Multiplicative order

From Rosetta Code
Task
Multiplicative order
You are encouraged to solve this task according to the task description, using any language you may know.

The multiplicative order of a relative to m is the least positive integer n such that a^n is 1 (modulo m).


Example

The multiplicative order of 37 relative to 1000 is 100 because 37^100 is 1 (modulo 1000), and no number smaller than 100 would do.


One possible algorithm that is efficient also for large numbers is the following: By the Chinese Remainder Theorem, it's enough to calculate the multiplicative order for each prime exponent p^k of m, and combine the results with the least common multiple operation.

Now the order of a with regard to p^k must divide Φ(p^k). Call this number t, and determine it's factors q^e. Since each multiple of the order will also yield 1 when used as exponent for a, it's enough to find the least d such that (q^d)*(t/(q^e)) yields 1 when used as exponent.


Task

Implement a routine to calculate the multiplicative order along these lines. You may assume that routines to determine the factorization into prime powers are available in some library.


An algorithm for the multiplicative order can be found in Bach & Shallit, Algorithmic Number Theory, Volume I: Efficient Algorithms, The MIT Press, 1996:

Exercise 5.8, page 115:

Suppose you are given a prime p and a complete factorization of p-1.   Show how to compute the order of an element a in (Z/(p))* using O((lg p)4/(lg lg p)) bit operations.

Solution, page 337:

Let the prime factorization of p-1 be q1e1q2e2...qkek . We use the following observation: if x^((p-1)/qifi) = 1 (mod p) , and fi=ei or x^((p-1)/qifi+1) != 1 (mod p) , then qiei-fi||ordp x.   (This follows by combining Exercises 5.1 and 2.10.) Hence it suffices to find, for each i , the exponent fi such that the condition above holds.

This can be done as follows: first compute q1e1, q2e2, ... , qkek . This can be done using O((lg p)2) bit operations. Next, compute y1=(p-1)/q1e1, ... , yk=(p-1)/qkek . This can be done using O((lg p)2) bit operations. Now, using the binary method, compute x1=ay1(mod p), ... , xk=ayk(mod p) . This can be done using O(k(lg p)3) bit operations, and k=O((lg p)/(lg lg p)) by Theorem 8.8.10. Finally, for each i , repeatedly raise xi to the qi-th power (mod p) (as many as ei-1 times), checking to see when 1 is obtained. This can be done using O((lg p)3) steps. The total cost is dominated by O(k(lg p)3) , which is O((lg p)4/(lg lg p)).

Ada

Instead of assuming a library call to factorize the modulus, we assume the caller of our Find_Order function has already factorized it. The Multiplicative_Order package is specified as follows ("multiplicative_order.ads"). <lang Ada>package Multiplicative_Order is

  type Positive_Array is array (Positive range <>) of Positive;
  function Find_Order(Element, Modulus: Positive) return Positive;
  -- naive algorithm
  -- returns the smallest I such that (Element**I) mod Modulus = 1
  function Find_Order(Element: Positive;
                      Coprime_Factors: Positive_Array) return Positive;
  -- faster algorithm for the same task
  -- computes the order of all Coprime_Factors(I)
  -- and returns their least common multiple
  -- this gives the same result as Find_Order(Element, Modulus) 
  -- with Modulus being the product of all the Coprime_Factors(I)
  --
  -- preconditions: (1) 1 = GCD(Coprime_Factors(I), Coprime_Factors(J)) 
  --                    for all pairs I, J with I /= J
  --                (2) 1 < Coprime_Factors(I)   for all I

end Multiplicative_Order;</lang>

Here is the implementation ("multiplicative_order.adb"):

<lang Ada>package body Multiplicative_Order is

  function Find_Order(Element, Modulus: Positive) return Positive is
     function Power(Exp, Pow, M: Positive) return Positive is
        -- computes Exp**Pow mod M;
        -- note that Ada's native integer exponentiation "**" may overflow on
        -- computing Exp**Pow before ever computing the "mod M" part
        Result: Positive := 1;
        E: Positive := Exp;
        P: Natural := Pow;
     begin
        while P > 0 loop
           if P mod 2 = 1 then
              Result := (Result * E) mod M;
           end if;
           E := (E * E) mod M;
           P := P / 2;
        end loop;
        return Result;
     end Power;
  begin -- Find_Order(Element, Modulus)
     for I in 1 .. Modulus loop
        if Power(Element, I, Modulus) = 1 then
           return Positive(I);
        end if;
     end loop;
     raise Program_Error with
       Positive'Image(Element) &" is not coprime to" &Positive'Image(Modulus);
  end Find_Order;
  function Find_Order(Element: Positive;
                      Coprime_Factors: Positive_Array) return Positive is
        function GCD (A, B : Positive) return Integer is
           M : Natural := A;
           N : Natural := B;
           T : Natural;
        begin
           while N /= 0 loop
              T := M;
              M := N;
              N ;:= T mod N;
           end loop;
           return M;
        end GCD; -- from http://rosettacode.org/wiki/Least_common_multiple#Ada
        function LCM (A, B : Natural) return Integer is
        begin
           if A = 0 or B = 0 then
              return 0;
           end if;
           return abs (A * B) / Gcd (A, B);
        end LCM; -- from http://rosettacode.org/wiki/Least_common_multiple#Ada
        Result : Positive := 1;
  begin -- Find_Order(Element, Coprime_Factors)
     for I in Coprime_Factors'Range loop
        Result := LCM(Result, Find_Order(Element, Coprime_Factors(I)));
     end loop;
     return Result;
  end Find_Order;

end Multiplicative_Order;</lang>

This is a sample program using the Multiplicative_Order package: <lang Ada>with Ada.Text_IO, Multiplicative_Order;

procedure Main is

  package IIO is new Ada.Text_IO.Integer_IO(Integer);
  use Multiplicative_Order;

begin

  IIO.Put(Find_Order(3,10));
  IIO.Put(Find_Order(37,1000));
  IIO.Put(Find_Order(37,10_000));
  IIO.Put(Find_Order(37, 3343));
  IIO.Put(Find_Order(37, 3344));
  -- IIO.Put(Find_Order( 2,1000));
    --would raise Program_Error, because there is no I with 2**I=1 mod 1000
  Ada.Text_IO.New_Line;
  IIO.Put(Find_Order(3, (2,5)));           --  3 *   5 = 10
  IIO.Put(Find_Order(37, (8, 125)));       --  8 * 125 = 1000
  IIO.Put(Find_Order(37, (16, 625)));      -- 16 * 625 = 10_000
  IIO.Put(Find_Order(37, (1 => 3343)));    -- 1-element-array: 3343 is a prime
  IIO.Put(Find_Order(37, (11, 19, 16)));   -- 11 * 19 * 16 = 3344
  -- this violates the precondition, because 8 and 2 are not coprime
  -- it gives an incorrect result
  IIO.Put(Find_Order(37, (11, 19, 8, 2))); 

end Main;</lang>

The output from the sample program:

          4        100        500       1114         20
          4        100        500       1114         20         10

ALGOL 68

Translation of: python
Works with: ALGOL 68 version Standard - with preludes manually inserted
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386

<lang algol68>MODE LOOPINT = INT;

MODE POWMODSTRUCT = LONG INT; PR READ "prelude/pow_mod.a68" PR;

MODE SORTSTRUCT = LONG INT; PR READ "prelude/sort.a68" PR;

MODE GCDSTRUCT = LONG INT; PR READ "prelude/gcd.a68" PR;

PR READ "prelude/iterator.a68" PR;

PROC is prime = (LONG INT p)BOOL:

   ( p > 1 |#ANDF# ALL((YIELDBOOL yield)VOID: factored(p, (LONG INT f, LONG INT e)VOID: yield(f = p))) | FALSE );

FLEX[4]LONG INT prime list := (2,3,5,7);

OP +:= = (REF FLEX[]LONG INT lhs, LONG INT rhs)VOID: (

   [UPB lhs +1] LONG INT next lhs;
   next lhs[:UPB lhs] := lhs;
   lhs := next lhs;
   lhs[UPB lhs] := rhs

);

PROC primes = (PROC (LONG INT)VOID yield)VOID: (

   LONG INT p;
   FOR p index TO UPB prime list DO
       p:= prime list[p index];
       yield(p)
   OD;
   DO
       p +:= 2;
       WHILE NOT is prime(p) DO
           p +:= 2
       OD;
       prime list +:= p;
       yield(p)
   OD

);

PROC factored = (LONG INT in a, PROC (LONG INT,LONG INT)VOID yield)VOID: (

   LONG INT a := in a;
 # FOR          p IN  # primes( # DO #
      (LONG INT p)VOID:(
       LONG INT j := 0;
       WHILE a MOD p = 0 DO
           a := a % p;
           j +:= 1
       OD;
       IF j > 0 THEN yield (p,j) FI;
       IF a < p*p THEN done FI
     )
 # ) OD #  );
   done:
   IF a > 1 THEN yield (a,1) FI

);

PROC mult0rdr1 = (LONG INT a, p, e)LONG INT: (

   LONG INT m := p ** SHORTEN e;
   LONG INT t := (p-1)*(p**SHORTEN (e-1)); #  = Phi(p**e) where p prime #
   LONG INT q;
   FLEX[0]LONG INT qs := (1);
 # FOR          f0,f1 IN  # factored(t # DO #, 
      (LONG INT f0,f1)VOID: (
           FLEX[SHORTEN((f1+1)*UPB qs)]LONG INT next qs;
           FOR j TO SHORTEN f1 + 1 DO
               FOR q index TO UPB qs DO
                   q := qs[q index];
                   next qs[(j-1)*UPB qs+q index] := q * f0**(j-1)
               OD
           OD;
           qs := next qs
       )
 #   OD # );
   VOID(in place shell sort(qs));
   FOR q index TO UPB qs DO
       q := qs[q index];
       IF pow mod(a,q,m)=1 THEN done FI
   OD;
   done:
   q

);

PROC reduce = (PROC (LONG INT,LONG INT)LONG INT diadic, FORLONGINT iterator, LONG INT initial value)LONG INT: (

 LONG INT out := initial value;
  1. FOR next IN # iterator( # DO #
    (LONG INT next)VOID:
   out := diadic(out, next)
# OD # );
 out

);

PROC mult order = (LONG INT a, LONG INT m)LONG INT: (

   PROC mofs = (YIELDLONGINT yield)VOID:(
     # FOR          p,          count IN # factored(m, # DO #
          (LONG INT p, LONG INT count)VOID:
           yield(mult0rdr1(a,p,count))
       )
 # OD #  );
   reduce(lcm, mofs, 1)

);

main:(

   FORMAT d = $g(-0)$;
   printf((d, mult order(37, 1000), $l$));        # 100 #
   LONG INT b := LENG 10**20-1;
   printf((d, mult order(2, b), $l$)); # 3748806900 #
   printf((d, mult order(17,b), $l$)); # 1499522760 #
   b := 100001;
   printf((d, mult order(54,b), $l$));
   printf((d, pow mod( 54, mult order(54,b),b), $l$));
   IF ANY( (YIELDBOOL yield)VOID: FOR r FROM 2 TO SHORTEN mult order(54,b)-1 DO yield(1=pow mod(54,r, b)) OD  )
   THEN
       printf(($g$, "Exists a power r < 9090 where pow mod(54,r,b) = 1", $l$))
   ELSE
       printf(($g$, "Everything checks.", $l$))
   FI

)</lang> Output:

100
3748806900
1499522760
9090
1
Everything checks.

C

Uses prime/factor functions from Factors of an integer#Prime factoring. This implementation is not robust because of integer overflows. To properly deal with even moderately large numbers, an arbitrary precision integer package is a must. <lang c>ulong mpow(ulong a, ulong p, ulong m) { ulong r = 1; while (p) { if ((1 & p)) r = r * a % m; a = a * a % m; p >>= 1; } return r; }

ulong ipow(ulong a, ulong p) { ulong r = 1; while (p) { if ((1 & p)) r = r * a; a *= a; p >>= 1; } return r; }

ulong gcd(ulong m, ulong n) { ulong t; while (m) { t = m; m = n % m; n = t; } return n; }

ulong lcm(ulong m, ulong n) { ulong g = gcd(m, n); return m / g * n; }

ulong multi_order_p(ulong a, ulong p, ulong e) { ulong fac[10000]; ulong m = ipow(p, e); ulong t = m / p * (p - 1); int i, len = get_factors(t, fac); for (i = 0; i < len; i++) if (mpow(a, fac[i], m) == 1) return fac[i]; return 0; }

ulong multi_order(ulong a, ulong m) { prime_factor pf[100]; int i, len = get_prime_factors(m, pf); ulong res = 1; for (i = 0; i < len; i++) res = lcm(res, multi_order_p(a, pf[i].p, pf[i].e)); return res; }

int main() { sieve(); printf("%lu\n", multi_order(37, 1000)); printf("%lu\n", multi_order(54, 100001)); return 0; }</lang>

C++

Translation of: C

<lang cpp>#include <algorithm>

  1. include <bitset>
  2. include <iostream>
  3. include <vector>

typedef unsigned long ulong; std::vector<ulong> primes;

typedef struct {

   ulong p, e;

} prime_factor; /* prime, exponent */

void sieve() {

   /* 65536 = 2^16, so we can factor all 32 bit ints */
   constexpr int SIZE = 1 << 16;
   std::bitset<SIZE> bits;
   bits.flip(); // set all bits
   bits.reset(0);
   bits.reset(1);
   for (int i = 0; i < 256; i++) {
       if (bits.test(i)) {
           for (int j = i * i; j < SIZE; j += i) {
               bits.reset(j);
           }
       }
   }
   /* collect primes into a list. slightly faster this way if dealing with large numbers */
   for (int i = 0; i < SIZE; i++) {
       if (bits.test(i)) {
           primes.push_back(i);
       }
   }

}

auto get_prime_factors(ulong n) {

   std::vector<prime_factor> lst;
   ulong e, p;
   for (ulong i = 0; i < primes.size(); i++) {
       p = primes[i];
       if (p * p > n) break;
       for (e = 0; !(n % p); n /= p, e++);
       if (e) {
           lst.push_back({ p, e });
       }
   }
   if (n != 1) {
       lst.push_back({ n, 1 });
   }
   return lst;

}

auto get_factors(ulong n) {

   auto f = get_prime_factors(n);
   std::vector<ulong> lst{ 1 };
   size_t len2 = 1;
   /* L = (1); L = (L, L * p**(1 .. e)) forall((p, e)) */
   for (size_t i = 0; i < f.size(); i++, len2 = lst.size()) {
       for (ulong j = 0, p = f[i].p; j < f[i].e; j++, p *= f[i].p) {
           for (size_t k = 0; k < len2; k++) {
               lst.push_back(lst[k] * p);
           }
       }
   }
   std::sort(lst.begin(), lst.end());
   return lst;

}

ulong mpow(ulong a, ulong p, ulong m) {

   ulong r = 1;
   while (p) {
       if (p & 1) {
           r = r * a % m;
       }
       a = a * a % m;
       p >>= 1;
   }
   return r;

}

ulong ipow(ulong a, ulong p) {

   ulong r = 1;
   while (p) {
       if (p & 1) r *= a;
       a *= a;
       p >>= 1;
   }
   return r;

}

ulong gcd(ulong m, ulong n) {

   ulong t;
   while (m) {
       t = m;
       m = n % m;
       n = t;
   }
   return n;

}

ulong lcm(ulong m, ulong n) {

   ulong g = gcd(m, n);
   return m / g * n;

}

ulong multi_order_p(ulong a, ulong p, ulong e) {

   ulong m = ipow(p, e);
   ulong t = m / p * (p - 1);
   auto fac = get_factors(t);
   for (size_t i = 0; i < fac.size(); i++) {
       if (mpow(a, fac[i], m) == 1) {
           return fac[i];
       }
   }
   return 0;

}

ulong multi_order(ulong a, ulong m) {

   auto pf = get_prime_factors(m);
   ulong res = 1;
   for (size_t i = 0; i < pf.size(); i++) {
       res = lcm(res, multi_order_p(a, pf[i].p, pf[i].e));
   }
   return res;

}

int main() {

   sieve();
   printf("%lu\n", multi_order(37, 1000));   // expect 100
   printf("%lu\n", multi_order(54, 100001)); // expect 9090
   return 0;

}</lang>

Output:
100
9090

C#

Translation of: Java

<lang csharp>using System; using System.Collections.Generic; using System.Numerics; using System.Threading;

namespace MultiplicativeOrder {

   // Taken from https://stackoverflow.com/a/33918233
   public static class PrimeExtensions {
       // Random generator (thread safe)
       private static ThreadLocal<Random> s_Gen = new ThreadLocal<Random>(
         () => {
             return new Random();
         }
       );
       // Random generator (thread safe)
       private static Random Gen {
           get {
               return s_Gen.Value;
           }
       }
       public static bool IsProbablyPrime(this BigInteger value, int witnesses = 10) {
           if (value <= 1)
               return false;
           if (witnesses <= 0)
               witnesses = 10;
           BigInteger d = value - 1;
           int s = 0;
           while (d % 2 == 0) {
               d /= 2;
               s += 1;
           }
           byte[] bytes = new byte[value.ToByteArray().LongLength];
           BigInteger a;
           for (int i = 0; i < witnesses; i++) {
               do {
                   Gen.NextBytes(bytes);
                   a = new BigInteger(bytes);
               }
               while (a < 2 || a >= value - 2);
               BigInteger x = BigInteger.ModPow(a, d, value);
               if (x == 1 || x == value - 1)
                   continue;
               for (int r = 1; r < s; r++) {
                   x = BigInteger.ModPow(x, 2, value);
                   if (x == 1)
                       return false;
                   if (x == value - 1)
                       break;
               }
               if (x != value - 1)
                   return false;
           }
           return true;
       }
   }
   static class Helper {
       public static BigInteger Sqrt(this BigInteger self) {
           BigInteger b = self;
           while (true) {
               BigInteger a = b;
               b = self / a + a >> 1;
               if (b >= a) return a;
           }
       }
       public static long BitLength(this BigInteger self) {
           BigInteger bi = self;
           long bitlength = 0;
           while (bi != 0) {
               bitlength++;
               bi >>= 1;
           }
           return bitlength;
       }
       public static bool BitTest(this BigInteger self, int pos) {
           byte[] arr = self.ToByteArray();
           int idx = pos / 8;
           int mod = pos % 8;
           if (idx >= arr.Length) {
               return false;
           }
           return (arr[idx] & (1 << mod)) > 0;
       }
   }
   class PExp {
       public PExp(BigInteger prime, int exp) {
           Prime = prime;
           Exp = exp;
       }
       public BigInteger Prime { get; }
       public int Exp { get; }
   }
   class Program {
       static void MoTest(BigInteger a, BigInteger n) {
           if (!n.IsProbablyPrime(20)) {
               Console.WriteLine("Not computed. Modulus must be prime for this algorithm.");
               return;
           }
           if (a.BitLength() < 100) {
               Console.Write("ord({0})", a);
           } else {
               Console.Write("ord([big])");
           }
           if (n.BitLength() < 100) {
               Console.Write(" mod {0} ", n);
           } else {
               Console.Write(" mod [big] ");
           }
           BigInteger mob = MoBachShallit58(a, n, Factor(n - 1));
           Console.WriteLine("= {0}", mob);
       }
       static BigInteger MoBachShallit58(BigInteger a, BigInteger n, List<PExp> pf) {
           BigInteger n1 = n - 1;
           BigInteger mo = 1;
           foreach (PExp pe in pf) {
               BigInteger y = n1 / BigInteger.Pow(pe.Prime, pe.Exp);
               int o = 0;
               BigInteger x = BigInteger.ModPow(a, y, BigInteger.Abs(n));
               while (x > 1) {
                   x = BigInteger.ModPow(x, pe.Prime, BigInteger.Abs(n));
                   o++;
               }
               BigInteger o1 = BigInteger.Pow(pe.Prime, o);
               o1 = o1 / BigInteger.GreatestCommonDivisor(mo, o1);
               mo = mo * o1;
           }
           return mo;
       }
       static List<PExp> Factor(BigInteger n) {
           List<PExp> pf = new List<PExp>();
           BigInteger nn = n;
           int e = 0;
           while (!nn.BitTest(e)) e++;
           if (e > 0) {
               nn = nn >> e;
               pf.Add(new PExp(2, e));
           }
           BigInteger s = nn.Sqrt();
           BigInteger d = 3;
           while (nn > 1) {
               if (d > s) d = nn;
               e = 0;
               while (true) {
                   BigInteger div = BigInteger.DivRem(nn, d, out BigInteger rem);
                   if (rem.BitLength() > 0) break;
                   nn = div;
                   e++;
               }
               if (e > 0) {
                   pf.Add(new PExp(d, e));
                   s = nn.Sqrt();
               }
               d = d + 2;
           }
           return pf;
       }
       static void Main(string[] args) {
           MoTest(37, 3343);
           MoTest(BigInteger.Pow(10, 100) + 1, 7919);
           MoTest(BigInteger.Pow(10, 1000) + 1, 15485863);
           MoTest(BigInteger.Pow(10, 10000) - 1, 22801763489);
           MoTest(1511678068, 7379191741);
           MoTest(3047753288, 2257683301);
       }
   }

}</lang>

Output:
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425

D

Translation of: Java

<lang d>import std.bigint; import std.random; import std.stdio;

struct PExp {

   BigInt prime;
   int exp;

}

BigInt gcd(BigInt x, BigInt y) {

   if (y == 0) {
       return x;
   }
   return gcd(y, x % y);

}

/// https://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method BigInt modPow(BigInt b, BigInt e, BigInt n) {

   if (n == 1) return BigInt(0);
   BigInt result = 1;
   b = b % n;
   while (e > 0) {
       if (e % 2 == 1) {
           result = (result * b) % n;
       }
       e >>= 1;
       b = (b*b) % n;
   }
   return result;

}

BigInt pow(long b, long e) {

   return pow(BigInt(b), BigInt(e));

} BigInt pow(BigInt b, BigInt e) {

   if (e == 0) {
       return BigInt(1);
   }
   BigInt result = 1;
   while (e > 1) {
       if (e % 2 == 0) {
           b *= b;
           e /= 2;
       } else {
           result *= b;
           b *= b;
           e = (e - 1) / 2;
       }
   }
   return b * result;

}

BigInt sqrt(BigInt self) {

   BigInt b = self;
   while (true) {
       BigInt a = b;
       b = self / a + a >> 1;
       if (b >= a) return a;
   }

}

long bitLength(BigInt self) {

   BigInt bi = self;
   long length;
   while (bi != 0) {
       length++;
       bi >>= 1;
   }
   return length;

}

PExp[] factor(BigInt n) {

   PExp[] pf;
   BigInt nn = n;
   int b = 0;
   int e = 1;
   while ((nn & e) == 0) {
       e <<= 1;
       b++;
   }
   if (b > 0) {
       nn = nn >> b;
       pf ~= PExp(BigInt(2), b);
   }
   BigInt s = nn.sqrt();
   BigInt d = 3;
   while (nn > 1) {
       if (d > s) d = nn;
       e = 0;
       while (true) {
           BigInt div, rem;
           nn.divMod(d, div, rem);
           if (rem.bitLength > 0) break;
           nn = div;
           e++;
       }
       if (e > 0) {
           pf ~= PExp(d, e);
           s = nn.sqrt();
       }
       d += 2;
   }
   return pf;

}

BigInt moBachShallit58(BigInt a, BigInt n, PExp[] pf) {

   BigInt n1 = n - 1;
   BigInt mo = 1;
   foreach(pe; pf) {
       BigInt y = n1 / pe.prime.pow(BigInt(pe.exp));
       int o = 0;
       BigInt x = a.modPow(y, n);
       while (x > 1) {
           x = x.modPow(pe.prime, n);
           o++;
       }
       BigInt o1 = pe.prime.pow(BigInt(o));
       o1 = o1 / gcd(mo, o1);
       mo = mo * o1;
   }
   return mo;

}

void moTest(ulong a, ulong n) {

   moTest(BigInt(a), n);

} void moTest(BigInt a, ulong n) {

   // Commented out because the implementations tried all failed for the -2 and -3 tests.
   // if (!n.isProbablePrime()) {
       // writeln("Not computed. Modulus must be prime for this algorithm.");
       // return;
   // }
   if (a.bitLength < 100) {
       write("ord(", a, ")");
   } else {
       write("ord([big])");
   }
   write(" mod ", n, " ");
   BigInt nn = n;
   BigInt mob = moBachShallit58(a, nn, factor(nn - 1));
   writeln("= ", mob);

}

void main() {

   moTest(37, 3343);
   moTest(pow(10, 100) + 1, 7919);
   moTest(pow(10, 1000) + 1, 15485863);
   moTest(pow(10, 10000) - 1, 22801763489);
   moTest(1511678068, 7379191741);
   moTest(3047753288, 2257683301);

}</lang>

Output:
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425

EchoLisp

<lang scheme> (require 'bigint)

factor-exp returns a list ((p k) ..)
a = p1^k1 * p2^k2 ..

(define (factor-exp a) (map (lambda (g) (list (first g) (length g))) (group* (prime-factors a))))

copied from Ruby

(define (_mult_order a p k (x)) (define pk (expt p k)) (define t (* (1- p) (expt p (1- k)))) (define r 1) (for [((q e) (factor-exp t))] (set! x (powmod a (/ t (expt q e)) pk)) (while (!= x 1) (*= r q) (set! x (powmod x q pk)))) r)

(define (order a m)

       "multiplicative order : (order a m) →  n : a^n = 1 (mod m)"

(assert (= 1 (gcd a m)) "a and m must be coprimes") (define mopks (for/list [((p k) (factor-exp m))] (_mult_order a p k))) (for/fold (n 1) ((mopk mopks)) (lcm n mopk)))

results

order 37 1000)

  → 100

(order (+ (expt 10 100) 1) 7919)

  → 3959

(order (+ (expt 10 1000) 1) 15485863)

  → 15485862

</lang>

Clojure

Translation of Julie, then revised to be more clojure idiomatic. It references some external modules for factoring and integer exponentiation. <lang clojure>(defn gcd [a b]

  (if (zero? b)
     a
     (recur b (mod a b))))

(defn lcm [a b]

  (/ (* a b) (gcd a b)))

(def NaN (Math/log -1))

(defn ord' [a [p e]]

  (let [m   (imath/expt p e)
        t   (* (quot m p) (dec p))]
           (loop [dv (factor/divisors t)]
              (let [d (first dv)]
                 (if (= (mmath/expm a d m) 1)
                    d
                    (recur (next dv)))))))

(defn ord [a n]

  (if (not= (gcd a n) 1)
     NaN
     (->>
        (factor/factorize n)
        (map (partial ord' a))
        (reduce lcm))))

</lang>

Output:
user=> (ord 37 1000)
100

Go

<lang go>package main

import (

   "fmt"
   "math/big"

)

func main() {

   moTest(big.NewInt(37), big.NewInt(3343))
   b := big.NewInt(100)
   moTest(b.Add(b.Exp(ten, b, nil), one), big.NewInt(7919))
   moTest(b.Add(b.Exp(ten, b.SetInt64(1000), nil), one), big.NewInt(15485863))
   moTest(b.Sub(b.Exp(ten, b.SetInt64(10000), nil), one),
       big.NewInt(22801763489))
   moTest(big.NewInt(1511678068), big.NewInt(7379191741))
   moTest(big.NewInt(3047753288), big.NewInt(2257683301))

}

func moTest(a, n *big.Int) {

   if a.BitLen() < 100 {
       fmt.Printf("ord(%v)", a)
   } else {
       fmt.Print("ord([big])")
   }
   if n.BitLen() < 100 {
       fmt.Printf(" mod %v ", n)
   } else {
       fmt.Print(" mod [big] ")
   }
   if !n.ProbablyPrime(20) {
       fmt.Println("not computed.  modulus must be prime for this algorithm.")
       return
   }
   fmt.Println("=", moBachShallit58(a, n, factor(new(big.Int).Sub(n, one))))

}

var one = big.NewInt(1) var two = big.NewInt(2) var ten = big.NewInt(10)

func moBachShallit58(a, n *big.Int, pf []pExp) *big.Int {

   n1 := new(big.Int).Sub(n, one)
   var x, y, o1, g big.Int
   mo := big.NewInt(1)
   for _, pe := range pf {
       y.Quo(n1, y.Exp(pe.prime, big.NewInt(pe.exp), nil))
       var o int64
       for x.Exp(a, &y, n); x.Cmp(one) > 0; o++ {
           x.Exp(&x, pe.prime, n)
       }
       o1.Exp(pe.prime, o1.SetInt64(o), nil)
       mo.Mul(mo, o1.Quo(&o1, g.GCD(nil, nil, mo, &o1)))
   }
   return mo

}

type pExp struct {

   prime *big.Int
   exp   int64

}

func factor(n *big.Int) (pf []pExp) {

   var e int64
   for ; n.Bit(int(e)) == 0; e++ {
   }
   if e > 0 {
       n.Rsh(n, uint(e))
       pf = []pExpTemplate:Big.NewInt(2), e
   }
   s := sqrt(n)
   q, r := new(big.Int), new(big.Int)
   for d := big.NewInt(3); n.Cmp(one) > 0; d.Add(d, two) {
       if d.Cmp(s) > 0 {
           d.Set(n)
       }
       for e = 0; ; e++ {
           q.QuoRem(n, d, r)
           if r.BitLen() > 0 {
               break
           }
           n.Set(q)
       }
       if e > 0 {
           pf = append(pf, pExp{new(big.Int).Set(d), e})
           s = sqrt(n)
       }
   }
   return

}

func sqrt(n *big.Int) *big.Int {

   a := new(big.Int)
   for b := new(big.Int).Set(n); ; {
       a.Set(b)
       b.Rsh(b.Add(b.Quo(n, a), a), 1)
       if b.Cmp(a) >= 0 {
           return a
       }
   }
   return a.SetInt64(0)

}</lang>

Output:
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425

Haskell

Assuming a function

<lang haskell>powerMod

 :: (Integral a, Integral b)
 => a -> a -> b -> a

powerMod m _ 0 = 1 powerMod m x n

 | n > 0 = f x_ (n - 1) x_
 where
   x_ = x `rem` m
   f _ 0 y = y
   f a d y = g a d
     where
       g b i
         | even i = g (b * b `rem` m) (i `quot` 2)
         | otherwise = f b (i - 1) (b * y `rem` m)

powerMod m _ _ = error "powerMod: negative exponent"</lang>

to efficiently calculate powers modulo some Integral, we get

<lang haskell>import Data.List (foldl1') --'

foldl1_ = foldl1' --'

multOrder a m

 | gcd a m /= 1 = error "Arguments not coprime"
 | otherwise = foldl1_ lcm $ map (multOrder_ a) $ primeFacsExp m

multOrder_ a (p, k) = r

 where
   pk = p ^ k
   t = (p - 1) * p ^ (k - 1) -- totient \Phi(p^k)
   r = product $ map find_qd $ primeFacsExp t
   find_qd (q, e) = q ^ d
     where
       x = powerMod pk a (t `div` (q ^ e))
       d = length $ takeWhile (/= 1) $ iterate (\y -> powerMod pk y q) x</lang>

J

The dyadic verb mo converts its arguments to exact numbers a and m, executes mopk on the factorization of m, and combines the result with the least common multiple operation.

<lang j>mo=: 4 : 0

a=. x: x
m=. x: y
assert. 1=a+.m
*./ a mopk"1 |: __ q: m

)</lang>

The dyadic verb mopk expects a pair of prime and exponent in the second argument. It sets up a verb pm to calculate powers module p^k. Then calculates Φ(p^k) as t, factorizes it again into q and e, and calculates a^(t/(q^e)) as x. Now, it finds the least d such that subsequent application of pm yields 1. Finally, it combines the exponents q^d into a product.

<lang j>mopk=: 4 : 0

a=. x: x
'p k'=. x: y
pm=. (p^k)&|@^
t=. (p-1)*p^k-1  NB. totient
'q e'=. __ q: t
x=. a pm t%q^e
d=. (1<x)+x (pm i. 1:)&> (e-1) */\@$&.> q
*/q^d

)</lang>

For example:

<lang j> 37 mo 1000 100

  2 mo _1+10^80x

190174169488577769580266953193403101748804183400400</lang>

Java

Translation of: Kotlin

<lang Java>import java.math.BigInteger; import java.util.ArrayList; import java.util.List;

public class MultiplicativeOrder {

   private static final BigInteger ONE = BigInteger.ONE;
   private static final BigInteger TWO = BigInteger.valueOf(2);
   private static final BigInteger THREE = BigInteger.valueOf(3);
   private static final BigInteger TEN = BigInteger.TEN;
   private static class PExp {
       BigInteger prime;
       long exp;
       PExp(BigInteger prime, long exp) {
           this.prime = prime;
           this.exp = exp;
       }
   }
   private static void moTest(BigInteger a, BigInteger n) {
       if (!n.isProbablePrime(20)) {
           System.out.println("Not computed. Modulus must be prime for this algorithm.");
           return;
       }
       if (a.bitLength() < 100) System.out.printf("ord(%s)", a);
       else System.out.print("ord([big])");
       if (n.bitLength() < 100) System.out.printf(" mod %s ", n);
       else System.out.print(" mod [big] ");
       BigInteger mob = moBachShallit58(a, n, factor(n.subtract(ONE)));
       System.out.println("= " + mob);
   }
   private static BigInteger moBachShallit58(BigInteger a, BigInteger n, List<PExp> pf) {
       BigInteger n1 = n.subtract(ONE);
       BigInteger mo = ONE;
       for (PExp pe : pf) {
           BigInteger y = n1.divide(pe.prime.pow((int) pe.exp));
           long o = 0;
           BigInteger x = a.modPow(y, n.abs());
           while (x.compareTo(ONE) > 0) {
               x = x.modPow(pe.prime, n.abs());
               o++;
           }
           BigInteger o1 = BigInteger.valueOf(o);
           o1 = pe.prime.pow(o1.intValue());
           o1 = o1.divide(mo.gcd(o1));
           mo = mo.multiply(o1);
       }
       return mo;
   }
   private static List<PExp> factor(BigInteger n) {
       List<PExp> pf = new ArrayList<>();
       BigInteger nn = n;
       Long e = 0L;
       while (!nn.testBit(e.intValue())) e++;
       if (e > 0L) {
           nn = nn.shiftRight(e.intValue());
           pf.add(new PExp(TWO, e));
       }
       BigInteger s = sqrt(nn);
       BigInteger d = THREE;
       while (nn.compareTo(ONE) > 0) {
           if (d.compareTo(s) > 0) d = nn;
           e = 0L;
           while (true) {
               BigInteger[] qr = nn.divideAndRemainder(d);
               if (qr[1].bitLength() > 0) break;
               nn = qr[0];
               e++;
           }
           if (e > 0L) {
               pf.add(new PExp(d, e));
               s = sqrt(nn);
           }
           d = d.add(TWO);
       }
       return pf;
   }
   private static BigInteger sqrt(BigInteger n) {
       BigInteger b = n;
       while (true) {
           BigInteger a = b;
           b = n.divide(a).add(a).shiftRight(1);
           if (b.compareTo(a) >= 0) return a;
       }
   }
   public static void main(String[] args) {
       moTest(BigInteger.valueOf(37), BigInteger.valueOf(3343));
       BigInteger b = TEN.pow(100).add(ONE);
       moTest(b, BigInteger.valueOf(7919));
       b = TEN.pow(1000).add(ONE);
       moTest(b, BigInteger.valueOf(15485863));
       b = TEN.pow(10000).subtract(ONE);
       moTest(b, BigInteger.valueOf(22801763489L));
       moTest(BigInteger.valueOf(1511678068), BigInteger.valueOf(7379191741L));
       moTest(BigInteger.valueOf(3047753288L), BigInteger.valueOf(2257683301L));
   }

}</lang>

Output:
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425

Julia

(Uses the factors function from Factors of an integer#Julia.) <lang julia>using Primes

function factors(n)

   f = [one(n)]
   for (p,e) in factor(n)
       f = reduce(vcat, [f*p^j for j in 1:e], init=f)
   end
   return length(f) == 1 ? [one(n), n] : sort!(f)

end

function multorder(a, m)

   gcd(a,m) == 1 || error("$a and $m are not coprime")
   res = one(m)
   for (p,e) in factor(m)
       m = p^e
       t = div(m, p) * (p-1)        
       for f in factors(t)
           if powermod(a, f, m) == 1
               res = lcm(res, f)
               break
           end
       end
   end
   res

end</lang>

Example output (using big to employ arbitrary-precision arithmetic where needed):

julia> multorder(37, 1000)
100

julia> multorder(big(10)^100 + 1, 7919)
3959

julia> multorder(big(10)^1000 + 1, 15485863)
15485862

julia> multorder(big(10)^10000 - 1, 22801763489)
22801763488

Kotlin

Translation of: Go

<lang scala>// version 1.2.10

import java.math.BigInteger

val bigOne = BigInteger.ONE val bigTwo = 2.toBigInteger() val bigThree = 3.toBigInteger() val bigTen = BigInteger.TEN

class PExp(val prime: BigInteger, val exp: Long)

fun moTest(a: BigInteger, n: BigInteger) {

   if (!n.isProbablePrime(20)) {
       println("Not computed. Modulus must be prime for this algorithm.")
       return
   }
   if (a.bitLength() < 100) print("ord($a)") else print("ord([big])")
   if (n.bitLength() < 100) print(" mod $n ") else print(" mod [big] ")
   val mob = moBachShallit58(a, n, factor(n - bigOne))
   println("= $mob")

}

fun moBachShallit58(a: BigInteger, n: BigInteger, pf: List<PExp>): BigInteger {

   val n1 = n - bigOne
   var mo = bigOne
   for (pe in pf) {
       val y = n1 / pe.prime.pow(pe.exp.toInt())
       var o = 0L
       var x = a.modPow(y, n.abs())
       while (x > bigOne) {
           x = x.modPow(pe.prime, n.abs())
           o++
       }
       var o1 = o.toBigInteger()
       o1 = pe.prime.pow(o1.toInt())
       o1 /= mo.gcd(o1)
       mo *= o1
   }
   return mo

}

fun factor(n: BigInteger): List<PExp> {

   val pf = mutableListOf<PExp>()
   var nn = n
   var e = 0L
   while (!nn.testBit(e.toInt())) e++
   if (e > 0L) {
       nn = nn shr e.toInt()
       pf.add(PExp(bigTwo, e))
   }
   var s = bigSqrt(nn)
   var d = bigThree
   while (nn > bigOne) {
       if (d > s) d = nn
       e = 0L
       while (true) {
           val (q, r) = nn.divideAndRemainder(d)
           if (r.bitLength() > 0) break
           nn = q
           e++
       }
       if (e > 0L) {
           pf.add(PExp(d, e))
           s = bigSqrt(nn)
       }
       d += bigTwo
   }
   return pf

}

fun bigSqrt(n: BigInteger): BigInteger {

   var b = n
   while (true) {
       val a = b
       b = (n / a + a) shr 1
       if (b >= a) return a
   }

}

fun main(args: Array<String>) {

   moTest(37.toBigInteger(), 3343.toBigInteger())
   var b = bigTen.pow(100) + bigOne
   moTest(b, 7919.toBigInteger())
   b = bigTen.pow(1000) + bigOne
   moTest(b, BigInteger("15485863"))
   b = bigTen.pow(10000) - bigOne
   moTest(b, BigInteger("22801763489"))
   moTest(BigInteger("1511678068"), BigInteger("7379191741"))
   moTest(BigInteger("3047753288"), BigInteger("2257683301"))

}</lang>

Output:
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425

Maple

<lang Maple>numtheory:-order( a, n )</lang> For example, <lang Maple>> numtheory:-order( 37, 1000 );

                      100</lang>

Mathematica

In Mathematica this is really easy, as this function is built-in: MultiplicativeOrder[k,n] gives the multiplicative order of k modulo n, defined as the smallest integer m such that k^m == 1 mod n.
MultiplicativeOrder[k,n,{r1,r2,...}] gives the generalized multiplicative order of k modulo n, defined as the smallest integer m such that k^m==ri mod n for some i.
Examples: <lang Mathematica>MultiplicativeOrder[37, 1000] MultiplicativeOrder[10^100 + 1, 7919] (*10^3th prime number Prime[1000]*) MultiplicativeOrder[10^1000 + 1, 15485863] (*10^6th prime number*) MultiplicativeOrder[10^10000 - 1, 22801763489] (*10^9th prime number*) MultiplicativeOrder[13, 1 + 10^80] MultiplicativeOrder[11, 1 + 10^100]</lang> gives back:

100
3959
15485862
22801763488
109609547199756140150989321269669269476675495992554276140800
2583496112724752500580158969425549088007844580826869433740066152289289764829816356800

Maxima

<lang maxima>zn_order(37, 1000); /* 100 */

zn_order(10^100 + 1, 7919); /* 3959 */

zn_order(10^1000 + 1, 15485863); /* 15485862 */

zn_order(10^10000 - 1, 22801763489); /* 22801763488 */

zn_order(13, 1 + 10^80); /* 109609547199756140150989321269669269476675495992554276140800 */

zn_order(11, 1 + 10^100); /* 2583496112724752500580158969425549088007844580826869433740066152289289764829816356800 */</lang>

PARI/GP

<lang parigp>znorder(Mod(a,n))</lang>

Perl

Using modules:

Library: ntheory

<lang perl>use ntheory qw/znorder/; say znorder(54, 100001); use bigint; say znorder(11, 1 + 10**100);</lang> or <lang perl>use Math::Pari qw/znorder Mod/; say znorder(Mod(54, 100001)); say znorder(Mod(11, 1 + Math::Pari::PARI(10)**100));</lang>

Perl 6

<lang perl6>my @primes := 2, |grep *.is-prime, (3,5,7...*);

sub factor($a is copy) {

   gather {
       for @primes -> $p {
           my $j = 0;
           while $a %% $p {
               $a div= $p;
               $j++;
           }
           take $p => $j if $j > 0;
           last if $a < $p * $p;
       }
       
       take $a => 1 if $a > 1;
   }

}

sub mo-prime($a, $p, $e) {

   my $m = $p ** $e;
   my $t = ($p - 1) * ($p ** ($e - 1)); #  = Phi($p**$e) where $p prime
   my @qs = 1;
   for factor($t) -> $f {
       @qs = flat @qs.map(-> $q { (0..$f.value).map(-> $j { $q * $f.key ** $j }) });
   }

   @qs.sort.first(-> $q { expmod( $a, $q, $m ) == 1});

}

sub mo($a, $m) {

   $a gcd $m == 1 || die "$a and $m are not relatively prime";
   [lcm] flat 1, factor($m).map(-> $r { mo-prime($a, $r.key, $r.value) });

}

sub MAIN("test") {

   use Test;
   
   for (10, 21, 25, 150, 1231, 123141, 34131) -> $n {
       is ([*] factor($n).map(-> $pair { $pair.key ** $pair.value })), $n, "$n factors correctly";
   }
   
   is mo(37, 1000), 100, 'mo(37,1000) == 100';
   my $b = 10**20-1;
   is mo(2, $b), 3748806900, 'mo(2,10**20-1) == 3748806900';
   is mo(17, $b), 1499522760, 'mo(17,10**20-1) == 1499522760'; 
   $b = 100001;
   is mo(54, $b), 9090, 'mo(54,100001) == 9090';

}</lang>

Output:
ok 1 - 10 factors correctly
ok 2 - 21 factors correctly
ok 3 - 25 factors correctly
ok 4 - 150 factors correctly
ok 5 - 1231 factors correctly
ok 6 - 123141 factors correctly
ok 7 - 34131 factors correctly
ok 8 - mo(37,1000) == 100
ok 9 - mo(2,10**20-1) == 3748806900
ok 10 - mo(17,10**20-1) == 1499522760
ok 11 - mo(54,100001) == 9090

Phix

Translation of: Ruby

Note this is considerably slower than Ruby, which completes in a fraction of a second, mainly I suspect due to the fact that bigatom.e operates on a digit-by-digit basis.

Also, ba_mod_exp is fairly likely to get added to bigatom.e in a future release, likewise the other ba_xxx routines below have been earmarked for possible inclusion. <lang Phix>include bigatom.e

function ba_mod_exp(object base, exponent, modulus) -- base/exponent/modulus can be integer/string/bigatom -- returns mod(power(base,exponent),modulus) [aka b^e%m], but in bigatoms and faster.

   bigatom res = BA_ONE
   base = ba_mod(base,modulus)
   while ba_compare(exponent,0)!=0 do
       if ba_mod(exponent,2)=BA_ONE then
           res = ba_mod(ba_multiply(res,base),modulus)
       end if
       base = ba_mod(ba_multiply(base,base),modulus)
       exponent = ba_idivide(exponent,2)
   end while
   return res

end function

function ba_factor(object n) -- eg ba_factor(1000) -> {{2,3},{5,3}}, ie power(2,3)*power(5,3) == 8*125 == 1000. -- (note that each res[i] is {bigatom,integer})

   if ba_compare(n,BA_ZERO)=0 then return {} end if
   sequence pf = {}
   integer e = 0
   while ba_mod(n,2)=BA_ZERO do
       n = ba_idivide(n,2)
       e += 1
   end while
   if e>0 then
       pf = Template:2,e
   end if
   bigatom s = ba_sqrt(n),
           d = ba_new(3)
   while ba_compare(n,BA_ONE)>0 do
       if ba_compare(d,s)>0 then
           d = ba_new(n)
       end if
       e = 0
       while true do
           bigatom r = ba_mod(n,d)
           if r!=BA_ZERO then exit end if
           n = ba_idivide(n,d)
           e += 1
       end while
       if e>0 then
           pf = append(pf,{d,e})
           s = ba_sqrt(n)
       end if
       d = ba_add(d,2)
   end while
   return pf

end function

function ba_gcd(object m, n)

   while ba_compare(n,BA_ZERO)!=0 do
       {m,n} = {n,ba_mod(m,n)}
   end while
   return m

end function

function ba_lcm(object m, n)

   return ba_mul(ba_idivide(m,ba_gcd(m,n)),n)

end function

function multi_order(object a, sequence p_and_k)

   {object p, integer k} = p_and_k
   bigatom pk = ba_power(p,k),
           t = ba_mul(ba_sub(p,1),ba_power(p,ba_sub(k,1))),
           r = BA_ONE
   sequence pf = ba_factor(t)
   for i=1 to length(pf) do
       {object q, integer e} = pf[i]
       bigatom x = ba_mod_exp(a,ba_idiv(t,ba_power(q,e)),pk)
       --
       -- previous attempts at this task resulted in an infinite loop,
       -- so I added a guard; feel free to increase limit as needed.
       --
       integer guard = 0
       while x!=BA_ONE do
           r = ba_mul(r,q)
           x = ba_mod_exp(x,q,pk)
           guard += 1
           if guard>100 then ?9/0 end if
       end while
   end for
   return r

end function

function multiplicative_order(object a, m)

   if ba_gcd(a,m)!=BA_ONE then return "(a,m) not coprime" end if
   sequence pf = ba_factor(m)
   bigatom res = BA_ONE
   for i=1 to length(pf) do
       res = ba_lcm(res,multi_order(a,pf[i]))
   end for
   return res 

end function

constant b100 = ba_power(2,100)

function shorta(object n)

   return iff(ba_compare(n,b100)>0?"[big]":ba_sprint(n))

end function

procedure mo_test(object a, n)

   string res = ba_sprint(multiplicative_order(a, n))
   printf(1,"ord(%s) mod %s = %s\n",{shorta(a),shorta(n),res})

end procedure

atom t = time() mo_test(37, 1000) mo_test(37, 3343) mo_test(ba_add(ba_power(10,100),1), 7919) mo_test(ba_add(ba_power(10,1000),1), 15485863) mo_test(ba_sub(ba_power(10,10000),1), 22801763489) mo_test(1511678068, 7379191741) mo_test(3047753288, 2257683301) ?"===" bigatom b = ba_sub(ba_power(10,20),1) mo_test(2, b) mo_test(17,b) mo_test(54,100001) --/* -- this all works fine, but doubles the runtime... bigatom b9090 = multiplicative_order(54,100001) ba_printf(1,"%B\n",b9090) if ba_compare(b9090,9090)!=0 then ?9/0 end if ba_printf(1,"%B\n",ba_mod_exp(54,b9090,100001)) bool error = false atom t1 = time()+1 for r=1 to 9090-1 do

   if ba_compare(ba_mod_exp(54,r,100001),1)=0 then
       printf(1,"ba_mod_exp(54,%d,100001) gives 1!\n",r)
       error = true
       exit
   end if
   if time()>t1 then
       printf(1,"checking %d...\r",r)
       t1 = time()+1
   end if

end for if not error then puts(1,"Everything checks.\n") end if --*/ ?elapsed(time()-t)</lang>

Output:
ord(37) mod 1000 = 100
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425
"==="
ord(2) mod 99999999999999999999 = 3748806900
ord(17) mod 99999999999999999999 = 1499522760
ord(54) mod 100001 = 9090
"1 minute and 11s"

Python

<lang python>def gcd(a, b):

   while b != 0:
       a, b = b, a % b
   return a

def lcm(a, b):

   return (a*b) / gcd(a, b)

def isPrime(p):

   return (p > 1) and all(f == p for f,e in factored(p))

primeList = [2,3,5,7] def primes():

   for p in primeList:
       yield p
   while 1:
       p += 2
       while not isPrime(p):
           p += 2
       primeList.append(p)
       yield p

def factored( a):

   for p in primes():
       j = 0
       while a%p == 0:
           a /= p
           j += 1
       if j > 0:
           yield (p,j)
       if a < p*p: break
   if a > 1:
       yield (a,1)
       

def multOrdr1(a,(p,e) ):

   m = p**e
   t = (p-1)*(p**(e-1)) #  = Phi(p**e) where p prime
   qs = [1,]
   for f in factored(t):
       qs = [ q * f[0]**j for j in range(1+f[1]) for q in qs ]
   qs.sort()
   for q in qs:
       if pow( a, q, m )==1: break
   return q


def multOrder(a,m):

   assert gcd(a,m) == 1
   mofs = (multOrdr1(a,r) for r in factored(m))
   return reduce(lcm, mofs, 1)


if __name__ == "__main__":

   print multOrder(37, 1000)        # 100
   b = 10**20-1
   print multOrder(2, b) # 3748806900
   print multOrder(17,b) # 1499522760
   b = 100001
   print multOrder(54,b)
   print pow( 54, multOrder(54,b),b)
   if any( (1==pow(54,r, b)) for r in range(1,multOrder(54,b))):
       print 'Exists a power r < 9090 where pow(54,r,b)==1'
   else:
       print 'Everything checks.'</lang>

Racket

The Racket function unit-group-order from racket/math computes the multiplicative order of an element a in Zn. An implementation of the algorithm in the tast description is shown below.

<lang racket>

  1. lang racket

(require math)

(define (order a n)

 (unless (coprime? a n) (error 'order "arguments must be coprime"))
 (for/fold ([o 1]) ([r (factorize n)])
   (lcm o (order1 a r))))

(define (order1 a p&e)

 (match-define (list p e) p&e)
 (define m (expt p e))
 (define t (* (- p 1) (expt p (- e 1))))
 (define qs
   (for/fold ([qs '(1)]) ([f (factorize t)])
      (match f [(list f0 f1)
                (for*/list ([q qs] [j (in-range (+ 1 f1))])
                  (* q (expt f0 j)))])))
 (for/or ([q (sort qs <)] #:when (= (modular-expt a q m) 1)) q))


(order 37 1000) (order (+ (expt 10 100) 1) 7919) (order (+ (expt 10 1000) 1) 15485863) (order (- (expt 10 10000) 1) 22801763489) (order 13 (+ 1 (expt 10 80))) </lang> Output: <lang racket> 100 3959 15485862 22801763488 109609547199756140150989321269669269476675495992554276140800 </lang>

REXX

<lang rexx>/*REXX pgm computes multiplicative order of a minimum integer N such that a^n mod m≡1*/ wa= 0; wm= 0 /* ═a═ ══m══ */ /*maximum widths of the A and M values.*/ @.=.; @.1= 3 10

                    @.2=  37    1000
                    @.3=  37   10000
                    @.4=  37    3343
                    @.5=  37    3344
                    @.6=   2    1000

pad= left(, 9) d= 500 /*use 500 decimal digits for a starter.*/

    do w=1  for 2                               /*when W≡1, find max widths of A and M.*/
      do j=1  while @.j\==.;         parse var  @.j     a  .  1  r  m  ,  n
      if w==1  then do;  wa= max(wa, length(a) );     wm= max(wm, length(m) );    iterate
                    end
      if m//a==0  then n= ' [solution not possible]'     /*test co─prime for  A and B. */
      numeric digits d                          /*start with  100  decimal digits.     */
      if n==  then do n= 2;    p= r * a       /*compute product──may have an exponent*/
                     parse  var  p  'E'  _      /*try to extract the exponent from  P. */
                     if _\==   then do;  numeric digits _+d  /*bump the decimal digs.*/
                                           p=r*a               /*recalculate integer P.*/
                                      end
                     if p//m==1  then leave     /*now, perform the nitty─gritty modulo.*/
                     r= p                       /*assign product to R for next multiply*/
                     end   /*n*/                /* [↑]    //   is really  ÷  remainder.*/
      say pad  'a='  right(a,wa)  pad  "m=" right(m,wm)  pad  'multiplicative order:'   n
      end   /*j*/
    end     /*w*/                               /*stick a fork in it,  we're all done. */</lang>
output:
          a=  3           m=    10           multiplicative order: 4
          a= 37           m=  1000           multiplicative order: 100
          a= 37           m= 10000           multiplicative order: 500
          a= 37           m=  3343           multiplicative order: 1114
          a= 37           m=  3344           multiplicative order: 20
          a=  2           m=  1000           multiplicative order:  [solution not possible]

Ruby

<lang ruby>require 'prime'

def powerMod(b, p, m)

 p.to_s(2).each_char.inject(1) do |result, bit|
   result = (result * result) % m
   bit=='1' ? (result * b) % m : result
 end

end

def multOrder_(a, p, k)

 pk = p ** k
 t = (p - 1) * p ** (k - 1)
 r = 1
 for q, e in t.prime_division
   x = powerMod(a, t / q**e, pk)
   while x != 1
     r *= q
     x = powerMod(x, q, pk)
   end
 end      
 r

end

def multOrder(a, m)

 m.prime_division.inject(1) do |result, f|
   result.lcm(multOrder_(a, *f))
 end

end

puts multOrder(37, 1000) b = 10**20-1 puts multOrder(2, b) puts multOrder(17,b) b = 100001 puts multOrder(54,b) puts powerMod(54, multOrder(54,b), b) if (1...multOrder(54,b)).any? {|r| powerMod(54, r, b) == 1}

 puts 'Exists a power r < 9090 where powerMod(54,r,b)==1'

else

 puts 'Everything checks.'

end</lang>

Output:
100
3748806900
1499522760
9090
1
Everything checks.

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "bigint.s7i";

const type: oneFactor is new struct

   var bigInteger: prime is 0_;
   var integer: exp is 0;
 end struct;

const func oneFactor: oneFactor (in bigInteger: prime, in integer: exp) is func

 result
   var oneFactor: aFactor is oneFactor.value;
 begin
   aFactor.prime := prime;
   aFactor.exp := exp;
 end func;

const func array oneFactor: factor (in var bigInteger: n) is func

 result
   var array oneFactor: pf is 0 times oneFactor.value;
 local
   var integer: e is 0;
   var bigInteger: d is 0_;
   var bigInteger: s is 0_;
 begin
   e := lowestSetBit(n);
   if e > 0 then
     n >>:= e;
     pf := [] (oneFactor(2_, e));
   end if;
   s := sqrt(n);
   d := 3_;
   while n > 1_ do
     if d > s then
       d := n;
     end if;
     e := 0;
     while n rem d = 0_ do
       n := n div d;
       incr(e);
     end while;
     if e > 0 then
       pf &:= oneFactor(d, e);
       s := sqrt(n);
     end if;
     d +:= 2_;
   end while;
 end func;

const func bigInteger: moBachShallit58(in bigInteger: a, in bigInteger: n, in array oneFactor: pf) is func

 result
   var bigInteger: mo is 0_;
 local
   var bigInteger: n1 is 0_;
   var oneFactor: pe is oneFactor.value;
   var bigInteger: x is 0_;
   var bigInteger: y is 0_;
   var integer: o is 0;
   var bigInteger: o1 is 0_;
 begin
   n1 := n - 1_;
   mo := 1_;
   for pe range pf do
     y := n1 div pe.prime ** pe.exp;
     x := modPow(a, y, n);
     o := 0;
     while x > 1_ do
       x := modPow(x, pe.prime, n);
       incr(o);
     end while;
     o1 := pe.prime ** o;
     mo *:= o1 div gcd(mo, o1);
   end for;
 end func;

const func boolean: isProbablyPrime (in bigInteger: primeCandidate, in var integer: count) is func

 result
   var boolean: isProbablyPrime is TRUE;
 local
   var bigInteger: aRandomNumber is 0_;
 begin
   while isProbablyPrime and count > 0 do
     aRandomNumber := rand(1_, pred(primeCandidate));
     isProbablyPrime := modPow(aRandomNumber, pred(primeCandidate), primeCandidate) = 1_;
     decr(count);
   end while;
   # writeln(count);
 end func;

const proc: moTest (in bigInteger: a, in bigInteger: n) is func

 begin
   if bitLength(a) < 100 then
     write("ord(" <& a <& ")");
   else
     write("ord([big])");
   end if;
   if bitLength(n) < 100 then
     write(" mod " <& n <& " ");
   else
     write(" mod [big] ");
   end if;
   if not isProbablyPrime(n, 20) then
     writeln("not computed.  modulus must be prime for this algorithm.")
   else
     writeln("= " <& moBachShallit58(a, n, factor(n - 1_)));
   end if;
 end func;

const proc: main is func

 local
   var bigInteger: b is 100_;
 begin
   moTest(37_, 3343_);
   moTest(10_ ** 100 + 1_, 7919_);
   moTest(10_ ** 1000 + 1_, 15485863_);
   moTest(10_ ** 10000 - 1_, 22801763489_);
   moTest(1511678068_, 7379191741_);
   moTest(3047753288_, 2257683301_);
 end func;</lang>
Output:
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425

Sidef

Translation of: Perl 6

<lang ruby>func mo_prime(a, p, e) {

   var m  = p**e
   var t  = (p-1)*(p**(e-1))
   var qs = [1]
   for f in (t.factor_exp) {
       qs.map! {|q|
           0..f[1] -> map {|j| q * f[0]**j }...
       }
   }
   qs.sort.first_by {|q| powmod(a, q, m) == 1 }

}

func mo(a, m) {

   gcd(a, m) == 1 || die "#{a} and #{m} are not relatively prime"
   Math.lcm(1, m.factor_exp.map {|r| mo_prime(a, r...) }...)

}

say mo(37, 1000) say mo(54, 100001)

with (10**20 - 1) {|b|

   say mo(2, b)
   say mo(17, b)

}</lang>

Output:
100
9090
3748806900
1499522760

Tcl

Translation of: Python
Library: Tcllib (Package: struct::list)

<lang tcl>package require Tcl 8.5 package require struct::list

proc multOrder {a m} {

   assert {[gcd $a $m] == 1}
   set mofs [list]
   dict for {p e} [factor_num $m] {
       lappend mofs [multOrdr1 $a $p $e]
   }
   return [struct::list fold $mofs 1 lcm]

}

proc multOrdr1 {a p e} {

   set m [expr {$p ** $e}]
   set t [expr {($p - 1) * ($p ** ($e - 1))}]
   set qs [dict create 1 ""]
   
   dict for {f0 f1} [factor_num $t] {
       dict for {q -} $qs {
           foreach j [range [expr {1 + $f1}]] {
               dict set qs [expr {$q * $f0 ** $j}] ""
           }
       }
   }
   
   dict for {q -} $qs {
       if {pypow($a, $q, $m) == 1} break
   }
   return $q    

}

  1. utility procs

proc assert {condition {message "Assertion failed!"}} {

   if { ! [uplevel 1 [list expr $condition]]} {
       return -code error $message
   }

}

proc gcd {a b} {

   while {$b != 0} {
       lassign [list $b [expr {$a % $b}]] a b
   }
   return $a

}

proc lcm {a b} {

   expr {$a * $b / [gcd $a $b]}

}

proc factor_num {num} {

   primes::restart
   set factors [dict create]
   for {set i [primes::get_next_prime]} {$i <= $num} {} {
       if {$num % $i == 0} {
           dict incr factors $i
           set num [expr {$num / $i}]
           continue
       } elseif {$i*$i > $num} {
           dict incr factors $num
           break
       } else {
           set i [primes::get_next_prime]
       }
   }
   return $factors

}

  1. a range command akin to Python's

proc range args {

   foreach {start stop step} [switch -exact -- [llength $args] {
       1 {concat 0 $args 1}
       2 {concat   $args 1}
       3 {concat   $args  }
       default {error {wrong # of args: should be "range ?start? stop ?step?"}}
   }] break
   if {$step == 0} {error "cannot create a range when step == 0"}
   set range [list]
   while {$step > 0 ? $start < $stop : $stop < $start} {
       lappend range $start
       incr start $step
   }
   return $range

}

  1. python's pow()

proc ::tcl::mathfunc::pypow {x y {z ""}} {

   expr {$z eq "" ? $x ** $y : ($x ** $y) % $z}

}

  1. prime number generator
  2. ref http://wiki.tcl.tk/5996

namespace eval primes {}

proc primes::reset {} {

   variable list [list]
   variable current_index end

}

namespace eval primes {reset}

proc primes::restart {} {

   variable list
   variable current_index
   if {[llength $list] > 0} {
       set current_index 0
   }

}

proc primes::is_prime {candidate} {

   variable list
   foreach prime $list {
       if {$candidate % $prime == 0} {
           return false
       }
       if {$prime * $prime > $candidate} {
           return true
       }
   }
   while true {
       set largest [get_next_prime]
       if {$largest * $largest >= $candidate} {
           return [is_prime $candidate]
       }
   }

}

proc primes::get_next_prime {} {

   variable list
   variable current_index
   
   if {$current_index ne "end"} {
       set p [lindex $list $current_index]
       if {[incr current_index] == [llength $list]} {
           set current_index end
       }
       return $p
   }
   
   switch -exact -- [llength $list] {
       0 {set candidate 2}
       1 {set candidate 3}
       default {
           set candidate [lindex $list end]
           while true {
               incr candidate 2
               if {[is_prime $candidate]} break
           }
       }
   }
   lappend list $candidate
   return $candidate

}

puts [multOrder 37 1000] ;# 100

set b [expr {10**20 - 1}] puts [multOrder 2 $b] ;# 3748806900 puts [multOrder 17 $b] ;# 1499522760

set a 54 set m 100001 puts [set n [multOrder $a $m]] ;# 9090 puts [expr {pypow($a, $n, $m)}] ;# 1

set lambda {{a n m} {expr {pypow($a, $n, $m) == 1}}} foreach r [lreverse [range 1 $n]] {

   if {[apply $lambda $a $r $m]} {
       error "Oops, $n is not the smallest:  {$a $r $m} satisfies $lambda"
   }
   if {$r % 1000 == 0} {puts "$r ..."}

} puts "OK, $n is the smallest n such that {$a $n $m} satisfies $lambda"</lang>

zkl

Translation of: Python

Using Extensible prime generator#zkl and the GMP library for lcm (least common multiple), pow and powm ((n^e)%m)

It would probably be nice to memoize the prime numbers but that isn't necessary for this task. <lang zkl>var BN =Import("zklBigNum"); var Sieve=Import("sieve");

   // factor n into powers of primes
   // eg 9090 == 2^1 * 3^2 * 5^1 * 101^1

fcn factor2PP(n){ // lazy factors using lazy primes --> (prime,power) ...

  Utils.Generator(fcn(a){
     primes:=Utils.Generator(Sieve.postponed_sieve);
     foreach p in (primes){

e:=0; while(a%p == 0){ a /= p; e+=1; } if (e) vm.yield(p,e); if (a<p*p) break;

     }
     if (a>1) vm.yield(a,1);
  },n)

}

fcn _multOrdr1(a,p,e){

  m:=p.pow(e);
  t:=m/p*(p - 1);
  qs:=L(BN(1));
  foreach p2,e2 in (factor2PP(t)){ 
     qs=[[(e,q); [0..e2]; qs; '{ q*BN(p2).pow(e) }]];
  }
  qs.filter1('wrap(q){ a.powm(q,m)==1 });

}

fcn multiOrder(a,m){

  if (m.gcd(a)!=1) throw(Exception.ValueError("Not co-prime"));
  res:=BN(1);
  foreach p,e in (factor2PP(m)){
     res = res.lcm(_multOrdr1(BN(a),BN(p),e));
  }
  return(res);

}</lang> <lang zkl>multiOrder(37,1000).println(); b:=BN(10).pow(20)-1; multiOrder(2,b).println(); multiOrder(17,b).println();

b=0d10_0001; [BN(1)..multiOrder(54,b)-1].filter1('wrap(r,b54){b54.powm(r,b)==1},BN(54)) : if (_) println("Exists a power r < 9090 where (54^r)%b)==1"); else println("Everything checks.");</lang>

Output:
100
3748806900
1499522760
Everything checks.