# Currying

Currying
You are encouraged to solve this task according to the task description, using any language you may know.
 This page uses content from Wikipedia. The original article was at Currying. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

Create a simple demonstrative example of Currying in a specific language.

Add any historic details as to how the feature made its way into the language.

## ALGOL 68

In 1968 C.H. Lindsey proposed for partial parametrisation for ALGOL 68, this is implemented as an extension in wp:ALGOL 68G.

`# Raising a function to a power # MODE FUN = PROC (REAL) REAL;PROC pow = (FUN f, INT n, REAL x) REAL: f(x) ** n;OP ** = (FUN f, INT n) FUN: pow (f, n, ); # Example: sin (3 x) = 3 sin (x) - 4 sin^3 (x) (follows from DeMoivre's theorem) # REAL x = read real;print ((new line, sin (3 * x),  3 *  sin (x) - 4 * (sin ** 3) (x)))`

## AppleScript

The nearest thing to a first-class function in AppleScript is a 'script' in which a 'handler' (with some default or vanilla name like 'call' or 'lambda' is embedded). First class use of an ordinary 2nd class 'handler' function requires 'lifting' it into an enclosing script – a process which can be abstracted to a general mReturn function.

`-- curry :: (Script|Handler) -> Scripton curry(f)    script        on |λ|(a)            script                on |λ|(b)                    |λ|(a, b) of mReturn(f)                end |λ|            end script        end |λ|    end scriptend curry  -- TESTS ---------------------------------------------------------------------- -- add :: Num -> Num -> Numon add(a, b)    a + bend add -- product :: Num -> Num -> Numon product(a, b)    a * bend product -- Test 1.curry(add) -->  «script»  -- Test 2. curry(add)'s |λ|(2) --> «script»  -- Test 3.curry(add)'s |λ|(2)'s |λ|(3) --> 5  -- Test 4. map(curry(product)'s |λ|(7), enumFromTo(1, 10)) --> {7, 14, 21, 28, 35, 42, 49, 56, 63, 70}  -- Combined:{curry(add), ¬    curry(add)'s |λ|(2), ¬    curry(add)'s |λ|(2)'s |λ|(3), ¬    map(curry(product)'s |λ|(7), enumFromTo(1, 10))} --> {«script», «script», 5, {7, 14, 21, 28, 35, 42, 49, 56, 63, 70}}  -- GENERIC FUNCTIONS ---------------------------------------------------------- -- enumFromTo :: Int -> Int -> [Int]on enumFromTo(m, n)    if n < m then        set d to -1    else        set d to 1    end if    set lst to {}    repeat with i from m to n by d        set end of lst to i    end repeat    return lstend enumFromTo -- map :: (a -> b) -> [a] -> [b]on map(f, xs)    tell mReturn(f)        set lng to length of xs        set lst to {}        repeat with i from 1 to lng            set end of lst to |λ|(item i of xs, i, xs)        end repeat        return lst    end tellend map -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Scripton mReturn(f)    if class of f is script then        f    else        script            property |λ| : f        end script    end ifend mReturn`
Output:
`{«script», «script», 5, {7, 14, 21, 28, 35, 42, 49, 56, 63, 70}}`

## C

` #include<stdarg.h>#include<stdio.h> long int factorial(int n){	if(n>1)		return n*factorial(n-1);	return 1;} long int sumOfFactorials(int num,...){	va_list vaList;	long int sum = 0; 	va_start(vaList,num); 	while(num--)		sum += factorial(va_arg(vaList,int)); 	va_end(vaList); 	return sum;} int main(){	printf("\nSum of factorials of [1,5] : %ld",sumOfFactorials(5,1,2,3,4,5));	printf("\nSum of factorials of [3,5] : %ld",sumOfFactorials(3,3,4,5));	printf("\nSum of factorials of [1,3] : %ld",sumOfFactorials(3,1,2,3)); 	return 0;} `

Output:

```C:\rosettaCode>curry.exe

Sum of factorials of [1,5] : 153
Sum of factorials of [3,5] : 150
Sum of factorials of [1,3] : 9
```

## C#

This shows how to create syntactically natural currying functions in C#.

`public delegate int Plus(int y); public delegate Plus CurriedPlus(int x);public static CurriedPlus plus =       delegate(int x) {return delegate(int y) {return x + y;};};static void Main(){    int sum = plus(3)(4); // sum = 7    int sum2= plus(2)(plus(3)(4)) // sum2 = 9}`

## C++

Currying may be achieved in C++ using the Standard Template Library function object adapters (`binder1st` and `binder2nd`), and more generically using the Boost `bind` mechanism.

## Ceylon

Translation of: Groovy
`shared void run() {     function divide(Integer x, Integer y) => x / y;     value partsOf120 = curry(divide)(120);     print("half of 120 is ``partsOf120(2)``           a third is ``partsOf120(3)``           and a quarter is ``partsOf120(4)``");}`

## Clojure

`(def plus-a-hundred (partial + 100))(assert (=            (plus-a-hundred 1)           101)) `

## Common Lisp

`(defun curry (function &rest args-1)  (lambda (&rest args-2)    (apply function (append args-1 args-2)))) `

Usage:

` (funcall (curry #'+ 10) 10) 20 `

## D

`void main() {    import std.stdio, std.functional;     int add(int a, int b) {        return a + b;    }     alias add2 = partial!(add, 2);    writeln("Add 2 to 3: ", add(2, 3));    writeln("Add 2 to 3 (curried): ", add2(3));}`
Output:
```Add 2 to 3: 5
Add 2 to 3 (curried): 5```

## EchoLisp

EchoLisp has native support for curry, which is implemented thru closures, as shown in CommonLisp .

` ;;;; curry functional definition;; (define (curry proc . left-args) (lambda right-args (apply proc (append left-args right-args))));;;; right-curry;; (define (rcurry proc . right-args) (lambda left-args (apply proc (append left-args right-args))));; (define add42 (curry + 42)) (add42 666) → 708 (map (curry cons 'simon) '( gallubert garfunkel et-merveilles))    →   ((simon . gallubert) (simon . garfunkel) (simon . et-merveilles))(map (rcurry cons 'simon) '( gallubert garfunkel et-merveilles))    →   ((gallubert . simon) (garfunkel . simon) (et-merveilles . simon)) ;Implementation : result of currying :(curry * 2 3 (+ 2 2))    → (λ _#:g1004 (#apply-curry #* (2 3 4)  _#:g1004)) `

## Eero

`#import <stdio.h> int main()   addN := (int n)    int adder(int x)      return x + n    return adder   add2 := addN(2)   printf( "Result = %d\n", add2(7) )   return 0 `

Alternative implementation (there are a few ways to express blocks/lambdas):

`#import <stdio.h> int main()   addN := (int n)    return (int x | return x + n)   add2 := addN(2)   printf( "Result = %d\n", add2(7) )   return 0 `

## Eiffel

Eiffel has direct support for lambda expressions and hence currying through "inline agents". If f is a function with two arguments, of signature (X × Y) → Z then its curried version is obtained by simply writing

```   g (x: X): FUNCTION [ANY, TUPLE [Y], Z]
do
Result := agent (closed_x: X; y: Y): Z
do
Result := f (closed_x, y)
end (x, ?)
end
```

where FUNCTION [ANY, TUPLE [Y], Z] denotes the type YZ (agents taking as argument a tuple with a single argument of type Y and returning a result of type Z), which is indeed the type of the agent expression used on the next-to-last line to define the "Result" of g.

## Erlang

There are three solutions provided for this problem. The simple version is using anonymous functions as other examples of other languages do. The second solution corresponds to the definition of currying. It takes a function of a arity n and applies a given argument, returning then a function of arity n-1. The solution provided uses metaprogramming facilities to create the new function. Finally, the third solution is a generalization that allows to curry any number of parameters and in a given order.

` -module(currying). -compile(export_all). % Function that curry the first or the second argument of a given function of arity 2 curry_first(F,X) ->    fun(Y) -> F(X,Y) end. curry_second(F,Y) ->    fun(X) -> F(X,Y) end. % Usual curry curry(Fun,Arg) ->	case erlang:fun_info(Fun,arity) of		{arity,0} ->			erlang:error(badarg);		{arity,ArityFun} ->			create_ano_fun(ArityFun,Fun,Arg);		_ ->			erlang:error(badarg)	end. create_ano_fun(Arity,Fun,Arg) ->	Pars = 		[{var,1,list_to_atom(lists:flatten(io_lib:format("X~p", [N])))} 		 || N <- lists:seq(2,Arity)],	Ano = 		{'fun',1,			{clauses,[{clause,1,Pars,[],				[{call,1,{var,1,'Fun'},[{var,1,'Arg'}] ++ Pars}]}]}},	{_,Result,_} = erl_eval:expr(Ano, [{'Arg',Arg},{'Fun',Fun}]),	Result. % Generalization of the currying curry_gen(Fun,GivenArgs,PosGivenArgs,PosParArgs) ->    Pos = PosGivenArgs ++ PosParArgs,    case erlang:fun_info(Fun,arity) of        {arity,ArityFun} ->             case ((length(GivenArgs) + length(PosParArgs)) == ArityFun) and                  (length(GivenArgs) == length(PosGivenArgs)) and                  (length(Pos) == sets:size(sets:from_list(Pos))) of                 true ->                     fun(ParArgs) ->                         case length(ParArgs) == length(PosParArgs) of                             true ->                                 Given = lists:zip(PosGivenArgs,GivenArgs),                                Pars = lists:zip(PosParArgs,ParArgs),                                {_,Args} = lists:unzip(lists:sort(Given ++ Pars)),                                erlang:apply(Fun,Args);                            false ->                                 erlang:error(badarg)                        end                    end;                false ->                     erlang:error(badarg)            end;        _ ->             erlang:error(badarg)    end. `

Output (simple version):

```> (currying:curry_first(fun(X,Y) -> X + Y end,3))(2).
5
> (currying:curry_first(fun(X,Y) -> X - Y end,3))(2).
1
> (currying:curry_second(fun(X,Y) -> X - Y end,3))(2).
-1
```

Output (usual curry):

```> G = fun(A,B,C)-> (A + B) * C end.
#Fun<erl_eval.18.90072148>
> (currying:curry(G,3))(2,1).
5
> (currying:curry(currying:curry(G,3),2))(1).
5
> (currying:curry(currying:curry(currying:curry(G,3),2),1))().
5
```

Output (generalized version):

```> (currying:curry_gen(fun(A,B,C,D) -> (A + B) * (C - D) end,[1.0,0.0],[1,2],[3,4]))([2.0,5.0]).
-3.0
> (currying:curry_gen(fun(A,B,C,D) -> (A + B) * (C - D) end,[1.0,0.0],[4,2],[1,3]))([2.0,5.0]).
8.0
> (currying:curry_gen(fun(A,B,C) -> (A + B) * C end,[1.0,0.0],[3,2],))([5.0]).
5.0
```

## F#

Translation of: Python
`let addN n = (+) n`
`> let add2 = addN 2;; val add2 : (int -> int) > add2;;val it : (int -> int) = <fun:[email protected]>> add2 7;;val it : int = 9`

## Factor

`IN: scratchpad 2 [ 3 + ] curry --- Data stack:[ 2 3 + ]IN: scratchpad call --- Data stack:5`

Currying doesn't need to be an atomic operation. compose lets you combine quotations.

`IN: scratchpad [ 3 4 ] [ 5 + ] compose --- Data stack:[ 3 4 5 + ]IN: scratchpad call --- Data stack:39`

You can even treat quotations as sequences.

`IN: scratchpad { 1 2 3 4 5 } [ 1 + ] { 2 / } append map --- Data stack:{ 1 1+1/2 2 2+1/2 3 }`

Finally, fried quotations are often clearer than using curry and compose. Use _ to take objects from the stack and slot them into the quotation.

`USE: fryIN: scratchpad 2 3 '[ _ _ + ] --- Data stack:[ 2 3 + ]`

Use @ to insert the contents of a quotation into another quotation.

`IN: scratchpad { 1 2 3 4 5 } [ 1 + ] '[ 2 + @ ] map --- Data stack:{ 4 5 6 7 8 }`

## Fōrmulæ

In this page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

## Forth

Translation of: Common Lisp
`: curry ( x xt1 -- xt2 )  swap 2>r :noname r> postpone literal r> compile, postpone ; ; 5 ' + curry constant +55 +5 execute .7 +5 execute .`
Output:
`10 12`

## FreeBASIC

FreeBASIC is not a functional language and does not support either currying or nested functions/lambdas which are typically used by otherwise imperative languages to implement the former. The nearest I could get to currying using the features which the language does support is the following:

`' FB 1.05.0 Win64 Type CurriedAdd  As Integer i   Declare Function add(As Integer) As IntegerEnd Type Function CurriedAdd.add(j As Integer) As Integer  Return i + jEnd Function Function add (i As Integer) as CurriedAdd   Return Type<CurriedAdd>(i)End Function Print "3 + 4 ="; add(3).add(4)Print "2 + 6 ="; add(2).add(6)Sleep`
Output:
```3 + 4 = 7
2 + 6 = 8
```

## Go

Go has had function literals and method expressions since before Go 1.0. Method values were added in Go 1.1.

`package main import (        "fmt"        "math") func PowN(b float64) func(float64) float64 {        return func(e float64) float64 { return math.Pow(b, e) }} func PowE(e float64) func(float64) float64 {        return func(b float64) float64 { return math.Pow(b, e) }} type Foo int func (f Foo) Method(b int) int {        return int(f) + b} func main() {        pow2 := PowN(2)        cube := PowE(3)         fmt.Println("2^8 =", pow2(8))        fmt.Println("4³ =", cube(4))         var a Foo = 2        fn1 := a.Method   // A "method value", like currying 'a'        fn2 := Foo.Method // A "method expression", like uncurrying         fmt.Println("2 + 2 =", a.Method(2)) // regular method call        fmt.Println("2 + 3 =", fn1(3))        fmt.Println("2 + 4 =", fn2(a, 4))        fmt.Println("3 + 5 =", fn2(Foo(3), 5))}`

## Groovy

### curry()

This method can be applied to any Groovy closure or method reference (demonstrated here with closures). The arguments given to the curry() method are applied to the original (invoking) method/closure. The "curry()" method returns a closure as it's result. The arguments on the "curry()" method are passed, in their specified order, as the first (left-most) arguments of the original method/closure. The remaining, as yet unspecified arguments of the original method/closure, form the argument list of the resulting closure.

Example:

`def divide = { Number x, Number y ->  x / y} def partsOf120 = divide.curry(120) println "120: half: \${partsOf120(2)}, third: \${partsOf120(3)}, quarter: \${partsOf120(4)}"`

Results:

`120: half: 60, third: 40, quarter: 30`

### rcurry()

This method can be applied to any Groovy closure or method reference. The arguments given to the rcurry() method are applied to the original (invoking) method/closure. The "rcurry()" method returns a closure as it's result. The arguments on the "rcurry()" method are passed, in their specified order, as the last (right-most) arguments of the original method/closure. The remaining, as yet unspecified arguments of the original method/closure, form the argument list of the resulting closure.

Example (using the same "divide()" closure as before):

`def half = divide.rcurry(2)def third = divide.rcurry(3)def quarter = divide.rcurry(4) println "30: half: \${half(30)}; third: \${third(30)}, quarter: \${quarter(30)}"`

Results:

`30: half: 15; third: 10, quarter: 7.5`

### History

I invite any expert on the history of the Groovy language to correct this if necessary. Groovy is a relatively recent language, with alphas and betas first appearing on the scene in 2003 and a 1.0 release in 2007. To the best of my understanding currying has been a part of the language from the outset.

Likewise in Haskell, function type signatures show the currying-based structure of functions (note: "
`\ ->`
" is Haskell's syntax for anonymous functions, in which the sign
`\`
has been chosen for its resemblance to the Greek letter λ (lambda); it is followed by a list of space-separated arguments, and the arrow
`->`
separates the arguments list from the function body)
```   Prelude> let plus = \x y -> x + y
Prelude> :type plus
plus :: Integer -> Integer -> Integer
Prelude> plus 3 5
8
```

and currying functions is trivial

```   Prelude> let plus5 = plus 5
Prelude> :type plus5
plus5 :: Integer -> Integer
Prelude> plus5 3
8
```
In fact, the Haskell definition
`\x y -> x + y`
is merely syntactic sugar for
`\x -> \y -> x + y`
, which has exactly the same type signature:
```   Prelude> let nested_plus = \x -> \y -> x + y
Prelude> :type nested_plus
nested_plus :: Integer -> Integer -> Integer
```

## Hy

`(defn addN [n]  (fn [x]    (+ x n)))`
`=> (setv add2 (addN 2))=> (add2 7)9 => ((addN 3) 4)7`

## Icon and Unicon

This version only works in Unicon because of the coexpression calling syntax used.

`procedure main(A)    add2 := addN(2)    write("add2(7) = ",add2(7))    write("add2(1) = ",add2(1))end procedure addN(n)    return makeProc{ repeat { (x := (x@&source), x +:= n) } }end procedure makeProc(A)    return (@A, A)end`
Output:
```->curry
->
```

## Io

A general currying function written in the Io programming language:

`curry := method(fn,	a := call evalArgs slice(1)	block(		b := a clone appendSeq(call evalArgs)		performWithArgList("fn", b)	)) // example:increment := curry( method(a,b,a+b), 1 )increment call(5)// result => 6`

## J

Solution:Use & (bond). This primitive conjunction accepts two arguments: a function (verb) and an object (noun) and binds the object to the function, deriving a new function.

Example:
`   threePlus=: 3&+   threePlus 710   halve =: %&2  NB.  % means divide    halve 2010   someParabola =: _2 3 1 &p. NB. x^2 + 3x - 2`

Note: The final example (someParabola) shows the single currying primitive (&) combined with J's array oriented nature, permits partial application of a function of any number of arguments.

## Java

`    public class Currier<ARG1, ARG2, RET> {        public interface CurriableFunctor<ARG1, ARG2, RET> {            RET evaluate(ARG1 arg1, ARG2 arg2);        }         public interface CurriedFunctor<ARG2, RET> {            RET evaluate(ARG2 arg);        }         final CurriableFunctor<ARG1, ARG2, RET> functor;         public Currier(CurriableFunctor<ARG1, ARG2, RET> fn) { functor = fn; }         public CurriedFunctor<ARG2, RET> curry(final ARG1 arg1) {            return new CurriedFunctor<ARG2, RET>() {                public RET evaluate(ARG2 arg2) {                    return functor.evaluate(arg1, arg2);                }            };        }         public static void main(String[] args) {            Currier.CurriableFunctor<Integer, Integer, Integer> add                = new Currier.CurriableFunctor<Integer, Integer, Integer>() {                    public Integer evaluate(Integer arg1, Integer arg2) {                        return new Integer(arg1.intValue() + arg2.intValue());                    }            };             Currier<Integer, Integer, Integer> currier                = new Currier<Integer, Integer, Integer>(add);             Currier.CurriedFunctor<Integer, Integer> add5                = currier.curry(new Integer(5));             System.out.println(add5.evaluate(new Integer(2)));        }    }`

### Java 8

` import java.util.function.BiFunction;import java.util.function.Function; public class Curry { 	//Curry a method	public static <T, U, R> Function<T, Function<U, R>> curry(BiFunction<T, U, R> biFunction) {		return t -> u -> biFunction.apply(t, u);	} 	public static int add(int x, int y) {		return x + y;	} 	public static void curryMethod() {		BiFunction<Integer, Integer, Integer> bif = Curry::add;		Function<Integer, Function<Integer, Integer>> add = curry(bif);		Function<Integer, Integer> add5 = add.apply(5);		System.out.println(add5.apply(2));	} 	//Or declare the curried function in one line	public static void curryDirectly() {		Function<Integer, Function<Integer, Integer>> add = x -> y -> x + y;		Function<Integer, Integer> add5 = add.apply(5);		System.out.println(add5.apply(2));	} 	//prints 7 and 7	public static void main(String[] args) {		curryMethod();		curryDirectly();	}} `

## JavaScript

### ES5

#### Partial application

` function addN(n) {    var curry = function(x) {        return x + n;    };    return curry; }  add2 = addN(2); alert(add2); alert(add2(7));`

#### Generic currying

Basic case - returning a curried version of a function of two arguments

`(function () {     // curry :: ((a, b) -> c) -> a -> b -> c    function curry(f) {        return function (a) {            return function (b) {                return f(a, b);            };        };    }      // TESTS     // product :: Num -> Num -> Num    function product(a, b) {        return a * b;    }     // return typeof curry(product);    // --> function     // return typeof curry(product)(7)    // --> function     //return typeof curry(product)(7)(9)    // --> number     return [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]        .map(curry(product)(7))     // [7, 14, 21, 28, 35, 42, 49, 56, 63, 70] })(); `
Output:
`[7, 14, 21, 28, 35, 42, 49, 56, 63, 70]`

Functions of arbitrary arity can also be curried:

`(function () {     // (arbitrary arity to fully curried)    // extraCurry :: Function -> Function    function extraCurry(f) {         // Recursive currying        function _curry(xs) {            return xs.length >= intArgs ? (                f.apply(null, xs)            ) : function () {                return _curry(xs.concat([].slice.apply(arguments)));            };        }         var intArgs = f.length;         return _curry([].slice.call(arguments, 1));    }      // TEST     // product3:: Num -> Num -> Num -> Num    function product3(a, b, c) {        return a * b * c;    }     return [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]        .map(extraCurry(product3)(7)(2))     // [14, 28, 42, 56, 70, 84, 98, 112, 126, 140] })();`
Output:
`[14, 28, 42, 56, 70, 84, 98, 112, 126, 140]`

### ES6

#### Y combinator

Using a definition of currying that does not imply partial application, only conversion of a function of multiple arguments, e.g.:
`(a,b) => expr_using_a_and_b`
into a function that takes a series of as many function applications as that function took arguments, e.g.:
`a => b => expr_using_a_and_b`

One version for functions of a set amount of arguments that takes no rest arguments, and one version for functions with rest argument. The caveat being that if the rest argument would be empty, it still requires a separate application, and multiple rest arguments cannot be curried into multiple applications, since we have to figure out the number of applications from the function signature, not the amount of arguments the user might want to send it.

`let  fix = // This is a variant of the Applicative order Y combinator    f => (f => f(f))(g => f((...a) => g(g)(...a))),  curry =    f => (      fix(        z => (n,...a) => (          n>0          ?b => z(n-1,...a,b)          :f(...a)))      (f.length)),  curryrest =    f => (      fix(        z => (n,...a) => (          n>0          ?b => z(n-1,...a,b)          :(...b) => f(...a,...b)))      (f.length)),  curriedmax=curry(Math.max),  curryrestedmax=curryrest(Math.max);print(curriedmax(8)(4),curryrestedmax(8)(4)(),curryrestedmax(8)(4)(9,7,2));// 8,8,9 `

Neither of these handle propagation of the this value for methods, as ECMAScript 2015 (ES6) fat arrow syntax doesn't allow for this value propagation. Versions could easily be written for those cases using an outer regular function expression and use of Function.prototype.call or Function.prototype.apply. Use of Y combinator could also be removed through use of an inner named function expression instead of the anonymous fat arrow function syntax.

#### Simple 2 and N argument versions

In the most rudimentary form, for example for mapping a two-argument function over an array:

`(() => {     // curry :: ((a, b) -> c) -> a -> b -> c    let curry = f => a => b => f(a, b);      // TEST     // product :: Num -> Num -> Num    let product = (a, b) => a * b,         // Int -> Int -> Maybe Int -> [Int]        range = (m, n, step) => {            let d = (step || 1) * (n >= m ? 1 : -1);             return Array.from({                length: Math.floor((n - m) / d) + 1            }, (_, i) => m + (i * d));        }      return range(1, 10)        .map(curry(product)(7))     // [7, 14, 21, 28, 35, 42, 49, 56, 63, 70] })();`
Output:
`[7, 14, 21, 28, 35, 42, 49, 56, 63, 70]`

Or, recursively currying functions of arbitrary arity:

`(() => {     // (arbitrary arity to fully curried)    // extraCurry :: Function -> Function    let extraCurry = (f, ...args) => {        let intArgs = f.length;         // Recursive currying        let _curry = (xs, ...arguments) =>            xs.length >= intArgs ? (                f.apply(null, xs)            ) : function () {                return _curry(xs.concat([].slice.apply(arguments)));            };         return _curry([].slice.call(args, 1));    };     // TEST     // product3:: Num -> Num -> Num -> Num    let product3 = (a, b, c) => a * b * c;     return [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]        .map(extraCurry(product3)(7)(2))     // [14, 28, 42, 56, 70, 84, 98, 112, 126, 140] })();`
Output:
`[14, 28, 42, 56, 70, 84, 98, 112, 126, 140]`

## jq

In jq, functions are filters. Accordingly, we illustrate currying by defining plus(x) to be a filter that adds x to its input, and then define plus5 as plus(5):

` def plus(x): . + x; def plus5: plus(5); `
We can now use plus5 as a filter, e.g.
`3 | plus5`
produces 8.

## Julia

` function addN(n::Number)::Function  adder(x::Number) = n + x  return adderend `
Output:
```julia> add2 = addN(2)
(::adder) (generic function with 1 method)

3

```

## Kotlin

`// version 1.1.2 fun curriedAdd(x: Int) = { y: Int -> x + y } fun main(args: Array<String>) {    val a = 2    val b = 3    val sum = curriedAdd(a)(b)    println("\$a + \$b = \$sum")}`
Output:
```2 + 3 = 5
```

## Latitude

`addN := {  takes '[n].  {    \$1 + n.  }.}. add3 := addN 3.add3 (4). ;; 7`

Note that, because of the syntax of the language, it is not possible to call `addN` in one line the naive way.

`;; addN (3) (4). ;; Syntax error!;; (addN (3)) (4). ;; Syntax error!addN (3) call (4). ;; Works as expected.`

As a consequence, it is more common in Latitude to return new objects whose methods have meaningful names, rather than returning a curried function.

`addN := {  takes '[n].  Object clone tap {    self do := {      \$1 + n.    }.  }.}. addN 3 do 4. ;; 7`

## LFE

`(defun curry (f arg)  (lambda (x)    (apply f      (list arg x)))) `

Usage:

` (funcall (curry #'+/2 10) 10) `

## Logtalk

` | ?- logtalk << call([Z]>>(call([X,Y]>>(Y is X*X), 5, R), Z is R*R), T).T = 625yes `

Logtalk support for lambda expressions and currying was introduced in version 2.38.0, released in December 2009.

## Lua

` function curry2(f)   return function(x)      return function(y)         return f(x,y)      end   endend function add(x,y)   return x+yend local adder = curry2(add)assert(adder(3)(4) == 3+4)local add2 = adder(2)assert(add2(3) == 2+3)assert(add2(5) == 2+5) `

## M2000 Interpreter

` Module LikeCpp {      divide=lambda (x, y)->x/y      partsof120=lambda divide ->divide(![], 120)      Print "half of 120 is ";partsof120(2)      Print "a third is ";partsof120(3)      Print "and a quarter is ";partsof120(4)}LikeCpp Module Joke {      \\ we can call F1(),  with any number of arguments, and always read one and then      \\ call itself passing the remain arguments      \\ ![] take stack of values and place it in the next call.      F1=lambda -> {            if empty then exit            Read x            =x+lambda(![])      }       Print F1(F1(2),2,F1(-4))=0      Print F1(-4,F1(2),2)=0      Print F1(2, F1(F1(2),2))=F1(F1(F1(2),2),2)      Print F1(F1(F1(2),2),2)=6      Print F1(2, F1(2, F1(2),2))=F1(F1(F1(2),2, F1(2)),2)      Print F1(F1(F1(2),2, F1(2)),2)=8      Print F1(2, F1(10, F1(2, F1(2),2)))=F1(F1(F1(2),2, F1(2)),2, 10)      Print F1(F1(F1(2),2, F1(2)),2, 10)=18      Print F1(2,2,2,2,10)=18      Print F1()=0       Group F2 {            Sum=0            Function Add  (x){                  .Sum+=x                  =x            }      }      Link F2.Add() to F2()      Print F1(F1(F1(F2(2)),F2(2), F1(F2(2))),F2(2))=8      Print F2.Sum=8}Joke `

Without joke, can anyone answer this puzzle?

` Module Puzzle {            Global Group F2 {                  Sum=0                  Sum2=0                  Function Add  (x){                        .Sum+=x                        =x                  }            }            F1=lambda -> {                  if empty then exit                  Read x                  Print ">>>", F2.Sum                  F2.Sum2++   ' add one each time we read x                  =x+lambda(![])            }            Link F2.Add() to F2()            P=F1(F1(F1(F2(2)),F2(2), F1(F2(2))),F2(2))=8            Print F2.Sum=8            Print F2.Sum2=7              \\  We read 7 times x, but we get 8, 2+2+2+2            \\  So 3 times x was zero, or not?            \\  but where we pass zero?            \\  zero return from F1 if no argument pass, so how x  get zero??} Puzzle `

## Mathematica / Wolfram Language

Currying can be implemented by nesting the `Function` function. The following method curries the `Plus` function.

```   In:=   plusFC = Function[{x},Function[{y},Plus[x,y]]];
```

A higher currying function can be implemented straightforwardly.

```   In:=   curry = Function[{x}, Function[{y}, Function[{z}, x[y, z]]]];
```
Output:
```    In:=   Plus[2,3]
Out:=  5

In:=   plusFC
Out:=  5

In:=   curry[Plus]
Out:=  5
```

## Nemerle

Currying isn't built in to Nemerle, but is relatively straightforward to define.

`using System;using System.Console; module Curry{    Curry[T, U, R](f : T * U -> R) : T -> U -> R    {        fun (x) { fun (y) { f(x, y) } }    }     Main() : void    {        def f(x, y) { x + y }	def g = Curry(f);	def h = Curry(f)(12);              // partial application	WriteLine(\$"\$(Curry(f)(20)(22))");	WriteLine(\$"\$(g(21)(21))");	WriteLine(\$"\$(h(30))")    }}`

## Nim

`proc addN[T](n: T): auto = (proc(x: T): T = x + n) let add2 = addN(2)echo add2(7)`

Alternative syntax:

`import future proc addM[T](n: T): auto = (x: T) => x + n let add3 = addM(3)echo add3(7)`

## OCaml

OCaml has a built-in natural method of defining functions that are curried:

`let addnums x y = x+y        (* declare a curried function *) let add1 = addnums 1         (* bind the first argument to get another function *)add1 42                      (* apply to actually compute a result, 43 *)`

The type of `addnums` above will be int -> int -> int.

Note that `fun addnums x y = ...`, or, equivalently, `let addnums = fun x y -> ...`, is really just syntactic sugar for `let addnums = function x -> function y -> ...`.

You can also define a general currying higher-ordered function:

`let curry f x y = f (x,y)(* Type signature: ('a * 'b -> 'c) -> 'a -> 'b -> 'c *)`

This is a function that takes a function as a parameter and returns a function that takes one of the parameters and returns another function that takes the other parameter and returns the result of applying the parameter function to the pair of arguments.

## Oforth

`2 #+ curry => 2+5 2+ .7 ok`

## PARI/GP

Simple currying example with closures.

`curriedPlus(x)=y->x+y;curriedPlus(1)(2)`
Output:
`3`

## Perl

This is a Perl 5 example of a general curry function and curried plus using closures:

`sub curry{  my (\$func, @args) = @_;   sub {    #This @_ is later    &\$func(@args, @_);  }} sub plusXY{  \$_ + \$_;} my \$plusXOne = curry(\&plusXY, 1);print &\$plusXOne(3), "\n";`

## Perl 6

All callable objects have an "assuming" method that can do partial application of either positional or named arguments. Here we curry the built-in subtraction operator.

`my &negative = &infix:<->.assuming(0);say negative 1;`
Output:
`-1`

## Phix

Phix does not support currying. The closest I can manage is very similar to my solution for closures

`sequence curries = {}function create_curried(integer rid, sequence partial_args)    curries = append(curries,{rid,partial_args})    return length(curries) -- (return an integer id)end function function call_curried(integer id, sequence args)    {integer rid, sequence partial_args} = curries[id]    return call_func(rid,partial_args&args)end function function add(atom a, b)    return a+bend function integer curried = create_curried(routine_id("add"),{2})printf(1,"2+5=%d\n",call_curried(curried,{5}))`
Output:
```2+5=7
```

(Of course you would probably not have to try too much harder to make it say 2+2=5 instead.)

## PicoLisp

```: (de multiplier (@X)
(curry (@X) (N) (* @X N)) )
-> multiplier
: (multiplier 7)
-> ((N) (* 7 N))
: ((multiplier 7) 3)
-> 21```

## PowerShell

` function Add(\$x) { return { param(\$y) return \$y + \$x }.GetNewClosure() } `
` & (Add 1) 2 `
Output:
```3
```

Add each number in list to its square root:

` (4,9,16,25 | ForEach-Object { & (add \$_) ([Math]::Sqrt(\$_)) }) -join ", " `
Output:
```6, 12, 20, 30
```

## Prolog

Works with SWI-Prolog and module lambda.pl
Module lambda.pl can be found at http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl .

``` ?- [library('lambda.pl')].
% library(lambda.pl) compiled into lambda 0,00 sec, 28 clauses
true.

?- N = 5, F = \X^Y^(Y is X+N), maplist(F, [1,2,3], L).
N = 5,
F = \X^Y^ (Y is X+5),
L = [6,7,8].

```

## Python

### Nested defs and functools.partial

Since Python has had local functions with closures since around 1.0, it's always been possible to create curried functions manually:

` def addN(n):     def adder(x):         return x + n     return adder`
` >>> add2 = addN(2) >>> add2 <function adder at 0x009F1E30> >>> add2(7) 9`

But Python also comes with a function to build partial functions (with any number of positional or keyword arguments bound in) for you. This was originally in a third-party model called functional, but was added to the stdlib functools module in 2.5. Every year or so, someone suggests either moving it into builtins because it's so useful or removing it from the stdlib entirely because it's so easy to write yourself, but it's been in the functools module since 2.5 and will probably always be there.

`>>> from functools import partial>>> from operator import add>>> add2 = partial(add, 2)>>> add2functools.partial(<built-in function add>, 2)>>> add2(7)9>>> double = partial(map, lambda x: x*2)>>> print(*double(range(5)))0 2 4 6 8`

But for a true curried function that can take arguments one at a time via normal function calls, you have to do a bit of wrapper work to build a callable object that defers to partial until all of the arguments are available. Because of the Python's dynamic nature and flexible calling syntax, there's no way to do this in a way that works for every conceivable valid function, but there are a variety of ways that work for different large subsets. Or just use a third-party library like toolz that's already done it for you:

`>>> from toolz import curry>>> import operator>>> add = curry(operator.add)>>> add2 = add(2)>>> add2<built-in function add>>>> add2(7)9>>> # Toolz also has pre-curried versions of most HOFs from builtins, stdlib, and toolz>>>from toolz.curried import map>>> double = map(lambda x: x*2)>>> print(*double(range(5)))0 2 4 6 8`

### Automatic curry and uncurry functions using lambdas

As an alternative to nesting defs, we can also define curried functions, perhaps more directly, in terms of lambdas. We can also write a general curry function, and a corresponding uncurry function, for automatic derivation of curried and uncurried functions at run-time, without needing to import functools.partial:

`# AUTOMATIC CURRYING AND UNCURRYING OF EXISTING FUNCTIONS  # curry :: ((a, b) -> c) -> a -> b -> cdef curry(f):    return lambda a: lambda b: f(a, b)  # uncurry :: (a -> b -> c) -> ((a, b) -> c)def uncurry(f):    return lambda x, y: f(x)(y)  # EXAMPLES -------------------------------------- # A plain uncurried function with 2 arguments, # justifyLeft :: Int -> String -> Stringdef justifyLeft(n, s):    return (s + (n * ' '))[:n]  # and a similar, but manually curried, function. # justifyRight :: Int -> String -> Stringdef justifyRight(n):    return lambda s: (        ((n * ' ') + s)[-n:]    )  # CURRYING and UNCURRYING at run-time: def main():    for s in [        'Manually curried using a lambda:',        '\n'.join(map(            justifyRight(5),            ['1', '9', '10', '99', '100', '1000']        )),         '\nAutomatically uncurried:',        uncurry(justifyRight)(5, '10000'),         '\nAutomatically curried',        '\n'.join(map(            curry(justifyLeft)(10),            ['1', '9', '10', '99', '100', '1000']        ))    ]:        print (s)  main()`
Output:
```Manually curried using a lambda:
1
9
10
99
100
1000

Automatically uncurried:
10000

Automatically curried
1
9
10
99
100
1000      ```

## Racket

The simplest way to make a curried functions is to use curry:

` #lang racket(((curry +) 3) 2) ; =>5 `

As an alternative, one can use the following syntax:

` #lang racket (define ((curried+ a) b)  (+ a b)) ((curried+ 3) 2)  ; => 5 `

## REXX

This example is modeled after the   D   example.

### specific version

`/*REXX program demonstrates a REXX    currying method    to perform addition.           */say 'add 2 to 3:          '   add(2, 3)say 'add 2 to 3 (curried):'   add2(3)exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/add:  procedure;  \$= arg(1);       do j=2  to arg();   \$= \$ + arg(j);   end;      return \$add2: procedure;  return add( arg(1), 2)`
output   when using the defaults:
```add 2 to 3:           5
add 2 to 3 (curried): 5
```

### generic version

`/*REXX program demonstrates a REXX    currying method    to perform addition.           */say 'add 2 to 3:          '   add(2, 3)say 'add 2 to 3 (curried):'   add2(3)exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/add:  procedure;  \$= 0;       do    j=1  for arg()                                 do k=1  for words( arg(j) );      \$= \$ + word( arg(j), k)                                 end   /*k*/                              end      /*j*/      return \$/*──────────────────────────────────────────────────────────────────────────────────────*/add2: procedure;  return add( arg(1), 2)`
output   is identical to the 1st REXX version.

## Ruby

The curry method was added in Ruby 1.9.1. It takes an optional arity argument, which determines the number of arguments to be passed to the proc. If that number is not reached, the curry method returns a new curried method for the rest of the arguments. (Examples taken from the documentation).

` b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }p b.curry           #=> 6p b.curry[1, 2][3, 4]        #=> 6p b.curry(5)  #=> 6p b.curry(5)[1, 2][3, 4]  #=> 6p b.curry(1)              #=> 1 b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }p b.curry           #=> 6p b.curry[1, 2][3, 4]        #=> 10p b.curry(5)  #=> 15p b.curry(5)[1, 2][3, 4]  #=> 15p b.curry(1)              #=> 1 `

## Rust

This is a simple currying function written in Rust:

`fn add_n(n : i32) -> impl Fn(i32) -> i32 {    move |x| n + x} fn main() {    let adder = add_n(40);    println!("The answer to life is {}.", adder(2));}`

## Scala

` def add(a: Int)(b: Int) = a + bval add5 = add(5) _add5(2) `

## Sidef

This can be done by using lazy methods:

`var adder = 1.method(:add);say adder(3);                #=> 4`

Or by using a generic curry function:

`func curry(f, *args1) {    func (*args2) {        f(args1..., args2...);    }} func add(a, b) {    a + b} var adder = curry(add, 1);say adder(3);                 #=>4`

## Swift

You can return a closure (or nested function):

`func addN(n:Int)->Int->Int { return {\$0 + n} } var add2 = addN(2)println(add2) // (Function)println(add2(7)) // 9`

Prior to Swift 3, there was a curried function definition syntax:

`func addN(n:Int)(x:Int) -> Int { return x + n } var add2 = addN(2)println(add2) // (Function)println(add2(x:7)) // 9`

However, there was a bug in the above syntax which forces the second parameter to always be labeled. As of Swift 1.2, you could explicitly make the second parameter not labeled:

`func addN(n:Int)(_ x:Int) -> Int { return x + n } var add2 = addN(2)println(add2) // (Function)println(add2(7)) // 9`

## Standard ML

Standard ML has a built-in natural method of defining functions that are curried:

`fun addnums (x:int) y = x+y  (* declare a curried function *) val add1 = addnums 1         (* bind the first argument to get another function *)add1 42                      (* apply to actually compute a result, 43 *)`

The type of `addnums` above will be int -> int -> int (the type constraint in the declaration only being necessary because of the polymorphic nature of the `+` operator).

Note that `fun addnums x y = ...` is really just syntactic sugar for `val addnums = fn x => fn y => ...`.

You can also define a general currying higher-ordered function:

`fun curry f x y = f(x,y)(* Type signature: ('a * 'b -> 'c) -> 'a -> 'b -> 'c *)`

This is a function that takes a function as a parameter and returns a function that takes one of the parameters and returns another function that takes the other parameter and returns the result of applying the parameter function to the pair of arguments.

## Tcl

The simplest way to do currying in Tcl is via an interpreter alias:

`interp alias {} addone {} ::tcl::mathop::+ 1puts [addone 6]; # => 7`

Tcl doesn't support automatic creation of curried functions though; the general variadic nature of a large proportion of Tcl commands makes that impractical.

### History

The type of aliases used here are a simple restriction of general inter-interpreter aliases to the case where both the source and target interpreter are the current one; these aliases are a key component of the secure interpreter mechanism introduced in Tcl 7.6, and are the mechanism used to allow access to otherwise-insecure behavior from a secure context (e.g., to write to a particular file, but not any old file).

## TXR

TXR Lisp has an operator called `op` for currying. Of course, currying is done with lambdas under the hood; the operator generates lambdas. Its name is inspired by the same-named operators featured in the Goo language, and in the Common Lisp library cl-op.

References: Goo `op`:  cl-op: 

TXR's `op` is quite different in that it uses numbered arguments, has some additional features, and is accompanied by a "zoo" of related operators which share its currying syntax, providing various useful derived behaviors.

A two-argument function which subtracts is arguments from 10, and then subtracts five:

`(op - 10 @1 @2 5)`

## Wortel

The `\` operator takes a function and an argument and partial applies the argument to the function. The `&\` works like the `\` operator but can also take an array literal and partial applies all the arguments in the array.

`@let {  addOne \+ 1  subtractFrom1 \- 1  subtract1 \~- 1   subtract1_2 &\- [. 1]   add ^+  ; partial apply to named functions  addOne_2 \add 1   ; testing  [[    !addOne 5 ; returns 6    !subtractFrom1 5 ; returns -4    !subtract1 5 ; returns 4    !subtract1_2 5 ; returns 4    !addOne_2 5 ; returns 6  ]]}`

## zkl

zkl doesn't support currying per se (recompilation of f with fixed input to create a new function), it does support partial application, for all objects, for any [number of] positional parameters to create an object of reduced arity.

`addOne:= Op("+").fp(1); addOne(5) //-->6minusOne:=Op("-").fp1(1); minusOne(5) //-->4, note that this fixed 1 as the second parameter   // fix first and third parameters:foo:=String.fpM("101","<foo>","</foo>"); foo("zkl"); //-->"<foo>zkl</foo>"fcn g(x){x+1} f:=fcn(f,x){f(x)+x}.fp(g); f(5); //-->11f:=fcn(f,x){f(x)+x}.fp(fcn(x){x+1}); // above with lambdas all the way down`