Modular arithmetic

From Rosetta Code
Task
Modular arithmetic
You are encouraged to solve this task according to the task description, using any language you may know.

Modular arithmetic is a form of arithmetic (a calculation technique involving the concepts of addition and multiplication) which is done on numbers with a defined equivalence relation called congruence.

For any positive integer called the congruence modulus, two numbers and are said to be congruent modulo p whenever there exists an integer such that:

The corresponding set of equivalence classes forms a ring denoted .

Addition and multiplication on this ring have the same algebraic structure as in usual arithmetics, so that a function such as a polynomial expression could receive a ring element as argument and give a consistent result.

The purpose of this task is to show, if your programming language allows it, how to redefine operators so that they can be used transparently on modular integers. You can do it either by using a dedicated library, or by implementing your own class.

You will use the following function for demonstration:

You will use as the congruence modulus and you will compute .

It is important that the function is agnostic about whether or not its argument is modular; it should behave the same way with normal and modular integers. In other words, the function is an algebraic expression that could be used with any ring, not just integers.

Ada

Ada has modular types. <lang Ada>with Ada.Text_IO;

procedure Modular_Demo is

  type Modul_13 is mod 13;
  function F (X : Modul_13) return Modul_13 is
  begin
     return X**100 + X + 1;
  end F;
  package Modul_13_IO is
     new Ada.Text_IO.Modular_IO (Modul_13);
  use Ada.Text_IO;
  use Modul_13_IO;
  X_Integer  : constant Integer  := 10;
  X_Modul_13 : constant Modul_13 := Modul_13'Mod (X_Integer);
  F_10       : constant Modul_13 := F (X_Modul_13);

begin

  Put ("f("); Put (X_Modul_13); Put (" mod "); Put (Modul_13'Modulus'Image); Put (") = ");
  Put (F_10); Put (" mod ");    Put (Modul_13'Modulus'Image);
  New_Line;

end Modular_Demo;</lang>

Output:
f( 10 mod  13) =   1 mod  13

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.win32

<lang algol68># allow for large integers in Algol 68G # PR precision 200 PR

  1. modular integer type #

MODE MODULARINT = STRUCT( LONG LONG INT v, INT modulus );

  1. modular integer + and * operators #
  2. where both operands are modular, they must have the same modulus #

OP + = ( MODULARINT a, b )MODULARINT: ( ( v OF a + v OF b ) MOD modulus OF a, modulus OF a ); OP + = ( MODULARINT a, INT b )MODULARINT: ( ( v OF a + b ) MOD modulus OF a, modulus OF a ); OP * = ( MODULARINT a, b )MODULARINT: ( ( v OF a * v OF b ) MOD modulus OF a, modulus OF a ); OP ** = ( MODULARINT a, INT b )MODULARINT: ( ( v OF a ** b ) MOD modulus OF a, modulus OF a );

  1. f(x) function - can be applied to either LONG LONG INT or MODULARINT values #
  2. the result is always a LONG LONG INT #

PROC f = ( UNION( LONG LONG INT, MODULARINT ) x )LONG LONG INT:

   CASE x
     IN ( LONG LONG INT ix ):      ( ix**100 + ix + 1 )
      , ( MODULARINT    mx ): v OF ( mx**100 + mx + 1 )
   ESAC;

print( ( whole( f( MODULARINT( 10, 13 ) ), 0 ), newline ) )</lang>

Output:
1

C

Translation of: C++

<lang C>#include <stdio.h>

struct ModularArithmetic {

   int value;
   int modulus;

};

struct ModularArithmetic make(const int value, const int modulus) {

   struct ModularArithmetic r = { value % modulus, modulus };
   return r;

}

struct ModularArithmetic add(const struct ModularArithmetic a, const struct ModularArithmetic b) {

   return make(a.value + b.value, a.modulus);

}

struct ModularArithmetic addi(const struct ModularArithmetic a, const int v) {

   return make(a.value + v, a.modulus);

}

struct ModularArithmetic mul(const struct ModularArithmetic a, const struct ModularArithmetic b) {

   return make(a.value * b.value, a.modulus);

}

struct ModularArithmetic pow(const struct ModularArithmetic b, int pow) {

   struct ModularArithmetic r = make(1, b.modulus);
   while (pow-- > 0) {
       r = mul(r, b);
   }
   return r;

}

void print(const struct ModularArithmetic v) {

   printf("ModularArithmetic(%d, %d)", v.value, v.modulus);

}

struct ModularArithmetic f(const struct ModularArithmetic x) {

   return addi(add(pow(x, 100), x), 1);

}

int main() {

   struct ModularArithmetic input = make(10, 13);
   struct ModularArithmetic output = f(input);
   printf("f(");
   print(input);
   printf(") = ");
   print(output);
   printf("\n");
   return 0;

}</lang>

Output:
f(ModularInteger(10, 13)) = ModularInteger(1, 13)

C#

Translation of: Java

<lang csharp>using System;

namespace ModularArithmetic {

   interface IAddition<T> {
       T Add(T rhs);
   }
   interface IMultiplication<T> {
       T Multiply(T rhs);
   }
   interface IPower<T> {
       T Power(int pow);
   }
   interface IOne<T> {
       T One();
   }
   class ModInt : IAddition<ModInt>, IMultiplication<ModInt>, IPower<ModInt>, IOne<ModInt> {
       private int modulo;
       public ModInt(int value, int modulo) {
           Value = value;
           this.modulo = modulo;
       }
       public int Value { get; }
       public ModInt One() {
           return new ModInt(1, modulo);
       }
       public ModInt Add(ModInt rhs) {
           return this + rhs;
       }
       public ModInt Multiply(ModInt rhs) {
           return this * rhs;
       }
       public ModInt Power(int pow) {
           return Pow(this, pow);
       }
       public override string ToString() {
           return string.Format("ModInt({0}, {1})", Value, modulo);
       }
       public static ModInt operator +(ModInt lhs, ModInt rhs) {
           if (lhs.modulo != rhs.modulo) {
               throw new ArgumentException("Cannot add rings with different modulus");
           }
           return new ModInt((lhs.Value + rhs.Value) % lhs.modulo, lhs.modulo);
       }
       public static ModInt operator *(ModInt lhs, ModInt rhs) {
           if (lhs.modulo != rhs.modulo) {
               throw new ArgumentException("Cannot add rings with different modulus");
           }
           return new ModInt((lhs.Value * rhs.Value) % lhs.modulo, lhs.modulo);
       }
       public static ModInt Pow(ModInt self, int p) {
           if (p < 0) {
               throw new ArgumentException("p must be zero or greater");
           }
           int pp = p;
           ModInt pwr = self.One();
           while (pp-- > 0) {
               pwr *= self;
           }
           return pwr;
       }
   }
   class Program {
       static T F<T>(T x) where T : IAddition<T>, IMultiplication<T>, IPower<T>, IOne<T> {
           return x.Power(100).Add(x).Add(x.One());
       }
       static void Main(string[] args) {
           ModInt x = new ModInt(10, 13);
           ModInt y = F(x);
           Console.WriteLine("x ^ 100 + x + 1 for x = {0} is {1}", x, y);
       }
   }

}</lang>

Output:
x ^ 100 + x + 1 for x = ModInt(10, 13) is ModInt(1, 13)

C++

Translation of: D

<lang cpp>#include <iostream>

  1. include <ostream>

template<typename T> T f(const T& x) {

   return (T) pow(x, 100) + x + 1;

}

class ModularInteger { private:

   int value;
   int modulus;
   void validateOp(const ModularInteger& rhs) const {
       if (modulus != rhs.modulus) {
           throw std::runtime_error("Left-hand modulus does not match right-hand modulus.");
       }
   }

public:

   ModularInteger(int v, int m) {
       modulus = m;
       value = v % m;
   }
   int getValue() const {
       return value;
   }
   int getModulus() const {
       return modulus;
   }
   ModularInteger operator+(const ModularInteger& rhs) const {
       validateOp(rhs);
       return ModularInteger(value + rhs.value, modulus);
   }
   ModularInteger operator+(int rhs) const {
       return ModularInteger(value + rhs, modulus);
   }
   ModularInteger operator*(const ModularInteger& rhs) const {
       validateOp(rhs);
       return ModularInteger(value * rhs.value, modulus);
   }
   friend std::ostream& operator<<(std::ostream&, const ModularInteger&);

};

std::ostream& operator<<(std::ostream& os, const ModularInteger& self) {

   return os << "ModularInteger(" << self.value << ", " << self.modulus << ")";

}

ModularInteger pow(const ModularInteger& lhs, int pow) {

   if (pow < 0) {
       throw std::runtime_error("Power must not be negative.");
   }
   ModularInteger base(1, lhs.getModulus());
   while (pow-- > 0) {
       base = base * lhs;
   }
   return base;

}

int main() {

   using namespace std;
   ModularInteger input(10, 13);
   auto output = f(input);
   cout << "f(" << input << ") = " << output << endl;
   return 0;

}</lang>

Output:
f(ModularInteger(10, 13)) = ModularInteger(1, 13)

D

<lang D>import std.stdio;

version(unittest) {

   void assertEquals(T)(T actual, T expected) {
       import core.exception;
       import std.conv;
       if (actual != expected) {
           throw new AssertError("Actual [" ~ to!string(actual) ~ "]; Expected [" ~ to!string(expected) ~ "]");
       }
   }

}

void main() {

   auto input = ModularInteger(10,13);
   auto output = f(input);
   writeln("f(", input, ") = ", output);

}

V f(V)(const V x) {

   return x^^100 + x + 1;

}

/// Integer tests on f unittest {

   assertEquals(f(1), 3);
   assertEquals(f(0), 1);

}

/// Floating tests on f unittest {

   assertEquals(f(1.0), 3.0);
   assertEquals(f(0.0), 1.0);

}

struct ModularInteger {

   private:
   int value;
   int modulus;
   public:
   this(int value, int modulus) {
       this.modulus = modulus;
       this.value = value % modulus;
   }
   ModularInteger opBinary(string op : "+")(ModularInteger rhs) const in {
       assert(this.modulus == rhs.modulus);
   } body {
       return ModularInteger((this.value + rhs.value) % this.modulus, this.modulus);
   }
   ModularInteger opBinary(string op : "+")(int rhs) const {
       return ModularInteger((this.value + rhs) % this.modulus, this.modulus);
   }
   ModularInteger opBinary(string op : "*")(ModularInteger rhs) const in {
       assert(this.modulus == rhs.modulus);
       assert(this.value < this.modulus);
       assert(rhs.value < this.modulus);
   } body {
       return ModularInteger((this.value * rhs.value) % this.modulus, this.modulus);
   }
   ModularInteger opBinary(string op : "^^")(int pow) const in {
       assert(pow >= 0);
   } body {
       auto base = ModularInteger(1, this.modulus);
       while (pow-- > 0) {
           base = base * this;
       }
       return base;
   }
   string toString() {
       import std.format;
       return format("ModularInteger(%s, %s)", value, modulus);
   }

}

/// Addition with same type of int unittest {

   auto a = ModularInteger(2,5);
   auto b = ModularInteger(3,5);
   assertEquals(a+b, ModularInteger(0,5));

}

/// Addition with differnt int types unittest {

   auto a = ModularInteger(2,5);
   assertEquals(a+0, a);
   assertEquals(a+1, ModularInteger(3,5));

}

/// Muliplication unittest {

   auto a = ModularInteger(2,5);
   auto b = ModularInteger(3,5);
   assertEquals(a*b, ModularInteger(1,5));

}

/// Power unittest {

   const a = ModularInteger(3,13);
   assertEquals(a^^2, ModularInteger(9,13));
   assertEquals(a^^3, ModularInteger(1,13));
   const b = ModularInteger(10,13);
   assertEquals(b^^1, ModularInteger(10,13));
   assertEquals(b^^2, ModularInteger(9,13));
   assertEquals(b^^3, ModularInteger(12,13));
   assertEquals(b^^4, ModularInteger(3,13));
   assertEquals(b^^5, ModularInteger(4,13));
   assertEquals(b^^6, ModularInteger(1,13));
   assertEquals(b^^7, ModularInteger(10,13));
   assertEquals(b^^8, ModularInteger(9,13));
   assertEquals(b^^10, ModularInteger(3,13));
   assertEquals(b^^20, ModularInteger(9,13));
   assertEquals(b^^30, ModularInteger(1,13));
   assertEquals(b^^50, ModularInteger(9,13));
   assertEquals(b^^75, ModularInteger(12,13));
   assertEquals(b^^90, ModularInteger(1,13));
   assertEquals(b^^95, ModularInteger(4,13));
   assertEquals(b^^97, ModularInteger(10,13));
   assertEquals(b^^98, ModularInteger(9,13));
   assertEquals(b^^99, ModularInteger(12,13));
   assertEquals(b^^100, ModularInteger(3,13));

}</lang>

Output:
f(ModularInteger(10, 13)) = ModularInteger(1, 13)

Factor

While it's probably not the best idea to define methods in arithmetic words that specialize on custom classes, it can be done. There are a few pitfalls to doing so, which is why custom types typically implement their own arithmetic words. Examples are words like v+ from the math.vectors vocabulary and q+ from the math.quaternions vocabulary.

The pitfalls are as follows:
First, arithmetic words are declared using MATH:, which means they use the math method combination. These methods will dispatch on both their arguments, and promote lower-priority numeric types to higher-priority types when both types are different. The math method combination also means that methods added to MATH: words cannot specialize on any classes except for fixnum, bignum, ratio, float, complex, object, or unions of them.

This is a bit of a problem, because we must specialize on object and then do a bunch of manual type checking and stack shuffling to make sure we are performing the correct operations on the correct objects.

Second, if any other vocabularies add methods that specialize on arithmetic words, they will conflict with our modular arithmetic vocabulary due to the aforementioned inability to specialize on specific classes.

For these reasons, I would normally opt to define my own arithmetic words, with the added bonus of being able to use non-MATH: multiple dispatch (from the multi-methods vocabulary) to cleanly implement mixed-type dispatch.

Also note that since ^ is not a generic word, we employ the strategy of renaming it to ** inside our vocabulary and defining a new word named ^ that can also handle modular integers. This is an acceptable way to handle it because Factor has pretty good word-disambiguation faculties. I just wouldn't want to have to employ them for more frequently-used arithmetic.

<lang factor>USING: accessors generalizations io kernel math math.functions parser prettyprint prettyprint.custom sequences ; IN: rosetta-code.modular-arithmetic RENAME: ^ math.functions => **

! Define a modular integer class. TUPLE: mod-int

   { n integer read-only } { mod integer read-only } ;

! Define a constructor for mod-int. C: <mod-int> mod-int

ERROR: non-equal-modulus m1 m2 ;

! Define a literal syntax for mod-int. << SYNTAX: MI{ \ } [ first2 <mod-int> ] parse-literal ; >>

! Implement prettyprinting for mod-int custom syntax. M: mod-int pprint-delims drop \ MI{ \ } ; M: mod-int >pprint-sequence [ n>> ] [ mod>> ] bi { } 2sequence ; M: mod-int pprint* pprint-object ;

<PRIVATE

! Helper words for displaying the results of an arithmetic ! operation.

show ( quot -- )
   [ unparse 2 tail but-last "= " append write ] [ call . ] bi
   ; inline
2show ( quots -- )
   [ 2curry show ] map-compose [ call( -- ) ] each ; inline

! Check whether two mod-ints have the same modulus and throw an ! error if not.

check-mod ( m1 m2 -- )
   2dup [ mod>> ] bi@ = [ 2drop ] [ non-equal-modulus ] if ;

! Apply quot to the integer parts of two mod-ints and create a ! new mod-int from the result.

mod-int-op ( m1 m2 quot -- m3 )
   [ [ n>> ] bi@ ] prepose [ 2dup check-mod ] dip over
   mod>> [ call( x x -- x ) ] dip [ mod ] keep <mod-int>
   ; inline

! Promote an integer to a mod-int and call mod-int-op.

integer-op ( obj1 obj2 quot -- mod-int )
   [
       dup integer?
       [ over mod>> <mod-int> ]
       [ dup [ mod>> <mod-int> ] dip ] if
   ] dip mod-int-op ; inline

! Apply quot, a binary function, to any combination of integers ! and mod-ints.

binary-op ( obj1 obj2 quot -- mod-int )
   2over [ mod-int? ] both? [ mod-int-op ] [ integer-op ] if
   ; inline

PRIVATE>

! This is where the arithmetic words are 'redefined' by adding a ! method to them that specializes on the object class. M: object + [ + ] binary-op ; M: object - [ - ] binary-op ; M: object * [ * ] binary-op ; M: object /i [ /i ] binary-op ;

! ^ is a special case because it is not generic.

^ ( obj1 obj2 -- obj3 )
   2dup [ mod-int? ] either? [ [ ** ] binary-op ] [ ** ] if ;
fn ( obj -- obj' ) dup 100 ^ + 1 + ;
modular-arithmetic-demo ( -- )
   [ MI{ 10 13 } fn ]
   [ 2 fn ] [ show ] bi@
   {
       [ MI{ 10 13 } MI{ 5 13 } [ + ] ]
       [ MI{ 10 13 } 5 [ + ] ]
       [ 5 MI{ 10 13 } [ + ] ]
       [ MI{ 10 13 } 2 [ /i ] ]
       [ 5 10 [ * ] ]
       [ MI{ 3 7 } MI{ 4 7 } [ * ] ]
       [ MI{ 3 7 } 50 [ ^ ] ]
   } 2show ;

MAIN: modular-arithmetic-demo</lang>

Output:
MI{ 10 13 } fn = MI{ 1 13 }
2 fn = 1267650600228229401496703205379
MI{ 10 13 } MI{ 5 13 } + = MI{ 2 13 }
MI{ 10 13 } 5 + = MI{ 2 13 }
5 MI{ 10 13 } + = MI{ 2 13 }
MI{ 10 13 } 2 /i = MI{ 5 13 }
5 10 * = 50
MI{ 3 7 } MI{ 4 7 } * = MI{ 5 7 }
MI{ 3 7 } 50 ^ = MI{ 2 7 }

Go

Go does not allow redefinition of operators. That element of the task cannot be done in Go. The element of defining f so that it can be used with any ring however can be done, just not with the syntactic sugar of operator redefinition. <lang go>package main

import "fmt"

// Define enough of a ring to meet the needs of the task. Addition and // multiplication are mentioned in the task; multiplicative identity is not // mentioned but is useful for the power function.

type ring interface {

   add(ringElement, ringElement) ringElement
   mul(ringElement, ringElement) ringElement
   mulIdent() ringElement

}

type ringElement interface{}

// Define a power function that works for any ring.

func ringPow(r ring, a ringElement, p uint) (pow ringElement) {

   for pow = r.mulIdent(); p > 0; p-- {
       pow = r.mul(pow, a)
   }
   return

}

// The task function f has that constant 1 in it. // Define a special kind of ring that has this element.

type oneRing interface {

   ring
   one() ringElement // return ring element corresponding to '1'

}

// Now define the required function f. // It works for any ring (that has a "one.")

func f(r oneRing, x ringElement) ringElement {

   return r.add(r.add(ringPow(r, x, 100), x), r.one())

}

// With rings and the function f defined in a general way, now define // the specific ring of integers modulo n.

type modRing uint // value is congruence modulus n

func (m modRing) add(a, b ringElement) ringElement {

   return (a.(uint) + b.(uint)) % uint(m)

}

func (m modRing) mul(a, b ringElement) ringElement {

   return (a.(uint) * b.(uint)) % uint(m)

}

func (modRing) mulIdent() ringElement { return uint(1) }

func (modRing) one() ringElement { return uint(1) }

// Demonstrate the general function f on the specific ring with the // specific values.

func main() {

   fmt.Println(f(modRing(13), uint(10)))

}</lang>

Output:
1

Haskell

<lang haskell>-- We use a couple of GHC extensions to make the program cooler. They let us -- use / as an operator and 13 as a literal at the type level. (The library -- also provides the fancy Zahlen (ℤ) symbol as a synonym for Integer.)

{-# Language DataKinds #-} {-# Language TypeOperators #-}

import Data.Modular

f :: ℤ/13 -> ℤ/13 f x = x^100 + x + 1

main :: IO () main = print (f 10)</lang>

Output:
./modarith 
1

Java

Translation of: Kotlin
Works with: Java version 8

<lang Java>public class ModularArithmetic {

   private interface Ring<T> {
       Ring<T> plus(Ring<T> rhs);
       Ring<T> times(Ring<T> rhs);
       int value();
       Ring<T> one();
       default Ring<T> pow(int p) {
           if (p < 0) {
               throw new IllegalArgumentException("p must be zero or greater");
           }
           int pp = p;
           Ring<T> pwr = this.one();
           while (pp-- > 0) {
               pwr = pwr.times(this);
           }
           return pwr;
       }
   }
   private static class ModInt implements Ring<ModInt> {
       private int value;
       private int modulo;
       private ModInt(int value, int modulo) {
           this.value = value;
           this.modulo = modulo;
       }
       @Override
       public Ring<ModInt> plus(Ring<ModInt> other) {
           if (!(other instanceof ModInt)) {
               throw new IllegalArgumentException("Cannot add an unknown ring.");
           }
           ModInt rhs = (ModInt) other;
           if (modulo != rhs.modulo) {
               throw new IllegalArgumentException("Cannot add rings with different modulus");
           }
           return new ModInt((value + rhs.value) % modulo, modulo);
       }
       @Override
       public Ring<ModInt> times(Ring<ModInt> other) {
           if (!(other instanceof ModInt)) {
               throw new IllegalArgumentException("Cannot multiple an unknown ring.");
           }
           ModInt rhs = (ModInt) other;
           if (modulo != rhs.modulo) {
               throw new IllegalArgumentException("Cannot multiply rings with different modulus");
           }
           return new ModInt((value * rhs.value) % modulo, modulo);
       }
       @Override
       public int value() {
           return value;
       }
       @Override
       public Ring<ModInt> one() {
           return new ModInt(1, modulo);
       }
       @Override
       public String toString() {
           return String.format("ModInt(%d, %d)", value, modulo);
       }
   }
   private static <T> Ring<T> f(Ring<T> x) {
       return x.pow(100).plus(x).plus(x.one());
   }
   public static void main(String[] args) {
       ModInt x = new ModInt(10, 13);
       Ring<ModInt> y = f(x);
       System.out.print("x ^ 100 + x + 1 for x = ModInt(10, 13) is ");
       System.out.println(y);
       System.out.flush();
   }

}</lang>

Output:
x ^ 100 + x + 1 for x = ModInt(10, 13) is ModInt(1, 13)

Julia

Works with: Julia version 0.6

Implements the Modulo struct and basic operations. <lang julia>struct Modulo{T<:Integer} <: Integer

   val::T
   mod::T
   Modulo(n::T, m::T) where T = new{T}(mod(n, m), m)

end modulo(n::Integer, m::Integer) = Modulo(promote(n, m)...)

Base.show(io::IO, md::Modulo) = print(io, md.val, " (mod $(md.mod))") Base.convert(::Type{T}, md::Modulo) where T<:Integer = convert(T, md.val) Base.copy(md::Modulo{T}) where T = Modulo{T}(md.val, md.mod)

Base.:+(md::Modulo) = copy(md) Base.:-(md::Modulo) = Modulo(md.mod - md.val, md.mod) for op in (:+, :-, :*, :÷, :^)

   @eval function Base.$op(a::Modulo, b::Integer)
       val = $op(a.val, b)
       return Modulo(mod(val, a.mod), a.mod)
   end
   @eval Base.$op(a::Integer, b::Modulo) = $op(b, a)
   @eval function Base.$op(a::Modulo, b::Modulo)
       if a.mod != b.mod throw(InexactError()) end
       val = $op(a.val, b.val)
       return Modulo(mod(val, a.mod), a.mod)
   end

end

f(x) = x ^ 100 + x + 1 @show f(modulo(10, 13))</lang>

Output:
f(modulo(10, 13)) = 11 (mod 13)

Kotlin

<lang scala>// version 1.1.3

interface Ring<T> {

   operator fun plus(other: Ring<T>): Ring<T>
   operator fun times(other: Ring<T>): Ring<T>
   val value: Int
   val one: Ring<T>

}

fun <T> Ring<T>.pow(p: Int): Ring<T> {

   require(p >= 0)
   var pp = p
   var pwr = this.one
   while (pp-- > 0) pwr *= this
   return pwr

}

class ModInt(override val value: Int, val modulo: Int): Ring<ModInt> {

   override operator fun plus(other: Ring<ModInt>): ModInt {
       require(other is ModInt &&  modulo == other.modulo)
       return ModInt((value + other.value) % modulo, modulo)
   }
   
   override operator fun times(other: Ring<ModInt>): ModInt {
       require(other is ModInt && modulo == other.modulo)
       return ModInt((value * other.value) % modulo, modulo)
   }
   override val one get() = ModInt(1, modulo)
   override fun toString() = "ModInt($value, $modulo)"

}

fun <T> f(x: Ring<T>): Ring<T> = x.pow(100) + x + x.one

fun main(args: Array<String>) {

   val x = ModInt(10, 13)
   val y = f(x)
   println("x ^ 100 + x + 1 for x == ModInt(10, 13) is $y")

}</lang>

Output:
x ^ 100 + x + 1 for x == ModInt(10, 13) is ModInt(1, 13)

Lua

<lang lua>function make(value, modulo)

   local v = value % modulo
   local tbl = {value=v, modulo=modulo}
   local mt = {
       __add = function(lhs, rhs)
           if type(lhs) == "table" then
               if type(rhs) == "table" then
                   if lhs.modulo ~= rhs.modulo then
                       error("Cannot add rings with different modulus")
                   end
                   return make(lhs.value + rhs.value, lhs.modulo)
               else
                   return make(lhs.value + rhs, lhs.modulo)
               end
           else
               error("lhs is not a table in +")
           end
       end,
       __mul = function(lhs, rhs)
           if lhs.modulo ~= rhs.modulo then
               error("Cannot multiply rings with different modulus")
           end
           return make(lhs.value * rhs.value, lhs.modulo)
       end,
       __pow = function(b,p)
           if p<0 then
               error("p must be zero or greater")
           end
           local pp = p
           local pwr = make(1, b.modulo)
           while pp > 0 do
               pp = pp - 1
               pwr = pwr * b
           end
           return pwr
       end,
       __concat = function(lhs, rhs)
           if type(lhs) == "table" and type(rhs) == "string" then
               return "ModInt("..lhs.value..", "..lhs.modulo..")"..rhs
           elseif type(lhs) == "string" and type(rhs) == "table" then
               return lhs.."ModInt("..rhs.value..", "..rhs.modulo..")"
           else
               return "todo"
           end
       end
   }
   setmetatable(tbl, mt)
   return tbl

end

function func(x)

   return x ^ 100 + x + 1

end

-- main local x = make(10, 13) local y = func(x) print("x ^ 100 + x + 1 for "..x.." is "..y)</lang>

Output:
x ^ 100 + x + 1 for ModInt(10, 13) is ModInt(1, 13)

Nim

Modular integers are represented as distinct integers with a modulus N managed by the compiler. <lang Nim>import macros, sequtils, strformat, strutils

const Subscripts: array['0'..'9', string] = ["₀", "₁", "₂", "₃", "₄", "₅", "₆", "₇", "₈", "₉"]

  1. Modular integer with modulus N.

type ModInt[N: static int] = distinct int


  1. ---------------------------------------------------------------------------------------------------
  2. Creation.

func initModInt[N](n: int): ModInt[N] =

 ## Create a modular integer from an integer.
 static:
   when N < 2: error "Modulus must be greater than 1."
 if n >= N: raise newException(ValueError, &"value must be in 0..{N - 1}.")
 result = ModInt[N](n)


  1. ---------------------------------------------------------------------------------------------------
  2. Arithmetic operations: ModInt op ModInt, ModInt op int and int op ModInt.

func `+`*[N](a, b: ModInt[N]): ModInt[N] =

 ModInt[N]((a.int + b.int) mod N)

func `+`*[N](a: ModInt[N]; b: int): ModInt[N] =

 a + initModInt[N](b)

func `+`*[N](a: int; b: ModInt[N]): ModInt[N] =

 initModInt[N](a) + b

func `*`*[N](a, b: ModInt[N]): ModInt[N] =

 ModInt[N]((a.int * b.int) mod N)

func `*`*[N](a: ModInt[N]; b: int): ModInt[N] =

 a * initModInt[N](b)

func `*`*[N](a: int; b: ModInt[N]): ModInt[N] =

 initModInt[N](a) * b

func `^`*[N](a: ModInt[N]; n: Natural): ModInt[N] =

 var a = a
 var n = n
 result = initModInt[N](1)
 while n > 0:
   if (n and 1) != 0:
     result = result * a
   n = n shr 1
   a = a * a


  1. ---------------------------------------------------------------------------------------------------
  2. Representation of a modular integer as a string.

template subscript(n: Natural): string =

 mapIt($n, Subscripts[it]).join()

func `$`(a: ModInt): string =

 &"{a.int}{subscript(a.N)})"


  1. ---------------------------------------------------------------------------------------------------
  2. The function "f" defined for any modular integer, the same way it would be defined for an
  3. integer argument (except that such a function would be of no use as it would overflow for
  4. any argument different of 0 and 1).

func f(x: ModInt): ModInt = x^100 + x + 1


  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

when isMainModule:

 var x = initModInt[13](10)
 echo &"f({x}) = {x}^100 + {x} + 1 = {f(x)}."</lang>
Output:
f(10₁₃) = 10₁₃^100 + 10₁₃ + 1 = 1₁₃.

PARI/GP

This feature exists natively in GP: <lang parigp>Mod(3,7)+Mod(4,7)</lang>

Perl

There is a CPAN module called Math::ModInt which does the job. <lang Perl>use Math::ModInt qw(mod); sub f { my $x = shift; $x**100 + $x + 1 }; print f mod(10, 13);</lang>

Output:
mod(1, 13)

Phix

Phix does not allow operator overloading, but an f() which is agnostic about whether its parameter is a modular or normal int, we can do.

type mi(object m)
    return sequence(m) and length(m)=2 and integer(m[1]) and integer(m[2])
end type
 
type mii(object m)
    return mi(m) or atom(m)
end type
 
function mi_one(mii a)
    if atom(a) then a=1 else a = {1,a[2]} end if
    return a
end function
 
function mi_add(mii a, mii b)
    if atom(a) then
        if not atom(b) then throw("error") end if
        return a+b
    end if
    if a[2]!=b[2] then throw("error") end if
    a[1] = mod(a[1]+b[1],a[2])
    return a
end function
 
function mi_mul(mii a, mii b)
    if atom(a) then
        if not atom(b) then throw("error") end if
        return a*b
    end if
    if a[2]!=b[2] then throw("error") end if
    a[1] = mod(a[1]*b[1],a[2])
    return a
end function
 
function mi_power(mii x, integer p)
    mii res = mi_one(x)
    for i=1 to p do
        res = mi_mul(res,x)
    end for
    return res
end function
 
function mi_print(mii m)
    return sprintf(iff(atom(m)?"%g":"modint(%d,%d)"),m)
end function
 
function f(mii x)
    return mi_add(mi_power(x,100),mi_add(x,mi_one(x)))
end function
 
procedure test(mii x)
    printf(1,"x^100 + x + 1 for x == %s is %s\n",{mi_print(x),mi_print(f(x))})
end procedure
test(10)
test({10,13})
Output:
x^100 + x + 1 for x == 10 is 1e+100
x^100 + x + 1 for x == modint(10,13) is modint(1,13)

Prolog

Works with SWI-Prolog versin 6.4.1 and module lambda (found there : http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl ). <lang Prolog>:- use_module(library(lambda)).

congruence(Congruence, In, Fun, Out) :- maplist(Congruence +\X^Y^(Y is X mod Congruence), In, In1), call(Fun, In1, Out1), maplist(Congruence +\X^Y^(Y is X mod Congruence), Out1, Out).

fun_1([X], [Y]) :- Y is X^100 + X + 1.

fun_2(L, [R]) :- sum_list(L, R). </lang>

Output:
 ?- congruence(13, [10], fun_1, R).
R = [1].

 ?- congruence(13, [10, 15, 13, 9, 22], fun_2, R).
R = [4].

 ?- congruence(13, [10, 15, 13, 9, 22], maplist(\X^Y^(Y is X * 13)), R).
R = [0,0,0,0,0].

Python

Works with: Python version 3.x

We need to implement a Modulo type first, then give one of its instances to the "f" function.
Thanks to duck typing, the function doesn't need to care about the actual type it's given. We also use the dynamic nature of Python to dynamically build the operator overload methods and avoid repeating very similar code.

<lang Python>import operator import functools

@functools.total_ordering class Mod:

   __slots__ = ['val','mod']
   def __init__(self, val, mod):
       if not isinstance(val, int):
           raise ValueError('Value must be integer')
       if not isinstance(mod, int) or mod<=0:
           raise ValueError('Modulo must be positive integer')
       self.val = val % mod
       self.mod = mod
   def __repr__(self):
       return 'Mod({}, {})'.format(self.val, self.mod)
   def __int__(self):
       return self.val
   def __eq__(self, other):
       if isinstance(other, Mod):
           if self.mod == other.mod:
               return self.val==other.val
           else:
               return NotImplemented
       elif isinstance(other, int):
           return self.val == other
       else:
           return NotImplemented
   def __lt__(self, other):
       if isinstance(other, Mod):
           if self.mod == other.mod:
               return self.val<other.val
           else:
               return NotImplemented
       elif isinstance(other, int):
           return self.val < other
       else:
           return NotImplemented
   def _check_operand(self, other):
       if not isinstance(other, (int, Mod)):
           raise TypeError('Only integer and Mod operands are supported')
       if isinstance(other, Mod) and self.mod != other.mod:
           raise ValueError('Inconsistent modulus: {} vs. {}'.format(self.mod, other.mod))
   def __pow__(self, other):
       self._check_operand(other)
       # We use the built-in modular exponentiation function, this way we can avoid working with huge numbers.
       return Mod(pow(self.val, int(other), self.mod), self.mod)
   def __neg__(self):
       return Mod(self.mod - self.val, self.mod)
   def __pos__(self):
       return self # The unary plus operator does nothing.
   def __abs__(self):
       return self # The value is always kept non-negative, so the abs function should do nothing.
  1. Helper functions to build common operands based on a template.
  2. They need to be implemented as functions for the closures to work properly.

def _make_op(opname):

   op_fun = getattr(operator, opname)  # Fetch the operator by name from the operator module
   def op(self, other):
       self._check_operand(other)
       return Mod(op_fun(self.val, int(other)) % self.mod, self.mod)
   return op

def _make_reflected_op(opname):

   op_fun = getattr(operator, opname)
   def op(self, other):
       self._check_operand(other)
       return Mod(op_fun(int(other), self.val) % self.mod, self.mod)
   return op
  1. Build the actual operator overload methods based on the template.

for opname, reflected_opname in [('__add__', '__radd__'), ('__sub__', '__rsub__'), ('__mul__', '__rmul__')]:

   setattr(Mod, opname, _make_op(opname))
   setattr(Mod, reflected_opname, _make_reflected_op(opname))

def f(x):

   return x**100+x+1

print(f(Mod(10,13)))

  1. Output: Mod(1, 13)</lang>

Quackery

Quackery is an extensible assembler for the Quackery Virtual Processor, which is implemented in Python3 (but could be implemented in any language). The QVP recognises three static types; Number (Python Int), Nest (Python List) and Operator (Python function). Adding more static types would require adding functionality to the QVP by modifying the source code for Quackery.

However it is possible to extend the assembler to include dynamic typing without modifying the QVP. The first part of the code presented here adds just sufficient dynamic typing to Quackery to fulfil the requirements of this task. It could be considered a first sketch towards adding more comprehensive dynamic typing to Quackery.

The second part of the code uses this to overload the Quackery words + and **.

The third part fulfils the requirements of this task.

<lang Quackery >[ stack ] is modulus ( --> s )

[ this ] is modular ( --> [ )

[ modulus share mod

 modular nested join ]          is modularise        (   n --> N )

[ dup nest? iff

   [ -1 peek modular oats ]
 else [ drop false ] ]          is modular?          (   N --> b )

[ modular? swap

 modular? or ]                  is 2modular?         ( N N --> b )

[ dup modular? if [ 0 peek ] ] is demodularise ( N --> n )

[ demodularise swap

 demodularise swap ]            is 2demodularise     ( N N --> n )

[ dup $ = if

   [ $ '"modularify(2-->1)" '
     $ "needs a name after it."
     join message put bail ]
 nextword
 $ "[ 2dup 2modular? iff
    [ 2demodularise " over join
 $ " modularise ] 
     else " join over join
 $ " ] is " join swap join
 space join 
 swap join ]                builds modularify(2-->1) (     -->   )

( --------------------------------------------------------------- )

                 modularify(2-->1) +                 ( N N --> N )
                 modularify(2-->1) **                ( N N --> N )

( --------------------------------------------------------------- )

[ dup 100 ** + 1 + ] is f ( N --> N )

13 modulus put 10 f echo cr 10 modularise f echo modulus release cr</lang> Output:

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011
[ 1 modular ]


Racket

<lang racket>#lang racket (require racket/require

        ;; grab all "mod*" names, but get them without the "mod", so
        ;; `+' and `expt' is actually `mod+' and `modexpt'
        (filtered-in (λ(n) (and (regexp-match? #rx"^mod" n)
                                (regexp-replace #rx"^mod" n "")))
                     math)
        (only-in math with-modulus))

(define (f x) (+ (expt x 100) x 1)) (with-modulus 13 (f 10))

=> 1</lang>

Raku

(formerly Perl 6) There is an ecosystem module called Modular which works basically as Perl 5's Math::ModInt. <lang perl6>use Modular; sub f(\x) { x**100 + x + 1}; say f( 10 Mod 13 )</lang>

Output:
1 「mod 13」

Red

This implementation of +,-,*,/ uses a loose test (object?) to check operands type. As soon as one is a modular integer, the other one is treated as a modular integer too. <lang Red>Red ["Modular arithmetic"]

defining the modular integer class, and a constructor

modulus: 13 m: function [n] [ either object? n [make n []] [context [val: n % modulus]] ]

redefining operators +, -, *, / to include modular integers

foreach [op fun][+ add - subtract * multiply / divide][ set op make op! function [a b] compose/deep [ either any [object? a object? b][ a: m a b: m b m (fun) a/val b/val ][(fun) a b] ] ]

redefining power - ** ; second operand must be an integer
    • make op! function [a n] [

either object? a [ tmp: 1 loop n [tmp: tmp * a/val % modulus] m tmp ][power a n] ]

testing

f: function [x] [x ** 100 + x + 1] print ["f definition is:" mold :f] print ["f((integer) 10) is:" f 10] print ["f((modular) 10) is: (modular)" f m 10]</lang>

Output:
f definition is: func [x][x ** 100 + x + 1]
f((integer) 10) is: 1.0e100
f((modular) 10) is: (modular) val: 1

Ruby

<lang ruby># stripped version of Andrea Fazzi's submission to Ruby Quiz #179

class Modulo

 include Comparable
 def initialize(n = 0, m = 13)
   @n, @m = n % m, m
 end
 def to_i
   @n
 end

 def <=>(other_n)
   @n <=> other_n.to_i
 end
 [:+, :-, :*, :**].each do |meth|
   define_method(meth) { |other_n| Modulo.new(@n.send(meth, other_n.to_i), @m) }
 end
 def coerce(numeric)
   [numeric, @n]
 end

end

  1. Demo

x, y = Modulo.new(10), Modulo.new(20)

p x > y # true p x == y # false p [x,y].sort #[#<Modulo:0x000000012ae0f8 @n=7, @m=13>, #<Modulo:0x000000012ae148 @n=10, @m=13>] p x + y ##<Modulo:0x0000000117e110 @n=4, @m=13> p 2 + y # 9 p y + 2 ##<Modulo:0x00000000ad1d30 @n=9, @m=13>

p x**100 + x +1 ##<Modulo:0x00000000ad1998 @n=1, @m=13> </lang>

Scala

Output:

Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).

<lang Scala>object ModularArithmetic extends App {

 private val x = new ModInt(10, 13)
 private val y = f(x)
 private def f[T](x: Ring[T]) = (x ^ 100) + x + x.one
 private trait Ring[T] {
   def +(rhs: Ring[T]): Ring[T]
   def *(rhs: Ring[T]): Ring[T]
   def one: Ring[T]
   def ^(p: Int): Ring[T] = {
     require(p >= 0, "p must be zero or greater")
     var pp = p
     var pwr = this.one
     while ( {
       pp -= 1;
       pp
     } >= 0) pwr = pwr * this
     pwr
   }
 }
 private class ModInt(var value: Int, var modulo: Int) extends Ring[ModInt] {
   def +(other: Ring[ModInt]): Ring[ModInt] = {
     require(other.isInstanceOf[ModInt], "Cannot add an unknown ring.")
     val rhs = other.asInstanceOf[ModInt]
     require(modulo == rhs.modulo, "Cannot add rings with different modulus")
     new ModInt((value + rhs.value) % modulo, modulo)
   }
   def *(other: Ring[ModInt]): Ring[ModInt] = {
     require(other.isInstanceOf[ModInt], "Cannot multiple an unknown ring.")
     val rhs = other.asInstanceOf[ModInt]
     require(modulo == rhs.modulo,
       "Cannot multiply rings with different modulus")
     new ModInt((value * rhs.value) % modulo, modulo)
   }
   override def one = new ModInt(1, modulo)
   override def toString: String = f"ModInt($value%d, $modulo%d)"
 }
 println("x ^ 100 + x + 1 for x = ModInt(10, 13) is " + y)

}</lang>

Sidef

Translation of: Ruby

<lang ruby>class Modulo(n=0, m=13) {

 method init {
    (n, m) = (n % m, m)
 }
 method to_n { n }
 < + - * ** >.each { |meth|
     Modulo.def_method(meth, method(n2) { Modulo(n.(meth)(n2.to_n), m) })
 }
 method to_s { "#{n} 「mod #{m}」" }

}

func f(x) { x**100 + x + 1 } say f(Modulo(10, 13))</lang>

Output:
1 「mod 13」

Tcl

Tcl does not permit overriding of operators, but does not force an expression to be evaluated as a standard expression.
Creating a parser and custom evaluation engine is relatively straight-forward, as is shown here.

Library: Tcllib (Package: pt::pgen)

<lang tcl>package require Tcl 8.6 package require pt::pgen

      1. A simple expression parser for a subset of Tcl's expression language
  1. Define the grammar of expressions that we want to handle

set grammar { PEG Calculator (Expression)

   Expression	<- Term (' '* AddOp ' '* Term)*			;
   Term	<- Factor (' '* MulOp ' '* Factor)*		;
   Fragment	<- '(' ' '* Expression ' '*  ')' / Number / Var	;
   Factor	<- Fragment (' '* PowOp ' '* Fragment)*		;
   Number	<- Sign? Digit+					;
   Var		<- '$' ( 'x'/'y'/'z' )				;
   Digit	<- '0'/'1'/'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9'	;
   Sign	<- '-' / '+'					;
   MulOp	<- '*' / '/'					;
   AddOp	<- '+' / '-'					;
   PowOp	<- '**'						;

END; }

  1. Instantiate the parser class

catch [pt::pgen peg $grammar snit -class Calculator -name Grammar]

  1. An engine that compiles an expression into Tcl code

oo::class create CompileAST {

   variable sourcecode opns
   constructor {semantics} {

set opns $semantics

   }
   method compile {script} {

# Instantiate the parser set c [Calculator] set sourcecode $script try { return [my {*}[$c parset $script]] } finally { $c destroy }

   }
   method Expression-Empty args {}
   method Expression-Compound {from to args} {

foreach {o p} [list Expression-Empty {*}$args] { set o [my {*}$o]; set p [my {*}$p] set v [expr {$o ne "" ? "$o \[$v\] \[$p\]" : $p}] } return $v

   }
   forward Expression	my Expression-Compound
   forward Term	my Expression-Compound
   forward Factor	my Expression-Compound
   forward Fragment	my Expression-Compound
   method Expression-Operator {from to args} {

list ${opns} [string range $sourcecode $from $to]

   }
   forward AddOp	my Expression-Operator
   forward MulOp	my Expression-Operator
   forward PowOp	my Expression-Operator
   method Number {from to args} {

list ${opns} value [string range $sourcecode $from $to]

   }
   method Var {from to args} {

list ${opns} variable [string range $sourcecode [expr {$from+1}] $to]

   }

}</lang> None of the code above knows about modular arithmetic at all, or indeed about actual expression evaluation. Now we define the semantics that we want to actually use. <lang tcl># The semantic evaluation engine; this is the part that knows mod arithmetic oo::class create ModEval {

   variable mod
   constructor {modulo} {set mod $modulo}
   method value {literal} {return [expr {$literal}]}
   method variable {name} {return [expr {[set ::$name]}]}
   method + {a b} {return [expr {($a + $b) % $mod}]}
   method - {a b} {return [expr {($a - $b) % $mod}]}
   method * {a b} {return [expr {($a * $b) % $mod}]}
   method / {a b} {return [expr {($a / $b) % $mod}]}
   method ** {a b} {

# Tcl supports bignums natively, so we use the naive version return [expr {($a ** $b) % $mod}]

   }
   export + - * / **

}

  1. Put all the pieces together

set comp [CompileAST new [ModEval create mod13 13]]</lang> Finally, demonstrating… <lang tcl>set compiled [$comp compile {$x**100 + $x + 1}] set x 10 puts "[eval $compiled] = $compiled"</lang>

Output:
1 = ::mod13 + [::mod13 + [::mod13 ** [::mod13 variable x] [::mod13 value 100]] [::mod13 variable x]] [::mod13 value 1]

VBA

Translation of: Phix

<lang vb>Option Base 1

Private Function mi_one(ByVal a As Variant) As Variant

   If IsArray(a) Then
       a(1) = 1
   Else
       a = 1
   End If
   mi_one = a

End Function

Private Function mi_add(ByVal a As Variant, b As Variant) As Variant

   If IsArray(a) Then
       If IsArray(b) Then
            If a(2) <> b(2) Then
               mi_add = CVErr(2019)
           Else
               a(1) = (a(1) + b(1)) Mod a(2)
               mi_add = a
           End If
       Else
           mi_add = CVErr(2018)
       End If
   Else
       If IsArray(b) Then
           mi_add = CVErr(2018)
       Else
          a = a + b
          mi_add = a
       End If
   End If

End Function

Private Function mi_mul(ByVal a As Variant, b As Variant) As Variant

   If IsArray(a) Then
       If IsArray(b) Then
           If a(2) <> b(2) Then
               mi_mul = CVErr(2019)
           Else
               a(1) = (a(1) * b(1)) Mod a(2)
               mi_mul = a
           End If
       Else
           mi_mul = CVErr(2018)
       End If
   Else
       If IsArray(b) Then
           mi_mul = CVErr(2018)
       Else
           a = a * b
           mi_mul = a
       End If
   End If

End Function

Private Function mi_power(x As Variant, p As Integer) As Variant

   res = mi_one(x)
   For i = 1 To p
       res = mi_mul(res, x)
   Next i
   mi_power = res

End Function

Private Function mi_print(m As Variant) As Variant

   If IsArray(m) Then
       s = "modint(" & m(1) & "," & m(2) & ")"
   Else
       s = CStr(m)
   End If
   mi_print = s

End Function

Private Function f(x As Variant) As Variant

   f = mi_add(mi_power(x, 100), mi_add(x, mi_one(x)))

End Function

Private Sub test(x As Variant)

   Debug.Print "x^100 + x + 1 for x == " & mi_print(x) & " is " & mi_print(f(x))

End Sub Public Sub main()

   test 10
   test [{10,13}]

End Sub</lang>

Output:
x^100 + x + 1 for x == 10 is 1E+100
x^100 + x + 1 for x == modint(10,13) is modint(1,13)

Visual Basic .NET

Translation of: C#

<lang vbnet>Module Module1

   Interface IAddition(Of T)
       Function Add(rhs As T) As T
   End Interface
   Interface IMultiplication(Of T)
       Function Multiply(rhs As T) As T
   End Interface
   Interface IPower(Of T)
       Function Power(pow As Integer) As T
   End Interface
   Interface IOne(Of T)
       Function One() As T
   End Interface
   Class ModInt
       Implements IAddition(Of ModInt), IMultiplication(Of ModInt), IPower(Of ModInt), IOne(Of ModInt)
       Sub New(value As Integer, modulo As Integer)
           Me.Value = value
           Me.Modulo = modulo
       End Sub
       ReadOnly Property Value As Integer
       ReadOnly Property Modulo As Integer
       Public Function Add(rhs As ModInt) As ModInt Implements IAddition(Of ModInt).Add
           Return Me + rhs
       End Function
       Public Function Multiply(rhs As ModInt) As ModInt Implements IMultiplication(Of ModInt).Multiply
           Return Me * rhs
       End Function
       Public Function Power(pow_ As Integer) As ModInt Implements IPower(Of ModInt).Power
           Return Pow(Me, pow_)
       End Function
       Public Function One() As ModInt Implements IOne(Of ModInt).One
           Return New ModInt(1, Modulo)
       End Function
       Public Overrides Function ToString() As String
           Return String.Format("ModInt({0}, {1})", Value, Modulo)
       End Function
       Public Shared Operator +(lhs As ModInt, rhs As ModInt) As ModInt
           If lhs.Modulo <> rhs.Modulo Then
               Throw New ArgumentException("Cannot add rings with different modulus")
           End If
           Return New ModInt((lhs.Value + rhs.Value) Mod lhs.Modulo, lhs.Modulo)
       End Operator
       Public Shared Operator *(lhs As ModInt, rhs As ModInt) As ModInt
           If lhs.Modulo <> rhs.Modulo Then
               Throw New ArgumentException("Cannot multiply rings with different modulus")
           End If
           Return New ModInt((lhs.Value * rhs.Value) Mod lhs.Modulo, lhs.Modulo)
       End Operator
       Public Shared Function Pow(self As ModInt, p As Integer) As ModInt
           If p < 0 Then
               Throw New ArgumentException("p must be zero or greater")
           End If
           Dim pp = p
           Dim pwr = self.One()
           While pp > 0
               pp -= 1
               pwr *= self
           End While
           Return pwr
       End Function
   End Class
   Function F(Of T As {IAddition(Of T), IMultiplication(Of T), IPower(Of T), IOne(Of T)})(x As T) As T
       Return x.Power(100).Add(x).Add(x.One)
   End Function
   Sub Main()
       Dim x As New ModInt(10, 13)
       Dim y = F(x)
       Console.WriteLine("x ^ 100 + x + 1 for x = {0} is {1}", x, y)
   End Sub

End Module</lang>

Output:
x ^ 100 + x + 1 for x = ModInt(10, 13) is ModInt(1, 13)

Wren

<lang ecmascript>// Semi-abstract though we can define a 'pow' method in terms of the other operations. class Ring {

   +(other) {}
   *(other) {}
   one      {}
   pow(p) {
       if (p.type != Num || !p.isInteger || p < 0) {
           Fiber.abort("Argument must be non-negative integer.")
       }
       var pwr = one
       while (p > 0) {
           pwr = pwr * this
           p = p - 1
       }
       return pwr
   }

}

class ModInt is Ring {

   construct new(value, modulo) {
       _value = value
       _modulo = modulo
   }
   value  { _value }
   modulo { _modulo }
   +(other) {
       if (other.type != ModInt || _modulo != other.modulo) {
           Fiber.abort("Argument must be a ModInt with the same modulus.")
       }
       return ModInt.new((_value + other.value) % _modulo, _modulo)
   }
   *(other) {
       if (other.type != ModInt || _modulo != other.modulo) {
           Fiber.abort("Argument must be a ModInt with the same modulus.")
       }
       return ModInt.new((_value * other.value) % _modulo, _modulo)
   }
   one { ModInt.new(1, _modulo) }
   toString { "Modint(%(_value), %(_modulo))" }

}

var f = Fn.new { |x|

   if (!(x is Ring)) Fiber.abort("Argument must be a Ring.")
   return x.pow(100) + x + x.one

}

var x = ModInt.new(10, 13) System.print("x^100 + x + 1 for x = %(x) is %(f.call(x))")</lang>

Output:
x^100 + x + 1 for x = Modint(10, 13) is Modint(1, 13)

zkl

Doing just enough to perform the task: <lang zkl>class MC{

  fcn init(n,mod){ var N=n,M=mod; }
  fcn toString   { String(N.divr(M)[1],"M",M) }
  fcn pow(p)     { self( N.pow(p).divr(M)[1], M ) }
  fcn __opAdd(mc){ 
     if(mc.isType(Int)) z:=N+mc; else z:=N*M + mc.N*mc.M;
     self(z.divr(M)[1],M) 
  }

}</lang> Using GNU GMP lib to do the big math (to avoid writing a powmod function): <lang zkl>var BN=Import("zklBigNum"); fcn f(n){ n.pow(100) + n + 1 } f(1).println(" <-- 1^100 + 1 + 1"); n:=MC(BN(10),13); (n+3).println(" <-- 10M13 + 3"); f(n).println(" <-- 10M13^100 + 10M13 + 1");</lang>

Output:
3 <-- 1^100 + 1 + 1
0M13 <-- 10M13 + 3
1M13 <-- 10M13^100 + 10M13 + 1