----'
'Q-------'
'--Q-----'
'-----Q--'
'-Q------'
'------Q-'
'----Q---'
</pre>
 
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">/* translation of Fortran 77, return solutions as permutations */
 
queens(n) := block([a, i, j, m, p, q, r, s, u, v, w, y, z],
a: makelist(i, i, 1, n), s: a*0, u: makelist(0, i, 1, 4*n - 2),
m: 0, i: 1, r: 2*n - 1, w: [ ], go(L40), L30, s[i]: j, u[p]: 1,
u[q + r]: 1, i: i + 1, L40, if i > n then go(L80), j: i, L50,
z: a[i], y: a[j], p: i - y + n, q: i + y - 1, a[i]: y, a[j]: z,
if u[p] = 0 and u[q + r] = 0 then go(L30), L60, j: j + 1,
if j <= n then go(L50), L70, j: j - 1, if j = i then go(L90),
z: a[i], a[i]: a[j], a[j]: z, go(L70), L80, m: m + 1,
w: endcons(copylist(a), w), L90, i: i - 1, if i = 0 then go(L100),
p: i - a[i] + n, q: i + a[i] - 1, j: s[i], u[p]: 0, u[q + r]: 0,
go(L60), L100, w)$
 
queens(8); /* [[1, 5, 8, 6, 3, 7, 2, 4],
[1, 6, 8, 3, 7, 4, 2, 5],
...]] */
length(%); /* 92 */</syntaxhighlight>
 
<syntaxhighlight lang="maxima">
/* Inspired by code from Python */
Queens(N):=block([K,C,P,V,L:[]],
C: makelist(K,K,1,N),
P: permutations(C),
for V in P do (
if is(N=length(unique(makelist(V[K]+K, K, C)))) then (
if is(N=length(unique(makelist(V[K]-K, K, C)))) then (
L: endcons(V, L)
)
)
), L
)$
 
Queens(8);length(%);</syntaxhighlight>
 
=={{header|MiniScript}}==
This GUI implementation is for use with [http://miniscript.org/MiniMicro Mini Micro]. It displays a chess board with animation of the possibilities. At the end, after all of the solutions have been calculated, you can scroll through them with the left/right cursor keys.
<syntaxhighlight lang="miniscript">
clear
N = 8
SOLUTIONCOUNT = 0
 
getTileDisplay = function
gfx.clear
queen = file.loadImage("/sys/pics/gamePieces/blackQueen.png")
gfx.color = color.white
gfx.fillRect 0, 0, 80, 80
gfx.fillRect 160, 0, 80, 80
gfx.color = color.brown
gfx.fillRect 80, 0, 80, 80
gfx.fillRect 240, 0, 80, 80
gfx.drawImage queen, 172, 14
gfx.drawImage queen, 252, 14
tiles = gfx.getImage(0,0, 320, 80)
gfx.clear
display(4).mode = displayMode.tile
td = display(4)
td.cellSize = 640 / N
td.extent = [N, N]
td.overlap = 0
td.tileSet = tiles
td.tileSetTileSize = 80
td.scrollX = -160
td.clear
return td
end function
 
updateBoard = function(td, arr)
for y in range(0, N - 1)
ix = y % 2
for x in range(0, N - 1)
td.setCell x, y, ix
ix += 1
ix %= 2
end for
end for
y = 0
for x in arr
td.setCell x, y, td.cell(x, y) + 2
y += 1
end for
yield
end function
 
list.has = function(n)
return self.indexOf(n) != null
end function
 
queens = function(n, i, a, b, c, td)
solutions = []
updateBoard(td, a)
if i < n then
for j in range(0, n - 1)
if not a.has(j) and not b.has(i + j) and not c.has(i - j) then
solution = queens(n, i + 1, a + [j], b + [i + j], c + [i - j], td)
if solution != null then solutions += solution
end if
end for
else
globals.SOLUTIONCOUNT += 1
text.row = 25
text.print "SOLUTIONS"
text.print globals.SOLUTIONCOUNT
solutions.push(a)
end if
return solutions
end function
 
td = getTileDisplay
solutions = queens(N, 0, [], [], [], td)
ix = 0
while true
text.row = 25
text.print "SOLUTION # "
text.print (ix + 1) + (" " * 10)
text.print
text.print char(17) + "/" + char(18) + " keys"
updateBoard(td, solutions[ix])
k = key.get
kcode = code(k)
if kcode == 27 then break
ix = ix - (kcode == 17) + (kcode == 18) + solutions.len
ix %= solutions.len
end while
</syntaxhighlight>
 
=={{header|MiniZinc}}==
<syntaxhighlight lang="minizinc">int: n;
array [1..n] of var 1..n: q; % queen in column i is in row q[i]
 
include "alldifferent.mzn";
 
constraint alldifferent(q); % distinct rows
constraint alldifferent([ q[i] + i | i in 1..n]); % distinct diagonals
constraint alldifferent([ q[i] - i | i in 1..n]); % upwards+downwards
 
% search
solve :: int_search(q, first_fail, indomain_min)
satisfy;
output [ if fix(q[j]) == i then "Q" else "." endif ++
if j == n then "\n" else "" endif | i,j in 1..n]</syntaxhighlight>
 
This solution appears in the official MiniZinc tutorial documentation, and is generalized.
 
=={{header|Modula-2}}==
{{trans|C}}
<syntaxhighlight lang="modula2">MODULE NQueens;
FROM InOut IMPORT Write, WriteCard, WriteString, WriteLn;
 
CONST N = 8;
VAR hist: ARRAY [0..N-1] OF CARDINAL;
count: CARDINAL;
PROCEDURE Solve(n, col: CARDINAL);
VAR i, j: CARDINAL;
PROCEDURE Attack(i, j: CARDINAL): BOOLEAN;
VAR diff: CARDINAL;
BEGIN
IF hist[j] = i THEN RETURN TRUE;
ELSE
IF hist[j] < i THEN diff := i - hist[j];
ELSE diff := hist[j] - i;
END;
RETURN diff = col-j;
END;
END Attack;
BEGIN
IF col = n THEN
INC(count);
WriteLn;
WriteString("No. ");
WriteCard(count, 0);
WriteLn;
WriteString("---------------");
WriteLn;
FOR i := 0 TO n-1 DO
FOR j := 0 TO n-1 DO
IF j = hist[i] THEN Write('Q');
ELSIF (i + j) MOD 2 = 1 THEN Write(' ');
ELSE Write('.');
END;
END;
WriteLn;
END;
ELSE
FOR i := 0 TO n-1 DO
j := 0;
WHILE (j < col) AND (NOT Attack(i,j)) DO INC(j); END;
IF j >= col THEN
hist[col] := i;
Solve(n, col+1);
END;
END;
END;
END Solve;
 
BEGIN
count := 0;
Solve(N, 0);
END NQueens.</syntaxhighlight>
 
{{out}}
<pre style='height:50ex;'>No. 1
---------------
Q . . .
. .Q. .
. . . .Q
. . Q .
. Q . .
. . .Q.
.Q. . .
. Q . .
 
No. 2
---------------
Q . . .
. . Q .
. . . .Q
.Q. . .
. . . Q
. Q . .
.Q. . .
. .Q. .
 
No. 3
---------------
Q . . .
. . .Q.
. .Q. .
. . Q .
. . . .Q
Q . . .
. . Q .
.Q. . .
 
No. 4
---------------
Q . . .
. . .Q.
. . Q .
. . . Q
.Q. . .
. Q . .
. . .Q.
.Q. . .
 
No. 5
---------------
.Q. . .
. Q . .
. . .Q.
. . . Q
. Q . .
Q. . . .
. . . Q
. .Q. .
 
No. 6
---------------
.Q. . .
. .Q. .
. . . Q
Q. . . .
. Q . .
. . . Q
. . .Q.
. Q . .
 
No. 7
---------------
.Q. . .
. .Q. .
. . . Q
. Q . .
Q . . .
. . . Q
. . .Q.
.Q. . .
 
No. 8
---------------
.Q. . .
. . Q .
Q . . .
. . .Q.
. .Q. .
. . . Q
. Q . .
. .Q. .
 
No. 9
---------------
.Q. . .
. . Q .
. . . .Q
.Q. . .
Q . . .
. Q . .
. . . Q
. .Q. .
 
No. 10
---------------
.Q. . .
. . .Q.
. Q . .
. . Q .
. . . .Q
. .Q. .
Q . . .
. Q . .
 
No. 11
---------------
.Q. . .
. . .Q.
. . Q .
. . . Q
Q . . .
. Q . .
. . .Q.
.Q. . .
 
No. 12
---------------
.Q. . .
. . . Q
. . .Q.
Q. . . .
. Q . .
. .Q. .
. . . Q
. Q . .
 
No. 13
---------------
. Q . .
Q. . . .
. . . Q
. .Q. .
. . . .Q
Q . . .
. .Q. .
. . Q .
 
No. 14
---------------
. Q . .
. .Q. .
.Q. . .
. . . Q
Q . . .
. . .Q.
. .Q. .
. . Q .
 
No. 15
---------------
. Q . .
. .Q. .
.Q. . .
. . . Q
. . .Q.
. Q . .
. . . Q
Q. . . .
 
No. 16
---------------
. Q . .
. .Q. .
. . . Q
Q. . . .
. .Q. .
Q . . .
. . . .Q
. . Q .
 
No. 17
---------------
. Q . .
. .Q. .
. . . .Q
. Q . .
Q . . .
. . .Q.
.Q. . .
. . Q .
 
No. 18
---------------
. Q . .
. . Q .
.Q. . .
. .Q. .
. . . .Q
Q. . . .
. . . Q
. Q . .
 
No. 19
---------------
. Q . .
. . Q .
.Q. . .
. . .Q.
Q . . .
. Q . .
. . . .Q
. .Q. .
 
No. 20
---------------
. Q . .
. . Q .
.Q. . .
. . .Q.
. . Q .
Q. . . .
. . . .Q
. Q . .
 
No. 21
---------------
. Q . .
. . Q .
. .Q. .
Q. . . .
. . . .Q
. .Q. .
. . . Q
Q . . .
 
No. 22
---------------
. Q . .
. . Q .
. .Q. .
Q . . .
. . . .Q
. .Q. .
. . . Q
Q. . . .
 
No. 23
---------------
. Q . .
. . Q .
. . . .Q
Q. . . .
. .Q. .
. . .Q.
. . Q .
Q . . .
 
No. 24
---------------
. Q . .
. . Q .
. . . .Q
Q. . . .
. . Q .
. . .Q.
.Q. . .
. Q . .
 
No. 25
---------------
. Q . .
. . Q .
. . . .Q
Q . . .
. .Q. .
Q. . . .
. . . Q
. .Q. .
 
No. 26
---------------
. Q . .
. . .Q.
.Q. . .
. . . Q
. . Q .
Q. . . .
. .Q. .
. . Q .
 
No. 27
---------------
. Q . .
. . .Q.
.Q. . .
. . . Q
. . .Q.
. Q . .
Q . . .
. .Q. .
 
No. 28
---------------
. Q . .
. . . Q
. .Q. .
. . .Q.
Q . . .
. . Q .
.Q. . .
. .Q. .
 
No. 29
---------------
. .Q. .
Q. . . .
. . Q .
. . . Q
.Q. . .
. . .Q.
. Q . .
. . Q .
 
No. 30
---------------
. .Q. .
Q. . . .
. . Q .
. . . Q
. . .Q.
.Q. . .
. . . Q
Q . . .
 
No. 31
---------------
. .Q. .
Q . . .
. . Q .
. . . Q
. . .Q.
Q. . . .
. Q . .
. . .Q.
 
No. 32
---------------
. .Q. .
Q . . .
. . . Q
.Q. . .
. . .Q.
. . . Q
Q . . .
. .Q. .
 
No. 33
---------------
. .Q. .
Q . . .
. . . Q
.Q. . .
. . .Q.
. . . Q
. . Q .
Q. . . .
 
No. 34
---------------
. .Q. .
Q . . .
. . . Q
. .Q. .
Q . . .
. . . Q
. . .Q.
.Q. . .
 
No. 35
---------------
. .Q. .
Q . . .
. . . .Q
. .Q. .
. . . Q
Q. . . .
. Q . .
. . Q .
 
No. 36
---------------
. .Q. .
Q . . .
. . . .Q
. . Q .
Q . . .
.Q. . .
. . Q .
. . .Q.
 
No. 37
---------------
. .Q. .
. . Q .
Q . . .
. .Q. .
.Q. . .
. . . Q
. Q . .
. . .Q.
 
No. 38
---------------
. .Q. .
. . Q .
. . . .Q
Q . . .
. . . Q
Q. . . .
. Q . .
. .Q. .
 
No. 39
---------------
. .Q. .
. . Q .
. . . .Q
.Q. . .
Q . . .
. . .Q.
. . Q .
Q . . .
 
No. 40
---------------
. .Q. .
. . .Q.
Q . . .
. . . Q
. . Q .
Q . . .
. . .Q.
.Q. . .
 
No. 41
---------------
. .Q. .
. . .Q.
. Q . .
. . . Q
.Q. . .
. .Q. .
Q . . .
. . Q .
 
No. 42
---------------
. .Q. .
. . .Q.
. . Q .
Q . . .
. . .Q.
Q. . . .
. Q . .
. . . Q
 
No. 43
---------------
. .Q. .
. . .Q.
. . Q .
.Q. . .
Q . . .
. . Q .
. . . .Q
Q . . .
 
No. 44
---------------
. .Q. .
. . . Q
Q . . .
.Q. . .
. . .Q.
Q . . .
. . . Q
. .Q. .
 
No. 45
---------------
. .Q. .
. . . Q
Q . . .
. .Q. .
. . . Q
Q . . .
. . .Q.
.Q. . .
 
No. 46
---------------
. .Q. .
. . . Q
. . Q .
.Q. . .
Q . . .
. . .Q.
.Q. . .
. . Q .
 
No. 47
---------------
. . Q .
Q. . . .
. .Q. .
. . Q .
. . . .Q
Q . . .
. . . Q
.Q. . .
 
No. 48
---------------
. . Q .
Q. . . .
. . . .Q
. Q . .
.Q. . .
. . .Q.
. Q . .
. . Q .
 
No. 49
---------------
. . Q .
Q. . . .
. . . .Q
. . Q .
. Q . .
. . .Q.
.Q. . .
. Q . .
 
No. 50
---------------
. . Q .
Q . . .
. .Q. .
. . Q .
. . . .Q
.Q. . .
Q . . .
. . .Q.
 
No. 51
---------------
. . Q .
Q . . .
. .Q. .
. . .Q.
. Q . .
. . . Q
. . .Q.
Q. . . .
 
No. 52
---------------
. . Q .
Q . . .
. . .Q.
Q. . . .
. . . Q
. Q . .
. . . .Q
.Q. . .
 
No. 53
---------------
. . Q .
Q . . .
. . . .Q
Q. . . .
. .Q. .
. . .Q.
. Q . .
. . Q .
 
No. 54
---------------
. . Q .
.Q. . .
Q . . .
. . Q .
. . . .Q
Q . . .
. .Q. .
. . .Q.
 
No. 55
---------------
. . Q .
.Q. . .
Q . . .
. . .Q.
.Q. . .
. . . Q
. . .Q.
. Q . .
 
No. 56
---------------
. . Q .
.Q. . .
. . . .Q
. Q . .
. . . Q
Q. . . .
. . .Q.
Q . . .
 
No. 57
---------------
. . Q .
. . .Q.
Q . . .
.Q. . .
. . . .Q
. . Q .
. .Q. .
Q . . .
 
No. 58
---------------
. . Q .
. . .Q.
Q . . .
. Q . .
.Q. . .
. . . Q
. . .Q.
.Q. . .
 
No. 59
---------------
. . Q .
. . .Q.
.Q. . .
. Q . .
. . . .Q
Q. . . .
. Q . .
. . Q .
 
No. 60
---------------
. . Q .
. . .Q.
.Q. . .
. . Q .
. Q . .
Q. . . .
. .Q. .
. . . Q
 
No. 61
---------------
. . Q .
. . .Q.
.Q. . .
. . Q .
. Q . .
Q. . . .
. . . .Q
. Q . .
 
No. 62
---------------
. . Q .
. . .Q.
. .Q. .
Q. . . .
. Q . .
. . . Q
. . .Q.
Q . . .
 
No. 63
---------------
. . Q .
. . . Q
. .Q. .
Q. . . .
. Q . .
. . Q .
.Q. . .
. . .Q.
 
No. 64
---------------
. . Q .
. . . Q
. .Q. .
Q. . . .
. . . Q
Q . . .
. . .Q.
.Q. . .
 
No. 65
---------------
. . .Q.
Q. . . .
. . Q .
Q . . .
. . . .Q
.Q. . .
. . . Q
. Q . .
 
No. 66
---------------
. . .Q.
Q . . .
. . . Q
Q. . . .
. Q . .
. .Q. .
. . . .Q
. Q . .
 
No. 67
---------------
. . .Q.
Q . . .
. . . Q
Q. . . .
. .Q. .
. . . Q
. . Q .
.Q. . .
 
No. 68
---------------
. . .Q.
.Q. . .
Q . . .
. . .Q.
. . Q .
. . . Q
.Q. . .
. Q . .
 
No. 69
---------------
. . .Q.
.Q. . .
Q . . .
. . . Q
. .Q. .
Q . . .
. . . Q
. .Q. .
 
No. 70
---------------
. . .Q.
.Q. . .
Q . . .
. . . Q
. . Q .
Q . . .
. .Q. .
. . .Q.
 
No. 71
---------------
. . .Q.
.Q. . .
. . Q .
. . .Q.
Q . . .
. Q . .
.Q. . .
. . . Q
 
No. 72
---------------
. . .Q.
.Q. . .
. . Q .
. . . Q
Q . . .
. Q . .
.Q. . .
. . .Q.
 
No. 73
---------------
. . .Q.
.Q. . .
. . . Q
Q . . .
. .Q. .
. . . Q
Q . . .
. .Q. .
 
No. 74
---------------
. . .Q.
.Q. . .
. . . Q
Q . . .
. . . .Q
. .Q. .
Q . . .
. Q . .
 
No. 75
---------------
. . .Q.
.Q. . .
. . . Q
. Q . .
Q . . .
. . . Q
.Q. . .
. .Q. .
 
No. 76
---------------
. . .Q.
. Q . .
Q . . .
. .Q. .
. . . .Q
Q . . .
. . . Q
.Q. . .
 
No. 77
---------------
. . .Q.
. Q . .
.Q. . .
. . . Q
. . Q .
. . .Q.
Q . . .
.Q. . .
 
No. 78
---------------
. . .Q.
. Q . .
. . . Q
Q. . . .
. Q . .
. .Q. .
.Q. . .
. . . Q
 
No. 79
---------------
. . .Q.
. Q . .
. . . Q
Q. . . .
. . . .Q
Q . . .
. . Q .
.Q. . .
 
No. 80
---------------
. . .Q.
. . . Q
.Q. . .
. Q . .
Q . . .
. . .Q.
. . Q .
.Q. . .
 
No. 81
---------------
. . . Q
Q. . . .
. Q . .
. . . Q
. . .Q.
. Q . .
.Q. . .
. .Q. .
 
No. 82
---------------
. . . Q
Q . . .
. .Q. .
Q. . . .
. . . .Q
. .Q. .
. Q . .
. . Q .
 
No. 83
---------------
. . . Q
Q . . .
. . .Q.
.Q. . .
Q . . .
. Q . .
. . . .Q
. .Q. .
 
No. 84
---------------
. . . Q
.Q. . .
Q . . .
. . Q .
. . . .Q
. .Q. .
.Q. . .
. Q . .
 
No. 85
---------------
. . . Q
.Q. . .
. . . .Q
Q . . .
. . Q .
Q. . . .
. . .Q.
. Q . .
 
No. 86
---------------
. . . Q
. Q . .
.Q. . .
. .Q. .
. . . .Q
Q. . . .
. Q . .
. . Q .
 
No. 87
---------------
. . . Q
. Q . .
.Q. . .
. . . Q
. . .Q.
Q. . . .
. Q . .
. .Q. .
 
No. 88
---------------
. . . Q
. .Q. .
. Q . .
Q. . . .
. . .Q.
. . . Q
.Q. . .
. Q . .
 
No. 89
---------------
. . . .Q
Q . . .
. .Q. .
Q. . . .
. . . Q
. .Q. .
. Q . .
. . Q .
 
No. 90
---------------
. . . .Q
Q . . .
. . Q .
.Q. . .
Q . . .
. . .Q.
. .Q. .
. . Q .
 
No. 91
---------------
. . . .Q
.Q. . .
Q . . .
. . Q .
.Q. . .
. .Q. .
. . . Q
. Q . .
 
No. 92
---------------
. . . .Q
. Q . .
Q . . .
.Q. . .
. . .Q.
Q . . .
. . . Q
. .Q. .</pre>
 
 
=={{header|MUMPS}}==
<syntaxhighlight lang="mumps">Queens New count,flip,row,sol
Set sol=0
For row(1)=1:1:4 Do try(2) ; Not 8, the other 4 are symmetric...
;
; Remove symmetric solutions
Set sol="" For Set sol=$Order(sol(sol)) Quit:sol="" Do
. New xx,yy
. Kill sol($Translate(sol,12345678,87654321)) ; Vertical flip
. Kill sol($Reverse(sol)) ; Horizontal flip
. Set flip="--------" for xx=1:1:8 Do ; Flip over top left to bottom right diagonal
. . New nx,ny
. . Set yy=$Extract(sol,xx),nx=8+1-xx,ny=8+1-yy
. . Set $Extract(flip,ny)=nx
. . Quit
. Kill sol(flip)
. Set flip="--------" for xx=1:1:8 Do ; Flip over top right to bottom left diagonal
. . New nx,ny
. . Set yy=$Extract(sol,xx),nx=xx,ny=yy
. . Set $Extract(flip,ny)=nx
. . Quit
. Kill sol(flip)
. Quit
;
; Display remaining solutions
Set count=0,sol="" For Set sol=$Order(sol(sol)) Quit:sol="" Do Quit:sol=""
. New s1,s2,s3,txt,x,y
. Set s1=sol,s2=$Order(sol(s1)),s3="" Set:s2'="" s3=$Order(sol(s2))
. Set txt="+--+--+--+--+--+--+--+--+"
. Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt
. For y=8:-1:1 Do
. . Write !,y," |"
. . For x=1:1:8 Write $Select($Extract(s1,x)=y:" Q",x+y#2:" ",1:"##"),"|"
. . If s2'="" Write " |"
. . If s2'="" For x=1:1:8 Write $Select($Extract(s2,x)=y:" Q",x+y#2:" ",1:"##"),"|"
. . If s3'="" Write " |"
. . If s3'="" For x=1:1:8 Write $Select($Extract(s3,x)=y:" Q",x+y#2:" ",1:"##"),"|"
. . Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt
. . Quit
. Set txt=" A B C D E F G H"
. Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt Write !
. Set sol=s3
. Quit
Quit
try(col) New ok,pcol
If col>8 Do Quit
. New out,x
. Set out="" For x=1:1:8 Set out=out_row(x)
. Set sol(out)=1
. Quit
For row(col)=1:1:8 Do
. Set ok=1
. For pcol=1:1:col-1 If row(pcol)=row(col) Set ok=0 Quit
. Quit:'ok
. For pcol=1:1:col-1 If col-pcol=$Translate(row(pcol)-row(col),"-") Set ok=0 Quit
. Quit:'ok
. Do try(col+1)
. Quit
Quit
Do Queens
</syntaxhighlight>
<div style="overflow:scroll; height:400px;">
<syntaxhighlight lang="mumps">
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| |##| |##| Q|##| | |##| |##| | Q| |##| | |##| |##| |##| | Q| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | |##| | Q| |##| |##| | | Q| |##| |##| |##| | |##| Q|##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| Q|##| |##| |##| | |##| |##| |##| |##| Q| |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | |##| |##| |##| | Q| | |##| |##| | Q| |##| | | Q| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 |##| |##| | Q| |##| | |##| |##| Q|##| |##| | |##| |##| | Q| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| Q|##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| |##| | Q| |##| | |##| |##| | Q| |##| | |##| |##| | Q| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| | Q| |##| |##| | |##| | Q| |##| |##| | |##| |##| Q|##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| | | Q| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | |##| |##| |##| | Q| | |##| | Q| |##| |##| | |##| |##| Q|##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 |##| |##| | Q| |##| | |##| |##| |##| |##| Q| |##| |##| |##| | Q| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| | Q| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| |##| |##| | Q| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | | Q| |##| |##| |##| | |##| | Q| |##| |##| | |##| |##| |##| Q|##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| |##| |##| |##| Q| |##| |##| |##| Q|##| | |##| | Q| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | |##| |##| | Q| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 |##| |##| Q|##| |##| | |##| | Q| |##| |##| | |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| | Q| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | | Q| |##| |##| |##| | |##| | Q| |##| |##| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| |##| | Q| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | |##| Q|##| |##| |##| | |##| |##| |##| | Q| | |##| |##| Q|##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| |##| |##| Q|##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| | Q| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 |##| |##| | Q| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | Q|##| |##| |##| |##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| Q|##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| |##| |##| Q|##| | |##| |##| |##| | Q| | |##| |##| |##| | Q| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | |##| |##| |##| | Q| | | Q| |##| |##| |##| | | Q| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | |##| | Q| |##| |##| | |##| |##| |##| | Q| | |##| Q|##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | |##| |##| |##| Q|##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| | Q| |##| | |##| |##| |##| Q|##| | |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| |##| |##| Q|##| | |##| |##| |##| | Q| | |##| Q|##| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| |##| | Q| |##| | |##| |##| |##| |##| Q| |##| |##| | Q| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | |##| |##| |##| | Q| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | |##| |##| |##| Q|##| | |##| | Q| |##| |##| | |##| Q|##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| Q|##| |##| | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| | Q| |##| |##| | | Q| |##| |##| |##| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| |##| Q|##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| |##| |##| |##| Q| |##| |##| |##| |##| Q| |##| | Q| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | |##| Q|##| |##| |##| | |##| |##| |##| Q|##| | | Q| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| |##| | Q| | |##| |##| | Q| |##| | |##| |##| |##| Q|##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| | Q| |##| |##| | |##| |##| | Q| |##| | |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | |##| |##| Q|##| |##| | |##| |##| |##| | Q| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| |##| |##| |##| Q| |##| |##| Q|##| |##| | |##| |##| |##| | Q| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 |##| |##| Q|##| |##| | |##| |##| |##| | Q| | |##| |##| |##| Q|##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| | Q| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| |##| |##| |##| Q| |##| |##| | Q| |##| | |##| Q|##| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| |##| Q|##| |##| | |##| |##| |##| |##| Q| |##| |##| |##| Q|##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 |##| |##| |##| | Q| | |##| |##| |##| | Q| | |##| | Q| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | |##| |##| Q|##| |##| | |##| | Q| |##| |##| | |##| |##| Q|##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| | Q| |##| |##| | |##| |##| |##| Q|##| | |##| |##| |##| | Q| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| |##| |##| | Q| | | Q| |##| |##| |##| | | Q| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
7 |##| Q|##| |##| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
6 | |##| |##| Q|##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
5 |##| | Q| |##| |##| | |##| |##| |##| |##| Q| |##| |##| Q|##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
3 |##| |##| |##| | Q| | |##| |##| Q|##| |##| | |##| |##| |##| |##| Q|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
2 | |##| | Q| |##| |##| | |##| |##| | Q| |##| | |##| |##| | Q| |##|
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
1 |##| |##| |##| Q|##| | |##| | Q| |##| |##| | |##| | Q| |##| |##| |
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
A B C D E F G H A B C D E F G H A B C D E F G H
+--+--+--+--+--+--+--+--+
8 | | Q| |##| |##| |##|
+--+--+--+--+--+--+--+--+
7 |##| |##| |##| Q|##| |
+--+--+--+--+--+--+--+--+
6 | |##| |##| |##| | Q|
+--+--+--+--+--+--+--+--+
5 |##| | Q| |##| |##| |
+--+--+--+--+--+--+--+--+
4 | Q|##| |##| |##| |##|
+--+--+--+--+--+--+--+--+
3 |##| |##| Q|##| |##| |
+--+--+--+--+--+--+--+--+
2 | |##| |##| |##| Q|##|
+--+--+--+--+--+--+--+--+
1 |##| |##| | Q| |##| |
+--+--+--+--+--+--+--+--+
A B C D E F G H</syntaxhighlight></div>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">const BoardSize = 8
 
proc underAttack(col: int; queens: seq[int]): bool =
if col in queens: return true
for i, x in queens:
if abs(col - x) == queens.len - i:
return true
return false
 
proc solve(n: int): seq[seq[int]] =
result = newSeq[seq[int]]()
result.add(@[])
var newSolutions = newSeq[seq[int]]()
for row in 1..n:
for solution in result:
for i in 1..BoardSize:
if not underAttack(i, solution):
newSolutions.add(solution & i)
swap result, newSolutions
newSolutions.setLen(0)
 
echo "Solutions for a chessboard of size ", BoardSize, 'x', BoardSize
echo ""
 
for i, answer in solve(BoardSize):
for row, col in answer:
if row > 0: stdout.write ' '
stdout.write chr(ord('a') + row), col
stdout.write if i mod 4 == 3: "\n" else: " "</syntaxhighlight>
 
{{out}}
<pre>Solutions for a chessboard of size 8x8
 
a1 b5 c8 d6 e3 f7 g2 h4 a1 b6 c8 d3 e7 f4 g2 h5 a1 b7 c4 d6 e8 f2 g5 h3 a1 b7 c5 d8 e2 f4 g6 h3
a2 b4 c6 d8 e3 f1 g7 h5 a2 b5 c7 d1 e3 f8 g6 h4 a2 b5 c7 d4 e1 f8 g6 h3 a2 b6 c1 d7 e4 f8 g3 h5
a2 b6 c8 d3 e1 f4 g7 h5 a2 b7 c3 d6 e8 f5 g1 h4 a2 b7 c5 d8 e1 f4 g6 h3 a2 b8 c6 d1 e3 f5 g7 h4
a3 b1 c7 d5 e8 f2 g4 h6 a3 b5 c2 d8 e1 f7 g4 h6 a3 b5 c2 d8 e6 f4 g7 h1 a3 b5 c7 d1 e4 f2 g8 h6
a3 b5 c8 d4 e1 f7 g2 h6 a3 b6 c2 d5 e8 f1 g7 h4 a3 b6 c2 d7 e1 f4 g8 h5 a3 b6 c2 d7 e5 f1 g8 h4
a3 b6 c4 d1 e8 f5 g7 h2 a3 b6 c4 d2 e8 f5 g7 h1 a3 b6 c8 d1 e4 f7 g5 h2 a3 b6 c8 d1 e5 f7 g2 h4
a3 b6 c8 d2 e4 f1 g7 h5 a3 b7 c2 d8 e5 f1 g4 h6 a3 b7 c2 d8 e6 f4 g1 h5 a3 b8 c4 d7 e1 f6 g2 h5
a4 b1 c5 d8 e2 f7 g3 h6 a4 b1 c5 d8 e6 f3 g7 h2 a4 b2 c5 d8 e6 f1 g3 h7 a4 b2 c7 d3 e6 f8 g1 h5
a4 b2 c7 d3 e6 f8 g5 h1 a4 b2 c7 d5 e1 f8 g6 h3 a4 b2 c8 d5 e7 f1 g3 h6 a4 b2 c8 d6 e1 f3 g5 h7
a4 b6 c1 d5 e2 f8 g3 h7 a4 b6 c8 d2 e7 f1 g3 h5 a4 b6 c8 d3 e1 f7 g5 h2 a4 b7 c1 d8 e5 f2 g6 h3
a4 b7 c3 d8 e2 f5 g1 h6 a4 b7 c5 d2 e6 f1 g3 h8 a4 b7 c5 d3 e1 f6 g8 h2 a4 b8 c1 d3 e6 f2 g7 h5
a4 b8 c1 d5 e7 f2 g6 h3 a4 b8 c5 d3 e1 f7 g2 h6 a5 b1 c4 d6 e8 f2 g7 h3 a5 b1 c8 d4 e2 f7 g3 h6
a5 b1 c8 d6 e3 f7 g2 h4 a5 b2 c4 d6 e8 f3 g1 h7 a5 b2 c4 d7 e3 f8 g6 h1 a5 b2 c6 d1 e7 f4 g8 h3
a5 b2 c8 d1 e4 f7 g3 h6 a5 b3 c1 d6 e8 f2 g4 h7 a5 b3 c1 d7 e2 f8 g6 h4 a5 b3 c8 d4 e7 f1 g6 h2
a5 b7 c1 d3 e8 f6 g4 h2 a5 b7 c1 d4 e2 f8 g6 h3 a5 b7 c2 d4 e8 f1 g3 h6 a5 b7 c2 d6 e3 f1 g4 h8
a5 b7 c2 d6 e3 f1 g8 h4 a5 b7 c4 d1 e3 f8 g6 h2 a5 b8 c4 d1 e3 f6 g2 h7 a5 b8 c4 d1 e7 f2 g6 h3
a6 b1 c5 d2 e8 f3 g7 h4 a6 b2 c7 d1 e3 f5 g8 h4 a6 b2 c7 d1 e4 f8 g5 h3 a6 b3 c1 d7 e5 f8 g2 h4
a6 b3 c1 d8 e4 f2 g7 h5 a6 b3 c1 d8 e5 f2 g4 h7 a6 b3 c5 d7 e1 f4 g2 h8 a6 b3 c5 d8 e1 f4 g2 h7
a6 b3 c7 d2 e4 f8 g1 h5 a6 b3 c7 d2 e8 f5 g1 h4 a6 b3 c7 d4 e1 f8 g2 h5 a6 b4 c1 d5 e8 f2 g7 h3
a6 b4 c2 d8 e5 f7 g1 h3 a6 b4 c7 d1 e3 f5 g2 h8 a6 b4 c7 d1 e8 f2 g5 h3 a6 b8 c2 d4 e1 f7 g5 h3
a7 b1 c3 d8 e6 f4 g2 h5 a7 b2 c4 d1 e8 f5 g3 h6 a7 b2 c6 d3 e1 f4 g8 h5 a7 b3 c1 d6 e8 f5 g2 h4
a7 b3 c8 d2 e5 f1 g6 h4 a7 b4 c2 d5 e8 f1 g3 h6 a7 b4 c2 d8 e6 f1 g3 h5 a7 b5 c3 d1 e6 f8 g2 h4
a8 b2 c4 d1 e7 f5 g3 h6 a8 b2 c5 d3 e1 f7 g4 h6 a8 b3 c1 d6 e2 f5 g7 h4 a8 b4 c1 d3 e6 f2 g7 h5</pre>
 
=={{header|Objeck}}==
{{trans|Java}}
 
<syntaxhighlight lang="objeck">bundle Default {
class NQueens {
b : static : Int[];
s : static : Int;
 
function : Main(args : String[]) ~ Nil {
b := Int->New[8];
s := 0;
 
y := 0;
b[0] := -1;
 
while (y >= 0) {
do {
b[y]+=1;
}
while((b[y] < 8) & Unsafe(y));
 
if(b[y] < 8) {
if (y < 7) {
b[y + 1] := -1;
y += 1;
}
else {
PutBoard();
};
}
else {
y-=1;
};
};
}
 
function : Unsafe(y : Int) ~ Bool {
x := b[y];
for(i := 1; i <= y; i+=1;) {
t := b[y - i];
if(t = x | t = x - i | t = x + i) {
return true;
};
};
return false;
}
 
function : PutBoard() ~ Nil {
IO.Console->Print("\n\nSolution ")->PrintLine(s + 1);
s += 1;
for(y := 0; y < 8; y+=1;) {
for(x := 0; x < 8; x+=1;) {
IO.Console->Print((b[y] = x) ? "|Q" : "|_");
};
"|"->PrintLine();
};
}
}
}
</syntaxhighlight>
 
=={{header|OCaml}}==
{{libheader|FaCiLe}}
 
<langsyntaxhighlight lang="ocaml">(* Authors: Nicolas Barnier, Pascal Brisset
Copyright 2004 CENA. All rights reserved.
This code is distributed under the terms of the GNU LGPL *)
Line 392 ⟶ 10,826:
then raise (Failure "Usage: queens <nb of queens>");
Gc.set ({(Gc.get ()) with Gc.space_overhead = 500}); (* May help except with an underRAMed system *)
queens (int_of_string Sys.argv.(1));;</langsyntaxhighlight>
===A stand-alone OCaml solution===
<syntaxhighlight lang="ocaml">let solutions n =
 
let show board =
let pr v =
for i = 1 to n do
print_string (if i=v then " q" else " _");
done;
print_newline() in
List.iter pr board;
print_newline() in
 
let rec safe i j k = function
| [] -> true
| h::t -> h<>i && h<>j && h<>k && safe i (j+1) (k-1) t in
 
let rec loop col p =
for i = 1 to n
do
if safe i (i+1) (i-1) p then
let p' = i::p in
if col = n then show p'
else loop (col+1) p'
done in
 
loop 1 [] in
 
let n =
if Array.length Sys.argv > 1
then int_of_string Sys.argv.(1)
else 8 in
 
solutions n</syntaxhighlight>
{{out}}
<pre>$ ocaml queens.ml 6
_ _ _ _ q _
_ _ q _ _ _
q _ _ _ _ _
_ _ _ _ _ q
_ _ _ q _ _
_ q _ _ _ _
 
_ _ _ q _ _
q _ _ _ _ _
_ _ _ _ q _
_ q _ _ _ _
_ _ _ _ _ q
_ _ q _ _ _
 
_ _ q _ _ _
_ _ _ _ _ q
_ q _ _ _ _
_ _ _ _ q _
q _ _ _ _ _
_ _ _ q _ _
 
_ q _ _ _ _
_ _ _ q _ _
_ _ _ _ _ q
q _ _ _ _ _
_ _ q _ _ _
_ _ _ _ q _
</pre>
 
=={{header|Oz}}==
A pretty naive solution, using constraint programming:
<syntaxhighlight lang="oz">declare
fun {Queens N}
proc {$ Board}
%% a board is a N-tuple of rows
Board = {MakeTuple queens N}
for Y in 1..N do
%% a row is a N-tuple of values in [0,1]
%% (0: no queen, 1: queen)
Board.Y = {FD.tuple row N 0#1}
end
 
{ForAll {Rows Board} SumIs1}
{ForAll {Columns Board} SumIs1}
 
%% for every two points on a diagonal
for [X1#Y1 X2#Y2] in {DiagonalPairs N} do
%$ at most one of them has a queen
Board.Y1.X1 + Board.Y2.X2 =<: 1
end
 
%% enumerate all such boards
{FD.distribute naive {FlatBoard Board}}
end
end
 
fun {Rows Board}
{Record.toList Board}
end
 
fun {Columns Board}
for X in {Arity Board.1} collect:C1 do
{C1
for Y in {Arity Board} collect:C2 do
{C2 Board.Y.X}
end}
end
end
 
proc {SumIs1 Xs}
{FD.sum Xs '=:' 1}
end
 
fun {DiagonalPairs N}
proc {Coords Root}
[X1#Y1 X2#Y2] = Root
Diff
in
X1::1#N Y1::1#N
X2::1#N Y2::1#N
%% (X1,Y1) and (X2,Y2) are on a diagonal if {Abs X2-X1} = {Abs Y2-Y1}
Diff::1#N-1
{FD.distance X2 X1 '=:' Diff}
{FD.distance Y2 Y1 '=:' Diff}
%% enumerate all such coordinates
{FD.distribute naive [X1 Y1 X2 Y2]}
end
in
{SearchAll Coords}
end
 
fun {FlatBoard Board}
{Flatten {Record.toList {Record.map Board Record.toList}}}
end
 
Solutions = {SearchAll {Queens 8}}
in
{Length Solutions} = 92 %% assert
{Inspect {List.take Solutions 3}}</syntaxhighlight>
 
There is a more concise and much more efficient [http://www.mozart-oz.org/documentation/fdt/node25.html#section.scripts.queens solution] in the Mozart documentation.
 
=={{header|Pascal}}==
<syntaxhighlight lang="pascal">program queens;
 
const l=16;
 
var i,j,k,m,n,p,q,r,y,z: integer;
a,s: array[1..l] of integer;
u: array[1..4*l-2] of integer;
 
label L3,L4,L5,L6,L7,L8,L9,L10;
 
begin
for i:=1 to l do a[i]:=i;
for i:=1 to 4*l-2 do u[i]:=0;
for n:=1 to l do
begin
m:=0;
i:=1;
r:=2*n-1;
goto L4;
L3:
s[i]:=j;
u[p]:=1;
u[q+r]:=1;
i:=i+1;
L4:
if i>n then goto L8;
j:=i;
L5:
z:=a[i];
y:=a[j];
p:=i-y+n;
q:=i+y-1;
a[i]:=y;
a[j]:=z;
if (u[p]=0) and (u[q+r]=0) then goto L3;
L6:
j:=j+1;
if j<=n then goto L5;
L7:
j:=j-1;
if j=i then goto L9;
z:=a[i];
a[i]:=a[j];
a[j]:=z;
goto L7;
L8:
m:=m+1;
{ uncomment the following to print solutions }
{ write(n,' ',m,':');
for k:=1 to n do write(' ',a[k]);
writeln; }
L9:
i:=i-1;
if i=0 then goto L10;
p:=i-a[i]+n;
q:=i+a[i]-1;
j:=s[i];
u[p]:=0;
u[q+r]:=0;
goto L6;
L10:
writeln(n,' ',m);
end;
end.
 
{ 1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
11 2680
12 14200
13 73712
14 365596
15 2279184
16 14772512 }</syntaxhighlight>
 
===Alternative===
Using Rekusion and Nikolaus Wirth is much faster.
Ok , this http://rosettacode.org/wiki/N-queens_problem#Fast_Version is nearly 4 times faster, but uses sysmmetry (50% less to search for) :
 
algo:
<pre>
recursion:
If row< n then
For each free column (in Freecol[row..n] )
Take free column
check diagonals
IF free then
swap freecol to used column, move to next row -> recurse(row+1)
else
Solution found</pre>
<syntaxhighlight lang="pascal">program NQueens;
{$IFDEF FPC}
{$MODE DELPHI}
{$OPTIMIZATION ON}{$OPTIMIZATION REGVAR}{$OPTIMIZATION PeepHole}
{$OPTIMIZATION CSE}{$OPTIMIZATION ASMCSE}
{$ELSE}
{$Apptype console}
{$ENDIF}
 
uses
sysutils;// TDatetime
const
nmax = 17;
type
{$IFNDEF FPC}
NativeInt = longInt;
{$ENDIF}
//ala Nikolaus Wirth A-1 = H - 8
//diagonal left (A1) to rigth (H8)
tLR_diagonale = array[-nmax-1..nmax-1] of char;
//diagonal right (A8) to left (H1)
tRL_diagonale = array[0..2*nmax-2] of char;
//up to Col are the used Cols, after that the unused
tFreeCol = array[0..nmax-1] of nativeInt;
var
LR_diagonale:tLR_diagonale;
RL_diagonale:tRL_diagonale;
//Using pChar, cause it is implicit an array
//It is always set to
//@LR_diagonale[row] ,@RL_diagonale[row]
pLR,pRL : pChar;
FreeCol : tFreeCol;
i,
n : nativeInt;
gblCount : nativeUInt;
T0,T1 : TdateTime;
procedure Solution;
var
i : NativeInt;
begin
// Take's a lot of time under DOS/Win32
If gblCount AND $FFF = 0 then
write(gblCount:10,#8#8#8#8#8#8#8#8#8#8);
// IF n< 9 then
IF n < 0 then
begin
For i := 1 to n do
write(FreeCol[i]:4);
writeln;
end;
end;
 
procedure SetQueen(Row:nativeInt);
var
i,Col : nativeInt;
begin
IF row <= n then
begin
For i := row to n do
begin
Col := FreeCol[i];
//check diagonals occupied
If (ORD(pLR[-Col]) AND ORD(pRL[Col]))<>0 then
begin
//a "free" position is found
//mark it
pRL[ Col]:=#0; //RL_Diagonale[ Row +Col] := 0;
pLR[-Col]:=#0; //LR_Diagonale[ Row -Col] := 0;
//swap FreeRow[Row<->i]
FreeCol[i] := FreeCol[Row];
//next row
inc(pRL);
inc(pLR);
FreeCol[Row] := Col;
// check next row
SetQueen(Row+1);
//Undo
dec(pLR);
dec(pRL);
FreeCol[Row] := FreeCol[i];
FreeCol[i] := Col;
pRL[ Col]:=#1;
pLR[-Col]:=#1;
end;
end;
end
else
begin
//solution ist found
inc(gblCount);
//Solution
end;
end;
 
begin
For i := 0 to nmax-1 do
FreeCol[i] := i;
//diagonals filled with True = #1 , something <>0
fillchar(LR_Diagonale[low(LR_Diagonale)],sizeof(tLR_Diagonale),#1);
fillchar(RL_Diagonale[low(RL_Diagonale)],sizeof(tRL_Diagonale),#1);
For n := 1 to nMax do
begin
t0 := time;
pLR:=@LR_Diagonale[0];
pRL:=@RL_Diagonale[0];
gblCount := 0;
SetQueen(1);
t1:= time;
WriteLn(n:6,gblCount:12,FormatDateTime(' NN:SS.ZZZ',T1-t0),' secs');
end;
WriteLn('Fertig');
end.</syntaxhighlight>
{{out}}
<pre>
{output: i3 4330 3.5 Ghz FPC 2.6.4
1 1 00:00.000 secs
2 0 00:00.000 secs
3 0 00:00.000 secs
4 2 00:00.000 secs
5 10 00:00.000 secs
6 4 00:00.000 secs
7 40 00:00.000 secs
8 92 00:00.000 secs
9 352 00:00.000 secs
10 724 00:00.001 secs
11 2680 00:00.004 secs
12 14200 00:00.019 secs
13 73712 00:00.104 secs
14 365596 00:00.610 secs
15 2279184 00:03.837 secs
16 14772512 00:25.684 secs
17 95815104 03:00.950 secs=180.98 secs
Fertig}</pre>
 
=={{header|PDP-11 Assembly}}==
<syntaxhighlight lang="pdp-11 assembly">
; "eight queens problem" benchmark test
 
.radix 16
 
.loc 0
 
nop ;
mov #scr,@#E800
mov #88C6,@#E802
; clear the display RAM
mov #scr,r0
mov #1E0,r1
cls: clr (r0)+
sob r1,cls
; display the initial counter value
clr r3
mov #scr,r0
jsr pc,number
; perform the test
jsr pc,queens
; display the counter
mov #scr,r0
jsr pc,number
finish: br finish
 
; display the character R1 at the screen address R0,
; advance the pointer R0 to the next column
putc: mov r2,-(sp)
; R1 <- 6 * R1
asl r1 ;* 2
mov r1,-(sp)
asl r1 ;* 4
add (sp)+,r1 ;* 6
add #chars,r1
mov #6,r2
putc1: movb (r1)+,(r0)
add #1E,r0
sob r2,putc1
sub #B2,r0 ;6 * 1E - 2 = B2
mov (sp)+,r2
rts pc
 
print1: jsr pc,putc
; print a string pointed to by R2 at the screen address R0,
; advance the pointer R0 to the next column,
; the string should be terminated by a negative byte
print: movb (r2)+,r1
bpl print1
rts pc
 
; display the word R3 decimal at the screen address R0
number: mov sp,r1
mov #A0A,-(sp)
mov (sp),-(sp)
mov (sp),-(sp)
movb #80,-(r1)
numb1: clr r2
div #A,r2
movb r3,-(r1)
mov r2,r3
bne numb1
mov sp,r2
jsr pc,print
add #6,sp
rts pc
 
queens: mov #64,r5 ;100
l06: clr r3
clr r0
l00: cmp #8,r0
beq l05
inc r0
movb #8,ary(r0)
l01: inc r3
mov r0,r1
l02: dec r1
beq l00
movb ary(r0),r2
movb ary(r1),r4
sub r2,r4
beq l04
bcc l03
neg r4
l03: add r1,r4
sub r0,r4
bne l02
l04: decb ary(r0)
bne l01
sob r0,l04
l05: sob r5,l06
mov r3,cnt
rts pc
 
; characters, width = 8 pixels, height = 6 pixels
chars: .byte 3C, 46, 4A, 52, 62, 3C ;digit '0'
.byte 18, 28, 8, 8, 8, 3E ;digit '1'
.byte 3C, 42, 2, 3C, 40, 7E ;digit '2'
.byte 3C, 42, C, 2, 42, 3C ;digit '3'
.byte 8, 18, 28, 48, 7E, 8 ;digit '4'
.byte 7E, 40, 7C, 2, 42, 3C ;digit '5'
.byte 3C, 40, 7C, 42, 42, 3C ;digit '6'
.byte 7E, 2, 4, 8, 10, 10 ;digit '7'
.byte 3C, 42, 3C, 42, 42, 3C ;digit '8'
.byte 3C, 42, 42, 3E, 2, 3C ;digit '9'
.byte 0, 0, 0, 0, 0, 0 ;space
 
.even
 
cnt: .blkw 1
ary: .blkb 9
 
.loc 200
 
scr: ;display RAM
</syntaxhighlight>
 
=={{header|Perl}}==
<syntaxhighlight lang="perl">my ($board_size, @occupied, @past, @solutions);
 
sub try_column {
my ($depth, @diag) = shift;
if ($depth == $board_size) {
push @solutions, "@past\n";
return;
}
 
# @diag: marks cells diagonally attackable by any previous queens.
# Here it's pre-allocated to double size just so we don't need
# to worry about negative indices.
$#diag = 2 * $board_size;
for (0 .. $#past) {
$diag[ $past[$_] + $depth - $_ ] = 1;
$diag[ $past[$_] - $depth + $_ ] = 1;
}
 
for my $row (0 .. $board_size - 1) {
next if $occupied[$row] || $diag[$row];
 
# @past: row numbers of previous queens
# @occupied: rows already used. This gets inherited by each
# recursion so we don't need to repeatedly look them up
push @past, $row;
$occupied[$row] = 1;
 
try_column($depth + 1);
 
# clean up, for next recursion
$occupied[$row] = 0;
pop @past;
}
}
 
$board_size = 12;
try_column(0);
 
#print for @solutions; # un-comment to see all solutions
print "total " . @solutions . " solutions\n";</syntaxhighlight>
{{out}}
<pre>total 14200 solutions</pre>
 
=={{header|Phix}}==
<!--(phixonline)-->
<syntaxhighlight lang="phix">
with javascript_semantics
--
-- demo\rosetta\n_queens.exw
-- =========================
--
sequence co, -- columns occupied
-- (ro is implicit)
fd, -- forward diagonals
bd, -- backward diagonals
board
atom count
procedure solve(integer row, integer N, integer show)
for col=1 to N do
if not co[col] then
integer fdi = col+row-1,
bdi = row-col+N
if not fd[fdi]
and not bd[bdi] then
board[row][col] = 'Q'
co[col] = true
fd[fdi] = true
bd[bdi] = true
if row=N then
if show then
puts(1,join(board,"\n")&"\n")
puts(1,repeat('=',N)&"\n")
end if
count += 1
else
solve(row+1,N,show)
end if
board[row][col] = '.'
co[col] = false
fd[fdi] = false
bd[bdi] = false
end if
end if
end for
end procedure
procedure n_queens(integer N=8, integer show=1)
co = repeat(false,N)
fd = repeat(false,N*2-1)
bd = repeat(false,N*2-1)
board = repeat(repeat('.',N),N)
count = 0
solve(1,N,show)
printf(1,"%d queens: %d solutions\n",{N,count})
end procedure
for N=1 to iff(platform()=JS?12:14) do
n_queens(N,N<5)
end for
</syntaxhighlight>
{{out}}
<pre>
Q
=
1 queens: 1 solutions
2 queens: 0 solutions
3 queens: 0 solutions
.Q..
...Q
Q...
..Q.
====
..Q.
Q...
...Q
.Q..
====
4 queens: 2 solutions
5 queens: 10 solutions
6 queens: 4 solutions
7 queens: 40 solutions
8 queens: 92 solutions
9 queens: 352 solutions
10 queens: 724 solutions
11 queens: 2680 solutions
12 queens: 14200 solutions
13 queens: 73712 solutions
14 queens: 365596 solutions
</pre>
N=14 takes about 10s on the desktop but 45s under p2js, so the limit of 12 for that allows it to finish in under 2s
 
=={{header|PHP}}==
<syntaxhighlight lang="php">
<html>
<head>
<title>
n x n Queen solving program
</title>
</head>
<body>
<?php
echo "<h1>n x n Queen solving program</h1>";
//Get the size of the board
$boardX = $_POST['boardX'];
$boardY = $_POST['boardX'];
// Function to rotate a board 90 degrees
function rotateBoard($p, $boardX) {
$a=0;
while ($a < count($p)) {
$b = strlen(decbin($p[$a]))-1;
$tmp[$b] = 1 << ($boardX - $a - 1);
++$a;
}
ksort($tmp);
return $tmp;
}
// This function will find rotations of a solution
function findRotation($p, $boardX,$solutions){
$tmp = rotateBoard($p,$boardX);
// Rotated 90
if (in_array($tmp,$solutions)) {}
else {$solutions[] = $tmp;}
$tmp = rotateBoard($tmp,$boardX);
// Rotated 180
if (in_array($tmp,$solutions)){}
else {$solutions[] = $tmp;}
$tmp = rotateBoard($tmp,$boardX);
// Rotated 270
if (in_array($tmp,$solutions)){}
else {$solutions[] = $tmp;}
// Reflected
$tmp = array_reverse($p);
if (in_array($tmp,$solutions)){}
else {$solutions[] = $tmp;}
$tmp = rotateBoard($tmp,$boardX);
// Reflected and Rotated 90
if (in_array($tmp,$solutions)){}
else {$solutions[] = $tmp;}
$tmp = rotateBoard($tmp,$boardX);
// Reflected and Rotated 180
if (in_array($tmp,$solutions)){}
else {$solutions[] = $tmp;}
$tmp = rotateBoard($tmp,$boardX);
// Reflected and Rotated 270
if (in_array($tmp,$solutions)){}
else {$solutions[] = $tmp;}
return $solutions;
}
// This is a function which will render the board
function renderBoard($p,$boardX) {
$img = '';
echo "<table border=1 cellspacing=0 style='text-align:center;display:inline'>";
for ($y = 0; $y < $boardX; ++$y) {
echo '<tr>';
for ($x = 0; $x < $boardX; ++$x){
if (($x+$y) & 1) { $cellCol = '#9C661F';}
else {$cellCol = '#FCE6C9';}
if ($p[$y] == 1 << $x) { echo "<td bgcolor=".$cellCol."><img width=30 height=30 src='".$img."'></td>";}
else { echo "<td bgcolor=".$cellCol."> </td>";}
}
echo '<tr>';
}
echo '<tr></tr></table>&nbsp';
}
//This function allows me to generate the next order of rows.
function pc_next_permutation($p) {
$size = count($p) - 1;
// slide down the array looking for where we're smaller than the next guy
for ($i = $size - 1; $p[$i] >= $p[$i+1]; --$i) { }
// if this doesn't occur, we've finished our permutations
// the array is reversed: (1, 2, 3, 4) => (4, 3, 2, 1)
if ($i == -1) { return false; }
// slide down the array looking for a bigger number than what we found before
for ($j = $size; $p[$j] <= $p[$i]; --$j) { }
// swap them
$tmp = $p[$i]; $p[$i] = $p[$j]; $p[$j] = $tmp;
// now reverse the elements in between by swapping the ends
for (++$i, $j = $size; $i < $j; ++$i, --$j)
{ $tmp = $p[$i]; $p[$i] = $p[$j]; $p[$j] = $tmp; }
return $p;
}
//This function needs to check the current state to see if there are any
function checkBoard($p,$boardX) {
$a = 0; //this is the row being checked
while ($a < count($p)) {
$b = 1;
while ($b < ($boardX - $a)){
$x = $p[$a+$b] << $b;
$y = $p[$a+$b] >> $b;
if ($p[$a] == $x | $p[$a] == $y) {
return false;
}
++$b;
}
++$a;
}
return true;
}
if (isset($_POST['process']) && isset($_POST['boardX']))
{
//Within here is the code that needs to be run if process is clicked.
//First I need to create the different possible rows
for ($x = 0; $x < $boardX; ++$x){
$row[$x] = 1 << $x;
}
//Now I need to create all the possible orders of rows, will be equal to [boardY]!
$solcount = 0;
$solutions = array();
while ($row != false) {
if (checkBoard($row,$boardX)){
if(!in_array($row,$solutions)){
$solutions[] = $row;
renderBoard($row,$boardX);
$solutions = findRotation($row,$boardX,$solutions);
++$solcount;
}
}
$row = pc_next_permutation($row);
}
echo "<br><br>&nbsp&nbsp&nbsp&nbspRows/Columns: ".$boardX."<br>&nbsp&nbsp&nbsp&nbspUnique Solutions: ".$solcount."<br>&nbsp&nbsp&nbsp&nbspTotal Solutions: ".count($solutions)." - Note: This includes symmetrical solutions<br>";
//print_r($solutions);
}
//This code collects the starting parameters
echo <<<_END
<form name="input" action="index.php" method="post">
&nbsp&nbsp&nbsp&nbspNumber of columns/rows <select name="boardX" />
<option value="1">One</option>
<option value="2">Two</option>
<option value="3">Three</option>
<option value="4" >Four</option>
<option value="5">Five</option>
<option value="6">Six</option>
<option value="7">Seven</option>
<option value="8" selected="selected">Eight</option>
<option value="9">Nine</option>
<option value="10">Ten</option>
</select>
<input type="hidden" name="process" value="yes" />
&nbsp<input type="submit" value="Process" />
</form>
_END;
?>
</body>
</html>
</syntaxhighlight>
 
<h2>Solution with recursion</h2>
 
<syntaxhighlight lang="php">
<html>
<body>
<pre>
<?php
 
/*************************************************************************
*
* This algorithm solves the 8 queens problem using backtracking.
* Please try with N<=25 * * * *************************************************************************/
class Queens {
var $size;
var $arr;
var $sol;
 
function Queens($n = 8) {
$this->size = $n;
$this->arr = array();
$this->sol = 0;
// Inicialiate array;
for($i=0; $i<$n; $i++) {
$this->arr[$i] = 0;
}
}
 
function isSolution($n) {
for ($i = 0; $i < $n; $i++) {
if ($this->arr[$i] == $this->arr[$n] ||
($this->arr[$i] - $this->arr[$n]) == ($n - $i) ||
($this->arr[$n] - $this->arr[$i]) == ($n - $i))
{
return false;
}
}
return true;
}
 
function PrintQueens() {
echo("solution #".(++$this->sol)."\n");
// echo("solution #".($this->size)."\n");
for ($i = 0; $i < $this->size; $i++) {
for ($j = 0; $j < $this->size; $j++) {
if ($this->arr[$i] == $j) echo("& ");
else echo(". ");
}
echo("\n");
}
echo("\n");
}
 
 
// backtracking Algorithm
function run($n = 0) {
if ($n == $this->size){
$this->PrintQueens();
}
else {
for ($i = 0; $i < $this->size; $i++) {
$this->arr[$n] = $i;
if($this->isSolution($n)){
$this->run($n+1);
}
}
}
}
}
 
$myprogram = new Queens(8);
$myprogram->run();
 
?>
</pre>
</body>
</html>
</syntaxhighlight>
 
=={{header|Picat}}==
===0/1 encoding a N x N matrix===
Using constraint modelling using an 0/1 encoding of an N x N matrix. It is the probably the fastest approach when using SAT and MIP solvers.
<syntaxhighlight lang="picat">import sat.
% import mip.
 
queens_sat(N,Q) =>
Q = new_array(N,N),
Q :: 0..1,
foreach (K in 1-N..N-1)
sum([Q[I,J] : I in 1..N, J in 1..N, I-J==K]) #=< 1
end,
 
foreach (K in 2..2*N)
sum([Q[I,J] : I in 1..N, J in 1..N, I+J==K]) #=< 1
end,
 
foreach (I in 1..N)
sum([Q[I,J] : J in 1..N]) #= 1
end,
 
foreach (J in 1..N)
sum([Q[I,J] : I in 1..N]) #= 1
end,
solve([inout],Q).</syntaxhighlight>
 
===Constraint programming===
This is the "standard" model using constraint programming (in contract to the SAT 0/1 approach). Instead of an NxN matrix, this encoding uses a single list representing the columns. The three <code>all_different/1</code> then ensures that the rows, and the two diagonals are distinct.
<syntaxhighlight lang="picat">import cp.
 
queens(N, Q) =>
Q = new_list(N),
Q :: 1..N,
all_different(Q),
all_different([$Q[I]-I : I in 1..N]),
all_different([$Q[I]+I : I in 1..N]),
solve([ff],Q).</syntaxhighlight>
 
==="Naive" approach===
This approach might be called "naive" (in the constraint programming context) since it doesn't use the (general) faster <code>all_different/1</code> constraint.
<syntaxhighlight lang="picat">queens_naive(N, Q) =>
Q = new_list(N),
Q :: 1..N,
foreach(I in 1..N, J in 1..N, I < J)
Q[I] #!= Q[J],
Q[I] + I #!= Q[J] + J,
Q[I] - I #!= Q[J] - J
end,
solve([ff], Q).</syntaxhighlight>
 
 
===Test===
 
{{out}}
<pre>Picat> queens_cp(100, QCP)
QCP = [1,3,5,57,59,4,64,7,58,71,81,60,6,91,82,90,8,83,77,65,73,26,9,45,37,63,66,62,44,10,48,54,43,69,42,47,18,11,72,68,50,56,61,36,33,17,12,51,100,93,97,88,35,84,78,19,13,99,67,76,92,75,87,96,94,85,20,14,95,32,98,55,40,80,49,52,46,53,21,15,41,2,27,34,22,70,74,29,25,30,38,86,16,79,24,39,28,23,31,89]
 
Picat> queens_sat(10,Q)
Q = {{0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,0,0},{0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0}}</pre>
 
===Number of solutions for N = 1..15===
<pre>Picat> foreach(N in 1..15) println(N=count_all(queens_cp(N,_))) end
1 = 1
2 = 0
3 = 0
4 = 2
5 = 10
6 = 4
7 = 40
8 = 92
9 = 352
10 = 724
11 = 2680
12 = 14200
13 = 73712
14 = 365596
15 = 2279184</pre>
 
===Comparison===
Running these models in Picat shows that the CP encoding with the cp solver is the fastest for most instances.
 
For example, for N=1000, the cp solver takes about 1.5s to find a solution, whereas the SAT solver takes 571s. Both the mip and smt solvers are in general much slower. However the SAT 0/1 encoding+solver might be faster for larger instances, say >= N=2000.
 
The conclusion to draw of this is that it is often useful to test different encodings and different constraints solvers.
 
That being said, the N-queens problem is not interesting (hard) enough to draw any conclusive conclusion about the performances of the solvers. More complex problem are needed for that.
 
=={{header|PicoLisp}}==
===Calling 'permute'===
<syntaxhighlight lang="picolisp">(load "@lib/simul.l") # for 'permute'
 
(de queens (N)
(let (R (range 1 N) Cnt 0)
(for L (permute (range 1 N))
(when
(= N # from the Python solution
(length (uniq (mapcar + L R)))
(length (uniq (mapcar - L R))) )
(inc 'Cnt) ) )
Cnt ) )</syntaxhighlight>
===Permuting inline===
This alternative version does not first pre-generate all permutations with
'permute', but creates them recursively. Also, it directly checks for
duplicates, instead of calling 'uniq' and 'length'. This is much faster.
<syntaxhighlight lang="picolisp">(de queens (N)
(let (R (range 1 N) L (copy R) X L Cnt 0)
(recur (X) # Permute
(if (cdr X)
(do (length X)
(recurse (cdr X))
(rot X) )
(or
(seek # Direct check for duplicates
'((L) (member (car L) (cdr L)))
(mapcar + L R) )
(seek
'((L) (member (car L) (cdr L)))
(mapcar - L R) )
(inc 'Cnt) ) ) )
Cnt ) )</syntaxhighlight>
{{out}} for both cases:
<pre>: (queens 8)
-> 92</pre>
 
=={{header|PL/I}}==
This code compiles with PL/I compilers ranging from the ancient IBM MVT PL/I F compiler of the 1960s, the IBM PL/I Optimizing compiler, thru the IBM PL/I compiler for MVS and VM, to the z/OS Enterprise PL/I v4.60 compiler;spanning 50 years of PL/I compilers. It only outputs the number of solutions found for a given N instead of printing out each individual chess board solution to avoid filling up spool space for large values of N. It's trivial to add a print-out of the individual solutions.
<syntaxhighlight lang="pli">
NQUEENS: PROC OPTIONS (MAIN);
DCL A(35) BIN FIXED(31) EXTERNAL;
DCL COUNT BIN FIXED(31) EXTERNAL;
COUNT = 0;
DECLARE SYSIN FILE;
DCL ABS BUILTIN;
DECLARE SYSPRINT FILE;
DECLARE N BINARY FIXED (31); /* COUNTER */
/* MAIN LOOP STARTS HERE */
GET LIST (N) FILE(SYSIN); /* N QUEENS, N X N BOARD */
PUT SKIP (1) FILE(SYSPRINT);
PUT SKIP LIST('BEGIN N QUEENS PROCESSING *****') FILE(SYSPRINT);
PUT SKIP LIST('SOLUTIONS FOR N: ',N) FILE(SYSPRINT);
PUT SKIP (1) FILE(SYSPRINT);
IF N < 4 THEN DO;
/* LESS THAN 4 MAKES NO SENSE */
PUT SKIP (2) FILE(SYSPRINT);
PUT SKIP LIST (N,' N TOO LOW') FILE (SYSPRINT);
PUT SKIP (2) FILE(SYSPRINT);
RETURN (1);
END;
IF N > 35 THEN DO;
/* WOULD TAKE WEEKS */
PUT SKIP (2) FILE(SYSPRINT);
PUT SKIP LIST (N,' N TOO HIGH') FILE (SYSPRINT);
PUT SKIP (2) FILE(SYSPRINT);
RETURN (1);
END;
CALL QUEEN(N);
PUT SKIP (2) FILE(SYSPRINT);
PUT SKIP LIST (COUNT,' SOLUTIONS FOUND') FILE(SYSPRINT);
PUT SKIP (1) FILE(SYSPRINT);
PUT SKIP LIST ('END OF PROCESSING ****') FILE(SYSPRINT);
RETURN(0);
/* MAIN LOOP ENDS ABOVE */
PLACE: PROCEDURE (PS);
DCL PS BIN FIXED(31);
DCL I BIN FIXED(31) INIT(0);
DCL A(50) BIN FIXED(31) EXTERNAL;
DO I=1 TO PS-1;
IF A(I) = A(PS) THEN RETURN(0);
IF ABS ( A(I) - A(PS) ) = (PS-I) THEN RETURN(0);
END;
RETURN (1);
END PLACE;
 
QUEEN: PROCEDURE (N);
DCL N BIN FIXED (31);
DCL K BIN FIXED (31);
DCL A(50) BIN FIXED(31) EXTERNAL;
DCL COUNT BIN FIXED(31) EXTERNAL;
K = 1;
A(K) = 0;
DO WHILE (K > 0);
A(K) = A(K) + 1;
DO WHILE ( ( A(K)<= N) & (PLACE(K) =0) );
A(K) = A(K) +1;
END;
IF (A(K) <= N) THEN DO;
IF (K = N ) THEN DO;
COUNT = COUNT + 1;
END;
ELSE DO;
K= K +1;
A(K) = 0;
END; /* OF INSIDE ELSE */
END; /* OF FIRST IF */
ELSE DO;
K = K -1;
END;
END; /* OF EXTERNAL WHILE LOOP */
END QUEEN;
END NQUEENS; </syntaxhighlight>
 
=={{header|PowerBASIC}}==
=== Recursive version ===
{{trans|Stata}}
<syntaxhighlight lang="powerbasic">#COMPILE EXE
#DIM ALL
 
SUB aux(n AS INTEGER, i AS INTEGER, a() AS INTEGER, _
u() AS INTEGER, v() AS INTEGER, m AS QUAD)
 
LOCAL j, k, p, q AS INTEGER
IF i > n THEN
INCR m
FOR k = 1 TO n : PRINT a(k); : NEXT : PRINT
ELSE
FOR j = i TO n
k = a(j)
p = i - k + n
q = i + k - 1
IF u(p) AND v(q) THEN
u(p) = 0 : v(q) = 0
a(j) = a(i) : a(i) = k
CALL aux(n, i + 1, a(), u(), v(), m)
u(p) = 1 : v(q) = 1
a(i) = a(j) : a(j) = k
END IF
NEXT
END IF
END SUB
 
FUNCTION PBMAIN () AS LONG
LOCAL n, i AS INTEGER
LOCAL m AS QUAD
IF COMMAND$(1) <> "" THEN
n = VAL(COMMAND$(1))
REDIM a(1 TO n) AS INTEGER
REDIM u(1 TO 2 * n - 1) AS INTEGER
REDIM v(1 TO 2 * n - 1) AS INTEGER
FOR i = 1 TO n
a(i) = i
NEXT
FOR i = 1 TO 2 * n - 1
u(i) = 1
v(i) = 1
NEXT
m = 0
CALL aux(n, 1, a(), u(), v(), m)
PRINT m
END IF
END FUNCTION</syntaxhighlight>
 
=== Iterative version ===
{{trans|Stata}}
<syntaxhighlight lang="powerbasic">#COMPILE EXE
#DIM ALL
 
FUNCTION PBMAIN () AS LONG
LOCAL n, i, j, k, p, q AS INTEGER
LOCAL m AS QUAD
IF COMMAND$(1) <> "" THEN
n = VAL(COMMAND$(1))
REDIM a(1 TO n) AS INTEGER
REDIM s(1 TO n) AS INTEGER
REDIM u(1 TO 2 * n - 1) AS INTEGER
REDIM v(1 TO 2 * n - 1) AS INTEGER
FOR i = 1 TO n
a(i) = i
NEXT
FOR i = 1 TO 2 * n - 1
u(i) = 1
v(i) = 1
NEXT
m = 0
i = 1
1 IF i > n THEN
INCR m
FOR k = 1 TO n : PRINT a(k); : NEXT : PRINT
GOTO 4
END IF
j = i
2 k = a(j)
p = i - k + n
q = i + k - 1
IF u(p) AND v(q) THEN
u(p) = 0 : v(q) = 0
a(j) = a(i) : a(i) = k
s(i) = j
INCR i
GOTO 1
END IF
3 INCR j : IF j <= n GOTO 2
4 DECR i : IF i = 0 THEN PRINT m : EXIT FUNCTION
j = s(i)
k = a(i) : a(i) = a(j) : a(j) = k
p = i - k + n
q = i + k - 1
u(p) = 1 : v(q) = 1
GOTO 3
END IF
END FUNCTION</syntaxhighlight>
 
=={{header|PowerShell}}==
{{works with|PowerShell|2}}
<syntaxhighlight lang="powershell">
function PlaceQueen ( [ref]$Board, $Row, $N )
{
# For the current row, start with the first column
$Board.Value[$Row] = 0
 
# While haven't exhausted all columns in the current row...
While ( $Board.Value[$Row] -lt $N )
{
# If not the first row, check for conflicts
$Conflict = $Row -and
( (0..($Row-1)).Where{ $Board.Value[$_] -eq $Board.Value[$Row] }.Count -or
(0..($Row-1)).Where{ $Board.Value[$_] -eq $Board.Value[$Row] - $Row + $_ }.Count -or
(0..($Row-1)).Where{ $Board.Value[$_] -eq $Board.Value[$Row] + $Row - $_ }.Count )
# If no conflicts and the current column is a valid column...
If ( -not $Conflict -and $Board.Value[$Row] -lt $N )
{
 
# If this is the last row
# Board completed successfully
If ( $Row -eq ( $N - 1 ) )
{
return $True
}
 
# Recurse
# If all nested recursions were successful
# Board completed successfully
If ( PlaceQueen $Board ( $Row + 1 ) $N )
{
return $True
}
}
# Try the next column
$Board.Value[$Row]++
}
 
# Everything was tried, nothing worked
Return $False
}
function Get-NQueensBoard ( $N )
{
# Start with a default board (array of column positions for each row)
$Board = @( 0 ) * $N
 
# Place queens on board
# If successful...
If ( PlaceQueen -Board ([ref]$Board) -Row 0 -N $N )
{
# Convert board to strings for display
$Board | ForEach { ( @( "" ) + @(" ") * $_ + "Q" + @(" ") * ( $N - $_ ) ) -join "|" }
}
Else
{
"There is no solution for N = $N"
}
}
</syntaxhighlight>
<syntaxhighlight lang="powershell">
Get-NQueensBoard 8
''
Get-NQueensBoard 3
''
Get-NQueensBoard 4
''
Get-NQueensBoard 14
</syntaxhighlight>
{{out}}
<pre>
|Q| | | | | | | |
| | | | |Q| | | |
| | | | | | | |Q|
| | | | | |Q| | |
| | |Q| | | | | |
| | | | | | |Q| |
| |Q| | | | | | |
| | | |Q| | | | |
 
There is no solution for N = 3
 
| |Q| | |
| | | |Q|
|Q| | | |
| | |Q| |
 
|Q| | | | | | | | | | | | | |
| | |Q| | | | | | | | | | | |
| | | | |Q| | | | | | | | | |
| | | | | | |Q| | | | | | | |
| | | | | | | | | | | |Q| | |
| | | | | | | | | |Q| | | | |
| | | | | | | | | | | | |Q| |
| | | |Q| | | | | | | | | | |
| | | | | | | | | | | | | |Q|
| | | | | | | | |Q| | | | | |
| |Q| | | | | | | | | | | | |
| | | | | |Q| | | | | | | | |
| | | | | | | |Q| | | | | | |
| | | | | | | | | | |Q| | | |
</pre>
 
=={{header|Processing}}==
{{trans|Java}}
<syntaxhighlight lang="java">
int n = 8;
int[] b = new int[n];
int s = 0;
int y = 0;
 
void setup() {
size(400, 400);
textAlign(CENTER, CENTER);
textFont(createFont("DejaVu Sans", 44));
b[0] = -1;
}
 
void draw() {
if (y >= 0) {
do {
b[y]++;
} while ((b[y] < n) && unsafe(y));
if (b[y] < n) {
if (y < (n-1)) {
b[++y] = -1;
} else {
drawBoard();
}
} else {
y--;
}
} else {
textSize(18);
text("Press any key to restart", width / 2, height - 20);
}
}
 
 
boolean unsafe(int y) {
int x = b[y];
for (int i = 1; i <= y; i++) {
int t = b[y - i];
if (t == x ||
t == x - i ||
t == x + i) {
return true;
}
}
return false;
}
 
void drawBoard() {
float w = width / n;
for (int y = 0; y < n; y++) {
for (int x = 0; x < n; x++) {
fill(255 * ((x + y) % 2));
square(x * w, y * w, w);
if (b[y] == x) {
fill(255 - 255 * ((x + y) % 2));
textSize(42);
text("♕", w / 2 + x *w, w /2 + y * w);
}
}
}
fill(255, 0, 0);
textSize(18);
text("Solution " + (++s), width / 2, height / 90);
}
 
void keyPressed() {
b = new int[n];
s = 0;
y = 0;
b[0] = -1;
}
</syntaxhighlight>
 
==={{header|Processing Python mode}}===
{{trans|Python}}
 
This solution, originally by Raymond Hettinger for demonstrating the power of the itertools module, generates all solutions.
 
<syntaxhighlight lang="python">from itertools import permutations, product
 
n = 8
cols = range(n)
i = 0 # solution shown
 
solutions = [vec for vec in permutations(cols)
if n == len(set(vec[i] + i for i in cols))
== len(set(vec[i] - i for i in cols))]
 
def setup():
size(400, 400)
textAlign(CENTER, CENTER)
textFont(createFont("DejaVu Sans", 44))
 
def draw():
background(0)
w = width / n
for x, y in product(range(n), range(n)):
fill(255 * ((x + y) % 2))
square(x * w, y * w, w)
if solutions[i][y] == x:
fill(255 - 255 * ((x + y) % 2))
text(u'♕', w / 2 + x * w, w / 3 + y * w)
 
def keyPressed(): # show next solution
global i
i = (i + 1) % len(solutions)
</syntaxhighlight>
 
=={{header|Prolog}}==
The code for these samples is taken from [http://www.javaist.com/blog/2008/11/06/eight-queens-problem-in-proglog/].
 
Solution #1:
<syntaxhighlight lang="prolog">solution([]).
solution([X/Y|Others]) :-
solution(Others),
member(Y, [1,2,3,4,5,6,7,8]),
noattack(X/Y, Others).
noattack(_,[]).
noattack(X/Y,[X1/Y1|Others]) :-
Y =\= Y1,
Y1 - Y =\= X1 - X,
Y1 - Y =\= X - X1,
noattack(X/Y,Others).
member(Item,[Item|Rest]).
member(Item,[First|Rest]) :-
member(Item,Rest).
template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).</syntaxhighlight>
 
Solution #2:
<syntaxhighlight lang="prolog">solution(Queens) :-
permutation([1,2,3,4,5,6,7,8], Queens),
safe(Queens).
permutation([],[]).
permutation([Head|Tail],PermList) :-
permutation(Tail,PermTail),
del(Head,PermList,PermTail).
del(Item,[Item|List],List).
del(Item,[First|List],[First|List1]) :-
del(Item,List,List1).
safe([]).
safe([Queen|Others]) :-
safe(Others),
noattack(Queen,Others,1).
noattack(_,[],_).
noattack(Y,[Y1|Ylist],Xdist) :-
Y1-Y=\=Xdist,
Y-Y1=\=Xdist,
Dist1 is Xdist + 1,
noattack(Y,Ylist,Dist1).</syntaxhighlight>
 
Solution #3:
<syntaxhighlight lang="prolog">solution(Ylist) :-
sol(Ylist,[1,2,3,4,5,6,7,8],
[1,2,3,4,5,6,7,8],
[-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7],
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).
sol([],[],[],Du,Dv).
sol([Y|Ylist],[X|Dx1],Dy,Du,Dv) :-
del(Y,Dy,Dy1),
U is X-Y,
del(U,Du,Du1),
V is X+Y,
del(V,Dv,Dv1),
sol(Ylist,Dx1, Dy1,Du1,Dv1).
del(Item,[Item|List],List).
del(Item,[First|List],[First|List1]) :-
del(Item,List,List1).</syntaxhighlight>
 
[http://ideone.com/Y6olN Output]:
&nbsp; ?- findall(S, solution(S), LS), length(LS,N), write(N).
&nbsp; 92
 
===Alternative version===
Uses non-ISO predicates between/3 and select/3 (available in SWI Prolog and GNU Prolog).
<syntaxhighlight lang="prolog">:- initialization(main).
 
 
queens(N,Qs) :- bagof(X, between(1,N,X), Xs), place(Xs,[],Qs).
 
place(Xs,Qs,Res) :-
Xs = [] -> Res = Qs
; select(Q,Xs,Ys), not_diag(Q,Qs,1), place(Ys,[Q|Qs],Res)
.
 
not_diag(_, [] , _).
not_diag(Q, [Qh|Qs], D) :-
abs(Q - Qh) =\= D, D1 is D + 1, not_diag(Q,Qs,D1).
 
 
main :- findall(Qs, (queens(8,Qs), write(Qs), nl), _), halt.</syntaxhighlight>
[http://ideone.com/3bbIx0 Runs in: time: 0.02 memory: 68352]
 
===Alternative Solution===
Uses backtracking- a highly efficient mechanism in Prolog to find all solutions.
{{works with|SWI Prolog|version 6.2.6 by Jan Wielemaker, University of Amsterdam}}
<syntaxhighlight lang="prolog">% 8 queens problem.
% q(Row) represents a queen, allocated one per row. No rows ever clash.
% The columns are chosen iteratively from available columns held in a
% list, reduced with each allocation, so we need never check verticals.
% For diagonals, we check prior to allocation whether each newly placed
% queen will clash with any of the prior placements. This prevents
% most invalid permutations from ever being attempted.
can_place(_, []) :- !. % success for empty board
can_place(q(R,C),Board) :- % check diagonals against allocated queens
member(q(Ra,Ca), Board), abs(Ra-R) =:= abs(Ca-C), !, fail.
can_place(_,_). % succeed if no diagonals failed
 
queens([], [], Board, Board). % found a solution
queens([q(R)|Queens], Columns, Board, Solution) :-
nth0(_,Columns,C,Free), can_place(q(R,C),Board), % find all solutions
queens(Queens,Free,[q(R,C)|Board], Solution). % recursively
 
queens :-
findall(q(N), between(0,7,N), Queens), findall(N, between(0,7,N), Columns),
findall(B, queens(Queens, Columns, [], B), Boards), % backtrack over all
length(Boards, Len), writef('%w solutions:\n', [Len]), % Output solutions
member(R,Boards), reverse(R,Board), writef(' - %w\n', [Board]), fail.
queens.</syntaxhighlight>
{{out}}
<pre>?- queens.
92 solutions:
- [q(0,0),q(1,4),q(2,7),q(3,5),q(4,2),q(5,6),q(6,1),q(7,3)]
- [q(0,0),q(1,5),q(2,7),q(3,2),q(4,6),q(5,3),q(6,1),q(7,4)]
- [q(0,0),q(1,6),q(2,3),q(3,5),q(4,7),q(5,1),q(6,4),q(7,2)]
- [q(0,0),q(1,6),q(2,4),q(3,7),q(4,1),q(5,3),q(6,5),q(7,2)]
...
- [q(0,7),q(1,1),q(2,4),q(3,2),q(4,0),q(5,6),q(6,3),q(7,5)]
- [q(0,7),q(1,2),q(2,0),q(3,5),q(4,1),q(5,4),q(6,6),q(7,3)]
- [q(0,7),q(1,3),q(2,0),q(3,2),q(4,5),q(5,1),q(6,6),q(7,4)]
true.</pre>
 
 
===Short version===
SWI-Prolog 7.2.3
<syntaxhighlight lang="prolog">not_diagonal(X, N) :-
maplist(plus, X, N, Z1), maplist(plus, X, Z2, N), is_set(Z1), is_set(Z2).
 
queens(N, Qs) :-
numlist(1, N, P), findall(Q, (permutation(P, Q), not_diagonal(Q, P)), Qs).</syntaxhighlight>
{{out}}
<pre>
?- queens(8, X), length(X, L).
X = [[1, 5, 8, 6, 3, 7, 2, 4], [1, 6, 8, 3, 7, 4, 2|...], [1, 7, 4, 6, 8, 2|...], [1, 7, 5, 8, 2|...], [2, 4, 6, 8|...], [2, 5, 7|...], [2, 5|...], [2|...], [...|...]|...],
L = 92.
</pre>
 
===SWISH Prolog version===
<syntaxhighlight lang="prolog">
% John Devou: 26-Nov-2021
% Short solution to use on https://swish.swi-prolog.org/.
% Works fast for n ≤ 17.
 
:- use_rendering(chess).
 
q(_,0,[],[]).
q(N,R,[(R,C)|Qs],[C|Cs]):- R > 0, S is R-1, q(N,S,Qs,Cs), between(1,N,C),
not((member((U,V),Qs), (V =:= C; R-U =:= abs(C-V)))).
q(N,X):- q(N,N,_,X).
</syntaxhighlight>
 
===CLP(FD): Constraint Logic Programming over Finite Domains Version===
N-Queens - 92 Solutions In SWI-Prolog v8.0.2
 
This code solves the N-Queens problem in Prolog using the CLP(FD): Constraint Logic Programming over Finite Domain Library
<ul>
<li> `nqueens()` creates a 2D array datastructure, representing the board coordinates of each queen
<li> `applyConstraints()` recursively iterates through each queen on the board
<li> `checkConstraints()` applies the constraints: no two queens on same row/column/diagonal; and recurses through the list of remaining queens
<li> `optimizeQueens()` hardcodes each queen to live in a named row, this greatly reduces the computational complixity of the problem
<ul><li> Note: it is not possible to pass `Index + 1` into a prolog function, instead it must be declared and solved first as its own varaiable: `NextIndex is Index + 1`</ul>
<li> `print_board()` + print_line() render the ASCII graphics in a functional manner
<li> `all_nqueens()` uses `findall()` to solve `nqueens()` whilst repeatedly adding previous solutions as future constraints
<li> `print_nqueens_all(N)` is the main display/execution function
</ul>
 
<br/>
<ul>
<li>Source: https://github.com/JamesMcGuigan/ecosystem-research/blob/master/prolog/nqueens.prolog</li>
<li>Full Output: https://github.com/JamesMcGuigan/ecosystem-research/blob/master/prolog/nqueens.txt</li>
</ul>
<br/>
<syntaxhighlight lang="prolog">:- use_module(library(clpfd)).
 
% DOC: http://www.pathwayslms.com/swipltuts/clpfd/clpfd.html
length_(Length, List) :- length(List, Length).
 
applyConstraints([]).
applyConstraints([ Q | Queens ]) :-
checkConstraints(Q, Queens),
applyConstraints(Queens).
 
checkConstraints(_, []).
checkConstraints([Row0, Col0], [ [Row1, Col1] | Queens]) :-
Row0 #\= Row1, % No two queens on same row
Col0 #\= Col1, % No two queens on same columns
Row0 + Col0 #\= Row1 + Col1, % Down diagonals: [8,1], [7,2], [6,3]
Row0 - Col0 #\= Row1 - Col1, % Up diagonals: [1,1], [2,2], [3,3]
checkConstraints([Row0,Col0], Queens).
 
 
% Optimization: pre-assign each queen to a named row
optimizeQueens(Queens) :- optimizeQueens(Queens, 1).
optimizeQueens([],_).
optimizeQueens([[Row,_] | Queens], Index) :-
Row #= Index,
NextIndex is Index + 1,
optimizeQueens(Queens, NextIndex).
 
 
nqueens(N, Queens) :-
% Function Preconditions
N > 0,
 
% Create 2D Datastructure for Queens
length(Queens, N), maplist(length_(2), Queens),
flatten(Queens, QueenArray),
 
% Queens coords must be in range
QueenArray ins 1..N,
 
% Apply Constraints
optimizeQueens(Queens),
applyConstraints(Queens),
 
% Solve
label(QueenArray),
true.
 
 
all_nqueens(N) :- all_nqueens(N, _).
all_nqueens(N, Solutions) :-
findall(Queens, (nqueens(N,Queens), write(Queens), nl), Solutions),
length(Solutions,Count),
write(Count), write(' solutions'), nl,
Count #>= 1.
 
 
print_nqueens_all(N) :- all_nqueens(N, Solutions), print_nqueens(N, Solutions).
print_nqueens(N) :- nqueens(N, Queens), print_board(N, Queens).
print_nqueens(N, [Queens|Remaining]) :- print_count(Remaining), print_board(N, Queens), print_nqueens(N, Remaining).
print_nqueens(_, []).
 
print_count(Remaining) :- length(Remaining, Count), Count1 is Count + 1, nl, write('# '), write(Count1), nl.
print_board(N, [[_,Q] | Queens]) :- print_line(N, '-'), print_line(N, '|', Q), print_board(N, Queens).
print_board(N, []) :- print_line(N, '-').
print_line(0,'-') :- write('-'), nl.
print_line(N,'-') :- write('----'), N1 is N-1, print_line(N1,'-').
print_line(0,'|',_) :- write('|'), nl.
print_line(N,'|',Q) :- write('|'), (( Q == N ) -> write(' Q ') ; write(' ')), N1 is N-1, print_line(N1,'|',Q).
 
%:- initialization main.
main :-
print_nqueens_all(8).
</syntaxhighlight>
{{out}}
<pre>
92 solutions
 
# 92
---------------------------------
| | | | | | | | Q |
---------------------------------
| | | | Q | | | | |
---------------------------------
| Q | | | | | | | |
---------------------------------
| | | Q | | | | | |
---------------------------------
| | | | | | Q | | |
---------------------------------
| | Q | | | | | | |
---------------------------------
| | | | | | | Q | |
---------------------------------
| | | | | Q | | | |
---------------------------------
</pre>
 
=={{header|Pure}}==
From the Pure (programming language) Wikipedia page
 
<syntaxhighlight lang="pure">/*
n-queens.pure
Tectonics:
pure -c queens.pure -o queens
or
pure -q -i queens.pure
*/
using system;
 
queens n = search n 1 [] with
search n i p = [reverse p] if i>n;
= cat [search n (i+1) ((i,j):p) | j = 1..n; safe (i,j) p];
safe (i,j) p = ~any (check (i,j)) p;
check (i1,j1) (i2,j2)
= i1==i2 || j1==j2 || i1+j1==i2+j2 || i1-j1==i2-j2;
end;
 
compiling || (puts("queens 4: " + str(queens 4)) $$
puts("Solutions to queens 7: " + str(#queens 7)));</syntaxhighlight>
 
{{out}}
<pre>prompt$ pure -c queens.pure -o queens
prompt$ time -p ./queens
queens 4: [[(1,2),(2,4),(3,1),(4,3)],[(1,3),(2,1),(3,4),(4,2)]]
Solutions to queens 7: 40
real 0.03
user 0.02
sys 0.00
 
prompt$ pure -i -q queens.pure
> #queens 10;
724
> </pre>
 
=={{header|PureBasic}}==
A recursive approach is taken. A queen is placed in an unused column for each new row. An array keeps track if a queen has already been placed in a given column so that no duplicate columns result. That handles the Rook attacks. Bishop attacks are handled by checking the diagonal alignments of each new placement against the previously placed queens and if an attack is possible the solution backtracks. The solutions are kept track of in a global variable and the routine <tt>queens(n)</tt> is called with the required number of queens specified.
<syntaxhighlight lang="purebasic">Global solutions
 
Procedure showBoard(Array queenCol(1))
Protected row, column, n = ArraySize(queenCol())
 
PrintN(" Solution " + Str(solutions))
For row = 0 To n
For column = 0 To n
If queenCol(row) = column
Print("|Q")
Else
Print("| ")
EndIf
Next
PrintN("|")
Next
EndProcedure
 
Macro advanceIfPossible()
x + 1
While x <= n And columns(x): x + 1: Wend
If x > n
ProcedureReturn #False ;backtrack
EndIf
EndMacro
 
Procedure placeQueens(Array queenCol(1), Array columns(1), row = 0)
Protected n = ArraySize(queenCol())
If row > n
solutions + 1
showBoard(queenCol())
ProcedureReturn #False ;backtrack
EndIf
Protected x, queen, passed
While columns(x): x + 1: Wend
;place a new queen in one of the available columns
Repeat
passed = #True
For queen = 0 To row - 1
If ((queenCol(queen) - x) = (queen - row)) Or ((queenCol(queen) - x) = -(queen - row))
advanceIfPossible()
passed = #False
Break ;ForNext loop
EndIf
Next
If passed
queenCol(row) = x: columns(x) = 1
If Not placeQueens(queenCol(), columns(), row + 1)
columns(x) = 0
advanceIfPossible()
EndIf
EndIf
ForEver
EndProcedure
 
Procedure queens(n)
If n > 0
Dim queenCol(n - 1)
Dim columns(n - 1)
placeQueens(queenCol(), columns())
EndIf
EndProcedure
 
If OpenConsole()
Define i
For i = 1 To 12
solutions = 0
queens(i)
PrintN(#CRLF$ + Str(solutions) + " solutions found for " + Str(i) + "-queens.")
Input()
Next
Print(#CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf</syntaxhighlight>
Sample output showing the last solution (all are actually displayed) for 1 - 12 queens:
<pre style="height:40ex;overflow:scroll"> Solution 1
|Q|
 
1 solutions found for 1-queens. {Press ENTER}
 
0 solutions found for 2-queens. {Press ENTER}
 
0 solutions found for 3-queens. {Press ENTER}
 
Solution 2
| | |Q| |
|Q| | | |
| | | |Q|
| |Q| | |
 
2 solutions found for 4-queens. {Press ENTER}
 
Solution 10
| | | | |Q|
| | |Q| | |
|Q| | | | |
| | | |Q| |
| |Q| | | |
 
10 solutions found for 5-queens. {Press ENTER}
 
Solution 4
| | | | |Q| |
| | |Q| | | |
|Q| | | | | |
| | | | | |Q|
| | | |Q| | |
| |Q| | | | |
 
4 solutions found for 6-queens. {Press ENTER}
 
Solution 40
| | | | | | |Q|
| | | | |Q| | |
| | |Q| | | | |
|Q| | | | | | |
| | | | | |Q| |
| | | |Q| | | |
| |Q| | | | | |
 
40 solutions found for 7-queens. {Press ENTER}
 
Solution 92
| | | | | | | |Q|
| | | |Q| | | | |
|Q| | | | | | | |
| | |Q| | | | | |
| | | | | |Q| | |
| |Q| | | | | | |
| | | | | | |Q| |
| | | | |Q| | | |
 
92 solutions found for 8-queens. {Press ENTER}
 
Solution 352
| | | | | | | | |Q|
| | | | | | |Q| | |
| | | |Q| | | | | |
| |Q| | | | | | | |
| | | | | | | |Q| |
| | | | | |Q| | | |
|Q| | | | | | | | |
| | |Q| | | | | | |
| | | | |Q| | | | |
 
352 solutions found for 9-queens. {Press ENTER}
 
Solution 724
| | | | | | | | | |Q|
| | | | | | | |Q| | |
| | | | |Q| | | | | |
| | |Q| | | | | | | |
|Q| | | | | | | | | |
| | | | | |Q| | | | |
| |Q| | | | | | | | |
| | | | | | | | |Q| |
| | | | | | |Q| | | |
| | | |Q| | | | | | |
 
724 solutions found for 10-queens. {Press ENTER}
 
Solution 2680
| | | | | | | | | | |Q|
| | | | | | | | |Q| | |
| | | | | | |Q| | | | |
| | | | |Q| | | | | | |
| | |Q| | | | | | | | |
|Q| | | | | | | | | | |
| | | | | | | | | |Q| |
| | | | | | | |Q| | | |
| | | | | |Q| | | | | |
| | | |Q| | | | | | | |
| |Q| | | | | | | | | |
 
2680 solutions found for 11-queens. {Press ENTER}
 
Solution 14200
| | | | | | | | | | | |Q|
| | | | | | | | | |Q| | |
| | | | | | | |Q| | | | |
| | | | |Q| | | | | | | |
| | |Q| | | | | | | | | |
|Q| | | | | | | | | | | |
| | | | | | |Q| | | | | |
| |Q| | | | | | | | | | |
| | | | | | | | | | |Q| |
| | | | | |Q| | | | | | |
| | | |Q| | | | | | | | |
| | | | | | | | |Q| | | |
 
14200 solutions found for 12-queens. {Press ENTER}</pre>
 
=={{header|Python}}==
===Python: Raymond Hettingers permutations based solution===
This solution, originally by [[http://code.activestate.com/recipes/576647/ Raymond Hettinger]] for demonstrating the power of the itertools module, generates all solutions.
This solution, originally by [http://code.activestate.com/recipes/576647/ Raymond Hettinger] for demonstrating the power of the itertools module, generates all solutions. On a regular 8x8 board only 40,320 possible queen positions are examined.
 
<langsyntaxhighlight lang="python">from itertools import permutations
 
n = 8
Line 404 ⟶ 12,767:
if n == len(set(vec[i]+i for i in cols)) \
== len(set(vec[i]-i for i in cols)):
print ( vec )</langsyntaxhighlight>
 
The output is presented in vector form (each number represents the column position of a queen on consecutive rows). The vector can be pretty printed by substituting a call to <code>board</code> instead of <code>print</code>, with the same argument, and where board is pre-defined as:
The vector can be pretty printed by substituting a call to <code>board</code> instead of <code>print</code>, with the same argument, and where board is pre-defined as:
<lang python>def board(vec):
<syntaxhighlight lang="python">def board(vec):
print ("\n".join('.' * i + 'Q' + '.' * (n-i-1) for i in vec) + "\n===\n")</lang>
print ("\n".join('.' * i + 'Q' + '.' * (n-i-1) for i in vec) + "\n===\n")</syntaxhighlight>
 
Raymond's description is:
Line 417 ⟶ 12,781:
:Any permutation with non-overlapping diagonals is a solution. So, we print it and continue checking other permutations.
 
One disadvantage with this solution is that we can't simply "skip" all the permutations that start with a certain prefix, after discovering that that prefix is incompatible. For example, it is easy to verify that no permutation of the form (1,2,...) could ever be a solution, but since we don't have control over the generation of the permutations, we can't just tell it to "skip" all the ones that start with (1,2).
For example, it is easy to verify that no permutation of the form (1,2,...) could ever be a solution, but since we don't have control over the generation of the permutations, we can't just tell it to "skip" all the ones that start with (1,2).
 
===Python: Alternative Solution===
On a regular 8x8 board only 15,720 possible queen positions are examined.
{{works with|Python|2.6, 3.x}}
<langsyntaxhighlight lang="python"># From: http://wiki.python.org/moin/SimplePrograms, with permission from the author, Steve Howell
BOARD_SIZE = 8
 
Line 432 ⟶ 12,798:
for row in range(n):
solutions = [solution+[i+1]
for i in range(BOARD_SIZE)
for solution in solutions
for i in range(BOARD_SIZE)
if not under_attack(i+1, solution)]
return solutions
 
for answer in solve(BOARD_SIZE): print(list(enumerate(answer, start=1)))</langsyntaxhighlight>
 
===Python: Simple Backtracking Solution===
A surprisingly simple change to the above code (changing the list comprehension
to a generator expression) produces a backtracking solution. On a regular 8x8 board only 15,720 possible queen positions are examined.
{{works with|Python|2.6, 3.x}}
<syntaxhighlight lang="python">BOARD_SIZE = 8
 
def under_attack(col, queens):
return col in queens or \
any(abs(col - x) == len(queens)-i for i,x in enumerate(queens))
 
def solve(n):
solutions = [[]]
for row in range(n):
solutions = (solution+[i+1]
for solution in solutions # first for clause is evaluated immediately,
# so "solutions" is correctly captured
for i in range(BOARD_SIZE)
if not under_attack(i+1, solution))
return solutions
 
answers = solve(BOARD_SIZE)
first_answer = next(answers)
print(list(enumerate(first_answer, start=1)))</syntaxhighlight>
 
===Python: Niklaus Wirth algorithm===
The following program is a translation of Niklaus Wirth's solution into the Python programming language, but does without the index arithmetic used in the original and uses simple lists instead, which means that the array ''x'' for recording the solution can be omitted. A generator replaces the procedure (see [https://www.inf.ethz.ch/personal/wirth/ Niklaus Wirth] or [https://informatika-21.ru/ADen/ Fyodor Tkachov]: Algorithms and Data Structures, pages 114 to 118). On a regular 8x8 board only 15,720 possible queen positions are examined.
<syntaxhighlight lang="python">def queens(n: int, i: int, a: list, b: list, c: list):
if i < n:
for j in range(n):
if j not in a and i + j not in b and i - j not in c:
yield from queens(n, i + 1, a + [j], b + [i + j], c + [i - j])
else:
yield a
 
 
for solution in queens(8, 0, [], [], []):
print(solution)</syntaxhighlight>
The algorithm can be easily improved by using permutations and O(1) sets instead of O(n) lists and by avoiding unnecessary copy operations during recursion. An additional list ''x'' was added to record the solution. On a regular 8x8 board only 5,508 possible queen positions are examined.
<syntaxhighlight lang="python">def queens(i: int, a: set):
if a: # set a is not empty
for j in a:
if i + j not in b and i - j not in c:
b.add(i + j); c.add(i - j); x.append(j)
yield from queens(i + 1, a - {j})
b.remove(i + j); c.remove(i - j); x.pop()
else:
yield x
 
 
b = set(); c = set(); x = []
for solution in queens(0, set(range(8))):
print(solution)</syntaxhighlight>
 
===Python: Backtracking on permutations===
Queens positions on a n x n board are encoded as permutations of [0, 1, ..., n]. The algorithms consists in building a permutation from left to right, by swapping elements of the initial [0, 1, ..., n], recursively calling itself unless the current position is not possible. The test is done by checking only diagonals, since rows/columns have by definition of a permutation, only one queen.
 
This is initially a translation of the Fortran 77 solution. The solutions are returned as a generator, using the "yield from" functionality of Python 3.3, described in [https://www.python.org/dev/peps/pep-0380/ PEP-380]. On a regular 8x8 board only 5,508 possible queen positions are examined.
 
<syntaxhighlight lang="python">def queens(n: int):
 
def sub(i: int):
if i < n:
for k in range(i, n):
j = a[k]
if b[i + j] and c[i - j]:
a[i], a[k] = a[k], a[i]
b[i + j] = c[i - j] = False
yield from sub(i + 1)
b[i + j] = c[i - j] = True
a[i], a[k] = a[k], a[i]
else:
yield a
 
a = list(range(n))
b = [True] * (2 * n - 1)
c = [True] * (2 * n - 1)
yield from sub(0)
 
 
sum(1 for p in queens(8)) # count solutions
92</syntaxhighlight>
 
The preceding function does not enumerate solutions in lexicographic order, see [[Permutations#Recursive implementation]] for an explanation. The following does, but is almost 50% slower, because the exchange is always made (otherwise, restoring the state of the array after the loop wouldn't work). On a regular 8x8 board only 5,508 possible queen positions are examined.
 
However, it may be interesting to look at the first solution in lexicographic order: for growing n, and apart from a +1 offset, it gets closer and closer to the sequence [http://oeis.org/A065188 A065188] at OEIS. The first n for which the first solutions differ is n=26.
 
<syntaxhighlight lang="python">def queens_lex(n: int):
 
def sub(i: int):
if i < n:
for k in range(i, n):
j = a[k]
a[i], a[k] = a[k], a[i]
if b[i + j] and c[i - j]:
b[i + j] = c[i - j] = False
yield from sub(i + 1)
b[i + j] = c[i - j] = True
a[i:(n - 1)], a[n - 1] = a[(i + 1):n], a[i]
else:
yield a
 
a = list(range(n))
b = [True] * (2 * n - 1)
c = [True] * (2 * n - 1)
yield from sub(0)
 
 
next(queens(31))
[0, 2, 4, 1, 3, 8, 10, 12, 14, 6, 17, 21, 26, 28, 25, 27, 24, 30, 7, 5, 29, 15, 13, 11, 9, 18, 22, 19, 23, 16, 20]
 
next(queens_lex(31))
[0, 2, 4, 1, 3, 8, 10, 12, 14, 5, 17, 22, 25, 27, 30, 24, 26, 29, 6, 16, 28, 13, 9, 7, 19, 11, 15, 18, 21, 23, 20]
 
#Compare to A065188
#1, 3, 5, 2, 4, 9, 11, 13, 15, 6, 8, 19, 7, 22, 10, 25, 27, 29, 31, 12, 14, 35, 37, ...</syntaxhighlight>
 
===Python: fold/reduce===
Expressed in terms of nested folds, allowing for graphic display of results, and listing the number of solutions found for boards of various sizes. On a regular 8x8 board only 15,720 possible queen positions are examined.
{{Works with|Python|3.7}}
<syntaxhighlight lang="python">'''N Queens problem'''
 
from functools import reduce
from itertools import chain
 
 
# queenPuzzle :: Int -> Int -> [[Int]]
def queenPuzzle(nCols):
'''All board patterns of this dimension
in which no two Queens share a row,
column, or diagonal.
'''
def go(nRows):
lessRows = nRows - 1
return reduce(
lambda a, xys: a + reduce(
lambda b, iCol: b + [xys + [iCol]] if (
safe(lessRows, iCol, xys)
) else b,
enumFromTo(1)(nCols),
[]
),
go(lessRows),
[]
) if 0 < nRows else [[]]
return go
 
 
# safe :: Int -> Int -> [Int] -> Bool
def safe(iRow, iCol, pattern):
'''True if no two queens in the pattern
share a row, column or diagonal.
'''
def p(sc, sr):
return (iCol == sc) or (
sc + sr == (iCol + iRow)
) or (sc - sr == (iCol - iRow))
return not any(map(p, pattern, range(0, iRow)))
 
 
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Number of solutions for boards of various sizes'''
 
n = 5
xs = queenPuzzle(n)(n)
 
print(
str(len(xs)) + ' solutions for a {n} * {n} board:\n'.format(n=n)
)
print(showBoards(10)(xs))
 
print(
fTable(
'\n\n' + main.__doc__ + ':\n'
)(str)(lambda n: str(n).rjust(3, ' '))(
lambda n: len(queenPuzzle(n)(n))
)(enumFromTo(1)(10))
)
 
 
# ---------------------- FORMATTING ----------------------
 
# showBoards :: Int -> [[Int]] -> String
def showBoards(nCols):
'''String representation, with N columns
of a set of board patterns.
'''
def showBlock(b):
return '\n'.join(map(intercalate(' '), zip(*b)))
 
def go(bs):
return '\n\n'.join(map(
showBlock,
chunksOf(nCols)([
showBoard(b) for b in bs
])
))
return go
 
 
# showBoard :: [Int] -> String
def showBoard(xs):
'''String representation of a Queens board.'''
lng = len(xs)
 
def showLine(n):
return ('.' * (n - 1)) + '♛' + ('.' * (lng - n))
return map(showLine, xs)
 
 
# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function -> fx display function ->
f -> xs -> tabular string.
'''
def go(xShow, fxShow, f, xs):
ys = [xShow(x) for x in xs]
w = max(map(len, ys))
return s + '\n' + '\n'.join(map(
lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
xs, ys
))
return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
xShow, fxShow, f, xs
)
 
 
# ----------------------- GENERIC ------------------------
 
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: range(m, 1 + n)
 
 
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divible, the final list will be shorter than n.
'''
return lambda xs: reduce(
lambda a, i: a + [xs[i:n + i]],
range(0, len(xs), n), []
) if 0 < n else []
 
 
# intercalate :: [a] -> [[a]] -> [a]
# intercalate :: String -> [String] -> String
def intercalate(x):
'''The concatenation of xs
interspersed with copies of x.
'''
return lambda xs: x.join(xs) if isinstance(x, str) else list(
chain.from_iterable(
reduce(lambda a, v: a + [x, v], xs[1:], [xs[0]])
)
) if xs else []
 
 
# MAIN ---
if __name__ == '__main__':
main()</syntaxhighlight>
{{Out}}
<pre>10 solutions for a 5 * 5 board:
 
♛.... ♛.... .♛... .♛... ..♛.. ..♛.. ...♛. ...♛. ....♛ ....♛
..♛.. ...♛. ...♛. ....♛ ♛.... ....♛ ♛.... .♛... .♛... ..♛..
....♛ .♛... ♛.... ..♛.. ...♛. .♛... ..♛.. ....♛ ...♛. ♛....
.♛... ....♛ ..♛.. ♛.... .♛... ...♛. ....♛ ..♛.. ♛.... ...♛.
...♛. ..♛.. ....♛ ...♛. ....♛ ♛.... .♛... ♛.... ..♛.. .♛...
 
Number of solutions for boards of various sizes:
 
1 -> 1
2 -> 0
3 -> 0
4 -> 2
5 -> 10
6 -> 4
7 -> 40
8 -> 92
9 -> 352
10 -> 724</pre>
 
=={{header|Quackery}}==
 
<code>perms</code> is defined at [[Permutations#Quackery]]. The solution used determines the order in which the n-Queen solutions found are listed. The output illustrated here is from the <code>perms</code> solution titled "An Uncommon Ordering".
 
The method used here stems from the following observations.
 
* Queens can attach with rook (castle) moves or bishop moves.
 
* The solutions to the N-rooks problem correspond to the permutations of the numbers 0 to N-1 in a zero-indexed list.
 
* Two queens are attacking one another with bishop moves to the left (from the appropriate point of view) if the sum of the x-coordinate and the y-coordinate for each of the queens is the same.
 
* A bishop move to the right is the mirror image of a bishop move to the left.
 
<syntaxhighlight lang="Quackery"> [ false 0 rot
witheach
[ i + bit
2dup & iff
[ drop dip not
conclude ]
done
| ]
drop ] is l-bishop ( [ --> b )
 
[ reverse l-bishop ] is r-bishop ( [ --> b )
 
[ [] swap perms
witheach
[ dup l-bishop iff
drop done
dup r-bishop iff
drop done
nested join ] ] is queens ( n --> [ )
 
8 queens
dup size echo say " solutions."
cr cr
witheach
[ echo
i^ 1+ 4 mod iff sp else cr ]</syntaxhighlight>
 
{{out}}
 
<pre>92 solutions.
 
[ 4 1 5 0 6 3 7 2 ] [ 5 2 4 6 0 3 1 7 ] [ 5 3 6 0 2 4 1 7 ] [ 2 5 1 6 4 0 7 3 ]
[ 5 2 0 6 4 7 1 3 ] [ 5 1 6 0 2 4 7 3 ] [ 5 3 6 0 7 1 4 2 ] [ 2 5 1 6 0 3 7 4 ]
[ 5 2 6 1 3 7 0 4 ] [ 5 2 6 3 0 7 1 4 ] [ 1 5 0 6 3 7 2 4 ] [ 5 1 6 0 3 7 4 2 ]
[ 5 2 6 1 7 4 0 3 ] [ 4 6 1 5 2 0 3 7 ] [ 4 6 1 5 2 0 7 3 ] [ 3 6 4 2 0 5 7 1 ]
[ 3 6 4 1 5 0 2 7 ] [ 6 4 2 0 5 7 1 3 ] [ 3 1 6 2 5 7 0 4 ] [ 3 1 6 2 5 7 4 0 ]
[ 0 6 3 5 7 1 4 2 ] [ 6 1 5 2 0 3 7 4 ] [ 1 6 2 5 7 4 0 3 ] [ 6 2 0 5 7 4 1 3 ]
[ 4 1 3 6 2 7 5 0 ] [ 2 4 6 0 3 1 7 5 ] [ 4 6 3 0 2 7 5 1 ] [ 4 6 1 3 7 0 2 5 ]
[ 1 4 6 3 0 7 5 2 ] [ 4 6 0 3 1 7 5 2 ] [ 4 2 0 6 1 7 5 3 ] [ 1 4 6 0 2 7 5 3 ]
[ 4 6 0 2 7 5 3 1 ] [ 3 1 6 4 0 7 5 2 ] [ 6 3 1 4 7 0 2 5 ] [ 2 0 6 4 7 1 3 5 ]
[ 1 6 4 7 0 3 5 2 ] [ 0 6 4 7 1 3 5 2 ] [ 3 6 2 7 1 4 0 5 ] [ 3 6 0 7 4 1 5 2 ]
[ 6 1 3 0 7 4 2 5 ] [ 2 6 1 7 4 0 3 5 ] [ 6 2 7 1 4 0 5 3 ] [ 6 3 1 7 5 0 2 4 ]
[ 2 6 1 7 5 3 0 4 ] [ 6 0 2 7 5 3 1 4 ] [ 4 1 3 5 7 2 0 6 ] [ 4 0 3 5 7 1 6 2 ]
[ 4 2 0 5 7 1 3 6 ] [ 3 5 0 4 1 7 2 6 ] [ 5 3 0 4 7 1 6 2 ] [ 5 2 4 7 0 3 1 6 ]
[ 2 5 1 4 7 0 6 3 ] [ 5 0 4 1 7 2 6 3 ] [ 2 5 3 1 7 4 6 0 ] [ 2 5 3 0 7 4 6 1 ]
[ 5 3 1 7 4 6 0 2 ] [ 5 2 0 7 4 1 3 6 ] [ 2 5 7 0 4 6 1 3 ] [ 1 3 5 7 2 0 6 4 ]
[ 3 5 7 2 0 6 4 1 ] [ 3 5 7 1 6 0 2 4 ] [ 2 5 7 1 3 0 6 4 ] [ 2 5 7 0 3 6 4 1 ]
[ 5 2 0 7 3 1 6 4 ] [ 1 5 7 2 0 3 6 4 ] [ 5 7 1 3 0 6 4 2 ] [ 0 5 7 2 6 3 1 4 ]
[ 3 1 4 7 5 0 2 6 ] [ 3 0 4 7 5 2 6 1 ] [ 4 7 3 0 2 5 1 6 ] [ 2 4 1 7 5 3 6 0 ]
[ 0 4 7 5 2 6 1 3 ] [ 4 0 7 5 2 6 1 3 ] [ 3 1 7 5 0 2 4 6 ] [ 7 2 0 5 1 4 6 3 ]
[ 1 7 5 0 2 4 6 3 ] [ 3 7 0 2 5 1 6 4 ] [ 7 3 0 2 5 1 6 4 ] [ 3 0 4 7 1 6 2 5 ]
[ 2 4 7 3 0 6 1 5 ] [ 4 2 7 3 6 0 5 1 ] [ 4 1 7 0 3 6 2 5 ] [ 4 0 7 3 1 6 2 5 ]
[ 4 7 3 0 6 1 5 2 ] [ 2 4 1 7 0 6 3 5 ] [ 3 7 4 2 0 6 1 5 ] [ 3 1 7 4 6 0 2 5 ]
[ 3 7 0 4 6 1 5 2 ] [ 7 1 4 2 0 6 3 5 ] [ 7 1 3 0 6 4 2 5 ] [ 2 7 3 6 0 5 1 4 ]</pre>
 
=={{header|QBasic}}==
{{works with|QBasic}}
{{trans|QB64}}
<syntaxhighlight lang="qbasic">DIM SHARED queens AS INTEGER
CLS
COLOR 15
INPUT "Numero de reinas"; queens
IF queens <= 0 THEN END
 
CLS
PRINT "queens: Calcula el problema de las"; queens; " reinas."
DIM SHARED arrayqcol(queens) AS LONG ' columnas de reinas
DIM SHARED nsoluciones AS LONG
 
dofila (1)' comenzar en la fila 1
COLOR 14: LOCATE 6 + (2 * queens), 1: PRINT "Hay " + STR$(nsoluciones) + " soluciones"
END
 
SUB dofila (ifila) ' comienza con la fila de abajo
FOR icol = 1 TO queens
FOR iqueen = 1 TO ifila - 1 ' Comprueba conflictos con las reinas anteriores
IF arrayqcol(iqueen) = icol THEN GOTO continue1 ' misma columna?
' iqueen también es fila de la reina
IF iqueen + arrayqcol(iqueen) = ifila + icol THEN GOTO continue1 ' diagonal derecha?
IF iqueen - arrayqcol(iqueen) = ifila - icol THEN GOTO continue1 ' diagonal izquierda?
NEXT iqueen
' En este punto podemos añadir una reina
arrayqcol(ifila) = icol ' añadir al array
COLOR 8
LOCATE ifila + 2, icol: PRINT "x"; ' mostrar progreso
COLOR 15
IF ifila = queens THEN ' solucion?
nsoluciones = nsoluciones + 1
LOCATE 4 + queens, 1: PRINT "Solucion #" + STR$(nsoluciones)
FOR i1 = 1 TO queens ' filas
s1$ = STRING$(queens, ".") ' columnas
MID$(s1$, arrayqcol(i1), 1) = "Q" ' Q en la columna reina
PRINT s1$
NEXT i1
PRINT ""
ELSE
dofila (ifila + 1)' llamada recursiva a la siguiente fila
END IF
COLOR 7: LOCATE ifila + 2, icol: PRINT "."; ' quitar reina
continue1:
NEXT icol
END SUB</syntaxhighlight>
 
 
=={{header|QB64}}==
<syntaxhighlight lang="qb64">
DIM SHARED QUEENS AS INTEGER
PRINT "# of queens:";: INPUT QUEENS
IF QUEENS = 0 THEN END
OPEN LTRIM$(STR$(QUEENS)) + "queens.dat" FOR OUTPUT AS #1
PRINT "Queens: Calculates"; QUEENS; " queens problem."
DIM SHARED arrayqcol(QUEENS) AS LONG ' columns of queens
DIM SHARED nsolutions AS LONG
CALL dorow(1) ' start with row 1
LOCATE 22, 1
PRINT STR$(nsolutions) + " solutions"
END
SUB dorow (irow) ' starts with row irow
FOR icol = 1 TO QUEENS
FOR iqueen = 1 TO irow - 1 ' check for conflict with previous queens
IF arrayqcol(iqueen) = icol THEN GOTO continue1 ' same column?
' iqueen is also row of queen
IF iqueen + arrayqcol(iqueen) = irow + icol THEN GOTO continue1 ' right diagonal?
IF iqueen - arrayqcol(iqueen) = irow - icol THEN GOTO continue1 ' left diagonal?
NEXT iqueen
' at this point we can add a queen
arrayqcol(irow) = icol ' add to array
LOCATE irow + 2, icol: PRINT "x"; ' show progress
_DELAY (.001) ' slows processing
IF irow = QUEENS THEN ' solution?
nsolutions = nsolutions + 1
PRINT #1, "Solution #" + MID$(STR$(nsolutions), 2) + "."
FOR i1 = 1 TO QUEENS ' rows
s1$ = STRING$(QUEENS, ".") ' columns
MID$(s1$, arrayqcol(i1), 1) = "x" ' x in queen column
PRINT #1, s1$
NEXT i1
PRINT #1, ""
ELSE
CALL dorow(irow + 1) ' recursive call to next row
END IF
LOCATE irow + 2, icol: PRINT "."; ' remove queen
continue1:
NEXT icol
END SUB
</syntaxhighlight>
 
=={{header|R}}==
 
{{trans|Stata}}
 
This solution uses recursive backtracking.
 
<syntaxhighlight lang="r">queens <- function(n) {
a <- seq(n)
u <- rep(T, 2 * n - 1)
v <- rep(T, 2 * n - 1)
m <- NULL
aux <- function(i) {
if (i > n) {
m <<- cbind(m, a)
} else {
for (j in seq(i, n)) {
k <- a[[j]]
p <- i - k + n
q <- i + k - 1
if (u[[p]] && v[[q]]) {
u[[p]] <<- v[[q]] <<- F
a[[j]] <<- a[[i]]
a[[i]] <<- k
aux(i + 1)
u[[p]] <<- v[[q]] <<- T
a[[i]] <<- a[[j]]
a[[j]] <<- k
}
}
}
}
aux(1)
m
}</syntaxhighlight>
 
Show the first solution found for size 8 as a permutation matrix.
 
<syntaxhighlight lang="r">library(Matrix)
a <- queens(8)
as(a[, 1], "pMatrix")</syntaxhighlight>
 
{{out}}
 
<pre>8 x 8 sparse Matrix of class "pMatrix"
[1,] | . . . . . . .
[2,] . . . . | . . .
[3,] . . . . . . . |
[4,] . . . . . | . .
[5,] . . | . . . . .
[6,] . . . . . . | .
[7,] . | . . . . . .
[8,] . . . | . . . .</pre>
 
Count solutions for board size 4 to 12.
 
<syntaxhighlight lang="r">sapply(4:12, function(n) ncol(queens(n)))</syntaxhighlight>
 
{{out}}
 
<pre>[1] 2 10 4 40 92 352 724 2680 14200</pre>
 
=={{header|Racket}}==
 
Backtracking algorithm; returns one solution
 
<syntaxhighlight lang="racket">
#lang racket
 
(struct Q (x y) #:transparent)
 
;; returns true if given q1 and q2 do not conflict
(define (safe? q1 q2)
(match* (q1 q2)
[((Q x1 y1) (Q x2 y2))
(not (or (= x1 x2) (= y1 y2)
(= (abs (- x1 x2)) (abs (- y1 y2)))))]))
 
;; returns true if given q doesn't conflict with anything in given list of qs
(define (safe-lst? q qs) (for/and ([q2 qs]) (safe? q q2)))
 
(define (nqueens n)
;; qs is partial solution; x y is current position to try
(let loop ([qs null] [x 0] [y 0])
(cond [(= (length qs) n) qs] ; found a solution
[(>= x n) (loop qs 0 (add1 y))] ; go to next row
[(>= y n) #f] ; current solution is invalid
[else
(define q (Q x y))
(if (safe-lst? q qs) ; is current position safe?
(or (loop (cons q qs) 0 (add1 y)) ; optimistically place a queen
; (and move pos to next row)
(loop qs (add1 x) y)) ; backtrack if it fails
(loop qs (add1 x) y))])))
 
(nqueens 8)
; => (list (Q 3 7) (Q 1 6) (Q 6 5) (Q 2 4) (Q 5 3) (Q 7 2) (Q 4 1) (Q 0 0))
</syntaxhighlight>
 
Show result with "How to Design Programs" GUI.
<syntaxhighlight lang="racket">
(require htdp/show-queen)
 
(define (show-nqueens n)
(define qs (time (nqueens n)))
(show-queen
(for/list ([row n])
(for/list ([col n])
(if (member (Q row col) qs) #t #f)))))
 
(show-nqueens 8)
</syntaxhighlight>
 
[[image:Racket-nqueens.png]]
 
When hovering mouse, GUI also displays conflicts for potential additional queens.
 
[[image:Racket-nqueens-conflict.png]]
 
 
Lazy-style solution, ie, generate all solutions, then filter out invalid ones.
Computes all solutions.
 
<syntaxhighlight lang="racket">
#lang racket
 
(struct Q (x y) #:transparent)
 
(define-syntax-rule (lcons x y) (cons x (lazy y)))
 
(define (lazy-filter p? lst)
(define flst (force lst))
(if (null? flst) '()
(let ([x (car flst)])
(if (p? x)
(lcons x (lazy-filter p? (cdr flst)))
(lazy-filter p? (cdr flst))))))
 
(define (lazy-foldr f base lst)
(define flst (force lst))
(if (null? flst) base
(f (car flst) (lazy (lazy-foldr f base (cdr flst))))))
 
(define (tails lst)
(if (null? lst) '(())
(cons lst (tails (cdr lst)))))
 
(define (safe? q1 q2)
(match* (q1 q2)
[((Q x1 y1) (Q x2 y2))
(not (or (= x1 x2) (= y1 y2)
(= (abs (- x1 x2)) (abs (- y1 y2)))))]))
 
(define (safe-lst? lst)
(or (null? lst)
(let ([q1 (car lst)])
(for/and ([q2 (cdr lst)]) (safe? q1 q2)))))
 
(define (valid? lst) (andmap safe-lst? (tails lst)))
 
(define (nqueens n)
(define all-possible-solutions
(for/fold ([qss-so-far '(())]) ([row (in-range n)])
(lazy-foldr
(λ (qs new-qss)
(append (for/list ([col (in-range n)]) (cons (Q row col) qs))
new-qss))
'() qss-so-far)))
(lazy-filter valid? all-possible-solutions))
</syntaxhighlight>
 
Taking the first solution does not compute the other solutions:
 
<syntaxhighlight lang="racket">
(car (nqueens 8))
;; => (list (Q 7 3) (Q 6 1) (Q 5 6) (Q 4 2) (Q 3 5) (Q 2 7) (Q 1 4) (Q 0 0))
</syntaxhighlight>
 
Computing all solutions is also possible:
 
<syntaxhighlight lang="racket">
(define (force-and-print qs)
(define forced (force qs))
(unless (null? forced)
(printf "~v\n" (car forced))
(force-and-print (cdr forced))))
 
(force-and-print (nqueens 8))
 
; =>
;(list (Q 7 3) (Q 6 1) (Q 5 6) (Q 4 2) (Q 3 5) (Q 2 7) (Q 1 4) (Q 0 0))
;(list (Q 7 4) (Q 6 1) (Q 5 3) (Q 4 6) (Q 3 2) (Q 2 7) (Q 1 5) (Q 0 0))
;(list (Q 7 2) (Q 6 4) (Q 5 1) (Q 4 7) (Q 3 5) (Q 2 3) (Q 1 6) (Q 0 0))
;(list (Q 7 2) (Q 6 5) (Q 5 3) (Q 4 1) (Q 3 7) (Q 2 4) (Q 1 6) (Q 0 0))
...
;(list (Q 7 5) (Q 6 3) (Q 5 6) (Q 4 0) (Q 3 2) (Q 2 4) (Q 1 1) (Q 0 7))
;(list (Q 7 3) (Q 6 6) (Q 5 4) (Q 4 1) (Q 3 5) (Q 2 0) (Q 1 2) (Q 0 7))
;(list (Q 7 4) (Q 6 6) (Q 5 1) (Q 4 5) (Q 3 2) (Q 2 0) (Q 1 3) (Q 0 7))
</syntaxhighlight>
 
Logic borrowed from the Ruby example
<syntaxhighlight lang="racket">
#lang racket
(define (remove x lst)
(for/list ([i (in-range (length lst))]
#:when (not (= x i)))
(list-ref lst i)))
 
(define (switch-pairs lst)
(cond [(null? lst) '()]
[(null? (cdr lst)) (list '() (car lst))]
[else (append (list (cadr lst) (car lst))
(switch-pairs (cddr lst)))]))
 
(define (switch-places a1 a2 lst)
(for/list ([i (length lst)])
(list-ref lst (cond [(= a1 i) a2] [(= a2 i) a1] [else i]))))
 
(define (position-queens n)
(cond [(= 1 n) (list (list 1))]
[(> 4 n) #f]
[else (possible-queens n)]))
 
(define (possible-queens n)
(define rem (remainder n 12))
(define lst (build-list n add1))
(define evens (filter even? lst))
(define odds (filter odd? lst))
(cond [(or (= rem 9) (= rem 3)) (case3or9 evens odds)]
[(= rem 8) (case8 evens odds)]
[(= rem 2) (case2 evens odds)]
[else (append evens odds)]))
 
(define (case3or9 evens odds)
(for/fold ([acum (append (cdr evens) (list (car evens)) odds)])
([i (in-list '(1 3))])
(append (remove (list-ref acum i) acum) (list i))))
 
(define (case8 evens odds)
(append evens (switch-pairs odds)))
 
(define (case2 evens odds)
(define nums (append evens odds))
(define idx (map (λ(i) (list-ref nums i)) '(1 3 5)))
(append (remove (caddr idx)
(switch-places (car idx) (cadr idx) nums))
'(5)))
 
(define (queens n)
(define position-numbers (position-queens n))
(define positions-on-board
(for/list ([i n]) (cons i (sub1 (list-ref position-numbers i)))))
(for/list ([x n])
(for/list ([y n])
(if (member (cons x y) positions-on-board) "Q" "."))))
 
(define (print-queens n)
(for ([x (queens n)]) (displayln (string-join x))))
</syntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
{{works with|rakudo|2015-11-29}}
Neither pretty nor efficient, a simple backtracking solution
 
<syntaxhighlight lang="raku" line>sub MAIN(\N = 8) {
sub collision(@field, $row) {
for ^$row -> $i {
my $distance = @field[$i] - @field[$row];
return True if $distance == any(0, $row - $i, $i - $row);
}
False;
}
sub search(@field, $row) {
return @field if $row == N;
for ^N -> $i {
@field[$row] = $i;
return search(@field, $row + 1) || next
unless collision(@field, $row);
}
()
}
for 0 .. N / 2 {
if search [$_], 1 -> @f {
say @f;
last;
}
}
}</syntaxhighlight>
{{out}}
<pre>[0 4 7 5 2 6 1 3]</pre>
 
=={{header|Rascal}}==
 
<syntaxhighlight lang="rascal">import Prelude;
 
public set[list[int]] Nqueens(int n){
cols = upTill(n);
result = {};
for (vector <- permutations(cols)){
if (n == size({vector[j] + j |j <- cols}) && n == size({vector[j] - j |j <- cols}))
result += vector;}
return result;
}</syntaxhighlight>
 
=={{header|REXX}}==
The logic was borrowed from the Fortran example and modified for speed; &nbsp; the display of the chessboard was
<br>also changed to allow for the aspect ratio of display terminals to make the chessboard appear square.
 
Logic was added to the REXX program to preserve the color for a black square when a queen occupies it.
 
About half of the REXX code involves presentation (and colorization achieved through dithering) of the chessboard and queens.
<syntaxhighlight lang="rexx">/*REXX program places N queens on an NxN chessboard (the eight queens problem). */
parse arg N . /*obtain optional argument from the CL.*/
if N=='' | N=="," then N= 8 /*Not specified: Then use the default.*/
if N<1 then call nOK /*display a message, the board is bad. */
rank= 1; file= 1; #= 0 /*starting rank&file; #≡number queens.*/
@.= 0; pad= left('', 9* (N<18) ) /*define empty board; set indentation.*/
/* [↓] rank&file ≡ chessboard row&cols*/
do while #<N; @.file.rank= 1 /*keep placing queens until we're done.*/
if ok(file, rank) then do; file= 1; #= #+1 /*Queen not being attacked? Then eureka*/
rank= rank+1 /*use another attempt at another rank. */
iterate /*go and try another queen placement. */
end /* [↑] found a good queen placement. */
@.file.rank= 0 /*It isn't safe. So remove this queen.*/
file= file + 1 /*So, try the next (higher) chess file.*/
do while file>N; rank= rank - 1; if rank==0 then call nOK
do j=1 for N; if \@.j.rank then iterate /*¿ocupado?*/
@.j.rank= 0; #= # - 1; file= j + 1; leave
end /*j*/
end /*while file>N*/
end /*while #<N*/
call show /*display the chess board with queens. */
exit 1 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
nOK: say; say "No solution for" N 'queens.'; say; exit 0
/*──────────────────────────────────────────────────────────────────────────────────────*/
ok: parse arg f,r; fp= f + 1; rm= r - 1 /*if return≡0, then queen isn't safe. */
do k=1 for rm; if @.f.k then return 0; end
f= f-1; do k=rm by -1 for rm while f\==0; if @.f.k then return 0; f= f-1; end
f= fp; do k=rm by -1 for rm while f <=N; if @.f.k then return 0; f= f+1; end
return 1 /*1≡queen is safe. */ /* ↑↑↑↑↑↑↑↑ is queen under attack? */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: say 'A solution for ' N " queens:" /*display a title to the terminal.*/
g= substr( copies("╬═══", N) ,2) /*start of all cells on chessboard*/
say; say pad translate('╔'g"╗", '╦', "╬") /*display top rank (of the board).*/
line = '╠'g"╣"; dither= "▓"; ditherQ= '░' /*define a line for cell boundary.*/
bar = '║' ; queen = "Q" /*kinds: horiz., vert., salad.*/
Bqueen = ditherQ || queen || ditherQ /*glyph befitting a black square Q*/
Wqueen = ' 'queen" " /* " " " white " "*/
do rank=1 for N; if rank\==1 then say pad line; _= /*show rank sep. */
do file=1 for N
B = (file + rank) // 2 /*Is the square black ? Then B=1.*/
if B then Qgylph= Bqueen /*if black square, use dithered Q.*/
else Qgylph= Wqueen /* " white " " white " */
if @.file.rank then _= _ || bar || Qgylph /*Has queen? Use a 3─char Q symbol*/
else if B then _=_ || bar || copies(dither,3) /*dithering */
else _=_ || bar || copies( ' ' ,3) /* 3 blanks */
end /*file*/ /* [↑] preserve square─ish board.*/
say pad _ || bar /*show a single rank of the board.*/
end /*rank*/ /*80 cols can view a 19x19 board.*/
say pad translate('╚'g"╝", '╩', "╬"); return /*display the last rank (of board)*/</syntaxhighlight>
{{out|output|text=&nbsp; when using the default of an &nbsp; '''8'''<small>x</small>'''8''' &nbsp; chessboard:}}
<pre>
A solution for 8 queens:
 
╔═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╗
║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║
╚═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╝
</pre>
{{out|output|text=&nbsp; when using &nbsp; '''20'''<small>x</small>'''20''' &nbsp; chessboard with the input of: &nbsp; &nbsp; <tt> 20 </tt>}}
<pre>
A solution for 20 queens:
 
╔═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╗
║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ Q ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║
╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║░Q░║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║▓▓▓║ ║
╚═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╝
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
 
// Bert Mariani 2020-07-17
 
See "Enter value of N : " Give n // Ask User for Size of Board
n = 0 + n
x = 1:n
See "Possible placements: Value as Column of the Row "+ nl
 
nQueen(1,n) //===>>> START
 
See nl+ nl+"Enter to Exit program: " Give m // To Exit CMD window
 
//================================
// Returns true only and only if two queens can be placed in same row or column
 
Func Place(k,i)
 
for j = 1 to k-1
if( x[j] = i OR //two queens in same row
fabs(x[j]-i) = fabs(j-k) ) //two queens in same diagonal
return 0;
ok
next
 
return 1;
 
//================================
 
Func nQueen(k,n)
 
for i = 1 to n
if(place(k,i)) //===>>> Call
x[k] = i
if(k=n)
See nl
for i = 1 to n
See " "+ x[i]
next
else
nQueen(k+1,n) //===>>> RECURSION
ok
ok
next
return
 
//================================
 
</syntaxhighlight>
Output:
<pre>
 
Enter value of N : 8
Possible placements: Value as Column of the Row
 
1 5 8 6 3 7 2 4
1 6 8 3 7 4 2 5
1 7 4 6 8 2 5 3
1 7 5 8 2 4 6 3
2 4 6 8 3 1 7 5
2 5 7 1 3 8 6 4
. . . .
8 2 5 3 1 7 4 6
8 3 1 6 2 5 7 4
8 4 1 3 6 2 7 5
 
Enter to Exit program:
 
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
load "stdlib.ring"
load "guilib.ring"
 
size = 8
newSize = size
count = 0
sizeBoard = 0
Queens = list(size)
Board = []
badBoard = []
 
win = null
nMoves = 0
oldx = 0
oldy = 0
bWidth = 0
bHeight = 0
 
moveX = 550 moveY = 140 ### Open Window on Screen Position
sizeX = 800 sizeY = 800 ### Size of Window
 
Button = null
cmbSize = null
Pink = newlist(size,size)
 
Tiles = newlist(size,size)
TitleMoves = null
lineSize = null
LayoutButtonRow = list(size)
LayoutButtonMain = null
 
WQueen = "WQueen.png"
oPic = new QPixmap("WQueen.png")
oPicGray = new QPixmap("Gray.png")
oPicGreen = new QPixmap("Green.png")
 
nMoves = 0
 
wwidth = 0
wheight = 0
WinWidth = 0
WinHeight = 0
 
C_Spacing = 2
C_ButtonFirstStyle = 'border-radius:1px; color:black; background-color: rgb(229,249,203) ;' ### Square pale
###'border-style: outset; border-width: 2px; border-radius: 2px; border-color: gray;'
 
C_ButtonSecondStyle = 'border-radius:1px; color:black; background-color: rgb(179,200,93); ' ### Square dark
###'border-style: outset; border-width: 2px; border-radius: 2px; border-color: darkGray; '
 
C_ButtonPinkStyle = 'border-radius:1px; color:black; background-color: rgb(255,179,191); ' ### light pink
###'border-style: outset; border-width: 2px; border-radius: 2px; border-color: darkGray; '
 
 
app = new qApp
{
DrawWidget()
newWindow(size)
exec()
}
### FUNCTIONS
 
###============================================================
 
Func DrawWidget()
### Global definition for win
 
win = new qWidget()
{
# Set the Window Icon
setWindowIcon(new qIcon(new qPixmap(WQueen)))
win.setminimumwidth(700)
win.setminimumheight(700)
 
Button = newList(size, size) ### Internal Array with Letters
setWindowTitle('Eight Queens Game')
setStyleSheet('background-color:White')
 
workHeight = win.height()
fontSize = 8 + (workHeight / 100)
move(moveX, moveY)
resize(700,700)
 
wwidth = win.width()
wheight = win.height()
bwidth = wwidth/size
bheight = wheight/size
 
myfilter = new qallevents(win)
myfilter.setResizeEvent("resizeBoard()")
installeventfilter(myfilter)
 
###----------------------------------------------
### Title Top Row - Moves Count
TitleMoves = new qLineEdit(win)
{
setStyleSheet("background-color:rgb(255,255,204)")
setFont(new qFont("Calibri",fontsize,100,0))
setAlignment( Qt_AlignHCenter)
setAlignment( Qt_AlignVCenter)
setText(" Moves: "+ nMoves)
}
 
sizeBtn = new QPushButton(win)
{
setStyleSheet("background-color:rgb(255,255,204)")
setFont(new qFont("Calibri",fontsize,100,0))
setText(" Enter size: ")
}
 
lineSize = new qLineEdit(win)
{
setStyleSheet("background-color:rgb(255,255,204)")
setFont(new qFont("Calibri",fontsize,100,0))
setAlignment( Qt_AlignHCenter)
setAlignment( Qt_AlignVCenter)
setreturnPressedEvent("newBoardSize()")
setText(" 8 ")
}
 
SolveGame = new QPushButton(win)
{
setStyleSheet("background-color:rgb(255,204,229)")
setFont(new qFont("Calibri",fontsize,100,0))
setText(" Solve ")
setClickEvent("solveGame()")
}
 
NewGame = new QPushButton(win)
{
setStyleSheet("background-color:rgb(255,204,229)")
setFont(new qFont("Calibri",fontsize,100,0))
setText(" New ")
setClickEvent("newGame()")
}
 
btnQuit = new QPushButton(win)
{
setStyleSheet("background-color:rgb(255,204,229)")
setFont(new qFont("Calibri",fontsize,100,0))
setText("Exit")
setClickEvent("pQuit()")
}
 
###------------------------------------------------
 
### QVBoxLayout lays out widgets in a vertical column, from top to bottom.
### Vertical
LayoutButtonMain = new QVBoxLayout()
LayoutButtonMain.setSpacing(C_Spacing)
LayoutButtonMain.setContentsMargins(5,5,5,5)
 
### Horizontal - TOP ROW
LayoutTitleRow = new QHBoxLayout()
{
setSpacing(C_Spacing)
setContentsMargins(0,0,0,0)
}
LayoutTitleRow.AddWidget(TitleMoves)
LayoutTitleRow.AddWidget(sizeBtn)
LayoutTitleRow.AddWidget(lineSize)
LayoutTitleRow.AddWidget(SolveGame)
LayoutTitleRow.AddWidget(NewGame)
LayoutTitleRow.AddWidget(btnQuit)
LayoutButtonMain.AddLayout(LayoutTitleRow)
###----------------------------------------------
### BUTTON ROWS
 
LayoutButtonRow = list(size)
### QHBoxLayout lays out widgets in a horizontal row, from left to right
odd = 1
for Row = 1 to size
LayoutButtonRow[Row] = new QHBoxLayout() ### Horizontal
{
setSpacing(C_Spacing)
setContentsmargins(0,0,0,0)
}
for Col = 1 to size
### Create Buttons
 
Button[Row][Col] = new QPushButton(win)
{
if odd % 2 = 0
setStyleSheet(C_ButtonFirstStyle)
odd++
else
setStyleSheet(C_ButtonSecondStyle)
odd++
ok
setClickEvent("UserLeftClick(" + string(Row) +
"," + string(Col) + ")")
setSizePolicy(1,1)
resize(bwidth,bheight)
}
### Widget - Add HORZ BOTTON
LayoutButtonRow[Row].AddWidget(Button[Row][Col])
next
if size % 2 = 0
odd++
ok
 
 
### Layout - Add ROW of BUTTONS
LayoutButtonMain.AddLayout(LayoutButtonRow[Row])
next
###-------------------------------------------------
setLayout(LayoutButtonMain)
 
show()
}
 
return
 
###============================================================
 
func newSize()
nSize = cmbSize.currentText()
nSize = number(nSize)
count = 0
newWindow(nSize)
 
###============================================================
 
func newBoardSize()
nrSize = number(lineSize.text())
newWindow(nrSize)
 
###============================================================
 
func newWindow(newSize)
 
for Row = 1 to size
for Col = 1 to size
Button[Row][Col].delete()
next
next
 
size = newSize
nMoves = 0
TitleMoves.settext(" Moves: 0")
 
Tiles = newlist(size,size)
for Row = 1 to size
for Col = 1 to size
Tiles[Row][Col] = 0
next
next
 
wwidth = win.width()
wheight = win.height()
bwidth = wwidth/size
bheight = wheight/size
 
win.resize(500,500)
 
Button = newlist(size,size)
Pink = newlist(size,size)
 
LayoutButtonRow = list(size)
### QHBoxLayout lays out widgets in a horizontal row, from left to right
odd = 1
for Row = 1 to size
LayoutButtonRow[Row] = new QHBoxLayout() ### Horizontal
{
setSpacing(C_Spacing)
setContentsmargins(0,0,0,0)
}
for Col = 1 to size
### Create Buttons
 
Button[Row][Col] = new QPushButton(win)
{
if odd % 2 = 1
setStyleSheet(C_ButtonFirstStyle)
odd++
else
setStyleSheet(C_ButtonSecondStyle)
odd++
ok
setClickEvent("UserLeftClick(" + string(Row) +
"," + string(Col) + ")")
setSizePolicy(1,1)
resize(bwidth,bheight)
}
### Widget - Add HORZ BOTTON
LayoutButtonRow[Row].AddWidget(Button[Row][Col])
next
if size % 2 = 0
odd++
ok
 
### Layout - Add ROW of BUTTONS
LayoutButtonMain.AddLayout(LayoutButtonRow[Row])
next
###-------------------------------------------------
win.setLayout(LayoutButtonMain)
 
 
###============================================================
 
func solveGame()
 
newWindow(size)
 
for Row = 1 to size
for Col = 1 to size
Tiles[Row][Col] = 0
next
next
 
bwidth = (win.width() -8 ) / size // <<< QT FIX because of Win Title
bheight = (win.height() -32) / size // <<< QT FIX because of Win Title
 
odd = 1
for Row = 1 to size
for Col = 1 to size
if odd % 2 = 1
setButtonImage(Button[Row][Col],oPicGray,bwidth-8,bheight)
odd++
else
setButtonImage(Button[Row][Col],oPicGreen,bwidth-8,bheight)
odd++
ok
next
if size % 2 = 0
odd++
ok
next
 
Queens = list(20)
n = size
count = count + 1
if count = 1
Board = []
queen(1,n)
ok
 
sizeBoard = len(Board)/size
num = random(sizeBoard-1) + 1
see "Solution = " + num + nl
 
for n = (num-1)*size+1 to num*size
x = Board[n][2]
y = Board[n][1]
Tiles[x][y] = 1
setButtonImage(Button[x][y],oPic,bwidth-8,bheight)
 
next
 
###============================================================
func prn(n)
 
for i = 1 to n
for j = 1 to n
if Queens[i] = j
add(Board,[i,j])
ok
next
next
 
###============================================================
 
func place(row,column)
 
for i = 1 to row-1
if Queens[i]=column
return 0
else
if fabs(Queens[i]-column) = fabs(i-row)
return 0
ok
ok
next
return 1
 
###============================================================
func queen(row,n)
 
for column = 1 to n
if place(row,column)
Queens[row] = column
if row = n
prn(n)
else
queen(row+1,n)
ok
ok
next
 
###============================================================
 
func newGame
 
newWindow(size)
return
 
###============================================================
 
func canPlace Row,Col
 
badBoard = []
add(badBoard,[Row,Col])
bwidth = (win.width() -8 ) / size // <<< QT FIX because of Win Title
bheight = (win.height() -32) / size // <<< QT FIX because of Win Title
cp1 = 1
for n = 1 to size
if Row < 9
if n != Col and Tiles[Row][n] = 1
cp1 = 0
add(badBoard,[Row,n])
exit
ok
ok
next
 
cp2 = 1
for n = 1 to size
if Col < 9
if n != Row and Tiles[n][Col] = 1
cp2 = 0
add(badBoard,[n,Col])
exit
ok
ok
next
 
cp3 = 1
for x = 1 to size
if Row + x < size + 1 and Col - x > 0
if Tiles[Row+x][Col-x] = 1
cp3 = 0
add(badBoard,[Row+x,Col-x])
exit
ok
ok
next
 
cp4 = 1
for x = 1 to size
if Row - x > 0 and Col + x < size + 1
if Tiles[Row-x][Col+x] = 1
cp4 = 0
add(badBoard,[Row-x,Col+x])
exit
ok
ok
next
 
cp5 = 1
for x = 1 to size
if Row + x < size + 1 and Col + x < size + 1
if Tiles[Row+x][Col+x] = 1
cp5 = 0
add(badBoard,[Row+x,Col+x])
exit
ok
ok
next
 
cp6 = 1
for x = 1 to size
if Row - x > 0 and Col - x > 0
if Tiles[Row-x][Col-x] = 1
cp6 = 0
add(badBoard,[Row-x,Col-x])
exit
ok
ok
next
 
cp7 = cp1 and cp2 and cp3 and cp4 and cp5 and cp6
 
return cp7
 
###============================================================
 
func resizeBoard
 
bwidth = (win.width() - 8) / size
bheight = (win.height() - 32) / size
 
for Row = 1 to size
for Col = 1 to size
if Tiles[Row][Col] = 1
setButtonImage(Button[Row][Col],oPic,bwidth - 8,bheight - 8)
ok
next
next
 
###============================================================
 
func UserLeftClick Row,Col
 
sleep(0.3)
Tiles[Row][Col] = 1
 
bWidthHeight()
 
bool = (Row = oldx) and (Col = oldy)
 
cp8 = canPlace(Row,Col)
 
if Pink[Row][Col] = 1
Pink[Row][Col] = 0
Tiles[Row][Col] = 0
if Row % 2 = 1 and Col % 2 = 1
Button[Row][Col].setStyleSheet(C_ButtonFirstStyle)
setButtonImage(Button[Row][Col],oPicGray,bwidth-8,bheight-8)
ok
if Row % 2 = 0 and Col % 2 = 0
Button[Row][Col].setStyleSheet(C_ButtonFirstStyle)
setButtonImage(Button[Row][Col],oPicGray,bwidth-8,bheight-8)
ok
if Row % 2 = 1 and Col % 2 = 0
Button[Row][Col].setStyleSheet(C_ButtonSecondStyle)
setButtonImage(Button[Row][Col],oPicGreen,bwidth-8,bheight-8)
ok
if Row % 2 = 0 and Col % 2 = 1
Button[Row][Col].setStyleSheet(C_ButtonSecondStyle)
setButtonImage(Button[Row][Col],oPicGreen,bwidth-8,bheight-8)
ok
checkBoard()
return
ok
 
if cp8 = 1 and bool = 0
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight-8)
Tiles[Row][Col] = 1
nMoves = nMoves + 1
oldx = Row
oldy = Col
TitleMoves.settext(" Moves: " + nMoves)
gameOver()
ok
if cp8 = 1 and bool = 1
if Row % 2 = 1 and Col % 2 = 1
setButtonImage(Button[Row][Col],oPicGray,bwidth-8,bheight-8)
ok
if Row % 2 = 0 and Col % 2 = 0
setButtonImage(Button[Row][Col],oPicGray,bwidth-8,bheight-8)
ok
if Row % 2 = 1 and Col % 2 = 0
setButtonImage(Button[Row][Col],oPicGreen,bwidth-8,bheight-8)
ok
if Row % 2 = 0 and Col % 2 = 1
setButtonImage(Button[Row][Col],oPicGreen,bwidth-8,bheight-8)
ok
Tiles[Row][Col] = 1
ok
 
for Row = 1 to size
for Col = 1 to size
if Tiles[Row][Col] = 1
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight-8)
ok
next
next
 
if cp8 = 0
pBadCell(Row,Col)
return
ok
 
###============================================================
 
func checkBoard()
 
for Row = 1 to size
for Col = 1 to size
if Pink[Row][Col] = 1
cp9 = canPlace(Row,Col)
if cp9 = 0
Button[Row][Col].setStyleSheet(C_ButtonPinkStyle)
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight)
else
if Row % 2 = 1 and Col % 2 = 1
Button[Row][Col].setStyleSheet(C_ButtonFirstStyle)
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight-8)
ok
if Row % 2 = 0 and Col % 2 = 0
Button[Row][Col].setStyleSheet(C_ButtonFirstStyle)
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight-8)
ok
if Row % 2 = 1 and Col % 2 = 0
Button[Row][Col].setStyleSheet(C_ButtonSecondStyle)
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight-8)
ok
if Row % 2 = 0 and Col % 2 = 1
Button[Row][Col].setStyleSheet(C_ButtonSecondStyle)
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight-8)
ok
ok
ok
next
next
 
###============================================================
 
func pBadCell(Row,Col)
 
for n = 1 to len(badBoard)
Row = badBoard[n][1]
Col = badBoard[n][2]
Pink[Row][Col] = 1
Button[Row][Col].setStyleSheet(C_ButtonPinkStyle)
setButtonImage(Button[Row][Col],oPic,bwidth-8,bheight)
next
 
###============================================================
 
func setButtonImage oBtn,oPixmap,width,height
oBtn { setIcon(new qicon(oPixmap.scaled(width(),height(),0,0)))
setIconSize(new QSize(width,height))
}
 
###============================================================
 
func bWidthHeight()
 
bWidth = (win.width() -8 ) / size
bHeight = (win.height() -32) / size
 
###============================================================
 
func msgBox cText
mb = new qMessageBox(win) {
setWindowTitle('Eight Queens')
setText(cText)
setstandardbuttons(QMessageBox_OK)
result = exec()
}
 
###============================================================
 
func pQuit()
win.close()
 
###============================================================
 
func gameOver
 
total = 0
for Row = 1 to size
for Col = 1 to size
if Tiles[Row][Col] = 1
total = total + 1
ok
next
next
 
if total = size
for Row = 1 to size
for Col = 1 to size
Button[Row][Col].setenabled(false)
next
next
msgBox("You Win!")
ok
 
###============================================================
</syntaxhighlight>
[https://www.mediafire.com/file/53bxu7kpuc4tlx5/Images.zip/file Necessary images]
 
=={{header|Ruby}}==
This implements the heuristics found on the wikipedia page to return just one solution
<langsyntaxhighlight lang="ruby"># 1. Divide n by 12. Remember the remainder (n is 8 for the eight queens
# puzzle).
# 2. Write a list of the even numbers from 2 to n in order.
Line 453 ⟶ 14,464:
# list, place the second-column queen in the row with the second number in
# the list, etc.
 
 
def n_queens(n)
Line 461 ⟶ 14,473:
return ""
end
 
evens = (2..n).step(2).to_a
odds = (1..n).step(2).to_a
 
rem = n % 12 # (1)
nums = evens # (2)
 
nums.push(nums.shift)rotate if rem == 3 or rem == 9 # (3)
 
# (4)
if rem == 8
odds = odds.each_slice(2).injectflat_map([]&:reverse) {|ary, (a,b)| ary += [b,a]}
end
nums.concat(odds)
 
# (5)
if rem == 2
nums[nums.index(1)], nums[nums.index(3)] = nums[nums.index(3)], nums[nums.index(1)]
idx = []
[1,3,5].eachnums {|i| idx[i] =<< nums.indexdelete(i5)}
nums[idx[1]], nums[idx[3]] = nums[idx[3]], nums[idx[1]]
nums.slice!(idx[5])
nums.push(5)
end
 
# (6)
if rem == 3 or rem == 9
nums << nums.delete(1)
[1,3].each do |i|
nums << nums.slice!delete( nums.index(i) 3)
nums.push(i)
end
end
 
# (7)
nums.map do |q|
board = Array.new(n) {Array.new(n) {"."}}
a = Array.new(n,".")
n.times {|i| board[i][nums[i] - 1] = "Q"}
a[q-1] = "Q"
board.inject("") {|str, row| str << row.join(" ") << "\n"}
a*(" ")
end
end
(1 .. 15).each {|n| puts "n=#{n}"; puts n_queens(n); puts}</syntaxhighlight>
 
{{out}}
(1 .. 15).each {|n| puts "n=#{n}"; puts n_queens(n); puts}</lang>
 
Output:
<pre style="height:40ex;overflow:scroll">n=1
Q
Line 650 ⟶ 14,659:
Q . . . . . . . . . . . . . .
. . Q . . . . . . . . . . . .</pre>
 
===Alternate solution===
If there is not specification, it outputs all solutions.
<syntaxhighlight lang="ruby">class Queen
attr_reader :count
def initialize(num=8, out=true)
@num = num
@out = out
@row = *0...@num
@frame = "+-" + "--" * @num + "+"
@count = 0
add = Array.new(2 * @num - 1, true) # \ direction check
sub = Array.new(2 * @num - 1, true) # / direction check
solve([], add, sub)
end
private
def solve(row, add, sub)
y = row.size
if y == @num
print_out(row) if @out
@count += 1
else
(@row-row).each do |x|
next unless add[x+y] and sub[x-y]
add[x+y] = sub[x-y] = false
solve(row+[x], add, sub)
add[x+y] = sub[x-y] = true
end
end
end
def print_out(row)
puts @frame
row.each do |i|
line = @num.times.map {|j| j==i ? "Q " : ". "}.join
puts "| #{line}|"
end
puts @frame
end
end</syntaxhighlight>
 
'''Example:'''
<syntaxhighlight lang="ruby">(1..6).each do |n|
puzzle = Queen.new(n)
puts " #{n} Queen : #{puzzle.count}"
end
 
(7..12).each do |n|
puzzle = Queen.new(n, false) # do not display
puts " #{n} Queen : #{puzzle.count}"
end</syntaxhighlight>
 
{{out}}
<pre style="height: 80ex; overflow: scroll">
+---+
| Q |
+---+
1 Queen : 1
2 Queen : 0
3 Queen : 0
+---------+
| . Q . . |
| . . . Q |
| Q . . . |
| . . Q . |
+---------+
+---------+
| . . Q . |
| Q . . . |
| . . . Q |
| . Q . . |
+---------+
4 Queen : 2
+-----------+
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
+-----------+
+-----------+
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
+-----------+
+-----------+
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
+-----------+
+-----------+
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
+-----------+
+-----------+
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
+-----------+
+-----------+
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
+-----------+
+-----------+
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
+-----------+
+-----------+
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
+-----------+
+-----------+
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
+-----------+
+-----------+
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
+-----------+
5 Queen : 10
+-------------+
| . Q . . . . |
| . . . Q . . |
| . . . . . Q |
| Q . . . . . |
| . . Q . . . |
| . . . . Q . |
+-------------+
+-------------+
| . . Q . . . |
| . . . . . Q |
| . Q . . . . |
| . . . . Q . |
| Q . . . . . |
| . . . Q . . |
+-------------+
+-------------+
| . . . Q . . |
| Q . . . . . |
| . . . . Q . |
| . Q . . . . |
| . . . . . Q |
| . . Q . . . |
+-------------+
+-------------+
| . . . . Q . |
| . . Q . . . |
| Q . . . . . |
| . . . . . Q |
| . . . Q . . |
| . Q . . . . |
+-------------+
6 Queen : 4
7 Queen : 40
8 Queen : 92
9 Queen : 352
10 Queen : 724
11 Queen : 2680
12 Queen : 14200
</pre>
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">[loop]
input "How many queens (N>=4)";n
if n < 4 then
print "Must be greater than 4"
goto [loop]
end if
 
dim plot$(100,100)
dim q(n+20)
dim e(n+20)
dim o(n+20)
r=n mod 6
if r<>2 and r<>3 then
gosub [samp]
goto [shoBoard]
end if
for i=1 to int(n/2)
e(i) = 2 * i
next
for i=1 to int((n/2)+.5)
o(i) = 2 *i-1
next
if r = 2 then gosub [edt2]
if r = 3 then gosub [edt3]
s = 1
for i=1 to n
if e(i)>0 then
q(s) = e(i)
s = s+1
end if
next
for i=1 to n
if o(i) > 0 then
q(s) = o(i)
s = s + 1
end if
next
' print board
[shoBoard]
cls
for i = 1 to n
plot$(i,26-q(i)) = "*"
plot$(i,24-n) = chr$(96+i)
plot$(n+1,26-i) = str$(i)
next i
for ii = 1 to 100
for jj = 1 to 100
print left$(plot$(jj,ii)+" ",1);
next jj
print
next ii
end
 
' the simple case
[samp]
p = 1
for i = 1 to n
if i mod 2=0 then
q(p) = i
p = p + 1
end if
next i
for i = 1 to n
if i mod 2 then
q(p) = i
p = p + 1
end if
next
return
' edit list when remainder is 2
[edt2]
for i=1 to n
if o(i) = 3 then
o(i) = 1
else
if o(i)=1 then o(i) = 3
end if
if o(i) = 5 then
o(i)= o(i) -1
else
if o(i) = 0 then
o(i) = 5
return
end if
end if
next
 
' edit list when remainder is 3
[edt3]
for i = 1 to n
if e(i) = 2 then
e(i) = e(i)-1
else
if e(i) = 0 then
e(i) = 2
goto [more]
end if
end if
next i
' edit list some more
[more]
for i = 1 to n
if (o(i)=1 or o(i)=3) then
o(i) = o(i)-1
else
if o(i) = 0 then
o(i) = 1
o(i+1) = 3
return
end if
end if
next</syntaxhighlight>
<pre>abcdefgh
* 8
*7
* 6
5
* * 4
* 3
* 2
* 1</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">const N: usize = 8;
 
fn try(mut board: &mut [[bool; N]; N], row: usize, mut count: &mut i64) {
if row == N {
*count += 1;
for r in board.iter() {
println!("{}", r.iter().map(|&x| if x {"x"} else {"."}.to_string()).collect::<Vec<String>>().join(" "))
}
println!("");
return
}
for i in 0..N {
let mut ok: bool = true;
for j in 0..row {
if board[j][i]
|| i+j >= row && board[j][i+j-row]
|| i+row < N+j && board[j][i+row-j]
{ ok = false }
}
if ok {
board[row][i] = true;
try(&mut board, row+1, &mut count);
board[row][i] = false;
}
}
}
 
fn main() {
let mut board: [[bool; N]; N] = [[false; N]; N];
let mut count: i64 = 0;
try (&mut board, 0, &mut count);
println!("Found {} solutions", count)
}</syntaxhighlight>
 
===Using Iterators===
Solution to the puzzle using an iterator that yields the 92 solutions for 8 queens.
 
<syntaxhighlight lang="rust">
use std::collections::LinkedList;
use std::iter::IntoIterator;
 
fn main() {
for (n, s) in NQueens::new(8).enumerate() {
println!("Solution #{}:\n{}\n", n + 1, s.to_string());
}
}
 
fn permutations<'a, T, I>(collection: I) -> Box<Iterator<dyn Item=LinkedList<T>> + 'a>
where I: 'a + IntoIterator<Item=T> + Clone,
T: 'a + PartialEq + Copy + Clone {
if collection.clone().into_iter().count() == 0 {
Box::new(vec![LinkedList::new()].into_iter())
}
else {
Box::new(
collection.clone().into_iter().flat_map(move |i| {
permutations(collection.clone().into_iter()
.filter(move |&i0| i != i0)
.collect::<Vec<_>>())
.map(move |mut l| {l.push_front(i); l})
})
)
}
}
 
pub struct NQueens {
iterator: Box<Iterator<dyn Item=NQueensSolution>>
}
 
impl NQueens {
pub fn new(n: u32) -> NQueens {
NQueens {
iterator: Box::new(permutations(0..n)
.filter(|vec| {
let iter = vec.iter().enumerate();
iter.clone().all(|(col, &row)| {
iter.clone().filter(|&(c,_)| c != col)
.all(|(ocol, &orow)| {
col as i32 - row as i32 !=
ocol as i32 - orow as i32 &&
col as u32 + row != ocol as u32 + orow
})
})
})
.map(|vec| NQueensSolution(vec))
)
}
}
}
 
impl Iterator for NQueens {
type Item = NQueensSolution;
fn next(&mut self) -> Option<NQueensSolution> {
self.iterator.next()
}
}
 
pub struct NQueensSolution(LinkedList<u32>);
 
impl ToString for NQueensSolution {
fn to_string(&self) -> String {
let mut str = String::new();
for &row in self.0.iter() {
for r in 0..self.0.len() as u32 {
if r == row {
str.push_str("Q ");
} else {
str.push_str("- ");
}
}
str.push('\n');
}
str
}
}
</syntaxhighlight>
 
===Permutation with Filtering===
 
Using Itertools and arrays.
 
{{trans|D}}
 
<syntaxhighlight lang="rust">
extern crate itertools;
 
use itertools::Itertools;
 
fn main() {
const N: usize = 8;
 
let permutations = (0..N).permutations(N);
let solution_count = permutations
.filter(|p| {
let mut diag1 = [false; 2 * N - 1];
let mut diag2 = [false; 2 * N - 1];
for (i, &row) in p.iter().enumerate() {
if diag1[row + i] || diag2[N - 1 + row - i] {
return false; // Queens mutual threat
}
diag1[row + i] = true;
diag2[N - 1 + row - i] = true;
}
true // No Queens mutual threat
})
.count();
 
println!("{}", solution_count);
}
</syntaxhighlight>
 
=={{header|SAS}}==
<syntaxhighlight lang="sas">/* Store all 92 permutations in a SAS dataset. Translation of Fortran 77 */
data queens;
array a{8} p1-p8;
array s{8};
array u{30};
n=8;
do i=1 to n;
a(i)=i;
end;
do i=1 to 4*n-2;
u(i)=0;
end;
m=0;
i=1;
r=2*n-1;
goto L40;
L30:
s(i)=j;
u(p)=1;
u(q+r)=1;
i=i+1;
L40:
if i>n then goto L80;
j=i;
L50:
z=a(i);
y=a(j);
p=i-y+n;
q=i+y-1;
a(i)=y;
a(j)=z;
if u(p)=0 and u(q+r)=0 then goto L30;
L60:
j=j+1;
if j<=n then goto L50;
L70:
j=j-1;
if j=i then goto L90;
z=a(i);
a(i)=a(j);
a(j)=z;
goto L70;
L80:
m=m+1;
output;
L90:
i=i-1;
if i=0 then goto L100;
p=i-a(i)+n;
q=i+a(i)-1;
j=s(i);
u(p)=0;
u(q+r)=0;
goto L60;
L100:
put n m;
keep p1-p8;
run;</syntaxhighlight>
 
=={{header|Scala}}==
The algorithm below is lazy. It returns an iterator, and each
solution is computed as you ask for the next element of the
iterator. If you ask for one element, it will only compute
one solution.
 
Extends a <code>Tuple2[T,T]</code> (also represented as <code>(T, T)</code>) using an enriched implicit class to define check that positions are safe or threatened.
The test for legal moves is a bit redundant, as the algorithm
can never generate two positions in the same row.
 
Lazily generates permutations with an <code>Iterator</code>.
<lang scala>case class Pos(row: Int, column: Int) {
 
def sameRow(p: Pos) = row == p.row
<syntaxhighlight lang="scala">
def sameColumn(p: Pos) = column == p.column
object NQueens {
def sameDiag(p: Pos) = (p.column - column).abs == (p.row - row).abs
 
def illegal(p: Pos) = sameRow(p) || sameColumn(p) || sameDiag(p)
private implicit class RichPair[T](
def legal(p: Pos) = !illegal(p)
pair: (T,T))(
implicit num: Numeric[T]
) {
import num._
 
def safe(x: T, y: T): Boolean =
pair._1 - pair._2 != abs(x - y)
}
def solve(n: Int): Iterator[Seq[Int]] = {
(0 to n-1)
.permutations
.filter { v =>
(0 to n-1).forall { y =>
(y+1 to n-1).forall { x =>
(x,y).safe(v(x),v(y))
}
}
}
}
 
def main(args: Array[String]): Unit = {
val n = args.headOption.getOrElse("8").toInt
val (solns1, solns2) = solve(n).duplicate
solns1
.zipWithIndex
.foreach { case (soln, i) =>
Console.out.println(s"Solution #${i+1}")
output(n)(soln)
}
val n_solns = solns2.size
if (n_solns == 1) {
Console.out.println("Found 1 solution")
} else {
Console.out.println(s"Found $n_solns solutions")
}
}
 
def output(n: Int)(board: Seq[Int]): Unit = {
board.foreach { queen =>
val row =
"_|" * queen + "Q" + "|_" * (n-queen-1)
Console.out.println(row)
}
}
}
</syntaxhighlight>
 
<pre>
def rowSet(size: Int, row: Int) = Iterator.tabulate(size)(column => Pos(row, column))
scala> NQueens.main(Array("8"))
Solution #1
Q|_|_|_|_|_|_|_
_|_|_|_|Q|_|_|_
_|_|_|_|_|_|_|Q
_|_|_|_|_|Q|_|_
_|_|Q|_|_|_|_|_
_|_|_|_|_|_|Q|_
_|Q|_|_|_|_|_|_
_|_|_|Q|_|_|_|_
 
Solution #2
def expand(solutions: Iterator[List[Pos]], size: Int, row: Int) =
Q|_|_|_|_|_|_|_
for {
_|_|_|_|_|Q|_|_
solution <- solutions
_|_|_|_|_|_|_|Q
pos <- rowSet(size, row)
_|_|Q|_|_|_|_|_
if solution forall (_ legal pos)
_|_|_|_|_|_|Q|_
} yield pos :: solution
_|_|_|Q|_|_|_|_
_|Q|_|_|_|_|_|_
_|_|_|_|Q|_|_|_
...
Found 92 solutions
</pre>
 
=={{header|Scheme}}==
def seed(size: Int) = rowSet(size, 0) map (sol => List(sol))
 
This is a simple breadth-first technique to retrieve all solutions.
def solve(size: Int) = (1 until size).foldLeft(seed(size)) (expand(_, size, _))</lang>
 
<syntaxhighlight lang="scheme">
(import (scheme base)
(scheme write)
(srfi 1))
 
;; return list of solutions to n-queens problem
(define (n-queens n) ; breadth-first solution
(define (place-initial-row) ; puts a queen on each column of row 0
(list-tabulate n (lambda (col) (list (cons 0 col)))))
(define (place-on-row soln-so-far row)
(define (invalid? col)
(any (lambda (posn)
(or (= col (cdr posn)) ; on same column
(= (abs (- row (car posn))) ; on same diagonal
(abs (- col (cdr posn))))))
soln-so-far))
;
(do ((col 0 (+ 1 col))
(res '() (if (invalid? col)
res
(cons (cons (cons row col) soln-so-far)
res))))
((= col n) res)))
;
(do ((res (place-initial-row)
(apply append
(map (lambda (soln-so-far) (place-on-row soln-so-far row))
res)))
(row 1 (+ 1 row)))
((= row n) res)))
 
;; display solutions in 2-d array form
(define (pretty-print solutions n)
(define (posn->index posn)
(+ (* n (cdr posn))
(car posn)))
(define (pp solution)
(let ((board (make-vector (square n) ".")))
(for-each (lambda (queen) (vector-set! board
(posn->index queen)
"Q"))
solution)
(let loop ((row 0)
(col 0))
(cond ((= row n)
(newline))
((= col n)
(newline)
(loop (+ 1 row) 0))
(else
(display (vector-ref board (posn->index (cons row col))))
(loop row (+ 1 col)))))))
;
(display (string-append "Found "
(number->string (length solutions))
" solutions for n="
(number->string n)
"\n\n"))
(for-each pp solutions))
 
;; create table of number of solutions
(do ((n 1 (+ 1 n)))
((> n 10) )
(display n)
(display " ")
(display (length (n-queens n)))
(newline))
 
;; show some examples
(pretty-print (n-queens 1) 1)
(pretty-print (n-queens 2) 2)
(pretty-print (n-queens 3) 3)
(pretty-print (n-queens 4) 4)
(pretty-print (n-queens 5) 5)
(pretty-print (n-queens 8) 8)
</syntaxhighlight>
 
{{out}}
<pre>
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
Found 1 solutions for n=1
 
Q
 
Found 0 solutions for n=2
 
Found 0 solutions for n=3
 
Found 2 solutions for n=4
 
.Q..
...Q
Q...
..Q.
 
..Q.
Q...
...Q
.Q..
 
Found 10 solutions for n=5
 
Q....
...Q.
.Q...
....Q
..Q..
 
Q....
..Q..
....Q
.Q...
...Q.
 
[[ etc ]]
Found 92 solutions for n=8
 
Q.......
......Q.
....Q...
.......Q
.Q......
...Q....
.....Q..
..Q.....
 
Q.......
......Q.
...Q....
.....Q..
.......Q
.Q......
....Q...
..Q.....
 
[[ etc ]]
</pre>
 
=={{header|Scilab}}==
Naive brute-force search.
<syntaxhighlight lang="scilab">//Length of board side
Board_size = 8;
 
function flag_out = no_attack(side, board, pos)
//Evaluates (pos(1),pos(2)) in board if it's not on any queen attacking range
//side (scalar): board's side length
//board (sidexside matrix): matrix of 0s and 1s representing queens on a board
//pos (1x2 matrix): postition on board to be evaluated
//flag_out (bool): %T if position is available, and %F otherwise
//Counting queens on rows and columns
row_col = sum(board(pos(1),:)) + sum(board(:,pos(2)));
//Counting queens on first diagonal
diag_1 = sum(...
diag(board, 0 +...
(pos(2)>pos(1))*(pos(2)-pos(1)) +...
(pos(1)>pos(2))*(pos(2)-pos(1))...
)...
);
//Counting queens on second diagonal
a = pos(1) + pos(2);
if a<=side+1 then
rows = [1:a-1]
cols = a - rows;
else
d = 2*(side+1)-a-1;
rows = [side:-1:side-d+1]
cols = a - rows;
end
 
diag_2 = 0;
for i = 1:length(rows)
diag_2 = diag_2 + board(rows(i),cols(i));
end
//Check if there's any queen
flag_out = ( ~(row_col | diag_1 | diag_2) );
endfunction
 
//Solution counter
Sol_count = 0;
//"Soltion found" flag
Sol_found = %F;
//Empty board
Board = zeros(Board_size,Board_size);
//Matrix for backtracking
Queens= zeros(Board_size,2);
 
//Queens counter
N_queens = Board_size;
 
//Row and column counters
i = 1; j = 1;
 
//Start counting time
tic();
 
//Begin search
while i <= Board_size
while j <= Board_size
//Availability flag: check position (i,j)
flag = %F;
if (0 < i & 0 < j) & (i <= Board_size & j <= Board_size) then
flag = no_attack(Board_size,Board,[i j]);
end
//Reset solution flag
Sol_found = %F;
if flag then
//Put a queen on the board if position is available
Board(i,j) = 1;
//Update number of remaining queens
N_queens = N_queens - 1;
//Keep track of queens positions
Queens(Board_size - N_queens,:) = [i j];
//Jump to next row end of line is reached
if i+1<=Board_size
i = i + 1;
end
//Start over from the begining of new line
j = 0;
//Count and flag a solution if all queens have
//been placed on the board
if N_queens == 0 then
Sol_count = Sol_count + 1;
Sol_found = %T;
break
end
end
//Increment column number
j = j + 1;
end
//Increment row number and start from first column
if ~Sol_found then
i = i + 1;
j = 1;
//Limiting placement of the first queen to the first row
//Stop searching solutions if columns of first row
//have been tested
if i == 2 & j == 1 & sum(Board) == 0 then
break
end
end
//Backtracking: if (i,j) reaches the and of the board
//and there are queens left to be placed on it
if ~Sol_found & i == Board_size + 1 & j == 1 then
ind = Board_size - N_queens;
if ind > 0 then
//Recover last queen's position
i = Queens(ind,1);
j = Queens(ind,2);
//Remove it from the board and from the counter
Board(i,j) = 0;
Queens(ind,:) = [0 0];
N_queens = N_queens + 1;
//Move to next column
j = j + 1;
end
end
end
 
//Printing result on console
disp("There are "+string(Sol_count)+" solutions for a "+...
string(Board_size)+"x"+string(Board_size)+" board.");
//Time elapsed
disp("Time: "+string(toc())+"s.");</syntaxhighlight>
 
{{out}}
 
<pre> There are 92 solutions for a 8x8 board.
 
Time: 58.705327s.</pre>
 
=={{header|Seed7}}==
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
var array integer: board is 8 times 0;
var integer: solutionNum is 0;
 
const func boolean: safe (in integer: y) is func
result
var boolean: safe is TRUE;
local
var integer: i is 1;
begin
while i < y and safe do
safe := board[y - i] <> board[y] and
board[y - i] <> board[y] - i and
board[y - i] <> board[y] + i;
incr(i);
end while;
end func;
 
const proc: putBoard is func
local
var integer: y is 0;
begin
incr(solutionNum);
writeln;
writeln("Solution " <& solutionNum);
for y range 1 to 8 do
writeln("|_" mult pred(board[y]) <& "|Q" <& "|_" mult (8 - board[y]) <& "|");
end for;
end func;
 
const proc: main is func
local
var integer: y is 1;
begin
while y >= 1 do
repeat
incr(board[y]);
until board[y] > 8 or safe(y);
if board[y] <= 8 then
if y < 8 then
incr(y);
board[y] := 0;
else
putBoard;
end if;
else
decr(y);
end if;
end while;
end func;</syntaxhighlight>
 
=={{header|Sidef}}==
{{trans|Raku}}
<syntaxhighlight lang="ruby">func N_queens_solution(N = 8) {
 
func collision(field, row) {
for i in (^row) {
var distance = (field[i] - field[row])
distance ~~ [0, row-i, i-row] && return true
}
return false
}
 
func search(field, row) {
row == N && return field
for i in (^N) {
field[row] = i
if (!collision(field, row)) {
return (__FUNC__(field, row+1) || next)
}
}
return []
}
 
for i in (0 .. N>>1) {
if (var r = search([i], 1)) {
return r
}
}
}
 
for n in (1..15) {
say "#{'%2d' % n}: #{N_queens_solution(n) || 'No solution'}"
}</syntaxhighlight>
{{out}}
<pre>
1: [0]
2: No solution
3: No solution
4: [1, 3, 0, 2]
5: [0, 2, 4, 1, 3]
6: [1, 3, 5, 0, 2, 4]
7: [0, 2, 4, 6, 1, 3, 5]
8: [0, 4, 7, 5, 2, 6, 1, 3]
9: [0, 2, 5, 7, 1, 3, 8, 6, 4]
10: [0, 2, 5, 7, 9, 4, 8, 1, 3, 6]
11: [0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9]
12: [0, 2, 4, 7, 9, 11, 5, 10, 1, 6, 8, 3]
13: [0, 2, 4, 1, 8, 11, 9, 12, 3, 5, 7, 10, 6]
14: [0, 2, 4, 6, 11, 9, 12, 3, 13, 8, 1, 5, 7, 10]
15: [0, 2, 4, 1, 9, 11, 13, 3, 12, 8, 5, 14, 6, 10, 7]
</pre>
 
=={{header|SNOBOL4}}==
<syntaxhighlight lang="snobol4">
* N queens problem
* Set N to the desired number. The program prints out all solution boards.
N = 5
NM1 = N - 1; NP1 = N + 1; NSZ = N * NP1; &STLIMIT = 10 ** 9; &ANCHOR = 1
DEFINE('SOLVE(B)I')
* This pattern tests if the first queen attacks any of the others:
TEST = BREAK('Q') 'Q' (ARBNO(LEN(N) '-') LEN(N) 'Q'
+ | ARBNO(LEN(NP1) '-') LEN(NP1) 'Q'
+ | ARBNO(LEN(NM1) '-') LEN(NM1) 'Q')
P = LEN(NM1) . X LEN(1); L = 'Q' DUPL('-',NM1) ' '
SOLVE() :(END)
SOLVE EQ(SIZE(B),NSZ) :S(PRINT)
* Add another row with a queen:
B = L B
LOOP I = LT(I,N) I + 1 :F(RETURN)
B TEST :S(NEXT)
SOLVE(B)
* Try queen in next square:
NEXT B P = '-' X :(LOOP)
PRINT SOLUTION = SOLUTION + 1
OUTPUT = 'Solution number ' SOLUTION ' is:'
PRTLOOP B LEN(NP1) . OUTPUT = :S(PRTLOOP)F(RETURN)
END
</syntaxhighlight>
 
=={{header|Sparkling}}==
This is somewhat a transliteration of the "shortened" C++ code above.
 
<syntaxhighlight lang="sparkling">let print_table = function (pos) {
pos.foreach(function (_, i) {
stdout.printf(" %c", 'a' + i);
});
 
stdout.write("\n");
 
pos.foreach(function (col, row) {
stdout.printf("%d", row + 1);
stdout.printf("%s #\n", range(col).reduce("", function (s, t) {
return s .. " ";
}));
});
 
stdout.write("\n\n");
};
 
let threatens = function (row_a, col_a, row_b, col_b) {
return row_a == row_b
or col_a == col_b
or abs(row_a - row_b) == abs(col_a - col_b);
};
 
let good = function(pos, end_idx) {
return pos.all(function (col_a, row_a) {
return range(row_a + 1, end_idx).all(function (row_b) {
let col_b = pos[row_b];
return not threatens(row_a, col_a, row_b, col_b);
});
});
};
 
// Returns number of solutions
let n_queens = function (pos, index) {
if index >= pos.length {
if good(pos, index) {
print_table(pos);
return 1;
}
 
return 0;
}
 
if not good(pos, index) {
return 0;
}
 
return pos.map(function (_, col) {
pos[index] = col;
return n_queens(pos, index + 1);
}).reduce(0, function (a, b) { return a + b; });
};
 
stdout.printf("%d solutions\n", n_queens(range(8), 0));</syntaxhighlight>
 
=={{header|SQL}}==
 
This implementation, which solves the problem for n=8, makes use of Common Table Expressions and has been tested with SQLite (>=3.8.3) and Postgres (please note the related comment in the code). It might be compatible with other SQL dialects as well. A gist with the SQL file and a Python script that runs it using SQLite is available on Github: https://gist.github.com/adewes/5e5397b693eb50e67f07
 
<syntaxhighlight lang="sql">
WITH RECURSIVE
positions(i) as (
VALUES(0)
UNION SELECT ALL
i+1 FROM positions WHERE i < 63
),
solutions(board, n_queens) AS (
SELECT '----------------------------------------------------------------', cast(0 AS bigint)
FROM positions
UNION
SELECT
substr(board, 1, i) || '*' || substr(board, i+2),n_queens + 1 as n_queens
FROM positions AS ps, solutions
WHERE n_queens < 8
AND substr(board,1,i) != '*'
AND NOT EXISTS (
SELECT 1 FROM positions WHERE
substr(board,i+1,1) = '*' AND
(
i % 8 = ps.i %8 OR
cast(i / 8 AS INT) = cast(ps.i / 8 AS INT) OR
cast(i / 8 AS INT) + (i % 8) = cast(ps.i / 8 AS INT) + (ps.i % 8) OR
cast(i / 8 AS INT) - (i % 8) = cast(ps.i / 8 AS INT) - (ps.i % 8)
)
LIMIT 1
)
ORDER BY n_queens DESC -- remove this when using Postgres (they don't support ORDER BY in CTEs)
)
SELECT board,n_queens FROM solutions WHERE n_queens = 8;
 
</syntaxhighlight>
 
=={{header|SQL PL}}==
{{works with|Db2 LUW}} version 9.7 or higher.
With SQL PL:
<syntaxhighlight lang="sql pl">
-- A column of a matrix.
CREATE TYPE INTEGER_ARRAY AS INTEGER ARRAY[]@
-- The whole matrix of any size.
CREATE TYPE INTEGER_MATRIX AS INTEGER_ARRAY ARRAY[]@
/**
* Retrieves the value from a matrix at a specific position.
*
* IN X: Row number.
* IN Y: Column number.
* IN M: Matrix.
* RETURN the integer value at that position.
*/
CREATE OR REPLACE FUNCTION GET_INTEGER_VALUE(
IN X SMALLINT,
IN Y SMALLINT,
IN M INTEGER_MATRIX)
RETURNS INTEGER
F_GET_INTEGER_VALUE: BEGIN
DECLARE A INTEGER_ARRAY;
DECLARE RET INTEGER;
SET A = M[X];
SET RET = A[Y];
RETURN RET;
END F_GET_INTEGER_VALUE
@
 
/**
* Establishes the given value at a specific position in the matrix.
*
* IN X: Row number.
* IN Y: Column number.
* INOUT M: Matrix.
* IN VAL: Value to set in the matrix.
*/
CREATE OR REPLACE PROCEDURE SET_INTEGER_VALUE(
IN X SMALLINT,
IN Y SMALLINT,
INOUT M INTEGER_MATRIX,
IN VAL INTEGER)
P_SET_INTEGER_VALUE: BEGIN
DECLARE A INTEGER_ARRAY;
SET A = M[X];
SET A[Y] = VAL;
SET M[X] = A;
END P_SET_INTEGER_VALUE
@
 
/**
* Initializes the matriz at a given size with the same value in all positions.
*
* INOUT M: Matrix.
* IN X: Number of rows.
* IN Y: Number of columns per row.
* IN VAL: Value to set in the matrix.
*/
CREATE OR REPLACE PROCEDURE INIT_INTEGER_MATRIX(
INOUT M INTEGER_MATRIX,
IN X SMALLINT,
IN Y SMALLINT,
IN VAL INTEGER)
P_INIT_INTEGER_MATRIX: BEGIN
DECLARE I SMALLINT DEFAULT 1;
DECLARE J SMALLINT;
DECLARE A INTEGER_ARRAY;
WHILE (I <= X) DO
SET A = ARRAY[];
SET J = 1;
WHILE (J <= Y) DO
SET A[J] = VAL;
SET J = J + 1;
END WHILE;
SET M[I] = A;
SET I = I + 1;
END WHILE;
END P_INIT_INTEGER_MATRIX
@
 
/**
* Prints the content of the matrix to the standard output.
*
* INOUT M: Matrix.
*/
CREATE OR REPLACE PROCEDURE PRINT_INTEGER_MATRIX(
IN M INTEGER_MATRIX)
P_PRINT_INTEGER_MATRIX: BEGIN
DECLARE I SMALLINT DEFAULT 1;
DECLARE J SMALLINT;
DECLARE X SMALLINT;
DECLARE Y SMALLINT;
DECLARE VAL INTEGER;
DECLARE A INTEGER_ARRAY;
DECLARE RET VARCHAR(256);
SET X = CARDINALITY(M);
CALL DBMS_OUTPUT.PUT_LINE('>>>>>');
WHILE (I <= X) DO
SET A = M[I];
SET RET = '[';
SET Y = CARDINALITY(A);
SET J = 1;
WHILE (J <= Y) DO
SET VAL = A[J];
SET RET = RET || VAL;
SET J = J + 1;
IF (J <= Y) THEN
SET RET = RET || ',';
END IF;
END WHILE;
SET RET = RET || ']';
CALL DBMS_OUTPUT.PUT_LINE(RET);
SET I = I + 1;
END WHILE;
CALL DBMS_OUTPUT.PUT_LINE('<<<<<');
END P_PRINT_INTEGER_MATRIX
@
 
/**
* Checks if a queen is safe in the given position.
*
* IN M: Matrix representing the chessboard.
* IN ROW: Row of the queen.
* IN COL: Column in the row for the queen.
* IN SIZE: Size of the chessboard (max row, max col).
* RETURNS true if the position is safe.
*/
CREATE OR REPLACE FUNCTION IS_SAFE(
IN M INTEGER_MATRIX,
IN ROW SMALLINT,
IN COL SMALLINT,
IN SIZE SMALLINT)
MODIFIES SQL DATA
RETURNS BOOLEAN
F_IS_SAFE: BEGIN
DECLARE I SMALLINT;
DECLARE J SMALLINT;
DECLARE VAL INTEGER;
-- Debug purposes.
--CALL SET_INTEGER_VALUE(ROW, COL, M, -1);
--CALL PRINT_INTEGER_MATRIX(M);
--CALL SET_INTEGER_VALUE(ROW, COL, M, 0);
 
SET I = 1;
WHILE (I <= COL) DO
SET VAL = GET_INTEGER_VALUE(ROW, I, M);
IF (VAL = 1) THEN
RETURN FALSE;
END IF;
SET I = I + 1;
END WHILE;
SET I = ROW;
SET J = COL;
WHILE (I >= 1 AND J >= 1) DO
SET VAL = GET_INTEGER_VALUE(I, J, M);
IF (VAL = 1) THEN
CALL SET_INTEGER_VALUE(ROW, COL, M, 0);
RETURN FALSE;
END IF;
SET I = I - 1;
SET J = J - 1;
END WHILE;
 
SET I = ROW;
SET J = COL;
WHILE (J >= 1 AND I <= SIZE) DO
SET VAL = GET_INTEGER_VALUE(I, J, M);
IF (VAL = 1) THEN
RETURN FALSE;
END IF;
SET I = I + 1;
SET J = J - 1;
END WHILE;
 
RETURN TRUE;
END F_IS_SAFE
@
 
/**
* Dummy procedure for the recurssion.
*
* IN SIZE: Size of the chessboard (max row, max col).
* IN COL: Column to analyse.
* OUT RET: True if it was possible to put all queens
*/
CREATE OR REPLACE PROCEDURE SOLVE_N_QUEENS(
INOUT M INTEGER_MATRIX,
IN SIZE SMALLINT,
IN COL SMALLINT,
OUT RET BOOLEAN)
P_SOLVE_N_QUEENS: BEGIN
END P_SOLVE_N_QUEENS
@
 
/**
* Solves the n-queens algoritm.
*
* IN SIZE: Size of the chessboard (max row, max col).
* IN COL: Column to analyse.
* OUT RET: True if it was possible to put all queens
*/
CREATE OR REPLACE PROCEDURE SOLVE_N_QUEENS(
INOUT M INTEGER_MATRIX,
IN SIZE SMALLINT,
IN COL SMALLINT,
OUT RET BOOLEAN)
MODIFIES SQL DATA
P_SOLVE_N_QUEENS: BEGIN
DECLARE I SMALLINT;
DECLARE SAFE BOOLEAN;
DECLARE SOLVED BOOLEAN;
 
-- Debug purposes.
--CALL PRINT_INTEGER_MATRIX(M);
SET RET = FALSE;
IF (COL > SIZE) THEN
SET RET = TRUE;
ELSE
SET I = 1;
WHILE (I <= SIZE AND NOT RET) DO
SET SAFE = IS_SAFE(M, I, COL, SIZE);
IF (SAFE) THEN
CALL SET_INTEGER_VALUE(I, COL, M, 1);
CALL SOLVE_N_QUEENS(M, SIZE, COL + 1, SOLVED);
IF (SOLVED) THEN
SET RET = TRUE;
ELSE
CALL SET_INTEGER_VALUE(I, COL, M, 0); -- Backtrack.
END IF;
END IF;
SET I = I + 1;
END WHILE;
 
END IF;
END P_SOLVE_N_QUEENS
@
 
/**
* Main procedure to solve the n-queen algoritm.
*
* IN SIZE: Size of the chessboard. The bigger it is, the more time it takes.
*/
CREATE OR REPLACE PROCEDURE N_QUEENS(
IN SIZE SMALLINT)
P_N_QUEENS: BEGIN
DECLARE M INTEGER_MATRIX;
DECLARE SOL BOOLEAN DEFAULT FALSE;
CALL INIT_INTEGER_MATRIX(M, SIZE, SIZE, 0);
CALL SOLVE_N_QUEENS(M, SIZE, 1, SOL);
IF (SOL = TRUE) THEN
CALL PRINT_INTEGER_MATRIX(M);
ELSE
CALL DBMS_OUTPUT.PUT_LINE('Solution does not exist.');
END IF;
END P_N_QUEENS
@
 
--#SET TERMINATOR ;
 
-- Activates the standard output for the current session.
SET SERVEROUTPUT ON;
 
CALL N_QUEENS(4);
 
CALL N_QUEENS(8);
 
CALL N_QUEENS(16);
 
 
</syntaxhighlight>
Output:
<pre>
db2 -td@
db2 => CREATE TYPE INTEGER_ARRAY AS INTEGER ARRAY[]@
DB20000I The SQL command completed successfully.
...
quit@
db2 -t
db2 => SET SERVEROUTPUT ON;
DB20000I The SET SERVEROUTPUT command completed successfully.
db2 => CALL N_QUEENS(4);
 
Return Status = 0
 
>>>>>
[0,0,1,0]
[1,0,0,0]
[0,0,0,1]
[0,1,0,0]
<<<<<
db2 => CALL N_QUEENS(8);
 
Return Status = 0
 
>>>>>
[1,0,0,0,0,0,0,0]
[0,0,0,0,0,0,1,0]
[0,0,0,0,1,0,0,0]
[0,0,0,0,0,0,0,1]
[0,1,0,0,0,0,0,0]
[0,0,0,1,0,0,0,0]
[0,0,0,0,0,1,0,0]
[0,0,1,0,0,0,0,0]
<<<<<
</pre>
 
=={{header|Standard ML}}==
This implementation uses failure continuations for backtracking.
<syntaxhighlight lang="standard ml">
(*
* val threat : (int * int) -> (int * int) -> bool
* Returns true iff the queens at the given positions threaten each other
*)
fun threat (x, y) (x', y') =
x = x' orelse y = y' orelse abs(x - x') = abs(y - y');
 
(*
* val conflict : (int * int) -> (int * int) list -> bool
* Returns true if there exists a conflict with the position and the list of queens.
*)
fun conflict pos = List.exists (threat pos);
 
(*
* val addqueen : (int * int * (int * int) list * (unit -> (int * int) list option)) -> (int * int) list option
* Returns either NONE in the case that no solution exists or SOME(l) where l is a list of positions making up the solution.
*)
fun addqueen(i, n, qs, fc) =
let
fun try j =
if j > n then fc()
else if (conflict (i, j) qs) then try (j + 1)
else if i = n then SOME((i, j)::qs)
else addqueen(i + 1, n, (i,j)::qs, fn() => try (j + 1))
in
try 1
end;
 
(*
* val queens : int -> (int * int) list option
* Given the board dimension n, returns a solution for the n-queens problem.
*)
fun queens(n) = addqueen(1, n, [], fn () => NONE);
 
(* SOME [(8,4),(7,2),(6,7),(5,3),(4,6),(3,8),(2,5),(1,1)] *)
queens(8);
 
(* NONE *)
queens(2);
</syntaxhighlight>
 
=={{header|Stata}}==
=== Iterative version ===
Adapted from the Fortran 77 program, to illustrate the '''[http://www.stata.com/help.cgi?m2_goto goto]''' statement in Stata.
 
<syntaxhighlight lang="stata">mata
real matrix queens(real scalar n) {
real scalar i, j, k, p, q
real rowvector a, s, u, v
real matrix m
m = J(0, n, .)
a = 1..n
s = J(1, n, 0)
u = J(1, 2*n-1, 1)
v = J(1, 2*n-1, 1)
i = 1
L1: if (i > n) {
m = m\a
goto L4
}
j=i
L2: k = a[j]
p = i-k+n
q = i+k-1
if (u[p] & v[q]) {
u[p] = v[q] = 0
a[j] = a[i]
a[i] = k
s[i++] = j
goto L1
}
L3: if (++j <= n) goto L2
L4: if (--i == 0) return(m)
j = s[i]
k = a[i]
a[i] = a[j]
a[j] = k
p = i-k+n
q = i+k-1
u[p] = v[q] = 1
goto L3
}
 
a = queens(8)
e = I(8)
1:/e[a[1,.],.]
1 2 3 4 5 6 7 8
+---------------------------------+
1 | 1 . . . . . . . |
2 | . . . . 1 . . . |
3 | . . . . . . . 1 |
4 | . . . . . 1 . . |
5 | . . 1 . . . . . |
6 | . . . . . . 1 . |
7 | . 1 . . . . . . |
8 | . . . 1 . . . . |
+---------------------------------+
 
 
rows(a)
92
end</syntaxhighlight>
 
It's also possible to save the solutions to a Stata dataset:
 
<syntaxhighlight lang="stata">clear
mata: a=queens(8)
getmata (a*)=a
save queens, replace</syntaxhighlight>
 
=== Recursive version ===
 
The recursive solution is adapted from one of the Python programs.
 
<syntaxhighlight lang="stata">mata
real matrix queens_rec(real scalar n) {
real rowvector a, u, v
real matrix m
a = 1..n
u = J(1, 2*n-1, 1)
v = J(1, 2*n-1, 1)
m = J(0, n, .)
queens_aux(n, 1, a, u, v, m)
return(m)
}
 
void queens_aux(real scalar n, real scalar i, real rowvector a,
real rowvector u, real rowvector v, real matrix m) {
real scalar j, k
if (i > n) {
m = m\a
} else {
for (j = i; j <= n; j++) {
k = a[j]
p = i-k+n
q = i+k-1
if (u[p] & v[q]) {
u[p] = v[q] = 0
a[j] = a[i]
a[i] = k
queens_aux(n, i+1, a, u, v, m)
u[p] = v[q] = 1
a[i] = a[j]
a[j] = k
}
}
}
}
end</syntaxhighlight>
 
The iterative and the recursive programs are equivalent:
 
<syntaxhighlight lang="stata">queens(8) == queens_rec(8)
1</syntaxhighlight>
 
=={{header|Swift}}==
Port of the optimized C code above
<syntaxhighlight lang="swift">
let maxn = 31
 
func nq(n: Int) -> Int {
var cols = Array(repeating: 0, count: maxn)
var diagl = Array(repeating: 0, count: maxn)
var diagr = Array(repeating: 0, count: maxn)
var posibs = Array(repeating: 0, count: maxn)
var num = 0
for q0 in 0...n-3 {
for q1 in q0+2...n-1 {
let bit0: Int = 1<<q0
let bit1: Int = 1<<q1
var d: Int = 0
cols[0] = bit0 | bit1 | (-1<<n)
diagl[0] = (bit0<<1|bit1)<<1
diagr[0] = (bit0>>1|bit1)>>1
 
var posib: Int = ~(cols[0] | diagl[0] | diagr[0])
 
while (d >= 0) {
while(posib != 0) {
let bit: Int = posib & -posib
let ncols: Int = cols[d] | bit
let ndiagl: Int = (diagl[d] | bit) << 1;
let ndiagr: Int = (diagr[d] | bit) >> 1;
let nposib: Int = ~(ncols | ndiagl | ndiagr);
posib^=bit
num += (ncols == -1 ? 1 : 0)
if (nposib != 0){
if(posib != 0) {
posibs[d] = posib
d += 1
}
cols[d] = ncols
diagl[d] = ndiagl
diagr[d] = ndiagr
posib = nposib
}
}
d -= 1
posib = d<0 ? n : posibs[d]
 
}
}
 
}
return num*2
}
if(CommandLine.arguments.count == 2) {
 
let board_size: Int = Int(CommandLine.arguments[1])!
print ("Number of solutions for board size \(board_size) is: \(nq(n:board_size))")
 
} else {
print("Usage: 8q <n>")
}
 
</syntaxhighlight>
 
=={{header|SystemVerilog}}==
Create a random board configuration, with the 8-queens as a constraint
<syntaxhighlight lang="systemverilog">program N_queens;
 
parameter SIZE_LOG2 = 3;
parameter SIZE = 1 << SIZE_LOG2;
 
`define ABS_DIFF(a,b) (a>b?a-b:b-a)
 
class board;
rand bit [SIZE_LOG2-1:0] row[SIZE];
 
constraint rook_moves {
foreach (row[i]) foreach (row[j]) if (i < j) {
row[i] != row[j];
}
}
 
constraint diagonal_moves {
foreach (row[i]) foreach (row[j]) if (i < j) {
`ABS_DIFF(row[i], row[j]) != `ABS_DIFF(i,j);
}
}
 
function void next;
randomize;
foreach (row[i]) begin
automatic bit [SIZE-1:0] x = 1 << row[i];
$display( " %b", x );
end
$display("--");
endfunction
 
endclass
 
board b = new;
initial repeat(1) b.next;
 
endprogram
</syntaxhighlight>
 
=={{header|Tailspin}}==
A functional-ish solution utilising tailspin's data flows
<syntaxhighlight lang="tailspin">
templates queens
def n: $;
templates addColumn
def prev: $;
templates addIfPossible
def row: $;
def minor: $ - $prev::length - 1;
def major: $ + $prev::length + 1;
// If prev is not an array that contains row, send it on...
$prev -> \(when <~[<=$row>]> do $ !\)
-> \(when <?($ -> \[i]($ - $i !\) <~[<=$minor>]>)> do $ !\)
-> \(when <?($ -> \[i]($ + $i !\) <~[<=$major>]>)> do $ !\)
-> [ $..., $row] !
end addIfPossible
1..$n -> addIfPossible !
end addColumn
1..$n -> [$] -> #
when <[]($n)> do $ !
otherwise $ -> addColumn -> #
end queens
 
def solutions: [ 8 -> queens ];
'For 8 queens there are $solutions::length; solutions
' -> !OUT::write
 
def columns: ['abcdefgh'...];
'One of them is $solutions(1) -> \[i]('$columns($i);$;' !\);
' -> !OUT::write
 
'For 3 queens there are $:[3 -> queens] -> $::length; solutions
' -> !OUT::write
</syntaxhighlight>
{{out}}
<pre>
For 8 queens there are 92 solutions
One of them is [a1, b5, c8, d6, e3, f7, g2, h4]
For 3 queens there are 0 solutions
</pre>
 
A solution using state to find one solution if any exist
<syntaxhighlight lang="tailspin">
templates queens
def n: $;
templates getRowColumn
when <?($@queens.freeRows($.r::raw) <=0>)> do 0 !
when <?($@queens.freeMaxs($.r::raw + $.c::raw) <=0>)> do 0 !
when <?($@queens.freeMins($.c::raw - $.r::raw + $n) <=0>)> do 0 !
otherwise 1!
end getRowColumn
 
sink setRowColumn
def p: $;
@queens.freeRows($p.r::raw): $p.val::raw;
@queens.freeMaxs($p.c::raw + $p.r::raw): $p.val::raw;
@queens.freeMins($p.c::raw - $p.r::raw + $n): $p.val::raw;
end setRowColumn
 
data done <=1>
 
templates placeQueen
def c: $;
row´1 -> #
when <done> do 1!
when <=row´($n+1)> do 0 !
when <?({r: $, c: $c} -> getRowColumn <=1>)> do
def r: $;
@queens.queenRows($r::raw): $c;
{r: $, c: $c, val: 0} -> !setRowColumn
$c -> \(<=col´$n> done´1!
<?(col´($c::raw + 1) -> placeQueen <=1>)> done´1!
<>
{r: $r, c: $c, val: 1} -> !setRowColumn
row´($r::raw + 1) !\) -> #
otherwise row´($::raw + 1) -> #
end placeQueen
 
@: { freeRows: [1..$n -> 1],
freeMaxs: [1..$n*2 -> 1],
freeMins: [1..$n*2 -> 1],
queenRows: [1..$n -> -1] };
col´1 -> placeQueen -> \(<=1> $@queens.queenRows ! <> 'non-existent'!\)!
end queens
 
'A solution to the 8 queens problem is $:8 -> queens;
' -> !OUT::write
'A solution to the 4 queens problem is $:4 -> queens;
' -> !OUT::write
'A solution to the 3 queens problem is $:3 -> queens;
' -> !OUT::write
</syntaxhighlight>
{{out}}
<pre>
A solution to the 8 queens problem is [1, 7, 5, 8, 2, 4, 6, 3]
A solution to the 4 queens problem is [3, 1, 4, 2]
A solution to the 3 queens problem is non-existent
</pre>
 
=={{header|Tcl}}==
Line 685 ⟶ 16,484:
 
{{works with|Tcl|8.5}}
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
 
proc unsafe {y} {
Line 731 ⟶ 16,530:
}
 
main [expr {$argc ? int(0+[lindex $argv 0]) : 8}]</langsyntaxhighlight>
{{out}}
Sample output:
<pre>$ tclsh8.5 8queens.tcl 6
 
Line 769 ⟶ 16,568:
|_|_|_|Q|_|_|
|_|Q|_|_|_|_|</pre>
 
=={{header|UNIX Shell}}==
{{works with|Bash}}
The total number of solutions for 8 queens is displayed at the end of the run. The code could be adapted to display a selected solution or multiple solutions. This code runs anywhere you can get bash to run.
 
<syntaxhighlight lang="bash">#!/bin/bash
# variable declaration
typeset -i BoardSize=8
typeset -i p=0
typeset -i total=0
typeset -i board
# initialization
function init
{
for (( i=0;i<$BoardSize;i++ ))
do
(( board[$i]=-1 ))
done
}
# check if queen can be placed
function place
{
typeset -i flag=1
for (( i=0;i<$1;i++ ))
do
if [[ (${board[$i]}-${board[$1]} -eq ${i}-${1}) || (${board[$i]}-${board[$1]} -eq ${1}-${i}) || (${board[$i]} -eq ${board[$1]}) ]]
then
(( flag=0 ))
fi
done
[[ $flag -eq 0 ]]
return $?
}
# print the result
function out
{
printf "Problem of queen %d:%d\n" $BoardSize $total
}
# free the variables
function depose
{
unset p
unset total
unset board
unset BoardSize
}
# back tracing
function work
{
while [[ $p -gt -1 ]]
do
(( board[$p]++ ))
if [[ ${board[$p]} -ge ${BoardSize} ]]
then # back tracing
(( p-- ))
else # try next position
place $p
if [[ $? -eq 1 ]]
then
(( p++ ))
if [[ $p -ge ${BoardSize} ]]
then
(( total++ ))
(( p-- ))
else
(( board[$p]=-1 ))
fi
fi
fi
done
}
# entry
init
work
out
depose</syntaxhighlight>
 
=={{header|Ursala}}==
Line 774 ⟶ 16,656:
n is a number greater than 3. Multiple solutions may be reported
but reflections and rotations thereof are omitted.
<langsyntaxhighlight Ursalalang="ursala">#import std
#import nat
 
Line 791 ⟶ 16,673:
-<&l^|*DlrTS/~& ~&iiDlSzyCK9hlPNNXXtCS,
^jrX/~& @rZK20lrpblPOlrEkPK13lhPK2 ~&i&& nleq$-&lh+-,
^/~&NNXS+iota -<&l+ ~&plll2llr2lrPrNCCCCNXS*=irSxPSp+ ^H/block iota; *iiK0 ^/~& sum+-</langsyntaxhighlight>
The output shows one solution on each line. A solution is reported as a sequence
A solution is reported as a sequence of <math>n</math> numbers
of <math>n</math> numbers with the <math>i</math>-th number being the index of the occupied row
with the <math>i</math>-th number being the index of the occupied row
in the <math>i</math>-th column.
<pre>
Line 805 ⟶ 16,688:
4 3 0 2 1 5
</pre>
 
=={{header|VBA}}==
{{trans|BBC BASIC}}
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vba - 26/02/2017
Sub n_queens()
Const l = 15 'number of queens
Const b = False 'print option
Dim a(l), s(l), u(4 * l - 2)
Dim n, m, i, j, p, q, r, k, t, z
For i = 1 To UBound(a): a(i) = i: Next i
For n = 1 To l
m = 0
i = 1
j = 0
r = 2 * n - 1
Do
i = i - 1
j = j + 1
p = 0
q = -r
Do
i = i + 1
u(p) = 1
u(q + r) = 1
z = a(j): a(j) = a(i): a(i) = z 'Swap a(i), a(j)
p = i - a(i) + n
q = i + a(i) - 1
s(i) = j
j = i + 1
Loop Until j > n Or u(p) Or u(q + r)
If u(p) = 0 Then
If u(q + r) = 0 Then
m = m + 1 'm: number of solutions
If b Then
Debug.Print "n="; n; "m="; m
For k = 1 To n
For t = 1 To n
Debug.Print IIf(a(n - k + 1) = t, "Q", ".");
Next t
Debug.Print
Next k
End If
End If
End If
j = s(i)
Do While j >= n And i <> 0
Do
z = a(j): a(j) = a(i): a(i) = z 'Swap a(i), a(j)
j = j - 1
Loop Until j < i
i = i - 1
p = i - a(i) + n
q = i + a(i) - 1
j = s(i)
u(p) = 0
u(q + r) = 0
Loop
Loop Until i = 0
Debug.Print n, m 'number of queens, number of solutions
Next n
End Sub 'n_queens</syntaxhighlight>
{{out}}
<pre>
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
11 2680
12 14200
13 73712
14 365596
15 2279184
</pre>
 
=={{header|VBScript}}==
{{trans|BBC BASIC}}
To have the solutions printed (raw format) uncomment the ad hoc statement.
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vbs - 24/02/2017
const l=15
dim a(),s(),u(): redim a(l),s(l),u(4*l-2)
for i=1 to l: a(i)=i: next
for n=1 to l
m=0
i=1
j=0
r=2*n-1
Do
i=i-1
j=j+1
p=0
q=-r
Do
i=i+1
u(p)=1
u(q+r)=1
z=a(j): a(j)=a(i): a(i)=z 'swap a(i),a(j)
p=i-a(i)+n
q=i+a(i)-1
s(i)=j
j=i+1
Loop Until j>n Or u(p)<>0 Or u(q+r)<>0
If u(p)=0 Then
If u(q+r)=0 Then
m=m+1 'm: number of solutions
'x="": for k=1 to n: x=x&" "&a(k): next: msgbox x,,m
End If
End If
j=s(i)
Do While j>=n And i<>0
Do
z=a(j): a(j)=a(i): a(i)=z 'swap a(i),a(j)
j=j-1
Loop Until j<i
i=i-1
p=i-a(i)+n
q=i+a(i)-1
j=s(i)
u(p)=0
u(q+r)=0
Loop
Loop Until i=0
wscript.echo n &":"& m
next 'n</syntaxhighlight>
{{out}}
<pre>
1 : 1
2 : 0
3 : 0
4 : 2
5 : 10
6 : 4
7 : 40
8 : 92
9 : 352
10 : 724
11 : 2680
12 : 14200
13 : 73712
14 : 365596
15 : 2279184
</pre>
 
=={{header|Visual Basic}}==
{{works with|Visual Basic|VB6 Standard}}
{{trans|BBC BASIC}}
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vb6 - 25/02/2017
Sub n_queens()
Const l = 15 'number of queens
Const b = False 'print option
Dim a(l), s(l), u(4 * l - 2)
Dim n, m, i, j, p, q, r, k, t, z
For i = 1 To UBound(a): a(i) = i: Next i
For n = 1 To l
m = 0
i = 1
j = 0
r = 2 * n - 1
Do
i = i - 1
j = j + 1
p = 0
q = -r
Do
i = i + 1
u(p) = 1
u(q + r) = 1
z = a(j): a(j) = a(i): a(i) = z 'Swap a(i), a(j)
p = i - a(i) + n
q = i + a(i) - 1
s(i) = j
j = i + 1
Loop Until j > n Or u(p) Or u(q + r)
If u(p) = 0 Then
If u(q + r) = 0 Then
m = m + 1 'm: number of solutions
If b Then
Debug.Print "n="; n; "m="; m
For k = 1 To n
For t = 1 To n
Debug.Print IIf(a(n - k + 1) = t, "Q", ".");
Next t
Debug.Print
Next k
End If
End If
End If
j = s(i)
Do While j >= n And i <> 0
Do
z = a(j): a(j) = a(i): a(i) = z 'Swap a(i), a(j)
j = j - 1
Loop Until j < i
i = i - 1
p = i - a(i) + n
q = i + a(i) - 1
j = s(i)
u(p) = 0
u(q + r) = 0
Loop
Loop Until i = 0
Debug.Print n, m 'number of queens, number of solutions
Next n
End Sub 'n_queens</syntaxhighlight>
{{out}}
<pre>
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
11 2680
12 14200
13 73712
14 365596
15 2279184
</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|BBC BASIC}}
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vb.net - 26/02/2017
Module Mod_n_queens
Sub n_queens()
Const l = 15 'number of queens
Const b = False 'print option
Dim a(l), s(l), u(4 * l - 2)
Dim n, m, i, j, p, q, r, k, t, z
Dim w As String
For i = 1 To UBound(a) : a(i) = i : Next i
For n = 1 To l
m = 0
i = 1
j = 0
r = 2 * n - 1
Do
i = i - 1
j = j + 1
p = 0
q = -r
Do
i = i + 1
u(p) = 1
u(q + r) = 1
z = a(j) : a(j) = a(i) : a(i) = z 'Swap a(i), a(j)
p = i - a(i) + n
q = i + a(i) - 1
s(i) = j
j = i + 1
Loop Until j > n Or u(p) Or u(q + r)
If u(p) = 0 Then
If u(q + r) = 0 Then
m = m + 1 'm: number of solutions
If b Then
Debug.Print("n=" & n & " m=" & m) : w = ""
For k = 1 To n
For t = 1 To n
w = w & If(a(n - k + 1) = t, "Q", ".")
Next t
Debug.Print(w)
Next k
End If
End If
End If
j = s(i)
Do While j >= n And i <> 0
Do
z = a(j) : a(j) = a(i) : a(i) = z 'Swap a(i), a(j)
j = j - 1
Loop Until j < i
i = i - 1
p = i - a(i) + n
q = i + a(i) - 1
j = s(i)
u(p) = 0
u(q + r) = 0
Loop
Loop Until i = 0
Debug.Print(n & vbTab & m) 'number of queens, number of solutions
Next n
End Sub 'n_queens
End Module</syntaxhighlight>
{{out}}
<pre>
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
11 2680
12 14200
13 73712
14 365596
15 2279184
</pre>
 
=={{header|Wart}}==
<syntaxhighlight lang="wart">def (nqueens n queens)
prn "step: " queens # show progress
if (len.queens = n)
prn "solution! " queens
# else
let row (if queens (queens.zero.zero + 1) 0)
for col 0 (col < n) ++col
let new_queens (cons (list row col) queens)
if (no conflicts.new_queens)
(nqueens n new_queens)
 
# check if the first queen in 'queens' lies on the same column or diagonal as
# any of the others
def (conflicts queens)
let (curr ... rest) queens
or (let curr_column curr.1
(some (fn(_) (= _ curr_column))
(map cadr rest))) # columns
(some (fn(_) (diagonal_match curr _))
rest)
 
def (diagonal_match curr other)
(= (abs (curr.0 - other.0))
(abs (curr.1 - other.1)))</syntaxhighlight>
 
=={{header|Wren}}==
{{trans|Kotlin}}
Very slow for the larger boards.
<syntaxhighlight lang="wren">var count = 0
var c = []
var f = []
 
var nQueens // recursive
nQueens = Fn.new { |row, n|
for (x in 1..n) {
var outer = false
var y = 1
while (y < row) {
if ((c[y] == x) || (row - y == (x -c[y]).abs)) {
outer = true
break
}
y = y + 1
}
if (!outer) {
c[row] = x
if (row < n) {
nQueens.call(row + 1, n)
} else {
count = count + 1
if (count == 1) f = c.skip(1).map { |i| i - 1 }.toList
}
}
}
}
 
for (n in 1..14) {
count = 0
c = List.filled(n+1, 0)
f = []
nQueens.call(1, n)
System.print("For a %(n) x %(n) board:")
System.print(" Solutions = %(count)")
if (count > 0) System.print(" First is %(f)")
System.print()
}</syntaxhighlight>
 
{{out}}
<pre>
For a 1 x 1 board:
Solutions = 1
First is [0]
 
For a 2 x 2 board:
Solutions = 0
 
For a 3 x 3 board:
Solutions = 0
 
For a 4 x 4 board:
Solutions = 2
First is [1, 3, 0, 2]
 
For a 5 x 5 board:
Solutions = 10
First is [0, 2, 4, 1, 3]
 
For a 6 x 6 board:
Solutions = 4
First is [1, 3, 5, 0, 2, 4]
 
For a 7 x 7 board:
Solutions = 40
First is [0, 2, 4, 6, 1, 3, 5]
 
For a 8 x 8 board:
Solutions = 92
First is [0, 4, 7, 5, 2, 6, 1, 3]
 
For a 9 x 9 board:
Solutions = 352
First is [0, 2, 5, 7, 1, 3, 8, 6, 4]
 
For a 10 x 10 board:
Solutions = 724
First is [0, 2, 5, 7, 9, 4, 8, 1, 3, 6]
 
For a 11 x 11 board:
Solutions = 2680
First is [0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9]
 
For a 12 x 12 board:
Solutions = 14200
First is [0, 2, 4, 7, 9, 11, 5, 10, 1, 6, 8, 3]
 
For a 13 x 13 board:
Solutions = 73712
First is [0, 2, 4, 1, 8, 11, 9, 12, 3, 5, 7, 10, 6]
 
For a 14 x 14 board:
Solutions = 365596
First is [0, 2, 4, 6, 11, 9, 12, 3, 13, 8, 1, 5, 7, 10]
</pre>
 
=={{header|Xanadu}}==
 
Copied from http://www.cs.bu.edu/~hwxi/Xanadu/Examples/
<syntaxhighlight lang="xanadu">
int abs(i: int) {
if (i >= 0) return i; else return -i;
}
 
unit print_dots(n: int) {
while (n > 0) { print_string("."); n = n - 1; }
return;
}
 
{size:int | 0 < size}
unit print_board (board[size]: int, size: int(size)) {
var: int n, row;;
 
invariant: [i:nat] (row: int(i))
for (row = 0; row < size; row = row + 1) {
n = board[row];
print_dots(n-1);
print_string("Q");
print_dots(size - n);
print_newline();
}
print_newline();
return;
}
 
{size:int, j:int | 0 <= j < size}
bool test (j: int(j), board[size]: int) {
var: int diff, i, qi, qj;;
 
qj = board[j];
 
invariant: [i:nat] (i: int(i))
for (i = 0; i < j; i = i + 1) {
qi = board[i]; diff = abs (qi - qj);
if (diff == 0) { return false; }
else { if (diff == j - i) return false; }
}
return true;
}
 
{size:int | 0 < size}
nat queen(size: int(size)) {
var: int board[], next, row; nat count;;
 
count = 0; row = 0; board = alloc(size, 0);
 
invariant: [n:nat | n < size] (row: int(n))
while (true) {
next = board[row]; next = next + 1;
if (next > size) {
if (row == 0) break; else { board[row] = 0; row = row - 1; }
} else {
board[row] = next;
if (test(row, board)) {
row = row + 1;
if (row == size) {
count = count + 1;
print_board(board, size);
row = row - 1;
}
}
}
}
return count;
}
 
int main () {
return queen (8);
}</syntaxhighlight>
 
=={{header|XPL0}}==
[[File:NQueensXPL0.GIF|right]]
<syntaxhighlight lang="xpl0">def N=8; \board size (NxN)
int R, C; \row and column of board
char B(N,N); \board
include c:\cxpl\codes;
 
proc Try; \Try adding a queen to the board
int R; \row, for each level of recursion
 
func Okay;
\Returns 'true' if no row, column, or diagonal from square R,C has a queen
int I;
[for I:= 0 to N-1 do
[if B(I,C) then return false; \row is occupied
if B(R,I) then return false; \column is occupied
if R+I<N & C+I<N then
if B(R+I, C+I) then return false; \diagonal down right
if R-I>=0 & C-I>=0 then
if B(R-I, C-I) then return false; \diagonal up left
if R-I>=0 & C+I<N then
if B(R-I, C+I) then return false; \diagonal up right
if R+I<N & C-I>=0 then
if B(R+I, C-I) then return false; \diagonal down left
];
return true;
]; \Okay
 
[ \Try
if C>=N then
[for R:= 0 to N-1 do \display solution
[ChOut(0, ^ ); \(avoids scrolling up a color)
for C:= 0 to N-1 do
[Attrib(if (R|C)&1 then $0F else $4F); \checkerboard pattern
ChOut(6, if B(R,C) then $F2 else ^ ); \cute queen symbol
ChOut(6, if B(R,C) then $F3 else ^ );
];
CrLf(0);
];
exit; \one solution is enough
];
for R:= 0 to N-1 do
[if Okay(R,C) then \a queen can be placed here
[B(R,C):= true; \ so do it
C:= C+1; \move to next column
Try; \ and try from there
C:= C-1; \didn't work: backup
B(R,C):= false; \undo queen placement
];
];
]; \Try
 
 
[for R:= 0 to N-1 do \clear the board
for C:= 0 to N-1 do
B(R,C):= false;
C:= 0; \start at left column
Try;
]</syntaxhighlight>
 
=={{header|XSLT}}==
Below simple stylesheet does produce this output
(either by XSLT processors saxon-6.5.5, xsltproc, xalan,
or any of the big5 browsers):
<pre>
15863724
16837425
... 88 lines omitted ...
83162574
84136275
</pre>
 
You can view the results directly in your browser (Chrome/FF/IE/Opera/Safari) here: [[http://stamm-wilbrandt.de/en/xsl-list/n-queens/8-queens.xsl.xml]]
 
This stylesheet is in category XSLT because it makes use or EXSLT [[http://exslt.org/]] exslt:node-set() extension function not available in XSLT 1.0
 
It is extracted from a bigger solution described in this blog posting: [[https://www.ibm.com/developerworks/mydeveloperworks/blogs/HermannSW/entry/n_queens_xsl_xml14]]
* determine all 500 n-queens solutions for 4<=n<=9
* determine distict solutions and totals
* display solutions graphically nicely
* with references to external .gif images [[http://stamm-wilbrandt.de/en/xsl-list/n-queens/n-queens.xsl.xml]]
* with internal "data:..." .gif images [[http://stamm-wilbrandt.de/en/xsl-list/n-queens/n-queens.internalImages.xsl.xml]]
 
This is the initial part of a screenshot from browser output:
 
[[image:n-queens.4-6.gif]]
 
 
Here is stylesheet 8-queens.xsl.xml which produces the (simple) output by having itself as input: [[http://stamm-wilbrandt.de/en/xsl-list/n-queens/8-queens.xsl.xml]]
<syntaxhighlight lang="xml">
<!-- 8-queens.xsl disguised as XML file for the browsers -->
 
<!-- Valery Chernysh's .xsl.xml technique for execution in all browsers -->
<?xml-stylesheet href="#" type="text/xsl"?>
 
<!-- alternative over specifying input in data:data section -->
<!DOCTYPE xsl:stylesheet [
<!ENTITY N "8">
]>
 
<!-- this is the stylesheet being referenced by href="#" above -->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:exslt="http://exslt.org/common"
xmlns:n-queens="urn:n-queens"
exclude-result-prefixes="n-queens exslt"
>
<!-- find David Carlisle's exslt:node-set() for IE browsers at bottom -->
 
<!--
Pattern allowing repeated processing of produced node-set results:
<xsl:variable name="blah0">...</xsl:variable>
<xsl:variable name="blah" select="exslt:node-set($blah0)"/>
-->
<xsl:output omit-xml-declaration="yes"/>
 
 
<!-- entry point -->
<xsl:template match="/xsl:stylesheet">
<!-- generate &N;x$&N;board -->
<xsl:variable name="row0">
<xsl:call-template name="n-queens:row">
<xsl:with-param name="n" select="&N;"/>
</xsl:call-template>
</xsl:variable>
<xsl:variable name="row" select="exslt:node-set($row0)"/>
 
<xsl:variable name="rows0">
<xsl:for-each select="$row/*">
<r><xsl:copy-of select="$row"/></r>
</xsl:for-each>
</xsl:variable>
<xsl:variable name="rows" select="exslt:node-set($rows0)"/>
 
<html><pre>
<!-- determine all solutions of $N queens problem -->
<xsl:call-template name="n-queens:search">
<xsl:with-param name="b" select="$rows/*"/>
</xsl:call-template>
</pre></html>
 
</xsl:template>
 
 
<!-- recursive search for all solutions -->
<xsl:template name="n-queens:search">
<xsl:param name="b"/> <!-- remaining rows of not threatened fields -->
<xsl:param name="s"/> <!-- partial solution of queens fixated sofar -->
 
<!-- complete board filled means solution found -->
<xsl:if test="not($b)">
<xsl:value-of select="$s"/><xsl:text>&#10;</xsl:text>
</xsl:if>
 
<!-- check each remaining possible position in next row -->
<xsl:for-each select="$b[1]/*">
 
<!-- sieve out fields by new current (.) queen in current row -->
<xsl:variable name="sieved0">
<xsl:call-template name="n-queens:sieve">
<xsl:with-param name="c" select="."/>
<xsl:with-param name="b" select="$b[position()>1]"/>
</xsl:call-template>
</xsl:variable>
<xsl:variable name="sieved" select="exslt:node-set($sieved0)"/>
 
<!-- recursive call -->
<xsl:call-template name="n-queens:search">
<xsl:with-param name="b" select="$sieved/*"/>
<xsl:with-param name="s" select="concat($s, .)"/>
</xsl:call-template>
</xsl:for-each>
</xsl:template>
 
<!-- sieve out fields in remaining rows attacked by queen at column $c -->
<xsl:template name="n-queens:sieve">
<xsl:param name="c"/> <!-- column of newly fixed queen -->
<xsl:param name="b"/> <!-- remaining rows -->
 
<xsl:for-each select="$b">
<!-- row number for diagonal attack determination -->
<xsl:variable name="r" select="position()"/>
 
<!-- copy fields not vertically or diagonally attacked -->
<r><xsl:copy-of select="*[. != $c][. - $r != $c][. + $r != $c]"/></r>
</xsl:for-each>
</xsl:template>
 
<!-- generate node-set of the form "<f>1</f><f>2</f>...<f>$n</f>" -->
<xsl:template name="n-queens:row">
<xsl:param name="n"/>
 
<xsl:if test="$n>0">
<xsl:call-template name="n-queens:row">
<xsl:with-param name="n" select="$n - 1"/>
</xsl:call-template>
 
<f><xsl:value-of select="$n"/></f>
</xsl:if>
</xsl:template>
 
 
<!--
IE browser exslt:node-set() (XSLT 1.0+), w/o msxsl pollution above
 
from http://dpcarlisle.blogspot.com/2007/05/exslt-node-set-function.html
-->
<msxsl:script xmlns:msxsl="urn:schemas-microsoft-com:xslt"
language="JScript" implements-prefix="exslt"
>
this['node-set'] = function (x) {
return x;
}
</msxsl:script>
 
</xsl:stylesheet>
</syntaxhighlight>
 
=={{header|Yabasic}}==
<syntaxhighlight lang="yabasic">DOCU The N Queens Problem:
DOCU Place N Queens on an NxN chess board
DOCU such that they don't threaten each other.
 
N = 8 // try some other sizes
 
sub threat(q1r, q1c, q2r, q2c)
// do two queens threaten each other?
if q1c = q2c then return true
elsif (q1r - q1c) = (q2r - q2c) then return true
elsif (q1r + q1c) = (q2r + q2c) then return true
elsif q1r = q2r then return true
else return false
end if
end sub
 
sub conflict(r, c, queens$)
// Would square p cause a conflict with other queens on board so far?
local r2, c2
 
for i = 1 to len(queens$) step 2
r2 = val(mid$(queens$,i,1))
c2 = val(mid$(queens$,i+1,1))
if threat(r, c, r2, c2) then
return true
end if
next i
return false
end sub
 
sub print_board(queens$)
// print a solution, showing the Queens on the board
local k$
 
print at(1, 1);
print "Solution #", soln, "\n\n ";
for c = asc("a") to (asc("a") + N - 1)
print chr$(c)," ";
next c
print
for r = 1 to N
print r using "##"," ";
for c = 1 to N
pos = instr(queens$, (str$(r)+str$(c)))
if pos and mod(pos, 2) then
queens$ = mid$(queens$,pos)
print "Q ";
else
print ". ";
end if
next c
print
next r
print "\nPress Enter. (q to quit) "
while(true)
k$ = inkey$
if lower$(k$) = "q" then
exit
elsif k$ = "enter" then
break
end if
wend
end sub
</syntaxhighlight>
 
=={{header|Zig}}==
Outputs all 92 solutions.
<syntaxhighlight lang="zig">
const std = @import("std");
const stdout = std.io.getStdOut().outStream();
 
var board = [_]i8{-1} ** 8;
 
inline fn abs(x: var) @TypeOf(x) {
return if (x < 0) -x else x;
}
 
fn safe(c: i32, r: i32) bool {
var i: i32 = 0;
return while (i < c) : (i += 1) {
const q = board[@intCast(u3, i)];
if (r == q or c == i + abs(q - r))
break false;
} else true;
}
 
pub fn main() !void {
var i: i32 = 0;
while (i >= 0) {
var j = board[@intCast(u3, i)] + 1;
while (j < 8) : (j += 1) {
if (safe(i, j)) {
board[@intCast(u3, i)] = j;
i += 1;
break;
}
} else {
board[@intCast(u3, i)] = -1;
i -= 1;
}
if (i == 8) { // found a solution
for (board) |q|
try stdout.print("{} ", .{q + 1});
try stdout.print("\n", .{});
i -= 1; // create a failure to try new solutions.
}
}
}
</syntaxhighlight>
{{Out}}
<pre>
$ zig run 8q.zig | head -n 4
1 5 8 6 3 7 2 4
1 6 8 3 7 4 2 5
1 7 4 6 8 2 5 3
1 7 5 8 2 4 6 3
</pre>
 
 
=={{header|zkl}}==
Modified from a Haskell version (if I remember correctly)
<syntaxhighlight lang="zkl">fcn isAttacked(q, x,y) // ( (r,c), x,y ) : is queen at r,c attacked by q@(x,y)?
{ r,c:=q; (r==x or c==y or r+c==x+y or r-c==x-y) }
fcn isSafe(r,c,qs) // queen safe at (r,c)?, qs=( (r,c),(r,c)..) solution so far
{ ( not qs.filter1(isAttacked,r,c) ) }
fcn queensN(N=8,row=1,queens=T){
qs:=[1..N].filter(isSafe.fpM("101",row,queens)) #isSafe(row,?,( (r,c),(r,c).. )
.apply(fcn(c,r,qs){ qs.append(T(r,c)) },row,queens);
if (row == N) return(qs);
return(qs.apply(self.fcn.fp(N,row+1)).flatten());
}</syntaxhighlight>
<syntaxhighlight lang="zkl">queens := queensN(4);
println(queens.len()," solution(s):");
queens.apply2(Console.println);</syntaxhighlight>
{{out}}
<pre>
2 solution(s):
L(L(1,2),L(2,4),L(3,1),L(4,3))
L(L(1,3),L(2,1),L(3,4),L(4,2))
</pre>
 
[[Category:Puzzles]]
305

edits