Map range: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎{{header|REXX}}: modified first three REXX versions to use any increment and also use the correct "from" and "to" values (instead of hard-coding them), and also to use dynamic calculation for the BY value (the stepping or DO loop increment).)
Line 1,543: Line 1,543:


=={{header|REXX}}==
=={{header|REXX}}==
(The different versions don't differ idiomatically but just in style.)
(The different versions don't differ idiomatically that much, but mostly just in style.)

<br><br>All program versions could be made more robust by checking if the high and low ends of rangeA aren't equal.
The first three versions support different increments &nbsp; (the &nbsp; '''inc''' &nbsp; varaible) &nbsp; and an &nbsp; '''A''' &nbsp; range that is decreasing in values
===Version 1===
<br>(that is, the 2nd number [usually the high] in the range is less than the first number in the range [usually the low]).
===version 1===
<lang rexx>/*REXX program maps a number from one range to another range. */
<lang rexx>/*REXX program maps a number from one range to another range. */
rangeA = 0 10 /*or: rangeA = ' 0 10 ' */

rangeB = -1 0 /*or: rangeB = " -1 0 " */
rangeA = '0 10'
parse var RangeA L H
rangeB = '-1 0'
inc=1

do j=0 to 10
do j=L to H by inc*(1-2*sign(H<L)) /*BY: +inc │ -inc) */
say right(j,3) ' maps to ' mapRange(rangeA, rangeB, j)
say right(j,digits()) ' maps to ' mapRange(rangeA,rangeB,j)
end /*j*/
end /*j*/
exit /*stick a fork in it, we're done.*/
exit /*stick a fork in it, we're done.*/

/*──────────────────────────────────MAPRANGE subroutine─────────────────*/
/*──────────────────────────────────MAPRANGE subroutine─────────────────*/
mapRange: procedure; arg a1 a2,b1 b2,x; return b1+(x-a1)*(b2-b1)/(a2-a1)</lang>
mapRange: procedure; arg a1 a2,b1 b2,s; return b1+ (s-a1)*(b2-b1)/(a2-a1)</lang>
{{out}}
{{out}}
<pre>
<pre>
0 maps to -1
0 maps to -1
1 maps to -0.9
1 maps to -0.9
2 maps to -0.8
2 maps to -0.8
3 maps to -0.7
3 maps to -0.7
4 maps to -0.6
4 maps to -0.6
5 maps to -0.5
5 maps to -0.5
6 maps to -0.4
6 maps to -0.4
7 maps to -0.3
7 maps to -0.3
8 maps to -0.2
8 maps to -0.2
9 maps to -0.1
9 maps to -0.1
10 maps to 0
10 maps to 0
</pre>
</pre>


===Version 2===
===version 2===
This version demonstrates an increment ('''inc''') of &nbsp; '''1/2''' &nbsp; instead of the usual unity.
<lang rexx>/*REXX program maps a number from one range to another range. */
<lang rexx>/*REXX program maps a number from one range to another range with inc=½.*/

do j=0 to 10
rangeA = 10 0 /*or: rangeA = ' 10 0 ' */
say right(j,3) ' maps to ' mapRange(0 10, -1 0, j)
rangeB = -1 0 /*or: rangeB = " -1 0 " */
parse var RangeA L H /*note the LOW & HIGH values in A*/
inc= 1/2 /*use a different step size (inc)*/
do j=L to H by inc*(1-2*sign(H<L)) /*BY: +inc │ -inc) */
say right(j,9) ' maps to ' mapRange(rangeA,rangeB,j)
end /*j*/
end /*j*/
exit /*stick a fork in it, we're done.*/
exit /*stick a fork in it, we're done.*/

/*──────────────────────────────────MAPRANGE subroutine─────────────────*/
/*──────────────────────────────────MAPRANGE subroutine─────────────────*/
mapRange: procedure; arg a1 a2,b1 b2,x; return b1+(x-a1)*(b2-b1)/(a2-a1)</lang>
mapRange: procedure; arg a1 a2,b1 b2,s; return b1+ (s-a1)*(b2-b1)/(a2-a1)</lang>
'''output:'''
<pre>
10 maps to -1
9.5 maps to -0.95
9.0 maps to -0.9
8.5 maps to -0.85
8.0 maps to -0.8
7.5 maps to -0.75
7.0 maps to -0.7
6.5 maps to -0.65
6.0 maps to -0.6
5.5 maps to -0.55
5.0 maps to -0.5
4.5 maps to -0.45
4.0 maps to -0.4
3.5 maps to -0.35
3.0 maps to -0.3
2.5 maps to -0.25
2.0 maps to -0.2
1.5 maps to -0.15
1.0 maps to -0.1
0.5 maps to -0.05
0 maps to 0
</pre>


===Version 3===
===version 3===
This version shows an in-line evaluation of the range mapping.
<lang rexx>/*REXX program maps a number from one range to another range. */
<lang rexx>/*REXX program maps a number from one range to another range. */
rangeA = 0 10; parse var rangeA a1 a2

rangeA = '0 10'; parse var rangeA a1 a2
rangeB = -1 0; parse var rangeB b1 b2
inc=1
rangeB = '-1 0'; parse var rangeB b1 b2
do j=a1 to a2 by inc*(1-2*sign(a2<a1)) /*BY: +inc │ -inc) */

do j=0 to 10
say right(j,digits()) ' maps to ' b1+(j-a1)*(b2-b1)/(a2-a1)
say right(j,3) ' maps to ' b1+(x-a1)*(b2-b1)/(a2-a1)
end /*j*/
end /*j*/
/*stick a fork in it, we're done.*/</lang>
/*stick a fork in it, we're done.*/</lang>
'''output''' is the same as version 1. <br>

===Version 4===
===Version 4===
<lang rexx>/*REXX program maps a number from one range to another range. */
<lang rexx>/*REXX program maps a number from one range to another range. */

Revision as of 00:41, 4 March 2015

Task
Map range
You are encouraged to solve this task according to the task description, using any language you may know.

Given two ranges, and ; then a value in range is linearly mapped to a value in range when:

The task is to write a function/subroutine/... that takes two ranges and a real number, and returns the mapping of the real number from the first to the second range. Use this function to map values from the range [0, 10] to the range [-1, 0].

Extra credit: Show additional idiomatic ways of performing the mapping, using tools available to the language.

ACL2

<lang Lisp>(defun mapping (a1 a2 b1 b2 s)

  (+ b1 (/ (* (- s a1)
              (- b2 b1))
           (- a2 a1))))

(defun map-each (a1 a2 b1 b2 ss)

  (if (endp ss)
      nil
      (cons (mapping a1 a2 b1 b2 (first ss))
            (map-each a1 a2 b1 b2 (rest ss)))))

(map-each 0 10 -1 0 '(0 1 2 3 4 5 6 7 8 9 10))

(-1 -9/10 -4/5 -7/10 -3/5 -1/2 -2/5 -3/10 -1/5 -1/10 0)

</lang>

Ada

<lang Ada>with Ada.Text_IO; procedure Map is

  type First_Range  is new Float range 0.0 .. 10.0;
  type Second_Range is new Float range -1.0 .. 0.0;
  function Translate (Value : First_Range) return Second_Range is
     B1 : Float := Float (Second_Range'First);
     B2 : Float := Float (Second_Range'Last);
     A1 : Float := Float (First_Range'First);
     A2 : Float := Float (First_Range'Last);
     Result : Float;
  begin
     Result := B1 + (Float (Value) - A1) * (B2 - B1) / (A2 - A1);
     return Second_Range (Result);
  end;
  function Translate (Value : Second_Range) return First_Range is
     B1 : Float := Float (First_Range'First);
     B2 : Float := Float (First_Range'Last);
     A1 : Float := Float (Second_Range'First);
     A2 : Float := Float (Second_Range'Last);
     Result : Float;
  begin
     Result := B1 + (Float (Value) - A1) * (B2 - B1) / (A2 - A1);
     return First_Range (Result);
  end;
  Test_Value : First_Range := First_Range'First;

begin

  loop
     Ada.Text_IO.Put_Line (First_Range'Image (Test_Value) & " maps to: "
                         & Second_Range'Image (Translate (Test_Value)));
     exit when Test_Value = First_Range'Last;
     Test_Value := Test_Value + 1.0;
  end loop;

end Map;</lang>

Output:

 0.00000E+00 maps to: -1.00000E+00
 1.00000E+00 maps to: -9.00000E-01
 2.00000E+00 maps to: -8.00000E-01
 3.00000E+00 maps to: -7.00000E-01
 4.00000E+00 maps to: -6.00000E-01
 5.00000E+00 maps to: -5.00000E-01
 6.00000E+00 maps to: -4.00000E-01
 7.00000E+00 maps to: -3.00000E-01
 8.00000E+00 maps to: -2.00000E-01
 9.00000E+00 maps to: -1.00000E-01
 1.00000E+01 maps to:  0.00000E+00

AutoHotkey

Translation of: C

<lang AutoHotkey> mapRange(a1, a2, b1, b2, s) { return b1 + (s-a1)*(b2-b1)/(a2-a1) }

out := "Mapping [0,10] to [-1,0] at intervals of 1:`n"

Loop 11 out .= "f(" A_Index-1 ") = " mapRange(0,10,-1,0,A_Index-1) "`n" MsgBox % out </lang>

Axiom

Axiom provides a Segment domain for intervals. The following uses a closure for a mapRange function over fields, which provides for some generality. <lang Axiom>)abbrev package TESTP TestPackage TestPackage(R:Field) : with

   mapRange: (Segment(R), Segment(R)) -> (R->R) 
 == add
   mapRange(fromRange, toRange) == 
     (a1,a2,b1,b2) := (lo fromRange,hi fromRange,lo toRange,hi toRange)
     (x:R):R +-> b1+(x-a1)*(b2-b1)/(a2-a1)</lang>

Use:<lang Axiom>f := mapRange(1..10,a..b) [(xi,f xi) for xi in 1..10]</lang> Output:<lang Axiom> b + 8a 2b + 7a b + 2a 4b + 5a 5b + 4a

  [(1,a), (2,------), (3,-------), (4,------), (5,-------), (6,-------),
                9           9            3           9            9
      2b + a      7b + 2a      8b + a
   (7,------), (8,-------), (9,------), (10,b)]
         3           9            9
                            Type: List(Tuple(Fraction(Polynomial(Integer))))</lang>

AWK

<lang AWK>

  1. syntax: GAWK -f MAP_RANGE.AWK

BEGIN {

   a1 = 0
   a2 = 10
   b1 = -1
   b2 = 0
   for (i=a1; i<=a2; i++) {
     printf("%g maps to %g\n",i,map_range(a1,a2,b1,b2,i))
   }
   exit(0)

} function map_range(a1,a2,b1,b2,num) {

   return b1 + ((num-a1) * (b2-b1) / (a2-a1))

} </lang>

output:

0 maps to -1
1 maps to -0.9
2 maps to -0.8
3 maps to -0.7
4 maps to -0.6
5 maps to -0.5
6 maps to -0.4
7 maps to -0.3
8 maps to -0.2
9 maps to -0.1
10 maps to 0

BBC BASIC

<lang bbcbasic> @% = 5 : REM Column width

     DIM range{l, h}
     DIM A{} = range{}, B{} = range{}
     A.l = 0 : A.h = 10
     B.l = -1 : B.h = 0
     FOR n = 0 TO 10
       PRINT n " maps to " FNmaprange(A{}, B{}, n)
     NEXT
     END
     
     DEF FNmaprange(a{}, b{}, s)
     = b.l + (s - a.l) * (b.h - b.l) / (a.h - a.l)</lang>

Output:

    0 maps to    -1
    1 maps to  -0.9
    2 maps to  -0.8
    3 maps to  -0.7
    4 maps to  -0.6
    5 maps to  -0.5
    6 maps to  -0.4
    7 maps to  -0.3
    8 maps to  -0.2
    9 maps to  -0.1
   10 maps to     0

bc

<lang bc>/* map s from [a, b] to [c, d] */ define m(a, b, c, d, s) { return (c + (s - a) * (d - c) / (b - a)) }

scale = 6 /* division to 6 decimal places */ "[0, 10] => [-1, 0] " for (i = 0; i <= 10; i += 2) { /*

        * If your bc(1) has a print statement, you can try

* print i, " => ", m(0, 10, -1, 0, i), "\n" */ i; " => "; m(0, 10, -1, 0, i) } quit</lang>

Output:

[0, 10] => [-1, 0]
0
   => -1.000000
2
   => -.800000
4
   => -.600000
6
   => -.400000
8
   => -.200000
10
   => 0.000000

Bracmat

Translation of: C

<lang bracmat>( ( mapRange

 =   a1,a2,b1,b2,s
   .   !arg:(?a1,?a2.?b1,?b2.?s)
     & !b1+(!s+-1*!a1)*(!b2+-1*!b1)*(!a2+-1*!a1)^-1
 )

& out$"Mapping [0,10] to [-1,0] at intervals of 1:" & 0:?n & whl

 ' ( !n:~>10
   & out$("f(" !n ") = " flt$(mapRange$(0,10.-1,0.!n),2))
   & 1+!n:?n
   )

);</lang> Output:

Mapping [0,10] to [-1,0] at intervals of 1:
f( 0 ) =  -1,00*10E0
f( 1 ) =  -9,00*10E-1
f( 2 ) =  -8,00*10E-1
f( 3 ) =  -7,00*10E-1
f( 4 ) =  -6,00*10E-1
f( 5 ) =  -5,00*10E-1
f( 6 ) =  -4,00*10E-1
f( 7 ) =  -3,00*10E-1
f( 8 ) =  -2,00*10E-1
f( 9 ) =  -1,00*10E-1
f( 10 ) =  0

C

<lang C>#include <stdio.h>

double mapRange(double a1,double a2,double b1,double b2,double s) { return b1 + (s-a1)*(b2-b1)/(a2-a1); }

int main() { int i; puts("Mapping [0,10] to [-1,0] at intervals of 1:");

for(i=0;i<=10;i++) { printf("f(%d) = %g\n",i,mapRange(0,10,-1,0,i)); }

return 0; } </lang>

The output is :

<lang>Mapping [0,10] to [-1,0] at intervals of 1: f(0) = -1 f(1) = -0.9 f(2) = -0.8 f(3) = -0.7 f(4) = -0.6 f(5) = -0.5 f(6) = -0.4 f(7) = -0.3 f(8) = -0.2 f(9) = -0.1 f(10) = 0</lang>

C++

This example defines a template function to handle the mapping, using two std::pair objects to define the source and destination ranges. It returns the provided value mapped into the target range.

It's not written efficiently; certainly, there can be fewer explicit temporary variables. The use of the template offers a choice in types for precision and accuracy considerations, though one area for improvement might be to allow a different type for intermediate calculations.

<lang cpp>#include <iostream>

  1. include <utility>

template<typename tVal> tVal map_value(std::pair<tVal,tVal> a, std::pair<tVal, tVal> b, tVal inVal) {

 tVal inValNorm = inVal - a.first;
 tVal aUpperNorm = a.second - a.first;
 tVal normPosition = inValNorm / aUpperNorm;
 tVal bUpperNorm = b.second - b.first;
 tVal bValNorm = normPosition * bUpperNorm;
 tVal outVal = b.first + bValNorm;
 return outVal;

}

int main() {

 std::pair<float,float> a(0,10), b(-1,0);
 for(float value = 0.0; 10.0 >= value; ++value)
   std::cout << "map_value(" << value << ") = " << map_value(a, b, value) << std::endl;
 return 0;

}</lang>

Output:

map_value(0) = -1
map_value(1) = -0.9
map_value(2) = -0.8
map_value(3) = -0.7
map_value(4) = -0.6
map_value(5) = -0.5
map_value(6) = -0.4
map_value(7) = -0.3
map_value(8) = -0.2
map_value(9) = -0.1
map_value(10) = 0

Clojure

Translation of: Python

<lang clojure> (defn maprange [[a1 a2] [b1 b2] s] (+ b1 (/ (* (- s a1) (- b2 b1)) (- a2 a1))))

> (doseq [s (range 11)]

      (printf "%2s maps to %s\n" s (maprange [0 10] [-1 0] s)))
0 maps to -1
1 maps to -9/10
2 maps to -4/5
3 maps to -7/10
4 maps to -3/5
5 maps to -1/2
6 maps to -2/5
7 maps to -3/10
8 maps to -1/5
9 maps to -1/10

10 maps to 0 </lang>

COBOL

Works with: OpenCOBOL

<lang cobol> IDENTIFICATION DIVISION.

      PROGRAM-ID. demo-map-range.
      DATA DIVISION.
      WORKING-STORAGE SECTION.
      01  i                       USAGE FLOAT-LONG.
      01  mapped-num              USAGE FLOAT-LONG.
      01  a-begin                 USAGE FLOAT-LONG VALUE 0.
      01  a-end                   USAGE FLOAT-LONG VALUE 10.
      01  b-begin                 USAGE FLOAT-LONG VALUE -1.
      01  b-end                   USAGE FLOAT-LONG VALUE 0.
      01  i-display               PIC --9.9.
      01  mapped-display          PIC --9.9.
      PROCEDURE DIVISION.
          PERFORM VARYING i FROM 0 BY 1 UNTIL i > 10
              CALL "map-range" USING CONTENT a-begin, a-end, b-begin,
                  b-end, i, REFERENCE mapped-num
              COMPUTE i-display ROUNDED = i
              COMPUTE mapped-display ROUNDED = mapped-num
              DISPLAY FUNCTION TRIM(i-display) " maps to "
                  FUNCTION TRIM(mapped-display)
          END-PERFORM
          .
      END PROGRAM demo-map-range.


      IDENTIFICATION DIVISION.
      PROGRAM-ID. map-range.
      DATA DIVISION.
      LINKAGE SECTION.
      01  a-begin                 USAGE FLOAT-LONG.
      01  a-end                   USAGE FLOAT-LONG.
      01  b-begin                 USAGE FLOAT-LONG.
      01  b-end                   USAGE FLOAT-LONG.
      01  val-to-map              USAGE FLOAT-LONG.
      01  ret                     USAGE FLOAT-LONG.
      PROCEDURE DIVISION USING a-begin, a-end, b-begin, b-end,
              val-to-map, ret.
          COMPUTE ret = 
              b-begin + ((val-to-map - a-begin) * (b-end - b-begin)
                  / (a-end - a-begin))
          .
      END PROGRAM map-range.</lang>

The output is identical to the output of the Common Lisp example.

Common Lisp

<lang lisp>(defun map-range (a1 a2 b1 b2 s)

 (+ b1
    (/ (* (- s a1)

(- b2 b1)) (- a2 a1))))

(loop

  for i from 0 to 10
  do (format t "~F maps to ~F~C" i

(map-range 0 10 -1 0 i) #\Newline))</lang>

Output:
0.0 maps to -1.0
1.0 maps to -0.9
2.0 maps to -0.8
3.0 maps to -0.7
4.0 maps to -0.6
5.0 maps to -0.5
6.0 maps to -0.4
7.0 maps to -0.3
8.0 maps to -0.2
9.0 maps to -0.1
10.0 maps to 0.0


D

<lang d>double mapRange(in double[] a, in double[] b, in double s) pure nothrow @nogc {

   return b[0] + ((s - a[0]) * (b[1] - b[0]) / (a[1] - a[0]));

}

void main() {

   import std.stdio;
   immutable r1 = [0.0, 10.0];
   immutable r2 = [-1.0, 0.0];
   foreach (immutable s; 0 .. 11)
       writefln("%2d maps to %5.2f", s, mapRange(r1, r2, s));

}</lang>

Output:
 0 maps to -1.00
 1 maps to -0.90
 2 maps to -0.80
 3 maps to -0.70
 4 maps to -0.60
 5 maps to -0.50
 6 maps to -0.40
 7 maps to -0.30
 8 maps to -0.20
 9 maps to -0.10
10 maps to  0.00

Emacs Lisp

<lang lisp>(defun maprange (a1 a2 b1 b2 s)

  (+ b1 (/ (* (- s a1) (- b2 b1)) (- a2 a1))))
 

(dotimes (i 10)

 (princ (maprange 0.0 10.0 -1.0 0.0 i))
 (terpri))</lang>

Erlang

<lang erlang>-module(map_range). -export([map_value/3]).

map_value({A1,A2},{B1,B2},S) ->

   B1 + (S - A1) * (B2 - B1) / (A2 - A1).

</lang>

Euphoria

<lang euphoria>function map_range(sequence a, sequence b, atom s)

   return b[1]+(s-a[1])*(b[2]-b[1])/(a[2]-a[1])

end function

for i = 0 to 10 do

   printf(1, "%2g maps to %4g\n", {i, map_range({0,10},{-1,0},i)})

end for</lang>

Output:

 0 maps to   -1
 1 maps to -0.9
 2 maps to -0.8
 3 maps to -0.7
 4 maps to -0.6
 5 maps to -0.5
 6 maps to -0.4
 7 maps to -0.3
 8 maps to -0.2
 9 maps to -0.1
10 maps to    0

Factor

<lang factor>USE: locals

map-range ( a1 a2 b1 b2 x -- y )
  x a1 - b2 b1 - * a2 a1 - / b1 + ;</lang>

Or: <lang factor>USING: locals infix ;

map-range ( a1 a2 b1 b2 x -- y )
  [infix
    b1 + (x - a1) * (b2 - b1) / (a2 - a1)
  infix] ;</lang>

Test run: <lang factor>10 iota [| x | 0 10 -1 0 x map-range ] map . ! { -1 -9/10 -4/5 -7/10 -3/5 -1/2 -2/5 -3/10 -1/5 -1/10 }</lang>

Fantom

<lang fantom> class FRange {

 const Float low
 const Float high
 // in constructing a range, ensure the low value is smaller than high
 new make (Float low, Float high)
 {
   this.low = ( low <= high ? low : high )
   this.high = ( low <= high ? high : low )
 }
 // return range as a string
 override Str toStr () { "[$low,$high]" }
 
 // return a point in given range interpolated into this range
 Float remap (Float point, FRange given)
 {
   this.low + (point - given.low) * (this.high - this.low) / (given.high - given.low)
 }

}

class Main {

 public static Void main ()
 {
   range1 := FRange (0f, 10f)
   range2 := FRange (-1f, 0f)
   11.times |Int n|
   {
     m := range2.remap (n.toFloat, range1)
     echo ("Value $n in ${range1} maps to $m in ${range2}")
   }
 }

} </lang>

Output:

Value 0 in [0.0,10.0] maps to -1.0 in [-1.0,0.0]
Value 1 in [0.0,10.0] maps to -0.9 in [-1.0,0.0]
Value 2 in [0.0,10.0] maps to -0.8 in [-1.0,0.0]
Value 3 in [0.0,10.0] maps to -0.7 in [-1.0,0.0]
Value 4 in [0.0,10.0] maps to -0.6 in [-1.0,0.0]
Value 5 in [0.0,10.0] maps to -0.5 in [-1.0,0.0]
Value 6 in [0.0,10.0] maps to -0.4 in [-1.0,0.0]
Value 7 in [0.0,10.0] maps to -0.30000000000000004 in [-1.0,0.0]
Value 8 in [0.0,10.0] maps to -0.19999999999999996 in [-1.0,0.0]
Value 9 in [0.0,10.0] maps to -0.09999999999999998 in [-1.0,0.0]
Value 10 in [0.0,10.0] maps to 0.0 in [-1.0,0.0]

Forth

<lang forth>\ linear interpolation

lerp ( b2 b1 a2 a1 s -- t )
 fover f-
 frot frot f- f/
 frot frot fswap fover f- frot f*  
 f+ ;
test 11 0 do 0e -1e 10e 0e i s>f lerp f. loop ;</lang>

There is less stack shuffling if you use origin and range instead of endpoints for intervals. (o = a1, r = a2-a1)

<lang forth>: lerp ( o2 r2 r1 o1 s -- t ) fswap f- fswap f/ f* f+ ;

test 11 0 do -1e 1e 10e 0e i s>f lerp f. loop ;</lang>

Fortran

Works with: Fortran version 90 and later

<lang fortran>program Map

 implicit none
 
 real :: t
 integer :: i
 do i = 0, 10
   t = Maprange((/0.0, 10.0/), (/-1.0, 0.0/), real(i)) 
   write(*,*) i, " maps to ", t
 end do 

contains

function Maprange(a, b, s)

 real :: Maprange
 real, intent(in) :: a(2), b(2), s

 Maprange = (s-a(1)) * (b(2)-b(1)) / (a(2)-a(1)) + b(1) 

end function Maprange end program Map</lang>

Go

Basic task <lang go>package main

import "fmt"

type rangeBounds struct {

   b1, b2 float64

}

func mapRange(x, y rangeBounds, n float64) float64 {

   return y.b1 + (n - x.b1) * (y.b2 - y.b1) / (x.b2 - x.b1)

}

func main() {

   r1 := rangeBounds{0, 10}
   r2 := rangeBounds{-1, 0}
   for n := float64(0); n <= 10; n += 2 {
       fmt.Println(n, "maps to", mapRange(r1, r2, n))
   }

}</lang> Output:

0 maps to -1
2 maps to -0.8
4 maps to -0.6
6 maps to -0.4
8 maps to -0.19999999999999996
10 maps to 0

Extra credit

First, a function literal replaces the mapping function specified by the basic task. This allows a simpler parameter signature and also allows things to be precomputed for efficiency. newMapRange checks the direction of the first range and if it is decreasing, reverses both ranges. This simplifies an out-of-range check in the function literal. Also, the slope and intercept of the linear function are computed. This allows the range mapping to use the slope intercept formula which is computationally more efficient that the two point formula.

Second, ", ok" is a Go idiom. It takes advantage of Go's multiple return values and multiple assignment to return a success/failure disposition. In the case of this task, the result t is undefined if the input s is out of range. <lang go>package main

import "fmt"

type rangeBounds struct {

   b1, b2 float64

}

func newRangeMap(xr, yr rangeBounds) func(float64) (float64, bool) {

   // normalize direction of ranges so that out-of-range test works
   if xr.b1 > xr.b2 {
       xr.b1, xr.b2 = xr.b2, xr.b1
       yr.b1, yr.b2 = yr.b2, yr.b1
   }
   // compute slope, intercept
   m := (yr.b2 - yr.b1) / (xr.b2 - xr.b1)
   b := yr.b1 - m*xr.b1
   // return function literal
   return func(x float64) (y float64, ok bool) {
       if x < xr.b1 || x > xr.b2 {
           return 0, false // out of range
       }
       return m*x + b, true
   }

}

func main() {

   rm := newRangeMap(rangeBounds{0, 10}, rangeBounds{-1, 0})
   for s := float64(-2); s <= 12; s += 2 {
       t, ok := rm(s)
       if ok {
           fmt.Printf("s: %5.2f  t: %5.2f\n", s, t)
       } else {
           fmt.Printf("s: %5.2f  out of range\n", s)
       }
   }

}</lang> Output:

s: -2.00  out of range
s:  0.00  t: -1.00
s:  2.00  t: -0.80
s:  4.00  t: -0.60
s:  6.00  t: -0.40
s:  8.00  t: -0.20
s: 10.00  t:  0.00
s: 12.00  out of range

Groovy

<lang groovy> def mapRange(a1, a2, b1, b2, s) {

   b1 + ((s - a1) * (b2 - b1)) / (a2 - a1)

}

(0..10).each { s ->

   println(s + " in [0, 10] maps to " + mapRange(0, 10, -1, 0, s) + " in [-1, 0].")

} </lang> Output:

0 in [0, 10] maps to -1 in [-1, 0].
1 in [0, 10] maps to -0.9 in [-1, 0].
2 in [0, 10] maps to -0.8 in [-1, 0].
3 in [0, 10] maps to -0.7 in [-1, 0].
4 in [0, 10] maps to -0.6 in [-1, 0].
5 in [0, 10] maps to -0.5 in [-1, 0].
6 in [0, 10] maps to -0.4 in [-1, 0].
7 in [0, 10] maps to -0.3 in [-1, 0].
8 in [0, 10] maps to -0.2 in [-1, 0].
9 in [0, 10] maps to -0.1 in [-1, 0].
10 in [0, 10] maps to 0 in [-1, 0].

Haskell

Rather than handling only floating point numbers, the mapping function takes any number implementing the Fractional typeclass, which in our example also includes exact Rational numbers. <lang haskell>import Data.Ratio import Text.Printf

-- Map a value from the range [a1,a2] to the range [b1,b2]. We don't check -- for empty ranges. mapRange :: (Fractional a) => (a, a) -> (a, a) -> a -> a mapRange (a1,a2) (b1,b2) s = b1+(s-a1)*(b2-b1)/(a2-a1)

main = do

 -- Perform the mapping over floating point numbers.
 putStrLn "---------- Floating point ----------"
 mapM_ (\n -> prtD n . mapRange (0,10) (-1,0) $ fromIntegral n) [0..10]
 
 -- Perform the same mapping over exact rationals.
 putStrLn "---------- Rationals ----------"
 mapM_ (\n -> prtR n . mapRange (0,10) (-1,0) $ n%1) [0..10]
 
   where prtD :: PrintfType r => Integer -> Double -> r
         prtD n x = printf "%2d -> %6.3f\n" n x
         prtR :: PrintfType r => Integer -> Rational -> r
         prtR n x = printf "%2d -> %s\n" n (show x)</lang>

Output:

---------- Floating point ----------
 0 -> -1.000
 1 -> -0.900
 2 -> -0.800
 3 -> -0.700
 4 -> -0.600
 5 -> -0.500
 6 -> -0.400
 7 -> -0.300
 8 -> -0.200
 9 -> -0.100
10 ->  0.000
---------- Rationals ----------
 0 -> (-1) % 1
 1 -> (-9) % 10
 2 -> (-4) % 5
 3 -> (-7) % 10
 4 -> (-3) % 5
 5 -> (-1) % 2
 6 -> (-2) % 5
 7 -> (-3) % 10
 8 -> (-1) % 5
 9 -> (-1) % 10
10 -> 0 % 1

Icon and Unicon

<lang Unicon> record Range(a, b)

  1. note, we force 'n' to be real, which means recalculation will
  2. be using real numbers, not integers

procedure remap (range1, range2, n : real)

 if n < range2.a | n > range2.b then fail # n out of given range
 return range1.a + (n - range2.a) * (range1.b - range1.a) / (range2.b - range2.a)

end

procedure range_string (range)

 return "[" || range.a || ", " || range.b || "]"

end

procedure main ()

 range1 := Range (0, 10)
 range2 := Range (-1, 0)
 # if i is out of range1, then 'remap' fails, so only valid changes are written
 every i := -2 to 12 do {
   if m := remap (range2, range1, i)
     then write ("Value " || i || " in " || range_string (range1) || 
                 " maps to " || m || " in " || range_string (range2))
 }

end </lang>

Icon does not permit the type declaration, as Unicon does. For Icon, replace 'remap' with:

<lang Icon> procedure remap (range1, range2, n)

 n *:= 1.0
 if n < range2.a | n > range2.b then fail # n out of given range
 return range1.a + (n - range2.a) * (range1.b - range1.a) / (range2.b - range2.a)

end </lang>

Output:

Value 0 in [0, 10] maps to -1.0 in [-1, 0]
Value 1 in [0, 10] maps to -0.9 in [-1, 0]
Value 2 in [0, 10] maps to -0.8 in [-1, 0]
Value 3 in [0, 10] maps to -0.7 in [-1, 0]
Value 4 in [0, 10] maps to -0.6 in [-1, 0]
Value 5 in [0, 10] maps to -0.5 in [-1, 0]
Value 6 in [0, 10] maps to -0.4 in [-1, 0]
Value 7 in [0, 10] maps to -0.3 in [-1, 0]
Value 8 in [0, 10] maps to -0.2 in [-1, 0]
Value 9 in [0, 10] maps to -0.1 in [-1, 0]
Value 10 in [0, 10] maps to 0.0 in [-1, 0]

J

<lang j>maprange=:2 :0

 'a1 a2'=.m
 'b1 b2'=.n
 b1+((y-a1)*b2-b1)%a2-a1

) NB. this version defers all calculations to runtime, but mirrors exactly the task formulation</lang>

Or

<lang j>maprange=:2 :0

 'a1 a2'=.m
 'b1 b2'=.n
 b1 + ((b2-b1)%a2-a1) * -&a1

) NB. this version precomputes the scaling ratio</lang>

Example use:

<lang j> 2 4 maprange 5 11 (2.718282 3 3.141592) 7.15485 8 8.42478</lang>

or

<lang j> adjust=:2 4 maprange 5 11 NB. save the derived function as a named entity

  adjust 2.718282 3 3.141592

7.15485 8 8.42478</lang>

Required example:

<lang j> 0 10 maprange _1 0 i.11 _1 _0.9 _0.8 _0.7 _0.6 _0.5 _0.4 _0.3 _0.2 _0.1 0</lang>

Java

<lang java>public class Range { public static void main(String[] args){ for(float s = 0;s <= 10; s++){ System.out.println(s + " in [0, 10] maps to "+ mapRange(0, 10, -1, 0, s)+" in [-1, 0]."); } }

public static double mapRange(double a1, double a2, double b1, double b2, double s){ return b1 + ((s - a1)*(b2 - b1))/(a2 - a1); } }</lang> Output:

0.0 in [0, 10] maps to -1.0 in [-1, 0].
1.0 in [0, 10] maps to -0.9 in [-1, 0].
2.0 in [0, 10] maps to -0.8 in [-1, 0].
3.0 in [0, 10] maps to -0.7 in [-1, 0].
4.0 in [0, 10] maps to -0.6 in [-1, 0].
5.0 in [0, 10] maps to -0.5 in [-1, 0].
6.0 in [0, 10] maps to -0.4 in [-1, 0].
7.0 in [0, 10] maps to -0.30000000000000004 in [-1, 0].
8.0 in [0, 10] maps to -0.19999999999999996 in [-1, 0].
9.0 in [0, 10] maps to -0.09999999999999998 in [-1, 0].
10.0 in [0, 10] maps to 0.0 in [-1, 0].

The differences in 7, 8, and 9 come from double math. Similar issues show even when using float types.

JavaScript

<lang JavaScript>// Javascript doesn't have built-in support for ranges // Insted we use arrays of two elements to represent ranges var mapRange = function(from, to, s) {

 return to[0] + (s - from[0]) * (to[1] - to[0]) / (from[1] - from[0]);

};

var range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; for (var i = 0; i < range.length; i++) {

 range[i] = mapRange([0, 10], [-1, 0], range[i]);

}

console.log(range);</lang> Output:

[-1, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.30000000000000004, -0.19999999999999996, -0.09999999999999998, 0]

Extra credit

Here we will use the ECMAScript 5 support for map and the _.range function from Underscore.js.

Library: Underscore.js

<lang JavaScript>var mapRange = function(from, to, s) {

 // mapRange expects ranges generated by _.range
 var a1 = from[0];
 var a2 = from[from.length - 1];
 var b1 = to[0];
 var b2 = to[to.length - 1];
 return b1 + (s - a1) * (b2 - b1) / (a2 - a1);

};

// The range function is exclusive var fromRange = _.range(0, 11); var toRange = _.range(-1, 1);

// .map constructs a new array fromRange = fromRange.map(function(s) {

 return mapRange(fromRange, toRange, s);

});

console.log(fromRange);</lang> Output:

[-1, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.30000000000000004, -0.19999999999999996, -0.09999999999999998, 0]

jq

In jq, it is generally preferable to define functions as parameterized filters. In the present case, since the task calls for defining a map, the signature maprange(a;b), where a and b are the two ranges, is appropriate. <lang jq># The input is the value to be mapped.

  1. The ranges, a and b, should each be an array defining the
  2. left-most and right-most points of the range.

def maprange(a; b):

 b[0] + (((. - a[0]) * (b[1] - b[0])) / (a[1] - a[0])) ;</lang>

Example 1: a single value

6 | maprange([0,10]; [-1, 0])

produces:

 -0.4

Example 2: a stream of values <lang jq>range(0;11) | maprange([0,10]; [-1, 0])</lang> produces:

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.30000000000000004
-0.19999999999999996
-0.09999999999999998
0

Extra credit

To avoid repeating the same arithmetic, we shall define a filter that handles an array of values all at once, using an inner function and map/1: <lang jq>def maprange_array(a; b):

 def _helper(a0; b0; factor): b0 + (. - a0) * factor;
 a[0] as $a | b[0] as $b | ((b[1] - b[0]) / (a[1] - a[0])) as $factor
 | map(_helper( $a; $b; $factor) );</lang>

Example:

[range(0;11)] | maprange_array([0,10]; [-1, 0])

Julia

<lang julia>maprange(s, a, b) = let a1 = minimum(a), a2 = maximum(a), b1 = minimum(b), b2 = maximum(b)

   b1 + (s-a1) * (b2-b1) / (a2-a1)

end</lang> By using maximum and minimum in our implementation, we can pass maprange Julia's built-in Range type to represent the ranges a and b:

julia> maprange(6, 0:10, -1:0)
-0.4

julia> maprange([0:10], 0:10, -1:0)
11-element Array{Float64,1}:
 -1.0
 -0.9
 -0.8
 -0.7
 -0.6
 -0.5
 -0.4
 -0.3
 -0.2
 -0.1
  0.0

julia> maprange(0:10, 0:10, -1:0)
-1.0:0.1:0.0

K

<lang K> f:{[a1;a2;b1;b2;s] b1+(s-a1)*(b2-b1)%(a2-a1)}

  +(a; f[0;10;-1;0]'a:!11)

((0;-1.0)

(1;-0.9)
(2;-0.8)
(3;-0.7)
(4;-0.6)
(5;-0.5)
(6;-0.4)
(7;-0.3)
(8;-0.2)
(9;-0.1)
(10;0.0))</lang>

Lasso

<lang Lasso>define map_range( a1, a2, b1, b2, number ) => (decimal(#b1) + (decimal(#number) - decimal(#a1)) * (decimal(#b2) - decimal(#b1)) / (decimal(#a2) - decimal(#a1))) -> asstring(-Precision = 1)

with number in generateSeries(1,10) do {^ #number ': ' map_range( 0, 10, -1, 0, #number) '
'

^}'</lang> Output

0: -1.0
1: -0.9
2: -0.8
3: -0.7
4: -0.6
5: -0.5
6: -0.4
7: -0.3
8: -0.2
9: -0.1
10: 0.0

<lang logo>to interpolate :s :a1 :a2 :b1 :b2

 output (:s-:a1) / (:a2-:a1) * (:b2-:b1) + :b1

end

for [i 0 10] [print interpolate :i 0 10 -1 0]</lang>

Lua

<lang lua>function map_range( a1, a2, b1, b2, s )

   return b1 + (s-a1)*(b2-b1)/(a2-a1)

end

for i = 0, 10 do

   print( string.format( "f(%d) = %f", i, map_range( 0, 10, -1, 0, i ) ) )

end</lang>


Mathematica

Such a function is already built in <lang Mathematica> Rescale[#,{0,10},{-1,0}]&/@Range[0,10] </lang>

Output: {-1., -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.}

Maxima

<lang maxima>maprange(a, b, c, d) := buildq([e: ratsimp(('x - a)*(d - c)/(b - a) + c)],

  lambda([x], e))$

f: maprange(0, 10, -1, 0);</lang>

Nemerle

<lang Nemerle>using System; using System.Console;

module Maprange {

   Maprange(a : double * double, b : double * double, s : double) : double
   {
       def (a1, a2) = a; def (b1, b2) = b;
       
       b1 + (((s - a1) * (b2 - b1))/(a2 - a1))
   }
   
   Main() : void
   {
       foreach (i in [0 .. 10]) 
           WriteLine("{0, 2:f0} maps to {1:f1}", i, Maprange((0.0, 10.0), (-1.0, 0.0), i));
   }

}</lang>

NetRexx

<lang netrexx>/* NetRexx */ options replace format comments java crossref savelog symbols nobinary

A = [ 0.0, 10.0 ] B = [ -1.0, 0.0 ] incr = 1.0

say 'Mapping ['A[0]',' A[1]'] to ['B[0]',' B[1]'] in increments of' incr':' loop sVal = A[0] to A[1] by incr

 say '  f('sVal.format(3, 3)') ='  mapRange(A, B, sVal).format(4, 3)
 end sVal

return

method mapRange(a = Rexx[], b = Rexx[], s_) public static

 return mapRange(a[0], a[1], b[0], b[1], s_)

method mapRange(a1, a2, b1, b2, s_) public static

 t_ = b1 + ((s_ - a1) * (b2 - b1) / (a2 - a1))
 return t_

</lang> Output:

Mapping [0.0, 10.0] to [-1.0, 0.0] in increments of 1.0: 
  f(  0.000) =   -1.000 
  f(  1.000) =   -0.900 
  f(  2.000) =   -0.800 
  f(  3.000) =   -0.700 
  f(  4.000) =   -0.600 
  f(  5.000) =   -0.500 
  f(  6.000) =   -0.400 
  f(  7.000) =   -0.300 
  f(  8.000) =   -0.200 
  f(  9.000) =   -0.100 
  f( 10.000) =    0.000

Nim

Translation of: Python

<lang nim>import strutils

type FloatRange = tuple[s,e: float]

proc mapRange(a,b: FloatRange, s): float =

 b.s + (s - a.s) * (b.e - b.s) / (a.e - a.s)

for i in 0..10:

 let m = mapRange((0.0,10.0), (-1.0, 0.0), float(i))
 echo i, " maps to ", formatFloat(m, precision = 0)</lang>

Output:

0 maps to -1
1 maps to -0.9
2 maps to -0.8
3 maps to -0.7
4 maps to -0.6
5 maps to -0.5
6 maps to -0.4
7 maps to -0.3
8 maps to -0.2
9 maps to -0.1
10 maps to 0

Objeck

<lang objeck> bundle Default {

 class Range {
   function : MapRange(a1:Float, a2:Float, b1:Float, b2:Float, s:Float) ~ Float {
     return b1 + (s-a1)*(b2-b1)/(a2-a1);
   }
   function : Main(args : String[]) ~ Nil {
     "Mapping [0,10] to [-1,0] at intervals of 1:"->PrintLine();
     for(i := 0.0; i <= 10.0; i += 1;) {
       IO.Console->Print("f(")->Print(i->As(Int))->Print(") = ")->PrintLine(MapRange(0.0, 10.0, -1.0, 0.0, i));
     };
   }
 }

} </lang>

Output:

Mapping [0,10] to [-1,0] at intervals of 1:
f(0) = -1
f(1) = -0.9
f(2) = -0.8
f(3) = -0.7
f(4) = -0.6
f(5) = -0.5
f(6) = -0.4
f(7) = -0.3
f(8) = -0.2
f(9) = -0.1
f(10) = 0

OCaml

<lang ocaml>let map_range (a1, a2) (b1, b2) s =

 b1 +. ((s -. a1) *. (b2 -. b1) /. (a2 -. a1))

let () =

 print_endline "Mapping [0,10] to [-1,0] at intervals of 1:";
 for i = 0 to 10 do
   Printf.printf "f(%d) = %g\n" i (map_range (0.0, 10.0) (-1.0, 0.0) (float i))
 done</lang>

Output:

Mapping [0,10] to [-1,0] at intervals of 1:
f(0) = -1
f(1) = -0.9
f(2) = -0.8
f(3) = -0.7
f(4) = -0.6
f(5) = -0.5
f(6) = -0.4
f(7) = -0.3
f(8) = -0.2
f(9) = -0.1
f(10) = 0

If range mapping is used in a heavy computational task we can reduce the number of calculations made using partial application and currying:

<lang ocaml>let map_range (a1, a2) (b1, b2) =

 let v = (b2 -. b1) /. (a2 -. a1) in
 function s ->
   b1 +. ((s -. a1) *. v)

let () =

 print_endline "Mapping [0,10] to [-1,0] at intervals of 1:";
 let p = (map_range (0.0, 10.0) (-1.0, 0.0)) in
 for i = 0 to 10 do
   Printf.printf "f(%d) = %g\n" i (p (float i))
 done</lang>


Oforth

<lang Oforth>func: mapRange(p1, p2, s) {

  s p1 first - p2 second p2 first - * p1 second p1 first - asFloat / 
  p2 first + 

}</lang>

Output:
Interval newFromToStep(0, 10, 0.5) map(#[ mapRange([0, 10], [ -1, 0 ])]) println
[-1, -0.95, -0.9, -0.85, -0.8, -0.75, -0.7, -0.65, -0.6, -0.55, -0.5, -0.45, -0.4, -0.35,
-0.3, -0.25, -0.2, -0.15, -0.1, -0.05, 0]

PARI/GP

Usage (e.g.): map([1,10],[0,5],8.) <lang parigp>map(r1,r2,x)=r2[1]+(x-r1[1])*(r2[2]-r2[1])/(r1[2]-r1[1])</lang>

Pascal

<lang pascal>Program Map(output);

function MapRange(fromRange, toRange: array of real; value: real): real;

 begin
   MapRange := (value-fromRange[0]) * (toRange[1]-toRange[0]) / (fromRange[1]-fromRange[0]) + toRange[0];
 end;

var

 i: integer;

begin

 for i := 0 to 10 do
   writeln (i, ' maps to: ', MapRange([0.0, 10.0], [-1.0, 0.0], i):4:2);

end.</lang> Output:

:> ./MapRange
0 maps to: -1.00
1 maps to: -0.90
2 maps to: -0.80
3 maps to: -0.70
4 maps to: -0.60
5 maps to: -0.50
6 maps to: -0.40
7 maps to: -0.30
8 maps to: -0.20
9 maps to: -0.10
10 maps to: 0.00

improvement doing many calculations

Tested with freepascal_32 2.6.4 .Pushing all data over the stack takes quite a long time. Precaltulating the scalefactor helps too.

Time relation doing 1E7 calculations

Org/ const / tMr

double  : 267/177/107 .. 25/16/10

extended: 363/193/123 .. 30/15/10

Output as above. <lang pascal>Program Map(output);

type

 real = double;
 tRange = Array [0..1] of real;
 tMapRec = record
             mrFrom,
             mrTo : tRange;
             mrScale : real
           end;

function InitRange(rfrom,rTo:real):tRange; begin

 InitRange[0] :=rfrom;
 InitRange[1] :=rTo;

end;

function InitMapRec(const fromRange, toRange: tRange):tMapRec; begin

 With InitMapRec do
 Begin
   mrFrom := fromRange;
   mrTo   := toRange;
   mrScale := (toRange[1]-toRange[0]) / (fromRange[1]-fromRange[0]);
 end;

end;

function MapRecRange(const value: real;var MR :tMapRec): real; begin

 with MR do
   MapRecRange := (value-mrFrom[0]) * mrScale + mrTo[0];

end;

function MapRange(const value: real;const fromRange, toRange: tRange): real; begin

 MapRange := (value-fromRange[0]) * (toRange[1]-toRange[0]) / (fromRange[1]-fromRange[0]) + toRange[0];

end;

var

 value:real;
 rFrom,rTo : tRange;
 mr : tMapRec;
 i: LongInt;

begin

 rFrom:= InitRange(  0, 10);
 rTo  := InitRange( -1,  0);
 mr:= InitMapRec(rFrom,rTo);
 for i := 0 to 10 do
 Begin
   value := i;
   writeln (i:4, ' maps to: ', MapRange(value,rFrom, rTo):10:6,
                                 MapRecRange(value,mr):10:6);
 end;

end.</lang>

Perl

<lang Perl>#!/usr/bin/perl -w use strict ;

sub mapValue {

  my ( $range1 , $range2 , $number ) = @_ ;
  return ( $range2->[ 0 ] +
     (( $number - $range1->[ 0 ] ) * ( $range2->[ 1 ] - $range2->[ 0 ] ) ) / ( $range1->[ -1 ] 
     - $range1->[ 0 ] ) ) ;

} my @numbers = 0..10 ; my @interval = ( -1 , 0 ) ; print "The mapped value for $_ is " . mapValue( \@numbers , \@interval , $_ ) . " !\n" foreach @numbers ; </lang> Output:

The mapped value for 0 is -1 !
The mapped value for 1 is -0.9 !
The mapped value for 2 is -0.8 !
The mapped value for 3 is -0.7 !
The mapped value for 4 is -0.6 !
The mapped value for 5 is -0.5 !
The mapped value for 6 is -0.4 !
The mapped value for 7 is -0.3 !
The mapped value for 8 is -0.2 !
The mapped value for 9 is -0.1 !
The mapped value for 10 is 0 !

Perl 6

<lang perl6>use v6;

  1. Author: P. Seebauer

sub the_function(Range $a, Range $b, $s ) {

 my ($a1, $a2, $b1, $b2) = ($a, $b)».bounds;
 return $b1 + (($s-$a1) * ($b2-$b1) / ($a2-$a1));

}

for ^11 -> $x {say "$x maps to {the_function(0..10,-1..0, $x)}"}</lang>

%perl6 map_range.p6
0 maps to -1
1 maps to -0.9
2 maps to -0.8
3 maps to -0.7
4 maps to -0.6
5 maps to -0.5
6 maps to -0.4
7 maps to -0.3
8 maps to -0.2
9 maps to -0.1
10 maps to 0

A more idiomatic way would be to return a closure that does the mapping without have to supply the ranges every time: <lang perl6>sub getmapper(Range $a, Range $b) {

 my ($a1, $a2, $b1, $b2) = ($a, $b)».bounds;
 return -> $s { $b1 + (($s-$a1) * ($b2-$b1) / ($a2-$a1)) }

}

my &mapper = getmapper(0 .. 10, -1 .. 0); for ^11 -> $x {say "$x maps to &mapper($x)"}</lang>

PicoLisp

<lang PicoLisp>(scl 1)

(de mapRange (Val A1 A2 B1 B2)

  (+ B1 (*/ (- Val A1) (- B2 B1) (- A2 A1))) )


(for Val (range 0 10.0 1.0)

  (prinl
     (format (mapRange Val 0 10.0 -1.0 0) *Scl) ) )</lang>

Output:

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

PL/I

<lang pli> map: procedure options (main); /* 24/11/2011 */

  declare (a1, a2, b1, b2) float;
  declare d fixed decimal (3,1);
  do d = 0 to 10 by 0.9, 10;
     put skip edit ( d, ' maps to ', map(0, 10, -1, 0, d) ) (f(5,1), a, f(10,6));
  end;

map: procedure (a1, a2, b1, b2, s) returns (float);

  declare (a1, a2, b1, b2, s) float;
  return (b1 + (s - a1)*(b2 - b1) / (a2 - a1) );

end map; end map; </lang>

Output:
  0.0 maps to  -1.000000
  0.9 maps to  -0.910000
  1.8 maps to  -0.820000
  2.7 maps to  -0.730000
  3.6 maps to  -0.640000
  4.5 maps to  -0.550000
  5.4 maps to  -0.460000
  6.3 maps to  -0.370000
  7.2 maps to  -0.280000
  8.1 maps to  -0.190000
  9.0 maps to  -0.100000
  9.9 maps to  -0.010000
 10.0 maps to   0.000000

PureBasic

<lang purebasic>Structure RR

 a.f
 b.f

EndStructure

Procedure.f MapRange(*a.RR, *b.RR, s)

 Protected.f a1, a2, b1, b2 
 a1=*a\a:  a2=*a\b
 b1=*b\a:  b2=*b\b
 ProcedureReturn b1 + ((s - a1) * (b2 - b1) / (a2 - a1))

EndProcedure


- Test the function

If OpenConsole()

 Define.RR Range1, Range2
 Range1\a=0: Range1\b=10
 Range2\a=-1:Range2\b=0
 ;
 For i=0 To 10
   PrintN(RSet(Str(i),2)+" maps to "+StrF(MapRange(@Range1, @Range2, i),1))
 Next

EndIf</lang>

 0 maps to -1.0
 1 maps to -0.9
 2 maps to -0.8
 3 maps to -0.7
 4 maps to -0.6
 5 maps to -0.5
 6 maps to -0.4
 7 maps to -0.3
 8 maps to -0.2
 9 maps to -0.1
10 maps to 0.0

Python

<lang python>>>> def maprange( a, b, s): (a1, a2), (b1, b2) = a, b return b1 + ((s - a1) * (b2 - b1) / (a2 - a1))

>>> for s in range(11): print("%2g maps to %g" % (s, maprange( (0, 10), (-1, 0), s)))


0 maps to -1
1 maps to -0.9
2 maps to -0.8
3 maps to -0.7
4 maps to -0.6
5 maps to -0.5
6 maps to -0.4
7 maps to -0.3
8 maps to -0.2
9 maps to -0.1

10 maps to 0</lang>

Because of Pythons strict, dynamic, typing rules for numbers the same function can give answers as fractions: <lang python>>>> from fractions import Fraction >>> for s in range(11): print("%2g maps to %s" % (s, maprange( (0, 10), (-1, 0), Fraction(s))))


0 maps to -1
1 maps to -9/10
2 maps to -4/5
3 maps to -7/10
4 maps to -3/5
5 maps to -1/2
6 maps to -2/5
7 maps to -3/10
8 maps to -1/5
9 maps to -1/10

10 maps to 0 >>> </lang>

Racket

<lang Racket>

  1. lang racket

(define (make-range-map a1 a2 b1 b2)

 ;; returns a mapping function, doing computing the differences in
 ;; advance so it's fast
 (let ([a (- a2 a1)] [b (- b2 b1)])
   (λ(s) (exact->inexact (+ b1 (/ (* (- s a1) b) a))))))

(define map (make-range-map 0 10 -1 0)) (for ([i (in-range 0 11)]) (printf "~a --> ~a\n" i (map i))) </lang>

Output:

0 --> -1.0
1 --> -0.9
2 --> -0.8
3 --> -0.7
4 --> -0.6
5 --> -0.5
6 --> -0.4
7 --> -0.3
8 --> -0.2
9 --> -0.1
10 --> 0.0

REXX

(The different versions don't differ idiomatically that much, but mostly just in style.)

The first three versions support different increments   (the   inc   varaible)   and an   A   range that is decreasing in values
(that is, the 2nd number [usually the high] in the range is less than the first number in the range [usually the low]).

version 1

<lang rexx>/*REXX program maps a number from one range to another range. */ rangeA = 0 10 /*or: rangeA = ' 0 10 ' */ rangeB = -1 0 /*or: rangeB = " -1 0 " */ parse var RangeA L H inc=1

         do j=L  to H  by inc*(1-2*sign(H<L))   /*BY:   +inc │ -inc)   */
         say right(j,digits())    ' maps to '   mapRange(rangeA,rangeB,j)
         end   /*j*/

exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────MAPRANGE subroutine─────────────────*/ mapRange: procedure; arg a1 a2,b1 b2,s; return b1+ (s-a1)*(b2-b1)/(a2-a1)</lang>

Output:
        0  maps to  -1
        1  maps to  -0.9
        2  maps to  -0.8
        3  maps to  -0.7
        4  maps to  -0.6
        5  maps to  -0.5
        6  maps to  -0.4
        7  maps to  -0.3
        8  maps to  -0.2
        9  maps to  -0.1
       10  maps to  0 

version 2

This version demonstrates an increment (inc) of   1/2   instead of the usual unity. <lang rexx>/*REXX program maps a number from one range to another range with inc=½.*/ rangeA = 10 0 /*or: rangeA = ' 10 0 ' */ rangeB = -1 0 /*or: rangeB = " -1 0 " */ parse var RangeA L H /*note the LOW & HIGH values in A*/ inc= 1/2 /*use a different step size (inc)*/

         do j=L  to H  by inc*(1-2*sign(H<L))      /*BY:  +inc │ -inc) */
         say right(j,9)        ' maps to '      mapRange(rangeA,rangeB,j)
         end   /*j*/

exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────MAPRANGE subroutine─────────────────*/ mapRange: procedure; arg a1 a2,b1 b2,s; return b1+ (s-a1)*(b2-b1)/(a2-a1)</lang> output:

       10  maps to  -1
      9.5  maps to  -0.95
      9.0  maps to  -0.9
      8.5  maps to  -0.85
      8.0  maps to  -0.8
      7.5  maps to  -0.75
      7.0  maps to  -0.7
      6.5  maps to  -0.65
      6.0  maps to  -0.6
      5.5  maps to  -0.55
      5.0  maps to  -0.5
      4.5  maps to  -0.45
      4.0  maps to  -0.4
      3.5  maps to  -0.35
      3.0  maps to  -0.3
      2.5  maps to  -0.25
      2.0  maps to  -0.2
      1.5  maps to  -0.15
      1.0  maps to  -0.1
      0.5  maps to  -0.05
        0  maps to  0

version 3

This version shows an in-line evaluation of the range mapping. <lang rexx>/*REXX program maps a number from one range to another range. */ rangeA = 0 10; parse var rangeA a1 a2 rangeB = -1 0; parse var rangeB b1 b2 inc=1

         do j=a1  to a2  by inc*(1-2*sign(a2<a1))   /*BY: +inc │ -inc) */
         say right(j,digits())    ' maps to '   b1+(j-a1)*(b2-b1)/(a2-a1)
         end   /*j*/
                                      /*stick a fork in it, we're done.*/</lang>

output is the same as version 1.

Version 4

<lang rexx>/*REXX program maps a number from one range to another range. */ /* 31.10.2013 Walter Pachl /* 'translated' from version 1 without using Procedure */

 do j=0  to 10
   say right(j,3)   ' maps to '   mapRange(0,10,-1,0,j)
   end

exit /*──────────────────────────────────MAPRANGE subroutine─────────────────*/ mapRange: return arg(3)+(arg(5)-arg(1))*(arg(4)-arg(3))/(arg(2)-arg(1)) /* Arguments are arg a1,a2,b1,b2,x */</lang>

Output:

Identical to Version 1

Ruby

<lang ruby>def map_range(a, b, s)

 af, al, bf, bl = a.first, a.last, b.first, b.last
 bf + (s - af)*(bl - bf).quo(al - af)

end

(0..10).each{|s| puts "%s maps to %g" % [s, map_range(0..10, -1..0, s)]}</lang>

Numeric#quo does floating point division.

Output:
0 maps to -1
1 maps to -0.9
2 maps to -0.8
3 maps to -0.7
4 maps to -0.6
5 maps to -0.5
6 maps to -0.4
7 maps to -0.3
8 maps to -0.2
9 maps to -0.1
10 maps to 0

To use rational arithmetic, delete s *= 1.0 and either require 'rational', or use Ruby 1.9 (which has Rational in the core library). <lang ruby>(0..10).each do |s|

 puts "%s maps to %s" % [s, map_range(0..10, -1..0, s)]

end</lang>

Output using rational arithmetic:

0 maps to -1/1
1 maps to -9/10
2 maps to -4/5
3 maps to -7/10
4 maps to -3/5
5 maps to -1/2
6 maps to -2/5
7 maps to -3/10
8 maps to -1/5
9 maps to -1/10
10 maps to 0/1

Scala

<lang scala>def mapRange(a1:Double, a2:Double, b1:Double, b2:Double, x:Double):Double=b1+(x-a1)*(b2-b1)/(a2-a1)

for(i <- 0 to 10)

 println("%2d in [0, 10] maps to %5.2f in [-1, 0]".format(i, mapRange(0,10, -1,0, i)))</lang>

Output:

 0 in [0, 10] maps to -1,00 in [-1, 0]
 1 in [0, 10] maps to -0,90 in [-1, 0]
 2 in [0, 10] maps to -0,80 in [-1, 0]
 3 in [0, 10] maps to -0,70 in [-1, 0]
 4 in [0, 10] maps to -0,60 in [-1, 0]
 5 in [0, 10] maps to -0,50 in [-1, 0]
 6 in [0, 10] maps to -0,40 in [-1, 0]
 7 in [0, 10] maps to -0,30 in [-1, 0]
 8 in [0, 10] maps to -0,20 in [-1, 0]
 9 in [0, 10] maps to -0,10 in [-1, 0]
10 in [0, 10] maps to  0,00 in [-1, 0]

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "float.s7i";

const func float: mapRange (in float: a1, in float: a2, in float: b1, in float: b2, ref float: s) is

   return b1 + (s-a1)*(b2-b1)/(a2-a1);

const proc: main is func

 local
   var integer: number is 0;
 begin
   writeln("Mapping [0,10] to [-1,0] at intervals of 1:");
   for number range 0 to 10 do
     writeln("f(" <& number <& ") = " <& mapRange(0.0, 10.0, -1.0, 0.0, flt(number)) digits 1);
   end for;
 end func;</lang>

Output:

Mapping [0,10] to [-1,0] at intervals of 1:
f(0) = -1.0
f(1) = -0.9
f(2) = -0.8
f(3) = -0.7
f(4) = -0.6
f(5) = -0.5
f(6) = -0.4
f(7) = -0.3
f(8) = -0.2
f(9) = -0.1
f(10) = 0.0

Tcl

<lang tcl>package require Tcl 8.5 proc rangemap {rangeA rangeB value} {

   lassign $rangeA a1 a2
   lassign $rangeB b1 b2
   expr {$b1 + ($value - $a1)*double($b2 - $b1)/($a2 - $a1)}

}</lang> Demonstration (using a curried alias to bind the ranges mapped from and to): <lang tcl>interp alias {} demomap {} rangemap {0 10} {-1 0} for {set i 0} {$i <= 10} {incr i} {

   puts [format "%2d -> %5.2f" $i [demomap $i]]

}</lang> Output:

 0 -> -1.00
 1 -> -0.90
 2 -> -0.80
 3 -> -0.70
 4 -> -0.60
 5 -> -0.50
 6 -> -0.40
 7 -> -0.30
 8 -> -0.20
 9 -> -0.10
10 ->  0.00

Ursala

The function f is defined using pattern matching and substitution, taking a pair of pairs of interval endpoints and a number as parameters, and returning a number. <lang Ursala>#import flo

f((("a1","a2"),("b1","b2")),"s") = plus("b1",div(minus("s","a1"),minus("a2","a1")))

  1. cast %eL

test = f* ((0.,10.),(-1.,0.))-* ari11/0. 10.</lang> output:

<
   -1.000000e+00,
   -9.000000e-01,
   -8.000000e-01,
   -7.000000e-01,
   -6.000000e-01,
   -5.000000e-01,
   -4.000000e-01,
   -3.000000e-01,
   -2.000000e-01,
   -1.000000e-01,
   0.000000e+00>

A more idiomatic way is to define f as a second order function <lang Ursala>f(("a1","a2"),("b1","b2")) "s" = ...</lang> with the same right hand side as above, so that it takes a pair of intervals and returns a function mapping numbers in one interval to numbers in the other.

An even more idiomatic way is to use the standard library function plin, which takes an arbitrarily long list of interval endpoints and returns a piecewise linear interpolation function.

XPL0

<lang XPL0>include c:\cxpl\codes;

func real Map(A1, A2, B1, B2, S); real A1, A2, B1, B2, S; return B1 + (S-A1)*(B2-B1)/(A2-A1);

int I; [for I:= 0 to 10 do

   [if I<10 then ChOut(0, ^ );  IntOut(0, I);
   RlOut(0, Map(0., 10., -1., 0., float(I)));
   CrLf(0);
   ];

]</lang>

Output:

 0   -1.00000
 1   -0.90000
 2   -0.80000
 3   -0.70000
 4   -0.60000
 5   -0.50000
 6   -0.40000
 7   -0.30000
 8   -0.20000
 9   -0.10000
10    0.00000

zkl

<lang zkl>fcn mapRange([(a1,a2)], [(b1,b2)], s) // a1a2 is List(a1,a2)

  { b1 + ((s - a1) * (b2 - b1) / (a2 - a1)) }

r1:=T(0.0, 10.0); r2:=T(-1.0, 0.0); foreach s in ([0.0 .. 10]){

  "%2d maps to %5.2f".fmt(s,mapRange(r1,r2, s)).println();

}</lang>

Output:
 0 maps to -1.00
 1 maps to -0.90
 2 maps to -0.80
 3 maps to -0.70
 4 maps to -0.60
 5 maps to -0.50
 6 maps to -0.40
 7 maps to -0.30
 8 maps to -0.20
 9 maps to -0.10
10 maps to  0.00