I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# N-queens problem

N-queens problem
You are encouraged to solve this task according to the task description, using any language you may know.

Solve the eight queens puzzle.

You can extend the problem to solve the puzzle with a board of size   NxN.

For the number of solutions for small values of   N,   see   OEIS: A000170.

## 360 Assembly

Translation of: FORTRAN

Translated from the Fortran 77 solution.
For maximum compatibility, this program uses only the basic instruction set (S/360).

`*        N-QUEENS PROBLEM          04/09/2015                       MACRO &LAB     XDECO  &REG,&TARGET&LAB     B      I&SYSNDX           branch around work areaP&SYSNDX DS     0D,PL8             packedW&SYSNDX DS     CL13               charI&SYSNDX CVD    &REG,P&SYSNDX          convert to decimal         MVC    W&SYSNDX,=X'40202020202020202020212060'  nice mask         EDMK   W&SYSNDX,P&SYSNDX+2    edit and mark         BCTR   R1,0                   locate the right place         MVC    0(1,R1),W&SYSNDX+12    move the sign         MVC    &TARGET.(12),W&SYSNDX  move to target         MENDNQUEENS  CSECT         SAVE   (14,12)            save registers on entry         BALR   R12,0              establish addressability         USING  *,R12              set base register         ST     R13,SAVEA+4        link mySA->prevSA         LA     R11,SAVEA          mySA         ST     R11,8(R13)         link prevSA->mySA         LR     R13,R11            set mySA pointer         LA     R7,LL              l         LA     R6,1               i=1LOOPI    LR     R1,R6              do i=1 to l         SLA    R1,1               i*2         STH    R6,A-2(R1)         a(i)=i         LA     R6,1(R6)           i=i+1         BCT    R7,LOOPI           loop do iOPENEM   OPEN   (OUTDCB,OUTPUT)    open the printer file         LA     R9,1               n=1 start of loopLOOPN    CH     R9,L               do n=1 to l         BH     ELOOPN             if n>l then exit loop         SR     R8,R8              m=0         LA     R10,1              i=1         LR     R5,R9              n         SLA    R5,1               n*2         BCTR   R5,0               r=2*n-1E40      CR     R10,R9             if i>n         BH     E80                then goto e80         LR     R11,R10            j=iE50      LR     R1,R10             i         SLA    R1,1               i*2         LA     R6,A-2(R1)         [email protected](i)         LR     R1,R11             j         SLA    R1,1               j*2         LA     R7,A-2(R1)         [email protected](j)         MVC    Z,0(R6)            z=a(i)         MVC    Y,0(R7)            y=a(j)         LR     R3,R10             i         SH     R3,Y               -y         AR     R3,R9              p=i-y+n         LR     R4,R10             i         AH     R4,Y               +y         BCTR   R4,0               q=i+y-1         MVC    0(2,R6),Y          a(i)=y         MVC    0(2,R7),Z          a(j)=z         LR     R1,R3              p         SLA    R1,1               p*2         LH     R2,U-2(R1)         u(p)         LTR    R2,R2              if u(p)<>0         BNE    E60                then goto e60         LR     R1,R4              q         AR     R1,R5              q+r         SLA    R1,1               (q+r)*2         LH     R2,U-2(R1)         u(q+r)         C      R2,=F'0'           if u(q+r)<>0         BNE    E60                then goto e60         LR     R1,R10             i         SLA    R1,1               i*2         STH    R11,S-2(R1)        s(i)=j         LA     R0,1               r0=1         LR     R1,R3              p         SLA    R1,1               p*2         STH    R0,U-2(R1)         u(p)=1         LR     R1,R4              q         AR     R1,R5              q+r         SLA    R1,1               (q+r)*2         STH    R0,U-2(R1)         u(q+r)=1         LA     R10,1(R10)         i=i+1         B      E40                goto e40E60      LA     R11,1(R11)         j=j+1         CR     R11,R9             if j<=n         BNH    E50                then goto e50E70      BCTR   R11,0              j=j-1         CR     R11,R10            if j=i         BE     E90                goto e90         LR     R1,R10             i         SLA    R1,1               i*2         LA     R6,A-2(R1)         [email protected](i)         LR     R1,R11             j         SLA    R1,1               j*2         LA     R7,A-2(R1)         [email protected](j)         MVC    Z,0(R6)            z=a(i)         MVC    0(2,R6),0(R7)      a(i)=a(j)         MVC    0(2,R7),Z          a(j)=z;         B      E70                goto e70E80      LA     R8,1(R8)           m=m+1E90      BCTR   R10,0              i=i-1         LTR    R10,R10            if i=0         BZ     ZERO               then goto zero         LR     R1,R10             i         SLA    R1,1               i*2         LH     R2,A-2(R1)         r2=a(i)         LR     R3,R10             i         SR     R3,R2              -a(i)         AR     R3,R9              p=i-a(i)+n         LR     R4,R10             i         AR     R4,R2              +a(i)         BCTR   R4,0               q=i+a(i)-1         LR     R1,R10             i         SLA    R1,1               i*2         LH     R11,S-2(R1)        j=s(i)         LA     R0,0               r0=0         LR     R1,R3              p         SLA    R1,1               p*2         STH    R0,U-2(R1)         u(p)=0         LR     R1,R4              q         AR     R1,R5              q+r         SLA    R1,1               (q+r)*2         STH    R0,U-2(R1)         u(q+r)=0         B      E60                goto e60ZERO     XDECO  R9,PG+0            edit N         XDECO  R8,PG+12           edit M         PUT    OUTDCB,PG          print buffer         LA     R9,1(R9)           n=n+1         B      LOOPN              loop do nELOOPN   CLOSE  (OUTDCB)           close output          L      R13,SAVEA+4        previous save area addrs         RETURN (14,12),RC=0       return to caller with rc=0         LTORGSAVEA    DS     18F                save area for chainingOUTDCB   DCB    DSORG=PS,MACRF=PM,DDNAME=OUTDD  use OUTDD in jclLL       EQU    14                 ll<=16L        DC     AL2(LL)            input valueA        DS     (LL)HS        DS     (LL)H Z        DS     HY        DS     HPG       DS     CL24               bufferU        DC     (4*LL-2)H'0'       stack         REGS                      make sure to include copybook jcl          END    NQUEENS`
Output:
```           1           1
2           0
3           0
4           2
5          10
6           4
7          40
8          92
9         352
10         724
11        2680
12       14200
13       47600
14      365596
```

## ABAP

` TYPES: BEGIN OF gty_matrix,         1  TYPE c,         2  TYPE c,         3  TYPE c,         4  TYPE c,         5  TYPE c,         6  TYPE c,         7  TYPE c,         8  TYPE c,         9  TYPE c,         10 TYPE c,       END OF gty_matrix,       gty_t_matrix TYPE STANDARD TABLE OF gty_matrix INITIAL SIZE 8. DATA: gt_matrix TYPE gty_t_matrix,      gs_matrix TYPE gty_matrix,      gv_count  TYPE i VALUE 0,      gv_solut  TYPE i VALUE 0.  SELECTION-SCREEN BEGIN OF BLOCK b01 WITH FRAME TITLE text-b01.PARAMETERS: p_number TYPE i OBLIGATORY DEFAULT 8.SELECTION-SCREEN END OF BLOCK b01. " Filling empty tableSTART-OF-SELECTION.  DO p_number TIMES.    APPEND gs_matrix TO gt_matrix.  ENDDO. " Recursive Function  PERFORM fill_matrix USING gv_count 1 1 CHANGING gt_matrix.  BREAK-POINT.*&---------------------------------------------------------------------**&      Form  FILL_MATRIX*----------------------------------------------------------------------*FORM fill_matrix  USING    p_count TYPE i                           p_i     TYPE i                           p_j     TYPE i                  CHANGING p_matrix TYPE gty_t_matrix.   DATA: lv_i      TYPE i,        lv_j      TYPE i,        lv_result TYPE c LENGTH 1,        lt_matrix TYPE gty_t_matrix,        lv_count  TYPE i,        lv_value  TYPE c.   lt_matrix[] = p_matrix[].  lv_count = p_count.  lv_i = p_i.  lv_j = p_j.   WHILE lv_i LE p_number.    WHILE lv_j LE p_number.      CLEAR lv_result.      PERFORM check_position USING lv_i lv_j CHANGING lv_result lt_matrix.      IF lv_result NE 'X'.        MOVE 'X' TO lv_value.        PERFORM get_position USING lv_i lv_j 'U' CHANGING lv_value lt_matrix.        ADD 1 TO lv_count.        IF lv_count EQ p_number.          PERFORM show_matrix USING lt_matrix.        ELSE.          PERFORM fill_matrix USING lv_count lv_i lv_j CHANGING lt_matrix.        ENDIF.        lv_value = space.        PERFORM get_position USING lv_i lv_j 'U' CHANGING lv_value lt_matrix.        SUBTRACT 1 FROM lv_count.      ENDIF.      ADD 1 TO lv_j.    ENDWHILE.    ADD 1 TO lv_i.    lv_j = 1.  ENDWHILE.ENDFORM.                    " FILL_MATRIX *&---------------------------------------------------------------------**&      Form  CHECK_POSITION*&---------------------------------------------------------------------*FORM check_position  USING value(p_i)  TYPE i                           value(p_j)  TYPE i                     CHANGING p_result TYPE c                              p_matrix TYPE gty_t_matrix.   PERFORM get_position USING p_i p_j 'R' CHANGING p_result p_matrix.  CHECK p_result NE 'X'.   PERFORM check_horizontal USING p_i p_j CHANGING p_result p_matrix.  CHECK p_result NE 'X'.   PERFORM check_vertical USING p_i p_j CHANGING p_result p_matrix.  CHECK p_result NE 'X'.   PERFORM check_diagonals USING p_i p_j CHANGING p_result p_matrix. ENDFORM.                    " CHECK_POSITION *&---------------------------------------------------------------------**&      Form  GET_POSITION*&---------------------------------------------------------------------*FORM get_position  USING value(p_i)      TYPE i                         value(p_j)      TYPE i                         value(p_action) TYPE c                      CHANGING p_result  TYPE c                               p_matrix  TYPE gty_t_matrix.   FIELD-SYMBOLS: <fs_lmatrix> TYPE gty_matrix,                 <fs_lfield> TYPE any.   READ TABLE p_matrix ASSIGNING <fs_lmatrix> INDEX p_i.  ASSIGN COMPONENT p_j OF STRUCTURE <fs_lmatrix> TO <fs_lfield>.   CASE p_action.    WHEN 'U'.      <fs_lfield> = p_result.    WHEN 'R'.      p_result = <fs_lfield>.    WHEN OTHERS.  ENDCASE. ENDFORM.                    " GET_POSITION *&---------------------------------------------------------------------**&      Form  CHECK_HORIZONTAL*&---------------------------------------------------------------------*FORM check_horizontal  USING value(p_i)      TYPE i                             value(p_j)      TYPE i                          CHANGING p_result  TYPE c                                   p_matrix  TYPE gty_t_matrix.  DATA: lv_j TYPE i,        ls_matrix TYPE gty_matrix.   FIELD-SYMBOLS <fs> TYPE c.   lv_j = 1.  READ TABLE p_matrix INTO ls_matrix INDEX p_i.  WHILE lv_j LE p_number.    ASSIGN COMPONENT lv_j OF STRUCTURE ls_matrix TO <fs>.    IF <fs> EQ 'X'.      p_result = 'X'.      RETURN.    ENDIF.    ADD 1 TO lv_j.  ENDWHILE.ENDFORM.                    " CHECK_HORIZONTAL *&---------------------------------------------------------------------**&      Form  CHECK_VERTICAL*&---------------------------------------------------------------------*FORM check_vertical  USING value(p_i)      TYPE i                           value(p_j)      TYPE i                        CHANGING p_result  TYPE c                                 p_matrix  TYPE gty_t_matrix.  DATA: lv_i TYPE i,        ls_matrix TYPE gty_matrix.   FIELD-SYMBOLS <fs> TYPE c.   lv_i = 1.  WHILE lv_i LE p_number.    READ TABLE p_matrix INTO ls_matrix INDEX lv_i.    ASSIGN COMPONENT p_j OF STRUCTURE ls_matrix TO <fs>.    IF <fs> EQ 'X'.      p_result = 'X'.      RETURN.    ENDIF.    ADD 1 TO lv_i.  ENDWHILE.ENDFORM.                    " CHECK_VERTICAL *&---------------------------------------------------------------------**&      Form  CHECK_DIAGONALS*&---------------------------------------------------------------------*FORM check_diagonals  USING value(p_i)      TYPE i                            value(p_j)      TYPE i                         CHANGING p_result  TYPE c                                  p_matrix  TYPE gty_t_matrix.  DATA: lv_dx TYPE i,        lv_dy TYPE i. * I++ J++ (Up Right)  lv_dx = 1.  lv_dy = 1.  PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.  CHECK p_result NE 'X'. * I-- J-- (Left Down)  lv_dx = -1.  lv_dy = -1.  PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.  CHECK p_result NE 'X'. * I++ J-- (Right Down)  lv_dx = 1.  lv_dy = -1.  PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.  CHECK p_result NE 'X'. * I-- J++ (Left Up)  lv_dx = -1.  lv_dy = 1.  PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.  CHECK p_result NE 'X'.ENDFORM.                    " CHECK_DIAGONALS *&---------------------------------------------------------------------**&      Form  CHECK_DIAGONAL*&---------------------------------------------------------------------*FORM check_diagonal  USING value(p_i)      TYPE i                            value(p_j)      TYPE i                            value(p_dx)      TYPE i                            value(p_dy)      TYPE i                         CHANGING p_result  TYPE c                                  p_matrix  TYPE gty_t_matrix.  DATA: lv_i TYPE i,        lv_j TYPE i,        ls_matrix TYPE gty_matrix.   FIELD-SYMBOLS <fs> TYPE c.   lv_i = p_i.  lv_j = p_j.  WHILE 1 EQ 1.    ADD: p_dx TO lv_i, p_dy TO lv_j.     IF p_dx EQ 1.      IF lv_i GT p_number. EXIT. ENDIF.    ELSE.      IF lv_i LT 1. EXIT. ENDIF.    ENDIF.     IF p_dy EQ 1.      IF lv_j GT p_number. EXIT. ENDIF.    ELSE.      IF lv_j LT 1. EXIT. ENDIF.    ENDIF.     READ TABLE p_matrix INTO ls_matrix INDEX lv_i.    ASSIGN COMPONENT lv_j OF STRUCTURE ls_matrix TO <fs>.    IF <fs> EQ 'X'.      p_result = 'X'.      RETURN.    ENDIF.  ENDWHILE.ENDFORM.                    " CHECK_DIAGONAL*&---------------------------------------------------------------------**&      Form  SHOW_MATRIX*----------------------------------------------------------------------*FORM show_matrix USING p_matrix TYPE gty_t_matrix.  DATA: lt_matrix TYPE gty_t_matrix,        lv_j      TYPE i VALUE 1,        lv_colum  TYPE string VALUE '-'.   FIELD-SYMBOLS: <fs_matrix> TYPE gty_matrix,                 <fs_field>  TYPE c.   ADD 1 TO gv_solut.   WRITE:/ 'Solution: ', gv_solut.   DO p_number TIMES.    CONCATENATE lv_colum '----' INTO lv_colum.  ENDDO.   LOOP AT p_matrix ASSIGNING <fs_matrix>.    IF sy-tabix EQ 1.      WRITE:/ lv_colum.    ENDIF.    WRITE:/ '|'.    DO p_number TIMES.      ASSIGN COMPONENT lv_j OF STRUCTURE <fs_matrix> TO <fs_field>.      IF <fs_field> EQ space.        WRITE: <fs_field> ,'|'.      ELSE.        WRITE: <fs_field> COLOR 2 HOTSPOT ON,'|'.      ENDIF.      ADD 1 TO lv_j.    ENDDO.    lv_j = 1.    WRITE: / lv_colum.  ENDLOOP.   SKIP 1.ENDFORM.                    " SHOW_MATRIX `

`with Ada.Text_IO;  use Ada.Text_IO; procedure Queens is   Board : array (1..8, 1..8) of Boolean := (others => (others => False));   function Test (Row, Column : Integer) return Boolean is   begin      for J in 1..Column - 1 loop         if (  Board (Row, J)            or else               (Row > J and then Board (Row - J, Column - J))            or else               (Row + J <= 8 and then Board (Row + J, Column - J))            )  then            return False;         end if;      end loop;      return True;   end Test;   function Fill (Column : Integer) return Boolean is   begin      for Row in Board'Range (1) loop         if Test (Row, Column) then            Board (Row, Column) := True;            if Column = 8 or else Fill (Column + 1) then               return True;            end if;            Board (Row, Column) := False;         end if;      end loop;      return False;   end Fill;begin   if not Fill (1) then      raise Program_Error;   end if;   for I in Board'Range (1) loop      Put (Integer'Image (9 - I));      for J in Board'Range (2) loop         if Board (I, J) then            Put ("|Q");         elsif (I + J) mod 2 = 1 then            Put ("|/");         else            Put ("| ");         end if;      end loop;      Put_Line ("|");   end loop;   Put_Line ("   A B C D E F G H");end Queens;`
Output:
``` 8|Q|/| |/| |/| |/|
7|/| |/| |/| |Q| |
6| |/| |/|Q|/| |/|
5|/| |/| |/| |/|Q|
4| |Q| |/| |/| |/|
3|/| |/|Q|/| |/| |
2| |/| |/| |Q| |/|
1|/| |Q| |/| |/| |
A B C D E F G H
```

### Alternate solution

Translation of: Fortran

This one only counts solutions, though it's easy to do something else with each one (instead of the `M := M + 1;` line).

`with Ada.Text_IO;use Ada.Text_IO; procedure CountQueens is    function Queens (N : Integer) return Long_Integer is        A : array (0 .. N) of Integer;        U : array (0 .. 2 * N - 1) of Boolean := (others => true);        V : array (0 .. 2 * N - 1) of Boolean := (others => true);        M : Long_Integer := 0;         procedure Sub (I: Integer) is            K, P, Q: Integer;        begin            if N = I then                M := M + 1;            else                for J in I .. N - 1 loop                    P := I + A (J);                    Q := I + N - 1 - A (J);                    if U (P) and then V (Q) then                        U (P) := false;                        V (Q) := false;                        K := A (I);                        A (I) := A (J);                        A (J) := K;                        Sub (I + 1);                        U (P) := true;                        V (Q) := true;                        K := A (I);                        A (I) := A (J);                        A (J) := K;                    end if;                end loop;            end if;        end Sub;    begin        for I in 0 .. N - 1 loop            A (I) := I;        end loop;        Sub (0);        return M;    end Queens;begin    for N in 1 .. 16 loop        Put (Integer'Image (N));        Put (" ");        Put_Line (Long_Integer'Image (Queens (N)));    end loop;end CountQueens;`

## ALGOL 68

Translation of: C
Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386
`INT ofs = 1, # Algol68 normally uses array offset of 1 #    dim = 8; # dim X dim chess board #[ofs:dim+ofs-1]INT b; PROC unsafe = (INT y)BOOL:(  INT i, t, x;  x := b[y];  FOR i TO y - LWB b DO    t := b[y - i];    IF t = x THEN break true    ELIF t = x - i THEN break true    ELIF t = x + i THEN break true    FI  OD;  FALSE EXITbreak true:  TRUE); INT s := 0; PROC print board = VOID:(  INT x, y;  print((new line, "Solution # ", s+:=1, new line));  FOR y FROM LWB b TO UPB b DO     FOR x FROM LWB b TO UPB b DO      print("|"+(b[y]=x|"Q"|: ODD(x+y)|"/"|" "))    OD;    print(("|", new line))  OD); main: (  INT y := LWB b;  b[LWB b] := LWB b - 1;  FOR i WHILE y >= LWB b DO    WHILE      b[y]+:=1;  # BREAK # IF b[y] <= UPB b THEN unsafe(y) ELSE FALSE FI     DO SKIP OD;    IF b[y] <= UPB b  THEN      IF y < UPB b THEN        b[y+:=1] := LWB b - 1      ELSE        print board      FI    ELSE      y-:=1    FI  OD)`

## APL

Works with: Dyalog APL

More or less copied from the "DFS" lesson on tryapl.org .

` ⍝Solutionaccm←{⍺,((⍴⍵)=⍴⊃⍺)↑⊂⍵}               atk←{∪∊(⊂⍵)+¯1 0 1×⊂⌽⍳⍴⍵}            dfs←{⊃∇⍨/⌽(⊂⍺ ⍺⍺ ⍵),⍺ ⍵⍵ ⍵}          qfmt←{⍵∘.=⍳⍴⍵}      subs←{(⊂⍵),¨(⍳⍴⊃⍺)~atk ⍵}                 queens←{qfmt¨(↓0 ⍵⍴0)accm dfs subs ⍬}printqueens←{i←1⋄{⎕←'answer'i⋄⎕←⍵⋄i+←1}¨queens ⍵} ⍝Exampleprintqueens 6 `
Output:
``` answer  1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
```

## AppleScript

`-- Finds all possible solutions and the unique patterns. property Grid_Size : 8 property Patterns : {}property Solutions : {}property Test_Count : 0 property Rotated : {} on run    local diff    local endTime    local msg    local rows    local startTime     set Patterns to {}    set Solutions to {}    set Rotated to {}     set Test_Count to 0     set rows to Make_Empty_List(Grid_Size)     set startTime to current date    Solve(1, rows)    set endTime to current date    set diff to endTime - startTime     set msg to ("Found " & (count Solutions) & " solutions with " & (count Patterns) & " patterns in " & diff & " seconds.") as text    display alert msg     return Solutionsend run on Solve(row as integer, rows as list)    if row is greater than (count rows) then        Append_Solution(rows)        return    end if     repeat with column from 1 to Grid_Size        set Test_Count to Test_Count + 1        if Place_Queen(column, row, rows) then            Solve(row + 1, rows)        end if    end repeatend Solve on abs(n)    if n < 0 then        -n    else        n    end ifend abs on Place_Queen(column as integer, row as integer, rows as list)    local colDiff    local previousRow    local rowDiff    local testColumn     repeat with previousRow from 1 to (row - 1)        set testColumn to item previousRow of rows         if testColumn is equal to column then            return false        end if         set colDiff to abs(testColumn - column) as integer        set rowDiff to row - previousRow        if colDiff is equal to rowDiff then            return false        end if    end repeat     set item row of rows to column    return trueend Place_Queen on Append_Solution(rows as list)    local column    local rowsCopy    local testReflection    local testReflectionText    local testRotation    local testRotationText    local testRotations     copy rows to rowsCopy    set end of Solutions to rowsCopy    local rowsCopy     copy rows to testRotation    set testRotations to {}    repeat 3 times        set testRotation to Rotate(testRotation)        set testRotationText to testRotation as text        if Rotated contains testRotationText then            return        end if        set end of testRotations to testRotationText         set testReflection to Reflect(testRotation)        set testReflectionText to testReflection as text        if Rotated contains testReflectionText then            return        end if        set end of testRotations to testReflectionText    end repeat     repeat with testRotationText in testRotations        set end of Rotated to (contents of testRotationText)    end repeat    set end of Rotated to (rowsCopy as text)    set end of Rotated to (Reflect(rowsCopy) as text)     set end of Patterns to rowsCopyend Append_Solution on Make_Empty_List(depth as integer)    local i    local emptyList     set emptyList to {}    repeat with i from 1 to depth        set end of emptyList to missing value    end repeat    return emptyListend Make_Empty_List on Rotate(rows as list)    local column    local newColumn    local newRow    local newRows    local row    local rowCount     set rowCount to (count rows)    set newRows to Make_Empty_List(rowCount)    repeat with row from 1 to rowCount        set column to (contents of item row of rows)        set newRow to column        set newColumn to rowCount - row + 1        set item newRow of newRows to newColumn    end repeat     return newRowsend Rotate on Reflect(rows as list)    local column    local newRows     set newRows to {}    repeat with column in rows        set end of newRows to (count rows) - column + 1    end repeat     return newRowsend Reflect`

## Arc

This program prints out all possible solutions:

`(def nqueens (n (o queens))  (if (< len.queens n)    (let row (if queens (+ 1 queens.0.0) 0)      (each col (range 0 (- n 1))        (let new-queens (cons (list row col) queens)          (if (no conflicts.new-queens)            (nqueens n new-queens)))))    (prn queens))) ; check if the first queen in 'queens' lies on the same column or diagonal as; any of the others(def conflicts (queens)  (let (curr . rest) queens    (or (let curr-column curr.1          (some curr-column (map [_ 1] rest)))  ; columns        (some [diagonal-match curr _] rest)))) (def diagonal-match (curr other)  (is (abs (- curr.0 other.0))      (abs (- curr.1 other.1))))`
Output:

The output is one solution per line, each solution in the form `((row col) (row col) (row col) ...)`:

```arc> (nqueens 4)
((3 2) (2 0) (1 3) (0 1))
((3 1) (2 3) (1 0) (0 2))```

## ATS

` (* ****** ****** *)//// Solving N-queen puzzle//(* ****** ****** *)//// How to test:// ./queens// How to compile:// patscc -DATS_MEMALLOC_LIBC -o queens queens.dats//(* ****** ****** *)//#include"share/atspre_staload.hats"//#include"share/HATS/atspre_staload_libats_ML.hats"//(* ****** ****** *) funsolutions(N:int) = let//funshow(  board: list0(int)) : void =(  list0_foreach<int>  ( list0_reverse(board)  , lam(n) => ((N).foreach()(lam(i) => print_string(if i = n then " Q" else " _")); print_newline())  ) ;  print_newline())//funsafe(  i: int, j: int, k: int, xs: list0(int)) : bool =(  case+ xs of  | nil0() => true  | cons0(x, xs) => x != i && x != j && x != k && safe(i, j+1, k-1, xs))//funloop(  col: int, xs: list0(int)) : void =(N).foreach()(lam(i) =>ifsafe(i, i+1, i-1, xs)then let  val xs = cons0(i, xs)in  if col = N then show(xs) else loop(col+1, xs)end // end of [then])//in  loop(1, nil0())end // end of [solutions] (* ****** ****** *) val () = solutions(8) (* ****** ****** *) implement main0() = () (* ****** ****** *) (* end of [queens.dats] *) `

## AutoHotkey

### Output to formatted Message box

Translation of: C
`;; Post: http://www.autohotkey.com/forum/viewtopic.php?p=353059#353059; Timestamp: 05/may/2010; MsgBox % funcNQP(5)MsgBox % funcNQP(8) Return ;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;; ** USED VARIABLES **;; Global: All variables named Array[???];; Function funcNPQ: nQueens , OutText , qIndex;; Function Unsafe: nIndex , Idx , Tmp , Aux;; Function PutBoard: Output , QueensN , Stc , xxx , yyy;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ funcNQP(nQueens){  Global  Array := -1  Local OutText , qIndex := 0  While ( qIndex >= 0 )  {    Array[%qIndex%]++    While ( (Array[%qIndex%] < nQueens) && Unsafe(qIndex) )      Array[%qIndex%]++    If ( Array[%qIndex%] < nQueens )    {      If ( qIndex < nQueens-1 )        qIndex++  ,  Array[%qIndex%] := -1      Else        PutBoard(OutText,nQueens)    }    Else      qIndex--  }  Return OutText} ;------------------------------------------ Unsafe(nIndex){  Global  Local Idx := 1  ,  Tmp := 0  ,  Aux := Array[%nIndex%]  While ( Idx <= nIndex )  {    Tmp := "Array[" nIndex - Idx "]"    Tmp := % %Tmp%    If ( ( Tmp = Aux ) || ( Tmp = Aux-Idx ) || ( Tmp = Aux+Idx ) )      Return 1    Idx++  }  Return 0} ;------------------------------------------ PutBoard(ByRef Output,QueensN){  Global  Static Stc = 0  Local xxx := 0 , yyy := 0  Output .= "`n`nSolution #" (++Stc) "`n"  While ( yyy < QueensN )  {    xxx := 0    While ( xxx < QueensN )      Output .= ( "|" ( ( Array[%yyy%] = xxx ) ? "Q" : "_" ) )  ,  xxx++    Output .= "|`n"  ,  yyy++  }}`

### Includes a solution browser GUI

This implementation supports N = 4..12 queens, and will find ALL solutions for each of the different sizes. The screenshot shows the first solution of 10 possible solutions for N = 5 queens.

`N := 5Number: ; main entrance for different # of queens    SI := 1    Progress b2 w250 zh0 fs9, Calculating all solutions for %N% Queens ...    Gosub GuiCreate    Result := SubStr(Queens(N),2)    Progress Off    Gui Show,,%N%-Queens    StringSplit o, Result, `nFill: ; show solutions    GuiControl,,SI, %SI% / %o0%    Loop Parse, o%SI%, `,    {        C := A_Index        Loop %N%            GuiControl,,%C%_%A_Index% ; clear fields        GuiControl,,%C%_%A_LoopField%, r    }Return ;----------------------------------------------------------------------- Queens(N) {                                 ; Size of the board    Local c, O                              ; global array r    r1 := 1, c := 2, r2 := 3, O := ""       ; init: r%c% = row of Queen in column c     Right:                                  ; move to next column        If (c = N) {                        ; found solution            Loop %N%                        ; save row indices of Queens                O .= (A_Index = 1 ? "`n" : ",") r%A_Index%            GOTO % --c ? "Down" : "OUT"     ; for ALL solutions        }        c++, r%c% := 1                      ; next column, top row        GoTo % BAD(c) ? "Down" : "Right"    Down:                                   ; move down to next row        If (r%c% = N)            GoTo % --c ? "Down" : "OUT"        r%c%++                              ; row down        GoTo % BAD(c) ? "Down" : "Right"    OUT:        Return O} ;---------------------------------------------------------------------------- BAD(c) { ; Check placed Queens against Queen in row r%c%, column c    Loop % c-1        If (r%A_Index% = r%c% || ABS(r%A_Index%-r%c%) = c-A_Index)            Return 1} ;---------------------------------------------------------------------------- GuiCreate: ; Draw chess board    Gui Margin, 20, 15    Gui Font, s16, Marlett    Loop %N% {        C := A_Index        Loop %N% { ; fields            R := A_Index, X := 40*C-17, Y := 40*R-22            Gui Add, Progress, x%X% y%Y% w41 h41 Cdddddd, % 100*(R+C & 1) ;% shade fields            Gui Add, Text, x%X% y%Y% w41 h41 BackGroundTrans Border Center 0x200 v%C%_%R%        }    }    Gui Add, Button, x%x% w43 h25 gBF, 4 ; forth (default)    Gui Add, Button,xm yp w43 h25 gBF, 3 ; back     Gui Font, bold, Comic Sans MS    Gui Add, Text,% "x62 yp hp Center 0x200 vSI w" 40*N-80     Menu FileMenu, Add, E&xit, GuiClose    Loop 9        Menu CalcMenu, Add, % "Calculate " A_Index+3 " Queens", Calculate ;%    Menu HelpMenu, Add, &About, AboutBox    Menu MainMenu, Add, &File, :FileMenu    Menu MainMenu, Add, &Calculate, :CalcMenu    Menu MainMenu, Add, &Help, :HelpMenu    Gui Menu, MainmenuReturn ; ---------------------------------------------------------------------- AboutBox: ; message box with AboutText    Gui 1: +OwnDialogs    MsgBox, 64, About N-Queens, Many thanks ...Return Calculate: ; menu handler for calculations    N := A_ThisMenuItemPos + 3    Gui Destroy    GoTo Number ; ------------------------------------------------------------- BF:   SI := mod(SI+o0-2*(A_GuiControl=3), o0) + 1 ; left button text is "3"   GoTo Fill ; ---------------------------------------------------------------- GuiClose:ExitApp`

## BBC BASIC

The total number of solutions is displayed in the title bar and one solution is displayed. The code could be adapted to display a selected solution or multiple solutions.

`      Size% = 8      Cell% = 32      VDU 23,22,Size%*Cell%;Size%*Cell%;Cell%,Cell%,16,128+8,5      *font Arial Unicode MS,16      GCOL 3,11      FOR i% = 0 TO Size%-1 STEP 2        RECTANGLE FILL i%*Cell%*2,0,Cell%*2,Size%*Cell%*2        RECTANGLE FILL 0,i%*Cell%*2,Size%*Cell%*2,Cell%*2      NEXT      num% = FNqueens(Size%, Cell%)      SYS "SetWindowText", @hwnd%, "Total " + STR\$(num%) + " solutions"      REPEAT : WAIT 1 : UNTIL FALSE      END       DEF FNqueens(n%, s%)      LOCAL i%, j%, m%, p%, q%, r%, a%(), b%(), c%()      DIM a%(n%), b%(n%), c%(4*n%-2)      FOR i% = 1 TO DIM(a%(),1) : a%(i%) = i% : NEXT      m% = 0      i% = 1      j% = 0      r% = 2*n%-1      REPEAT        i% -= 1        j% += 1        p% = 0        q% = -r%        REPEAT          i% += 1          c%(p%) = 1          c%(q%+r%) = 1          SWAP a%(i%),a%(j%)          p% = i% - a%(i%) + n%          q% = i% + a%(i%) - 1          b%(i%) = j%          j% = i% + 1        UNTIL j% > n% OR c%(p%) OR c%(q%+r%)        IF c%(p%)=0 IF c%(q%+r%)=0 THEN          IF m% = 0 THEN            FOR p% = 1 TO n%              MOVE 2*s%*(a%(p%)-1)+6, 2*s%*p%+6              PRINT "♛";            NEXT          ENDIF          m% += 1        ENDIF        j% = b%(i%)        WHILE j% >= n% AND i% <> 0          REPEAT            SWAP a%(i%), a%(j%)            j% = j%-1          UNTIL j% < i%          i% -= 1          p% = i% - a%(i%) + n%          q% = i% + a%(i%) - 1          j% = b%(i%)          c%(p%) = 0          c%(q%+r%) = 0        ENDWHILE      UNTIL i% = 0      = m%`

## BCPL

`// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10. GET "libhdr.h" GLOBAL { count:ug; all  } LET try(ld, row, rd) BE TEST row=all                         THEN count := count + 1                         ELSE { LET poss = all & ~(ld | row | rd)                               WHILE poss DO                               { LET p = poss & -poss                                 poss := poss - p                                 try(ld+p << 1, row+p, rd+p >> 1)                               }                             } LET start() = VALOF{ all := 1   FOR i = 1 TO 16 DO  { count := 0    try(0, 0, 0)    writef("Number of solutions to %i2-queens is %i7*n", i, count)    all := 2*all + 1  }   RESULTIS 0} `

The following is a re-implementation of the algorithm given above but using the MC package that allows machine independent runtime generation of native machine code (currently only available for i386 machines). It runs about 25 times faster that the version given above.

` GET "libhdr.h"GET "mc.h" MANIFEST { lo=1; hi=16 dlevel=#b0000  // Register mnemonics ld    = mc_a row   = mc_b rd    = mc_c poss  = mc_d p     = mc_e count = mc_f} LET start() = VALOF{ // Load the dynamic code generation package  LET mcseg = globin(loadseg("mci386"))  LET mcb = 0   UNLESS mcseg DO  { writef("Trouble with MC package: mci386*n")    GOTO fin  }   // Create an MC instance for hi functions with a data space  // of 10 words and code space of 40000  mcb := mcInit(hi, 10, 40000)   UNLESS mcb DO  { writef("Unable to create an mci386 instance*n")    GOTO fin  }    mc := 0          // Currently no selected MC instance  mcSelect(mcb)   mcK(mc_debug, dlevel) // Set the debugging level   FOR n = lo TO hi DO  { mcComment("*n*n// Code for a %nx%n board*n", n, n)    gencode(n) // Compile the code for an nxn board  }   mcF(mc_end) // End of code generation   writef("Code generation complete*n")   FOR n = lo TO hi DO  { LET k = mcCall(n)    writef("Number of solutions to %i2-queens is %i9*n", n, k)  } fin:  IF mc    DO mcClose()  IF mcseg DO unloadseg(mcseg)     writef("*n*nEnd of run*n")} AND gencode(n) BE{ LET all = (1<<n) - 1  mcKKK(mc_entry, n, 3, 0)   mcRK(mc_mv, ld,    0)  mcRK(mc_mv, row,   0)  mcRK(mc_mv, rd,    0)  mcRK(mc_mv, count, 0)   cmpltry(1, n, all)        // Compile the outermost call of try   mcRR(mc_mv, mc_a, count)  // return count  mcF(mc_rtn)  mcF(mc_endfn)} AND cmpltry(i, n, all) BE{ LET L = mcNextlab()   mcComment("*n// Start of code from try(%n, %n, %n)*n", i, n, all)   mcRR(mc_mv,  poss, ld)         // LET poss = (~(ld | row | rd)) & all  mcRR(mc_or,  poss, row)  mcRR(mc_or,  poss, rd)  mcR (mc_not, poss)  mcRK(mc_and, poss, all)   mcRK(mc_cmp, poss, 0)          // IF poss DO  TEST n-i<=2  THEN mcJS(mc_jeq, L)           // (use a short jump if near the last row)  ELSE mcJL(mc_jeq, L)   TEST i=n  THEN { // We can place a queen in the final row.         mcR(mc_inc,  count)     //   count := count+1       }  ELSE { // We can place queen(s) in a non final row.         LET M = mcNextlab()          mcL (mc_lab,  M)        // { Start of REPEATWHILE loop          mcRR(mc_mv,   p, poss)  //   LET p = poss & -poss         mcR (mc_neg,  p)         mcRR(mc_and,  p, poss)  //   // p is a valid queens position         mcRR(mc_sub,  poss, p)  //   poss := poss - p           mcR (mc_push, ld)       //   Save current state         mcR (mc_push, row)         mcR (mc_push, rd)         mcR (mc_push, poss)                                 //   Call try((ld+p)<<1, row+p, (rd+p)>>1)         mcRR(mc_add,  ld,  p)         mcRK(mc_lsh,  ld,  1)   //   ld  := (ld+p)<<1         mcRR(mc_add,  row, p)   //   row := row+p         mcRR(mc_add,  rd,  p)         mcRK(mc_rsh,  rd,  1)   //   rd  := (rd+p)>>1          cmpltry(i+1, n, all)    //   Compile code for row i+1          mcR (mc_pop,  poss)     //   Restore the state         mcR (mc_pop,  rd)         mcR (mc_pop,  row)         mcR (mc_pop,  ld)          mcRK(mc_cmp,  poss, 0)         mcJL(mc_jne, M)         // } REPEATWHILE poss       }        mcL(mc_lab, L)       mcComment("// End   of code from try(%n, %n, %n)*n*n",                 i, n, all)} `

## Befunge

This algorithm works with any board size from 4 upwards.

`<[email protected]_v#!:-1,+55,g\1\$_:00g2%-0vv:,+55<&,,,,,,"Size: ""| Q"\$\$\$>:01p:2%!00g0>>^<<!:-1\<1>00p::2%-:40p2/50p2*1+!77**48*+31p\:1\g,::2\g:,\3\g,,^g>0g++40g%40g\-\40g\`*-2g05\**!!%6g04-g052!:`\g05::-1/2<^4*2%g05\+*+1*!!%6g04-`
Output:
```Size: 8

+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   | Q |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   | Q |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   |   |   |
+---+---+---+---+---+---+---+---+```

## Bracmat

`(   ( printBoard    =   board M L x y S R row line      .   :?board        & !ups:? [?M        &   whl          ' ( !arg:(?x.?y) ?arg            & !M:?L            & :?row:?line            &   whl              ' ( !L+-1:~<0:?L                & !x+1:~>!M:?x                & "---+" !line:?line                & "   |" !row:?row                )            & "---+" !line:?line            & " Q |" !row:?row            &   whl              ' ( !L+-1:~<0:?L                & "---+" !line:?line                & "   |" !row:?row                )            & "\n|" !row "\n+" !line !board:?board            )        & str\$("\n+" !line !board)    )    ( queens    =   hor ver up down ups downs a z A Z x y Q      .   !arg:(?hor.?ver.?ups.?downs.?Q)        &   !ver          : (                 & 1+!solutions:?solutions              { Comment the line below if you only want a count. }              & out\$(str\$("\nsolution " !solutions) printBoard\$!Q)              & ~  { Fail! (and backtrack to find more solutions)}            |   #%?y                ( ?z                &   !hor                  :   ?A                      #%?x                      ( ?Z                      & !x+!y:?up                      & !x+-1*!y:?down                      & ~(!ups:? !up ?)                      & ~(!downs:? !down ?)                      &   queens                        \$ ( !A !Z                          . !z                          . !up !ups                          . !down !downs                          . (!x.!y) !Q                          )                      )                )            )    )& 0:?solutions& 1 2 3 4 5 6 7 8:?H:?V   {You can edit this line to find solutions for other sizes.}& ( queens\$(!H.!V...)   | out\$(found !solutions solutions)  ));`
Output:
(tail):
```solution 91

+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   | Q |
+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   | Q |   |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |
+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   |   |   |
+---+---+---+---+---+---+---+---+

solution 92

+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   | Q |
+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   |   |   |
+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   | Q |   |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |
+---+---+---+---+---+---+---+---+
found 92 solutions```

## C

C99, compiled with `gcc -std=c99 -Wall`. Take one commandline argument: size of board, or default to 8. Shows the board layout for each solution.
`#include <stdio.h>#include <stdlib.h> int count = 0;void solve(int n, int col, int *hist){	if (col == n) {		printf("\nNo. %d\n-----\n", ++count);		for (int i = 0; i < n; i++, putchar('\n'))			for (int j = 0; j < n; j++)				putchar(j == hist[i] ? 'Q' : ((i + j) & 1) ? ' ' : '.'); 		return;	} #	define attack(i, j) (hist[j] == i || abs(hist[j] - i) == col - j)	for (int i = 0, j = 0; i < n; i++) {		for (j = 0; j < col && !attack(i, j); j++);		if (j < col) continue; 		hist[col] = i;		solve(n, col + 1, hist);	}} int main(int n, char **argv){	if (n <= 1 || (n = atoi(argv)) <= 0) n = 8;	int hist[n];	solve(n, 0, hist);}`
Similiar to above, but using bits to save board configurations and quite a bit faster:
`#include <stdio.h>#include <stdlib.h>#include <stdint.h> typedef uint32_t uint;uint full, *qs, count = 0, nn; void solve(uint d, uint c, uint l, uint r){	uint b, a, *s;	if (!d) {		count++;#if 0		printf("\nNo. %d\n===========\n", count);		for (a = 0; a < nn; a++, putchar('\n'))			for (b = 0; b < nn; b++, putchar(' '))				putchar(" -QQ"[((b == qs[a])<<1)|((a + b)&1)]);#endif		return;	} 	a = (c | (l <<= 1) | (r >>= 1)) & full;	if (a != full)		for (*(s = qs + --d) = 0, b = 1; b <= full; (*s)++, b <<= 1)			if (!(b & a)) solve(d, b|c, b|l, b|r);} int main(int n, char **argv){	if (n <= 1 || (nn = atoi(argv)) <= 0) nn = 8; 	qs = calloc(nn, sizeof(int));	full = (1U << nn) - 1; 	solve(nn, 0, 0, 0);	printf("\nSolutions: %d\n", count);	return 0;}`

Take that and unwrap the recursion, plus some heavy optimizations, and we have a very fast and very unreadable solution:

`#include <stdio.h>#include <stdlib.h> typedef unsigned int uint;uint count = 0; #define ulen sizeof(uint) * 8 /* could have defined as int solve(...), but void may have less   chance to confuse poor optimizer */void solve(int n){	int cnt = 0;	const uint full = -(int)(1 << (ulen - n));	register uint bits, pos, *m, d, e; 	uint b0, b1, l, r, c, mm = {0};	n -= 3;	/* require second queen to be left of the first queen, so	   we ever only test half of the possible solutions. This	   is why we can't handle n=1 here */	for (b0 = 1U << (ulen - n - 3); b0; b0 <<= 1) {		for (b1 = b0 << 2; b1; b1 <<= 1) {			d = n;			/* c: columns occupied by previous queens.			   l: columns attacked by left diagonals			   r: by right diagnoals */			c[n] = b0 | b1;			l[n] = (b0 << 2) | (b1 << 1);			r[n] = (b0 >> 2) | (b1 >> 1); 			/* availabe columns on current row. m is stack */			bits = *(m = mm + 1) = full & ~(l[n] | r[n] | c[n]); 			while (bits) {				/* d: depth, aka row. counting backwards				   because !d is often faster than d != n */				while (d) {					/* pos is right most nonzero bit */					pos = -(int)bits & bits; 					/* mark bit used. only put current bits					   on stack if not zero, so backtracking					   will skip exhausted rows (because reading					   stack variable is sloooow compared to					   registers) */					if ((bits &= ~pos))						*m++ = bits | d; 					/* faster than l[d+1] = l[d]... */					e = d--;					l[d] = (l[e] | pos) << 1;					r[d] = (r[e] | pos) >> 1;					c[d] =  c[e] | pos; 					bits = full & ~(l[d] | r[d] | c[d]); 					if (!bits) break;					if (!d) { cnt++; break; }				}				/* Bottom of stack m is a zero'd field acting				   as sentinel.  When saving to stack, left				   27 bits are the available columns, while				   right 5 bits is the depth. Hence solution				   is limited to size 27 board -- not that it				   matters in foreseeable future. */				d = (bits = *--m) & 31U;				bits &= ~31U;			}		}	}	count = cnt * 2;} int main(int c, char **v){	int nn;	if (c <= 1 || (nn = atoi(v)) <= 0) nn = 8; 	if (nn > 27) {		fprintf(stderr, "Value too large, abort\n");		exit(1);	} 	/* Can't solve size 1 board; might as well skip 2 and 3 */	if (nn < 4) count = nn == 1;	else	    solve(nn); 	printf("\nSolutions: %d\n", count);	return 0;}`

A slightly cleaned up version of the code above where some optimizations were redundant. This version is also further optimized, and runs about 15% faster than the one above on modern compilers:

`#include <stdio.h>#define MAXN 31 int nqueens(int n){  int q0,q1;  int cols[MAXN], diagl[MAXN], diagr[MAXN], posibs[MAXN]; // Our backtracking 'stack'   int num=0;  //  // The top level is two fors, to save one bit of symmetry in the enumeration by forcing second queen to  // be AFTER the first queen.  //  for (q0=0; q0<n-2; q0++) {    for (q1=q0+2; q1<n; q1++){      int bit0 = 1<<q0;      int bit1 = 1<<q1;      int d=0; // d is our depth in the backtrack stack       cols = bit0 | bit1 | (-1<<n); // The -1 here is used to fill all 'coloumn' bits after n ...      diagl= (bit0<<1 | bit1)<<1;      diagr= (bit0>>1 | bit1)>>1;       //  The variable posib contains the bitmask of possibilities we still have to try in a given row ...      int posib = ~(cols | diagl | diagr);       while (d >= 0) {        while(posib) {          int bit = posib & -posib; // The standard trick for getting the rightmost bit in the mask          int ncols= cols[d] | bit;          int ndiagl = (diagl[d] | bit) << 1;          int ndiagr = (diagr[d] | bit) >> 1;          int nposib = ~(ncols | ndiagl | ndiagr);          posib^=bit; // Eliminate the tried possibility.           // The following is the main additional trick here, as recognizing solution can not be done using stack level (d),          // since we save the depth+backtrack time at the end of the enumeration loop. However by noticing all coloumns are          // filled (comparison to -1) we know a solution was reached ...          // Notice also that avoiding an if on the ncols==-1 comparison is more efficient!          num += ncols==-1;            if (nposib) {            if (posib) { // This if saves stack depth + backtrack operations when we passed the last possibility in a row.              posibs[d++] = posib; // Go lower in stack ..            }            cols[d] = ncols;            diagl[d] = ndiagl;            diagr[d] = ndiagr;            posib = nposib;          }        }        posib = posibs[--d]; // backtrack ...      }    }  }  return num*2;}  main(int ac , char **av) {  if(ac != 2) {    printf("usage: nq n\n");    return 1;  }  int n = atoi(av);  if(n<1 || n > MAXN) {    printf("n must be between 2 and 31!\n");  }  printf("Number of solution for %d is %d\n",n,nqueens(n));} `

## C#

### Roger Hui (1981) Algorithm

From Hui, Roger, The N Queens Problem, APL Quote-Quad, Volume 11, Number 3, 1981-03:-

"In a solution, each possible row (column) index must appear exactly once: an index occurring more than once means that two queens are on the same row (column); and the absence of an index means that some other index must occur more than once. Hence, we can specify an arrangement as a permutation of ⍳n , which are the column indices, with the row indices understood to be ⍳n . With this, the number of possibilities is reduced from n!n×n to !n . It remains to eliminate arrangements having two queens on the same diagonal.

If two queens occupy the same diagonal, the line connecting them has slope 1 or ¯1 . Conversely, if the line connecting two queens has slope 1 or ¯1 , the two queens share a diagonal. Therefore, we seek to eliminate all permutations specifying a pair of queens where ((change in y) ÷ (change in x)) ∊ 1 ¯1 , or (|change in y) = (|change in x)"

Translation of: J
Works with: C# version 7
`using System.Collections.Generic;using static System.Linq.Enumerable;using static System.Console;using static System.Math; namespace N_Queens{    static class Program    {        static void Main(string[] args)        {            var n = 8;            var cols = Range(0, n);            var combs = cols.Combinations(2).Select(pairs=> pairs.ToArray());            var solved = from v in cols.Permutations().Select(p => p.ToArray())                         where combs.All(c => Abs(v[c] - v[c]) != Abs(c - c))                         select v;             WriteLine(\$"{n}-queens has {solved.Count()} solutions");            WriteLine("Position is row, value is column:-");            var first = string.Join(" ", solved.First());            WriteLine(\$"First Solution: {first}");            Read();        }         //Helpers         public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values)        {            if (values.Count() == 1)                return values.ToSingleton();             return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())), (v, p) => p.Prepend(v));        }         public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> seq) =>            seq.Aggregate(Empty<T>().ToSingleton(), (a, b) => a.Concat(a.Select(x => x.Append(b))));         public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> seq, int numItems) =>            seq.Combinations().Where(s => s.Count() == numItems);         public static IEnumerable<T> ToSingleton<T>(this T item) { yield return item; }    }}`

Output

```8-queens has 92 solutions
Position is row, value is column:-
First Solution: 0 4 7 5 2 6 1 3
```

### Hettinger Algorithm

Compare this to the Hettinger solution used in the first Python answer. The logic is similar but the diagonal calculation is different and more expensive computationally (Both suffer from being unable to eliminate permutation prefixes that are invalid e.g. 0 1 ...)

` using System.Collections.Generic;using static System.Linq.Enumerable;using static System.Console;using static System.Math; namespace N_Queens{    static class Program    {        static void Main(string[] args)        {            var n = 8;            var cols = Range(0, n);            var solved = from v in cols.Permutations().Select(p => p.ToArray())                         where n == (from i in cols select v[i]+i).Distinct().Count()                         where n == (from i in cols select v[i]-i).Distinct().Count()                         select v;             WriteLine(\$"{n}-queens has {solved.Count()} solutions");            WriteLine("Position is row, value is column:-");            var first = string.Join(" ", solved.First());            WriteLine(\$"First Solution: {first}");            Read();        }         //Helpers from https://gist.github.com/martinfreedman/139dd0ec7df4737651482241e48b062f         public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values)        {            if (values.Count() == 1)                return values.ToSingleton();             return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())), (v, p) => p.Prepend(v));        }         public static IEnumerable<T> ToSingleton<T>(this T item) { yield return item; }    }}`

### Amb solution

This uses the second version of the Amb C# class in the Amb challenge. Really that is not McCarthy's Amb (Ambiguous function) and here it is used just as a simple general interface by lambdas to a standalone backtrack algorithm. Due to the specification of the Amb challenge, this, ironically (given the notion of ambiguous functions), only produces one solution not 92. It is trivial to update Amb (might be better called a backtracker rather than Amb too) but here it is just used to show how easy it is to go from a generate and prune Linq solution to a backtrack solution. The Linq filters becoming "amb" requirements.

Works with: C# version 7.1
`using static System.Linq.Enumerable;using static System.Console; namespace N_Queens{    static class Program    {        static void Main(string[] args)        {            var n = 8;            var domain = Range(0, n).ToArray();             var amb = new Amb.Amb();            var queens = domain.Select(_ => amb.Choose(domain)).ToArray();            amb.Require(() => n == queens.Select(q=> q.Value).Distinct().Count());            amb.Require(() => n == domain.Select(i=> i + queens[i].Value).Distinct().Count());            amb.Require(() => n == domain.Select(i=> i - queens[i].Value).Distinct().Count());             if (amb.Disambiguate())            {                WriteLine("Position is row, value is column:-");                WriteLine(string.Join(" ", queens.AsEnumerable()));            }            else                WriteLine("amb is angry");            Read();        }    }}`

## C++

`// Much shorter than the version below;// uses C++11 threads to parallelize the computation; also uses backtracking// Outputs all solutions for any table size#include <vector>#include <iostream>#include <iomanip>#include <thread>#include <future> // Print table. 'pos' is a vector of positions – the index in pos is the row,// and the number at that index is the column where the queen is placed.static void print(const std::vector<int> &pos){	// print table header	for (int i = 0; i < pos.size(); i++) {		std::cout << std::setw(3) << char('a' + i);	} 	std::cout << '\n'; 	for (int row = 0; row < pos.size(); row++) {		int col = pos[row];		std::cout << row + 1 << std::setw(3 * col + 3) << " # ";		std::cout << '\n';	} 	std::cout << "\n\n";} static bool threatens(int row_a, int col_a, int row_b, int col_b){	return row_a == row_b // same row		or col_a == col_b // same column		or std::abs(row_a - row_b) == std::abs(col_a - col_b); // diagonal} // the i-th queen is in the i-th row// we only check rows up to end_idx// so that the same function can be used for backtracking and checking the final solutionstatic bool good(const std::vector<int> &pos, int end_idx){	for (int row_a = 0; row_a < end_idx; row_a++) {		for (int row_b = row_a + 1; row_b < end_idx; row_b++) {			int col_a = pos[row_a];			int col_b = pos[row_b];			if (threatens(row_a, col_a, row_b, col_b)) {				return false;			}		}	} 	return true;} static std::mutex print_count_mutex; // mutex protecting 'n_sols'static int n_sols = 0; // number of solutions // recursive DFS backtracking solverstatic void n_queens(std::vector<int> &pos, int index){	// if we have placed a queen in each row (i. e. we are at a leaf of the search tree), check solution and return	if (index >= pos.size()) {		if (good(pos, index)) {			std::lock_guard<std::mutex> lock(print_count_mutex);			print(pos);			n_sols++;		} 		return;	} 	// backtracking step	if (not good(pos, index)) {		return;	} 	// optimization: the first level of the search tree is parallelized	if (index == 0) {		std::vector<std::future<void>> fts;		for (int col = 0; col < pos.size(); col++) {			pos[index] = col;			auto ft = std::async(std::launch::async, [=]{ auto cpos(pos); n_queens(cpos, index + 1); });			fts.push_back(std::move(ft));		} 		for (const auto &ft : fts) {			ft.wait();		}	} else { // deeper levels are not		for (int col = 0; col < pos.size(); col++) {			pos[index] = col;			n_queens(pos, index + 1);		}	}} int main(){	std::vector<int> start(12); // 12: table size	n_queens(start, 0);	std::cout << n_sols << " solutions found.\n";	return 0;} `
Output:
Output for N = 4:
```  a  b  c  d
1    #
2          #
3 #
4       #

a  b  c  d
1       #
2 #
3          #
4    #       ```
` // A straight-forward brute-force C++ version with formatted output,// eschewing obfuscation and C-isms, producing ALL solutions, which// works on any OS with a text terminal.//// Two basic optimizations are applied:////   It uses backtracking to only construct potentially valid solutions.////   It only computes half the solutions by brute -- once we get the//   queen halfway across the top row, any remaining solutions must be//   reflections of the ones already computed.//// This is a bare-bones example, without any progress feedback or output// formatting controls, which a more complete program might provide.//// Beware that computing anything larger than N=14 might take a while.// (Time gets exponentially worse the higher the number.) // Copyright 2014 Michael Thomas Greer// Distributed under the Boost Software License, Version 1.0.// http://www.boost.org/LICENSE_1_0.txt #include <algorithm>#include <ciso646>#include <iomanip>#include <iostream>#include <set>#include <sstream>#include <stdexcept>#include <string>#include <vector>  // ///////////////////////////////////////////////////////////////////////////struct queens/////////////////////////////////////////////////////////////////////////// //{  // TYPES -------------------------------------------------------------------   // A row or column index. (May be signed or unsigned.)  //  typedef signed char index_type;   // A 'solution' is a row --> column lookup of queens on the board.  //  // It has lexicographical order and can be transformed with a variety of  // reflections, which, when properly combined, produce all possible  // orientations of a solution.  //  struct solution_type: std::vector <index_type>  {    typedef std::vector <index_type> base_type;     // constructors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    solution_type( std::size_t N          ): base_type( N, -1 ) { }    solution_type( const solution_type& s ): base_type( s     ) { }     // compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    bool operator < ( const solution_type& s ) const    {      auto mm = std::mismatch( begin(), end(), s.begin() );      return (mm.first != end()) and (*mm.first < *mm.second);    }     // transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .    void vflip() { std::reverse( begin(), end() ); }     void hflip() { for (auto& x : *this) x = size() - 1 - x; }     void transpose()    {      solution_type result( size() );      for (index_type y = 0; (std::size_t)y < size(); y++)        result[ (*this)[ y ] ] = y;      swap( result );    }  };   // MEMBER VALUES -----------------------------------------------------------   const int                N;  std::set <solution_type> solutions;   // SOLVER ------------------------------------------------------------------   queens( int N = 8 ):    N( (N < 0) ? 0 : N )  {    // Row by row we create a potentially valid solution.    // If a queen can be placed in a valid spot by the time    // we get to the last row, then we've found a solution.     solution_type solution( N );    index_type row = 0;    while (true)    {      // Advance the queen along the row      ++solution[ row ];       // (If we get past halfway through the first row, we're done.)      if ((row == 0) and (solution[ 0 ] > N/2)) break;       if (solution[ row ] < N)      {        // If the queen is in a good spot...        if (ok( solution, row, solution[ row ] ))        {          // ...and we're on the last row          if (row == N-1)          {            // Add the solution we found plus all it's reflections            solution_type            s = solution;  solutions.insert( s );            s.vflip();     solutions.insert( s );            s.hflip();     solutions.insert( s );            s.vflip();     solutions.insert( s );            s.transpose(); solutions.insert( s );            s.vflip();     solutions.insert( s );            s.hflip();     solutions.insert( s );            s.vflip();     solutions.insert( s );          }          // otherwise begin marching a queen along the next row          else solution[ ++row ] = -1;        }       // When we get to the end of a row's columns then      // we need to backup a row and continue from there.      }      else --row;    }  }   // HELPER ------------------------------------------------------------------  // This routine helps the solver by identifying column locations  // that do not conflict with queens already placed in prior rows.   bool ok( const solution_type& columns, index_type row, index_type column )  {    for (index_type r = 0; r < row; r++)    {      index_type c         = columns[ r ];      index_type delta_row = row - r;      index_type delta_col = (c < column) ? (column - c) : (c - column);       if ((c == column) or (delta_row == delta_col))        return false;    }    return true;  }   // OUTPUT A SINGLE SOLUTION ------------------------------------------------  //  // Formatted as (for example):  //  //   d1 b2 g3 c4 f5 h6 e7 a8  //   Q - - - - - - -  //   - - - - Q - - -  //   - - - - - - - Q  //   - - - - - Q - -  //   - - Q - - - - -  //   - - - - - - Q -  //   - Q - - - - - -  //   - - - Q - - - -  //  friend  std::ostream&  operator << ( std::ostream& outs, const queens::solution_type& solution )  {    static const char* squares[] = { "- ", "Q " };    index_type N = solution.size();     // Display the queen positions    for (auto n = N; n--; )      outs << (char)('a' + solution[ n ]) << (N - n) << " ";     // Display the board    for (auto queen : solution)    {      outs << "\n";      for (index_type col = 0; col < N; col++)        outs << squares[ col == queen ];    }    return outs;  }   // OUTPUT ALL SOLUTIONS ----------------------------------------------------  //  // Display "no solutions" or "N solutions" followed by  // each individual solution, separated by blank lines.   friend  std::ostream&  operator << ( std::ostream& outs, const queens& q )  {    if (q.solutions.empty()) outs << "no";    else                     outs << q.solutions.size();    outs << " solutions";     std::size_t n = 1;    for (auto solution : q.solutions)    {      outs << "\n\n#" << n++ << "\n" << solution;    }     return outs;  }};  /* ///////////////////////////////////////////////////////////////////////////string_to <type> ( x )/////////////////////////////////////////////////////////////////////////// */ template <typename T>T string_to( const std::string& s ){  T result;  std::istringstream ss( s );  ss >> result;  if (!ss.eof()) throw std::runtime_error( "to_string(): invalid conversion" );  return result;} template <typename T, T default_value>T string_to( const std::string& s ){  try { return string_to <T> ( s ); }  catch (...) { return default_value; }}  /* ///////////////////////////////////////////////////////////////////////////main program/////////////////////////////////////////////////////////////////////////// */ int usage( const std::string& name ){  std::cerr <<    "usage:\n  " << name << " 8\n\n"    ""    "Solve the N-Queens problem, brute-force,\n"    "and show all solutions for an 8x8 board.\n\n"    ""    "(Specify a value other than 8 for the board size you want.)\n";  return 1;} int main( int argc, char** argv ){  signed N =    (argc < 2) ? 8 :    (argc > 2) ? 0 : string_to <signed, 0> ( argv[ 1 ] );   if (N <= 0) return usage( argv[ 0 ] );   std::cout << queens( N ) << "\n";} `
Output:
for N=4:
```2 solutions

#1
c1 a2 d3 b4
- Q - -
- - - Q
Q - - -
- - Q -

#2
b1 d2 a3 c4
- - Q -
Q - - -
- - - Q
- Q - -
```

### Alternate version

Windows-only

` #include <windows.h>#include <iostream>#include <string> //--------------------------------------------------------------------------------------------------using namespace std; //--------------------------------------------------------------------------------------------------class point{public:    int x, y;    point(){ x = y = 0; }    void set( int a, int b ){ x = a; y = b; }};//--------------------------------------------------------------------------------------------------class nQueens{public:    void solve( int c )    {        _count = c; int len = ( c + 1 ) * ( c + 1 ); _queens = new bool[len]; memset( _queens, 0, len );	_cl = new bool[c]; memset( _cl, 0, c ); _ln = new bool[c]; memset( _ln, 0, c );	point pt; pt.set( rand() % c, rand() % c ); putQueens( pt, c ); displayBoard();	delete [] _queens; delete [] _ln; delete [] _cl;    } private:    void displayBoard()    {	system( "cls" ); string t = "+---+", q = "| Q |", s = "|   |";	COORD c = { 0, 0 }; HANDLE h = GetStdHandle( STD_OUTPUT_HANDLE );	for( int y = 0, cy = 0; y < _count; y++ )	{	    int yy = y * _count;	    for( int x = 0; x < _count; x++ )	    {		SetConsoleCursorPosition( h, c ); cout << t;		c.Y++; SetConsoleCursorPosition( h, c );		if( _queens[x + yy] ) cout << q; else cout << s;		c.Y++; SetConsoleCursorPosition( h, c );		cout << t; c.Y = cy; c.X += 4;	    }	    cy += 2; c.X = 0; c.Y = cy;        }    }     bool checkD( int x, int y, int a, int b )    {	if( x < 0 || y < 0 || x >= _count || y >= _count ) return true;	if( _queens[x + y * _count] ) return false;	if( checkD( x + a, y + b, a, b ) ) return true;	return false;    }     bool check( int x, int y )    {	if( _ln[y] || _cl[x] )        return false;	if( !checkD( x, y, -1, -1 ) ) return false;	if( !checkD( x, y,  1, -1 ) ) return false;	if( !checkD( x, y, -1,  1 ) ) return false;	if( !checkD( x, y,  1,  1 ) ) return false;	return true;    }     bool putQueens( point pt, int cnt )    {	int it = _count;	while( it )	{	    if( !cnt ) return true;	    if( check( pt.x, pt.y ) )	    {		_queens[pt.x + pt.y * _count] = _cl[pt.x] = _ln[pt.y] = true;		point tmp = pt; if( ++tmp.x >= _count ) tmp.x = 0; if( ++tmp.y >= _count ) tmp.y = 0;		if( putQueens( tmp, cnt - 1 ) ) return true;		_queens[pt.x + pt.y * _count] = _cl[pt.x] = _ln[pt.y] = false;	    }	    if( ++pt.x >= _count ) pt.x = 0;	    it--;	}	return false;    }     int          _count;    bool*        _queens, *_ln, *_cl;};//--------------------------------------------------------------------------------------------------int main( int argc, char* argv[] ){    nQueens n; int nq;    while( true )    {	system( "cls" ); cout << "Enter board size bigger than 3 (0 - 3 to QUIT): "; cin >> nq;	if( nq < 4 ) return 0; n.solve( nq ); cout << endl << endl;	system( "pause" );    }    return  0;}//-------------------------------------------------------------------------------------------------- `
Output:
```+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   | Q |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | Q |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |   |   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   | Q |   |   |   |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | Q |
+---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   |   | Q |   |   |   |   |   |
+---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   |   | Q |   |   |
+---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |   |   |   |
+---+---+---+---+---+---+---+---+---+---+---+
```

Version using Heuristics - explained here: Solution_construction

` #include <windows.h>#include <iostream>#include <string>#include <vector>#include <algorithm> //--------------------------------------------------------------------------------------------------using namespace std; //--------------------------------------------------------------------------------------------------typedef unsigned int uint; //--------------------------------------------------------------------------------------------------class nQueens_Heuristic{public:    void solve( uint n ) { makeList( n ); drawBoard( n ); } private:    void drawBoard( uint n )    {	system( "cls" ); string t = "+---+", q = "| Q |", s = "|   |";	COORD c = { 0, 0 }; HANDLE h = GetStdHandle( STD_OUTPUT_HANDLE );	uint w = 0;	for( uint y = 0, cy = 0; y < n; y++ )	{	    for( uint x = 0; x < n; x++ )	    {		SetConsoleCursorPosition( h, c ); cout << t;		c.Y++; SetConsoleCursorPosition( h, c );		if( x + 1 == solution[w] ) cout << q; else cout << s;		c.Y++; SetConsoleCursorPosition( h, c );		cout << t; c.Y = cy; c.X += 4;	    }	    cy += 2; c.X = 0; c.Y = cy; w++;	}	solution.clear(); odd.clear(); evn.clear();    }     void makeList( uint n )    {	uint r = n % 6;	for( uint x = 1; x <= n; x++ )	{	    if( x & 1 ) odd.push_back( x );	    else evn.push_back( x );	}	if( r == 2 )	{	    swap( odd, odd );	    odd.erase( find( odd.begin(), odd.end(), 5 ) );	    odd.push_back( 5 );	}	else if( r == 3 )	{	    odd.erase( odd.begin() ); odd.erase( odd.begin() );	    odd.push_back( 1 ); odd.push_back( 3 );	    evn.erase( evn.begin() ); evn.push_back( 2 );	}	vector<uint>::iterator it = evn.begin();	while( it != evn.end() ) 	{	    solution.push_back( ( *it ) );	    it++;	}	it = odd.begin();	while( it != odd.end() ) 	{	    solution.push_back( ( *it ) );	    it++;	}    }     vector<uint> odd, evn, solution;};//--------------------------------------------------------------------------------------------------int main( int argc, char* argv[] ){    uint n; nQueens_Heuristic nQH;    while( true )    {	cout << "Enter board size bigger than 3 (0 - 3 to QUIT): "; cin >> n;	if( n < 4 ) return 0;	nQH.solve( n ); cout << endl << endl;    }    return 0;}//-------------------------------------------------------------------------------------------------- `

## Clojure

This produces all solutions by essentially a backtracking algorithm. The heart is the extends? function, which takes a partial solution for the first k<size columns and sees if the solution can be extended by adding a queen at row n of column k+1. The extend function takes a list of all partial solutions for k columns and produces a list of all partial solutions for k+1 columns. The final list solutions is calculated by starting with the list of 0-column solutions (obviously this is the list [ [] ], and iterates extend for size times.

`(def size 8) (defn extends? [v n]  (let [k (count v)]    (not-any? true?      (for [i (range k) :let [vi (v i)]]        (or          (= vi n)  ;check for shared row          (= (- k i) (Math/abs (- n vi)))))))) ;check for shared diagonal (defn extend [vs]  (for [v vs        n (range 1 (inc size)) :when (extends? v n)]    (conj v n)))  (def solutions  (nth (iterate extend [[]]) size)) (doseq [s solutions]  (println s)) (println (count solutions) "solutions")`

### Short Version

`(ns queens  (:require [clojure.math.combinatorics :as combo] (defn queens [n]  (filter (fn [x] (every? #(apply distinct? (map-indexed % x)) [+ -]))          (combo/permutations (range 1 (inc n))))) `

## CoffeeScript

` # Unlike traditional N-Queens solutions that use recursion, this# program attempts to more closely model the "human" algorithm.# # In this algorithm, the function keeps placing queens on the board# until there is no longer a safe square.  If the 8th queen has been# placed, the solution is noted.  If fewer than 8th queens have been# placed, then you are at a dead end.  In either case, backtracking occurs.# The LAST queen placed on the board gets pulled, then it gets moved# to the next safe square.  (We backtrack even after a "good" attempt in # order to get to a new solution.)  This backtracking may repeat itself# several times until the original misplaced queen finally is proven to# be a dead end.## Many N-Queens solutions use lazy logic (along with geometry shortcuts)# to determine whether a queen is under attack.  In this algorithm, we# are more proactive, essentially updating a sieve every time we lay a# queen down.  To make backtracking easier, the sieve uses ref-counts vs.# a simple safe/unsafe boolean.## We precompute the "attack graph" up front, and then we essentially ignore# the geometry of the problem.  This approach, while perhaps suboptimal for# queens, probably is more flexible for general "coexistence" problems.nqueens = (n) ->  neighbors = precompute_neighbors(n)   board = []  num_solutions = 0  num_backtracks = 0  queens = []  pos = 0   for p in [0...n*n]    board.push 0   attack = (pos, delta=1) ->    for neighbor in neighbors[pos]      board[neighbor] += delta   backtrack = ->    pos = queens.pop()    attack pos, -1 # unattack queen you just pulled    pos += 1    num_backtracks += 1   # The following loop finds all 92 solutions to   # the 8-queens problem (for n=8).  while true      if pos >= n*n      if queens.length == 0        break      backtrack()      continue     # If a square is empty    if board[pos] == 0      attack pos      queens.push pos      if queens.length == n        num_solutions += 1        show_queens queens, n        backtrack()    pos += 1   console.log "#{num_solutions} solutions"  console.log "#{num_backtracks} backtracks"  precompute_neighbors = (n) ->  # For each board position, build a list of all  # the board positions that would be under attack if  # you placed a queen on it.  This assumes a 1d array  # of squares.  neighbors = []   find_neighbors = (pos) ->    arr = []    row = Math.floor pos / n    col = pos % n    for i in [0...n]      if i != col        arr.push row*n + i        r1 = row + col - i        r2 = row + i - col        if 0 <= r1 and r1 < n          arr.push r1*n + i        if 0 <= r2 and r2 < n          arr.push r2*n + i      if i != row        arr.push i*n + col    arr   for pos in [0...n*n]    neighbors.push find_neighbors(pos)   neighbors  show_queens = (queens, n) ->  # precondition: queens is a sorted array of integers,  # and each row is represented  console.log "\n------"  for q in queens    col = q % n    s = ''    for c in [0...n]      if c == col        s += "Q "      else        s += "* "    console.log s + "\n" nqueens(8) `

## Common Lisp

`(defun queens (n &optional (m n))  (if (zerop n)      (list nil)      (loop for solution in (queens (1- n) m)            nconc (loop for new-col from 1 to m                         when (loop for row from 1 to n                                     for col in solution                                     always (/= new-col col (+ col row) (- col row)))                         collect (cons new-col solution))))) (defun print-solution (solution)  (loop for queen-col in solution        do (loop for col from 1 to (length solution)                  do (write-char (if (= col queen-col) #\Q #\.)))           (terpri))  (terpri)) (defun print-queens (n)  (mapc #'print-solution (queens n)))`

### Alternate solution

Translation of Fortran 77

`(defun queens1 (n)    (let ((a (make-array n))          (s (make-array n))          (u (make-array (list (- (* 4 n) 2)) :initial-element t))          y z (i 0) j p q (r (1- (* 2 n))) (m 0))        (dotimes (i n) (setf (aref a i) i))        (tagbody            L1            (if (>= i n) (go L5))            (setf j i)            L2            (setf y (aref a j) z (aref a i))            (setf p (+ (- i y) n -1) q (+ i y))            (setf (aref a i) y (aref a j) z)            (when (and (aref u p) (aref u (+ q r)))                 (setf (aref s i) j (aref u p) nil (aref u (+ q r)) nil)                (incf i)                (go L1))            L3            (incf j)            (if (< j n) (go L2))            L4            (decf j)            (if (= j i) (go L6))            (rotatef (aref a i) (aref a j))            (go L4)            L5            (incf m)            L6            (decf i)            (if (minusp i) (go L7))            (setf p (+ (- i (aref a i)) n -1) q (+ i (aref a i)) j (aref s i))            (setf (aref u p) t (aref u (+ q r)) t)            (go L3)            L7)        m)) > (loop for n from 1 to 14 collect (cons n (queens1 n)))((1 . 1) (2 . 0) (3 . 0) (4 . 2) (5 . 10) (6 . 4) (7 . 40) (8 . 92) (9 . 352) (10 . 724) (11 . 2680) (12 . 14200) (13 . 73712) (14 . 365596))`

As in Fortran, the iterative function above is equivalent to the recursive function below:

`(defun queens2 (n)    (let ((a (make-array n))          (u (make-array (+ n n -1) :initial-element t))          (v (make-array (+ n n -1) :initial-element t))          (m 0))        (dotimes (i n) (setf (aref a i) i))        (labels ((sub (i)            (if (= i n)                ;(push (copy-seq a) s)                (incf m)                (loop for k from i below n do                    (let ((p (+ i (aref a k)))                          (q (+ (- i (aref a k)) n -1)))                        (when (and (aref u p) (aref v q))                            (setf (aref u p) nil (aref v q) nil)                            (rotatef (aref a i) (aref a k))                            (sub (1+ i))                            (setf (aref u p) t (aref v q) t)                            (rotatef (aref a i) (aref a k))))))))            (sub 0))        m))`

## Curry

Three different ways of attacking the same problem. All copied from A Catalog of Design Patterns in FLP

` -- 8-queens implementation with the Constrained Constructor pattern-- Sergio Antoy-- Fri Jul 13 07:05:32 PDT 2001 -- Place 8 queens on a chessboard so that no queen can capture-- (and be captured by) any other queen. -- Non-deterministic choice operator infixl 0 !X ! _ = X_ ! Y = Y -- A solution is represented by a list of integers.-- The i-th integer in the list is the column of the board-- in which the queen in the i-th row is placed.-- Rows and columns are numbered from 1 to 8.-- For example, [4,2,7,3,6,8,5,1] is a solution where the-- the queen in row 1 is in column 4, etc.-- Any solution must be a permutation of [1,2,...,8]. -- The state of a queen is its position, row and column, on the board.-- Operation column is a particularly simple instance-- of a Constrained Constructor pattern.-- When it is invoked, it produces only valid states. column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 -- A path of the puzzle is a sequence of successive placements of-- queens on the board.  It is not explicitly defined as a type.-- A path is a potential solution in the making. -- Constrained Constructor on a path-- Any path must be valid, i.e., any column must be in the range 1..8-- and different from any other column in the path.-- Furthermore, the path must be safe for the queens.-- No queen in a path may capture any other queen in the path.-- Operation makePath add column n to path c or fails. makePath c n | valid c && safe c 1 = n:c    where valid c | n =:= column = uniq c             where uniq [] = True                   uniq (c:cs) = n /= c && uniq cs          safe [] _ = True          safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)             where abs x = if x < 0 then -x else x -- extend the path argument till all the queens are on the board-- see the Incremental Solution pattern extend p = if (length p == 8)             then p             else extend (makePath p x)      where x free -- solve the puzzle main = extend [] `

Another approach from the same source.

` -- N-queens puzzle implemented with "Distinct Choices" pattern-- Sergio Antoy-- Tue Sep  4 13:16:20 PDT 2001-- updated: Mon Sep 23 15:22:15 PDT 2002 import Integer queens x | y =:= permute x & void (capture y) = y  where y free capture y = let l1,l2,l3,y1,y2 free in  l1 ++ [y1] ++ l2 ++ [y2] ++ l3 =:= y & abs (y1-y2) =:= length l2 + 1 -- negation as failure (implemented by encapsulated search):void c = (findall \_->c) =:= [] -- How does this permutation algorithm work?-- Only the elements [0,1,...,n-1] can be permuted.-- The reason is that each element is used as an index in a list.-- A list, called store, of free variables of length n is created.-- Then, the n iterations described below are executed.-- At the i-th iteration, an element, say s,-- of the initial list is non-deterministically selected.-- This element is used as index in the store.-- The s-th variable of the store is unified with i.-- At the end of the iterations, the elements of the store-- are a permutation of [0,1,...,n-1], i.e., the elements-- are unique since two iterations cannot select the same index. permute n = result n   where result n = if n==0 then [] else pick n store : result (n-1)         pick i store | store !! k =:= i = k where k = range n         range n | n > 0 = range (n-1) ! (n-1)         store = free-- end `

Yet another approach, also from the same source.

` -- 8-queens implementation with both the Constrained Constructor-- and the Fused Generate and Test patterns.-- Sergio Antoy-- Fri Jul 13 07:05:32 PDT 2001 -- Place 8 queens on a chessboard so that no queen can capture-- (and be captured by) any other queen. -- Non-deterministic choice operator infixl 0 !X ! _ = X_ ! Y = Y -- A solution is represented by a list of integers.-- The i-th integer in the list is the column of the board-- in which the queen in the i-th row is placed.-- Rows and columns are numbered from 1 to 8.-- For example, [4,2,7,3,6,8,5,1] is a solution where the-- the queen in row 1 is in column 4, etc.-- Any solution must be a permutation of [1,2,...,8]. -- The state of a queen is its position, row and column, on the board.-- Operation column is a particularly simple instance-- of a Constrained Constructor pattern.-- When it is invoked, it produces only valid states. column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 -- A path of the puzzle is a sequence of successive placements of-- queens on the board.  It is not explicitly defined as a type.-- A path is a potential solution in the making. -- Constrained Constructor on a path-- Any path must be valid, i.e., any column must be in the range 1..8-- and different from any other column in the path.-- Furthermore, the path must be safe for the queens.-- No queen in a path may capture any other queen in the path.-- Operation makePath add column n to path c or fails. makePath c n | valid c && safe c 1 = n:c    where valid c | n =:= column = uniq c             where uniq [] = True                   uniq (c:cs) = n /= c && uniq cs          safe [] _ = True          safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)             where abs x = if x < 0 then -x else x -- extend the path argument till all the queens are on the board-- see the Incremental Solution pattern extend p = if (length p == 8)             then p             else extend (makePath p x)      where x free -- solve the puzzle main = extend [] `

Mainly webpakcs, uses constraint-solver.

`import CLPFDimport Findall queens n qs =    qs =:= [_ | _ <- [1..n]]  & domain qs 1 (length qs)  & allDifferent qs  & allSafe qs  & labeling [FirstFail] qs allSafe [] = successallSafe (q:qs) = safe q qs 1 & allSafe qs safe :: Int -> [Int] -> Int -> Successsafe _     []  _ = successsafe q (q1:qs) p = q /=# q1+#p & q /=# q1-#p & safe q qs (p+#1) -- oneSolution  = unpack  \$ queens 8-- allSolutions = findall \$ queens 8`

## D

### Short Version

This high-level version uses the second solution of the Permutations task.

`void main() {    import std.stdio, std.algorithm, std.range, permutations2;     enum n = 8;    n.iota.array.permutations.filter!(p =>        n.iota.map!(i => p[i] + i).array.sort().uniq.count == n &&        n.iota.map!(i => p[i] - i).array.sort().uniq.count == n)    .count.writeln;}`
Output:
`92`

### Intermediate Version

This version shows all the solutions.

Translation of: C
`enum side = 8;__gshared int[side] board; bool isUnsafe(in int y) nothrow @nogc {    immutable int x = board[y];    foreach (immutable i; 1 .. y + 1) {        immutable int t = board[y - i];        if (t == x || t == x - i || t == x + i)            return true;    }     return false;} void showBoard() nothrow @nogc {    import core.stdc.stdio;     static int s = 1;    printf("\nSolution #%d:\n", s++);    foreach (immutable y; 0 .. side) {        foreach (immutable x; 0 .. side)            putchar(board[y] == x ? 'Q' : '.');        putchar('\n');    }} void main() nothrow @nogc {    int y = 0;    board = -1;     while (y >= 0) {        do {            board[y]++;        } while (board[y] < side && y.isUnsafe);         if (board[y] < side) {            if (y < (side - 1))                board[++y] = -1;            else                showBoard;        } else            y--;    }}`
Output:
```Solution #1:
Q.......
....Q...
.......Q
.....Q..
..Q.....
......Q.
.Q......
...Q....

[...]

Solution #91:
.......Q
..Q.....
Q.......
.....Q..
.Q......
....Q...
......Q.
...Q....

Solution #92:
.......Q
...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...```

### Fast Version

Translation of: C
`ulong nQueens(in uint nn) pure nothrow @nogc @safein {    assert(nn > 0 && nn <= 27,           "'side' value must be in 1 .. 27.");} body {    if (nn < 4)        return nn == 1;     enum uint ulen = uint.sizeof * 8;    immutable uint full = uint.max - ((1 << (ulen - nn)) - 1);    immutable n = nn - 3;     typeof(return) count;    uint l=void, r=void, c=void;    uint mm; // mm and mmi are a stack.     // Require second queen to be left of the first queen, so    // we ever only test half of the possible solutions. This    // is why we can't handle n=1 here.    for (uint b0 = 1U << (ulen - n - 3); b0; b0 <<= 1) {        for (uint b1 = b0 << 2; b1; b1 <<= 1) {            uint d = n;            // c: columns occupied by previous queens.            c[n] = b0 | b1;            // l: columns attacked by left diagonals.            l[n] = (b0 << 2) | (b1 << 1);            // r: by right diagnoals.            r[n] = (b0 >> 2) | (b1 >> 1);             // Availabe columns on current row.            uint bits = full & ~(l[n] | r[n] | c[n]);             uint mmi = 1;            mm[mmi] = bits;             while (bits) {                // d: depth, aka row. counting backwards.                // Because !d is often faster than d != n.                while (d) {                    // immutable uint pos = 1U << bits.bsf; // Slower.                    immutable uint pos = -int(bits) & bits;                     // Mark bit used. Only put current bits on                    // stack if not zero, so backtracking will                    // skip exhausted rows (because reading stack                    // variable is slow compared to registers).                    bits &= ~pos;                    if (bits) {                        mm[mmi] = bits | d;                        mmi++;                    }                     d--;                    l[d] = (l[d + 1] | pos) << 1;                    r[d] = (r[d + 1] | pos) >> 1;                    c[d] =  c[d + 1] | pos;                     bits = full & ~(l[d] | r[d] | c[d]);                     if (!bits)                        break;                    if (!d) {                        count++;                        break;                    }                }                 // Bottom of stack m is a zero'd field acting as                // sentinel.  When saving to stack, left 27 bits                // are the available columns, while right 5 bits                // is the depth. Hence solution is limited to size                // 27 board -- not that it matters in foreseeable                // future.                mmi--;                bits = mm[mmi];                d = bits & 31U;                bits &= ~31U;            }        }    }     return count * 2;} void main(in string[] args) {    import std.stdio, std.conv;     immutable uint side = (args.length >= 2) ? args.to!uint : 8;    writefln("N-queens(%d) = %d solutions.", side, side.nQueens);}`
Output:
`N-queens(8) = 92 solutions.`

With side = 17:

`N-queens(17) = 95815104 solutions.`

Run-time for side = 17 compiled with ldc2 is about 49.5 seconds.

`N-queens(19) = 4968057848 solutions.`

## Dart

`/**Return true if queen placement q[n] does not conflict withother queens q through q[n-1]*/isConsistent(List q, int n) {  for (int i=0; i<n; i++) {    if (q[i] == q[n]) {      return false; // Same column    }     if ((q[i] - q[n]) == (n - i)) {      return false; // Same major diagonal    }     if ((q[n] - q[i]) == (n - i)) {      return false; // Same minor diagonal    }  }   return true;} /**Print out N-by-N placement of queens from permutation q in ASCII. */printQueens(List q) {  int N = q.length;  for (int i=0; i<N; i++) {    StringBuffer sb = new StringBuffer();    for (int j=0; j<N; j++) {      if (q[i] == j) {        sb.write("Q ");      } else {        sb.write("* ");      }    }    print(sb.toString());  }  print("");} /**Try all permutations using backtracking*/enumerate(int N) {  var a = new List(N);  _enumerate(a, 0);} _enumerate(List q, int n) {  if (n == q.length) {    printQueens(q);  } else {    for (int i = 0; i < q.length; i++) {      q[n] = i;      if (isConsistent(q, n)){        _enumerate(q, n+1);      }    }   }} void main() {  enumerate(4);}`
Output:
```* Q * *
* * * Q
Q * * *
* * Q *

* * Q *
Q * * *
* * * Q
* Q * *
```

## EasyLang

`subr show_sol  print "Solution " & n_sol  print ""  for i range n    write "  "    for j range n      if j = x[i]        write "Q "      else        write ". "      .    .    print ""  .  print "".subr test  ok = 1  for i range y    if x[y] = x[i] or abs (x[i] - x[y]) = abs (y - i)      ok = 0    .  ..n = 8len x[] ny = 0x = 0while y >= 0  call test  if ok = 1 and y + 1 <> n    y += 1    x[y] = 0  else    if ok = 1      n_sol += 1      if n_sol <= 1        call show_sol      .    .    while y >= 0 and x[y] = n - 1      y -= 1    .    if y >= 0      x[y] += 1    .  ..print n_sol & " solutions"`
Output:
```Solution 1

Q . . . . . . .
. . . . Q . . .
. . . . . . . Q
. . . . . Q . .
. . Q . . . . .
. . . . . . Q .
. Q . . . . . .
. . . Q . . . .

92 solutions```

## EchoLisp

` ;; square num is i + j*N(define-syntax-rule (sq i j) (+ i (* j N))) ;; compute diag number for each square(define (do-diag1 i0 j0  dnum  into: dnum1 N) ;; ++i and ++j diags	(for [(i (in-range i0 N)) (j (in-range j0 N))]		;;(writeln   i j 'diag1 dnum)		(vector-set! dnum1 (sq i j) dnum))) (define (do-diag2 i0 j0  dnum into: dnum2 N) ;; --i and ++j diags	(for [(i (in-range i0 -1 -1)) (j (in-range j0 N))]		;; (writeln i j 'diag2 dnum)		(vector-set! dnum2 (sq i j) dnum))) (define (init-diags dnum1 dnum2 N)	(define dnum 0)		(for ((j N)) (do-diag1 0 j dnum dnum1 N) (++ dnum))		(for ((i (in-range 1 N)))                      (do-diag1 i 0 dnum dnum1  N) (++ dnum))	(set! dnum 0)		(for ((j N)) (do-diag2 (1- N) j dnum dnum2 N) (++ dnum))		(for ((i (1- N))) (do-diag2 i 0 dnum dnum2 N) (++ dnum)));; end boring diags part (define (q-search i  N col diag1 diag2 dnum1 dnum2    &hits (ns))(cond[(= i N)  (set-box! &hits (1+ (unbox &hits))) ] ;;  (writeln  'HIT col)	[else 		(for ((j N))		(set! ns (sq i j))		#:continue (or [col j] [diag1 [dnum1 ns]] [diag2 [dnum2 ns]])		     (vector-set! col j i) ;; move		     (vector-set! diag1 [dnum1 ns] #t) ;; flag busy diagonal			(vector-set! diag2 [dnum2 ns] #t)			(q-search (1+ i) N col diag1 diag2 dnum1 dnum2 &hits)			(vector-set! col j #f) ;; unmove			(vector-set! diag1 [dnum1 ns] #f)			(vector-set! diag2 [dnum2 ns] #f))			])) (define (q-count (N 8))	(define dnum1 (make-vector (* N N)))	(define dnum2 (make-vector (* N N )))	(init-diags dnum1 dnum2 N) 	(define diag1 (make-vector (* 2 N) #f)) ; busy diag's	(define diag2 (make-vector (* 2 N) #f))	(define col (make-vector N  #f))	(define &hits (box 0))  	(q-search 0 N col diag1 diag2 dnum1 dnum2  &hits)	(unbox &hits)) (define (task up-to-n)	(for ((i up-to-n)) (writeln i ' ♕ (q-count i) 'solutions))) `
Output:
```(task 13)

0     ♕     1     solutions
1     ♕     1     solutions
2     ♕     0     solutions
3     ♕     0     solutions
4     ♕     2     solutions
5     ♕     10     solutions
6     ♕     4     solutions
7     ♕     40     solutions
8     ♕     92     solutions
9     ♕     352     solutions
10     ♕     724     solutions
11     ♕     2680     solutions
12     ♕     14200     solutions
```

## Eiffel

` class	QUEENS create	make feature {NONE}	counter: INTEGER 	place_queens(board: ARRAY[INTEGER]; level: INTEGER)		local			i, j: INTEGER			safe: BOOLEAN		do			if level > board.count			then				counter := counter + 1			else				from					i := 1				until					i > board.count				loop					safe := True					from						j := 1					until						j = level or not safe					loop						if (board[j] = i)							or (j - level = i - board[j])							or (j - level = board[j] - i)						then							safe := False						end						j := j + 1					end					if safe					then						board[level] := i						place_queens(board, level + 1)					end					i := i + 1				end			end		end feature	possible_positions_of_n_queens(n: INTEGER): INTEGER		local			board: ARRAY[INTEGER]		do			create board.make_filled (0, 1, n)			counter := 0			place_queens(board, 1)			Result := counter		end 	make		local			n: INTEGER		do			io.put_string ("Please enter the number of queens: ")			io.read_integer			n := io.last_integer			print("%NPossible number of placings: " + possible_positions_of_n_queens(n).out + "%N")		endend `
Output:
```Please enter the number of queens: 1
Possible number of placings: 1

Please enter the number of queens: 2
Possible number of placings: 0

Please enter the number of queens: 3
Possible number of placings: 0

Please enter the number of queens: 4
Possible number of placings: 2

Please enter the number of queens: 5
Possible number of placings: 10

Please enter the number of queens: 6
Possible number of placings: 4

Please enter the number of queens: 7
Possible number of placings: 40

Please enter the number of queens: 8
Possible number of placings: 92

Please enter the number of queens: 9
Possible number of placings: 352

Please enter the number of queens: 10
Possible number of placings: 724
```

## Elixir

Translation of: Ruby
`defmodule RC do  def queen(n, display \\ true) do    solve(n, [], [], [], display)  end   defp solve(n, row, _, _, display) when n==length(row) do    if display, do: print(n,row)    1  end  defp solve(n, row, add_list, sub_list, display) do    Enum.map(Enum.to_list(0..n-1) -- row, fn x ->      add = x + length(row)             # \ diagonal check      sub = x - length(row)             # / diagonal check      if (add in add_list) or (sub in sub_list) do        0      else        solve(n, [x|row], [add | add_list], [sub | sub_list], display)      end    end) |> Enum.sum                    # total of the solution  end   defp print(n, row) do    IO.puts frame = "+" <> String.duplicate("-", 2*n+1) <> "+"    Enum.each(row, fn x ->      line = Enum.map_join(0..n-1, fn i -> if x==i, do: "Q ", else: ". " end)      IO.puts "| #{line}|"    end)    IO.puts frame  endend Enum.each(1..6, fn n ->  IO.puts " #{n} Queen : #{RC.queen(n)}"end) Enum.each(7..12, fn n ->  IO.puts " #{n} Queen : #{RC.queen(n, false)}"             # no displayend)`
Output:
```+---+
| Q |
+---+
1 Queen : 1
2 Queen : 0
3 Queen : 0
+---------+
| . . Q . |
| Q . . . |
| . . . Q |
| . Q . . |
+---------+
+---------+
| . Q . . |
| . . . Q |
| Q . . . |
| . . Q . |
+---------+
4 Queen : 2
+-----------+
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
+-----------+
+-----------+
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
+-----------+
+-----------+
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
+-----------+
+-----------+
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
+-----------+
+-----------+
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
+-----------+
+-----------+
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
+-----------+
+-----------+
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
+-----------+
+-----------+
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
+-----------+
+-----------+
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
+-----------+
+-----------+
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
+-----------+
5 Queen : 10
+-------------+
| . . . . Q . |
| . . Q . . . |
| Q . . . . . |
| . . . . . Q |
| . . . Q . . |
| . Q . . . . |
+-------------+
+-------------+
| . . . Q . . |
| Q . . . . . |
| . . . . Q . |
| . Q . . . . |
| . . . . . Q |
| . . Q . . . |
+-------------+
+-------------+
| . . Q . . . |
| . . . . . Q |
| . Q . . . . |
| . . . . Q . |
| Q . . . . . |
| . . . Q . . |
+-------------+
+-------------+
| . Q . . . . |
| . . . Q . . |
| . . . . . Q |
| Q . . . . . |
| . . Q . . . |
| . . . . Q . |
+-------------+
6 Queen : 4
7 Queen : 40
8 Queen : 92
9 Queen : 352
10 Queen : 724
11 Queen : 2680
12 Queen : 14200
```

## Erlang

Instead of spawning a new process to search for each possible solution I backtrack.

` -module( n_queens ). -export( [display/1, solve/1, task/0] ). display( Board ) ->	%% Queens are in the positions in the Board list.	%% Top left corner is {1, 1}, Bottom right is {N, N}. There is a queen in the max column.	N = lists:max( [X || {X, _Y} <- Board] ),	[display_row(Y, N, Board) || Y <- lists:seq(1, N)]. solve( N ) ->    Positions = [{X, Y} || X <- lists:seq(1, N), Y <- lists:seq(1, N)],    try    bt( N, Positions, [] )     catch    _:{ok, Board} -> Board     end. task() ->    task( 4 ),    task( 8 ).   bt( N, Positions, Board ) -> bt_reject( is_not_allowed_queen_placement(N, Board), N, Positions, Board ). bt_accept( true, _N, _Positions, Board ) -> erlang:throw( {ok, Board} );bt_accept( false, N, Positions, Board ) -> bt_loop( N, Positions, [], Board ). bt_loop( _N, [], _Rejects, _Board ) -> failed;bt_loop( N, [Position | T], Rejects, Board ) ->	bt( N, T ++ Rejects, [Position | Board] ),	bt_loop( N, T, [Position | Rejects], Board ). bt_reject( true, _N, _Positions, _Board ) -> backtrack;bt_reject( false, N, Positions, Board ) -> bt_accept( is_all_queens(N, Board), N, Positions, Board ). diagonals( N, {X, Y} ) ->	D1 = diagonals( N, X + 1, fun diagonals_add1/1, Y + 1, fun diagonals_add1/1 ),	D2 = diagonals( N, X + 1, fun diagonals_add1/1, Y - 1, fun diagonals_subtract1/1 ),	D3 = diagonals( N, X - 1, fun diagonals_subtract1/1, Y + 1, fun diagonals_add1/1 ),	D4 = diagonals( N, X - 1, fun diagonals_subtract1/1, Y - 1, fun diagonals_subtract1/1 ),	D1 ++ D2 ++ D3 ++ D4. diagonals( _N, 0, _Change_x, _Y, _Change_y ) -> [];diagonals( _N, _X, _Change_x, 0, _Change_y ) -> [];diagonals( N, X, _Change_x, _Y, _Change_y ) when X > N -> [];diagonals( N, _X, _Change_x, Y, _Change_y ) when Y > N -> [];diagonals( N, X, Change_x, Y, Change_y ) -> [{X, Y} | diagonals( N, Change_x(X), Change_x, Change_y(Y), Change_y )]. diagonals_add1( N ) -> N + 1. diagonals_subtract1( N ) -> N - 1. display_row( Row, N, Board ) ->	[io:fwrite("~s", [display_queen(X, Row, Board)]) || X <- lists:seq(1, N)],	io:nl(). display_queen( X, Y, Board ) -> display_queen( lists:member({X, Y}, Board) ).display_queen( true ) -> " Q";display_queen( false ) -> " .". is_all_queens( N, Board ) -> N =:= erlang:length( Board ). is_diagonal( _N, [] ) -> false;is_diagonal( N, [Position | T] ) ->	Diagonals = diagonals( N, Position ),	T =/= (T -- Diagonals)	orelse is_diagonal( N, T ). is_not_allowed_queen_placement( N, Board ) ->	Pieces = erlang:length( Board ),	{Xs, Ys} = lists:unzip( Board ),	Pieces =/= erlang:length( lists:usort(Xs) )	orelse Pieces =/= erlang:length( lists:usort(Ys) )	orelse is_diagonal( N, Board ). task( N ) ->    io:fwrite( "N = ~p. One solution.~n", [N] ),    Board = solve( N ),    display( Board ). `
Output:
```22> n_queens:task().
N = 4. One solution.
. . Q .
Q . . .
. . . Q
. Q . .
N = 8. One solution.
Q . . . . . . .
. . . . . . Q .
. . . . Q . . .
. . . . . . . Q
. Q . . . . . .
. . . Q . . . .
. . . . . Q . .
. . Q . . . . .
```

## ERRE

` !------------------------------------------------! QUEENS.R : solve queens problem on a NxN board!------------------------------------------------ PROGRAM QUEENS DIM COL% BEGIN  MAXSIZE%=15  PRINT(TAB(25);" --- PROBLEMA DELLE REGINE --- ")  PRINT  PRINT("Board dimension ";)  INPUT(N%)  PRINT  IF (N%<1 OR N%>MAXSIZE%)    THEN      PRINT("Illegal dimension!!")    ELSE      FOR CURCOLNBR%=1 TO N%        COL%[CURCOLNBR%]=0      END FOR      CURCOLNBR%=1      WHILE CURCOLNBR%>0 DO        PLACEDAQUEEN%=FALSE        I%=COL%[CURCOLNBR%]+1        WHILE (I%<=N%) AND NOT PLACEDAQUEEN% DO          PLACEDAQUEEN%=TRUE          J%=1          WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO            PLACEDAQUEEN%=COL%[J%]<>I%            J%=J%+1          END WHILE          IF PLACEDAQUEEN%            THEN              DIAGNBR%=I%+CURCOLNBR%              J%=1              WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO                PLACEDAQUEEN%=(COL%[J%]+J%)<>DIAGNBR%                J%=J%+1              END WHILE            ELSE          END IF          IF PLACEDAQUEEN%            THEN              DIAGNBR%=I%-CURCOLNBR%              J%=1              WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO                 PLACEDAQUEEN%=(COL%[J%]-J%)<>DIAGNBR%                 J%=J%+1              END WHILE            ELSE          END IF          IF NOT PLACEDAQUEEN%            THEN              I%=I%+1            ELSE              COL%[CURCOLNBR%]=I%          END IF        END WHILE        IF NOT PLACEDAQUEEN%          THEN            COL%[CURCOLNBR%]=0            CURCOLNBR%=CURCOLNBR%-1          ELSE            IF CURCOLNBR%=N%              THEN                NSOL%=NSOL%+1                PRINT("Soluzione";NSOL%;":";)                FOR I%=1 TO N%                  PRINT(COL%[I%];)                END FOR                PRINT              ELSE                CURCOLNBR%=CURCOLNBR%+1            END IF        END IF      END WHILE      PRINT("Search completed")      REPEAT         GET(CH\$)      UNTIL CH\$<>""    END IFEND PROGRAM `

Note: The program prints solutions one per line. This version works well for the PC and the C-64. For PC only you can omit the % integer-type specificator with a `!\$INTEGER` pragma directive.

## F#

` let rec iterate f value = seq {     yield value    yield! iterate f (f value) } let up i = i + 1let right i = ilet down i = i - 1 let noCollisionGivenDir solution number dir =    Seq.forall2 (<>) solution (Seq.skip 1 (iterate dir number)) let goodAddition solution number =    List.forall (noCollisionGivenDir solution number) [ up; right; down ] let rec extendSolution n ps =    [0..n - 1]    |> List.filter (goodAddition ps)    |> List.map (fun num -> num :: ps) let allSolutions n =    iterate (List.collect (extendSolution n)) [[]] // Print one solution for the 8x8 caselet printOneSolution () =    allSolutions 8    |> Seq.item 8    |> Seq.head    |> List.iter (fun rowIndex ->        printf "|"        [0..8] |> List.iter (fun i -> printf (if i = rowIndex then "X|" else " |"))        printfn "") // Print number of solution for the other caseslet printNumberOfSolutions () =    printfn "Size\tNr of solutions"    [1..11]    |> List.map ((fun i -> Seq.item i (allSolutions i)) >> List.length)    |> List.iteri (fun i cnt -> printfn "%d\t%d" (i+1) cnt) printOneSolution() printNumberOfSolutions() `

The output:

` | | | |X| | | | | || |X| | | | | | | || | | | | | |X| | || | |X| | | | | | || | | | | |X| | | || | | | | | | |X| || | | | |X| | | | ||X| | | | | | | | | Size    Nr of solutions1       12       03       04       25       106       47       408       929       35210      72411      2680 `

## Factor

Works with: Factor version 0.98
`USING: kernel sequences math math.combinatorics formatting io locals ;IN: queens : /=  ( x y -- ? )   = not ; inline :: safe?  ( board q -- ? )    [let  q board nth :> x      q <iota> [         x swap         [ board nth ] keep         q swap -           [ + /= ]           [ - /= ] 3bi and      ] all?    ] ; : solution? ( board -- ? )    dup length <iota> [ dupd safe? ] all? nip ; : queens ( n -- l )    <iota> all-permutations [ solution? ] filter ; : .queens ( n -- )    queens    [       [ 1 + "%d " printf ] each nl    ] each ;`

## Forth

`variable solutionsvariable nodes : bits ( n -- mask ) 1 swap lshift 1- ;: lowBit  ( mask -- bit ) dup negate and ;: lowBit- ( mask -- bits ) dup 1- and ; : next3 ( dl dr f files -- dl dr f dl' dr' f' )  invert >r  2 pick [email protected] and 2* 1+  2 pick [email protected] and 2/  2 pick r> and ; : try ( dl dr f -- )  dup if    1 nodes +!    dup 2over and and    begin ?dup while      dup >r lowBit next3 recurse r> lowBit-    repeat  else 1 solutions +! then  drop 2drop ; : queens ( n -- )  0 solutions ! 0 nodes !  -1 -1 rot bits try  solutions @ . ." solutions, " nodes @ . ." nodes" ; 8 queens  \ 92 solutions, 1965 nodes`

## Fortran

Works with: Fortran version 95 and later

Using a back tracking method to find one solution

`program Nqueens  implicit none   integer, parameter :: n = 8  ! size of board  integer :: file = 1, rank = 1, queens = 0  integer :: i  logical :: board(n,n) = .false.   do while (queens < n)    board(file, rank) = .true.    if(is_safe(board, file, rank)) then      queens = queens + 1      file = 1      rank = rank + 1    else      board(file, rank) = .false.      file = file + 1      do while(file > n)         rank = rank - 1         if (rank < 1) then           write(*, "(a,i0)") "No solution for n = ", n           stop         end if           do i = 1, n           if (board(i, rank)) then             file = i             board(file, rank) = .false.             queens = queens - 1             file = i + 1             exit           end if         end do       end do    end if  end do   call Printboard(board) contains function is_safe(board, file, rank)  logical :: is_safe  logical, intent(in) :: board(:,:)  integer, intent(in) :: file, rank  integer :: i, f, r   is_safe = .true.  do i = rank-1, 1, -1    if(board(file, i)) then      is_safe = .false.      return    end if  end do   f = file - 1  r = rank - 1  do while(f > 0 .and. r > 0)    if(board(f, r)) then      is_safe = .false.      return    end if    f = f - 1    r = r - 1  end do   f = file + 1  r = rank - 1  do while(f <= n .and. r > 0)    if(board(f, r)) then      is_safe = .false.      return    end if    f = f + 1    r = r - 1  end doend function     subroutine Printboard(board)  logical, intent(in) :: board(:,:)  character(n*4+1) :: line  integer :: f, r   write(*, "(a, i0)") "n = ", n  line = repeat("+---", n) // "+"  do r = 1, n    write(*, "(a)") line    do f = 1, n      write(*, "(a)", advance="no") "|"      if(board(f, r)) then        write(*, "(a)", advance="no") " Q "      else if(mod(f+r, 2) == 0) then        write(*, "(a)", advance="no") "   "      else        write(*, "(a)", advance="no") "###"      end if    end do    write(*, "(a)") "|"  end do  write(*, "(a)") lineend subroutineend program`
Output:
for 8, 16 and 32 queens
```n = 8
+---+---+---+---+---+---+---+---+
| Q |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+
|###|   |###|   | Q |   |###|   |
+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   | Q |
+---+---+---+---+---+---+---+---+
|###|   |###|   |###| Q |###|   |
+---+---+---+---+---+---+---+---+
|   |###| Q |###|   |###|   |###|
+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   | Q |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+
|###|   |###| Q |###|   |###|   |
+---+---+---+---+---+---+---+---+

n = 16
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

n = 32
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+```

### Alternate Fortran 77 solution

`C This one implements depth-first backtracking.C See the 2nd program for Scheme on the "Permutations" page for theC main idea.C As is, the program only prints the number of n-queens configurations.C To print also the configurations, uncomment the line after label 80.      program queens      implicit integer(a-z)      parameter(l=18)      dimension a(l),s(l),u(4*l-2)      do 10 i=1,l   10 a(i)=i      do 20 i=1,4*l-2   20 u(i)=0      do 110 n=1,l      m=0      i=1      r=2*n-1      go to 40   30 s(i)=j      u(p)=1      u(q+r)=1      i=i+1   40 if(i.gt.n) go to 80      j=i   50 z=a(i)      y=a(j)      p=i-y+n      q=i+y-1      a(i)=y      a(j)=z      if((u(p).eq.0).and.(u(q+r).eq.0)) goto 30   60 j=j+1      if(j.le.n) go to 50   70 j=j-1      if(j.eq.i) go to 90      z=a(i)      a(i)=a(j)      a(j)=z      go to 70   80 m=m+1C     print *,(a(k),k=1,n)   90 i=i-1      if(i.eq.0) go to 100      p=i-a(i)+n      q=i+a(i)-1      j=s(i)      u(p)=0      u(q+r)=0      go to 60  100 print *,n,m  110 continue      end C OutputC          1           1C          2           0C          3           0C          4           2C          5          10C          6           4C          7          40C          8          92C          9         352C         10         724C         11        2680C         12       14200C         13       73712C         14      365596C         15     2279184C         16    14772512C         17    95815104C         18   666090624 `
`!The preceding program implements recursion using arrays, since Fortran 77 does not allow recursive!functions. The same algorithm is much easier to follow in Fortran 90, using the RECURSIVE keyword.!Like previously, the program only counts solutions. It's pretty straightforward to adapt it to print!them too: one has to replace the 'm = m + 1' instruction with a PRINT statement. function numq(n)    implicit none    integer :: i, n, m, a(n), numq    logical :: up(2*n - 1), down(2*n - 1)    do i = 1, n        a(i) = i    end do    up = .true.    down = .true.    m = 0    call sub(1)    numq = mcontains    recursive subroutine sub(i)        integer :: i, j, k, p, q, s        do k = i, n            j = a(k)            p = i + j - 1            q = i - j + n            if(up(p) .and. down(q)) then                if(i == n) then                    m = m + 1                else                    up(p) = .false.                    down(q) = .false.                    s = a(i)                    a(i) = a(k)                    a(k) = s                    call sub(i + 1)                    up(p) = .true.                    down(q) = .true.                    s = a(i)                    a(i) = a(k)                    a(k) = s                end if            end if        end do    end subroutineend function program queens    implicit none    integer :: numq, n, m    do n = 4, 16        m = numq(n)        print *, n, m    end doend program`

### Alternate Fortran 95 solution with OpenMP

This code is useful mainly for counting solutions. Here we use the same algorithm as with Fortran 77, with an optimization: because of symmetry of the chess board, computations are divided by two. The remaining is parallelized with OpenMP. The loop is done on the valid combinations of queens in the first two columns. The original algorithm is slightly changed to start backtracking from column three.

If using GCC, compile with gfortran -O2 -fopenmp queens.f90. With Absoft Pro Fortran, af90 -O2 -openmp queens.f90, and with Intel Fortran, ifort /fast /Qopenmp queens.f90.

With some versions of GCC the function OMP_GET_WTIME is not known, which seems to be a bug. Then it's enough to comment out the two calls, and the program won't display timings.

`program queens    use omp_lib    implicit none    integer, parameter :: long = selected_int_kind(17)    integer, parameter :: l = 18    integer, parameter :: nthreads = 16    ! Change to suit your processor    integer :: n, i, j, a(l*l, 2), k, p, q    integer(long) :: s, b(l*l)    real(kind(1d0)) :: t1, t2! Edit : Added OPEN MP calls to set number of threads    CALL OMP_SET_DYNAMIC(.TRUE.)    CALL OMP_SET_NUM_THREADS(nthreads)    do n = 6, l        k = 0        p = n/2        q = mod(n, 2)*(p + 1)        do i = 1, n            do j = 1, n                if ((abs(i - j) > 1) .and. ((i <= p) .or. ((i == q) .and. (j < i)))) then                    k = k + 1                    a(k, 1) = i                    a(k, 2) = j                end if            end do        end do        s = 0        t1 = omp_get_wtime()        !\$omp parallel do schedule(dynamic)        do i = 1, k            b(i) = pqueens(n, a(i, 1), a(i, 2))        end do        !\$omp end parallel do        t2 = omp_get_wtime()        print "(I4, I12, F12.3)", n, 2*sum(b(1:k)), t2 - t1    end do contains    function pqueens(n, k1, k2) result(m)        implicit none        integer(long) :: m        integer, intent(in) :: n, k1, k2        integer, parameter :: l = 20        integer :: a(l), s(l), u(4*l - 2)        integer :: i, j, y, z, p, q, r         do i = 1, n            a(i) = i        end do         do i = 1, 4*n - 2            u(i) = 0        end do         m = 0        r = 2*n - 1        if (k1 == k2) return         p = 1 - k1 + n        q = 1 + k1 - 1        if ((u(p) /= 0) .or. (u(q + r) /= 0)) return         u(p) = 1        u(q + r) = 1        z = a(1)        a(1) = a(k1)        a(k1) = z        p = 2 - k2 + n        q = 2 + k2 - 1        if ((u(p) /= 0) .or. (u(q + r) /= 0)) return         u(p) = 1        u(q + r) = 1        if (k2 /= 1) then            z = a(2)            a(2) = a(k2)            a(k2) = z        else            z = a(2)            a(2) = a(k1)            a(k1) = z        end if        i = 3        go to 40      30 s(i) = j        u(p) = 1        u(q + r) = 1        i = i + 1     40 if (i > n) go to 80         j = i      50 z = a(i)        y = a(j)        p = i - y + n        q = i + y - 1        a(i) = y        a(j) = z        if ((u(p) == 0) .and. (u(q + r) == 0)) go to 30      60 j = j + 1        if (j <= n) go to 50      70 j = j - 1        if (j == i) go to 90         z = a(i)        a(i) = a(j)        a(j) = z        go to 70         !valid queens position found     80 m = m + 1      90 i = i - 1        if (i == 2) return         p = i - a(i) + n        q = i + a(i) - 1        j = s(i)        u(p) = 0        u(q + r) = 0        go to 60    end functionend program`

## FreeBASIC

Get slower for N > 14

`' version 13-04-2017' compile with: fbc -s consoleDim Shared As ULong count, c() Sub n_queens(row As ULong, n As ULong, show As ULong = 0)     Dim As ULong x, y     For x = 1 To n         For y = 1 To row -1            If c(y) = x OrElse ((row - y) - Abs(x - c(y))) = 0 Then                Continue For, For            End If        Next         c(row) = x        If row < n Then            n_queens(row +1 , n, show)        Else            count += 1             If show <> 0 Then                For y = 1 To n                    Print Using "###"; c(y);                Next                Print            End If         End If     Next End Sub ' ------=< MAIN >=------ Dim As ULong n = 5ReDim c(n)' n_queens(1, n, show = 0 only show total | show <> 0 show every solutionn_queens(1, n, 1)Print Using "## x ## board, ##### solutions"; n; n; countPrint For n = 1 To 14    ReDim c(n)    count = 0    n_queens(1, n)    Print Using "A ## x ## board has ######## solutions"; n; n; countNext ' empty keyboard bufferWhile Inkey <> "" : WendPrint : Print "hit any key to end program"SleepEnd`
Output:
```  1  3  5  2  4
1  4  2  5  3
2  4  1  3  5
2  5  3  1  4
3  1  4  2  5
3  5  2  4  1
4  1  3  5  2
4  2  5  3  1
5  2  4  1  3
5  3  1  4  2
5 x  5 board,    10 solutions

A  1 x  1 board has        1 solutions
A  2 x  2 board has        0 solutions
A  3 x  3 board has        0 solutions
A  4 x  4 board has        2 solutions
A  5 x  5 board has       10 solutions
A  6 x  6 board has        4 solutions
A  7 x  7 board has       40 solutions
A  8 x  8 board has       92 solutions
A  9 x  9 board has      352 solutions
A 10 x 10 board has      724 solutions
A 11 x 11 board has     2680 solutions
A 12 x 12 board has    14200 solutions
A 13 x 13 board has    73712 solutions
A 14 x 14 board has   365596 solutions```

### Alternate version : recursive

`Sub aux(n As Integer, i As Integer, a() As Integer, _        u() As Integer, v() As Integer, ByRef m As LongInt)     Dim As Integer j, k, p, q    If i > n Then        m += 1        For k = 1 To n : Print a(k); : Next : Print    Else        For j = i To n            k = a(j)            p = i - k + n            q = i + k - 1            If u(p) And v(q) Then                u(p) = 0 : v(q) = 0                a(j) = a(i) : a(i) = k                aux(n, i + 1, a(), u(), v(), m)                u(p) = 1 : v(q) = 1                a(i) = a(j) : a(j) = k            End If        Next    End IfEnd Sub Dim As Integer n, iDim m As LongInt = 1If Command(1) <> "" Then    n = CInt(Command(1))    ReDim a(1 To n) As Integer    ReDim u(1 To 2 * n - 1) As Integer    ReDim v(1 To 2 * n - 1) As Integer    For i = 1 To n        a(i) = i    Next    For i = 1 To 2 * n - 1        u(i) = 1        v(i) = 1    Next    m = 0    aux(n, 1, a(), u(), v(), m)    Print mEnd If`

### Alternate version : iterative

`Dim As Integer n, i, j, k, p, qDim m As LongInt = 0 If Command(1) <> "" Then    n = CInt(Command(1))    ReDim a(1 To n) As Integer    ReDim s(1 To n) As Integer    ReDim u(1 To 2 * n - 1) As Integer    ReDim v(1 To 2 * n - 1) As Integer    For i = 1 To n        a(i) = i    Next    For i = 1 To 2 * n - 1        u(i) = 1        v(i) = 1    Next    m = 0    i = 1L1: If i > n Then        m += 1        For k = 1 To n : Print a(k); : Next : Print        Goto L4    End If    j = iL2: k = a(j)    p = i - k + n    q = i + k - 1    If u(p) And v(q) Then        u(p) = 0 : v(q) = 0        a(j) = a(i) : a(i) = k        s(i) = j        i += 1        Goto L1    End IfL3: j += 1 : If j <= n Goto L2L4: i -= 1 : If i = 0 Then Print m : End    j = s(i)    k = a(i) : a(i) = a(j) : a(j) = k    p = i - k + n    q = i + k - 1    u(p) = 1 : v(q) = 1    Goto L3End If`

## Frink

` solution[board] :={    for q = 0 to length[board] - 1        for c = q+1 to length[board] - 1            if [email protected] == [email protected] + (c - q) or [email protected] == [email protected] - (c - q)                return false    true} for b = array[1 to 8].permute[]    if solution[b]        println[b] `

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

## GAP

Translation of Fortran 77. See also alternate Python implementation. One function to return the number of solutions, another to return the list of permutations.

`NrQueens := function(n)    local a, up, down, m, sub;    a := [1 .. n];    up := ListWithIdenticalEntries(2*n - 1, true);    down := ListWithIdenticalEntries(2*n - 1, true);    m := 0;    sub := function(i)        local j, k, p, q;        for k in [i .. n] do            j := a[k];            p := i + j - 1;            q := i - j + n;            if up[p] and down[q] then                if i = n then                    m := m + 1;                else                    up[p] := false;                    down[q] := false;                    a[k] := a[i];                    a[i] := j;                    sub(i + 1);                    up[p] := true;                    down[q] := true;                    a[i] := a[k];                    a[k] := j;                fi;            fi;        od;    end;    sub(1);    return m;end; Queens := function(n)    local a, up, down, v, sub;    a := [1 .. n];    up := ListWithIdenticalEntries(2*n - 1, true);    down := ListWithIdenticalEntries(2*n - 1, true);    v := [];    sub := function(i)        local j, k, p, q;        for k in [i .. n] do            j := a[k];            p := i + j - 1;            q := i - j + n;            if up[p] and down[q] then                if i = n then                    Add(v, ShallowCopy(a));                else                    up[p] := false;                    down[q] := false;                    a[k] := a[i];                    a[i] := j;                    sub(i + 1);                    up[p] := true;                    down[q] := true;                    a[i] := a[k];                    a[k] := j;                fi;            fi;        od;    end;    sub(1);    return v;end; NrQueens(8);a := Queens(8);;PrintArray(PermutationMat(PermList(a), 8)); [ [  1,  0,  0,  0,  0,  0,  0,  0 ],  [  0,  0,  0,  0,  1,  0,  0,  0 ],  [  0,  0,  0,  0,  0,  0,  0,  1 ],  [  0,  0,  0,  0,  0,  1,  0,  0 ],  [  0,  0,  1,  0,  0,  0,  0,  0 ],  [  0,  0,  0,  0,  0,  0,  1,  0 ],  [  0,  1,  0,  0,  0,  0,  0,  0 ],  [  0,  0,  0,  1,  0,  0,  0,  0 ] ]`

## Go

### Niklaus Wirth algorithm (Wikipedia)

`// A fairly literal translation of the example program on the referenced// WP page.  Well, it happened to be the example program the day I completed// the task.  It seems from the WP history that there has been some churn// in the posted example program.  The example program of the day was in// Pascal and was credited to Niklaus Wirth, from his "Algorithms +// Data Structures = Programs."package main import "fmt" var (    i int    q bool    a bool    b bool    c bool // offset by 7 relative to the Pascal version    x int) func try(i int) {    for j := 1; ; j++ {        q = false        if a[j] && b[i+j] && c[i-j+7] {            x[i] = j            a[j] = false            b[i+j] = false            c[i-j+7] = false            if i < 8 {                try(i + 1)                if !q {                    a[j] = true                    b[i+j] = true                    c[i-j+7] = true                }            } else {                q = true            }        }        if q || j == 8 {            break        }    }} func main() {    for i := 1; i <= 8; i++ {        a[i] = true    }    for i := 2; i <= 16; i++ {        b[i] = true    }    for i := 0; i <= 14; i++ {        c[i] = true    }    try(1)    if q {        for i := 1; i <= 8; i++ {            fmt.Println(i, x[i])        }    }}`
Output:
```1 1
2 5
3 8
4 6
5 3
6 7
7 2
8 4
```

### Refactored Niklaus Wirth algorithm (clearer/Go friendly solution)

`/* * N-Queens Problem * * For an NxN chess board, 'safely' place a chess queen in every column and row such that none can attack another. * This solution is based Wirth Pascal solution, although a tad cleaner, thus easier to understand as it uses Go/C * style indexing and naming, and also prints the Queen using a Unicode 'rune' (which other languages do not handle natively). * * N rows by N columns are number left to right top to bottom 0 - 7 * * There are 2N-1 diagonals (showing an 8x8) *  the upper-right to lower-left are numbered row + col that is: *    0   1   2   3   4   5   6   7 *    1   2   3   4   5   6   7   8 *    2   3   4   5   6   7   8   9 *    3   4   5   6   7   8   9  10 *    4   5   6   7   8   9  10  11 *    5   6   7   8   9  10  11  12 *    6   7   8   9  10  11  12  13 *    7   8   9  10  11  12  13  14 *  *	the upper-left to lower-right are numbered N-1 + row - col *    7   6   5   4   3   2   1   0 *    8   7   6   5   4   3   2   1 *    9   8   7   6   5   4   3   2 *   10   9   8   7   6   5   4   3 *   11  10   9   8   7   6   5   4 *   12  11  10   9   8   7   6   5 *   13  12  11  10   9   8   7   6 *   14  13  12  11  10   9   8   7 */ package main import "fmt" const	N	= 8const	HAS_QUEEN  = falseconst	EMPTY  = trueconst	UNASSIGNED = -1const   white_queen = '\u2655'  var	row_num[N]int	// results, indexed by row will be the column where the queen lives (UNASSIGNED) is emptyvar	right_2_left_diag[(2*N-1)]bool	// T if no queen in diag[idx]: row i, column col is diag i+colvar	left_2_right_diag[(2*N-1)]bool //  T is no queen in diag[idx], row i, column col is N-1 + i-col  func printresults() {    for col := 0; col < N; col++ {	if col != 0 {	    fmt.Printf(" ");	}	fmt.Printf("%d,%d", col, row_num[col])    }    fmt.Printf("\n");    for  row := 0; row < N; row++ {	for col := 0; col < N; col++ {	    if col == row_num[row] {		fmt.Printf(" %c ", white_queen)	    } else {		fmt.Printf(" . ")	    }	}	fmt.Printf("\n")    }} /* * save a queen on the board by saving where we think it should go, and marking the diagonals as occupied */ func savequeen(row int, col int) {    row_num[row] = col	// save queen column for this row    right_2_left_diag[row+col] = HAS_QUEEN 	// mark forward diags as occupied    left_2_right_diag[row-col+(N-1)] = HAS_QUEEN	// mark backward diags as occupied} /* * backout a previously saved queen by clearing where we put it, and marking the diagonals as empty */ func clearqueen(row int, col int) {    row_num[row] = UNASSIGNED    right_2_left_diag[row+col] = EMPTY     left_2_right_diag[row-col+(N-1)] = EMPTY} /* * for each column try the solutions */func trycol(col int)  bool {	// check each row to look for the first empty row that does not have a diagonal in use too	for row := 0; row < N; row++ {            if row_num[row] == UNASSIGNED &&	// has the row been used yet?		    right_2_left_diag[row+col] == EMPTY &&	// check for the forward diags		    left_2_right_diag[row-col+(N-1)] == EMPTY {	// check for the backwards diags	        savequeen(row, col)	// this is a possible solution	        // Tricky part here:  going forward thru the col up to but not including the rightmost one                // if this fails, we are done, no need to search any more                if col < N-1 && !trycol(col+1) {		    // ok this did not work - we need to try a different row, so undo the guess		    clearqueen(row, col)	        } else {		    // we have a solution on this row/col, start popping the stack.		    return true		} 	    }	}	return false // not a solution for this col, pop the stack, undo the last guess, and try the next one} func main() {    for i := 0; i < N ; i++ {	row_num[i] = UNASSIGNED    }    for i := 0; i < 2*N-1 ; i++ {	right_2_left_diag[i] = EMPTY    }    for i := 0; i < 2*N-1 ; i++ {	left_2_right_diag[i] = EMPTY    }    trycol(0)    printresults()}`
Output:
```0,0 1,6 2,4 3,7 4,1 5,3 6,5 7,2
♕  .  .  .  .  .  .  .
.  .  .  .  .  .  ♕  .
.  .  .  .  ♕  .  .  .
.  .  .  .  .  .  .  ♕
.  ♕  .  .  .  .  .  .
.  .  .  ♕  .  .  .  .
.  .  .  .  .  ♕  .  .
.  .  ♕  .  .  .  .  .
```

### Dancing Links / Algorithm X

Using Knuth's dancing links technique to implement his Knuth's Algorithm X. The Go code for this technique is in the dlx packge.

`package main import (	"flag"	"fmt"	"log"	"os"	"time" 	"rosettacode.org/dlx" // or where ever you put the dlx package) func main() {	log.SetPrefix("N-queens: ")	log.SetFlags(0)	profile := flag.Bool("profile", false, "show DLX profile")	flag.Parse() 	for N := 2; N <= 18; N++ {		err := nqueens(N, N == 8, *profile)		if err != nil {			log.Fatal(err)		}	}} func nqueens(N int, printFirst, profile bool) error {	// Build a new DLX matrix with 2N primary columns and 4N-6 secondary	// columns: R0..R(N-1), F0..F(N-1), A1..A(2N-3), B1..B(2N-3).	// We also know the number of cells and solution rows required.	m := dlx.NewWithHint(2*N, 4*N-6, N*N*4-4, 8) 	s := solution{		N:          N,		renumFwd:   make([]int, 0, 2*N),		renumBack:  make([]int, 2*N),		printFirst: printFirst,	} 	// column indexes	iR0 := 0	iF0 := iR0 + N	iA1 := iF0 + N	iB1 := iA1 + 2*N - 3 	// Use "organ-pipe" ordering. E.g. for N=8:	// R4 F4 R3 F3 R5 F5 R2 F2 R6 F6 R1 F1 R7 F7 R0 F0	// This can reduce the number of link updates required by	// almost half for large N; see Knuth's paper for details.	mid := N / 2	for off := 0; off <= N-mid; off++ {		i := mid - off		if i >= 0 {			s.renumBack[iR0+i] = len(s.renumFwd)			s.renumBack[iF0+i] = len(s.renumFwd) + 1			s.renumFwd = append(s.renumFwd, iR0+i, iF0+i)		}		if i = mid + off; off != 0 && i < N {			s.renumBack[iR0+i] = len(s.renumFwd)			s.renumBack[iF0+i] = len(s.renumFwd) + 1			s.renumFwd = append(s.renumFwd, iR0+i, iF0+i)		}	} 	// Add constraint rows.	// TODO: pre-eliminate symetrical possibilities.	cols := make([]int, 4)	for i := 0; i < N; i++ {		for j := 0; j < N; j++ {			cols = iR0 + i    // Ri,         rank i			cols = iF0 + j    // Fj,         file j			a := (i + j)         // A(i+j),     diagonals			b := (N - 1 - i + j) // B(N-1-i+j), reverse diagonals			cols = cols[:2]			// Do organ-pipe reordering for R and F.			for i, c := range cols {				cols[i] = s.renumBack[c]			} 			// Only add diagonals with more than one space; that			// is we omit the corners: A0, A(2N-2), B0, and B(2N-2)			if 0 < a && a < 2*N-2 {				cols = append(cols, iA1+a-1)			}			if 0 < b && b < 2*N-2 {				cols = append(cols, iB1+b-1)			} 			m.AddRow(cols)		}	} 	// Search for solutions.	start := time.Now()	err := m.Search(s.found)	if err != nil {		return err	}	elapsed := time.Since(start)	fmt.Printf("%d×%d queens has %2d solutions, found in %v\n", N, N, s.count, elapsed)	if profile {		m.ProfileWrite(os.Stderr)	}	return nil} type solution struct {	N          int	count      int	renumFwd   []int // for "organ-pipe" column ordering	renumBack  []int	printFirst bool} func (s *solution) found(m *dlx.Matrix) error {	s.count++	if s.printFirst && s.count == 1 {		fmt.Printf("First %d×%d queens solution:\n", s.N, s.N)		for _, cols := range m.SolutionIDs(nil) {			var r, f int			for _, c := range cols {				// Undo organ-pipe reodering				if c < len(s.renumFwd) {					c = s.renumFwd[c]				}				if c < s.N {					r = c + 1				} else if c < 2*s.N {					f = c - s.N + 1				}			}			fmt.Printf("    R%d F%d\n", r, f)		}	}	return nil}`
Output:
```2×2 queens has  0 solutions, found in 1.915µs
3×3 queens has  0 solutions, found in 1.22µs
4×4 queens has  2 solutions, found in 3.095µs
5×5 queens has 10 solutions, found in 7.15µs
6×6 queens has  4 solutions, found in 17.663µs
7×7 queens has 40 solutions, found in 54.08µs
First 8×8 queens solution:
R5 F1
R1 F4
R3 F5
R4 F3
R6 F6
R2 F7
R7 F8
R8 F2
8×8 queens has 92 solutions, found in 186.991µs
9×9 queens has 352 solutions, found in 580.225µs
10×10 queens has 724 solutions, found in 2.078235ms
11×11 queens has 2680 solutions, found in 8.186708ms
12×12 queens has 14200 solutions, found in 38.037841ms
13×13 queens has 73712 solutions, found in 183.846653ms
14×14 queens has 365596 solutions, found in 961.249859ms
15×15 queens has 2279184 solutions, found in 5.491853276s
16×16 queens has 14772512 solutions, found in 33.286561009s
17×17 queens has 95815104 solutions, found in 3m34.643824374s
18×18 queens has 666090624 solutions, found in 24m22.30241617s
```

## Groovy

### Distinct Solutions

This solver starts with the N! distinct solutions to the N-Rooks problem and then keeps only the candidates in which all Queens are mutually diagonal-safe.

`def listOrder = { a, b ->    def k = [a.size(), b.size()].min()    def i = (0..<k).find { a[it] != b[it] }    (i != null) ? a[i] <=> b[i] : a.size() <=> b.size()} def orderedPermutations = { list ->    def n = list.size()    (0..<n).permutations().sort(listOrder)} def diagonalSafe = { list ->    def n = list.size()    n == 1 || (0..<(n-1)).every{ i ->        ((i+1)..<n).every{ j ->            !([list[i]+j-i, list[i]+i-j].contains(list[j]))        }    }} def queensDistinctSolutions = { n ->    // each permutation is an N-Rooks solution    orderedPermutations((0..<n)).findAll (diagonalSafe)}`

### Unique Solutions

Unique solutions are equivalence classes of distinct solutions, factoring out all reflections and rotations of a given solution. See the Wikipedia page for more details.

`class Reflect {    public static final diag = { list ->        final n = list.size()        def tList =  * n        (0..<n).each { tList[list[it]] = it }        tList    }     public static final vert = { list ->        list.reverse()    }     public static final horiz = { list ->        final n = list.size()        list.collect { n - it - 1 }    }} enum Rotations {    r0([]),    r90([Reflect.vert, Reflect.diag]),    r180([Reflect.vert, Reflect.diag, Reflect.vert, Reflect.diag]),    r270([Reflect.diag, Reflect.vert]);     private final List operations     private Rotations(List ops) {        operations = ops ?: []    }     public static void eliminateDups(primary, solutions) {        (r0..r270).each { rot -> rot.eliminateDuplicates(primary, solutions) }    }     private void eliminateDuplicates(primary, solutions) {        def rotated = [] + primary        operations.each { rotated = it(rotated) }        solutions.removeAll([rotated, Reflect.vert(rotated)])    }} def queensUniqueSolutions = { start ->    assert start instanceof Number || start instanceof List    def qus = (start instanceof Number) \                ? queensDistinctSolutions(start) \                : [] + start    for (def i = 0; i < qus.size()-1; i++) {        Rotations.eliminateDups(qus[i], qus[(i+1)..<(qus.size())])    }    qus}`

### Test and Results

This script tests both distinct and unique solution lists.

`(1..9).each { n ->    def qds = queensDistinctSolutions(n)    def qus = queensUniqueSolutions(qds)    println ([boardSize:n, "number of distinct solutions":qds.size(), "number of unique solutions":qus.size()])    if(n < 9) { qus.each { println it } }    else { println "first:\${qus}"; println "last:\${qus[-1]}" }    println()}`

Interpreting the Results:

Each individual result is given as a list of N numbers. Each number represents a column number within the list-indexed row. So, the following 4-queens solution:

`[1, 3, 0, 2]`

should be interpreted as follows:

```row 0 has a queen in column 1
row 1 has a queen in column 3
row 2 has a queen in column 0
row 3 has a queen in column 2```

In other words, this:

```   ---- ---- ---- ----
3 |    |////| ♛ |////|
---- ---- ---- ----
2 |/♛/|    |////|    |
---- ---- ---- ----
1 |    |////|    |/♛/|
---- ---- ---- ----
0 |////| ♛ |////|    |
---- ---- ---- ----
0    1    2    3```

Results:

```[boardSize:1, number of distinct solutions:1, number of unique solutions:1]


[boardSize:2, number of distinct solutions:0, number of unique solutions:0]

[boardSize:3, number of distinct solutions:0, number of unique solutions:0]

[boardSize:4, number of distinct solutions:2, number of unique solutions:1]
[1, 3, 0, 2]

[boardSize:5, number of distinct solutions:10, number of unique solutions:2]
[0, 2, 4, 1, 3]
[1, 4, 2, 0, 3]

[boardSize:6, number of distinct solutions:4, number of unique solutions:1]
[1, 3, 5, 0, 2, 4]

[boardSize:7, number of distinct solutions:40, number of unique solutions:6]
[0, 2, 4, 6, 1, 3, 5]
[0, 3, 6, 2, 5, 1, 4]
[1, 3, 0, 6, 4, 2, 5]
[1, 4, 0, 3, 6, 2, 5]
[1, 4, 6, 3, 0, 2, 5]
[1, 5, 2, 6, 3, 0, 4]

[boardSize:8, number of distinct solutions:92, number of unique solutions:12]
[0, 4, 7, 5, 2, 6, 1, 3]
[0, 5, 7, 2, 6, 3, 1, 4]
[1, 3, 5, 7, 2, 0, 6, 4]
[1, 4, 6, 0, 2, 7, 5, 3]
[1, 4, 6, 3, 0, 7, 5, 2]
[1, 5, 0, 6, 3, 7, 2, 4]
[1, 5, 7, 2, 0, 3, 6, 4]
[1, 6, 2, 5, 7, 4, 0, 3]
[1, 6, 4, 7, 0, 3, 5, 2]
[2, 4, 1, 7, 0, 6, 3, 5]
[2, 4, 7, 3, 0, 6, 1, 5]
[2, 5, 1, 4, 7, 0, 6, 3]

[boardSize:9, number of distinct solutions:352, number of unique solutions:46]
first:[0, 2, 5, 7, 1, 3, 8, 6, 4]
last:[3, 1, 6, 8, 0, 7, 4, 2, 5]```

`import Control.Monadimport Data.List -- given n, "queens n" solves the n-queens problem, returning a list of all the-- safe arrangements. each solution is a list of the columns where the queens are-- located for each rowqueens :: Int -> [[Int]]queens n = map fst \$ foldM oneMoreQueen ([],[1..n]) [1..n]  where    -- foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a  -- foldM folds (from left to right) in the list monad, which is convenient for   -- "nondeterminstically" finding "all possible solutions" of something. the   -- initial value [] corresponds to the only safe arrangement of queens in 0 rows   -- given a safe arrangement y of queens in the first i rows, and a list of   -- possible choices, "oneMoreQueen y _" returns a list of all the safe   -- arrangements of queens in the first (i+1) rows along with remaining choices   oneMoreQueen (y,d) _ = [(x:y, delete x d) | x <- d, safe x]  where     -- "safe x" tests whether a queen at column x is safe from previous queens    safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] y] -- prints what the board looks like for a solution; with an extra newlineprintSolution y = do     let n = length y     mapM_ (\x -> putStrLn [if z == x then 'Q' else '.' | z <- [1..n]]) y     putStrLn "" -- prints all the solutions for 6 queensmain = mapM_ printSolution \$ queens 6`

If you just want one solution, simply take the `head` of the result of `queens n`; since Haskell is lazy, it will only do as much work as needed to find one solution and stop.

### Alternative version

`import Control.Monad (foldM)import Data.List ((\\)) main :: IO ()main = mapM_ print \$ queens 8 queens :: Int -> [[Int]]queens n = foldM f [] [1..n]    where      f qs _ = [q:qs | q <- [1..n] \\ qs, q `notDiag` qs]      q `notDiag` qs = and [abs (q - qi) /= i | (qi,i) <- qs `zip` [1..]]`

### Using permutations

This version uses permutations to generate unique horizontal and vertical position for each queen. Thus, we only need to check diagonals. However, it is less efficient than the previous version because it does not prune out prefixes that are found to be unsuitable.

`import Data.List (nub, permutations) -- checks if queens are on the same diagonal-- with [0..] we place each queen on her own rowcheck f = length . nub . zipWith f [0..] -- filters out results where 2 or more queens are on the same diagonal-- with [0..n-1] we place each queeen on her own columngenerate n = filter (\x -> check (+) x == n && check (-) x == n) \$ permutations [0..n-1] -- 8 is for "8 queens"main = print \$ generate 8`

### In terms of foldr

A back-tracking variant using the Prelude's plain foldr:

Translation of: JavaScript
`import Data.List (transpose, intercalate)import Data.Bool (bool) queenPuzzle :: Int -> Int -> [[Int]]queenPuzzle nRows nCols  | nRows <= 0 = [[]]  | otherwise =    foldr      (\qs a ->          a ++          foldr            (\iCol b -> bool b (b ++ [qs ++ [iCol]]) (safe (nRows - 1) iCol qs))            []            [1 .. nCols])      []      (queenPuzzle (nRows - 1) nCols) safe :: Int -> Int -> [Int] -> Boolsafe iRow iCol qs =  (not . or) \$  zipWith    (\sc sr ->        (iCol == sc) || (sc + sr == (iCol + iRow)) || (sc - sr == (iCol - iRow)))    qs    [0 .. iRow - 1] -- TEST ----------------------------------------------------- 10 columns of solutions for the 7*7 board:showSolutions :: Int -> Int -> [String]showSolutions nCols nSize =  map (unlines . map (intercalate "   ") . transpose . map boardLines) \$  chunksOf nCols (queenPuzzle nSize nSize)  where    boardLines rows =      [ map (bool '.' '♛' . (== r)) [1 .. (length rows)]      | r <- rows ] chunksOf :: Int -> [a] -> [[a]]chunksOf i = splits  where    splits [] = []    splits l = take i l : splits (drop i l) main :: IO ()main = (putStrLn . unlines) \$ showSolutions 10 7`
Output:
```......♛   ......♛   ......♛   ......♛   .....♛.   .....♛.   .....♛.   .....♛.   .....♛.   .....♛.
.♛.....   ..♛....   ...♛...   ....♛..   ♛......   .♛.....   ..♛....   ..♛....   ..♛....   ...♛...
...♛...   .....♛.   ♛......   ..♛....   ..♛....   ....♛..   ......♛   ....♛..   ♛......   ......♛
.....♛.   .♛.....   ....♛..   ♛......   ....♛..   ♛......   ...♛...   ......♛   ...♛...   ♛......
♛......   ....♛..   .♛.....   .....♛.   ......♛   ...♛...   ♛......   ♛......   ......♛   ..♛....
..♛....   ♛......   .....♛.   ...♛...   .♛.....   ......♛   ....♛..   ...♛...   ....♛..   ....♛..
....♛..   ...♛...   ..♛....   .♛.....   ...♛...   ..♛....   .♛.....   .♛.....   .♛.....   .♛.....

.....♛.   ....♛..   ....♛..   ....♛..   ....♛..   ....♛..   ....♛..   ...♛...   ...♛...   ...♛...
...♛...   ♛......   ♛......   .♛.....   ..♛....   ......♛   ......♛   ♛......   ♛......   .♛.....
.♛.....   .....♛.   ...♛...   .....♛.   ♛......   .♛.....   .♛.....   ....♛..   ..♛....   ......♛
......♛   ...♛...   ......♛   ..♛....   .....♛.   ...♛...   .....♛.   .♛.....   .....♛.   ....♛..
....♛..   .♛.....   ..♛....   ......♛   ...♛...   .....♛.   ..♛....   .....♛.   .♛.....   ..♛....
..♛....   ......♛   .....♛.   ...♛...   .♛.....   ♛......   ♛......   ..♛....   ......♛   ♛......
♛......   ..♛....   .♛.....   ♛......   ......♛   ..♛....   ...♛...   ......♛   ....♛..   .....♛.

...♛...   ...♛...   ...♛...   ..♛....   ..♛....   ..♛....   ..♛....   ..♛....   ..♛....   .♛.....
.....♛.   ......♛   ......♛   ♛......   ♛......   ....♛..   .....♛.   ......♛   ......♛   ...♛...
♛......   ....♛..   ..♛....   .....♛.   .....♛.   ......♛   .♛.....   ...♛...   .♛.....   .....♛.
..♛....   .♛.....   .....♛.   .♛.....   ...♛...   .♛.....   ....♛..   ♛......   ...♛...   ♛......
....♛..   .....♛.   .♛.....   ....♛..   .♛.....   ...♛...   ♛......   ....♛..   .....♛.   ..♛....
......♛   ♛......   ....♛..   ......♛   ......♛   .....♛.   ...♛...   .♛.....   ♛......   ....♛..
.♛.....   ..♛....   ♛......   ...♛...   ....♛..   ♛......   ......♛   .....♛.   ....♛..   ......♛

.♛.....   .♛.....   .♛.....   .♛.....   .♛.....   .♛.....   ♛......   ♛......   ♛......   ♛......
...♛...   ....♛..   ....♛..   ....♛..   .....♛.   ......♛   ..♛....   ...♛...   ....♛..   .....♛.
♛......   ......♛   ..♛....   ♛......   ..♛....   ....♛..   ....♛..   ......♛   .♛.....   ...♛...
......♛   ...♛...   ♛......   ...♛...   ......♛   ..♛....   ......♛   ..♛....   .....♛.   .♛.....
....♛..   ♛......   ......♛   ......♛   ...♛...   ♛......   .♛.....   .....♛.   ..♛....   ......♛
..♛....   ..♛....   ...♛...   ..♛....   ♛......   .....♛.   ...♛...   .♛.....   ......♛   ....♛..
.....♛.   .....♛.   .....♛.   .....♛.   ....♛..   ...♛...   .....♛.   ....♛..   ...♛...   ..♛....```

### Breadth-first search and Depth-first search

`import Control.Monadimport System.Environment -- | data types for the puzzletype Row    = Inttype State  = [Row]type Thread = [Row] -- | utility functionsempty = null -- | Check for infeasible statesinfeasible :: Int -> (State, Thread) -> Boolinfeasible n ([], _)    = Falseinfeasible n ((r:rs),t) = length rs >= n || attack r rs || infeasible n (rs, t) feasible n st = not \$ infeasible n st -- | Check if a row is attacking another row of a stateattack :: Row -> [Row] -> Boolattack r rs = r `elem` rs            || r `elem` (upperDiag rs)            || r `elem` (lowerDiag rs)  where     upperDiag xs = zipWith (-) xs [1..]    lowerDiag xs = zipWith (+) xs [1..] -- | Check if it is a goal stateisGoal :: Int -> (State, Thread) -> BoolisGoal n (rs,t) = (feasible n (rs,t)) && (length rs == n) -- | Perform a movemove :: Int -> (State, Thread) -> (State, Thread)move x (s,t)  = (x:s, x:t) choices n = [1..n]moves n   = pure move <*> choices n emptySt = ([],[]) -- | Breadth-first searchbfs :: Int -> [(State, Thread)] -> (State, Thread)bfs n []                     = error "Could not find a feasible solution"bfs n sts | (not.empty) goal = head goal          | otherwise        = bfs n sts2  where     goal = filter (isGoal n) sts2    sts2 = filter (feasible n) \$ (moves n) <*> sts -- | Depth-first searchdfs :: Int -> (State, Thread) -> [(State, Thread)]dfs n st | isGoal n st     = [st]         | infeasible n st = [emptySt]         | otherwise       = do x   <- [1..n]                                st2 <- dfs n \$ move x st                                guard \$ st2 /= emptySt                                return st2 main = do  [narg] <- getArgs  let n = read narg :: Int  print (bfs n [emptySt])  print (head \$ dfs n emptySt)`
Output:
```([1,5,8,6,3,7,2,4],[1,5,8,6,3,7,2,4])
([4,2,7,3,6,8,5,1],[4,2,7,3,6,8,5,1])```

## Heron

`module NQueens {    inherits {        Heron.Windows.Console;    }    fields {        n : Int = 4;        sols : List = new List();    }    methods {        PosToString(row : Int, col : Int) : String {            return "row " + row.ToString() + ", col " + col.ToString();        }        AddQueen(b : Board, row : Int, col : Int)        {            if (!b.TryAddQueen(row, col))                return;                        if (row < n - 1)                foreach (i in 0..n-1)                   AddQueen(new Board(b), row + 1, i);            else                sols.Add(b);        }                Main() {            foreach (i in 0..n-1)                AddQueen(new Board(), 0, i);            foreach (b in sols) {                b.Output();                WriteLine("");            }            WriteLine("Found " + sols.Count().ToString() + " solutions");        }    }} class Board {    fields {        rows = new List();    }    methods {        Constructor() {            foreach (r in 0..n-1) {                var col = new List();                foreach (c in 0..n-1)                    col.Add(false);                rows.Add(col);            }        }        Constructor(b : Board) {            Constructor();            foreach (r in 0..n-1)                foreach (c in 0..n-1)                    SetSpaceOccupied(r, c, b.SpaceOccupied(r, c));        }        SpaceOccupied(row : Int, col : Int) : Bool {            return rows[row][col];        }        SetSpaceOccupied(row : Int, col : Int, b : Bool)  {            rows[row][col] = b;        }        ValidPos(row : Int, col : Int) : Bool {            return ((row >= 0) && (row < n)) && ((col >= 0) && (col < n));         }        VectorOccupied(row : Int, col : Int, rowDir : Int, colDir : Int) : Bool {            var nextRow = row + rowDir;            var nextCol = col + colDir;            if (!ValidPos(nextRow, nextCol))                 return false;            if (SpaceOccupied(nextRow, nextCol))                 return true;            return VectorOccupied(nextRow, nextCol, rowDir, colDir);        }        TryAddQueen(row : Int, col : Int) : Bool {            foreach (rowDir in -1..1)                foreach (colDir in -1..1)                    if (rowDir != 0 || colDir != 0)                        if (VectorOccupied(row, col, rowDir, colDir))                            return false;            SetSpaceOccupied(row, col, true);            return true;        }        Output() {            foreach (row in 0..n-1) {                foreach (col in 0..n-1) {                    if (SpaceOccupied(row, col)) {                        Write("Q");                    }                    else {                        Write(".");                    }                }                WriteLine("");            }        }    }}`

## Icon and Unicon

Here's a solution to the n = 8 case:

`procedure main()    write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))end procedure q(c)    static udiag, ddiag, row     initial {        udiag := list(15, 0)        ddiag := list(15, 0)        row := list(8, 0)    }     every 0 = row[r := 1 to 8] = ddiag[r + c - 1] = udiag[8 + r - c] do   # test if free        suspend row[r] <- ddiag[r + c - 1] <- udiag[8 + r - c] <- r       # place and yieldend`

Notes:

• Solution assumes attempting to place 8 queens on a standard chessboard, and is a simplification of a program in the The Icon Programming Library (IPL) which is in the public domain.
• There are 15 left-side-down-diagonals and 15 left-side-up-diagonals represented in the lists. An unfilled row or diagonal has value 0, otherwise the row number is stored to indicate placement.
• The numeric equality operator =, like all the comparators in Icon, yields the right argument as its solution, or fails. The chain of 0 = A = B = C therefore tests each of A B and C for equality with 0; these semantics read very naturally.
• every drives the chain of = tests to yield every possible result; the iterable component is the generator 1 to 8 which is progressively stored into r and will be backtracked if any of the equality tests fail. If all the placements are zero, the chain of equalities suceeds, and the suspend is invoked for that iteration.
• <- is the "reversible assignment" operator. It restores the original value and fails if it is resumed by backtracking. The suspend will use it to temporarily consume the placements and then it will yield the value of the chosen row r.
• procedure q() attempts to place the c-th column queen into row 1 to 8 in turn, suspending only if that queen can be placed at [c,r]
• As the calls to q() are evaluated in main, each one will suspend a possible row, thereby allowing the next q(n) in main to be evaluated. If any of the q() fails to yield a row for the nth queen (or runs out of solutions) the previous, suspended calls to q() are backtracked progressively. If the final q(8) yields a row, the write() will be called with the row positions of each queen. Note that even the final q(8) will be suspended along with the other 7 calls to q(). Unless the write() is driven to produce more solutions (see next point) the suspended procedures will be closed at the "end of statement" ie after the write has "succeeded".
• If you want to derive all possible solutions, main() can be embellished with the every keyword:
` procedure main()    every write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))end `

This drives the backtracking to find more solutions.

The following is a general N-queens solution, adapted from a solution placed into the public domain by Peter A. Bigot in 1990. The program produces a solution for a specified value of N. The comment explains how to modify the program to produce all solutions for a given N.

`global n, rw, dd, ud procedure main(args)    n := integer(args) | 8    rw := list(n)    dd := list(2*n-1)    ud := list(2*n-1)    solvequeen(1)end procedure solvequeen(c)    if (c > n) then return show()    else suspend placequeen(c) & solvequeen(c+1)end procedure placequeen(c)    suspend (/rw[r := 1 to n] <- /dd[r+c-1] <- /ud[n+r-c] <- c)end procedure show()    static count, line, border    initial {        count := 0        line := repl("|   ",n) || "|"        border := repl("----",n) || "-"        }    write("solution: ", count+:=1)    write("  ", border)    every line[4*(!rw - 1) + 3] <- "Q" do {        write("  ", line)        write("  ", border)        }    write()    return      # Comment out to see all possible solutionsend`

A sample run for N = 6:

```->nq 6
solution: 1
-------------------------
|   |   |   | Q |   |   |
-------------------------
| Q |   |   |   |   |   |
-------------------------
|   |   |   |   | Q |   |
-------------------------
|   | Q |   |   |   |   |
-------------------------
|   |   |   |   |   | Q |
-------------------------
|   |   | Q |   |   |   |
-------------------------

->```

Two solutions are in the IPL queens and genqueen.

## IS-BASIC

`100 PROGRAM "NQueens.bas"110 TEXT 80120 DO130   INPUT PROMPT "Size of board (2-12): ":N\$140   LET N=VAL(N\$)150 LOOP UNTIL N>1 AND N<13160 NUMERIC A(1 TO N),X(1 TO N),B(2 TO 2*N),C(-N+1 TO N-1)170 LET SOL=0180 CALL INIT(A):CALL INIT(B):CALL INIT(C)190 CALL TRY(1)200 PRINT SOL;"solutions."210 END220 DEF WRITE230   LET S\$="":LET SOL=SOL+1240   FOR K=1 TO N250     LET S\$=S\$&CHR\$(64+K)&STR\$(X(K))&"  "260   NEXT270   PRINT S\$280 END DEF290 DEF TRY(I)300   NUMERIC J310   FOR J=1 TO N320     IF A(J) AND B(I+J) AND C(I-J) THEN330       LET X(I)=J:LET A(J),B(I+J),C(I-J)=0340       IF I<N THEN350         CALL TRY(I+1)360       ELSE370         CALL WRITE380       END IF390       LET A(J),B(I+J),C(I-J)=1400     END IF410   NEXT420 END DEF430 DEF INIT(REF T)440   FOR I=LBOUND(T) TO UBOUND(T)450     LET T(I)=1460   NEXT470 END DEF`

## J

This is one of several J solutions shown and explained on this J wiki page

`perm   =: ! A.&i. ]               NB. all permutations of integers 0 to ycomb2  =: (, #: [email protected],@(</)&i.)~    NB. all size 2 combinations of integers 0 to ymask   =: [ */@:~:&(|@-/) {queenst=: comb2 (] #"1~ mask)&.|: perm`

Note that the Roger Hui's approach (used here) matches the description attributed to Raymond Hettinger (in the Python implementation). (Both were posted years ago: 1981 for Hui's version which was used here, and 2009 for Hettinger's.) However they do use different diagonal queen clash elimination approaches -see C# Roger Hui Algorithm for a comparison of the two approaches.

Example use:

`   \$queenst 892 8`

92 distinct solutions for an 8 by 8 board.

`   {.queenst 80 4 7 5 2 6 1 3`

One of the solutions. Position indicates row number, the integer indicates column number (0..7) for each queen -- though of course you could just as validly think of that the other way around.

## Java

`public class NQueens {   private static int[] b = new int;  private static int s = 0;   static boolean unsafe(int y) {    int x = b[y];    for (int i = 1; i <= y; i++) {      int t = b[y - i];      if (t == x ||          t == x - i ||          t == x + i) {        return true;      }    }     return false;  }   public static void putboard() {    System.out.println("\n\nSolution " + (++s));    for (int y = 0; y < 8; y++) {      for (int x = 0; x < 8; x++) {        System.out.print((b[y] == x) ? "|Q" : "|_");      }      System.out.println("|");    }  }   public static void main(String[] args) {    int y = 0;    b = -1;    while (y >= 0) {      do {        b[y]++;      } while ((b[y] < 8) && unsafe(y));      if (b[y] < 8) {        if (y < 7) {          b[++y] = -1;        } else {          putboard();        }      } else {        y--;      }    }  }}`

## JavaScript

### ES5

Algorithm uses recursive Backtracking. Checks for correct position on subfields, whichs saves a lot position checks. Needs 15.720 position checks for a 8x8 field.

`function queenPuzzle(rows, columns) {    if (rows <= 0) {        return [[]];    } else {        return addQueen(rows - 1, columns);    }} function addQueen(newRow, columns, prevSolution) {    var newSolutions = [];    var prev = queenPuzzle(newRow, columns);    for (var i = 0; i < prev.length; i++) {        var solution = prev[i];        for (var newColumn = 0; newColumn < columns; newColumn++) {            if (!hasConflict(newRow, newColumn, solution))                newSolutions.push(solution.concat([newColumn]))        }    }    return newSolutions;} function hasConflict(newRow, newColumn, solution) {    for (var i = 0; i < newRow; i++) {        if (solution[i]     == newColumn          ||            solution[i] + i == newColumn + newRow ||             solution[i] - i == newColumn - newRow) {                return true;        }    }    return false;} console.log(queenPuzzle(8,8));`

### ES6

Translating the ES5 version, and adding a function to display columns of solutions.

`(() => {    'use strict';     // ----------------- N QUEENS PROBLEM ------------------     // queenPuzzle :: Int -> Int -> [[Int]]    const queenPuzzle = intCols => {        // All solutions for a given number        // of columns and rows.        const go = nRows =>            nRows <= 0 ? [                []            ] : go(nRows - 1).reduce(                (a, solution) => append(a)(                    enumFromTo(0)(intCols - 1)                    .reduce((b, iCol) =>                        safe(nRows - 1, iCol, solution) ? (                            b.concat([solution.concat(iCol)])                        ) : b, [])                ), []            );        return go;    };     // safe : Int -> Int -> [Int] -> Bool    const safe = (iRow, iCol, solution) =>        !any(            ([sc, sr]) => (iCol === sc) || (                sc + sr === iCol + iRow            ) || (sc - sr === iCol - iRow)        )(zip(solution)(enumFromTo(0)(iRow - 1)));      // ----------------------- TEST ------------------------    // Ten columns of solutions to the 7*7 board     // main :: IO ()    const main = () =>        console.log(            showSolutions(10, 7)        );     // ---------------------- DISPLAY ----------------------     // showSolutions :: Int -> Int -> String    const showSolutions = (nCols, nBoardSize) =>        intercalate('\n\n')(            map(unlines)(                map(compose(                    map(intercalate('  ')),                    transpose,                    map(rows =>                        map(r => concat(                            concatMap(                                compose(bool('.')('♛'), eq(r))                            )(enumFromTo(1)(rows.length))                        ))(rows)                    )                ))(chunksOf(nCols)(                    join(queenPuzzle)(nBoardSize)                ))            )        );     // ----------------- GENERIC FUNCTIONS -----------------     // abs :: Num a => a -> a    const abs = Math.abs     // bool :: a -> a -> Bool -> a    const bool = f => t => p =>        p ? t : f;     // eq (==) :: Eq a => a -> a -> Bool    const eq = a => b => a === b;     // any :: (a -> Bool) -> [a] -> Bool    const any = p => xs => xs.some(p);     // (++) :: [a] -> [a] -> [a]    const append = xs => ys => xs.concat(ys);     // bindFn (>>=) :: (a -> b) -> (b -> a -> c) -> a -> c    const bindFn = f => bop =>        // Binary operator applied over f x and x.        x => bop(f(x))(x);     // chunksOf :: Int -> [a] -> [[a]]    const chunksOf = n => xs =>        xs.reduce((a, _, i, xs) =>            i % n ? a : a.concat([xs.slice(i, i + n)]), []);     // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c    const compose = (...fs) =>        x => fs.reduceRight((a, f) => f(a), x);     // concat :: [[a]] -> [a]    // concat :: [String] -> String    const concat = xs =>        0 < xs.length ? (() => {            const unit = 'string' !== typeof xs ? (                []            ) : '';            return unit.concat.apply(unit, xs);        })() : [];     // concatMap :: (a -> [b]) -> [a] -> [b]    const concatMap = f => xs =>        xs.flatMap(f);     // enumFromTo :: Int -> Int -> [Int]    const enumFromTo = m => n =>        Array.from({            length: Math.floor(n - m) + 1        }, (_, i) => m + i);     // identity :: a -> a    const identity = x => x;     // intercalate :: String -> [a] -> String    const intercalate = s => xs => xs.join(s);     // join :: m (m a) -> m a    // Function instance    const join = f => bindFn(f)(        identity    );     // map :: (a -> b) -> [a] -> [b]    const map = f => xs => xs.map(f)     // transpose :: [[a]] -> [[a]]    const transpose = xs =>        xs.map((_, iCol) => xs.map(row => row[iCol]));     // unlines :: [String] -> String    const unlines = xs => xs.join('\n');     // zip :: [a] -> [b] -> [(a,b)]    const zip = xs => ys =>        xs.slice(0, Math.min(xs.length, ys.length))        .map((x, i) => [x, ys[i]]);     // MAIN ---    return main();})();`

## jq

#### Single Solution

Works with: jq version 1.4

This section presents a function for finding a single solution using the formulae for explicit solutions at Eight Queens Puzzle.

`def single_solution_queens(n):  def q: "♛";  def init(k): reduce range(0;k) as \$i ([]; . + ["."]);  def matrix(k): init(k) as \$row | reduce range(0;k) as \$i ([]; . + [\$row]);  def place(stream; i; j):    # jq indexing is based on offsets but we are using the 1-based formulae:    reduce stream as \$s (.; setpath([-1+(\$s|i), -1+(\$s|j)]; q) );  def even(k):     if ((k-2) % 6) != 0 then         place( range(1; 1+(k/2));         .; 2*. )       | place( range(1; 1+(k/2)); (k/2) + .; 2*. -1 )    else place( range(1; 1+(k/2));         .; 1 + ((2*. + (k/2) - 3) % k))         | place( range(1; 1+(n/2)); n + 1 - .; n - ((2*. + (n/2) - 3) % n))      end;   matrix(n)                          # the chess board  | if (n % 2) == 0 then even(n)    else even(n-1) | .[n-1][n-1] = q    end; # Example:def pp: reduce .[] as \$row  ("";  reduce \$row[] as \$x (.; . + \$x) + "\n"); single_solution_queens(8) | pp`
Output:

\$ jq -M -n -r -f n-queens-single-solution.jq

`...♛.........♛.........♛.♛............♛.♛.........♛.........♛...`

#### Generate-and-test counter

Works with: jq version 1.4

Part 1: Generic functions

`# permutations of 0 .. (n-1)def permutations(n):  # Given a single array, generate a stream by inserting n at different positions:  def insert(m;n):     if m >= 0 then (.[0:m] + [n] + .[m:]), insert(m-1;n) else empty end;   if n==0 then []  elif n == 1 then   else    permutations(n-1) | insert(n-1; n)  end; def count(g): reduce g as \$i (0; .+1);`

Part 2: n-queens

`def queens(n):  def sums:  . as \$board  | [ range(0;length) | . + \$board[.]]  | unique | length;   def differences:  . as \$board  | [ range(0;length) | . - \$board[.]]  | unique | length;   def allowable:    length as \$n    | sums == \$n and differences == \$n;   count( permutations(n) | select(allowable) ); `

Example:

`queens(8)`
Output:
```92
```

## Julia

` #!/usr/bin/env julia __precompile__(true) """# EightQueensPuzzle Ported to **Julia** from examples in several languages fromhere: https://hbfs.wordpress.com/2009/11/10/is-python-slow"""module EightQueensPuzzle export main type Board    cols::Int    nodes::Int    diag45::Int    diag135::Int    solutions::Int     Board() = new(0, 0, 0, 0, 0)end "Marks occupancy."function mark!(b::Board, k::Int, j::Int)    b.cols    \$= (1 << j)    b.diag135 \$= (1 << (j+k))    b.diag45  \$= (1 << (32+j-k))end "Tests if a square is menaced."function test(b::Board, k::Int, j::Int)    b.cols    & (1 << j)        +    b.diag135 & (1 << (j+k))    +    b.diag45  & (1 << (32+j-k)) == 0end "Backtracking solver."function solve!(b::Board, niv::Int, dx::Int)    if niv > 0        for i in 0:dx-1            if test(b, niv, i) == true                mark!(b, niv, i)                solve!(b, niv-1, dx)                mark!(b, niv, i)            end        end    else        for i in 0:dx-1            if test(b, 0, i) == true                b.solutions += 1            end        end    end    b.nodes += 1    b.solutionsend "C/C++-style `main` function."function main()    for n = 1:17        gc()        b = Board()        @show n        print("elapsed:")        solutions = @time solve!(b, n-1, n)        @show solutions        println()    endend end using  EightQueensPuzzle main() `
` [email protected]:~\$ /opt/julia-0.5/bin/julia eight_queen_puzzle.jln = 1elapsed:  0.000001 secondssolutions = 1 n = 2elapsed:  0.000001 secondssolutions = 0 n = 3elapsed:  0.000001 secondssolutions = 0 n = 4elapsed:  0.000001 secondssolutions = 2 n = 5elapsed:  0.000003 secondssolutions = 10 n = 6elapsed:  0.000008 secondssolutions = 4 n = 7elapsed:  0.000028 secondssolutions = 40 n = 8elapsed:  0.000108 secondssolutions = 92 n = 9elapsed:  0.000463 secondssolutions = 352 n = 10elapsed:  0.002146 secondssolutions = 724 n = 11elapsed:  0.010646 secondssolutions = 2680 n = 12elapsed:  0.057603 secondssolutions = 14200 n = 13elapsed:  0.334600 secondssolutions = 73712 n = 14elapsed:  2.055078 secondssolutions = 365596 n = 15elapsed: 13.480449 secondssolutions = 2279184 n = 16elapsed: 97.192552 secondssolutions = 14772512 n = 17elapsed:720.314676 secondssolutions = 95815104 `

## Kotlin

Translation of: FreeBASIC
`// version 1.1.3 var count = 0var c = IntArray(0)var f = ""  fun nQueens(row: Int, n: Int) {    outer@ for (x in 1..n) {        for (y in 1..row - 1) {            if (c[y] == x) continue@outer            if (row - y == Math.abs(x - c[y])) continue@outer                   }        c[row] = x        if (row < n) nQueens(row + 1, n)        else if (++count == 1) f = c.drop(1).map { it - 1 }.toString()    }} fun main(args: Array<String>) {   for (n in 1..14) {        count = 0       c = IntArray(n + 1)       f = ""       nQueens(1, n)       println("For a \$n x \$n board:")       println("  Solutions = \$count")       if (count > 0) println("  First is \$f")       println()   }}`
Output:
```For a 1 x 1 board:
Solutions = 1
First is 

For a 2 x 2 board:
Solutions = 0

For a 3 x 3 board:
Solutions = 0

For a 4 x 4 board:
Solutions = 2
First is [1, 3, 0, 2]

For a 5 x 5 board:
Solutions = 10
First is [0, 2, 4, 1, 3]

For a 6 x 6 board:
Solutions = 4
First is [1, 3, 5, 0, 2, 4]

For a 7 x 7 board:
Solutions = 40
First is [0, 2, 4, 6, 1, 3, 5]

For a 8 x 8 board:
Solutions = 92
First is [0, 4, 7, 5, 2, 6, 1, 3]

For a 9 x 9 board:
Solutions = 352
First is [0, 2, 5, 7, 1, 3, 8, 6, 4]

For a 10 x 10 board:
Solutions = 724
First is [0, 2, 5, 7, 9, 4, 8, 1, 3, 6]

For a 11 x 11 board:
Solutions = 2680
First is [0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9]

For a 12 x 12 board:
Solutions = 14200
First is [0, 2, 4, 7, 9, 11, 5, 10, 1, 6, 8, 3]

For a 13 x 13 board:
Solutions = 73712
First is [0, 2, 4, 1, 8, 11, 9, 12, 3, 5, 7, 10, 6]

For a 14 x 14 board:
Solutions = 365596
First is [0, 2, 4, 6, 11, 9, 12, 3, 13, 8, 1, 5, 7, 10]
```

## Liberty BASIC

Program uses permutation generator (stores all permutations) and solves tasks 4x4 to 9x9. It prints all the solutions.

` 'N queens'>10 would not work due to way permutations used'anyway, 10 doesn't fit in memoryInput "Input N for N queens puzzle (4..9) ";Nif N<4 or N>9 then print "N out of range - quitting": end ABC\$= " "dash\$ = ""for i = 0 to N-1    ABC\$=ABC\$+" "+chr\$(asc("a")+i)    dash\$ = dash\$+"--"next dim q(N)t0=time\$("ms") fact = 1for i = 1 to N    fact = fact*inext dim anagram\$(fact)global nPermsprint "Filling permutations array"t0=time\$("ms")    res\$=permutation\$("", left\$("0123456789", N))t1=time\$("ms")print "Created all possible permutations ";t1-t0 t0=time\$("ms")'actually fact = nPermsfor k=1 to nPerms    for i=0 to N-1        q(i)=val(mid\$(anagram\$(k),i+1,1))        'print q(i);    next    'print     fail = 0    for i=0 to N-1        for j=i+1 to N-1            'check rows are different            if q(i)=q(j) then fail = 1: exit for            'check diagonals are different            if i+q(i)=j+q(j) then fail = 1: exit for            'check other diagonals are different            if i-q(i)=j-q(j) then fail = 1: exit for        next        if fail then exit for    next     if not(fail) then        num=num+1        print " ";dash\$            for i=0 to N-1                print N-i; space\$(2*q(i));" *"            next        print " ";dash\$        print ABC\$    end if next t1=time\$("ms")print "Time taken ";t1-t0print "Number of solutions ";num '----------------------------------'from'http://babek.info/libertybasicfiles/lbnews/nl124/wordgames.htm'Programming a Word Game by Janet Terra,'The Liberty Basic Newsletter - Issue #124 - September 2004Function permutation\$(pre\$, post\$)'Note the variable nPerms must first be stated as a global variable.    lgth = Len(post\$)    If lgth < 2 Then        nPerms = nPerms + 1        anagram\$(nPerms) = pre\$;post\$    Else        For i = 1 To lgth            tmp\$=permutation\$(pre\$+Mid\$(post\$,i,1),Left\$(post\$,i-1)+Right\$(post\$,lgth-i))        Next i    End IfEnd Function  `

## Locomotive Basic

Uses the heuristic from the Wikipedia article to get one solution.

`10 mode 1:defint a-z20 while n<4:input "How many queens (N>=4)";n:wend30 dim q(n),e(n),o(n)40 r=n mod 650 if r<>2 and r<>3 then gosub 320:goto 22060 for i=1 to int(n/2)70 e(i)=2*i80 next90 for i=1 to round(n/2)100 o(i)=2*i-1110 next120 if r=2 then gosub 410130 if r=3 then gosub 460140 s=1150 for i=1 to n160 if e(i)>0 then q(s)=e(i):s=s+1170 next180 for i=1 to n190 if o(i)>0 then q(s)=o(i):s=s+1200 next210 ' print board220 cls230 for i=1 to n240 locate i,26-q(i):print chr\$(238);250 locate i,24-n   :print chr\$(96+i);260 locate n+1,26-i :print i;270 next280 locate 1,1290 call &bb06300 end310 ' the simple case320 p=1330 for i=1 to n340 if i mod 2=0 then q(p)=i:p=p+1350 next360 for i=1 to n370 if i mod 2 then q(p)=i:p=p+1380 next390 return400 ' edit list when remainder is 2410 for i=1 to n420 if o(i)=3 then o(i)=1 else if o(i)=1 then o(i)=3430 if o(i)=5 then o(i)=-1 else if o(i)=0 then o(i)=5:return440 next450 ' edit list when remainder is 3460 for i=1 to n470 if e(i)=2 then e(i)=-1 else if e(i)=0 then e(i)=2:goto 500480 next490 ' edit list some more500 for i=1 to n510 if o(i)=1 or o(i)=3 then o(i)=-1 else if o(i)=0 then o(i)=1:o(i+1)=3:return520 next`

## Logo

`to try :files :diag1 :diag2 :tried  if :files = 0 [make "solutions :solutions+1  show :tried  stop]  localmake "safe (bitand :files :diag1 :diag2)  until [:safe = 0] [    localmake "f bitnot bitand :safe minus :safe    try bitand :files :f  ashift bitand :diag1 :f -1  (ashift bitand :diag2 :f 1)+1  fput bitnot :f :tried    localmake "safe bitand :safe :safe-1  ]end to queens :n  make "solutions 0  try (lshift 1 :n)-1 -1 -1 []  output :solutionsend print queens 8  ; 92`

## Lua

`N = 8 -- We'll use nil to indicate no queen is present.grid = {}for i = 0, N do  grid[i] = {}end function can_find_solution(x0, y0)  local x0, y0 = x0 or 0, y0 or 1  -- Set default vals (0, 1).  for x = 1, x0 - 1 do    if grid[x][y0] or grid[x][y0 - x0 + x] or grid[x][y0 + x0 - x] then      return false    end  end  grid[x0][y0] = true  if x0 == N then return true end  for y0 = 1, N do    if can_find_solution(x0 + 1, y0) then return true end  end  grid[x0][y0] = nil  return falseend if can_find_solution() then  for y = 1, N do    for x = 1, N do      -- Print "|Q" if grid[x][y] is true; "|_" otherwise.      io.write(grid[x][y] and "|Q" or "|_")    end    print("|")  endelse  print(string.format("No solution for %d queens.\n", N))end`

## M2000 Interpreter

Translation of: VBA
` Module N_queens {          Const l = 15  'number of queens          Const b = False  'print option          Dim a(0 to  l), s(0 to l), u(0 to 4 * l - 2)          Def long n, m, i, j, p, q, r, k, t          For i = 1 To l: a(i) = i: Next i          For n = 1 To l              m = 0              i = 1              j = 0              r = 2 * n - 1              Do {                  i--                  j++                  p = 0                  q = -r                  Do {                      i++                      u(p) = 1                      u(q + r) = 1                      Swap a(i), a(j)                      p = i - a(i) + n                      q = i + a(i) - 1                      s(i) = j                      j = i + 1                  } Until j > n Or u(p) Or u(q + r)                  If u(p) = 0 Then {                      If u(q + r) = 0 Then {                          m++  'm: number of solutions                          If b Then {                              Print "n="; n; "m="; m                              For k = 1 To n {                                  For t = 1 To n {                                      Print If\$(a(n - k + 1) = t-> "Q", ".");                                  }                                  Print                              }                          }                      }                  }                  j = s(i)                  While j >= n And i <> 0 {                            Do {                                      Swap a(i), a(j)                                      j--                            }  Until j < i                            i--                            p = i - a(i) + n                            q = i + a(i) - 1                            j = s(i)                            u(p) = 0                            u(q + r) = 0                  }              } Until i = 0              Print n, m  'number of queens, number of solutions          Next n}N_queens `

## Maple

Translation of: Python
`queens:=proc(n)  local a,u,v,m,aux;  a:=[\$1..n];  u:=[true\$2*n-1];  v:=[true\$2*n-1];  m:=[];  aux:=proc(i)    local j,k,p,q;    if i>n then      m:=[op(m),copy(a)];    else      for j from i to n do        k:=a[j];        p:=i-k+n;        q:=i+k-1;        if u[p] and v[q] then          u[p]:=false;          v[q]:=false;          a[j]:=a[i];          a[i]:=k;          aux(i+1);          u[p]:=true;          v[q]:=true;          a[i]:=a[j];          a[j]:=k;        fi;      od;    fi;  end;  aux(1);  mend:           for a in queens(8) do printf("%a\n",a) od;`
Output:
```[1, 5, 8, 6, 3, 7, 2, 4]
[1, 6, 8, 3, 7, 4, 2, 5]
[1, 7, 4, 6, 8, 2, 5, 3]
...
[8, 2, 5, 3, 1, 7, 4, 6]
[8, 3, 1, 6, 2, 5, 7, 4]
[8, 4, 1, 3, 6, 2, 7, 5]```

## Mathematica

This code recurses through the possibilities, using the "safe" method to check if the current set is allowed. The recursive method has the advantage that finding all possibilities is about as hard (code-wise, not computation-wise) as finding just one.

`safe[q_List, n_] :=  With[{l = [email protected]},   [email protected]@q == [email protected][q + [email protected]] ==    [email protected][q - [email protected]] == l]nQueen[q_List: {}, n_] :=  If[safe[q, n],   If[Length[q] == n, {q},    Cases[nQueen[Append[q, #], n] & /@ Range[n],     Except[{Null} | {}], {2}]], Null]`

This returns a list of valid permutations by giving the queen's column number for each row. It can be displayed in a list of chess-board tables like this:

`matrixView[n_] :=  Grid[[email protected]     SparseArray[MapIndexed[{#, [email protected]#2} -> "Q" &, #], {n, n}, "."],     Frame -> All] & /@ nQueen[n]matrixView // OutputForm`
Output:
```{.   .   .   Q   .   ., .   .   .   .   Q   ., .   Q   .   .   .   ., .   .   Q   .   .   .}

Q   .   .   .   .   .  .   .   Q   .   .   .  .   .   .   Q   .   .  .   .   .   .   .   Q

.   .   .   .   Q   .  Q   .   .   .   .   .  .   .   .   .   .   Q  .   Q   .   .   .   .

.   Q   .   .   .   .  .   .   .   .   .   Q  Q   .   .   .   .   .  .   .   .   .   Q   .

.   .   .   .   .   Q  .   .   .   Q   .   .  .   .   Q   .   .   .  Q   .   .   .   .   .

.   .   Q   .   .   .  .   Q   .   .   .   .  .   .   .   .   Q   .  .   .   .   Q   .   .```

Alternate Solution This solution uses Permutations and subsets, also prints out a board representation.

`n=8;cnt=1;per=Permutations[Range[n],{n}];(* All Permutations of length n *)	Do[per[[q]]=Partition[Riffle[Reverse[Range[n]],per[[q]]],2],{q,1,Length[per]}];(* Riffled in the reverse of [range n] partitioned into pairs*)	 Do[w=Subsets[per[[t]],{2}];(* This is a full subset of the previous set of pairs taken 2 at a time *)tot=0;	Do[y=Abs[w[[q,1,1]]-w[[q,2,1]]];x=Abs[w[[q,1,2]]-w[[q,2,2]]];If[x==y,tot++],{q,1,Length[w]}];(* x and y are the abs values of x1-y1 and x2-y2 if equal they are on same diagonal *)		If[tot==0,g=Grid[Table[" ",{n},{n}],Alignment->Center,Frame->All,Spacings->{1.2,1}];(* If no clashing diagonals setup an array and print the permutation and the grid*)		Do[g[[1,per[[t,w,1]],per[[t,w,2]]]]="Q",{w,1,n}];			Print[cnt,"   ",per[[t]],"   ",g];cnt++],{t,1,Length[per]}]`

Alternative Solution using Linear Programming:

` dispSol[sol_] := sol /. {1 -> "Q" , 0 -> "-"} // Grid solveNqueens[n_] :=  Module[{c, m, b, vars}, c = cqueens[n]; m = mqueens[n];   vars = mqueens2[n]; b = bqueens[Length[m]];   Partition[LinearProgramming[c, m, b, vars, Integers], n]] cqueens[n_] := Table[-1, {i, n^2}] bqueens[l_] := Table[{1, -1}, {i, l}] mqueens2[n_] := Table[{0, 1}, {i, n^2}] mqueens[n_] :=  Module[{t, t2, t3, t4}, t = mqueensh[n]; t2 = Append[t, mqueensv[n]];   t3 = Append[t2, mqueensd[n]]; t4 = Append[t3, mqueensdm[n]];   Partition[Flatten[t4], n^2]] mqueensh[n_] :=  Module[{t}, t = Table[0, {i, n}, {j, n^2}];   For[i = 1, i <= n, i++,    For[j = 1, j <= n, j++, t[[i, ((i - 1)*n) + j]] = 1]]; t] mqueensv[n_] :=  Module[{t}, t = Table[0, {i, n}, {j, n^2}];   For[i = 1, i <= n, i++,    For[j = 1, j <= n, j++, t[[j, ((i - 1)*n) + j]] = 1]]; t] mqueensd[n_] :=  Module[{t}, t = Table[0, {i, (2*n) - 1}, {j, n^2}];   For[k = 2, k <= 2 n, k++,    For[i = 1, i <= n, i++,     For[j = 1, j <= n, j++,      If[i + j == k, t[[k - 1, ((i - 1)*n) + j]] = 1]]]]; t] mqueensdm[n_] :=  Module[{t}, t = Table[0, {i, Sum[1, {i, 1 - n, n - 1}]}, {j, n^2}];   For[k = 1 - n, k <= n - 1, k++,    For[i = 1, i <= n, i++,     For[j = 1, j <= n, j++,      If[i == j - k, t[[k + n, ((i - 1)*n) + j]] = 1]]]]; t]  solveNqueens // dispSol `
```-	-	-	-	Q	-	-	-
-	Q	-	-	-	-	-	-
-	-	-	-	-	Q	-	-
Q	-	-	-	-	-	-	-
-	-	-	-	-	-	Q	-
-	-	-	Q	-	-	-	-
-	-	-	-	-	-	-	Q
-	-	Q	-	-	-	-	-```

## Maxima

`/* translation of Fortran 77, return solutions as permutations */ queens(n) := block([a, i, j, m, p, q, r, s, u, v, w, y, z],a: makelist(i, i, 1, n), s: a*0, u: makelist(0, i, 1, 4*n - 2),m: 0, i: 1, r: 2*n - 1, w: [ ], go(L40), L30, s[i]: j, u[p]: 1,u[q + r]: 1, i: i + 1, L40, if i > n then go(L80), j: i, L50,z: a[i], y: a[j], p: i - y + n, q: i + y - 1, a[i]: y, a[j]: z,if u[p] = 0 and u[q + r] = 0 then go(L30), L60, j: j + 1,if j <= n then go(L50), L70, j: j - 1, if j = i then go(L90),z: a[i], a[i]: a[j], a[j]: z, go(L70), L80, m: m + 1,w: endcons(copylist(a), w), L90, i: i - 1, if i = 0 then go(L100),p: i - a[i] + n, q: i + a[i] - 1, j: s[i], u[p]: 0, u[q + r]: 0,go(L60), L100, w)\$ queens(8); /* [[1, 5, 8, 6, 3, 7, 2, 4],               [1, 6, 8, 3, 7, 4, 2, 5],               ...]] */length(%); /* 92 */`

## MiniZinc

`int: n;array [1..n] of var 1..n: q; % queen in column i is in row q[i] include "alldifferent.mzn"; constraint alldifferent(q);                       % distinct rowsconstraint alldifferent([ q[i] + i | i in 1..n]); % distinct diagonalsconstraint alldifferent([ q[i] - i | i in 1..n]); % upwards+downwards % searchsolve :: int_search(q, first_fail, indomain_min)      satisfy;output [ if fix(q[j]) == i then "Q" else "." endif ++         if j == n then "\n" else "" endif | i,j in 1..n]`

This solution appears in the official MiniZinc tutorial documentation, and is generalized.

## MUMPS

`Queens	New count,flip,row,sol	Set sol=0	For row(1)=1:1:4 Do try(2)  ; Not 8, the other 4 are symmetric...	;	; Remove symmetric solutions	Set sol="" For  Set sol=\$Order(sol(sol)) Quit:sol=""  Do	. New xx,yy	. Kill sol(\$Translate(sol,12345678,87654321)) ; Vertical flip	. Kill sol(\$Reverse(sol)) ; Horizontal flip	. Set flip="--------" for xx=1:1:8 Do  ; Flip over top left to bottom right diagonal	. . New nx,ny	. . Set yy=\$Extract(sol,xx),nx=8+1-xx,ny=8+1-yy	. . Set \$Extract(flip,ny)=nx	. . Quit	. Kill sol(flip)	. Set flip="--------" for xx=1:1:8 Do  ; Flip over top right to bottom left diagonal	. . New nx,ny	. . Set yy=\$Extract(sol,xx),nx=xx,ny=yy	. . Set \$Extract(flip,ny)=nx	. . Quit	. Kill sol(flip)	. Quit	;	; Display remaining solutions	Set count=0,sol="" For  Set sol=\$Order(sol(sol)) Quit:sol=""  Do  Quit:sol=""	. New s1,s2,s3,txt,x,y	. Set s1=sol,s2=\$Order(sol(s1)),s3="" Set:s2'="" s3=\$Order(sol(s2))	. Set txt="+--+--+--+--+--+--+--+--+"	. Write !,"  ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt	. For y=8:-1:1 Do	. . Write !,y," |"	. . For x=1:1:8 Write \$Select(\$Extract(s1,x)=y:" Q",x+y#2:"  ",1:"##"),"|"	. . If s2'="" Write " |"	. . If s2'="" For x=1:1:8 Write \$Select(\$Extract(s2,x)=y:" Q",x+y#2:"  ",1:"##"),"|"	. . If s3'="" Write " |"	. . If s3'="" For x=1:1:8 Write \$Select(\$Extract(s3,x)=y:" Q",x+y#2:"  ",1:"##"),"|"	. . Write !,"  ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt	. . Quit	. Set txt="   A  B  C  D  E  F  G  H"	. Write !,"  ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt Write !	. Set sol=s3	. Quit	Quittry(col)	New ok,pcol	If col>8 Do  Quit	. New out,x	. Set out="" For x=1:1:8 Set out=out_row(x)	. Set sol(out)=1	. Quit	For row(col)=1:1:8 Do	. Set ok=1	. For pcol=1:1:col-1 If row(pcol)=row(col) Set ok=0 Quit	. Quit:'ok	. For pcol=1:1:col-1 If col-pcol=\$Translate(row(pcol)-row(col),"-") Set ok=0 Quit	. Quit:'ok	. Do try(col+1)	. Quit	QuitDo Queens `
`   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##| Q|##|  |##|  |##| |  |##| Q|##|  |##|  |##| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  |##|  |##| Q|##|  | |##|  |##|  | Q|  |##|  | |##|  |##|  |##|  | Q|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  |##|  | Q|  |##|  |##| |  | Q|  |##|  |##|  |##| |  |##| Q|##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##| Q|##|  |##|  |##|  | |##|  |##|  |##|  |##| Q| |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 |  |##|  |##|  |##|  | Q| |  |##|  |##|  | Q|  |##| |  | Q|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 |##|  |##|  | Q|  |##|  | |##|  |##| Q|##|  |##|  | |##|  |##|  | Q|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 |  |##|  |##|  |##| Q|##| |  |##|  |##|  |##| Q|##| | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 | Q|  |##|  |##|  |##|  | | Q|  |##|  |##|  |##|  | |##|  |##|  |##| Q|##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##|  |##|  | Q|  |##| |  |##|  |##|  | Q|  |##| |  |##|  |##|  | Q|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  | Q|  |##|  |##|  | |##|  | Q|  |##|  |##|  | |##|  |##| Q|##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  |##|  |##|  |##| Q|##| |  |##|  |##|  |##| Q|##| |  | Q|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##| Q|##|  |##|  |##|  | |##| Q|##|  |##|  |##|  | |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 |  |##|  |##|  |##|  | Q| |  |##|  | Q|  |##|  |##| |  |##|  |##| Q|##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 |##|  |##|  | Q|  |##|  | |##|  |##|  |##|  |##| Q| |##|  |##|  |##|  | Q|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##| Q|##|  |##|  | |##|  |##|  | Q|  |##|  | |##|  | Q|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##| Q|##|  |##|  |##| |  |##|  |##| Q|##|  |##| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  |##|  |##|  | Q|  | |##| Q|##|  |##|  |##|  | |##| Q|##|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  | Q|  |##|  |##|  |##| |  |##|  | Q|  |##|  |##| |  |##|  |##|  |##| Q|##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##|  |##|  |##|  |##| Q| |##|  |##|  |##| Q|##|  | |##|  | Q|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 |  |##|  |##|  | Q|  |##| |  |##|  |##|  |##|  | Q| |  |##|  |##|  | Q|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 |##|  |##| Q|##|  |##|  | |##|  | Q|  |##|  |##|  | |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##|  | Q|  |##|  | |##|  |##|  |##|  | Q|  | |##|  |##|  | Q|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  | Q|  |##|  |##|  |##| |  |##|  | Q|  |##|  |##| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  |##|  |##|  | Q|  | |##|  |##|  |##| Q|##|  | |##|  |##|  |##|  | Q|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  |##| Q|##|  |##|  |##| |  |##|  |##|  |##|  | Q| |  |##|  |##| Q|##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##|  |##|  |##| Q|##|  | |##| Q|##|  |##|  |##|  | |##| Q|##|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 |  |##|  |##|  |##|  | Q| |  |##|  |##|  |##| Q|##| |  |##|  |##|  | Q|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 |##|  |##|  | Q|  |##|  | | Q|  |##|  |##|  |##|  | | Q|  |##|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 | Q|##|  |##|  |##|  |##| |  |##| Q|##|  |##|  |##| |  |##| Q|##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##| Q|##|  |##|  | |##|  |##|  | Q|  |##|  | |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##| Q|##|  |##|  |##| |  |##|  |##| Q|##|  |##| |  |##|  |##| Q|##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  |##|  |##| Q|##|  | |##|  |##|  |##|  | Q|  | |##|  |##|  |##|  | Q|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  |##|  |##|  |##|  | Q| |  | Q|  |##|  |##|  |##| |  | Q|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##| Q|##|  |##|  |##|  | |##|  |##| Q|##|  |##|  | |##|  |##|  |##| Q|##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 |  |##|  | Q|  |##|  |##| |  |##|  |##|  |##|  | Q| |  |##| Q|##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 | Q|  |##|  |##|  |##|  | | Q|  |##|  |##|  |##|  | | Q|  |##|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 |  |##|  |##|  |##| Q|##| |  |##| Q|##|  |##|  |##| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##|  | Q|  |##|  | |##|  |##|  |##| Q|##|  | |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##| Q|##|  |##|  |##| |  |##| Q|##|  |##|  |##| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  |##|  |##| Q|##|  | |##|  |##|  |##|  | Q|  | |##| Q|##|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  | Q|  |##|  |##|  |##| |  | Q|  |##|  |##|  |##| |  |##|  |##|  |##|  | Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##|  |##|  | Q|  |##|  | |##|  |##|  |##|  |##| Q| |##|  |##|  | Q|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 |  |##|  |##|  |##|  | Q| |  |##|  |##| Q|##|  |##| |  |##|  |##|  |##| Q|##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 | Q|  |##|  |##|  |##|  | | Q|  |##|  |##|  |##|  | | Q|  |##|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 |  |##|  |##|  |##| Q|##| |  |##|  | Q|  |##|  |##| |  |##| Q|##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##| Q|##|  |##|  | |##|  |##|  |##| Q|##|  | |##|  |##|  |##| Q|##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##|  | Q|  |##|  |##| |  | Q|  |##|  |##|  |##| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##| Q|##|  |##|  |##|  | |##|  |##| Q|##|  |##|  | |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  |##|  |##| Q|##|  |##| |  |##|  |##|  | Q|  |##| |  |##|  |##| Q|##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##|  |##|  |##|  |##| Q| |##|  |##|  |##|  |##| Q| |##|  | Q|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 |  |##|  |##|  | Q|  |##| |  |##| Q|##|  |##|  |##| | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 | Q|  |##|  |##|  |##|  | | Q|  |##|  |##|  |##|  | |##|  |##|  |##|  | Q|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 |  |##| Q|##|  |##|  |##| |  |##|  |##|  |##| Q|##| |  | Q|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##|  |##|  | Q|  | |##|  |##|  | Q|  |##|  | |##|  |##|  |##| Q|##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##|  |##|  | Q|  |##| |  |##| Q|##|  |##|  |##| |  |##| Q|##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  | Q|  |##|  |##|  | |##|  |##|  | Q|  |##|  | |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  |##|  |##| Q|##|  |##| |  |##|  |##|  |##|  | Q| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##|  |##|  |##|  |##| Q| |##|  |##| Q|##|  |##|  | |##|  |##|  |##|  | Q|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 |##|  |##| Q|##|  |##|  | |##|  |##|  |##|  | Q|  | |##|  |##|  |##| Q|##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 |  | Q|  |##|  |##|  |##| |  | Q|  |##|  |##|  |##| |  | Q|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##|  |##|  | Q|  | |##|  |##|  |##| Q|##|  | |##|  |##|  | Q|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##|  |##|  | Q|  |##| |  |##| Q|##|  |##|  |##| |  |##|  | Q|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##|  |##|  |##|  |##| Q| |##|  |##|  | Q|  |##|  | |##| Q|##|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  | Q|  |##|  |##|  |##| |  | Q|  |##|  |##|  |##| |  |##|  |##|  |##|  | Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##|  |##| Q|##|  |##|  | |##|  |##|  |##|  |##| Q| |##|  |##|  |##| Q|##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 |##|  |##|  |##|  | Q|  | |##|  |##|  |##|  | Q|  | |##|  | Q|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 |  |##|  |##| Q|##|  |##| |  |##|  | Q|  |##|  |##| |  |##|  |##| Q|##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  | Q|  |##|  |##|  | |##|  |##|  |##| Q|##|  | |##|  |##|  |##|  | Q|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+8 |  |##|  |##|  |##|  | Q| |  | Q|  |##|  |##|  |##| |  | Q|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+7 |##| Q|##|  |##|  |##|  | |##|  |##|  |##|  | Q|  | |##|  |##|  | Q|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+6 |  |##|  |##| Q|##|  |##| |  |##|  |##| Q|##|  |##| |  |##|  |##|  |##| Q|##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+5 |##|  | Q|  |##|  |##|  | |##|  |##|  |##|  |##| Q| |##|  |##| Q|##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+4 | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##| | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+3 |##|  |##|  |##|  | Q|  | |##|  |##| Q|##|  |##|  | |##|  |##|  |##|  |##| Q|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+2 |  |##|  | Q|  |##|  |##| |  |##|  |##|  | Q|  |##| |  |##|  |##|  | Q|  |##|  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+1 |##|  |##|  |##| Q|##|  | |##|  | Q|  |##|  |##|  | |##|  | Q|  |##|  |##|  |  +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H   +--+--+--+--+--+--+--+--+8 |  | Q|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+7 |##|  |##|  |##| Q|##|  |  +--+--+--+--+--+--+--+--+6 |  |##|  |##|  |##|  | Q|  +--+--+--+--+--+--+--+--+5 |##|  | Q|  |##|  |##|  |  +--+--+--+--+--+--+--+--+4 | Q|##|  |##|  |##|  |##|  +--+--+--+--+--+--+--+--+3 |##|  |##| Q|##|  |##|  |  +--+--+--+--+--+--+--+--+2 |  |##|  |##|  |##| Q|##|  +--+--+--+--+--+--+--+--+1 |##|  |##|  | Q|  |##|  |  +--+--+--+--+--+--+--+--+   A  B  C  D  E  F  G  H`

## Nim

`const boardSize = 8 proc underAttack(col, queens): bool =  if col in queens: return true  for i, x in queens:    if abs(col - x) == queens.len - i:      return true  return false proc solve(n): auto =  result = newSeq[seq[int]]()  result.add(@[])  var newSolutions = newSeq[seq[int]]()  for row in 1..n:    for solution in result:      for i in 1..boardSize:        if not underAttack(i, solution):          newSolutions.add(solution & i)    swap result, newSolutions    newSolutions.setLen(0) for answer in solve(boardSize):  for i, x in answer:    if i > 0: stdout.write ", "    stdout.write "(",i,", ",x,")"`

## Objeck

Translation of: Java
`﻿bundle Default {  class NQueens {    b : static : Int[];    s : static : Int;     function : Main(args : String[]) ~ Nil {      b := Int->New;      s := 0;       y := 0;      b := -1;       while (y >= 0) {        do {          b[y]+=1;        }         while((b[y] < 8) & Unsafe(y));         if(b[y] < 8) {          if (y < 7) {            b[y + 1] := -1;            y += 1;          }           else {            PutBoard();          };        }         else {          y-=1;        };      };    }     function : Unsafe(y : Int) ~ Bool {      x := b[y];      for(i := 1; i <= y; i+=1;) {        t := b[y - i];        if(t = x | t = x - i | t = x + i) {          return true;        };      };       return false;    }     function : PutBoard() ~ Nil {      IO.Console->Print("\n\nSolution ")->PrintLine(s + 1);      s += 1;      for(y := 0; y < 8; y+=1;) {        for(x := 0; x < 8; x+=1;) {          IO.Console->Print((b[y] = x) ? "|Q" : "|_");        };        "|"->PrintLine();      };    }  }} `

## OCaml

Library: FaCiLe
`(* Authors: Nicolas Barnier, Pascal Brisset   Copyright 2004 CENA. All rights reserved.   This code is distributed under the terms of the GNU LGPL *) open Facileopen Easy (* Print a solution *)let print queens =  let n = Array.length queens in  if n <= 10 then (* Pretty printing *)    for i = 0 to n - 1 do      let c = Fd.int_value queens.(i) in (* queens.(i) is bound *)      for j = 0 to n - 1 do        Printf.printf "%c " (if j = c then '*' else '-')      done;      print_newline ()    done  else (* Short print *)    for i = 0 to n-1 do      Printf.printf "line %d : col %a\n" i Fd.fprint queens.(i)    done;  flush stdout;;; (* Solve the n-queens problem *)let queens n =  (* n decision variables in 0..n-1 *)  let queens = Fd.array n 0 (n-1) in   (* 2n auxiliary variables for diagonals *)  let shift op = Array.mapi (fun i qi -> Arith.e2fd (op (fd2e qi) (i2e i))) queens in  let diag1 = shift (+~) and diag2 = shift (-~) in   (* Global constraints *)  Cstr.post (Alldiff.cstr queens);  Cstr.post (Alldiff.cstr diag1);  Cstr.post (Alldiff.cstr diag2);   (* Heuristic Min Size, Min Value *)  let h a = (Var.Attr.size a, Var.Attr.min a) in  let min_min = Goals.Array.choose_index (fun a1 a2 -> h a1 < h a2) in   (* Search goal *)  let labeling = Goals.Array.forall ~select:min_min Goals.indomain in   (* Solve *)  let bt = ref 0 in  if Goals.solve ~control:(fun b -> bt := b) (labeling queens) then begin    Printf.printf "%d backtracks\n" !bt;    print queens  end else    prerr_endline "No solution" let _ =  if Array.length Sys.argv <> 2  then raise (Failure "Usage: queens <nb of queens>");  Gc.set ({(Gc.get ()) with Gc.space_overhead = 500}); (* May help except with an underRAMed system *)  queens (int_of_string Sys.argv.(1));;`

### A stand-alone OCaml solution

`let solutions n =   let show board =    let pr v =      for i = 1 to n do        print_string (if i=v then " q" else " _");      done;      print_newline() in    List.iter pr board;    print_newline() in   let rec safe i j k = function    | [] -> true    | h::t -> h<>i && h<>j && h<>k && safe i (j+1) (k-1) t in   let rec loop col p =    for i = 1 to n    do      if safe i (i+1) (i-1) p then        let p' = i::p in        if col = n then show p'        else loop (col+1) p'    done in   loop 1 [] in let n =  if Array.length Sys.argv > 1  then int_of_string Sys.argv.(1)  else 8 in solutions n`
Output:
```\$ ocaml queens.ml 6
_ _ _ _ q _
_ _ q _ _ _
q _ _ _ _ _
_ _ _ _ _ q
_ _ _ q _ _
_ q _ _ _ _

_ _ _ q _ _
q _ _ _ _ _
_ _ _ _ q _
_ q _ _ _ _
_ _ _ _ _ q
_ _ q _ _ _

_ _ q _ _ _
_ _ _ _ _ q
_ q _ _ _ _
_ _ _ _ q _
q _ _ _ _ _
_ _ _ q _ _

_ q _ _ _ _
_ _ _ q _ _
_ _ _ _ _ q
q _ _ _ _ _
_ _ q _ _ _
_ _ _ _ q _
```

## Oz

A pretty naive solution, using constraint programming:

`declare  fun {Queens N}     proc {\$ Board}        %% a board is a N-tuple of rows        Board = {MakeTuple queens N}        for Y in 1..N  do           %% a row is a N-tuple of values in [0,1]           %% (0: no queen, 1: queen)           Board.Y = {FD.tuple row N 0#1}        end         {ForAll {Rows Board} SumIs1}        {ForAll {Columns Board} SumIs1}         %% for every two points on a diagonal        for [X1#Y1 X2#Y2] in {DiagonalPairs N} do           %\$ at most one of them has a queen           Board.Y1.X1 + Board.Y2.X2 =<: 1        end         %% enumerate all such boards        {FD.distribute naive {FlatBoard Board}}     end  end   fun {Rows Board}     {Record.toList Board}  end   fun {Columns Board}     for X in {Arity Board.1} collect:C1 do        {C1         for Y in {Arity Board} collect:C2 do            {C2 Board.Y.X}         end}     end  end   proc {SumIs1 Xs}     {FD.sum Xs '=:' 1}  end   fun {DiagonalPairs N}     proc {Coords Root}        [X1#Y1 X2#Y2] = Root        Diff     in        X1::1#N Y1::1#N        X2::1#N Y2::1#N        %% (X1,Y1) and (X2,Y2) are on a diagonal if {Abs X2-X1} = {Abs Y2-Y1}        Diff::1#N-1        {FD.distance X2 X1 '=:' Diff}        {FD.distance Y2 Y1 '=:' Diff}        %% enumerate all such coordinates        {FD.distribute naive [X1 Y1 X2 Y2]}     end  in     {SearchAll Coords}  end   fun {FlatBoard Board}     {Flatten {Record.toList {Record.map Board Record.toList}}}  end   Solutions = {SearchAll {Queens 8}}in  {Length Solutions} = 92 %% assert  {Inspect {List.take Solutions 3}}`

There is a more concise and much more efficient solution in the Mozart documentation.

## Pascal

`program queens; const l=16; var i,j,k,m,n,p,q,r,y,z: integer;    a,s: array[1..l] of integer;    u: array[1..4*l-2] of integer; label L3,L4,L5,L6,L7,L8,L9,L10; begin   for i:=1 to l do a[i]:=i;   for i:=1 to 4*l-2 do u[i]:=0;   for n:=1 to l do   begin      m:=0;      i:=1;      r:=2*n-1;      goto L4;L3:      s[i]:=j;      u[p]:=1;      u[q+r]:=1;      i:=i+1;L4:      if i>n then goto L8;      j:=i;L5:      z:=a[i];      y:=a[j];      p:=i-y+n;      q:=i+y-1;      a[i]:=y;      a[j]:=z;      if (u[p]=0) and (u[q+r]=0) then goto L3;L6:      j:=j+1;      if j<=n then goto L5;L7:      j:=j-1;      if j=i then goto L9;      z:=a[i];      a[i]:=a[j];      a[j]:=z;      goto L7;L8:      m:=m+1;      { uncomment the following to print solutions }      { write(n,' ',m,':');      for k:=1 to n do write(' ',a[k]);      writeln; }L9:      i:=i-1;      if i=0 then goto L10;      p:=i-a[i]+n;      q:=i+a[i]-1;      j:=s[i];      u[p]:=0;      u[q+r]:=0;      goto L6;L10:      writeln(n,' ',m);   end;end. { 1 1  2 0  3 0  4 2  5 10  6 4  7 40  8 92  9 352 10 724 11 2680 12 14200 13 73712 14 365596 15 2279184 16 14772512 }`

### Alternative

Using Rekusion and Nikolaus Wirth is much faster. Ok , this http://rosettacode.org/wiki/N-queens_problem#Fast_Version is nearly 4 times faster, but uses sysmmetry (50% less to search for) :

algo:

```recursion:
If row< n then
For each free column (in Freecol[row..n] )
Take free column
check diagonals
IF free then
swap freecol to used column, move to next  row -> recurse(row+1)
else
Solution found```
`program NQueens;{\$IFDEF FPC}   {\$MODE DELPHI}   {\$OPTIMIZATION ON}{\$OPTIMIZATION REGVAR}{\$OPTIMIZATION PeepHole}   {\$OPTIMIZATION CSE}{\$OPTIMIZATION ASMCSE}{\$ELSE}  {\$Apptype console}{\$ENDIF} uses  sysutils;// TDatetimeconst  nmax = 17;type{\$IFNDEF FPC}  NativeInt = longInt;{\$ENDIF}  //ala Nikolaus Wirth  A-1  = H - 8  //diagonal left  (A1) to rigth (H8)  tLR_diagonale = array[-nmax-1..nmax-1] of char;  //diagonal right (A8) to left (H1)  tRL_diagonale = array[0..2*nmax-2] of char;  //up to Col are the used Cols, after that the unused  tFreeCol = array[0..nmax-1] of nativeInt;var  LR_diagonale:tLR_diagonale;  RL_diagonale:tRL_diagonale;  //Using pChar, cause it is implicit an array  //It is always set to  //@LR_diagonale[row] ,@RL_diagonale[row]  pLR,pRL : pChar;  FreeCol : tFreeCol;  i,  n : nativeInt;  gblCount : nativeUInt;  T0,T1 : TdateTime;procedure Solution;var  i : NativeInt;begin// Take's a lot of time under DOS/Win32  If gblCount AND \$FFF = 0 then    write(gblCount:10,#8#8#8#8#8#8#8#8#8#8);  // IF n< 9 then  IF n < 0 then   begin     For i := 1 to n do       write(FreeCol[i]:4);     writeln;   end;end; procedure SetQueen(Row:nativeInt);var  i,Col : nativeInt;beginIF row <= n then  begin  For i := row to n do    begin    Col := FreeCol[i];    //check diagonals occupied    If (ORD(pLR[-Col]) AND ORD(pRL[Col]))<>0 then      begin      //a "free" position is found      //mark it      pRL[ Col]:=#0;      //RL_Diagonale[ Row +Col] := 0;      pLR[-Col]:=#0;      //LR_Diagonale[ Row -Col] := 0;      //swap FreeRow[Row<->i]      FreeCol[i] := FreeCol[Row];      //next row      inc(pRL);      inc(pLR);      FreeCol[Row] := Col;      // check next row        SetQueen(Row+1);      //Undo      dec(pLR);      dec(pRL);      FreeCol[Row] := FreeCol[i];      FreeCol[i] := Col;      pRL[ Col]:=#1;      pLR[-Col]:=#1;      end;    end;  endelse  begin  //solution ist found  inc(gblCount);  //Solution  end;end; begin  For i := 0 to nmax-1 do    FreeCol[i] := i;  //diagonals filled with True = #1 , something <>0  fillchar(LR_Diagonale[low(LR_Diagonale)],sizeof(tLR_Diagonale),#1);  fillchar(RL_Diagonale[low(RL_Diagonale)],sizeof(tRL_Diagonale),#1);  For n := 1 to nMax do    begin    t0 := time;    pLR:=@LR_Diagonale;    pRL:=@RL_Diagonale;    gblCount := 0;    SetQueen(1);    t1:= time;    WriteLn(n:6,gblCount:12,FormatDateTime(' NN:SS.ZZZ',T1-t0),' secs');    end;  WriteLn('Fertig');end.`
Output:
```{output: i3 4330 3.5 Ghz FPC 2.6.4
1           1  00:00.000 secs
2           0  00:00.000 secs
3           0  00:00.000 secs
4           2  00:00.000 secs
5          10  00:00.000 secs
6           4  00:00.000 secs
7          40  00:00.000 secs
8          92  00:00.000 secs
9         352  00:00.000 secs
10         724  00:00.001 secs
11        2680  00:00.004 secs
12       14200  00:00.019 secs
13       73712  00:00.104 secs
14      365596  00:00.610 secs
15     2279184  00:03.837 secs
16    14772512  00:25.684 secs
17    95815104  03:00.950 secs=180.98 secs
Fertig}```

## PDP-11 Assembly

` ; "eight queens problem" benchmark test          .radix    16          .loc 0           nop            ;          mov  #scr,@#E800          mov  #88C6,@#E802; clear the display RAM          mov  #scr,r0          mov  #1E0,r1cls:      clr  (r0)+          sob  r1,cls; display the initial counter value          clr  r3          mov  #scr,r0          jsr  pc,number; perform the test          jsr  pc,queens; display the counter          mov  #scr,r0          jsr  pc,numberfinish:   br   finish ; display the character R1 at the screen address R0,; advance the pointer R0 to the next columnputc:     mov  r2,-(sp); R1 <- 6 * R1         asl  r1        ;* 2         mov  r1,-(sp)         asl  r1        ;* 4         add  (sp)+,r1  ;* 6         add  #chars,r1         mov  #6,r2putc1:   movb (r1)+,(r0)         add  #1E,r0         sob  r2,putc1         sub  #B2,r0         ;6 * 1E - 2 = B2         mov  (sp)+,r2         rts  pc print1:   jsr  pc,putc; print a string pointed to by R2 at the screen address R0,; advance the pointer R0 to the next column,; the string should be terminated by a negative byteprint:    movb (r2)+,r1          bpl  print1          rts  pc ; display the word R3 decimal at the screen address R0number:   mov  sp,r1          mov  #A0A,-(sp)          mov  (sp),-(sp)          mov  (sp),-(sp)          movb #80,-(r1)numb1:    clr  r2          div  #A,r2          movb r3,-(r1)          mov  r2,r3          bne  numb1          mov  sp,r2          jsr  pc,print          add  #6,sp          rts  pc queens:  mov  #64,r5         ;100l06:     clr  r3         clr  r0l00:     cmp  #8,r0         beq  l05         inc  r0         movb #8,ary(r0)l01:     inc  r3         mov  r0,r1l02:     dec  r1         beq  l00         movb ary(r0),r2         movb ary(r1),r4         sub  r2,r4         beq  l04         bcc  l03         neg  r4l03:     add  r1,r4         sub  r0,r4         bne  l02l04:     decb ary(r0)         bne  l01         sob  r0,l04l05:     sob  r5,l06         mov  r3,cnt         rts  pc ; characters, width = 8 pixels, height = 6 pixelschars:  .byte     3C, 46, 4A, 52, 62, 3C   ;digit '0'        .byte     18, 28, 8,  8,  8,  3E   ;digit '1'        .byte     3C, 42, 2,  3C, 40, 7E   ;digit '2'        .byte     3C, 42, C,  2,  42, 3C   ;digit '3'        .byte     8,  18, 28, 48, 7E, 8    ;digit '4'        .byte     7E, 40, 7C, 2,  42, 3C   ;digit '5'        .byte     3C, 40, 7C, 42, 42, 3C   ;digit '6'        .byte     7E, 2,  4,  8,  10, 10   ;digit '7'        .byte     3C, 42, 3C, 42, 42, 3C   ;digit '8'        .byte     3C, 42, 42, 3E, 2,  3C   ;digit '9'        .byte     0,  0,  0,  0,  0,  0    ;space         .even cnt:    .blkw     1ary:    .blkb     9         .loc 200 scr:                                        ;display RAM `

## Perl

`my (\$board_size, @occupied, @past, @solutions); sub try_column {        my (\$depth, @diag) = shift;        if (\$depth == \$board_size) {                push @solutions, "@past\n";                return;        }         # @diag: marks cells diagonally attackable by any previous queens.        #        Here it's pre-allocated to double size just so we don't need        #        to worry about negative indices.        \$#diag = 2 * \$board_size;        for (0 .. \$#past) {                \$diag[ \$past[\$_] + \$depth - \$_ ] = 1;                \$diag[ \$past[\$_] - \$depth + \$_ ] = 1;        }         for my \$row (0 .. \$board_size - 1) {                next if \$occupied[\$row] || \$diag[\$row];                 # @past:     row numbers of previous queens                # @occupied: rows already used. This gets inherited by each                #            recursion so we don't need to repeatedly look them up                push @past, \$row;                \$occupied[\$row] = 1;                 try_column(\$depth + 1);                 # clean up, for next recursion                \$occupied[\$row] = 0;                pop @past;        }} \$board_size = 12;try_column(0); #print for @solutions; # un-comment to see all solutionsprint "total " . @solutions . " solutions\n";`
Output:
`total 14200 solutions`

## Phix

`---- demo\rosetta\n_queens.exw-- =========================--sequence co,    -- columns occupied                -- (ro is implicit)         fd,    -- forward diagonals         bd,    -- backward diagonals         board atom count procedure solve(integer row, integer N, integer show)    for col=1 to N do        if not co[col] then            integer fdi = col+row-1,                    bdi = row-col+N            if not fd[fdi]            and not bd[bdi] then                board[row][col] = 'Q'                co[col] = 1                fd[fdi] = 1                bd[bdi] = 1                if row=N then                    if show then                        puts(1,join(board,"\n")&"\n")                        puts(1,repeat('=',N)&"\n")                    end if                    count += 1                else                    solve(row+1,N,show)                end if                board[row][col] = '.'                co[col] = 0                fd[fdi] = 0                bd[bdi] = 0            end if        end if    end forend procedure procedure n_queens(integer N=8, integer show=1)    co = repeat(0,N)    fd = repeat(0,N*2-1)    bd = repeat(0,N*2-1)    board  = repeat(repeat('.',N),N)    count = 0    solve(1,N,show)    printf(1,"%d queens: %d solutions\n",{N,count})end procedure for N=1 to 14 do    n_queens(N,N<5)end for`
Output:
```Q
=
1 queens: 1 solutions
2 queens: 0 solutions
3 queens: 0 solutions
.Q..
...Q
Q...
..Q.
====
..Q.
Q...
...Q
.Q..
====
4 queens: 2 solutions
5 queens: 10 solutions
6 queens: 4 solutions
7 queens: 40 solutions
8 queens: 92 solutions
9 queens: 352 solutions
10 queens: 724 solutions
11 queens: 2680 solutions
12 queens: 14200 solutions
13 queens: 73712 solutions
14 queens: 365596 solutions
```

## PHP

` <html><head><title>n x n Queen solving program</title></head><body><?phpecho "<h1>n x n Queen solving program</h1>"; //Get the size of the board\$boardX = \$_POST['boardX'];\$boardY = \$_POST['boardX']; // Function to rotate a board 90 degreesfunction rotateBoard(\$p, \$boardX) {    \$a=0;    while (\$a < count(\$p)) {        \$b = strlen(decbin(\$p[\$a]))-1;        \$tmp[\$b] = 1 << (\$boardX - \$a - 1);        ++\$a;    }    ksort(\$tmp);    return \$tmp;} // This function will find rotations of a solutionfunction findRotation(\$p, \$boardX,\$solutions){    \$tmp = rotateBoard(\$p,\$boardX);    // Rotated 90    if (in_array(\$tmp,\$solutions)) {}    else {\$solutions[] = \$tmp;}     \$tmp = rotateBoard(\$tmp,\$boardX);    // Rotated 180    if (in_array(\$tmp,\$solutions)){}    else {\$solutions[] = \$tmp;}     \$tmp = rotateBoard(\$tmp,\$boardX);    // Rotated 270    if (in_array(\$tmp,\$solutions)){}    else {\$solutions[] = \$tmp;}     // Reflected    \$tmp = array_reverse(\$p);    if (in_array(\$tmp,\$solutions)){}    else {\$solutions[] = \$tmp;}     \$tmp = rotateBoard(\$tmp,\$boardX);    // Reflected and Rotated 90    if (in_array(\$tmp,\$solutions)){}    else {\$solutions[] = \$tmp;}     \$tmp = rotateBoard(\$tmp,\$boardX);    // Reflected and Rotated 180    if (in_array(\$tmp,\$solutions)){}    else {\$solutions[] = \$tmp;}     \$tmp = rotateBoard(\$tmp,\$boardX);    // Reflected and Rotated 270    if (in_array(\$tmp,\$solutions)){}    else {\$solutions[] = \$tmp;}    return \$solutions;} // This is a function which will render the boardfunction renderBoard(\$p,\$boardX) {\$img = '';echo "<table border=1 cellspacing=0 style='text-align:center;display:inline'>";for (\$y = 0; \$y < \$boardX; ++\$y) {	echo '<tr>';	for (\$x = 0; \$x < \$boardX; ++\$x){	if ((\$x+\$y) & 1) { \$cellCol = '#9C661F';}	else {\$cellCol = '#FCE6C9';} 	if (\$p[\$y] == 1 << \$x) { echo "<td bgcolor=".\$cellCol."><img width=30 height=30 src='".\$img."'></td>";}	else { echo "<td bgcolor=".\$cellCol."> </td>";}	}	echo '<tr>';}echo '<tr></tr></table>&nbsp'; } //This function allows me to generate the next order of rows.function pc_next_permutation(\$p) {    \$size = count(\$p) - 1;    // slide down the array looking for where we're smaller than the next guy      for (\$i = \$size - 1; \$p[\$i] >= \$p[\$i+1]; --\$i) { }      // if this doesn't occur, we've finished our permutations     // the array is reversed: (1, 2, 3, 4) => (4, 3, 2, 1)     if (\$i == -1) { return false; }      // slide down the array looking for a bigger number than what we found before     for (\$j = \$size; \$p[\$j] <= \$p[\$i]; --\$j) { }     // swap them     \$tmp = \$p[\$i]; \$p[\$i] = \$p[\$j]; \$p[\$j] = \$tmp;     // now reverse the elements in between by swapping the ends     for (++\$i, \$j = \$size; \$i < \$j; ++\$i, --\$j)     { \$tmp = \$p[\$i]; \$p[\$i] = \$p[\$j]; \$p[\$j] = \$tmp; }     return \$p; } //This function needs to check the current state to see if there are any function checkBoard(\$p,\$boardX) {	\$a = 0; //this is the row being checked	while (\$a < count(\$p)) { 		\$b = 1;		while (\$b < (\$boardX - \$a)){            \$x = \$p[\$a+\$b] << \$b;            \$y = \$p[\$a+\$b] >> \$b;            if (\$p[\$a] == \$x | \$p[\$a] == \$y) {                 return false;            }		            ++\$b;		}	++\$a; 	}	return true;}  if (isset(\$_POST['process']) && isset(\$_POST['boardX'])){//Within here is the code that needs to be run if process is clicked.  //First I need to create the different possible rowsfor (\$x = 0; \$x < \$boardX; ++\$x){	\$row[\$x] = 1 << \$x;} //Now I need to create all the possible orders of rows, will be equal to [boardY]!\$solcount = 0;\$solutions = array();while (\$row != false) {	if (checkBoard(\$row,\$boardX)){	if(!in_array(\$row,\$solutions)){		\$solutions[] = \$row;			renderBoard(\$row,\$boardX);			\$solutions = findRotation(\$row,\$boardX,\$solutions);			++\$solcount;		} 	}	\$row = pc_next_permutation(\$row);	}echo "<br><br>&nbsp&nbsp&nbsp&nbspRows/Columns: ".\$boardX."<br>&nbsp&nbsp&nbsp&nbspUnique Solutions: ".\$solcount."<br>&nbsp&nbsp&nbsp&nbspTotal Solutions: ".count(\$solutions)."  - Note: This includes symmetrical solutions<br>";//print_r(\$solutions);} //This code collects the starting parametersecho <<<_END<form name="input" action="index.php" method="post">&nbsp&nbsp&nbsp&nbspNumber of columns/rows <select name="boardX" /><option value="1">One</option><option value="2">Two</option><option value="3">Three</option><option value="4" >Four</option><option value="5">Five</option><option value="6">Six</option><option value="7">Seven</option><option value="8" selected="selected">Eight</option><option value="9">Nine</option><option value="10">Ten</option></select>    <input type="hidden" name="process" value="yes" />&nbsp<input type="submit" value="Process" /></form> _END; ?></body></html> `

## Solution with recursion

` <html><body><pre><?php /*************************************************************************** This algorithm solves the 8 queens problem using backtracking.* Please try with N<=25 * * * *************************************************************************/ class Queens {     var \$size;     var \$arr;     var \$sol;      function Queens(\$n = 8) {         \$this->size = \$n;        \$this->arr = array();        \$this->sol = 0;        // Inicialiate array;        for(\$i=0; \$i<\$n; \$i++) {             \$this->arr[\$i] = 0;        }    }     function isSolution(\$n) {        for (\$i = 0; \$i < \$n; \$i++) {             if (\$this->arr[\$i] == \$this->arr[\$n] ||            (\$this->arr[\$i] - \$this->arr[\$n]) == (\$n - \$i) ||            (\$this->arr[\$n] - \$this->arr[\$i]) == (\$n - \$i))             {                return false;            }        }        return true;    }     function PrintQueens() {        echo("solution #".(++\$this->sol)."\n");        // echo("solution #".(\$this->size)."\n");        for (\$i = 0; \$i < \$this->size; \$i++) {            for (\$j = 0; \$j < \$this->size; \$j++) {                if (\$this->arr[\$i] == \$j) echo("& ");                else echo(". ");            }            echo("\n");        }        echo("\n");    }      // backtracking Algorithm    function run(\$n = 0) {        if (\$n == \$this->size){             \$this->PrintQueens();        }        else {            for (\$i = 0; \$i < \$this->size; \$i++) {                \$this->arr[\$n] = \$i;                if(\$this->isSolution(\$n)){                    \$this->run(\$n+1);                }            }        }    }} \$myprogram = new Queens(8);\$myprogram->run(); ?></pre></body></html> `

## Picat

`import cp. % CP approachqueens_cp(N, Q) =>   Q = new_list(N),   Q :: 1..N,    all_different(Q),   all_different([\$Q[I]-I : I in 1..N]),   all_different([\$Q[I]+I : I in 1..N]),   solve([ff],Q). % SAT approach (using a N x N matrix)queens_sat(N,Q) =>  Q = new_array(N,N),  Q :: 0..1,   foreach (K in 1-N..N-1)    sum([Q[I,J] : I in 1..N, J in 1..N, I-J==K]) #=< 1  end,   foreach (K in 2..2*N)    sum([Q[I,J] :  I in 1..N, J in 1..N, I+J==K]) #=< 1  end,   foreach (I in 1..N)    sum([Q[I,J] : J in 1..N]) #= 1  end,   foreach (J in 1..N)    sum([Q[I,J] : I in 1..N]) #= 1  end,  solve([inout],Q).  `

Output:

```Picat> queens_cp(100, QCP)
QCP = [1,3,5,57,59,4,64,7,58,71,81,60,6,91,82,90,8,83,77,65,73,26,9,45,37,63,66,62,44,10,48,54,43,69,42,47,18,11,72,68,50,56,61,36,33,17,12,51,100,93,97,88,35,84,78,19,13,99,67,76,92,75,87,96,94,85,20,14,95,32,98,55,40,80,49,52,46,53,21,15,41,2,27,34,22,70,74,29,25,30,38,86,16,79,24,39,28,23,31,89]

Picat> queens_sat(10,Q)
Q = {{0,0,0,0,0,0,0,0,1,0},{0,1,0,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0},{1,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,0,0},{0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0}}

% Number of solutions for N = 1..15
Picat> foreach(N in 1..15)  println(N=count_all(queens_cp(N,_))) end
1 = 1
2 = 0
3 = 0
4 = 2
5 = 10
6 = 4
7 = 40
8 = 92
9 = 352
10 = 724
11 = 2680
12 = 14200
13 = 73712
14 = 365596
15 = 2279184

```

## PicoLisp

### Calling 'permute'

`(load "@lib/simul.l")  # for 'permute' (de queens (N)   (let (R (range 1 N)  Cnt 0)      (for L (permute (range 1 N))         (when            (= N  # from the Python solution               (length (uniq (mapcar + L R)))               (length (uniq (mapcar - L R))) )            (inc 'Cnt) ) )      Cnt ) )`

### Permuting inline

This alternative version does not first pre-generate all permutations with 'permute', but creates them recursively. Also, it directly checks for duplicates, instead of calling 'uniq' and 'length'. This is much faster.

`(de queens (N)   (let (R (range 1 N)  L (copy R)  X L  Cnt 0)      (recur (X)  # Permute         (if (cdr X)            (do (length X)               (recurse (cdr X))               (rot X) )            (or               (seek  # Direct check for duplicates                  '((L) (member (car L) (cdr L)))                  (mapcar + L R) )               (seek                  '((L) (member (car L) (cdr L)))                  (mapcar - L R) )               (inc 'Cnt) ) ) )      Cnt ) )`
Output:
for both cases:
```: (queens 8)
-> 92```

## PL/I

This code compiles with PL/I compilers ranging from the ancient IBM MVT PL/I F compiler of the 1960s, the IBM PL/I Optimizing compiler, thru the IBM PL/I compiler for MVS and VM, to the z/OS Enterprise PL/I v4.60 compiler;spanning 50 years of PL/I compilers. It only outputs the number of solutions found for a given N instead of printing out each individual chess board solution to avoid filling up spool space for large values of N. It's trivial to add a print-out of the individual solutions.

` NQUEENS: PROC OPTIONS (MAIN);                                   DCL A(35) BIN FIXED(31) EXTERNAL;                              DCL COUNT BIN FIXED(31) EXTERNAL;                              COUNT = 0;                                                     DECLARE SYSIN FILE;                                            DCL ABS BUILTIN;                                               DECLARE SYSPRINT FILE;                                         DECLARE N BINARY FIXED (31); /* COUNTER */                     /* MAIN LOOP STARTS HERE */                                    GET LIST (N) FILE(SYSIN); /* N QUEENS, N X N BOARD */         PUT SKIP (1) FILE(SYSPRINT);                                   PUT SKIP LIST('BEGIN N QUEENS PROCESSING *****') FILE(SYSPRINT);     PUT SKIP LIST('SOLUTIONS FOR N: ',N) FILE(SYSPRINT);           PUT SKIP (1) FILE(SYSPRINT);                                    IF N < 4 THEN DO;                                                /* LESS THAN 4 MAKES NO SENSE  */                                PUT SKIP (2) FILE(SYSPRINT);                                   PUT SKIP LIST (N,' N TOO LOW') FILE (SYSPRINT);                     PUT SKIP (2) FILE(SYSPRINT);                                   RETURN (1);                                                 END;                                                           IF N > 35 THEN DO;                                                     /* WOULD TAKE WEEKS    */                                      PUT SKIP (2) FILE(SYSPRINT);                                         PUT SKIP LIST (N,' N TOO HIGH') FILE (SYSPRINT);                          PUT SKIP (2) FILE(SYSPRINT);                                         RETURN (1);                                                       END;                                                                  CALL QUEEN(N);                                                         PUT SKIP (2) FILE(SYSPRINT);                                         PUT SKIP LIST (COUNT,' SOLUTIONS FOUND') FILE(SYSPRINT);                  PUT SKIP (1) FILE(SYSPRINT);                                         PUT SKIP LIST ('END OF PROCESSING ****') FILE(SYSPRINT);                  RETURN(0);                                                        /* MAIN LOOP ENDS ABOVE  */                                           PLACE: PROCEDURE (PS);                                                  DCL PS BIN FIXED(31);                                                DCL I  BIN FIXED(31) INIT(0);                                       DCL A(50) BIN FIXED(31) EXTERNAL;                                  DO I=1 TO PS-1;                                                           IF A(I) = A(PS) THEN  RETURN(0);                                     IF ABS ( A(I) - A(PS) ) = (PS-I) THEN RETURN(0);                END;                                                                   RETURN (1);                                                        END PLACE;                                                            QUEEN: PROCEDURE (N);                                                DCL N BIN FIXED (31);                                            DCL K BIN FIXED (31);                                            DCL A(50) BIN FIXED(31) EXTERNAL;                                DCL COUNT BIN FIXED(31) EXTERNAL;                                K = 1;                                                           A(K) = 0;                                                        DO WHILE (K > 0);                                                   A(K) = A(K) + 1;                                                 DO WHILE ( ( A(K)<= N) & (PLACE(K) =0) );                            A(K) = A(K) +1;                                              END;                                              IF (A(K) <= N) THEN DO;                                            IF (K = N ) THEN DO;                                                           COUNT = COUNT + 1;                                       END;                                                       ELSE DO;                                                           K= K +1;                                                         A(K) = 0;                                                      END; /* OF INSIDE ELSE */                                       END; /* OF FIRST IF */                                           ELSE DO;                                                              K = K -1;                                                   END;                                                          END;  /* OF EXTERNAL WHILE LOOP  */                                            END QUEEN;                                                      END NQUEENS;  `

## PowerBASIC

### Recursive version

Translation of: Stata
`#COMPILE EXE#DIM ALL SUB aux(n AS INTEGER, i AS INTEGER, a() AS INTEGER, _        u() AS INTEGER, v() AS INTEGER, m AS QUAD)     LOCAL j, k, p, q AS INTEGER    IF i > n THEN        INCR m        FOR k = 1 TO n : PRINT a(k); : NEXT : PRINT    ELSE        FOR j = i TO n            k = a(j)            p = i - k + n            q = i + k - 1            IF u(p) AND v(q) THEN                u(p) = 0 : v(q) = 0                a(j) = a(i) : a(i) = k                CALL aux(n, i + 1, a(), u(), v(), m)                u(p) = 1 : v(q) = 1                a(i) = a(j) : a(j) = k            END IF        NEXT    END IFEND SUB FUNCTION PBMAIN () AS LONG    LOCAL n, i AS INTEGER    LOCAL m AS QUAD    IF COMMAND\$(1) <> "" THEN        n = VAL(COMMAND\$(1))        REDIM a(1 TO n) AS INTEGER        REDIM u(1 TO 2 * n - 1) AS INTEGER        REDIM v(1 TO 2 * n - 1) AS INTEGER        FOR i = 1 TO n            a(i) = i        NEXT        FOR i = 1 TO 2 * n - 1            u(i) = 1            v(i) = 1        NEXT        m = 0        CALL aux(n, 1, a(), u(), v(), m)        PRINT m    END IFEND FUNCTION`

### Iterative version

Translation of: Stata
`#COMPILE EXE#DIM ALL FUNCTION PBMAIN () AS LONG    LOCAL n, i, j, k, p, q AS INTEGER    LOCAL m AS QUAD    IF COMMAND\$(1) <> "" THEN        n = VAL(COMMAND\$(1))        REDIM a(1 TO n) AS INTEGER        REDIM s(1 TO n) AS INTEGER        REDIM u(1 TO 2 * n - 1) AS INTEGER        REDIM v(1 TO 2 * n - 1) AS INTEGER        FOR i = 1 TO n            a(i) = i        NEXT        FOR i = 1 TO 2 * n - 1            u(i) = 1            v(i) = 1        NEXT        m = 0        i = 1      1 IF i > n THEN            INCR m            FOR k = 1 TO n : PRINT a(k); : NEXT : PRINT            GOTO 4        END IF        j = i      2 k = a(j)        p = i - k + n        q = i + k - 1        IF u(p) AND v(q) THEN            u(p) = 0 : v(q) = 0            a(j) = a(i) : a(i) = k            s(i) = j            INCR i            GOTO 1        END IF      3 INCR j : IF j <= n GOTO 2      4 DECR i : IF i = 0 THEN PRINT m : EXIT FUNCTION        j = s(i)        k = a(i) : a(i) = a(j) : a(j) = k        p = i - k + n        q = i + k - 1        u(p) = 1 : v(q) = 1        GOTO 3    END IFEND FUNCTION`

## PowerShell

Works with: PowerShell version 2
` function PlaceQueen ( [ref]\$Board, \$Row, \$N )    {    #  For the current row, start with the first column    \$Board.Value[\$Row] = 0     #  While haven't exhausted all columns in the current row...    While ( \$Board.Value[\$Row] -lt \$N )        {        #  If not the first row, check for conflicts        \$Conflict = \$Row -and                    (   (0..(\$Row-1)).Where{ \$Board.Value[\$_] -eq \$Board.Value[\$Row] }.Count -or                        (0..(\$Row-1)).Where{ \$Board.Value[\$_] -eq \$Board.Value[\$Row] - \$Row + \$_ }.Count -or                        (0..(\$Row-1)).Where{ \$Board.Value[\$_] -eq \$Board.Value[\$Row] + \$Row - \$_ }.Count )         #  If no conflicts and the current column is a valid column...        If ( -not \$Conflict -and \$Board.Value[\$Row] -lt \$N )            {             #  If this is the last row            #    Board completed successfully            If ( \$Row -eq ( \$N - 1 ) )                {                return \$True                }             #  Recurse            #  If all nested recursions were successful            #    Board completed successfully            If ( PlaceQueen \$Board ( \$Row + 1 ) \$N )                {                return \$True                }            }         #  Try the next column        \$Board.Value[\$Row]++        }     #  Everything was tried, nothing worked    Return \$False    } function Get-NQueensBoard ( \$N )    {    #  Start with a default board (array of column positions for each row)    \$Board = @( 0 ) * \$N     #  Place queens on board    #  If successful...    If ( PlaceQueen -Board ([ref]\$Board) -Row 0 -N \$N )        {        #  Convert board to strings for display        \$Board | ForEach { ( @( "" ) + @(" ") * \$_ + "Q" + @(" ") * ( \$N - \$_ ) ) -join "|" }        }    Else        {        "There is no solution for N = \$N"        }    } `
` Get-NQueensBoard 8''Get-NQueensBoard 3''Get-NQueensBoard 4''Get-NQueensBoard 14 `
Output:
```|Q| | | | | | | |
| | | | |Q| | | |
| | | | | | | |Q|
| | | | | |Q| | |
| | |Q| | | | | |
| | | | | | |Q| |
| |Q| | | | | | |
| | | |Q| | | | |

There is no solution for N = 3

| |Q| | |
| | | |Q|
|Q| | | |
| | |Q| |

|Q| | | | | | | | | | | | | |
| | |Q| | | | | | | | | | | |
| | | | |Q| | | | | | | | | |
| | | | | | |Q| | | | | | | |
| | | | | | | | | | | |Q| | |
| | | | | | | | | |Q| | | | |
| | | | | | | | | | | | |Q| |
| | | |Q| | | | | | | | | | |
| | | | | | | | | | | | | |Q|
| | | | | | | | |Q| | | | | |
| |Q| | | | | | | | | | | | |
| | | | | |Q| | | | | | | | |
| | | | | | | |Q| | | | | | |
| | | | | | | | | | |Q| | | |
```

## Processing

Translation of: Java
` int n = 8;int[] b = new int[n];int s = 0;int y = 0; void setup() {  size(400, 400);  textAlign(CENTER, CENTER);  textFont(createFont("DejaVu Sans", 44));  b = -1;} void draw() {  if (y >= 0) {    do {      b[y]++;    } while ((b[y] < n) && unsafe(y));    if (b[y] < n) {      if (y < (n-1)) {        b[++y] = -1;      } else {        drawBoard();      }    } else {      y--;    }  } else {     textSize(18);    text("Press any key to restart", width / 2, height - 20);  }}   boolean unsafe(int y) {  int x = b[y];  for (int i = 1; i <= y; i++) {    int t = b[y - i];    if (t == x ||      t == x - i ||      t == x + i) {      return true;    }  }  return false;} void drawBoard() {  float w = width / n;  for (int y = 0; y < n; y++) {    for (int x = 0; x < n; x++) {      fill(255 * ((x + y) % 2));      square(x * w, y * w, w);      if (b[y] == x) {        fill(255 - 255 * ((x + y) % 2));        textSize(42);        text("♕", w / 2 +  x *w, w /2 + y * w);      }    }  }  fill(255, 0, 0);  textSize(18);  text("Solution " + (++s), width / 2, height / 90);} void keyPressed() {  b = new int[n];  s = 0;  y = 0;  b = -1;} `

### Processing Python mode

Translation of: Python

This solution, originally by Raymond Hettinger for demonstrating the power of the itertools module, generates all solutions.

`from itertools import permutations, product n = 8cols = range(n)i = 0  # solution shown solutions = [vec for vec in permutations(cols)             if n == len(set(vec[i] + i for i in cols))                  == len(set(vec[i] - i for i in cols))] def setup():    size(400, 400)    textAlign(CENTER, CENTER)    textFont(createFont("DejaVu Sans", 44)) def draw():    background(0)    w = width / n    for x, y in product(range(n), range(n)):        fill(255 * ((x + y) % 2))        square(x * w, y * w, w)        if solutions[i][y] == x:            fill(255 - 255 * ((x + y) % 2))            text(u'♕', w / 2 + x * w, w / 3 + y * w) def keyPressed():  # show next solution    global i    i = (i + 1) % len(solutions) `

## Prolog

The code for these samples is taken from .

Solution #1:

`solution([]). solution([X/Y|Others]) :- solution(Others), member(Y, [1,2,3,4,5,6,7,8]), noattack(X/Y, Others). noattack(_,[]). noattack(X/Y,[X1/Y1|Others]) :- Y =\= Y1, Y1 - Y =\= X1 - X, Y1 - Y =\= X - X1, noattack(X/Y,Others). member(Item,[Item|Rest]). member(Item,[First|Rest]) :- member(Item,Rest). template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).`

Solution #2:

`solution(Queens) :- permutation([1,2,3,4,5,6,7,8], Queens), safe(Queens). permutation([],[]). permutation([Head|Tail],PermList) :- permutation(Tail,PermTail), del(Head,PermList,PermTail). del(Item,[Item|List],List). del(Item,[First|List],[First|List1]) :- del(Item,List,List1). safe([]). safe([Queen|Others]) :- safe(Others), noattack(Queen,Others,1). noattack(_,[],_). noattack(Y,[Y1|Ylist],Xdist) :- Y1-Y=\=Xdist, Y-Y1=\=Xdist, Dist1 is Xdist + 1, noattack(Y,Ylist,Dist1).`

Solution #3:

`solution(Ylist) :- sol(Ylist,[1,2,3,4,5,6,7,8],    [1,2,3,4,5,6,7,8],    [-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7],    [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]). sol([],[],[],Du,Dv). sol([Y|Ylist],[X|Dx1],Dy,Du,Dv) :- del(Y,Dy,Dy1), U is X-Y, del(U,Du,Du1), V is X+Y, del(V,Dv,Dv1), sol(Ylist,Dx1, Dy1,Du1,Dv1). del(Item,[Item|List],List). del(Item,[First|List],[First|List1]) :- del(Item,List,List1).`
```  ?- findall(S, solution(S), LS), length(LS,N), write(N).
92
```

### Alternative version

Uses non-ISO predicates between/3 and select/3 (available in SWI Prolog and GNU Prolog).

`:- initialization(main).  queens(N,Qs) :- bagof(X, between(1,N,X), Xs), place(Xs,[],Qs). place(Xs,Qs,Res) :-    Xs = [] -> Res = Qs  ; select(Q,Xs,Ys), not_diag(Q,Qs,1), place(Ys,[Q|Qs],Res)  . not_diag(_, []     , _).not_diag(Q, [Qh|Qs], D) :-     abs(Q - Qh) =\= D, D1 is D + 1, not_diag(Q,Qs,D1).  main :- findall(Qs, (queens(8,Qs), write(Qs), nl), _), halt.`

### Alternative Solution

Uses backtracking- a highly efficient mechanism in Prolog to find all solutions.

Works with: SWI Prolog version version 6.2.6 by Jan Wielemaker, University of Amsterdam
`% 8 queens problem.%  q(Row) represents a queen, allocated one per row. No rows ever clash.%  The columns are chosen iteratively from available columns held in a%  list, reduced with each allocation, so we need never check verticals.%  For diagonals, we check prior to allocation whether each newly placed%  queen will clash with any of the prior placements. This prevents%  most invalid permutations from ever being attempted.can_place(_, []) :- !.	   % success for empty boardcan_place(q(R,C),Board) :- % check diagonals against allocated queens	member(q(Ra,Ca), Board), abs(Ra-R) =:= abs(Ca-C), !, fail.can_place(_,_).            % succeed if no diagonals failed queens([], [], Board, Board).                            % found a solutionqueens([q(R)|Queens], Columns, Board, Solution) :-	nth0(_,Columns,C,Free), can_place(q(R,C),Board), % find all solutions	queens(Queens,Free,[q(R,C)|Board], Solution).    % recursively queens :-  findall(q(N), between(0,7,N), Queens), findall(N, between(0,7,N), Columns),  findall(B, queens(Queens, Columns, [], B), Boards),     % backtrack over all  length(Boards, Len), writef('%w solutions:\n', [Len]),  % Output solutions  member(R,Boards), reverse(R,Board), writef('  - %w\n', [Board]), fail.queens.`
Output:
```?- queens.
92 solutions:
- [q(0,0),q(1,4),q(2,7),q(3,5),q(4,2),q(5,6),q(6,1),q(7,3)]
- [q(0,0),q(1,5),q(2,7),q(3,2),q(4,6),q(5,3),q(6,1),q(7,4)]
- [q(0,0),q(1,6),q(2,3),q(3,5),q(4,7),q(5,1),q(6,4),q(7,2)]
- [q(0,0),q(1,6),q(2,4),q(3,7),q(4,1),q(5,3),q(6,5),q(7,2)]
...
- [q(0,7),q(1,1),q(2,4),q(3,2),q(4,0),q(5,6),q(6,3),q(7,5)]
- [q(0,7),q(1,2),q(2,0),q(3,5),q(4,1),q(5,4),q(6,6),q(7,3)]
- [q(0,7),q(1,3),q(2,0),q(3,2),q(4,5),q(5,1),q(6,6),q(7,4)]
true.```

### Short version

SWI-Prolog 7.2.3

`not_diagonal(X, N) :-  maplist(plus, X, N, Z1), maplist(plus, X, Z2, N), is_set(Z1), is_set(Z2). queens(N, Qs) :-  numlist(1, N, P), findall(Q, (permutation(P, Q), not_diagonal(Q, P)), Qs).`
Output:
```?- queens(8, X), length(X, L).
X = [[1, 5, 8, 6, 3, 7, 2, 4], [1, 6, 8, 3, 7, 4, 2|...], [1, 7, 4, 6, 8, 2|...], [1, 7, 5, 8, 2|...], [2, 4, 6, 8|...], [2, 5, 7|...], [2, 5|...], [2|...], [...|...]|...],
L = 92.
```

### CLP(FD): Constraint Logic Programming over Finite Domains Version

N-Queens - 92 Solutions In SWI-Prolog v8.0.2

This code solves the N-Queens problem in Prolog using the CLP(FD): Constraint Logic Programming over Finite Domain Library

• `nqueens()` creates a 2D array datastructure, representing the board coordinates of each queen
• `applyConstraints()` recursively iterates through each queen on the board
• `checkConstraints()` applies the constraints: no two queens on same row/column/diagonal; and recurses through the list of remaining queens
• `optimizeQueens()` hardcodes each queen to live in a named row, this greatly reduces the computational complixity of the problem
• Note: it is not possible to pass `Index + 1` into a prolog function, instead it must be declared and solved first as its own varaiable: `NextIndex is Index + 1`
• `print_board()` + print_line() render the ASCII graphics in a functional manner
• `all_nqueens()` uses `findall()` to solve `nqueens()` whilst repeatedly adding previous solutions as future constraints
• `print_nqueens_all(N)` is the main display/execution function

`:- use_module(library(clpfd)). % DOC: http://www.pathwayslms.com/swipltuts/clpfd/clpfd.htmllength_(Length, List) :- length(List, Length). applyConstraints([]).applyConstraints([ Q | Queens ]) :-    checkConstraints(Q, Queens),    applyConstraints(Queens). checkConstraints(_, []).checkConstraints([Row0, Col0], [ [Row1, Col1] | Queens]) :-    Row0 #\= Row1,                 % No two queens on same row    Col0 #\= Col1,                 % No two queens on same columns    Row0 + Col0 #\= Row1 + Col1,   % Down diagonals: [8,1], [7,2], [6,3]    Row0 - Col0 #\= Row1 - Col1,   % Up   diagonals: [1,1], [2,2], [3,3]    checkConstraints([Row0,Col0], Queens).  % Optimization: pre-assign each queen to a named rowoptimizeQueens(Queens) :- optimizeQueens(Queens, 1).optimizeQueens([],_).optimizeQueens([[Row,_] | Queens], Index) :-    Row #= Index,    NextIndex is Index + 1,    optimizeQueens(Queens, NextIndex).  nqueens(N, Queens) :-    % Function Preconditions    N > 0,     % Create 2D Datastructure for Queens    length(Queens, N), maplist(length_(2), Queens),    flatten(Queens, QueenArray),     % Queens coords must be in range    QueenArray ins 1..N,     % Apply Constraints    optimizeQueens(Queens),    applyConstraints(Queens),     % Solve    label(QueenArray),    true.  all_nqueens(N) :- all_nqueens(N, _).all_nqueens(N, Solutions) :-    findall(Queens, (nqueens(N,Queens), write(Queens), nl), Solutions),    length(Solutions,Count),    write(Count), write(' solutions'), nl,    Count #>= 1.  print_nqueens_all(N)                 :- all_nqueens(N, Solutions), print_nqueens(N, Solutions).print_nqueens(N)                     :- nqueens(N, Queens),        print_board(N, Queens).print_nqueens(N, [Queens|Remaining]) :- print_count(Remaining),    print_board(N, Queens),    print_nqueens(N, Remaining).print_nqueens(_, []). print_count(Remaining) :- length(Remaining, Count), Count1 is Count + 1, nl, write('# '), write(Count1), nl.print_board(N, [[_,Q] | Queens]) :- print_line(N, '-'), print_line(N, '|', Q), print_board(N, Queens).print_board(N, [])  :- print_line(N, '-').print_line(0,'-')   :- write('-'), nl.print_line(N,'-')   :- write('----'), N1 is N-1, print_line(N1,'-').print_line(0,'|',_) :- write('|'), nl.print_line(N,'|',Q) :- write('|'), (( Q == N ) -> write(' Q ') ; write('   ')), N1 is N-1, print_line(N1,'|',Q). %:- initialization main.main :-    print_nqueens_all(8). `
Output:
```92 solutions

# 92
---------------------------------
|   |   |   |   |   |   |   | Q |
---------------------------------
|   |   |   | Q |   |   |   |   |
---------------------------------
| Q |   |   |   |   |   |   |   |
---------------------------------
|   |   | Q |   |   |   |   |   |
---------------------------------
|   |   |   |   |   | Q |   |   |
---------------------------------
|   | Q |   |   |   |   |   |   |
---------------------------------
|   |   |   |   |   |   | Q |   |
---------------------------------
|   |   |   |   | Q |   |   |   |
---------------------------------
```

## Pure

`/* n-queens.pure Tectonics:     pure -c queens.pure -o queens  or      pure -q -i queens.pure*/using system; queens n = search n 1 [] with   search n i p  = [reverse p] if i>n;                 = cat [search n (i+1) ((i,j):p) | j = 1..n; safe (i,j) p];   safe (i,j) p  = ~any (check (i,j)) p;   check (i1,j1) (i2,j2)                 = i1==i2 || j1==j2 || i1+j1==i2+j2 || i1-j1==i2-j2;end; compiling || (puts("queens 4: " + str(queens 4)) \$\$               puts("Solutions to queens 7: " + str(#queens 7)));`
Output:
```prompt\$ pure -c queens.pure -o queens
prompt\$ time -p ./queens
queens 4: [[(1,2),(2,4),(3,1),(4,3)],[(1,3),(2,1),(3,4),(4,2)]]
Solutions to queens 7: 40
real 0.03
user 0.02
sys 0.00

prompt\$ pure -i -q queens.pure
> #queens 10;
724
> ```

## PureBasic

A recursive approach is taken. A queen is placed in an unused column for each new row. An array keeps track if a queen has already been placed in a given column so that no duplicate columns result. That handles the Rook attacks. Bishop attacks are handled by checking the diagonal alignments of each new placement against the previously placed queens and if an attack is possible the solution backtracks. The solutions are kept track of in a global variable and the routine queens(n) is called with the required number of queens specified.

`Global solutions Procedure showBoard(Array queenCol(1))  Protected row, column, n = ArraySize(queenCol())   PrintN(" Solution " + Str(solutions))  For row = 0 To n    For column = 0 To n      If queenCol(row) = column        Print("|Q")      Else        Print("| ")      EndIf    Next    PrintN("|")  NextEndProcedure Macro advanceIfPossible()  x + 1  While x <= n And columns(x): x + 1: Wend  If x > n    ProcedureReturn #False ;backtrack  EndIf EndMacro Procedure placeQueens(Array queenCol(1), Array columns(1), row = 0)  Protected n = ArraySize(queenCol())   If row > n    solutions + 1    showBoard(queenCol())    ProcedureReturn #False ;backtrack  EndIf   Protected x, queen, passed  While columns(x): x + 1: Wend   ;place a new queen in one of the available columns  Repeat     passed = #True    For queen = 0 To row - 1      If ((queenCol(queen) - x) = (queen - row)) Or ((queenCol(queen) - x) = -(queen - row))        advanceIfPossible()        passed = #False        Break ;ForNext loop      EndIf    Next     If passed      queenCol(row) = x: columns(x) = 1      If Not placeQueens(queenCol(), columns(), row + 1)        columns(x) = 0        advanceIfPossible()      EndIf     EndIf   ForEverEndProcedure Procedure queens(n)  If n > 0    Dim queenCol(n - 1)    Dim columns(n - 1)    placeQueens(queenCol(), columns())   EndIf EndProcedure If OpenConsole()  Define i  For i = 1 To 12    solutions = 0    queens(i)    PrintN(#CRLF\$ + Str(solutions) + " solutions found for " + Str(i) + "-queens.")    Input()  Next    Print(#CRLF\$ + "Press ENTER to exit")  Input()  CloseConsole()EndIf`

Sample output showing the last solution (all are actually displayed) for 1 - 12 queens:

``` Solution 1
|Q|

1 solutions found for 1-queens. {Press ENTER}

0 solutions found for 2-queens. {Press ENTER}

0 solutions found for 3-queens. {Press ENTER}

Solution 2
| | |Q| |
|Q| | | |
| | | |Q|
| |Q| | |

2 solutions found for 4-queens. {Press ENTER}

Solution 10
| | | | |Q|
| | |Q| | |
|Q| | | | |
| | | |Q| |
| |Q| | | |

10 solutions found for 5-queens. {Press ENTER}

Solution 4
| | | | |Q| |
| | |Q| | | |
|Q| | | | | |
| | | | | |Q|
| | | |Q| | |
| |Q| | | | |

4 solutions found for 6-queens. {Press ENTER}

Solution 40
| | | | | | |Q|
| | | | |Q| | |
| | |Q| | | | |
|Q| | | | | | |
| | | | | |Q| |
| | | |Q| | | |
| |Q| | | | | |

40 solutions found for 7-queens. {Press ENTER}

Solution 92
| | | | | | | |Q|
| | | |Q| | | | |
|Q| | | | | | | |
| | |Q| | | | | |
| | | | | |Q| | |
| |Q| | | | | | |
| | | | | | |Q| |
| | | | |Q| | | |

92 solutions found for 8-queens. {Press ENTER}

Solution 352
| | | | | | | | |Q|
| | | | | | |Q| | |
| | | |Q| | | | | |
| |Q| | | | | | | |
| | | | | | | |Q| |
| | | | | |Q| | | |
|Q| | | | | | | | |
| | |Q| | | | | | |
| | | | |Q| | | | |

352 solutions found for 9-queens. {Press ENTER}

Solution 724
| | | | | | | | | |Q|
| | | | | | | |Q| | |
| | | | |Q| | | | | |
| | |Q| | | | | | | |
|Q| | | | | | | | | |
| | | | | |Q| | | | |
| |Q| | | | | | | | |
| | | | | | | | |Q| |
| | | | | | |Q| | | |
| | | |Q| | | | | | |

724 solutions found for 10-queens. {Press ENTER}

Solution 2680
| | | | | | | | | | |Q|
| | | | | | | | |Q| | |
| | | | | | |Q| | | | |
| | | | |Q| | | | | | |
| | |Q| | | | | | | | |
|Q| | | | | | | | | | |
| | | | | | | | | |Q| |
| | | | | | | |Q| | | |
| | | | | |Q| | | | | |
| | | |Q| | | | | | | |
| |Q| | | | | | | | | |

2680 solutions found for 11-queens. {Press ENTER}

Solution 14200
| | | | | | | | | | | |Q|
| | | | | | | | | |Q| | |
| | | | | | | |Q| | | | |
| | | | |Q| | | | | | | |
| | |Q| | | | | | | | | |
|Q| | | | | | | | | | | |
| | | | | | |Q| | | | | |
| |Q| | | | | | | | | | |
| | | | | | | | | | |Q| |
| | | | | |Q| | | | | | |
| | | |Q| | | | | | | | |
| | | | | | | | |Q| | | |

14200 solutions found for 12-queens. {Press ENTER}```

## Python

### Python: Raymond Hettingers permutations based solution

This solution, originally by Raymond Hettinger for demonstrating the power of the itertools module, generates all solutions.

`from itertools import permutations n = 8cols = range(n)for vec in permutations(cols):    if n == len(set(vec[i]+i for i in cols)) \         == len(set(vec[i]-i for i in cols)):        print ( vec )`

The output is presented in vector form (each number represents the column position of a queen on consecutive rows). The vector can be pretty printed by substituting a call to `board` instead of `print`, with the same argument, and where board is pre-defined as:

`def board(vec):    print ("\n".join('.' * i + 'Q' + '.' * (n-i-1) for i in vec) + "\n===\n")`

Raymond's description is:

With the solution represented as a vector with one queen in each row, we don't have to check to see if two queens are on the same row. By using a permutation generator, we know that no value in the vector is repeated, so we don't have to check to see if two queens are on the same column. Since rook moves don't need to be checked, we only need to check bishop moves.
The technique for checking the diagonals is to add or subtract the column number from each entry, so any two entries on the same diagonal will have the same value (in other words, the sum or difference is unique for each diagonal). Now all we have to do is make sure that the diagonals for each of the eight queens are distinct. So, we put them in a set (which eliminates duplicates) and check that the set length is eight (no duplicates were removed).
Any permutation with non-overlapping diagonals is a solution. So, we print it and continue checking other permutations.

One disadvantage with this solution is that we can't simply "skip" all the permutations that start with a certain prefix, after discovering that that prefix is incompatible. For example, it is easy to verify that no permutation of the form (1,2,...) could ever be a solution, but since we don't have control over the generation of the permutations, we can't just tell it to "skip" all the ones that start with (1,2).

### Python: Alternative Solution

Works with: Python version 2.6, 3.x
`# From: http://wiki.python.org/moin/SimplePrograms, with permission from the author, Steve HowellBOARD_SIZE = 8 def under_attack(col, queens):    return col in queens or \           any(abs(col - x) == len(queens)-i for i,x in enumerate(queens)) def solve(n):    solutions = [[]]    for row in range(n):        solutions = [solution+[i+1]                       for solution in solutions                       for i in range(BOARD_SIZE)                       if not under_attack(i+1, solution)]    return solutions for answer in solve(BOARD_SIZE): print(list(enumerate(answer, start=1)))`

### Python: Simple Backtracking Solution

A surprisingly simple change to the above code (changing the list comprehension to a generator expression) produces a backtracking solution:

Works with: Python version 2.6, 3.x
`BOARD_SIZE = 8 def under_attack(col, queens):    return col in queens or \           any(abs(col - x) == len(queens)-i for i,x in enumerate(queens)) def solve(n):    solutions = [[]]    for row in range(n):        solutions = (solution+[i+1]                       for solution in solutions # first for clause is evaluated immediately,                                                 # so "solutions" is correctly captured                       for i in range(BOARD_SIZE)                       if not under_attack(i+1, solution))    return solutions answers = solve(BOARD_SIZE)first_answer = next(answers)print(list(enumerate(first_answer, start=1)))`

### Python: Simple Backtracking Solution (functional style)

This simple version, which uses a generator function and lists, has an excellent performance with PyPy.

`def solve(n, i, a, b, c):    if i < n:        for j in range(n):            if j not in a and i+j not in b and i-j not in c:                for solution in solve(n, i+1, a+[j], b+[i+j], c+[i-j]):                    yield solution    else:        yield a for solution in solve(8, 0, [], [], []):    print(solution)`

### Python: backtracking on permutations

Queens positions on a n x n board are encoded as permutations of [0, 1, ..., n]. The algorithms consists in building a permutation from left to right, by swapping elements of the initial [0, 1, ..., n], recursively calling itself unless the current position is not possible. The test is done by checking only diagonals, since rows/columns have by definition of a permutation, only one queen.

This is initially a translation of the Fortran 77 solution.

The solutions are returned as a generator, using the "yield from" functionality of Python 3.3, described in PEP-380.

`def queens(n):    a = list(range(n))    up = [True]*(2*n - 1)    down = [True]*(2*n - 1)    def sub(i):        if i == n:            yield tuple(a)        else:            for k in range(i, n):                j = a[k]                p = i + j                q = i - j + n - 1                if up[p] and down[q]:                    up[p] = down[q] = False                    a[i], a[k] = a[k], a[i]                    yield from sub(i + 1)                    up[p] = down[q] = True                    a[i], a[k] = a[k], a[i]    yield from sub(0) #Count solutions for n=8:sum(1 for p in queens(8))92`

The preceding function does not enumerate solutions in lexicographic order, see Permutations#Recursive implementation for an explanation. The following does, but is almost 50% slower, because the exchange is always made (otherwise the loop to shift the array a by one place would not work).

However, it may be interesting to look at the first solution in lexicographic order: for growing n, and apart from a +1 offset, it gets closer and closer to the sequence A065188 at OEIS. The first n for which the first solutions differ is n=26.

`def queens_lex(n):    a = list(range(n))    up = [True]*(2*n - 1)    down = [True]*(2*n - 1)    def sub(i):        if i == n:            yield tuple(a)        else:            for k in range(i, n):                a[i], a[k] = a[k], a[i]                j = a[i]                p = i + j                q = i - j + n - 1                if up[p] and down[q]:                    up[p] = down[q] = False                    yield from sub(i + 1)                    up[p] = down[q] = True            x = a[i]            for k in range(i + 1, n):                a[k - 1] = a[k]            a[n - 1] = x    yield from sub(0) next(queens(31))(0, 2, 4, 1, 3, 8, 10, 12, 14, 6, 17, 21, 26, 28, 25, 27, 24, 30, 7, 5, 29, 15, 13, 11, 9, 18, 22, 19, 23, 16, 20) next(queens_lex(31))(0, 2, 4, 1, 3, 8, 10, 12, 14, 5, 17, 22, 25, 27, 30, 24, 26, 29, 6, 16, 28, 13, 9, 7, 19, 11, 15, 18, 21, 23, 20) #Compare to A065188#1, 3, 5, 2, 4, 9, 11, 13, 15, 6, 8, 19, 7, 22, 10, 25, 27, 29, 31, 12, 14, 35, 37, ...`

### Python: fold/reduce

Expressed in terms of nested folds, allowing for graphic display of results, and listing the number of solutions found for boards of various sizes:

Works with: Python version 3.7
`'''N Queens problem''' from functools import reducefrom itertools import chain  # queenPuzzle :: Int -> Int -> [[Int]]def queenPuzzle(nCols):    '''All board patterns of this dimension       in which no two Queens share a row,       column, or diagonal.    '''    def go(nRows):        lessRows = nRows - 1        return reduce(            lambda a, xys: a + reduce(                lambda b, iCol: b + [xys + [iCol]] if (                    safe(lessRows, iCol, xys)                ) else b,                enumFromTo(1)(nCols),                []            ),            go(lessRows),            []        ) if 0 < nRows else [[]]    return go  # safe :: Int -> Int -> [Int] -> Booldef safe(iRow, iCol, pattern):    '''True if no two queens in the pattern       share a row, column or diagonal.    '''    def p(sc, sr):        return (iCol == sc) or (            sc + sr == (iCol + iRow)        ) or (sc - sr == (iCol - iRow))    return not any(map(p, pattern, range(0, iRow)))  # ------------------------- TEST -------------------------# main :: IO ()def main():    '''Number of solutions for boards of various sizes'''     n = 5    xs = queenPuzzle(n)(n)     print(        str(len(xs)) + ' solutions for a {n} * {n} board:\n'.format(n=n)    )    print(showBoards(10)(xs))     print(        fTable(            '\n\n' + main.__doc__ + ':\n'        )(str)(lambda n: str(n).rjust(3, ' '))(            lambda n: len(queenPuzzle(n)(n))        )(enumFromTo(1)(10))    )  # ---------------------- FORMATTING ---------------------- # showBoards :: Int -> [[Int]] -> Stringdef showBoards(nCols):    '''String representation, with N columns       of a set of board patterns.    '''    def showBlock(b):        return '\n'.join(map(intercalate('  '), zip(*b)))     def go(bs):        return '\n\n'.join(map(            showBlock,            chunksOf(nCols)([                showBoard(b) for b in bs            ])        ))    return go  # showBoard :: [Int] -> Stringdef showBoard(xs):    '''String representation of a Queens board.'''    lng = len(xs)     def showLine(n):        return ('.' * (n - 1)) + '♛' + ('.' * (lng - n))    return map(showLine, xs)  # fTable :: String -> (a -> String) ->#                     (b -> String) -> (a -> b) -> [a] -> Stringdef fTable(s):    '''Heading -> x display function -> fx display function ->                     f -> xs -> tabular string.    '''    def go(xShow, fxShow, f, xs):        ys = [xShow(x) for x in xs]        w = max(map(len, ys))        return s + '\n' + '\n'.join(map(            lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),            xs, ys        ))    return lambda xShow: lambda fxShow: lambda f: lambda xs: go(        xShow, fxShow, f, xs    )  # ----------------------- GENERIC ------------------------ # enumFromTo :: (Int, Int) -> [Int]def enumFromTo(m):    '''Integer enumeration from m to n.'''    return lambda n: range(m, 1 + n)  # chunksOf :: Int -> [a] -> [[a]]def chunksOf(n):    '''A series of lists of length n, subdividing the       contents of xs. Where the length of xs is not evenly       divible, the final list will be shorter than n.    '''    return lambda xs: reduce(        lambda a, i: a + [xs[i:n + i]],        range(0, len(xs), n), []    ) if 0 < n else []  # intercalate :: [a] -> [[a]] -> [a]# intercalate :: String -> [String] -> Stringdef intercalate(x):    '''The concatenation of xs       interspersed with copies of x.    '''    return lambda xs: x.join(xs) if isinstance(x, str) else list(        chain.from_iterable(            reduce(lambda a, v: a + [x, v], xs[1:], [xs])        )    ) if xs else []  # MAIN ---if __name__ == '__main__':    main()`
Output:
```10 solutions for a 5 * 5 board:

♛....  ♛....  .♛...  .♛...  ..♛..  ..♛..  ...♛.  ...♛.  ....♛  ....♛
..♛..  ...♛.  ...♛.  ....♛  ♛....  ....♛  ♛....  .♛...  .♛...  ..♛..
....♛  .♛...  ♛....  ..♛..  ...♛.  .♛...  ..♛..  ....♛  ...♛.  ♛....
.♛...  ....♛  ..♛..  ♛....  .♛...  ...♛.  ....♛  ..♛..  ♛....  ...♛.
...♛.  ..♛..  ....♛  ...♛.  ....♛  ♛....  .♛...  ♛....  ..♛..  .♛...

Number of solutions for boards of various sizes:

1 ->   1
2 ->   0
3 ->   0
4 ->   2
5 ->  10
6 ->   4
7 ->  40
8 ->  92
9 -> 352
10 -> 724```

## QB64

` DIM SHARED QUEENS AS INTEGERPRINT "# of queens:";: INPUT QUEENSIF QUEENS = 0 THEN ENDOPEN LTRIM\$(STR\$(QUEENS)) + "queens.dat" FOR OUTPUT AS #1PRINT "Queens: Calculates"; QUEENS; " queens problem."DIM SHARED arrayqcol(QUEENS) AS LONG ' columns of queensDIM SHARED nsolutions AS LONGCALL dorow(1) ' start with row 1LOCATE 22, 1PRINT STR\$(nsolutions) + " solutions"ENDSUB dorow (irow) ' starts with row irow    FOR icol = 1 TO QUEENS        FOR iqueen = 1 TO irow - 1 ' check for conflict with previous queens            IF arrayqcol(iqueen) = icol THEN GOTO continue1 ' same column?            ' iqueen is also row of queen            IF iqueen + arrayqcol(iqueen) = irow + icol THEN GOTO continue1 ' right diagonal?            IF iqueen - arrayqcol(iqueen) = irow - icol THEN GOTO continue1 ' left diagonal?        NEXT iqueen        ' at this point we can add a queen        arrayqcol(irow) = icol ' add to array        LOCATE irow + 2, icol: PRINT "x"; ' show progress        _DELAY (.001) ' slows processing        IF irow = QUEENS THEN ' solution?            nsolutions = nsolutions + 1            PRINT #1, "Solution #" + MID\$(STR\$(nsolutions), 2) + "."            FOR i1 = 1 TO QUEENS ' rows                s1\$ = STRING\$(QUEENS, ".") ' columns                MID\$(s1\$, arrayqcol(i1), 1) = "x" ' x in queen column                PRINT #1, s1\$            NEXT i1            PRINT #1, ""        ELSE            CALL dorow(irow + 1) ' recursive call to next row        END IF        LOCATE irow + 2, icol: PRINT "."; ' remove queen        continue1:    NEXT icolEND SUB `

## R

Translation of: Stata

This solution uses recursive backtracking.

`queens <- function(n) {  a <- seq(n)  u <- rep(T, 2 * n - 1)  v <- rep(T, 2 * n - 1)  m <- NULL  aux <- function(i) {    if (i > n) {      m <<- cbind(m, a)    } else {      for (j in seq(i, n)) {        k <- a[[j]]        p <- i - k + n        q <- i + k - 1        if (u[[p]] && v[[q]]) {          u[[p]] <<- v[[q]] <<- F          a[[j]] <<- a[[i]]          a[[i]] <<- k          aux(i + 1)          u[[p]] <<- v[[q]] <<- T          a[[i]] <<- a[[j]]          a[[j]] <<- k        }      }    }  }  aux(1)  m}`

Show the first solution found for size 8 as a permutation matrix.

`library(Matrix)a <- queens(8)as(a[, 1], "pMatrix")`
Output:
```8 x 8 sparse Matrix of class "pMatrix"

[1,] | . . . . . . .
[2,] . . . . | . . .
[3,] . . . . . . . |
[4,] . . . . . | . .
[5,] . . | . . . . .
[6,] . . . . . . | .
[7,] . | . . . . . .
[8,] . . . | . . . .```

Count solutions for board size 4 to 12.

`sapply(4:12, function(n) ncol(queens(n)))`
Output:
`     2    10     4    40    92   352   724  2680 14200`

## Racket

Backtracking algorithm; returns one solution

` #lang racket (struct Q (x y) #:transparent) ;; returns true if given q1 and q2 do not conflict(define (safe? q1 q2)  (match* (q1 q2)    [((Q x1 y1) (Q x2 y2))     (not (or (= x1 x2) (= y1 y2)              (= (abs (- x1 x2)) (abs (- y1 y2)))))])) ;; returns true if given q doesn't conflict with anything in given list of qs(define (safe-lst? q qs) (for/and ([q2 qs]) (safe? q q2))) (define (nqueens n)  ;; qs is partial solution; x y is current position to try  (let loop ([qs null] [x 0] [y 0])    (cond [(= (length qs) n) qs]          ; found a solution          [(>= x n) (loop qs 0 (add1 y))] ; go to next row          [(>= y n) #f]                   ; current solution is invalid          [else           (define q (Q x y))           (if (safe-lst? q qs) ; is current position safe?               (or (loop (cons q qs) 0 (add1 y)) ; optimistically place a queen                                                 ; (and move pos to next row)                   (loop qs (add1 x) y))  ; backtrack if it fails               (loop qs (add1 x) y))]))) (nqueens 8); => (list (Q 3 7) (Q 1 6) (Q 6 5) (Q 2 4) (Q 5 3) (Q 7 2) (Q 4 1) (Q 0 0)) `

Show result with "How to Design Programs" GUI.

` (require htdp/show-queen) (define (show-nqueens n)  (define qs (time (nqueens n)))  (show-queen   (for/list ([row n])     (for/list ([col n])       (if (member (Q row col) qs) #t #f))))) (show-nqueens 8) `

When hovering mouse, GUI also displays conflicts for potential additional queens.

Lazy-style solution, ie, generate all solutions, then filter out invalid ones. Computes all solutions.

` #lang racket (struct Q (x y) #:transparent) (define-syntax-rule (lcons x y) (cons x (lazy y))) (define (lazy-filter p? lst)  (define flst (force lst))  (if (null? flst) '()      (let ([x (car flst)])        (if (p? x)            (lcons x (lazy-filter p? (cdr flst)))            (lazy-filter p? (cdr flst)))))) (define (lazy-foldr f base lst)  (define flst (force lst))  (if (null? flst) base      (f (car flst) (lazy (lazy-foldr f base (cdr flst)))))) (define (tails lst)  (if (null? lst) '(())      (cons lst (tails (cdr lst))))) (define (safe? q1 q2)  (match* (q1 q2)    [((Q x1 y1) (Q x2 y2))     (not (or (= x1 x2) (= y1 y2)              (= (abs (- x1 x2)) (abs (- y1 y2)))))])) (define (safe-lst? lst)  (or (null? lst)      (let ([q1 (car lst)])        (for/and ([q2 (cdr lst)]) (safe? q1 q2))))) (define (valid? lst) (andmap safe-lst? (tails lst))) (define (nqueens n)  (define all-possible-solutions`