Mian-Chowla sequence

From Rosetta Code
Revision as of 12:04, 21 October 2019 by rosettacode>Nuclearace (Add Swift)
Task
Mian-Chowla sequence
You are encouraged to solve this task according to the task description, using any language you may know.

The Mian–Chowla sequence is an integer sequence defined recursively.

The sequence starts with:

a1 = 1

then for n > 1, an is the smallest positive integer such that every pairwise sum

ai + aj

is distinct, for all i and j less than or equal to n.

The Task
  • Find and display, here, on this page the first 30 terms of the Mian–Chowla sequence.
  • Find and display, here, on this page the 91st through 100th terms of the Mian–Chowla sequence.


Demonstrating working through the first few terms longhand:

a1 = 1
1 + 1 = 2

Speculatively try a2 = 2

1 + 1 = 2
1 + 2 = 3
2 + 2 = 4

There are no repeated sums so 2 is the next number in the sequence.

Speculatively try a3 = 3

1 + 1 = 2
1 + 2 = 3
1 + 3 = 4
2 + 2 = 4
2 + 3 = 5
3 + 3 = 6

Sum of 4 is repeated so 3 is rejected.

Speculatively try a3 = 4

1 + 1 = 2
1 + 2 = 3
1 + 4 = 5
2 + 2 = 4
2 + 4 = 6
4 + 4 = 8

There are no repeated sums so 4 is the next number in the sequence.

And so on...

See also


Ada

Works with: Ada version 2012

<lang Ada>with Ada.Text_IO; with Ada.Containers.Hashed_Sets;

procedure Mian_Chowla_Sequence is

  type Natural_Array is array(Positive range <>) of Natural;
  function Hash(P : in Positive) return Ada.Containers.Hash_Type is
  begin
     return Ada.Containers.Hash_Type(P);
  end Hash;
  package Positive_Sets is new Ada.Containers.Hashed_Sets(Positive, Hash, "=");
  function Mian_Chowla(N : in Positive) return Natural_Array
  is
     return_array : Natural_Array(1 .. N) := (others => 0);
     nth : Positive := 1;
     candidate : Positive := 1;
     seen : Positive_Sets.Set;
  begin
     while nth <= N loop
        declare
           sums : Positive_Sets.Set;
           terms : constant Natural_Array := return_array(1 .. nth-1) & candidate;
           found : Boolean := False;
        begin
           for term of terms loop
              if seen.Contains(term + candidate) then
                 found := True;
                 exit;
              else
                 sums.Insert(term + candidate);
              end if;
           end loop;
           if not found then
              return_array(nth) := candidate;
              seen.Union(sums);
              nth := nth + 1;
           end if;
           candidate := candidate + 1;
        end;
     end loop;
     return return_array;
  end Mian_Chowla;
  length : constant Positive := 100;
  sequence : constant Natural_Array(1 .. length) := Mian_Chowla(length);

begin

  Ada.Text_IO.Put_Line("Mian Chowla sequence first 30 terms :");
  for term of sequence(1 .. 30) loop
     Ada.Text_IO.Put(term'Img);
  end loop;
  Ada.Text_IO.New_Line;
  Ada.Text_IO.Put_Line("Mian Chowla sequence terms 91 to 100 :");
  for term of sequence(91 .. 100) loop
     Ada.Text_IO.Put(term'Img);
  end loop;

end Mian_Chowla_Sequence;</lang>

Output:
Mian Chowla sequence first 30 terms :
 1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
Mian Chowla sequence terms 91 to 100 :
 22526 23291 23564 23881 24596 24768 25631 26037 26255 27219


ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Allocating a large-enough array initially would gain some performance but might be considered cheating - 60 000 elements would be enough for the task.

<lang algol68># Find Mian-Chowla numbers: an

                    where: ai = 1,
                      and: an = smallest integer such that ai + aj is unique
                                            for all i, j in 1 .. n && i <= j

BEGIN

   INT max mc           = 100;
   [ max mc ]INT mc;
   INT curr size       :=      0; # initial size of the array     #
   INT size increment   = 10 000; # size to increase the array by #
   REF[]BOOL is sum    := HEAP[ 1 : 0 ]BOOL;
   INT mc count        := 1;
   FOR i WHILE mc count <= max mc DO
       # assume i will be part of the sequence                    #
       mc[ mc count ]  := i;
       # check the sums                                           #
       IF  ( 2 * i ) > curr size THEN
           # the is sum array is too small - make a larger one    #
           REF[]BOOL new sum = HEAP[ curr size + size increment ]BOOL;
           new sum[ 1 : curr size ] := is sum;
           FOR n TO size increment DO new sum[ curr size + n ] := FALSE OD;
           curr size  +:= size increment;
           is sum      := new sum
       FI;
       BOOL is unique  := TRUE;
       FOR mc pos TO mc count WHILE is unique := NOT is sum[ i + mc[ mc pos ] ] DO SKIP OD;
       IF is unique THEN
           # i is a sequence element - store the sums             #
           FOR k TO mc count DO is sum[ i + mc[ k ] ] := TRUE OD;
           mc count +:= 1
       FI
   OD;
   # print parts of the sequence                                  #
   print( ( "Mian Chowla sequence elements 1..30:", newline ) );
   FOR i TO 30 DO print( ( " ", whole( mc[ i ], 0 ) ) ) OD;
   print( ( newline ) );
   print( ( "Mian Chowla sequence elements 91..100:", newline ) );
   FOR i FROM 91 TO 100 DO print( ( " ", whole( mc[ i ], 0 ) ) ) OD

END</lang>

Output:
Mian Chowla sequence elements 1..30:
 1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
Mian Chowla sequence elements 91..100:
 22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

elapsed time approx 0.25 seconds on my Windows 7 system (note under Windows, A68G runs as an interpreter only).

AWK

Translation of the ALGOL 68 - largely implements the "by hand" method in the task. <lang awk># Find Mian-Chowla numbers: an

  1. where: ai = 1,
  2. and: an = smallest integer such that ai + aj is unique
  3. for all i, j in 1 .. n && i <= j

BEGIN \ {

   FALSE      = 0;
   TRUE       = 1;
   mcCount    = 1;
   for( i = 1; mcCount <= 100; i ++ )
   {
       # assume i will be part of the sequence
       mc[ mcCount ] = i;
       # check the sums
       isUnique = TRUE;
       for( mcPos = 1; mcPos <= mcCount && isUnique; mcPos ++ )
       {
           isUnique = ! ( ( i + mc[ mcPos ] ) in isSum );
       } # for j
       if( isUnique )
       {
           # i is a sequence element - store the sums
           for( k = 1; k <= mcCount; k ++ )
           {
               isSum[ i + mc[ k ] ] = TRUE;
           } # for k
           mcCount ++;
       } # if isUnique
   } # for i
   # print the sequence
   printf( "Mian Chowla sequence elements 1..30:\n" );
   for( i = 1; i <= 30; i ++ )
   {
       printf( " %d", mc[ i ] );
   } # for i
   printf( "\n" );
   printf( "Mian Chowla sequence elements 91..100:\n" );
   for( i = 91; i <= 100; i ++ )
   {
       printf( " %d", mc[ i ] );
   } # for i
   printf( "\n" );

} # BEGIN</lang>

Output:
Mian Chowla sequence elements 1..30:
 1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
Mian Chowla sequence elements 91..100:
 22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

elapsed time approx 0.20 seconds on my Windows 7 system.

Alternate

Translation of: Go

Hopefully the comments help explain the algorithm.

<lang awk># helper functions

  1. determine if a list is empty or not

function isEmpty(a) { for (ii in a) return 0; return 1 }

  1. list concatination

function concat(a, b) { for (cc in b) a[cc] = cc }

BEGIN \ {

   mc[0] = 1; sums[2] = 0;      # initialize lists
   for ( i = 1; i < 100; i ++ ) # iterate for each item in result
   {
       for ( j = mc[i-1]+1; ; j ++ ) # iterate thru trial values
       {
           mc[i] = j;           # set trial value into result
           for ( k = 0; k <= i; k ++ ) # test new iteration of sums
           {
               # test trial sum against old sums list
               if ((sum = mc[k] + j) in sums) 
               {                # collision, so
                   delete ts;   # toss out any accumulated items,
                   break;       #  and break out to the next j
               }
               ts[sum] = sum;   # (else) accumulate to new sum list
           } # for k
           if ( isEmpty( ts ) ) # nothing to add, 
               continue;        #  so try next j
           concat( sums, ts );  # combine new sums to old,
           delete ts;           #  clear out the new,
           break;               #  break out to next i
       } # for j
   } # for i
   # print the sequence
   ps = "Mian Chowla sequence elements %d..%d:\n";
   for ( i = 0; i < 100; i ++ )
   {
       if ( i == 0 )  printf ps, 1, 30;
       if ( i == 90 ) printf "\n\n" ps, 91, 100;
       if ( i < 30 || i >= 90 ) printf "%d ", mc[ i ];
   } # for i
   print "\n"

} # BEGIN</lang>

Output:
Mian Chowla sequence elements 1..30:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312 

Mian Chowla sequence elements 91..100:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Computation time is about 110 ms on tio.run

C

Translation of: Go

<lang C>#include <stdio.h>

  1. include <stdbool.h>
  2. include <time.h>
  1. define n 100
  2. define nn ((n * (n + 1)) >> 1)

bool Contains(int lst[], int item, int size) { for (int i = size - 1; i >= 0; i--)

		if (item == lst[i]) return true;

return false; }

int * MianChowla() { static int mc[n]; mc[0] = 1; int sums[nn]; sums[0] = 2; int sum, le, ss = 1; for (int i = 1; i < n; i++) { le = ss; for (int j = mc[i - 1] + 1; ; j++) { mc[i] = j; for (int k = 0; k <= i; k++) { sum = mc[k] + j; if (Contains(sums, sum, ss)) { ss = le; goto nxtJ; } sums[ss++] = sum; } break; nxtJ:; } } return mc; }

int main() { clock_t st = clock(); int * mc; mc = MianChowla();

       double et = ((double)(clock() - st)) / CLOCKS_PER_SEC;

printf("The first 30 terms of the Mian-Chowla sequence are:\n"); for (int i = 0; i < 30; i++) printf("%d ", mc[i]); printf("\n\nTerms 91 to 100 of the Mian-Chowla sequence are:\n"); for (int i = 90; i < 100; i++) printf("%d ", mc[i]); printf("\n\nComputation time was %f seconds.", et); }</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312 

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219 

Computation time was 1.575556 seconds.

Quick, but...

...is memory hungry. This will allocate a bigger buffer as needed to keep track of the sums involved. Based on the ALGOL 68 version. The minimum memory needed is double of the highest entry calculated. This program doubles the buffer size each time needed, so it will use more than the minimum. The ALGOL 68 increments by a fixed increment size. Which could be just as wasteful if the increment is too large and slower if the increment is too small). <lang C>#include <stdio.h>

  1. include <stdlib.h>
  2. include <stdbool.h>
  3. include <time.h>

// helper function for indicating memory used. void approx(char* buf, double count) {

   const char* suffixes[] = { "Bytes", "KiB", "MiB" };
   uint s = 0; 
   while (count >= 1024 && s < 3) { s++; count /= 1024; }
   if (count - (double)((int)count) == 0.0)
       sprintf(buf, "%d %s", (int)count, suffixes[s]);
   else
       sprintf(buf, "%.1f %s", count, suffixes[s]);

}

int main() {

   int i, j, k, c = 0, n = 100, nn = 110;
   int* mc = (int*) malloc((n) * sizeof(int));
   bool* isSum = (bool*) calloc(nn, sizeof(bool));
   char em[] = "unable to increase isSum array to %ld.";
   if (n > 100)  printf("Computing terms 1 to %d...\n", n);
   clock_t st = clock();
   for (i = 1; c < n; i++) {
       mc[c] = i;
       if (i + i > nn) {
           bool* newIs = (bool*)realloc(isSum, (nn <<= 1) * sizeof(bool));
           if (newIs == NULL) { printf(em, nn); return -1; }
           isSum = newIs;
           for (j = (nn >> 1); j < nn; j++) isSum[j] = false;
       }
       bool isUnique = true;
       for (j = 0; (j < c) && isUnique; j++) isUnique = !isSum[i + mc[j]];
       if (isUnique) {
           for (k = 1; k <= c; k++) isSum[i + mc[k]] = true;
           c++;
       }
   }
   double et = 1e3 * ((double)(clock() - st)) / CLOCKS_PER_SEC;
   free(isSum);
   printf("The first 30 terms of the Mian-Chowla sequence are:\n");
   for (i = 0; i < 30; i++) printf("%d ", mc[i]);
   printf("\n\nTerms 91 to 100 of the Mian-Chowla sequence are:\n");
   for (i = 90; i < 100; i++) printf("%d ", mc[i]);
   if (c > 100) printf("\nTerm %d is: %d" ,c , mc[c - 1]);
   free(mc);
   char buf[100]; approx(buf, nn * sizeof(bool));
   printf("\n\nComputation time was %6.3f ms.  Allocation was %s.", et, buf);

}</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312 

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219 

Computation time was  1.773 ms.  Allocation was 55 KiB.

Here is the output for a larger calculation:

Computing terms 1 to 1300...
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312 

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219 
Term 1300 is: 29079927

Computation time was 7979.042 ms.  Allocation was 110 MiB.

C#

Translation of: Go

<lang csharp>using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq;

static class Program {

   static int[] MianChowla(int n) {
       int[] mc = new int[n - 1 + 1];
       HashSet<int> sums = new HashSet<int>(), ts = new HashSet<int>();
       int sum; mc[0] = 1; sums.Add(2);
       for (int i = 1; i <= n - 1; i++) {
           for (int j = mc[i - 1] + 1; ; j++) {
               mc[i] = j;
               for (int k = 0; k <= i; k++) {
                   sum = mc[k] + j;
                   if (sums.Contains(sum)) { ts.Clear(); break; }
                   ts.Add(sum);
               }
               if (ts.Count > 0) { sums.UnionWith(ts); break; }
           }
       }
       return mc;
   }
   static void Main(string[] args)
   {
       const int n = 100; Stopwatch sw = new Stopwatch();
       string str = " of the Mian-Chowla sequence are:\n";
       sw.Start(); int[] mc = MianChowla(n); sw.Stop();
       Console.Write("The first 30 terms{1}{2}{0}{0}Terms 91 to 100{1}{3}{0}{0}" +
           "Computation time was {4}ms.{0}", '\n', str, string.Join(" ", mc.Take(30)),
           string.Join(" ", mc.Skip(n - 10)), sw.ElapsedMilliseconds);
   }

}</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Computation time was 17ms.

C++

Translation of: Go

The sums array expands by "i" on each iteration from 1 to n, so the max array length can be pre-calculated to the nth triangular number (n * (n + 1) / 2). <lang cpp>using namespace std;

  1. include <iostream>
  2. include <ctime>
  1. define n 100
  2. define nn ((n * (n + 1)) >> 1)

bool Contains(int lst[], int item, int size) { for (int i = 0; i < size; i++) if (item == lst[i]) return true; return false; }

int * MianChowla() { static int mc[n]; mc[0] = 1; int sums[nn]; sums[0] = 2; int sum, le, ss = 1; for (int i = 1; i < n; i++) { le = ss; for (int j = mc[i - 1] + 1; ; j++) { mc[i] = j; for (int k = 0; k <= i; k++) { sum = mc[k] + j; if (Contains(sums, sum, ss)) { ss = le; goto nxtJ; } sums[ss++] = sum; } break; nxtJ:; } } return mc; }

int main() { clock_t st = clock(); int * mc; mc = MianChowla(); double et = ((double)(clock() - st)) / CLOCKS_PER_SEC; cout << "The first 30 terms of the Mian-Chowla sequence are:\n"; for (int i = 0; i < 30; i++) { cout << mc[i] << ' '; } cout << "\n\nTerms 91 to 100 of the Mian-Chowla sequence are:\n"; for (int i = 90; i < 100; i++) { cout << mc[i] << ' '; } cout << "\n\nComputation time was " << et << " seconds."; }</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312 

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219 

Computation time was 1.92958 seconds.

F#

The function

<lang fsharp> // Generate Mian-Chowla sequence. Nigel Galloway: March 23rd., 2019 let mC=let rec fN i g l=seq{

        let a=(l*2)::[for i in i do yield i+l]@g
        let b=[l+1..l*2]|>Seq.find(fun e->Seq.forall(fun g->(Seq.contains (g-e)>>not) i) a)
        yield b; yield! fN (l::i) (a|>List.filter(fun n->n>b)) b}
      seq{yield 1; yield! fN [] [] 1}

</lang>

The Tasks

First 30

<lang fsharp> mC |> Seq.take 30 |> Seq.iter(printf "%d ");printfn "" </lang>

Output:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
91 to 100

<lang fsharp> mC |> Seq.skip 90 |> Seq.take 10 |> Seq.iter(printf "%d ");printfn "" </lang>

Output:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Go

<lang go>package main

import "fmt"

func contains(is []int, s int) bool {

   for _, i := range is {
       if s == i {
           return true
       }
   }
   return false

}

func mianChowla(n int) []int {

   mc := make([]int, n)
   mc[0] = 1
   is := []int{2}
   var sum int
   for i := 1; i < n; i++ {
       le := len(is)
   jloop:
       for j := mc[i-1] + 1; ; j++ {
           mc[i] = j
           for k := 0; k <= i; k++ {
               sum = mc[k] + j
               if contains(is, sum) {
                   is = is[0:le]
                   continue jloop
               }
               is = append(is, sum)
           }
           break
       }
   }
   return mc

}

func main() {

   mc := mianChowla(100)
   fmt.Println("The first 30 terms of the Mian-Chowla sequence are:")
   fmt.Println(mc[0:30])
   fmt.Println("\nTerms 91 to 100 of the Mian-Chowla sequence are:")
   fmt.Println(mc[90:100])

}</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
[1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312]

Terms 91 to 100 of the Mian-Chowla sequence are:
[22526 23291 23564 23881 24596 24768 25631 26037 26255 27219]


Quicker version (runs in less than 0.02 seconds on Celeron N3050 @1.6 GHz), output as before: <lang go>package main

import "fmt"

type set map[int]bool

func mianChowla(n int) []int {

   mc := make([]int, n)
   mc[0] = 1
   is := make(set, n*(n+1)/2)
   is[2] = true
   var sum int
   isx := make([]int, 0, n)
   for i := 1; i < n; i++ {
       isx = isx[:0]
   jloop:
       for j := mc[i-1] + 1; ; j++ {
           mc[i] = j
           for k := 0; k <= i; k++ {
               sum = mc[k] + j
               if is[sum] {                   
                   isx = isx[:0]
                   continue jloop
               }
               isx = append(isx, sum)
           }
           for _, x := range isx {
               is[x] = true
           }
           break
       }
   }
   return mc

}

func main() {

   mc := mianChowla(100)
   fmt.Println("The first 30 terms of the Mian-Chowla sequence are:")
   fmt.Println(mc[0:30])
   fmt.Println("\nTerms 91 to 100 of the Mian-Chowla sequence are:")
   fmt.Println(mc[90:100])

}</lang>

Haskell

Translation of: Python
Translation of: JavaScript

<lang haskell>import Data.Set (Set, fromList, insert, member)

mianChowlas :: Int -> [Int] mianChowlas n =

 let (_, cm, _) = unzip3 $ iterate nextMC (fromList [2], [1], 1)
 in reverse $ cm !! (n - 1)

nextMC :: (Set Int, [Int], Int) -> (Set Int, [Int], Int) nextMC (sumSet, mcs, n) =

 let valid x = all (not . flip member sumSet . (x +)) mcs
     m = until valid succ n
 in (foldr insert sumSet ((2 * m) : fmap (m +) mcs), m : mcs, m)

main :: IO () main =

 (putStrLn . unlines)
   [ "First 30 terms of the Mian-Chowla series:"
   , show (mianChowlas 30)
   , []
   , "Terms 91 to 100 of the Mian-Chowla series:"
   , show $ drop 90 (mianChowlas 100)
   ]</lang>
Output:
First 30 terms of the Mian-Chowla series:
[1,2,4,8,13,21,31,45,66,81,97,123,148,182,204,252,290,361,401,475,565,593,662,775,822,916,970,1016,1159,1312]

Terms 91 to 100 of the Mian-Chowla series:
[22526,23291,23564,23881,24596,24768,25631,26037,26255,27219]

J

<lang j> NB. http://rosettacode.org/wiki/Mian-Chowla_sequence

NB. Dreadfully inefficient implementation recomputes all the sums to n-1 NB. and computes the full addition table rather than just a triangular region NB. However, this implementation is sufficiently quick to meet the requirements.

NB. The vector head is the next speculative value NB. Beheaded, the vector is Mian-Chowla sequence.


Until =: conjunction def 'u^:(0 = v)^:_' unique =: -:&# ~. NB. tally of list matches that of set

next_mc =: [: (, {.) (>:@:{. , }.)Until(unique@:((<:/~@i.@# #&, +/~)@:(}. , {.)))


prime_q =: 1&p: NB. for fun look at prime generation suitability </lang>

   NB. generate sufficient terms of sequence

   A =: (next_mc^:108) 1 1

   NB. first 30 terms
   (,:prime_q)30{.}.A
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
0 1 0 0  1  0  1  0  0  0  1   0   0   0   0   0   0   0   1   0   0   1   0   0   0   0   0    0    0    0

   NB. terms 91 through 100
   (,: prime_q) A {~ 91+i.10
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219
    0     1     0     0     0     0     0     0     0     0

JavaScript

Translation of: Python

(Functional Python version)

<lang javascript>(() => {

   'use strict';
   const main = () => {
       const genMianChowla = mianChowlas();
       console.log([
           'Mian-Chowla terms 1-30:',
           take(30, genMianChowla),
           '\nMian-Chowla terms 91-100:',
           (() => {
               drop(60, genMianChowla);
               return take(10, genMianChowla);
           })()
       ].join('\n') + '\n');
   };
   // mianChowlas :: Gen [Int]
   function* mianChowlas() {
       let
           mcs = [1],
           sumSet = new Set([2]),
           x = 1;
       while (true) {
           yield x;
           [sumSet, mcs, x] = nextMC(sumSet, mcs, x);
       }
   }
   // nextMC :: Set Int -> [Int] -> Int -> (Set Int, [Int], Int)
   const nextMC = (setSums, mcs, n) => {
       // Set of sums -> Series up to n -> Next term in series
       const valid = x => {
           for (const m of mcs) {
               if (setSums.has(x + m)) return false;
           }
           return true;
       };
       const x = until(valid, succ, n);
       return [
           sumList(mcs, x)
           .reduce(
               (a, n) => (a.add(n), a),
               setSums
           ),
           mcs.concat(x),
           x
       ]
   };
   // sumList :: [Int] -> Int -> [Int]
   const sumList = (xs, n) =>
       // Series so far -> additional term -> new sums
       [2 * n].concat(map(x => n + x, xs));


   // GENERIC FUNCTIONS ----------------------------
   // drop :: Int -> [a] -> [a]
   // drop :: Int -> Generator [a] -> Generator [a]
   // drop :: Int -> String -> String
   const drop = (n, xs) =>
       Infinity > length(xs) ? (
           xs.slice(n)
       ) : (take(n, xs), xs);


   // Returns Infinity over objects without finite length.
   // This enables zip and zipWith to choose the shorter
   // argument when one is non-finite, like cycle, repeat etc
   // length :: [a] -> Int
   const length = xs =>
       (Array.isArray(xs) || 'string' === typeof xs) ? (
           xs.length
       ) : Infinity;
   // map :: (a -> b) -> [a] -> [b]
   const map = (f, xs) =>
       (Array.isArray(xs) ? (
           xs
       ) : xs.split()).map(f);
   // succ :: Int -> Int
   const succ = x => 1 + x;
   // take :: Int -> [a] -> [a]
   // take :: Int -> String -> String
   const take = (n, xs) =>
       'GeneratorFunction' !== xs.constructor.constructor.name ? (
           xs.slice(0, n)
       ) : [].concat.apply([], Array.from({
           length: n
       }, () => {
           const x = xs.next();
           return x.done ? [] : [x.value];
       }));
   // until :: (a -> Bool) -> (a -> a) -> a -> a
   const until = (p, f, x) => {
       let v = x;
       while (!p(v)) v = f(v);
       return v;
   };
   // MAIN ---
   return main();

})();</lang>

Output:
Mian-Chowla terms 1-30:
1,2,4,8,13,21,31,45,66,81,97,123,148,182,204,252,290,361,401,475,565,593,662,775,822,916,970,1016,1159,1312

Mian-Chowla terms 91-100:
22526,23291,23564,23881,24596,24768,25631,26037,26255,27219

[Finished in 0.184s]

(Executed in the Atom editor, using Run Script)

Julia

Optimization in Julia can be an incremental process. The first version of this program ran in over 2 seconds. Using a hash table for lookup of sums and avoiding reallocation of arrays helps considerably. <lang julia>function mianchowla(n)

   seq = ones(Int, n)
   sums = Dict{Int,Int}()
   tempsums = Dict{Int,Int}()
   for i in 2:n
       seq[i] = seq[i - 1] + 1
       incrementing = true
       while incrementing
           for j in 1:i
               tsum = seq[j] + seq[i]
               if haskey(sums, tsum)
                   seq[i] += 1
                   empty!(tempsums)
                   break
               else
                   tempsums[tsum] = 0
                   if j == i
                       merge!(sums, tempsums)
                       empty!(tempsums)
                       incrementing = false
                   end
               end
           end
       end
   end
   seq

end

function testmianchowla()

   println("The first 30 terms of the Mian-Chowla sequence are $(mianchowla(30)).")
   println("The 91st through 100th terms of the Mian-Chowla sequence are $(mianchowla(100)[91:100]).")

end

testmianchowla() @time testmianchowla()

</lang>

Output:
...
The first 30 terms of the Mian-Chowla sequence are [1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, 565, 593, 662, 775, 822, 916, 970, 1016, 1159, 1312].
The 91st through 100th terms of the Mian-Chowla sequence are [22526, 23291, 23564, 23881, 24596, 24768, 25631, 26037, 26255, 27219].
  0.007524 seconds (168 allocations: 404.031 KiB)

Kotlin

Translation of: Go

<lang scala>// Version 1.3.21

fun mianChowla(n: Int): List<Int> {

   val mc = MutableList(n) { 0 }
   mc[0] = 1
   val hs = HashSet<Int>(n * (n + 1) / 2)
   hs.add(2)
   val hsx = mutableListOf<Int>()
   for (i in 1 until n) {
       hsx.clear()
       var j = mc[i - 1]
       outer@ while (true) {
           j++
           mc[i] = j
           for (k in 0..i) {
               val sum = mc[k] + j
               if (hs.contains(sum)) {
                   hsx.clear()
                   continue@outer
               }
               hsx.add(sum)
           }
           hs.addAll(hsx)
           break
       }
   }
   return mc

}

fun main() {

   val mc = mianChowla(100)
   println("The first 30 terms of the Mian-Chowla sequence are:")
   println(mc.subList(0, 30))
   println("\nTerms 91 to 100 of the Mian-Chowla sequence are:")
   println(mc.subList(90, 100))

}</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
[1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, 565, 593, 662, 775, 822, 916, 970, 1016, 1159, 1312]

Terms 91 to 100 of the Mian-Chowla sequence are:
[22526, 23291, 23564, 23881, 24596, 24768, 25631, 26037, 26255, 27219]

Pascal

Works with: Free Pascal

keep sum of all sorted.Memorizing the compare positions speeds up.

const
  deltaK = 250;
  maxCnt = 25000;
 Using 
  tElem = Uint64;
  t_n_sum_all = array of tElem; //dynamic array
    n          mian-chowla[n]  average dist    runtime
   250                317739           1270       429 ms// runtime setlength of 2.35 GB ~ 400ms
   500               2085045           7055       589 ms
   750               6265086          16632      1053 ms
..
  1500              43205712          67697      6669 ms
..
  3000             303314913         264489     65040 ms //2xn -> runtime x9,75
..
  6000            2189067236        1019161    719208 ms //2xn -> runtime x11,0
  6250            2451223363        1047116    825486 ms
..
 12000           15799915996        3589137   8180177 ms //2xn -> runtime x11,3
 12250           16737557137        3742360   8783711 ms
 12500           17758426186        4051041   9455371 ms
..
 24000          115709049568       13738671  99959526 ms  //2xn -> runtime x12
 24250          119117015697       13492623 103691559 ms
 24500          122795614247       14644721 107758962 ms
 24750          126491059919       14708578 111875949 ms
 25000          130098289096       14414457 115954691 ms //dt = 4078s ->16s/per number
 
 real  1932m34,698s => 1d8h12m35

<lang pascal>program MianChowla; //compiling with /usr/lib/fpc/3.2.0/ppcx64.2 -MDelphi -O4 -al "%f" {$CODEALIGN proc=8,loop=4 } uses

 sysutils;

const

 deltaK = 100;
 maxCnt = 1000;

type

 tElem  = Uint32;
 tpElem = pUint32;
 t_n = array[0..maxCnt+1] of tElem;
 t_n_sum_all = array[0..(maxCnt+1)*(maxCnt+2) DIV 2] of tElem;

var

 n_LastPos,
 n : t_n;
 n_sum_all : t_n_sum_all;
 maxIdx,
 maxN,
 max_SumIdx : NativeUInt;

procedure Init; var

 i : NativeInt;

begin

 maxIdx := 1;
 maxN   := 1;
 n[maxIdx] := maxN;
 max_SumIdx := 1;
 n_sum_all[max_SumIdx] := 2*maxN;
 For i := 0 to maxCnt do
   n_LastPos[i] := 1;

end;

procedure InsertNew_sum(NewValue:NativeUint); //insertion already knowning the positions var

 pElem :tpElem;
 InsIdx,chkIdx,oldIdx,newIdx : nativeInt;

Begin

 newIdx := maxIdx;
 oldIdx := max_SumIdx;
 //append new value
 inc(maxIdx);
 n[maxIdx] := NewValue;
 //extend sum_
 inc(max_SumIdx,maxIdx);
 //heighest value already known
 InsIdx := max_SumIdx;
 n_sum_all[InsIdx] := 2*NewValue;
 //stop mark
 n_sum_all[InsIdx+1] := High(tElem);
 pElem := @n_sum_all[0];
 dec(InsIdx);
 //n_LastPos[newIdx]+newIdx-1 == InsIdx
 repeat
   //move old bigger values
   chkIdx := n_LastPos[newIdx]+newIdx-1;
   while InsIdx > chkIdx do
   Begin
     pElem[InsIdx] := pElem[oldIdx];
     dec(InsIdx);
     dec(oldIdx);
   end;
   //insert new value
   pElem[InsIdx] := NewValue+n[newIdx];
   dec(InsIdx);
   dec(newIdx);
   //all inserted
 until newIdx <= 0;
 //new minimum search position one behind, oldidx is one to small
 inc(oldidx,2);
 For newIdx := 1 to maxIdx do
   n_LastPos[newIdx] := oldIdx;

end; procedure FindNew; var

 pSumAll,pn : tpElem;
 i,LastCheckPos,newValue,newSum : NativeUint;
 TestRes : boolean;

begin

 //start value = last inserted value
 newValue := n[maxIdx];
 pSumAll := @n_sum_all[0];
 pn := @n[0];
 repeat
   //try next number
   inc(newValue);
   LastCheckPos := n_LastPos[1];
   i := 1;
   //check if sum = new is already n all_sum
   repeat
     newSum := newValue+pn[i];
     IF LastCheckPos < n_LastPos[i] then
       LastCheckPos := n_LastPos[i];
     while pSumAll[LastCheckPos] < newSum do
       inc(LastCheckPos);
     //memorize LastCheckPos;
     n_LastPos[i] := LastCheckPos;
     TestRes:= pSumAll[LastCheckPos] = newSum;
     IF TestRes then
       BREAK;
     inc(i);
   until i>maxIdx;
   //found?
   If not(TestRes) then
     BREAK;
 until false;
 InsertNew_sum(newValue);

end;

var

 T1,T0: Int64;
 i,k : NativeInt;

procedure Out_num(k:NativeInt); Begin

 T1 := GetTickCount64;
 //     k      n[k]     average dist last deltak          total time
 writeln(k:6,n[k]:12,(n[k]-n[k-deltaK+1]) DIV deltaK:8,T1-T0:8,' ms');

end;

BEGIN

 writeln('Allocated memory ',2*SizeOf(t_n)+Sizeof(t_n_sum_all));
 T0 := GetTickCount64;
 while t0 = GetTickCount64 do;
 T0 := GetTickCount64;
 Init;
 k := deltaK;
 i := 1;
 repeat
   repeat
     FindNew;
     inc(i);
   until i=k;
   Out_num(k);
   k := k+deltaK;
 until k>maxCnt;
 writeln;
 writeln(#13,'The first 30 terms of the Mian-Chowla sequence are');
 For i := 1 to 30 do
   write(n[i],' ');
 writeln;
 writeln;
 writeln('The terms 91 - 100 of the Mian-Chowla sequence are');
 For i := 91 to 100 do
   write(n[i],' ');
 writeln;

END. </lang>

Output:
Allocated memory 2014024
   100       27219     272   0.002 s
   200      172922    1443   0.011 s
   300      514644    3404   0.037 s
   400     1144080    6197   0.090 s
   500     2085045    9398   0.179 s
   600     3375910   12689   0.311 s
   700     5253584   18705   0.520 s
   800     7600544   23438   0.801 s
   900    10441056   28339   1.160 s
  1000    14018951   35611   1.640 s
The first 30 terms of the Mian-Chowla sequence are
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

The terms 91 - 100 of the Mian-Chowla sequence are
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Perl

<lang perl>use strict; use warnings; use feature 'say';

sub generate_mc {

   my($max)  = @_;
   my $index = 0;
   my $test  = 1;
   my %sums  = (2 => 1);
   my @mc    = 1;
   while ($test++) {
       my %these = %sums;
       map { next if ++$these{$_ + $test} > 1 } @mc[0..$index], $test;
       %sums = %these;
       $index++;
       return @mc if (push @mc, $test) > $max-1;
   }

}

my @mian_chowla = generate_mc(100); say "First 30 terms in the Mian–Chowla sequence:\n", join(' ', @mian_chowla[ 0..29]),

   "\nTerms 91 through 100:\n",                     join(' ', @mian_chowla[90..99]);</lang>
Output:
First 30 terms in the Mian–Chowla sequence:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

Terms 91 through 100:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Perl 6

<lang perl6>my @mian-chowla = 1, |(2..Inf).map: -> $test {

   state $index = 1;
   state %sums  = 2 => 1;
   my $next;
   my %these;
   @mian-chowla[^$index].map: { ++$next and last if %sums{$_ + $test}:exists; ++%these{$_ + $test} };
   next if $next;
   ++%sums{$test + $test}; 
   %sums.push: %these;
   ++$index;
   $test

};

put "First 30 terms in the Mian–Chowla sequence:\n", @mian-chowla[^30]; put "\nTerms 91 through 100:\n", @mian-chowla[90..99];</lang>

Output:
First 30 terms in the Mian–Chowla sequence:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

Terms 91 through 100:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Phix

<lang Phix>function mian_chowla(integer n) sequence mc = {1},

        is = {false,true}
   integer len_is = 2, s
   for i=2 to n do
       sequence isx = {}
       integer j = mc[i-1]+1
       mc = append(mc,j)
       while true do
           for k=1 to length(mc) do
               s = mc[k] + j
               if s<=len_is and is[s] then
                   isx = {}
                   exit
               end if
               isx = append(isx,s)
           end for
           if length(isx) then
               s = isx[$]
               if s>len_is then
                   is &= repeat(false,s-len_is)
                   len_is = length(is)
               end if
               for k=1 to length(isx) do
                   is[isx[k]] = true
               end for
               exit
           end if
           j += 1
           mc[i] = j
       end while
   end for
   return mc

end function

atom t0 = time() sequence mc = mian_chowla(100) printf(1,"The first 30 terms of the Mian-Chowla sequence are:\n %v\n",{mc[1..30]}) printf(1,"Terms 91 to 100 of the Mian-Chowla sequence are:\n %v\n",{mc[91..100]}) printf(1,"completed in %s\n",{elapsed(time()-t0)})</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
 {1,2,4,8,13,21,31,45,66,81,97,123,148,182,204,252,290,361,401,475,565,593,662,775,822,916,970,1016,1159,1312}
Terms 91 to 100 of the Mian-Chowla sequence are:
 {22526,23291,23564,23881,24596,24768,25631,26037,26255,27219}
completed in 0.1s

Python

Procedural

<lang python>from itertools import count, islice, chain import time

def mian_chowla():

   mc = [1]
   yield mc[-1]
   psums = set([2])
   newsums = set([])
   for trial in count(2):
       for n in chain(mc, [trial]):
           sum = n + trial
           if sum in psums:
               newsums.clear()
               break
           newsums.add(sum)
       else:
           psums |= newsums
           newsums.clear()
           mc.append(trial)
           yield trial

def pretty(p, t, s, f):

   print(p, t, " ".join(str(n) for n in (islice(mian_chowla(), s, f))))

if __name__ == '__main__':

   st = time.time()
   ts = "of the Mian-Chowla sequence are:\n"
   pretty("The first 30 terms", ts, 0, 30)
   pretty("\nTerms 91 to 100", ts, 90, 100)
   print("\nComputation time was", (time.time()-st) * 1000, "ms")</lang>
Output:
The first 30 terms of the Mian-Chowla sequence are:
 1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

Terms 91 to 100 of the Mian-Chowla sequence are:
 22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Computation time was 53.58004570007324 ms

Functional

Works with: Python version 3.7

<lang python>Mian-Chowla series

from itertools import (islice) from time import time


  1. mianChowlas :: Gen [Int]

def mianChowlas():

   Mian-Chowla series - Generator constructor
   
   mcs = [1]
   sumSet = set([2])
   x = 1
   while True:
       yield x
       (sumSet, mcs, x) = nextMC(sumSet, mcs, x)


  1. nextMC :: (Set Int, [Int], Int) -> (Set Int, [Int], Int)

def nextMC(setSums, mcs, n):

   (Set of sums, series so far, current term) ->
       (updated sum set, updated series, next term)
   
   def valid(x):
       for m in mcs:
           if x + m in setSums:
               return False
       return True
   x = until(valid)(succ)(n)
   setSums.update(
       [x + y for y in mcs] + [2 * x]
   )
   return (setSums, mcs + [x], x)


  1. TEST ----------------------------------------------------
  2. main :: IO ()

def main():

   Tests
   start = time()
   genMianChowlas = mianChowlas()
   print(
       'First 30 terms of the Mian-Chowla series:\n',
       take(30)(genMianChowlas)
   )
   drop(60)(genMianChowlas)
   print(
       '\n\nTerms 91 to 100 of the Mian-Chowla series:\n',
       take(10)(genMianChowlas),
       '\n'
   )
   print(
       '(Computation time c. ' + str(round(
           1000 * (time() - start)
       )) + ' ms)'
   )


  1. GENERIC -------------------------------------------------
  1. drop :: Int -> [a] -> [a]
  2. drop :: Int -> String -> String

def drop(n):

   The suffix of xs after the
      first n elements, or [] if n > length xs
   def go(xs):
       if isinstance(xs, list):
           return xs[n:]
       else:
           take(n)(xs)
           return xs
   return lambda xs: go(xs)


  1. succ :: Int -> Int

def succ(x):

   The successor of a numeric value (1 +)
   return 1 + x


  1. take :: Int -> [a] -> [a]
  2. take :: Int -> String -> String

def take(n):

   The prefix of xs of length n,
      or xs itself if n > length xs.
   return lambda xs: (
       xs[0:n]
       if isinstance(xs, list)
       else list(islice(xs, n))
   )


  1. until :: (a -> Bool) -> (a -> a) -> a -> a

def until(p):

   The result of applying f until p holds.
      The initial seed value is x.
   def go(f, x):
       v = x
       while not p(v):
           v = f(v)
       return v
   return lambda f: lambda x: go(f, x)


if __name__ == '__main__':

   main()</lang>
Output:
First 30 terms of the Mian-Chowla series:
 [1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, 565, 593, 662, 775, 822, 916, 970, 1016, 1159, 1312]

Terms 91 to 100 of the Mian-Chowla series:
 [22526, 23291, 23564, 23881, 24596, 24768, 25631, 26037, 26255, 27219] 

(Computation time c. 27 ms)

REXX

Programming note:   the   do   loop   (line ten):

      do j=i  for t-i+1;  ···

can be coded as:

      do j=i  to t;       ···

but the 1st version is faster. <lang rexx>/*REXX program computes and displays any range of the Mian─Chowla integer sequence. */ parse arg LO HI . /*obtain optional arguments from the CL*/ if LO== | LO=="," then LO= 1 /*Not specified? Then use the default.*/ if HI== | HI=="," then HI= 30 /* " " " " " " */ r.= 0 /*initialize the rejects stemmed array.*/

  1. = 0 /*count of numbers in sequence (so far)*/

$= /*the Mian─Chowla sequence (so far). */

  do t=1  until #=HI;      !.= r.0              /*process numbers until range is filled*/
    do i=1    for t;       if r.i  then iterate /*I  already rejected?  Then ignore it.*/
      do j=i  for t-i+1;   if r.j  then iterate /*J     "        "        "     "    " */
      _= i + j                                  /*calculate the sum of   I   and   J.  */
      if !._  then do;  r.t= 1; iterate t;  end /*reject  T  from the Mian─Chowla seq. */
      !._= 1                                    /*mark _ as one of the sums in sequence*/
      end   /*j*/
    end     /*i*/
  #= # + 1                                      /*bump the counter of terms in the list*/
  if #>=LO  &  #<=HI  then $= $ t               /*In the specified range?  Add to list.*/
  end       /*t*/

say 'The Mian─Chowla sequence for terms ' LO "──►" HI ' (inclusive):' say strip($) /*ignore the leading superfluous blank.*/</lang>

output   when using the default inputs:
The Mian─Chowla sequence for terms  1 ──► 30  (inclusive):
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
output   when using the input of:     91   100
The Mian─Chowla sequence for terms 91 ──► 100  (inclusive):
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Ruby

Translation of: Go

<lang ruby>require 'set' n, ts, mc, sums = 100, [], [1], Set.new sums << 2 st = Time.now for i in (1 .. (n-1))

  for j in mc[i-1]+1 .. Float::INFINITY
     mc[i] = j
     for k in (0 .. i)
        if (sums.include?(sum = mc[k]+j))
           ts.clear
           break 
        end
        ts << sum
     end
     if (ts.length > 0)
        sums = sums | ts
        break
     end
  end

end et = (Time.now - st) * 1000 s = " of the Mian-Chowla sequence are:\n" puts "The first 30 terms#{s}#{mc.slice(0..29).join(' ')}\n\n" puts "Terms 91 to 100#{s}#{mc.slice(90..99).join(' ')}\n\n" puts "Computation time was #{et.round(1)}ms."</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Computation time was 63.0ms.

Or using an Enumerator:

<lang ruby>mian_chowla = Enumerator.new do |yielder|

 mc, sums  = [1], {}
 1.step do |n|
   mc << n
   if  mc.none?{|k| sums[k+n] } then
     mc.each{|k| sums[k+n] = true }
     yielder << n
   else 
     mc.pop # n didn't work, get rid of it.
   end
 end

end

res = mian_chowla.take(100).to_a

s = " of the Mian-Chowla sequence are:\n" puts "The first 30 terms#{s}#{res[0,30].join(' ')}\n Terms 91 to 100#{s}#{res[90,10].join(' ')}" </lang>

Sidef

Translation of: Go

<lang ruby>var (n, sums, ts, mc) = (100, Set([2]), [], [1]) var st = Time.micro_sec for i in (1 ..^ n) {

  for j in (mc[i-1]+1 .. Inf) {
     mc[i] = j
     for k in (0 .. i) {
        var sum = mc[k]+j
        if (sums.exists(sum)) { 
           ts.clear
           break
        }
        ts << sum
     }
     if (ts.len > 0) {
        sums = (sums|Set(ts...))
        break
     }
  }

} var et = (Time.micro_sec - st) var s = " of the Mian-Chowla sequence are:\n" say "The first 30 terms#{s}#{mc.ft(0, 29).join(' ')}\n" say "Terms 91 to 100#{s}#{mc.ft(90, 99).join(' ')}\n" say "Computation time was #{et} seconds."</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Computation time was 3.9831 seconds.

Swift

Translation of: Go

<lang Swift>public func mianChowla(n: Int) -> [Int] {

 var mc = Array(repeating: 0, count: n)
 var ls = [2: true]
 var sum = 0
 mc[0] = 1
 for i in 1..<n {
   var lsx = [Int]()
   jLoop: for j in (mc[i-1]+1)... {
     mc[i] = j
     for k in 0...i {
       sum = mc[k] + j
       if ls[sum] ?? false {
         lsx = []
         continue jLoop
       }
       lsx.append(sum)
     }
     for n in lsx {
       ls[n] = true
     }
     break
   }
 }
 return mc

}

let seq = mianChowla(n: 100)

print("First 30 terms in sequence are: \(Array(seq.prefix(30)))") print("Terms 91 to 100 are: \(Array(seq[90..<100]))")</lang>

Output:
First 30 terms in sequence are: [1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, 565, 593, 662, 775, 822, 916, 970, 1016, 1159, 1312]
Terms 91 to 100 are: [22526, 23291, 23564, 23881, 24596, 24768, 25631, 26037, 26255, 27219]

VBScript

<lang vb>' Mian-Chowla sequence - VBScript - 15/03/2019

   Const m = 100, mm=28000
   ReDim r(mm), v(mm * 2)
   Dim n, t, i, j, l, s1, s2, iterate_t
   ReDim seq(m)
   t0=Timer
   s1 = "1": s2 = ""
   seq(1) = 1: n = 1: t = 1
   Do While n < m
       t = t + 1
       iterate_t = False
       For i = 1 to t * 2
           v(i) = 0
       Next
       i = 1
       Do While i <= t And Not iterate_t
           If r(i) = 0 Then
               j = i
               Do While j <= t And Not iterate_t
                   If r(j) = 0 Then
                       l = i + j
                       If v(l) = 1 Then
                           r(t) = 1
                           iterate_t = True
                       End If
                       If Not iterate_t Then v(l) = 1
                   End If
                   j = j + 1
               Loop
           End If
           i = i + 1
       Loop
       If Not iterate_t Then
           n = n + 1
           seq(n) = t
           if           n<= 30 then s1 = s1 & " " & t
           if n>=91 and n<=100 then s2 = s2 & " " & t
       End If
   Loop
   wscript.echo "t="& t
   wscript.echo "The Mian-Chowla sequence for elements 1 to 30:"
   wscript.echo s1
   wscript.echo "The Mian-Chowla sequence for elements 91 to 100:"
   wscript.echo s2
   wscript.echo "Computation time: "&  Int(Timer-t0) &" sec"</lang>
Output:
The Mian-Chowla sequence for elements 1 to 30:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
The Mian-Chowla sequence for elements 91 to 100:
 22526 23291 23564 23881 24596 24768 25631 26037 26255 27219
Computation time: 2381 sec

Execution time: 40 min

Shorter execution time

Translation of: Go

<lang vb>' Mian-Chowla sequence - VBScript - March 19th, 2019

   Function Find(x(), val) ' finds val on a pre-sorted list
       Dim l, u, h : l = 0 : u = ubound(x) : Do : h = (l + u) \ 2
           If val = x(h) Then Find = h : Exit Function
           If val > x(h) Then l = h + 1 Else u = h - 1
       Loop Until l > u : Find = -1
   End Function
   ' adds next item from a() to result (r()), adds all remaining items
   ' from b(), once a() is exhausted
   Sub Shuffle(ByRef r(), a(), b(), ByRef i, ByRef ai, ByRef bi, al, bl)
       r(i) = a(ai) : ai = ai + 1 : If ai > al Then Do : i = i + 1 : _
           r(i) = b(bi) : bi = bi + 1 : Loop until bi = bl
   End Sub
   Function Merger(a(), b(), bl) ' merges two pre-sorted lists
       Dim res(), ai, bi, i : ReDim res(ubound(a) + bl) : ai = 0 : bi = 0
       For i = 0 To ubound(res)
           If a(ai) < b(bi) Then Shuffle res, a, b, i, ai, bi, ubound(a), bl _
           Else Shuffle res, b, a, i, bi, ai, bl, ubound(a)
       Next : Merger = res
   End Function
   Const n = 100 : Dim mc(), sums(), ts(), sp, tc : sp = 1 : tc = 0
   ReDim mc(n - 1), sums(0), ts(n - 1) : mc(0) = 1 : sums(sp - 1) = 2
   Dim sum, i, j, k, st : st = Timer
   wscript.echo "The Mian-Chowla sequence for elements 1 to 30:"
   wscript.stdout.write("1 ")
   For i = 1 To n - 1 : j = mc(i - 1) + 1 : Do    
           mc(i) = j : For k = 0 To i
               sum = mc(k) + j : If Find(sums, sum) >= 0 Then _
                   tc = 0 : Exit For Else ts(tc) = sum : tc = tc + 1
           Next : If tc > 0 Then
             nu = Merger(sums, ts, tc) : ReDim sums(ubound(nu)) 
             For e = 0 To ubound(nu) : sums(e) = nu(e) : Next
             tc = 0 : Exit Do 
           End If : j = j + 1 : Loop
       if i = 90 then wscript.echo vblf & vbLf & _
           "The Mian-Chowla sequence for elements 91 to 100:"
       If i < 30 or i >= 90 Then wscript.stdout.write(mc(i) & " ")
   Next
   wscript.echo vblf & vbLf & "Computation time: "& Timer - st &" seconds."</lang>
Output:

Hint: save the code to a .vbs file (such as "mc.vbs") and start it with this command Line: "cscript.exe /nologo mc.vbs". This will send the output to the console instead of a series of message boxes.
This goes faster because the cache of sums is maintained throughout the computation instead of being reinitialized at each iteration. Also the sums() array is kept sorted to find any previous values quicker.

The Mian-Chowla sequence for elements 1 to 30:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

The Mian-Chowla sequence for elements 91 to 100:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Computation time: 1.328125 seconds.

Visual Basic .NET

Translation of: Go

<lang vbnet>Module Module1 Function MianChowla(ByVal n As Integer) As Integer()

       Dim mc(n - 1) As Integer, sums, ts As New HashSet(Of Integer),
       sum As Integer : mc(0) = 1 : sums.Add(2)
       For i As Integer = 1 To n - 1
           For j As Integer = mc(i - 1) + 1 To Integer.MaxValue
               mc(i) = j
               For k As Integer = 0 To i
                   sum = mc(k) + j
                   If sums.Contains(sum) Then ts.Clear() : Exit For
                   ts.Add(sum)
               Next
               If ts.Count > 0 Then sums.UnionWith(ts) : Exit For
           Next
       Next
       Return mc
   End Function
   Sub Main(ByVal args As String())
       Const n As Integer = 100
       Dim sw As New Stopwatch(), str As String = " of the Mian-Chowla sequence are:" & vbLf
       sw.Start() : Dim mc As Integer() = MianChowla(n) : sw.Stop()
       Console.Write("The first 30 terms{1}{2}{0}{0}Terms 91 to 100{1}{3}{0}{0}" &
           "Computation time was {4}ms.{0}", vbLf, str,
           String.Join(" ", mc.Take(30)), String.Join(" ", mc.Skip(n - 10)), sw.ElapsedMilliseconds)
   End Sub

End Module</lang>

Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312

Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219

Computation time was 18ms.