MD5/Implementation

From Rosetta Code
< MD5
Revision as of 00:08, 23 November 2019 by rosettacode>GTG3000 (Added an example of implementation in Lua 5.3)
Task
MD5/Implementation
You are encouraged to solve this task according to the task description, using any language you may know.

The purpose of this task to code and validate an implementation of the MD5 Message Digest Algorithm by coding the algorithm directly (not using a call to a built-in or external hashing library). For details of the algorithm refer to MD5 on Wikipedia or the MD5 definition in IETF RFC (1321).

  • The implementation needs to implement the key functionality namely producing a correct message digest for an input string. It is not necessary to mimic all of the calling modes such as adding to a digest one block at a time over subsequent calls.
  • In addition to coding and verifying your implementation, note any challenges your language presented implementing the solution, implementation choices made, or limitations of your solution.
  • Solutions on this page should implement MD5 directly and NOT use built in (MD5) functions, call outs to operating system calls or library routines written in other languages as is common in the original MD5 task.
  • The following are acceptable:
    • An original implementation from the specification, reference implementation, or pseudo-code
    • A translation of a correct implementation from another language
    • A library routine in the same language; however, the source must be included here.

The solutions shown here will provide practical illustrations of bit manipulation, unsigned integers, working with little-endian data. Additionally, the task requires an attention to details such as boundary conditions since being out by even 1 bit will produce dramatically different results. Subtle implementation bugs can result in some hashes being correct while others are wrong. Not only is it critical to get the individual sub functions working correctly, even small errors in padding, endianness, or data layout will result in failure.

The following verification strings and hashes come from RFC 1321:

                            hash code <== string 
   0xd41d8cd98f00b204e9800998ecf8427e <== ""  
   0x0cc175b9c0f1b6a831c399e269772661 <== "a"
   0x900150983cd24fb0d6963f7d28e17f72 <== "abc"
   0xf96b697d7cb7938d525a2f31aaf161d0 <== "message digest"
   0xc3fcd3d76192e4007dfb496cca67e13b <== "abcdefghijklmnopqrstuvwxyz"
   0xd174ab98d277d9f5a5611c2c9f419d9f <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
   0x57edf4a22be3c955ac49da2e2107b67a <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"

In addition, intermediate outputs to aid in developing an implementation can be found here.

The MD5 Message-Digest Algorithm was developed by RSA Data Security, Inc. in 1991.

Warning
Rosetta Code is not a place you should rely on for examples of code in critical roles, including security.
Also, note that MD5 has been broken and should not be used in applications requiring security. For these consider SHA2 or the upcoming SHA3.

Ada

note: this could be dependent on the endianness of the machine it runs on - not tested on big endian.

md5.ads: <lang Ada>package MD5 is

  type Int32 is mod 2 ** 32;
  type MD5_Hash is array (1 .. 4) of Int32;
  function MD5 (Input : String) return MD5_Hash;
  -- 32 hexadecimal characters + '0x' prefix
  subtype MD5_String is String (1 .. 34);
  function To_String (Item : MD5_Hash) return MD5_String;

end MD5;</lang>

md5.adb: <lang Ada>with Ada.Unchecked_Conversion;

package body MD5 is

  type Int32_Array is array (Positive range <>) of Int32;
  function Rotate_Left (Value : Int32; Count : Int32) return Int32 is
     Bit    : Boolean;
     Result : Int32 := Value;
  begin
     for I in 1 .. Count loop
        Bit    := (2 ** 31 and Result) = 2 ** 31;
        Result := Result * 2;
        if Bit then
           Result := Result + 1;
        end if;
     end loop;
     return Result;
  end Rotate_Left;
  function Pad_String (Item : String) return Int32_Array is
     -- always pad positive amount of Bytes
     Padding_Bytes : Positive := 64 - Item'Length mod 64;
     subtype String4 is String (1 .. 4);
     function String4_To_Int32 is new Ada.Unchecked_Conversion
       (Source => String4,
        Target => Int32);
  begin
     if Padding_Bytes <= 2 then
        Padding_Bytes := Padding_Bytes + 64;
     end if;
     declare
        Result        : Int32_Array (1 .. (Item'Length + Padding_Bytes) / 4);
        Current_Index : Positive := 1;
     begin
        for I in 1 .. Item'Length / 4 loop
           Result (I)    :=
             String4_To_Int32 (Item (4 * (I - 1) + 1 .. 4 * I));
           Current_Index := Current_Index + 1;
        end loop;
        declare
           Last_String : String4          := (others => Character'Val (0));
           Chars_Left  : constant Natural := Item'Length mod 4;
        begin
           Last_String (1 .. Chars_Left) :=
             Item (Item'Last - Chars_Left + 1 .. Item'Last);
           Last_String (Chars_Left + 1)  := Character'Val (2#1000_0000#);
           Result (Current_Index)        := String4_To_Int32 (Last_String);
           Current_Index                 := Current_Index + 1;
        end;
        Result (Current_Index .. Result'Last) := (others => 0);
        -- append length as bit count
        Result (Result'Last - 1) := Item'Length * 2 ** 3; -- mod 2 ** 32;
        Result (Result'Last)     := Item'Length / 2 ** (32 - 3);
        return Result;
     end;
  end Pad_String;
  function Turn_Around (X : Int32) return Int32 is
     Result : Int32 := 0;
  begin
     for Byte in 1 .. 4 loop
        Result := Result * 16#100#;
        Result := Result + (X / (2 ** (8 * (Byte - 1)))) mod 16#100#;
     end loop;
     return Result;
  end Turn_Around;
  function MD5 (Input : String) return MD5_Hash is
     function F (X, Y, Z : Int32) return Int32 is
     begin
        return Z xor (X and (Y xor Z));
     end F;
     function G (X, Y, Z : Int32) return Int32 is
     begin
        return (X and Z) or (Y and (not Z));
     end G;
     function H (X, Y, Z : Int32) return Int32 is
     begin
        return X xor Y xor Z;
     end H;
     function I (X, Y, Z : Int32) return Int32 is
     begin
        return Y xor (X or (not Z));
     end I;
     T  : constant Int32_Array :=
       (16#d76aa478#, 16#e8c7b756#, 16#242070db#, 16#c1bdceee#,
        16#f57c0faf#, 16#4787c62a#, 16#a8304613#, 16#fd469501#,
        16#698098d8#, 16#8b44f7af#, 16#ffff5bb1#, 16#895cd7be#,
        16#6b901122#, 16#fd987193#, 16#a679438e#, 16#49b40821#,
        16#f61e2562#, 16#c040b340#, 16#265e5a51#, 16#e9b6c7aa#,
        16#d62f105d#, 16#02441453#, 16#d8a1e681#, 16#e7d3fbc8#,
        16#21e1cde6#, 16#c33707d6#, 16#f4d50d87#, 16#455a14ed#,
        16#a9e3e905#, 16#fcefa3f8#, 16#676f02d9#, 16#8d2a4c8a#,
        16#fffa3942#, 16#8771f681#, 16#6d9d6122#, 16#fde5380c#,
        16#a4beea44#, 16#4bdecfa9#, 16#f6bb4b60#, 16#bebfbc70#,
        16#289b7ec6#, 16#eaa127fa#, 16#d4ef3085#, 16#04881d05#,
        16#d9d4d039#, 16#e6db99e5#, 16#1fa27cf8#, 16#c4ac5665#,
        16#f4292244#, 16#432aff97#, 16#ab9423a7#, 16#fc93a039#,
        16#655b59c3#, 16#8f0ccc92#, 16#ffeff47d#, 16#85845dd1#,
        16#6fa87e4f#, 16#fe2ce6e0#, 16#a3014314#, 16#4e0811a1#,
        16#f7537e82#, 16#bd3af235#, 16#2ad7d2bb#, 16#eb86d391#);
     A : Int32 := 16#67452301#;
     B : Int32 := 16#EFCDAB89#;
     C : Int32 := 16#98BADCFE#;
     D : Int32 := 16#10325476#;
     Padded_String : constant Int32_Array := Pad_String (Input);
  begin
     for Block512 in 1 .. Padded_String'Length / 16 loop
        declare
           Words    : constant Int32_Array (1 .. 16) :=
             Padded_String (16 * (Block512 - 1) + 1 .. 16 * Block512);
           AA       : constant Int32                 := A;
           BB       : constant Int32                 := B;
           CC       : constant Int32                 := C;
           DD       : constant Int32                 := D;
        begin
           -- round 1
           A := B + Rotate_Left ((A + F (B, C, D) + Words (1) + T (1)),  7);
           D := A + Rotate_Left ((D + F (A, B, C) + Words (2) + T (2)), 12);
           C := D + Rotate_Left ((C + F (D, A, B) + Words (3) + T (3)), 17);
           B := C + Rotate_Left ((B + F (C, D, A) + Words (4) + T (4)), 22);
           A := B + Rotate_Left ((A + F (B, C, D) + Words (5) + T (5)),  7);
           D := A + Rotate_Left ((D + F (A, B, C) + Words (6) + T (6)), 12);
           C := D + Rotate_Left ((C + F (D, A, B) + Words (7) + T (7)), 17);
           B := C + Rotate_Left ((B + F (C, D, A) + Words (8) + T (8)), 22);
           A := B + Rotate_Left ((A + F (B, C, D) + Words (9) + T (9)),  7);
           D := A + Rotate_Left ((D + F (A, B, C) + Words (10) + T (10)), 12);
           C := D + Rotate_Left ((C + F (D, A, B) + Words (11) + T (11)), 17);
           B := C + Rotate_Left ((B + F (C, D, A) + Words (12) + T (12)), 22);
           A := B + Rotate_Left ((A + F (B, C, D) + Words (13) + T (13)),  7);
           D := A + Rotate_Left ((D + F (A, B, C) + Words (14) + T (14)), 12);
           C := D + Rotate_Left ((C + F (D, A, B) + Words (15) + T (15)), 17);
           B := C + Rotate_Left ((B + F (C, D, A) + Words (16) + T (16)), 22);
           -- round 2
           A := B + Rotate_Left ((A + G (B, C, D) + Words (2) + T (17)),  5);
           D := A + Rotate_Left ((D + G (A, B, C) + Words (7) + T (18)),  9);
           C := D + Rotate_Left ((C + G (D, A, B) + Words (12) + T (19)), 14);
           B := C + Rotate_Left ((B + G (C, D, A) + Words (1) + T (20)), 20);
           A := B + Rotate_Left ((A + G (B, C, D) + Words (6) + T (21)),  5);
           D := A + Rotate_Left ((D + G (A, B, C) + Words (11) + T (22)),  9);
           C := D + Rotate_Left ((C + G (D, A, B) + Words (16) + T (23)), 14);
           B := C + Rotate_Left ((B + G (C, D, A) + Words (5) + T (24)), 20);
           A := B + Rotate_Left ((A + G (B, C, D) + Words (10) + T (25)),  5);
           D := A + Rotate_Left ((D + G (A, B, C) + Words (15) + T (26)),  9);
           C := D + Rotate_Left ((C + G (D, A, B) + Words (4) + T (27)), 14);
           B := C + Rotate_Left ((B + G (C, D, A) + Words (9) + T (28)), 20);
           A := B + Rotate_Left ((A + G (B, C, D) + Words (14) + T (29)),  5);
           D := A + Rotate_Left ((D + G (A, B, C) + Words (3) + T (30)),  9);
           C := D + Rotate_Left ((C + G (D, A, B) + Words (8) + T (31)), 14);
           B := C + Rotate_Left ((B + G (C, D, A) + Words (13) + T (32)), 20);
           -- round 3
           A := B + Rotate_Left ((A + H (B, C, D) + Words (6) + T (33)),  4);
           D := A + Rotate_Left ((D + H (A, B, C) + Words (9) + T (34)), 11);
           C := D + Rotate_Left ((C + H (D, A, B) + Words (12) + T (35)), 16);
           B := C + Rotate_Left ((B + H (C, D, A) + Words (15) + T (36)), 23);
           A := B + Rotate_Left ((A + H (B, C, D) + Words (2) + T (37)),  4);
           D := A + Rotate_Left ((D + H (A, B, C) + Words (5) + T (38)), 11);
           C := D + Rotate_Left ((C + H (D, A, B) + Words (8) + T (39)), 16);
           B := C + Rotate_Left ((B + H (C, D, A) + Words (11) + T (40)), 23);
           A := B + Rotate_Left ((A + H (B, C, D) + Words (14) + T (41)),  4);
           D := A + Rotate_Left ((D + H (A, B, C) + Words (1) + T (42)), 11);
           C := D + Rotate_Left ((C + H (D, A, B) + Words (4) + T (43)), 16);
           B := C + Rotate_Left ((B + H (C, D, A) + Words (7) + T (44)), 23);
           A := B + Rotate_Left ((A + H (B, C, D) + Words (10) + T (45)),  4);
           D := A + Rotate_Left ((D + H (A, B, C) + Words (13) + T (46)), 11);
           C := D + Rotate_Left ((C + H (D, A, B) + Words (16) + T (47)), 16);
           B := C + Rotate_Left ((B + H (C, D, A) + Words (3) + T (48)), 23);
           -- round 4
           A := B + Rotate_Left ((A + I (B, C, D) + Words (1) + T (49)),  6);
           D := A + Rotate_Left ((D + I (A, B, C) + Words (8) + T (50)), 10);
           C := D + Rotate_Left ((C + I (D, A, B) + Words (15) + T (51)), 15);
           B := C + Rotate_Left ((B + I (C, D, A) + Words (6) + T (52)), 21);
           A := B + Rotate_Left ((A + I (B, C, D) + Words (13) + T (53)),  6);
           D := A + Rotate_Left ((D + I (A, B, C) + Words (4) + T (54)), 10);
           C := D + Rotate_Left ((C + I (D, A, B) + Words (11) + T (55)), 15);
           B := C + Rotate_Left ((B + I (C, D, A) + Words (2) + T (56)), 21);
           A := B + Rotate_Left ((A + I (B, C, D) + Words (9) + T (57)),  6);
           D := A + Rotate_Left ((D + I (A, B, C) + Words (16) + T (58)), 10);
           C := D + Rotate_Left ((C + I (D, A, B) + Words (7) + T (59)), 15);
           B := C + Rotate_Left ((B + I (C, D, A) + Words (14) + T (60)), 21);
           A := B + Rotate_Left ((A + I (B, C, D) + Words (5) + T (61)),  6);
           D := A + Rotate_Left ((D + I (A, B, C) + Words (12) + T (62)), 10);
           C := D + Rotate_Left ((C + I (D, A, B) + Words (3) + T (63)), 15);
           B := C + Rotate_Left ((B + I (C, D, A) + Words (10) + T (64)), 21);
           -- increment
           A := A + AA;
           B := B + BB;
           C := C + CC;
           D := D + DD;
        end;
     end loop;
     return
       (Turn_Around (A),
        Turn_Around (B),
        Turn_Around (C),
        Turn_Around (D));
  end MD5;
  function To_String (Item : MD5_Hash) return MD5_String is
     Hex_Chars : constant array (0 .. 15) of Character :=
       ('0', '1', '2', '3', '4', '5', '6', '7',
       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f');
     Result    : MD5_String := (1      => '0',
                                2      => 'x',
                                others => '0');
     Temp      : Int32;
     Position  : Natural := Result'Last;
  begin
     for Part in reverse Item'Range loop
        Temp := Item (Part);
        while Position > Result'Last - (5 - Part) * 8 loop
           Result (Position) := Hex_Chars (Natural (Temp mod 16));
           Position          := Position - 1;
           Temp              := Temp / 16;
        end loop;
     end loop;
     return Result;
  end To_String;

end MD5;</lang>

tester.adb: <lang Ada>with Ada.Strings.Unbounded; with Ada.Text_IO; with MD5;

procedure Tester is

  use Ada.Strings.Unbounded;
  type String_Array is array (Positive range <>) of Unbounded_String;
  Sources : constant String_Array :=
    (To_Unbounded_String (""),
     To_Unbounded_String ("a"),
     To_Unbounded_String ("abc"),
     To_Unbounded_String ("message digest"),
     To_Unbounded_String ("abcdefghijklmnopqrstuvwxyz"),
     To_Unbounded_String
        ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"),
     To_Unbounded_String
        ("12345678901234567890123456789012345678901234567890123456789012345678901234567890")
    );
  Digests : constant String_Array :=
    (To_Unbounded_String ("0xd41d8cd98f00b204e9800998ecf8427e"),
     To_Unbounded_String ("0x0cc175b9c0f1b6a831c399e269772661"),
     To_Unbounded_String ("0x900150983cd24fb0d6963f7d28e17f72"),
     To_Unbounded_String ("0xf96b697d7cb7938d525a2f31aaf161d0"),
     To_Unbounded_String ("0xc3fcd3d76192e4007dfb496cca67e13b"),
     To_Unbounded_String ("0xd174ab98d277d9f5a5611c2c9f419d9f"),
     To_Unbounded_String ("0x57edf4a22be3c955ac49da2e2107b67a"));

begin

  for I in Sources'Range loop
     Ada.Text_IO.Put_Line ("MD5 (""" & To_String (Sources (I)) & """):");
     Ada.Text_IO.Put_Line
       (MD5.To_String (MD5.MD5 (To_String (Sources (I)))));
     Ada.Text_IO.Put_Line (To_String (Digests (I)) & " (correct value)");
  end loop;

end Tester;</lang>

output:

MD5 (""):
0xd41d8cd98f00b204e9800998ecf8427e
0xd41d8cd98f00b204e9800998ecf8427e (correct value)
MD5 ("a"):
0x0cc175b9c0f1b6a831c399e269772661
0x0cc175b9c0f1b6a831c399e269772661 (correct value)
MD5 ("abc"):
0x900150983cd24fb0d6963f7d28e17f72
0x900150983cd24fb0d6963f7d28e17f72 (correct value)
MD5 ("message digest"):
0xf96b697d7cb7938d525a2f31aaf161d0
0xf96b697d7cb7938d525a2f31aaf161d0 (correct value)
MD5 ("abcdefghijklmnopqrstuvwxyz"):
0xc3fcd3d76192e4007dfb496cca67e13b
0xc3fcd3d76192e4007dfb496cca67e13b (correct value)
MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"):
0xd174ab98d277d9f5a5611c2c9f419d9f
0xd174ab98d277d9f5a5611c2c9f419d9f (correct value)
MD5 ("12345678901234567890123456789012345678901234567890123456789012345678901234567890"):
0x57edf4a22be3c955ac49da2e2107b67a
0x57edf4a22be3c955ac49da2e2107b67a (correct value)

AutoHotkey

See the implementation at MD5#AutoHotkey.

BBC BASIC

<lang bbcbasic> PRINT FN_MD5("")

     PRINT FN_MD5("a")
     PRINT FN_MD5("abc")
     PRINT FN_MD5("message digest")
     PRINT FN_MD5("abcdefghijklmnopqrstuvwxyz")
     PRINT FN_MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")
     PRINT FN_MD5(STRING$(8,"1234567890"))
     END
     
     DEF FN_MD5(message$)
     LOCAL a%, b%, c%, d%, f%, g%, h0%, h1%, h2%, h3%, i%, bits%, chunk%, temp%
     LOCAL r&(), k%(), w%()
     DIM r&(63), k%(63), w%(15)
     
     REM r specifies the per-round shift amounts:
     r&() = 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, \
     \      5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20, \
     \      4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \
     \      6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
     
     REM Use binary integer part of the sines of integers (Radians) as constants:
     FOR i% = 0 TO 63
       k%(i%) = FN32(INT(ABS(SIN(i% + 1.0#)) * 2^32))
     NEXT
     
     REM Initialize variables:
     h0% = &67452301
     h1% = &EFCDAB89
     h2% = &98BADCFE
     h3% = &10325476
     
     bits% = LEN(message$)*8
     
     REM Append '1' bit to message:
     message$ += CHR$&80
     
     REM Append '0' bits until message length in bits = 448 (mod 512):
     WHILE (LEN(message$) MOD 64) <> 56
       message$ += CHR$0
     ENDWHILE
     
     REM Append length of message (before pre-processing), in bits, as
     REM 64-bit little-endian integer:
     FOR i% = 0 TO 56 STEP 8
       message$ += CHR$(bits% >>> i%)
     NEXT
     
     REM Process the message in successive 512-bit chunks:
     FOR chunk% = 0 TO LEN(message$) DIV 64 - 1
       
       REM Break chunk into sixteen 32-bit little-endian words:
       FOR i% = 0 TO 15
         w%(i%) = !(!^message$ + 64*chunk% + 4*i%)
       NEXT i%
       
       REM Initialize hash value for this chunk:
       a% = h0%
       b% = h1%
       c% = h2%
       d% = h3%
       
       REM Main loop:
       FOR i% = 0 TO 63
         CASE TRUE OF
           WHEN i% <= 15:
             f% = d% EOR (b% AND (c% EOR d%))
             g% = i%
           WHEN 16 <= i% AND i% <= 31:
             f% = c% EOR (d% AND (b% EOR c%))
             g% = (5 * i% + 1) MOD 16
           WHEN 32 <= i% AND i% <= 47:
             f% = b% EOR c% EOR d%
             g% = (3 * i% + 5) MOD 16
           OTHERWISE:
             f% = c% EOR (b% OR (NOT d%))
             g% = (7 * i%) MOD 16
         ENDCASE
         
         temp% = d%
         d% = c%
         c% = b%
         b% = FN32(b% + FNlrot(FN32(a% + f%) + FN32(k%(i%) + w%(g%)), r&(i%)))
         a% = temp%
         
       NEXT i%
       
       REM Add this chunk's hash to result so far:
       h0% = FN32(h0% + a%)
       h1% = FN32(h1% + b%)
       h2% = FN32(h2% + c%)
       h3% = FN32(h3% + d%)
       
     NEXT chunk%
     
     = FNrevhex(h0%) + FNrevhex(h1%) + FNrevhex(h2%) + FNrevhex(h3%)
     
     DEF FNrevhex(A%)
     SWAP ?(^A%+0),?(^A%+3)
     SWAP ?(^A%+1),?(^A%+2)
     = RIGHT$("0000000"+STR$~A%,8)
     
     DEF FNlrot(n#, r%)
     n# = FN32(n#)
     = (n# << r%) OR (n# >>> (32 - r%))
     
     DEF FN32(n#)
     WHILE n# > &7FFFFFFF : n# -= 2^32 : ENDWHILE
     WHILE n# < &80000000 : n# += 2^32 : ENDWHILE
     = n#</lang>

C

See the implementation at MD5#C. Also, RFC 1321 already provides C code.

C#

Handwritten implementation ([1]): <lang csharp> /// Represent digest with ABCD sealed public class Digest { public uint A; public uint B; public uint C; public uint D;

public Digest() { A=(uint)MD5InitializerConstant.A; B=(uint)MD5InitializerConstant.B; C=(uint)MD5InitializerConstant.C; D=(uint)MD5InitializerConstant.D;

      	        }

public override string ToString() { string st ; st= MD5Helper.ReverseByte(A).ToString("X8")+ MD5Helper.ReverseByte(B).ToString("X8")+

                           MD5Helper.ReverseByte(C).ToString("X8")+

MD5Helper.ReverseByte(D).ToString("X8"); return st;

} }

public class MD5 { /***********************VARIABLES************************************/


/***********************Statics**************************************/ /// <summary> /// lookup table 4294967296*sin(i) /// </summary> protected readonly static uint [] T =new uint[64] { 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee, 0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,

               0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be,
               0x6b901122,0xfd987193,0xa679438e,0x49b40821,

0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa,

               0xd62f105d,0x2441453,0xd8a1e681,0xe7d3fbc8,
               0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,

0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a,

               0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c,
               0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70,
               0x289b7ec6,0xeaa127fa,0xd4ef3085,0x4881d05,

0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,

               0xf4292244,0x432aff97,0xab9423a7,0xfc93a039,
               0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1,
               0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1,

0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391};

/*****instance variables**************/ /// <summary> /// X used to proces data in /// 512 bits chunks as 16 32 bit word /// </summary> protected uint [] X = new uint [16];

/// <summary> /// the finger print obtained. /// </summary> protected Digest dgFingerPrint;

/// <summary> /// the input bytes /// </summary> protected byte [] m_byteInput;


/**********************EVENTS AND DELEGATES*******************************************/

public delegate void ValueChanging (object sender,MD5ChangingEventArgs Changing); public delegate void ValueChanged (object sender,MD5ChangedEventArgs Changed);


public event ValueChanging OnValueChanging; public event ValueChanged OnValueChanged;


/********************************************************************/ /***********************PROPERTIES ***********************/ /// <summary> ///gets or sets as string /// </summary> public string Value { get { string st ; char [] tempCharArray= new Char[m_byteInput.Length];

for(int i =0; i<m_byteInput.Length;i++) tempCharArray[i]=(char)m_byteInput[i];

st= new String(tempCharArray); return st; } set { /// raise the event to notify the changing if (this.OnValueChanging !=null) this.OnValueChanging(this,new MD5ChangingEventArgs(value));


m_byteInput=new byte[value.Length]; for (int i =0; i<value.Length;i++) m_byteInput[i]=(byte)value[i]; dgFingerPrint=CalculateMD5Value();

/// raise the event to notify the change if (this.OnValueChanged !=null) this.OnValueChanged(this,new MD5ChangedEventArgs(value,dgFingerPrint.ToString()));

} }

/// <summary> /// get/sets as byte array /// </summary> public byte [] ValueAsByte { get { byte [] bt = new byte[m_byteInput.Length]; for (int i =0; i<m_byteInput.Length;i++) bt[i]=m_byteInput[i]; return bt;

         }

set { /// raise the event to notify the changing if (this.OnValueChanging !=null) this.OnValueChanging(this,new MD5ChangingEventArgs(value));

m_byteInput=new byte[value.Length]; for (int i =0; i<value.Length;i++) m_byteInput[i]=value[i]; dgFingerPrint=CalculateMD5Value();


/// notify the changed value if (this.OnValueChanged !=null) this.OnValueChanged(this,new MD5ChangedEventArgs(value,dgFingerPrint.ToString())); } }

//gets the signature/figner print as string public string FingerPrint { get { return dgFingerPrint.ToString(); } }


/*************************************************************************/ /// <summary> /// Constructor /// </summary> public MD5() { Value=""; }


/******************************************************************************/ /*********************METHODS**************************/

/// <summary> /// calculat md5 signature of the string in Input /// </summary> /// <returns> Digest: the finger print of msg</returns> protected Digest CalculateMD5Value() { /***********vairable declaration**************/ byte [] bMsg; //buffer to hold bits uint N; //N is the size of msg as word (32 bit) Digest dg =new Digest(); // the value to be returned

// create a buffer with bits padded and length is alos padded bMsg=CreatePaddedBuffer();

N=(uint)(bMsg.Length*8)/32; //no of 32 bit blocks

for (uint i=0; i<N/16;i++) { CopyBlock(bMsg,i); PerformTransformation(ref dg.A,ref dg.B,ref dg.C,ref dg.D); } return dg; }

/******************************************************** * TRANSFORMATIONS : FF , GG , HH , II acc to RFC 1321 * where each Each letter represnets the aux function used *********************************************************/


/// <summary> /// perform transformatio using f(((b&c) | (~(b)&d)) /// </summary> protected void TransF(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i ) { a = b + MD5Helper.RotateLeft((a + ((b&c) | (~(b)&d)) + X[k] + T[i-1]), s); }

/// <summary> /// perform transformatio using g((b&d) | (c & ~d) ) /// </summary> protected void TransG(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i ) { a = b + MD5Helper.RotateLeft((a + ((b&d) | (c & ~d) ) + X[k] + T[i-1]), s); }

/// <summary> /// perform transformatio using h(b^c^d) /// </summary> protected void TransH(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i ) { a = b + MD5Helper.RotateLeft((a + (b^c^d) + X[k] + T[i-1]), s); }

/// <summary> /// perform transformatio using i (c^(b|~d)) /// </summary> protected void TransI(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i ) { a = b + MD5Helper.RotateLeft((a + (c^(b|~d))+ X[k] + T[i-1]), s); }


/// <summary> /// Perform All the transformation on the data /// </summary> /// <param name="A">A</param> /// <param name="B">B </param> /// <param name="C">C</param> /// <param name="D">D</param> protected void PerformTransformation(ref uint A,ref uint B,ref uint C, ref uint D) { //// saving ABCD to be used in end of loop

uint AA,BB,CC,DD;

AA=A; BB=B; CC=C; DD=D;

/* Round 1 * [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4] * [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8] * [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12] * [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16] * * */ TransF(ref A,B,C,D,0,7,1);TransF(ref D,A,B,C,1,12,2);TransF(ref C,D,A,B,2,17,3);TransF(ref B,C,D,A,3,22,4); TransF(ref A,B,C,D,4,7,5);TransF(ref D,A,B,C,5,12,6);TransF(ref C,D,A,B,6,17,7);TransF(ref B,C,D,A,7,22,8); TransF(ref A,B,C,D,8,7,9);TransF(ref D,A,B,C,9,12,10);TransF(ref C,D,A,B,10,17,11);TransF(ref B,C,D,A,11,22,12); TransF(ref A,B,C,D,12,7,13);TransF(ref D,A,B,C,13,12,14);TransF(ref C,D,A,B,14,17,15);TransF(ref B,C,D,A,15,22,16); /** rOUND 2 **[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20] *[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24] *[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28] *[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32] */ TransG(ref A,B,C,D,1,5,17);TransG(ref D,A,B,C,6,9,18);TransG(ref C,D,A,B,11,14,19);TransG(ref B,C,D,A,0,20,20); TransG(ref A,B,C,D,5,5,21);TransG(ref D,A,B,C,10,9,22);TransG(ref C,D,A,B,15,14,23);TransG(ref B,C,D,A,4,20,24); TransG(ref A,B,C,D,9,5,25);TransG(ref D,A,B,C,14,9,26);TransG(ref C,D,A,B,3,14,27);TransG(ref B,C,D,A,8,20,28); TransG(ref A,B,C,D,13,5,29);TransG(ref D,A,B,C,2,9,30);TransG(ref C,D,A,B,7,14,31);TransG(ref B,C,D,A,12,20,32); /* rOUND 3 * [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36] * [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40] * [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44] * [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48] * */ TransH(ref A,B,C,D,5,4,33);TransH(ref D,A,B,C,8,11,34);TransH(ref C,D,A,B,11,16,35);TransH(ref B,C,D,A,14,23,36); TransH(ref A,B,C,D,1,4,37);TransH(ref D,A,B,C,4,11,38);TransH(ref C,D,A,B,7,16,39);TransH(ref B,C,D,A,10,23,40); TransH(ref A,B,C,D,13,4,41);TransH(ref D,A,B,C,0,11,42);TransH(ref C,D,A,B,3,16,43);TransH(ref B,C,D,A,6,23,44); TransH(ref A,B,C,D,9,4,45);TransH(ref D,A,B,C,12,11,46);TransH(ref C,D,A,B,15,16,47);TransH(ref B,C,D,A,2,23,48); /*ORUNF 4 *[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52] *[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56] *[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60] *[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64] * */ TransI(ref A,B,C,D,0,6,49);TransI(ref D,A,B,C,7,10,50);TransI(ref C,D,A,B,14,15,51);TransI(ref B,C,D,A,5,21,52); TransI(ref A,B,C,D,12,6,53);TransI(ref D,A,B,C,3,10,54);TransI(ref C,D,A,B,10,15,55);TransI(ref B,C,D,A,1,21,56); TransI(ref A,B,C,D,8,6,57);TransI(ref D,A,B,C,15,10,58);TransI(ref C,D,A,B,6,15,59);TransI(ref B,C,D,A,13,21,60); TransI(ref A,B,C,D,4,6,61);TransI(ref D,A,B,C,11,10,62);TransI(ref C,D,A,B,2,15,63);TransI(ref B,C,D,A,9,21,64);


A=A+AA; B=B+BB; C=C+CC; D=D+DD;


}


/// <summary> /// Create Padded buffer for processing , buffer is padded with 0 along /// with the size in the end /// </summary> /// <returns>the padded buffer as byte array</returns> protected byte[] CreatePaddedBuffer() { uint pad; //no of padding bits for 448 mod 512 byte [] bMsg; //buffer to hold bits ulong sizeMsg; //64 bit size pad uint sizeMsgBuff; //buffer size in multiple of bytes int temp=(448-((m_byteInput.Length*8)%512)); //temporary


pad = (uint )((temp+512)%512); //getting no of bits to be pad if (pad==0) ///pad is in bits pad=512; //at least 1 or max 512 can be added

sizeMsgBuff= (uint) ((m_byteInput.Length)+ (pad/8)+8); sizeMsg=(ulong)m_byteInput.Length*8; bMsg=new byte[sizeMsgBuff]; ///no need to pad with 0 coz new bytes // are already initialize to 0 :)



////copying string to buffer for (int i =0; i<m_byteInput.Length;i++) bMsg[i]=m_byteInput[i];

bMsg[m_byteInput.Length]|=0x80; ///making first bit of padding 1,

//wrting the size value for (int i =8; i >0;i--) bMsg[sizeMsgBuff-i]=(byte) (sizeMsg>>((8-i)*8) & 0x00000000000000ff);

return bMsg; }


/// <summary> /// Copies a 512 bit block into X as 16 32 bit words /// </summary> /// <param name="bMsg"> source buffer</param> /// <param name="block">no of block to copy starting from 0</param> protected void CopyBlock(byte[] bMsg,uint block) {

block=block<<6; for (uint j=0; j<61;j+=4) { X[j>>2]=(((uint) bMsg[block+(j+3)]) <<24 ) | (((uint) bMsg[block+(j+2)]) <<16 ) | (((uint) bMsg[block+(j+1)]) <<8 ) | (((uint) bMsg[block+(j)]) ) ;

} } }

</lang>

Standard library-based implementation: <lang csharp> System.Security.Cryptography.MD5CryptoServiceProvider x = new System.Security.Cryptography.MD5CryptoServiceProvider(); byte[] bs = System.Text.Encoding.UTF8.GetBytes(password); bs = x.ComputeHash(bs); //this function is not in the above classdefinition System.Text.StringBuilder s = new System.Text.StringBuilder(); foreach (byte b in bs) {

  s.Append(b.ToString("x2").ToLower());

} password = s.ToString(); </lang>

CoffeeScript

<lang coffeescript>

  1. Array sum helper function.

sum = (array) ->

 array.reduce (x, y) -> x + y

md5 = do ->

 # Per-round shift amounts.
 s = [738695, 669989, 770404, 703814]
 s = (s[i >> 4] >> i % 4 * 5 & 31 for i in [0..63])
 
 # Constants cache generated by sine.
 K = (Math.floor 2**32 * Math.abs Math.sin i for i in [1..64])
 
 # Bitwise left rotate helper function.
 lrot = (x, y) ->
   x << y | x >>> 32 - y;
 
 (input) ->
   # Initialize values.
   d0 = 0x10325476;
   a0 = 0x67452301;
   b0 = ~d0
   c0 = ~a0;
   
   # Convert the message to 32-bit words, little-endian.
   M = 
     for i in [0...input.length] by 4
       sum (input.charCodeAt(i + j) << j*8 for j in [0..3])
   
   # Pre-processing: append a 1 bit, then message length % 2^64.
   len = input.length * 8
   M[len >> 5] |= 128 << len % 32
   M[(len + 64 >>> 9 << 4) + 14] = len
   
   # Process the message in chunks of 16 32-bit words.
   for x in [0...M.length] by 16
     [A, B, C, D] = [a0, b0, c0, d0]
     
     # Main loop.
     for i in [0..63]
       if i < 16
         F = B & C | ~B & D
         g = i
       else if i < 32
         F = B & D | C & ~D
         g = i * 5 + 1
       else if i < 48
         F = B ^ C ^ D
         g = i * 3 + 5
       else
         F = C ^ (B | ~D)
         g = i * 7
       
       [A, B, C, D] =
         [D, B + lrot(A + F + K[i] + (M[x + g % 16] ? 0), s[i]), B, C]
     
     a0 += A
     b0 += B
     c0 += C
     d0 += D
   
   # Convert the four words back to a string.
   return (
     for x in [a0, b0, c0, d0]
       (String.fromCharCode x >>> 8 * y & 255 for y in [0..3]).join 
   ).join 

</lang>

This implementation is more focused towards brevity rather than speed. Use a javascript MD5 implementation if speed is desired. Fork this code on github.

Note: this only works on byte strings. To use arbitrary Javascript strings, you must first encode as UTF-8.

And tests:

<lang coffeescript> str2hex = do ->

 hex = ['0', '1', '2', '3', '4', '5', '6', '7',
        '8', '9', 'a', 'b', 'c', 'd', 'e', 'f']
 hex = (hex[x >> 4] + hex[x & 15] for x in [0..255])
 (str) ->
   (hex[c.charCodeAt()] for c in str).join 

console.log str2hex md5 message for message in [

 ""
 "a"
 "abc"
 "message digest"
 "abcdefghijklmnopqrstuvwxyz"
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
 "12345678901234567890123456789012345678901234567890123456789012345678901234567890"

] </lang>

Output:

d41d8cd98f00b204e9800998ecf8427e
0cc175b9c0f1b6a831c399e269772661
900150983cd24fb0d6963f7d28e17f72
f96b697d7cb7938d525a2f31aaf161d0
c3fcd3d76192e4007dfb496cca67e13b
d174ab98d277d9f5a5611c2c9f419d9f
57edf4a22be3c955ac49da2e2107b67a

Common Lisp

This code requires the BABEL package for converting a string to an octet buffer.

<lang lisp>(defpackage #:md5

 (:use #:cl))

(in-package #:md5)

(require :babel)

(deftype word () '(unsigned-byte 32)) (deftype octet () '(unsigned-byte 8)) (deftype octets () '(vector octet))

(defparameter *s*

 (make-array 16 :element-type 'word
                :initial-contents '(7 12 17 22
                                    5  9 14 20
                                    4 11 16 23
                                    6 10 15 21)))

(defun s (i)

 (declare ((integer 0 63) i))
 (aref *s* (+ (ash (ash i -4) 2)
              (ldb (byte 2 0) i))))

(defparameter *k*

 (loop with result = (make-array 64 :element-type 'word)
       for i from 0 below 64
       do (setf (aref result i) (floor (* (ash 1 32) (abs (sin (1+ (float i 1d0)))))))
       finally (return result)))

(defun wrap (bits integer)

 (declare (fixnum bits) (integer integer))
 (ldb (byte bits 0) integer))

(defun integer->8octets (integer)

 (declare (integer integer))
 (loop for n = (wrap 64 integer) then (ash n -8)
       repeat 8
       collect (wrap 8 n)))

(defun pad-octets (octets)

 (declare (octets octets))
 (let* ((octets-length (length octets))
        (zero-pad-length (- 64 (mod (+ octets-length 9) 64)))
        (zero-pads (loop repeat zero-pad-length collect 0)))
   (concatenate 'octets octets '(#x80) zero-pads (integer->8octets (* 8 octets-length)))))

(defun octets->words (octets)

 (declare (octets octets))
 (loop with result = (make-array (/ (length octets) 4) :element-type 'word)
       for n from 0 below (length octets) by 4
       for i from 0
       do (setf (aref result i)
                (dpb (aref octets (+ n 3)) (byte 8 24)
                     (dpb (aref octets (+ n 2)) (byte 8 16)
                          (dpb (aref octets (1+ n)) (byte 8 8)
                               (dpb (aref octets n) (byte 8 0) 0)))))
       finally (return result)))

(defun words->octets (&rest words)

 (loop for word of-type word in words
       collect (ldb (byte 8 0)  word)
       collect (ldb (byte 8 8)  word)
       collect (ldb (byte 8 16) word)
       collect (ldb (byte 8 24) word)))

(defun left-rotate (x c)

 (declare (integer x) (fixnum c))
 (let ((x (wrap 32 x)))
   (wrap 32 (logior (ash x c)
                    (ash x (- c 32))))))

(defun md5 (string)

 (declare (string string))
 (loop with m = (octets->words (pad-octets (babel:string-to-octets string)))
       with a0 of-type word = #x67452301
       with b0 of-type word = #xefcdab89
       with c0 of-type word = #x98badcfe
       with d0 of-type word = #x10325476
       for j from 0 below (length m) by 16
       do (loop for a of-type word = a0 then d
                and b of-type word = b0 then new-b
                and c of-type word = c0 then b
                and d of-type word = d0 then c
                for i from 0 below 64
                for new-b = (multiple-value-bind (f g)
                                (ecase (ash i -4)
                                  (0 (values (wrap 32 (logior (logand b c)
                                                              (logand (lognot b) d)))
                                             i))
                                  (1 (values (wrap 32 (logior (logand d b)
                                                              (logand (lognot d) c)))
                                             (wrap 4 (1+ (* 5 i)))))
                                  (2 (values (wrap 32 (logxor b c d))
                                             (wrap 4 (+ (* 3 i) 5))))
                                  (3 (values (wrap 32 (logxor c
                                                              (logior b (lognot d))))
                                             (wrap 4 (* 7 i)))))
                              (declare (word f g))
                              (wrap 32 (+ b (left-rotate (+ a f (aref *k* i) (aref m (+ j g)))
                                                         (s i)))))
                finally (setf a0 (wrap 32 (+ a0 a))
                              b0 (wrap 32 (+ b0 b))
                              c0 (wrap 32 (+ c0 c))
                              d0 (wrap 32 (+ d0 d))))
       finally (return (with-output-to-string (s)
                         (dolist (o (words->octets a0 b0 c0 d0))
                           (format s "~(~2,'0X~)" o))))))

(defun test-cases ()

 (assert (string= "d41d8cd98f00b204e9800998ecf8427e"
                  (md5 "")))
 (assert (string= "0cc175b9c0f1b6a831c399e269772661"
                  (md5 "a")))
 (assert (string= "900150983cd24fb0d6963f7d28e17f72"
                  (md5 "abc")))
 (assert (string= "f96b697d7cb7938d525a2f31aaf161d0"
                  (md5 "message digest")))
 (assert (string= "c3fcd3d76192e4007dfb496cca67e13b"
                  (md5 "abcdefghijklmnopqrstuvwxyz")))
 (assert (string= "d174ab98d277d9f5a5611c2c9f419d9f"
                  (md5 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")))
 (assert (string= "57edf4a22be3c955ac49da2e2107b67a"
                  (md5 "12345678901234567890123456789012345678901234567890123456789012345678901234567890"))))</lang>

D

The standard library Phobos included an MD5 module.

This code generates x86 assembly code by compile time functions, then mix-in the assembly code. It only works on x86 machine. <lang d>import std.bitmanip, core.stdc.string, std.conv, std.math, std.array,

      std.string;

version (D_InlineAsm_X86) {} else {

   static assert(false, "For X86 machine only.");

}

// CTFE construction of transform expressions. uint S(in uint n) pure nothrow @safe @nogc {

   static immutable aux = [7u, 12, 17, 22, 5, 9, 14, 20, 4, 11,
                           16, 23, 6, 10, 15, 21];
   return aux[(n / 16) * 4 + (n % 4)];

}

uint K(in uint n) pure nothrow @safe @nogc {

   uint r = 0;
   if (n <= 15)
       r = n;
   else if (n <= 31)
       r = 5 * n + 1;
   else if (n <= 47)
       r = 3 * n + 5;
   else
       r = 7 * n;
   return r % 16;

}

uint T(in uint n) pure nothrow @nogc {

   return cast(uint)(abs(sin(n + 1.0L)) * (2UL ^^ 32));

}

string[] ABCD(in int n) pure nothrow {

   enum abcd = ["EAX", "EBX", "ECX", "EDX"];
   return abcd[(64 - n) % 4 .. 4] ~ abcd[0 .. (64 - n) % 4];

}

string SUB(in int n, in string s) pure nothrow {

   return s
          .replace("ax", n.ABCD[0])
          .replace("bx", n.ABCD[1])
          .replace("cx", n.ABCD[2])
          .replace("dx", n.ABCD[3]);

}

// FF, GG, HH & II expressions part 1 (F, G, H, I). string fghi1(in int n) pure nothrow @nogc {

   switch (n / 16) {
       case 0:
           // (bb & cc) | (~bb & dd)
           return q{
                       mov ESI, bx;
                       mov EDI, bx;
                       not ESI;
                       and EDI, cx;
                       and ESI, dx;
                       or EDI, ESI;
                       add ax, EDI;
                   };
       case 1:
           // (dd & bb) | (~dd & cc)
           return q{
                       mov ESI, dx;
                       mov EDI, dx;
                       not ESI;
                       and EDI, bx;
                       and ESI, cx;
                       or EDI, ESI;
                       add ax, EDI;
                   };
       case 2: // (bb ^ cc ^ dd)
           return q{
                       mov EDI, bx;
                       xor EDI, cx;
                       xor EDI, dx;
                       add ax, EDI;
                   };
       case 3: // (cc ^ (bb | ~dd))
           return q{
                      mov EDI, dx;
                      not EDI;
                      or EDI, bx;
                      xor EDI, cx;
                      add ax, EDI;
                   };
       default:
           assert(false);
   }

}

// FF, GG, HH & II expressions part 2. string fghi2(in int n) pure nothrow {

   return q{
               add ax, [EBP + 4 * KK];
               add ax, TT;
           } ~ n.fghi1;

}

// FF, GG, HH & II expressions prepended with previous parts // & subsitute ABCD. string FGHI(in int n) pure nothrow {

   // aa = ((aa << SS)|( aa >>> (32 - SS))) + bb = ROL(aa, SS) + bb
   return SUB(n, n.fghi2 ~ q{
                               rol ax, SS;
                               add ax, bx;
                            });

}

string genExpr(uint n) pure nothrow {

   return FGHI(n)
          .replace("SS", n.S.text)
          .replace("KK", n.K.text)
          .replace("TT", "0x" ~ to!string(n.T, 16));

}

string genTransformCode(int n) pure nothrow {

   return (n < 63) ? n.genExpr ~ genTransformCode(n + 1) : n.genExpr;

}

enum string coreZMD5 = 0.genTransformCode;

struct ZMD5 {

   uint[4] state = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476];
   ulong count;
   ubyte[64] buffer;
   ubyte[64] padding = [
     0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0];
   private void transform(ubyte* block) pure nothrow @nogc {
       uint[16] x = void;
       version (BigEndian) {
           foreach (immutable i; 0 .. 16)
               x[i] = littleEndianToNative!uint(*cast(ubyte[4]*)&block[i * 4]);
       } else {
           (cast(ubyte*)x.ptr)[0 .. 64] = block[0 .. 64];
       }
       auto pState = state.ptr;
       auto pBuffer = x.ptr;
       asm pure nothrow @nogc {
           mov  ESI, pState[EBP];
           mov  EDX, [ESI + 3 * 4];
           mov  ECX, [ESI + 2 * 4];
           mov  EBX, [ESI + 1 * 4];
           mov  EAX, [ESI + 0 * 4];
           push EBP;
           push ESI;
           mov  EBP, pBuffer[EBP];
       }
       mixin("asm pure nothrow @nogc { " ~ coreZMD5 ~ "}");
       asm pure nothrow @nogc {
           pop ESI;
           pop EBP;
           add [ESI + 0 * 4], EAX;
           add [ESI + 1 * 4], EBX;
           add [ESI + 2 * 4], ECX;
           add [ESI + 3 * 4], EDX;
       }
       x[] = 0;
   }
   void update(in void[] input) pure nothrow @nogc {
       auto inputLen = input.length;
       uint index = (count >> 3) & 0b11_1111U;
       count += inputLen * 8;
       immutable uint partLen = 64 - index;
       uint i;
       if (inputLen >= partLen) {
           memcpy(&buffer[index], input.ptr, partLen);
           transform(buffer.ptr);
           for (i = partLen; i + 63 < inputLen; i += 64)
               transform((cast(ubyte[])input)[i .. i + 64].ptr);
           index = 0;
       } else
           i = 0;
       if (inputLen - i)
           memcpy(&buffer[index], &input[i], inputLen - i);
   }
   void finish(ref ubyte[16] digest) pure nothrow @nogc {
       ubyte[8] bits = void;
       bits[0 .. 8] = nativeToLittleEndian(count)[];
       immutable uint index = (count >> 3) & 0b11_1111U;
       immutable uint padLen = (index < 56) ?
                               (56 - index) : (120 - index);
       update(padding[0 .. padLen]);
       update(bits);
       digest[0 .. 4]   = nativeToLittleEndian(state[0])[];
       digest[4 .. 8]   = nativeToLittleEndian(state[1])[];
       digest[8 .. 12]  = nativeToLittleEndian(state[2])[];
       digest[12 .. 16] = nativeToLittleEndian(state[3])[];
       // Zeroize sensitive information.
       memset(&this, 0, ZMD5.sizeof);
   }

}

string getDigestString(in void[][] data...) pure {

   ZMD5 ctx;
   foreach (datum; data)
       ctx.update(datum);
   ubyte[16] digest;
   ctx.finish(digest);
   return format("%-(%02X%)", digest);

}


void main() { // Benchmark code --------------

   import std.stdio, std.datetime, std.digest.md;
   writefln(`md5  digest("")  = %-(%02X%)`, "".md5Of);
   writefln(`zmd5 digest("")  = %s`, "".getDigestString);
   enum megaBytes = 512;
   writefln("\nTest performance / message size %dMBytes:", megaBytes);
   auto data = new float[megaBytes * 0x40000 + 13];
   StopWatch sw;
   sw.start;
   immutable d1 = data.md5Of;
   sw.stop;
   immutable time1 = sw.peek.msecs / 1000.0;
   writefln("digest(data) = %-(%02X%)", d1);
   writefln("std.md5: %8.2f M/sec  ( %8.2f secs)",
            megaBytes / time1, time1);
   sw.reset;
   sw.start;
   immutable d2 = data.getDigestString;
   sw.stop;
   immutable time2 = sw.peek.msecs / 1000.0;
   writefln("digest(data) = %s", d2);
   writefln("zmd5   : %8.2f M/sec  ( %8.2f secs)",
            megaBytes / time2, time2);

}</lang>

Output (dmd compiler):
md5  digest("")  = D41D8CD98F00B204E9800998ECF8427E
zmd5 digest("")  = D41D8CD98F00B204E9800998ECF8427E

Test performance / message size 512MBytes:
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
std.md5:    45.85 M/sec  (    11.17 secs)
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
zmd5   :   244.86 M/sec  (     2.09 secs)
Output (ldc2 compiler):
md5  digest("")  = D41D8CD98F00B204E9800998ECF8427E
zmd5 digest("")  = D41D8CD98F00B204E9800998ECF8427E

Test performance / message size 512MBytes:
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
std.md5:   310.12 M/sec  (     1.65 secs)
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
zmd5   :   277.06 M/sec  (     1.85 secs)

As you see this asm is much faster than the D code compiled by dmd, but the D code compiled by ldc2 is a little faster still.

F#

Pure functional implementation (slower than library function) (Link to original blog [2]): <lang F#>let fxyz x y z : uint32 = (x &&& y) ||| (~~~x &&& z) let gxyz x y z : uint32 = (z &&& x) ||| (~~~z &&& y) let hxyz x y z : uint32 = x ^^^ y ^^^ z let ixyz x y z : uint32 = y ^^^ (x ||| ~~~z) let fghi = [ fxyz; gxyz; hxyz; ixyz ] |> List.collect (List.replicate 16) let g1Idx = id let g2Idx i = (5 * i + 1) % 16 let g3Idx i = (3 * i + 5) % 16 let g4Idx i = (7 * i) % 16

let gIdxs =

 [ g1Idx; g2Idx; g3Idx; g4Idx ]
 |> List.collect (List.replicate 16)
 |> List.map2 (fun idx func -> func idx) [ 0..63 ]

let s =

 [ [ 7; 12; 17; 22 ]
   [ 5; 9; 14; 20 ]
   [ 4; 11; 16; 23 ]
   [ 6; 10; 15; 21 ] ]
 |> List.collect (List.replicate 4)
 |> List.concat

let k =

 [ 1...64. ] |> List.map (sin
                          >> abs
                          >> ((*) (2. ** 32.))
                          >> floor
                          >> uint32)

type MD5 =

 { a : uint32
   b : uint32
   c : uint32
   d : uint32 }

let initialMD5 =

 { a = 0x67452301u
   b = 0xefcdab89u
   c = 0x98badcfeu
   d = 0x10325476u }

let md5round (msg : uint32 []) { MD5.a = a; MD5.b = b; MD5.c = c; MD5.d = d } i =

 let rotateL32 r x = (x <<< r) ||| (x >>> (32 - r))
 let f = fghi.[i] b c d
 let a' = b + (a + f + k.[i] + msg.[gIdxs.[i]]
               |> rotateL32 s.[i])
 { a = d
   b = a'
   c = b
   d = c }

let md5plus m (bs : byte []) =

 let msg = 
   bs
   |> Array.chunkBySize 4
   |> Array.take 16
   |> Array.map (fun elt -> System.BitConverter.ToUInt32(elt, 0))
 
 let m' = List.fold (md5round msg) m [ 0..63 ]
 { a = m.a + m'.a
   b = m.b + m'.b
   c = m.c + m'.c
   d = m.d + m'.d }

let padMessage (msg : byte []) =

 let msgLen = Array.length msg
 let msgLenInBits = (uint64 msgLen) * 8UL
 
 let lastSegmentSize = 
   let m = msgLen % 64
   if m = 0 then 64
   else m
 
 let padLen = 
   64 - lastSegmentSize + (if lastSegmentSize >= 56 then 64
                           else 0)
 
 [| yield 128uy
    for i in 2..padLen - 8 do
      yield 0uy
    for i in 0..7 do
      yield ((msgLenInBits >>> (8 * i)) |> byte) |]
 |> Array.append msg

let md5sum (msg : string) =

 System.Text.Encoding.ASCII.GetBytes msg
 |> padMessage
 |> Array.chunkBySize 64
 |> Array.fold md5plus initialMD5
 |> (fun { MD5.a = a; MD5.b = b; MD5.c = c; MD5.d = d } -> 
   System.BitConverter.GetBytes a
   |> (fun x -> System.BitConverter.GetBytes b |> Array.append x)
   |> (fun x -> System.BitConverter.GetBytes c |> Array.append x)
   |> (fun x -> System.BitConverter.GetBytes d |> Array.append x))
 |> Array.map (sprintf "%02X")
 |> Array.reduce (+)</lang>

FreeBASIC

<lang freebasic>' version 19-10-2016 ' MD5 from the Wikipedia page "MD5" ' compile with: fbc -s console

' macro for a rotate left

  1. Macro ROtate_Left (x, n) ' rotate left
 (x) = (x) Shl (n) + (x) Shr (32 - (n))
  1. EndMacro

Function MD5(test_str As String) As String

 Dim As String message = test_str   ' strings are passed as ByRef's
 Dim As UByte sx, s(0 To ...) = { 7, 12, 17, 22,  7, 12, 17, 22,  7, 12, _
 17, 22,  7, 12, 17, 22,  5,  9, 14, 20,  5,  9, 14, 20,  5,  9, 14, 20, _
  5,  9, 14, 20,  4, 11, 16, 23,  4, 11, 16, 23,  4, 11, 16, 23,  4, 11, _
 16, 23,  6, 10, 15, 21,  6, 10, 15, 21,  6, 10, 15, 21,  6, 10, 15, 21 }
 Dim As UInteger<32> K(0 To ...) = { &Hd76aa478, &He8c7b756, &H242070db, _
 &Hc1bdceee, &Hf57c0faf, &H4787c62a, &Ha8304613, &Hfd469501, &H698098d8, _
 &H8b44f7af, &Hffff5bb1, &H895cd7be, &H6b901122, &Hfd987193, &Ha679438e, _
 &H49b40821, &Hf61e2562, &Hc040b340, &H265e5a51, &He9b6c7aa, &Hd62f105d, _
 &H02441453, &Hd8a1e681, &He7d3fbc8, &H21e1cde6, &Hc33707d6, &Hf4d50d87, _
 &H455a14ed, &Ha9e3e905, &Hfcefa3f8, &H676f02d9, &H8d2a4c8a, &Hfffa3942, _
 &H8771f681, &H6d9d6122, &Hfde5380c, &Ha4beea44, &H4bdecfa9, &Hf6bb4b60, _
 &Hbebfbc70, &H289b7ec6, &Heaa127fa, &Hd4ef3085, &H04881d05, &Hd9d4d039, _
 &He6db99e5, &H1fa27cf8, &Hc4ac5665, &Hf4292244, &H432aff97, &Hab9423a7, _
 &Hfc93a039, &H655b59c3, &H8f0ccc92, &Hffeff47d, &H85845dd1, &H6fa87e4f, _
 &Hfe2ce6e0, &Ha3014314, &H4e0811a1, &Hf7537e82, &Hbd3af235, &H2ad7d2bb, _
                                                             &Heb86d391 }
 ' Initialize variables
 Dim As UInteger<32> A, a0 = &H67452301
 Dim As UInteger<32> B, b0 = &Hefcdab89
 Dim As UInteger<32> C, c0 = &H98badcfe
 Dim As UInteger<32> D, d0 = &H10325476
 Dim As UInteger<32> dtemp, F, g, temp
 Dim As Long i, j
 Dim As ULongInt l = Len(message)
 ' set the first bit after the message to 1
 message = message + Chr(1 Shl 7)
 ' add one char to the length
 Dim As ULong padding = 64 - ((l +1) Mod (512 \ 8)) ' 512 \ 8 = 64 char.
 ' check if we have enough room for inserting the length
 If padding < 8 Then padding = padding + 64
 message = message + String(padding, Chr(0))   ' adjust length
 Dim As ULong l1 = Len(message)                ' new length
 l = l * 8    ' orignal length in bits
 ' create ubyte ptr to point to l ( = length in bits)
 Dim As UByte Ptr ub_ptr = Cast(UByte Ptr, @l)
 For i = 0 To 7  'copy length of message to the last 8 bytes
   message[l1 -8 + i] = ub_ptr[i]
 Next
 For j = 0 To (l1 -1) \ 64 ' split into block of 64 bytes
   A = a0 : B = b0 : C = c0 : D = d0
   ' break chunk into 16 32bit uinteger
   Dim As UInteger<32> Ptr M = Cast(UInteger<32> Ptr, @message[j * 64])
   For i = 0 To 63
     Select Case As Const i
       Case 0 To 15
         F = (B And C) Or ((Not B) And D)
         g = i
       Case 16 To 31
         F = (B And D) Or (C And (Not D))
         g = (i * 5 +1) Mod 16
       Case 32 To 47
         F = (B Xor C Xor D)
         g = (i * 3 +5) Mod 16
       Case 48 To 63
         F = C Xor (B Or (Not D))
         g = (i * 7) Mod 16
     End Select
     dtemp = D
     D = C
     C = B
     temp = A + F + K(i)+ M[g] : ROtate_left(temp, s(i))
     B = B + temp
     A = dtemp
   Next
   a0 += A : b0 += B : c0 += C : d0 += D
 Next
 Dim As String answer
 ' convert a0, b0, c0 and d0 in hex, then add, low order first
 Dim As String s1 = Hex(a0, 8)
 For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next
 s1 = Hex(b0, 8)
 For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next
 s1 = Hex(c0, 8)
 For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next
 s1 = Hex(d0, 8)
 For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next

Return LCase(answer)

End Function


' ------=< MAIN >=------

Dim As String test, hash, md5_hash Dim As ULong i

For i = 1 To 7

 Read hash, test
 md5_hash = MD5(test)
 Print
 Print test
 Print hash
 Print md5_hash;
 If hash = md5_hash Then
   Print " PASS"
 Else
   Print " FAIL"
   Beep
 End If

Next

' testdata Data "d41d8cd98f00b204e9800998ecf8427e", "" Data "0cc175b9c0f1b6a831c399e269772661", "a" Data "900150983cd24fb0d6963f7d28e17f72", "abc" Data "f96b697d7cb7938d525a2f31aaf161d0", "message digest" Data "c3fcd3d76192e4007dfb496cca67e13b", "abcdefghijklmnopqrstuvwxyz" Data "d174ab98d277d9f5a5611c2c9f419d9f" Data "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" Data "57edf4a22be3c955ac49da2e2107b67a" Data "123456789012345678901234567890123456789012345678901234567890" _

                                          + "12345678901234567890"

' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e PASS

a
0cc175b9c0f1b6a831c399e269772661
0cc175b9c0f1b6a831c399e269772661 PASS

abc
900150983cd24fb0d6963f7d28e17f72
900150983cd24fb0d6963f7d28e17f72 PASS

message digest
f96b697d7cb7938d525a2f31aaf161d0
f96b697d7cb7938d525a2f31aaf161d0 PASS

abcdefghijklmnopqrstuvwxyz
c3fcd3d76192e4007dfb496cca67e13b
c3fcd3d76192e4007dfb496cca67e13b PASS

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
d174ab98d277d9f5a5611c2c9f419d9f
d174ab98d277d9f5a5611c2c9f419d9f PASS

12345678901234567890123456789012345678901234567890123456789012345678901234567890
57edf4a22be3c955ac49da2e2107b67a
57edf4a22be3c955ac49da2e2107b67a PASS

Go

A limitation from RFC 1321 is that the function md5 takes a string which is a number of whole bytes. Messages of arbitrary bit length are not supported. <lang go>package main

import (

   "fmt"
   "math"
   "bytes"
   "encoding/binary"

)

type testCase struct {

   hashCode string
   string

}

var testCases = []testCase{

   {"d41d8cd98f00b204e9800998ecf8427e", ""},
   {"0cc175b9c0f1b6a831c399e269772661", "a"},
   {"900150983cd24fb0d6963f7d28e17f72", "abc"},
   {"f96b697d7cb7938d525a2f31aaf161d0", "message digest"},
   {"c3fcd3d76192e4007dfb496cca67e13b", "abcdefghijklmnopqrstuvwxyz"},
   {"d174ab98d277d9f5a5611c2c9f419d9f",
       "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"},
   {"57edf4a22be3c955ac49da2e2107b67a", "12345678901234567890" +
       "123456789012345678901234567890123456789012345678901234567890"},

}

func main() {

   for _, tc := range testCases {
       fmt.Printf("%s\n%x\n\n", tc.hashCode, md5(tc.string))
   }

}

var shift = [...]uint{7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21} var table [64]uint32

func init() {

   for i := range table {
       table[i] = uint32((1 << 32) * math.Abs(math.Sin(float64(i + 1))))
   }

}

func md5(s string) (r [16]byte) {

   padded := bytes.NewBuffer([]byte(s))
   padded.WriteByte(0x80)
   for padded.Len() % 64 != 56 {
       padded.WriteByte(0)
   }
   messageLenBits := uint64(len(s)) * 8
   binary.Write(padded, binary.LittleEndian, messageLenBits)
   var a, b, c, d uint32 = 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476
   var buffer [16]uint32
   for binary.Read(padded, binary.LittleEndian, buffer[:]) == nil { // read every 64 bytes
       a1, b1, c1, d1 := a, b, c, d
       for j := 0; j < 64; j++ {
           var f uint32
           bufferIndex := j
           round := j >> 4
           switch round {
           case 0:
               f = (b1 & c1) | (^b1 & d1)
           case 1:
               f = (b1 & d1) | (c1 & ^d1)
               bufferIndex = (bufferIndex*5 + 1) & 0x0F
           case 2:
               f = b1 ^ c1 ^ d1
               bufferIndex = (bufferIndex*3 + 5) & 0x0F
           case 3:
               f = c1 ^ (b1 | ^d1)
               bufferIndex = (bufferIndex * 7) & 0x0F
           }
           sa := shift[(round<<2)|(j&3)]
           a1 += f + buffer[bufferIndex] + table[j]
           a1, d1, c1, b1 = d1, c1, b1, a1<<sa|a1>>(32-sa)+b1
       }
       a, b, c, d = a+a1, b+b1, c+c1, d+d1
   }
   binary.Write(bytes.NewBuffer(r[:0]), binary.LittleEndian, []uint32{a, b, c, d})
   return

}</lang> Output:

d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e

0cc175b9c0f1b6a831c399e269772661
0cc175b9c0f1b6a831c399e269772661

900150983cd24fb0d6963f7d28e17f72
900150983cd24fb0d6963f7d28e17f72

f96b697d7cb7938d525a2f31aaf161d0
f96b697d7cb7938d525a2f31aaf161d0

c3fcd3d76192e4007dfb496cca67e13b
c3fcd3d76192e4007dfb496cca67e13b

d174ab98d277d9f5a5611c2c9f419d9f
d174ab98d277d9f5a5611c2c9f419d9f

57edf4a22be3c955ac49da2e2107b67a
57edf4a22be3c955ac49da2e2107b67a

Groovy

<lang groovy> class MD5 {

   private static final int INIT_A = 0x67452301
   private static final int INIT_B = (int)0xEFCDAB89L
   private static final int INIT_C = (int)0x98BADCFEL
   private static final int INIT_D = 0x10325476
   private static final int[] SHIFT_AMTS = [
           7, 12, 17, 22,
           5,  9, 14, 20,
           4, 11, 16, 23,
           6, 10, 15, 21
   ]
   private static final int[] TABLE_T = new int[64]
   static
   {
       for (int i in 0..63)
           TABLE_T[i] = (int)(long)((1L << 32) * Math.abs(Math.sin(i + 1)))
   }
   static byte[] computeMD5(byte[] message)
   {
       int messageLenBytes = message.length
       int numBlocks = ((messageLenBytes + 8) >>> 6) + 1
       int totalLen = numBlocks << 6
       byte[] paddingBytes = new byte[totalLen - messageLenBytes]
       paddingBytes[0] = (byte)0x80
       long messageLenBits = (long)messageLenBytes << 3
       for (int i in 0..7)
       {
           paddingBytes[paddingBytes.length - 8 + i] = (byte)messageLenBits
           messageLenBits >>>= 8
       }
       int a = INIT_A
       int b = INIT_B
       int c = INIT_C
       int d = INIT_D
       int[] buffer = new int[16]
       for (int i in 0..(numBlocks - 1))
       {
           int index = i << 6
           for (int j in 0..63) {
               buffer[j >>> 2] = ((int) ((index < messageLenBytes) ? message[index] : paddingBytes[index - messageLenBytes]) << 24) | (buffer[j >>> 2] >>> 8)
               index++
           }
           int originalA = a
           int originalB = b
           int originalC = c
           int originalD = d
           for (int j in 0..63)
           {
               int div16 = j >>> 4
               int f = 0
               int bufferIndex = j
               switch (div16)
               {
                   case 0:
                       f = (b & c) | (~b & d)
                       break
                   case 1:
                       f = (b & d) | (c & ~d)
                       bufferIndex = (bufferIndex * 5 + 1) & 0x0F
                       break
                   case 2:
                       f = b ^ c ^ d
                       bufferIndex = (bufferIndex * 3 + 5) & 0x0F
                       break
                   case 3:
                       f = c ^ (b | ~d)
                       bufferIndex = (bufferIndex * 7) & 0x0F
                       break
               }
               int temp = b + Integer.rotateLeft(a + f + buffer[bufferIndex] + TABLE_T[j], SHIFT_AMTS[(div16 << 2) | (j & 3)])
               a = d
               d = c
               c = b
               b = temp
           }
           a += originalA
           b += originalB
           c += originalC
           d += originalD
       }
       byte[] md5 = new byte[16]
       int count = 0
       for (int i in 0..3)
       {
           int n = (i == 0) ? a : ((i == 1) ? b : ((i == 2) ? c : d))
           for (int j in 0..3)
           {
               md5[count++] = (byte)n
               n >>>= 8
           }
       }
       return md5
   }
   static String toHexString(byte[] b)
   {
       StringBuilder sb = new StringBuilder()
       for (int i in 0..(b.length - 1))
       {
           sb.append(String.format("%02X", b[i] & 0xFF))
       }
       return sb.toString()
   }
   static void main(String[] args)
   {
       String[] testStrings = ["", "a", "abc", "message digest", "abcdefghijklmnopqrstuvwxyz",
                               "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
                               "12345678901234567890123456789012345678901234567890123456789012345678901234567890" ]
       for (String s : testStrings)
           System.out.println("0x" + toHexString(computeMD5(s.getBytes())) + " <== \"" + s + "\"")
   }

}

</lang>

Haskell

<lang haskell>import Control.Monad (replicateM)

import qualified Data.ByteString.Lazy as BL import qualified Data.ByteString.Lazy.Char8 as BLC import Data.Binary.Get import Data.Binary.Put import Data.Bits

import Data.Array (Array, listArray, (!)) import Data.List (foldl) import Data.Word (Word32)

import Numeric (showHex)


-- functions type Fun = Word32 -> Word32 -> Word32 -> Word32

funF, funG, funH, funI :: Fun funF x y z = (x .&. y) .|. (complement x .&. z) funG x y z = (x .&. z) .|. (complement z .&. y) funH x y z = x `xor` y `xor` z funI x y z = y `xor` (complement z .|. x)

idxF, idxG, idxH, idxI :: Int -> Int idxF i = i idxG i = (5 * i + 1) `mod` 16 idxH i = (3 * i + 5) `mod` 16 idxI i = 7 * i `mod` 16


-- arrays funA :: Array Int Fun funA = listArray (1,64) $ replicate 16 =<< [funF, funG, funH, funI]

idxA :: Array Int Int idxA = listArray (1,64) $ zipWith ($) (replicate 16 =<< [idxF, idxG, idxH, idxI]) [0..63]

rotA :: Array Int Int rotA = listArray (1,64) $ concat . replicate 4 =<<

      [[7, 12, 17, 22], [5, 9, 14, 20], [4, 11, 16, 23], [6, 10, 15, 21]]

sinA :: Array Int Word32 sinA = listArray (1,64) $ map (floor . (*mult) . abs . sin) [1..64]

   where mult = 2 ** 32 :: Double


-- to lazily calculate MD5 sum for standart input: -- main = putStrLn . md5sum =<< BL.getContents

main :: IO () main = mapM_ (putStrLn . md5sum . BLC.pack)

       [ "" 
       , "a"
       , "abc"
       , "message digest"
       , "abcdefghijklmnopqrstuvwxyz"
       , "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
       , "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
       ]


md5sum :: BL.ByteString -> String md5sum input =

   let MD5 a b c d = getMD5 initial `runGet` input
   in  foldr hex [] . BL.unpack . runPut $ mapM_ putWord32le [a,b,c,d]
   where
     initial = MD5 0x67452301 0xEFCDAB89 0x98BADCFE 0x10325476
     hex x s | x < 16    = '0' : showHex x s -- quick hack: like "%02x"
             | otherwise =       showHex x s


data MD5 = MD5

   { a :: {-# UNPACK #-} !Word32
   , b :: {-# UNPACK #-} !Word32
   , c :: {-# UNPACK #-} !Word32
   , d :: {-# UNPACK #-} !Word32
   }


getMD5 :: MD5 -> Get MD5 getMD5 md5 = do

 chunk <- getLazyByteString 64
 let len = BL.length chunk
 if len == 64
 then getMD5 $! md5 <+> chunk  -- apply and process next chunk
 else do                       -- input is totally eaten, finalize
   bytes <- bytesRead
   let fin   = runPut . putWord64le $ fromIntegral (bytes - 64 + len) * 8
       pad n = chunk `BL.append` (0x80 `BL.cons` BL.replicate (n - 1) 0x00)
   return $ if len >= 56
       then md5 <+> pad (64 - len) <+> BL.replicate 56 0x00 `BL.append` fin
       else md5 <+> pad (56 - len) `BL.append` fin


(<+>) :: MD5 -> BL.ByteString -> MD5 infixl 5 <+> md5@(MD5 a b c d) <+> bs =

   let datA = listArray (0,15) $ replicateM 16 getWord32le `runGet` bs
       MD5 a' b' c' d' = foldl' (md5round datA) md5 [1..64]
   in MD5 (a + a') (b + b') (c + c') (d + d')


md5round :: Array Int Word32 -> MD5 -> Int -> MD5 md5round datA (MD5 a b c d) i =

   let f  =  funA ! i
       w  =  datA ! (idxA ! i)
       a' =  b + (a + f b c d + w + sinA ! i) `rotateL` rotA ! i
   in MD5 d a' b c</lang>

Icon and Unicon

The following program is based on part on the Wikipedia pseudo-code and in part on the reference implementation in RFC 1321. The implementation uses large integers. The solution works in both Icon and Unicon. One limitation of this implementation is that will not handle arbitrary (bit) length messages - all are byte aligned. Another small challenge was that Icon/Unicon bit manipulation functions work on signed integers (and large integers), as a result there are no native rotation and negation functions. <lang Icon>procedure main() # validate against the RFC test strings and more

  testMD5("The quick brown fox jumps over the lazy dog", 16r9e107d9d372bb6826bd81d3542a419d6)
  testMD5("The quick brown fox jumps over the lazy dog.", 16re4d909c290d0fb1ca068ffaddf22cbd0)
  testMD5("", 16rd41d8cd98f00b204e9800998ecf8427e)    #R = MD5 test suite from RFC
  testMD5("a", 16r0cc175b9c0f1b6a831c399e269772661)   #R
  testMD5("abc", 16r900150983cd24fb0d6963f7d28e17f72) #R
  testMD5("message digest", 16rf96b697d7cb7938d525a2f31aaf161d0) #R 
  testMD5("abcdefghijklmnopqrstuvwxyz", 16rc3fcd3d76192e4007dfb496cca67e13b) #R 
  testMD5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 16rd174ab98d277d9f5a5611c2c9f419d9f) #R        
  testMD5("12345678901234567890123456789012345678901234567890123456789012345678901234567890", 16r57edf4a22be3c955ac49da2e2107b67a) #R

end

procedure testMD5(s,rh) # compute the MD5 hash and compare it to reference value

  write("Message(length=",*s,") = ",image(s))
  write("Digest = ",hexstring(h := MD5(s)),if h = rh then " matches reference hash" else (" does not match reference hash = " || hexstring(rh)),"\n")

end

link hexcvt # for testMD5

$define B32 4 # 32 bits $define B64 8 # 64 bits in bytes $define B512 64 # 512 bits in bytes $define M32 16r100000000 # 2^32 $define M64 16r10000000000000000 # 2^64

procedure MD5(s) #: return MD5 hash of message s local w,a,b,c,d,i,t,m local mlength,message,hash static rs,ks,istate,maxpad,g

initial {

  every (rs := []) |||:= 
     (t := [ 7, 12, 17, 22] | [ 5,  9, 14, 20] | [ 4, 11, 16, 23] | [ 6, 10, 15, 21]) ||| t ||| t ||| t
  every put(ks := [],integer(M32 * abs(sin(i := 1 to 64))))
  istate := [ 16r67452301, 16rEFCDAB89, 16r98BADCFE, 16r10325476 ]  # "Magic" IV
  maxpad := left(char(16r80),B512+B64,char(16r00)) # maximum possible padding
  g := []
  every i := 0 to 63 do                            # precompute offsets
     case round := i/16 of {
        0 : put(g,i + 1)
        1 : put(g,(5*i+1) % 16 + 1)

2 : put(g,(3*i+5) % 16 + 1)

        3 : put(g,(7*i) % 16 + 1) 
        }
  if not (*rs = *ks = 64) then runerr(500,"MD5 setup error") 
  }
                                                   # 1. Construct prefix
  t := (*s*8)%M64                                  # original message length
  s ||:= maxpad                                    # append maximum padding 
  s[0-:*s%B512] := ""                              # trim to final length 
  s[0-:B64] := reverse(unsigned2string(t,B64) )    # as little endian length
  
  message := []                                    # 2. Subdivide message
  s ? while put(message,move(B512))                #  into 512 bit blocks
                                                   # 3. Transform message ...
  state := copy(istate)                            # Initialize hashes 
  every m := !message do {                         # For each message block
     w := []
     m ? while put(w,unsigned(reverse(move(B32)))) # break into little-endian words 
     a := state[1]                                 # pick up hashes
     b := state[2]
     c := state[3]
     d := state[4]
     every i := 1 to 64 do  {                      # Process 4 rounds of hashes	
        case round := (i-1)/16 of {

0 : a +:= ixor(d, iand(b,ixor(c,d))) # 0..15 - alternate F

           1 : a +:= ixor(c,iand(d,ixor(b,c)))           # 16..31 - alternate G	
           2 : a +:= ixor(b,ixor(c,d))                   # 32..47 - H
           3 : a +:= ixor(c,ior(b,ixor(d,16rffffffff)))  # 48..64 - alternate I

} # Core of FF, GG, HH, II

        a +:= ks[i] + w[g[i]]                      # and the rest
        a %:= M32
        a := ior( ishift(a,rs[i]), ishift(a,-(32-rs[i]))) # 32bit rotate
        a +:= b    
        a :=: b :=: c :=: d                        # rotate variables

}

     state[1] +:= a                                # Add back new hashes 
     state[2] +:= b
     state[3] +:= c
     state[4] +:= d
     every !state %:= M32                          # mod 2^32
  }
  every (hash := "") ||:= reverse(unsigned2string(!state,4)) # little-endian digest
  return unsigned(hash)

end

procedure unsigned2string(i,w) # uint to string pad to w bytes local s

  if i < 0 then runerr(500,i)
  s := ""
  while (0 < i) | (*s < \w) do {
     s ||:= char(i % 256)
     i /:= 256
     }
  return reverse(s)

end

link unsigned # string to unsigned integer</lang>

The

provides unsigned and hexcvt Sample Output (abridged):

Message(length=43) = "The quick brown fox jumps over the lazy dog"
Digest = 9E107D9D372BB6826BD81D3542A419D6 matches reference hash

Message(length=44) = "The quick brown fox jumps over the lazy dog."
Digest = E4D909C290D0FB1CA068FFADDF22CBD0 matches reference hash

Message(length=0) = ""
Digest = D41D8CD98F00B204E9800998ECF8427E matches reference hash

Message(length=1) = "a"
Digest = CC175B9C0F1B6A831C399E269772661 matches reference hash
...

J

Note: the following code was extracted from http://www.jsoftware.com/wsvn/addons/trunk/convert/misc/md5.ijs

<lang j>NB. convert/misc/md5 NB. RSA Data Security, Inc. MD5 Message-Digest Algorithm NB. version: 1.0.2 NB. NB. See RFC 1321 for license details NB. J implementation -- (C) 2003 Oleg Kobchenko; NB. NB. 09/04/2003 Oleg Kobchenko NB. 03/31/2007 Oleg Kobchenko j601, JAL NB. 12/17/2015 G.Pruss 64-bit NB. ~60+ times slower than using the jqt library

require 'convert' coclass 'pcrypt'

NB. lt= (*. -.)~ gt= *. -. ge= +. -. xor= ~: '`lt gt ge xor'=: (20 b.)`(18 b.)`(27 b.)`(22 b.) '`and or sh'=: (17 b.)`(23 b.)`(33 b.)

3 : 0 if. IF64 do. rot=: (16bffffffff and sh or ] sh~ 32 -~ [) NB. (y << x) | (y >>> (32 - x)) add=: ((16bffffffff&and)@+)"0 else. rot=: (32 b.) add=: (+&(_16&sh) (16&sh@(+ _16&sh) or and&65535@]) +&(and&65535))"0 end. EMPTY )

hexlist=: tolower@:,@:hfd@:,@:(|."1)@(256 256 256 256&#:)

cmn=: 4 : 0 'x s t'=. x [ 'q a b'=. y b add s rot (a add q) add (x add t) )

ff=: cmn (((1&{ and 2&{) or 1&{ lt 3&{) , 2&{.) gg=: cmn (((1&{ and 3&{) or 2&{ gt 3&{) , 2&{.) hh=: cmn (((1&{ xor 2&{)xor 3&{ ) , 2&{.) ii=: cmn (( 2&{ xor 1&{ ge 3&{ ) , 2&{.) op=: ff`gg`hh`ii

I=: ".;._2(0 : 0) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9 ) S=: 4 4$7 12 17 22 5 9 14 20 4 11 16 23 6 10 15 21

T=: |:".;._2(0 : 0)

_680876936  _165796510     _378558  _198630844
_389564586 _1069501632 _2022574463  1126891415
 606105819   643717713  1839030562 _1416354905

_1044525330 _373897302 _35309556 _57434055

_176418897  _701558691 _1530992060  1700485571
1200080426    38016083  1272893353 _1894986606

_1473231341 _660478335 _155497632 _1051523

 _45705983  _405537848 _1094730640 _2054922799
1770035416   568446438   681279174  1873313359

_1958414417 _1019803690 _358537222 _30611744

    _42063  _187363961  _722521979 _1560198380

_1990404162 1163531501 76029189 1309151649

1804603682 _1444681467  _640364487  _145523070
 _40341101   _51403784  _421815835 _1120210379

_1502002290 1735328473 530742520 718787259

1236535329 _1926607734  _995338651  _343485551

)

norm=: 3 : 0 n=. 16 * 1 + _6 sh 8 + #y b=. n#0 [ y=. a.i.y for_i. i. #y do.

 b=. ((j { b) or (8*4|i) sh i{y) (j=. _2 sh i) } b

end. b=. ((j { b) or (8*4|i) sh 128) (j=._2 sh i=.#y) } b _16]\ (8 * #y) (n-2) } b )

NB.*md5 v MD5 Message-Digest Algorithm NB. diagest=. md5 message md5=: 3 : 0 X=. norm y q=. r=. 1732584193 _271733879 _1732584194 271733878 for_x. X do.

 for_j. i.4 do.
   l=. ((j{I){x) ,. (16$j{S) ,. j{T
   for_i. i.16 do.
     r=. _1|.((i{l) (op@.j) r),}.r
   end.
 end.
 q=. r=. r add q

end. hexlist r )

md5_z_=: md5_pcrypt_</lang>

<lang j> md5 d41d8cd98f00b204e9800998ecf8427e

  md5'a'

0cc175b9c0f1b6a831c399e269772661

  md5'abc'

900150983cd24fb0d6963f7d28e17f72

  md5'message digest'

f96b697d7cb7938d525a2f31aaf161d0

  md5'abcdefghijklmnopqrstuvwxyz'

c3fcd3d76192e4007dfb496cca67e13b

  md5'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'

d174ab98d277d9f5a5611c2c9f419d9f

  md5'12345678901234567890123456789012345678901234567890123456789012345678901234567890'

57edf4a22be3c955ac49da2e2107b67a </lang>

Java

Works with: Java version 1.5+

Based on RFC-1321. <lang java>class MD5 {

 private static final int INIT_A = 0x67452301;
 private static final int INIT_B = (int)0xEFCDAB89L;
 private static final int INIT_C = (int)0x98BADCFEL;
 private static final int INIT_D = 0x10325476;
 
 private static final int[] SHIFT_AMTS = {
   7, 12, 17, 22,
   5,  9, 14, 20,
   4, 11, 16, 23,
   6, 10, 15, 21
 };
 
 private static final int[] TABLE_T = new int[64];
 static
 {
   for (int i = 0; i < 64; i++)
     TABLE_T[i] = (int)(long)((1L << 32) * Math.abs(Math.sin(i + 1)));
 }
 
 public static byte[] computeMD5(byte[] message)
 {
   int messageLenBytes = message.length;
   int numBlocks = ((messageLenBytes + 8) >>> 6) + 1;
   int totalLen = numBlocks << 6;
   byte[] paddingBytes = new byte[totalLen - messageLenBytes];
   paddingBytes[0] = (byte)0x80;
   
   long messageLenBits = (long)messageLenBytes << 3;
   for (int i = 0; i < 8; i++)
   {
     paddingBytes[paddingBytes.length - 8 + i] = (byte)messageLenBits;
     messageLenBits >>>= 8;
   }
   
   int a = INIT_A;
   int b = INIT_B;
   int c = INIT_C;
   int d = INIT_D;
   int[] buffer = new int[16];
   for (int i = 0; i < numBlocks; i ++)
   {
     int index = i << 6;
     for (int j = 0; j < 64; j++, index++)
       buffer[j >>> 2] = ((int)((index < messageLenBytes) ? message[index] : paddingBytes[index - messageLenBytes]) << 24) | (buffer[j >>> 2] >>> 8);
     int originalA = a;
     int originalB = b;
     int originalC = c;
     int originalD = d;
     for (int j = 0; j < 64; j++)
     {
       int div16 = j >>> 4;
       int f = 0;
       int bufferIndex = j;
       switch (div16)
       {
         case 0:
           f = (b & c) | (~b & d);
           break;
           
         case 1:
           f = (b & d) | (c & ~d);
           bufferIndex = (bufferIndex * 5 + 1) & 0x0F;
           break;
           
         case 2:
           f = b ^ c ^ d;
           bufferIndex = (bufferIndex * 3 + 5) & 0x0F;
           break;
           
         case 3:
           f = c ^ (b | ~d);
           bufferIndex = (bufferIndex * 7) & 0x0F;
           break;
       }
       int temp = b + Integer.rotateLeft(a + f + buffer[bufferIndex] + TABLE_T[j], SHIFT_AMTS[(div16 << 2) | (j & 3)]);
       a = d;
       d = c;
       c = b;
       b = temp;
     }
     
     a += originalA;
     b += originalB;
     c += originalC;
     d += originalD;
   }
   
   byte[] md5 = new byte[16];
   int count = 0;
   for (int i = 0; i < 4; i++)
   {
     int n = (i == 0) ? a : ((i == 1) ? b : ((i == 2) ? c : d));
     for (int j = 0; j < 4; j++)
     {
       md5[count++] = (byte)n;
       n >>>= 8;
     }
   }
   return md5;
 }
 
 public static String toHexString(byte[] b)
 {
   StringBuilder sb = new StringBuilder();
   for (int i = 0; i < b.length; i++)
   {
     sb.append(String.format("%02X", b[i] & 0xFF));
   }
   return sb.toString();
 }
 public static void main(String[] args)
 {
   String[] testStrings = { "", "a", "abc", "message digest", "abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "12345678901234567890123456789012345678901234567890123456789012345678901234567890" };
   for (String s : testStrings)
     System.out.println("0x" + toHexString(computeMD5(s.getBytes())) + " <== \"" + s + "\"");
   return;
 }
 

}</lang>

Output:

0xD41D8CD98F00B204E9800998ECF8427E <== ""
0x0CC175B9C0F1B6A831C399E269772661 <== "a"
0x900150983CD24FB0D6963F7D28E17F72 <== "abc"
0xF96B697D7CB7938D525A2F31AAF161D0 <== "message digest"
0xC3FCD3D76192E4007DFB496CCA67E13B <== "abcdefghijklmnopqrstuvwxyz"
0xD174AB98D277D9F5A5611C2C9F419D9F <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57EDF4A22BE3C955AC49DA2E2107B67A <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
Works with: Java version 1.5+

Using ByteBuffers <lang java>import java.nio.ByteBuffer; import java.nio.ByteOrder;

class MD5 {

 private static final int INIT_A = 0x67452301;
 private static final int INIT_B = (int)0xEFCDAB89L;
 private static final int INIT_C = (int)0x98BADCFEL;
 private static final int INIT_D = 0x10325476;
 
 private static final int[] SHIFT_AMTS = {
   7, 12, 17, 22,
   5,  9, 14, 20,
   4, 11, 16, 23,
   6, 10, 15, 21
 };
 
 private static final int[] TABLE_T = new int[64];
 static
 {
   for (int i = 0; i < 64; i++)
     TABLE_T[i] = (int)(long)((1L << 32) * Math.abs(Math.sin(i + 1)));
 }
 
 public static byte[] computeMD5(byte[] message)
 {
   ByteBuffer padded = ByteBuffer.allocate((((message.length + 8) / 64) + 1) * 64).order(ByteOrder.LITTLE_ENDIAN);
   padded.put(message);
   padded.put((byte)0x80);
   long messageLenBits = (long)message.length * 8;
   padded.putLong(padded.capacity() - 8, messageLenBits);
   padded.rewind();
   int a = INIT_A;
   int b = INIT_B;
   int c = INIT_C;
   int d = INIT_D;
   while (padded.hasRemaining()) {
     // obtain a slice of the buffer from the current position,
     // and view it as an array of 32-bit ints
     IntBuffer chunk = padded.slice().order(ByteOrder.LITTLE_ENDIAN).asIntBuffer();
     int originalA = a;
     int originalB = b;
     int originalC = c;
     int originalD = d;
     for (int j = 0; j < 64; j++)
     {
       int div16 = j >>> 4;
       int f = 0;
       int bufferIndex = j;
       switch (div16)
       {
         case 0:
           f = (b & c) | (~b & d);
           break;
           
         case 1:
           f = (b & d) | (c & ~d);
           bufferIndex = (bufferIndex * 5 + 1) & 0x0F;
           break;
           
         case 2:
           f = b ^ c ^ d;
           bufferIndex = (bufferIndex * 3 + 5) & 0x0F;
           break;
           
         case 3:
           f = c ^ (b | ~d);
           bufferIndex = (bufferIndex * 7) & 0x0F;
           break;
       }
       int temp = b + Integer.rotateLeft(a + f + chunk.get(bufferIndex) + TABLE_T[j], SHIFT_AMTS[(div16 << 2) | (j & 3)]);
       a = d;
       d = c;
       c = b;
       b = temp;
     }
     
     a += originalA;
     b += originalB;
     c += originalC;
     d += originalD;
     padded.position(padded.position() + 64);
   }
   
   ByteBuffer md5 = ByteBuffer.allocate(16).order(ByteOrder.LITTLE_ENDIAN);
   for (int n : new int[]{a, b, c, d})
   {
     md5.putInt(n);
   }
   return md5.array();
 }
 
 public static String toHexString(byte[] b)
 {
   StringBuilder sb = new StringBuilder();
   for (int i = 0; i < b.length; i++)
   {
     sb.append(String.format("%02X", b[i] & 0xFF));
   }
   return sb.toString();
 }
 public static void main(String[] args)
 {
   String[] testStrings = { "", "a", "abc", "message digest", "abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "12345678901234567890123456789012345678901234567890123456789012345678901234567890" };
   for (String s : testStrings)
     System.out.println("0x" + toHexString(computeMD5(s.getBytes())) + " <== \"" + s + "\"");
   return;
 }
 

}</lang>

Output:

0xD41D8CD98F00B204E9800998ECF8427E <== ""
0x0CC175B9C0F1B6A831C399E269772661 <== "a"
0x900150983CD24FB0D6963F7D28E17F72 <== "abc"
0xF96B697D7CB7938D525A2F31AAF161D0 <== "message digest"
0xC3FCD3D76192E4007DFB496CCA67E13B <== "abcdefghijklmnopqrstuvwxyz"
0xD174AB98D277D9F5A5611C2C9F419D9F <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57EDF4A22BE3C955AC49DA2E2107B67A <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"


Julia

<lang julia># a rather literal translation of the pseudocode at https://en.wikipedia.org/wiki/MD5

const s = UInt32[7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,

                5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 
                4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,  4, 11, 16, 23, 
                6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21]

const K = UInt32[0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf,

   0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1,
   0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562,
   0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681,
   0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905,
   0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122,
   0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6,
   0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8,
   0xc4ac5665, 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3,
   0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314,
   0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391]

function md5(msgbytes)

   a0::UInt32 = 0x67452301  # A
   b0::UInt32 = 0xefcdab89  # B
   c0::UInt32 = 0x98badcfe  # C
   d0::UInt32 = 0x10325476  # D
   oldlen = length(msgbytes)
   umsg = push!([UInt8(b) for b in msgbytes], UInt8(0x80))
   while length(umsg) % 64 != 56
       push!(umsg, UInt8(0))
   end
   append!(umsg, reinterpret(UInt8, [htol(UInt64(oldlen) * 8)]))
   for j in 1:64:length(umsg)-1
       arr = view(umsg, j:j+63)
       M = [reinterpret(UInt32, arr[k:k+3])[1] for k in 1:4:62]
       A = a0
       B = b0
       C = c0
       D = d0
       for i in 0:63
           if 0 ≤ i ≤ 15
               F = D ⊻ (B & (C ⊻ D))
               g = i
           elseif 16 ≤ i ≤ 31
               F = C ⊻ (D & (B ⊻ C))
               g = (5 * i + 1) % 16
           elseif 32 ≤ i ≤ 47
               F = B ⊻ C ⊻ D
               g = (3 * i + 5) % 16
           elseif 48 ≤ i ≤ 63
               F = C ⊻ (B | (~D))
               g = (7 * i) % 16
           end
           F += A + K[i+1] + M[g+1]
           A = D
           D = C
           C = B
           B += ((F) << s[i+1]) | (F >> (32 - s[i+1]))
       end
       a0 += A
       b0 += B
       c0 += C
       d0 += D
   end
   digest = join(map(x -> lpad(string(x, base=16), 2, '0'), reinterpret(UInt8, [a0, b0, c0, d0])), "") # Output is in little-endian

end

for pair in [0xd41d8cd98f00b204e9800998ecf8427e => "", 0x0cc175b9c0f1b6a831c399e269772661 => "a",

  0x900150983cd24fb0d6963f7d28e17f72 => "abc", 0xf96b697d7cb7938d525a2f31aaf161d0 => "message digest",
  0xc3fcd3d76192e4007dfb496cca67e13b => "abcdefghijklmnopqrstuvwxyz",
  0xd174ab98d277d9f5a5611c2c9f419d9f => "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
  0x57edf4a22be3c955ac49da2e2107b67a => "12345678901234567890123456789012345678901234567890123456789012345678901234567890"]
  println("MD5 of $(pair[2]) is $(md5(pair[2])), which checks with $(string(pair[1], base=16)).")

end

</lang>

Output:
MD5 of  is d41d8cd98f00b204e9800998ecf8427e, which checks with d41d8cd98f00b204e9800998ecf8427e.
MD5 of a is 0cc175b9c0f1b6a831c399e269772661, which checks with cc175b9c0f1b6a831c399e269772661.
MD5 of abc is 900150983cd24fb0d6963f7d28e17f72, which checks with 900150983cd24fb0d6963f7d28e17f72.
MD5 of message digest is f96b697d7cb7938d525a2f31aaf161d0, which checks with f96b697d7cb7938d525a2f31aaf161d0.
MD5 of abcdefghijklmnopqrstuvwxyz is c3fcd3d76192e4007dfb496cca67e13b, which checks with c3fcd3d76192e4007dfb496cca67e13b.
MD5 of ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 is d174ab98d277d9f5a5611c2c9f419d9f, which checks with d174ab98d277d9f5a5611c2c9f419d9f.
MD5 of 12345678901234567890123456789012345678901234567890123456789012345678901234567890 is 57edf4a22be3c955ac49da2e2107b67a, which checks with 57edf4a22be3c955ac49da2e2107b67a.

Kotlin

Translation of: Java

<lang scala>// version 1.1.3

object MD5 {

   private val INIT_A = 0x67452301
   private val INIT_B = 0xEFCDAB89L.toInt()
   private val INIT_C = 0x98BADCFEL.toInt()
   private val INIT_D = 0x10325476

   private val SHIFT_AMTS = intArrayOf(
       7, 12, 17, 22,
       5,  9, 14, 20,
       4, 11, 16, 23,
       6, 10, 15, 21
   )
   private val TABLE_T = IntArray(64) {
       ((1L shl 32) * Math.abs(Math.sin(it + 1.0))).toLong().toInt()
   }
   fun compute(message: ByteArray): ByteArray {
       val messageLenBytes = message.size
       val numBlocks = ((messageLenBytes + 8) ushr 6) + 1
       val totalLen = numBlocks shl 6
       val paddingBytes = ByteArray(totalLen - messageLenBytes)
       paddingBytes[0] = 0x80.toByte()
       var messageLenBits = (messageLenBytes shl 3).toLong()
       for (i in 0..7) {
           paddingBytes[paddingBytes.size - 8 + i] = messageLenBits.toByte()
           messageLenBits = messageLenBits ushr 8
       }
       var a = INIT_A
       var b = INIT_B
       var c = INIT_C
       var d = INIT_D
       val buffer = IntArray(16)
       for (i in 0 until numBlocks) {
           var index = i shl 6
           for (j in 0..63) {
               val temp = if (index < messageLenBytes) message[index] else 
                              paddingBytes[index - messageLenBytes]
               buffer[j ushr 2] = (temp.toInt() shl 24) or (buffer[j ushr 2] ushr 8) 
               index++
           }
           val originalA = a
           val originalB = b
           val originalC = c
           val originalD = d
           for (j in 0..63) {
               val div16 = j ushr 4
               var f = 0
               var bufferIndex = j
               when (div16) {
                   0 -> {
                       f = (b and c) or (b.inv() and d)
                   }
                   1 -> {
                       f = (b and d) or (c and d.inv()) 
                       bufferIndex = (bufferIndex * 5 + 1) and 0x0F
                   }

                   2 -> {
                       f = b xor c xor d;
                       bufferIndex = (bufferIndex * 3 + 5) and 0x0F
                   }
                   3 -> {
                       f = c xor (b or d.inv());
                       bufferIndex = (bufferIndex * 7) and 0x0F
                   }
               } 
               val temp = b + Integer.rotateLeft(a + f + buffer[bufferIndex] + 
                          TABLE_T[j], SHIFT_AMTS[(div16 shl 2) or (j and 3)])
               a = d
               d = c
               c = b
               b = temp
           }
           a += originalA
           b += originalB
           c += originalC
           d += originalD
       }   
       val md5 = ByteArray(16)
       var count = 0
       for (i in 0..3) {
           var n = if (i == 0) a else (if (i == 1) b else (if (i == 2) c else d))
           for (j in 0..3) {      
               md5[count++] = n.toByte()
               n = n ushr 8
           }
       }
       return md5
   }

}

fun ByteArray.toHexString(): String {

   val sb = StringBuilder()
   for (b in this) sb.append(String.format("%02x", b.toInt() and 0xFF))
   return sb.toString()

}

fun main(args: Array<String>) {

   val testStrings = arrayOf(
       "",
       "a",
       "abc",
       "message digest",
       "abcdefghijklmnopqrstuvwxyz",
       "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
       "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
   )
   println("${"hash code".padStart(34)} <== string") 
   for (s in testStrings) {
       println("0x${MD5.compute(s.toByteArray()).toHexString()} <== \"$s\"")
   }

}</lang>

Output:
                         hash code <== string
0xd41d8cd98f00b204e9800998ecf8427e <== ""
0x0cc175b9c0f1b6a831c399e269772661 <== "a"
0x900150983cd24fb0d6963f7d28e17f72 <== "abc"
0xf96b697d7cb7938d525a2f31aaf161d0 <== "message digest"
0xc3fcd3d76192e4007dfb496cca67e13b <== "abcdefghijklmnopqrstuvwxyz"
0xd174ab98d277d9f5a5611c2c9f419d9f <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57edf4a22be3c955ac49da2e2107b67a <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"

Liberty BASIC

See the implementation at MD5#Liberty BASIC.

Lingo

<lang Lingo>---------------------------------------- -- Calculates MD5 hash of string or bytearray -- @param {bytearray|string} input -- @return {bytearray} (16 bytes)


on md5 (input)

   if stringP(input) then input = bytearray(input)
   -- Convert string to list of little-endian words...
   t_iLen = input.length * 8
   t_iCnt = (t_iLen + 64) / 512 * 16 + 16
   -- Create list, fill with zeros...
   x = []
   x[t_iCnt] = 0
   t_fArr = [1, 256, 65536, 16777216]
   i = 0
   j = 0
   repeat while i < t_iLen
       j = j + 1
       t_iNext = i / 32 + 1
       t_iTemp = bitAnd(input[i/8+1], 255) * t_fArr[j]
       x[t_iNext] = bitOr(x[t_iNext], t_iTemp)
       i = i + 8
       j = j mod 4
   end repeat
   -- Append padding...
   t_iNext = t_iLen / 32 + 1
   x[t_iNext] = bitOr(x[t_iNext], 128 * t_fArr[j + 1])
   x[(t_iLen + 64) / 512 * 16 + 15] = t_iLen
   -- Actual algorithm starts here...
   a = 1732584193
   b = -271733879
   c = -1732584194
   d = 271733878
   i = 1
   t_iWrap = the maxInteger + 1
   t_iCount = x.count + 1
   repeat while i < t_iCount
       olda = a
       oldb = b
       oldc = c
       oldd = d
       -- Round(1) --
       n = bitOr(bitAnd(b, c), bitAnd(bitNot(b), d)) + a + x[i] - 680876936
       if(n < 0) then a = bitOr(n * 128, bitOr((n + t_iWrap) / 33554432, 64)) + b
       else a = bitOr(n * 128, n / 33554432) + b
       n = bitOr(bitAnd(a, b), bitAnd(bitNot(a), c)) + d + x[i + 1] - 389564586
       if(n < 0) then d = bitOr(n * 4096, bitOr((n + t_iWrap) / 1048576, 2048)) + a
       else d = bitOr(n * 4096, n / 1048576) + a
       n = bitOr(bitAnd(d, a), bitAnd(bitNot(d), b)) + c + x[i + 2] + 606105819
       if(n < 0) then c = bitOr(n * 131072, bitOr((n + t_iWrap) / 32768, 65536)) + d
       else c = bitOr(n * 131072, n / 32768) + d
       n = bitOr(bitAnd(c, d), bitAnd(bitNot(c), a)) + b + x[i + 3] - 1044525330
       if(n < 0) then b = bitOr(n * 4194304, bitOr((n + t_iWrap) / 1024, 2097152)) + c
       else b = bitOr(n * 4194304, n / 1024) + c
       n = bitOr(bitAnd(b, c), bitAnd(bitNot(b), d)) + a + x[i + 4] - 176418897
       if(n < 0) then a = bitOr(n * 128, bitOr((n + t_iWrap) / 33554432, 64)) + b
       else a = bitOr(n * 128, n / 33554432) + b
       n = bitOr(bitAnd(a, b), bitAnd(bitNot(a), c)) + d + x[i + 5] + 1200080426
       if(n < 0) then d = bitOr(n * 4096, bitOr((n + t_iWrap) / 1048576, 2048)) + a
       else d = bitOr(n * 4096, n / 1048576) + a
       n = bitOr(bitAnd(d, a), bitAnd(bitNot(d), b)) + c + x[i + 6] - 1473231341
       if(n < 0) then c = bitOr(n * 131072, bitOr((n + t_iWrap) / 32768, 65536)) + d
       else c = bitOr(n * 131072, n / 32768) + d
       n = bitOr(bitAnd(c, d), bitAnd(bitNot(c), a)) + b + x[i + 7] - 45705983
       if(n < 0) then b = bitOr(n * 4194304, bitOr((n + t_iWrap) / 1024, 2097152)) + c
       else b = bitOr(n * 4194304, n / 1024) + c
       n = bitOr(bitAnd(b, c), bitAnd(bitNot(b), d)) + a + x[i + 8] + 1770035416
       if(n < 0) then a = bitOr(n * 128, bitOr((n + t_iWrap) / 33554432, 64)) + b
       else a = bitOr(n * 128, n / 33554432) + b
       n = bitOr(bitAnd(a, b), bitAnd(bitNot(a), c)) + d + x[i + 9] - 1958414417
       if(n < 0) then d = bitOr(n * 4096, bitOr((n + t_iWrap) / 1048576, 2048)) + a
       else d = bitOr(n * 4096, n / 1048576) + a
       n = bitOr(bitAnd(d, a), bitAnd(bitNot(d), b)) + c + x[i + 10] - 42063
       if(n < 0) then c = bitOr(n * 131072, bitOr((n + t_iWrap) / 32768, 65536)) + d
       else c = bitOr(n * 131072, n / 32768) + d
       n = bitOr(bitAnd(c, d), bitAnd(bitNot(c), a)) + b + x[i + 11] - 1990404162
       if(n < 0) then b = bitOr(n * 4194304, bitOr((n + t_iWrap) / 1024, 2097152)) + c
       else b = bitOr(n * 4194304, n / 1024) + c
       n = bitOr(bitAnd(b, c), bitAnd(bitNot(b), d)) + a + x[i + 12] + 1804603682
       if(n < 0) then a = bitOr(n * 128, bitOr((n + t_iWrap) / 33554432, 64)) + b
       else a = bitOr(n * 128, n / 33554432) + b
       n = bitOr(bitAnd(a, b), bitAnd(bitNot(a), c)) + d + x[i + 13] - 40341101
       if(n < 0) then d = bitOr(n * 4096, bitOr((n + t_iWrap) / 1048576, 2048)) + a
       else d = bitOr(n * 4096, n / 1048576) + a
       n = bitOr(bitAnd(d, a), bitAnd(bitNot(d), b)) + c + x[i + 14] - 1502002290
       if(n < 0) then c = bitOr(n * 131072, bitOr((n + t_iWrap) / 32768, 65536)) + d
       else c = bitOr(n * 131072, n / 32768) + d
       n = bitOr(bitAnd(c, d), bitAnd(bitNot(c), a)) + b + x[i + 15] + 1236535329
       if(n < 0) then b = bitOr(n * 4194304, bitOr((n + t_iWrap) / 1024, 2097152)) + c
       else b = bitOr(n * 4194304, n / 1024) + c
       -- Round(2) --
       n = bitOr(bitAnd(b, d), bitAnd(c, bitNot(d))) + a + x[i + 1] - 165796510
       if(n < 0) then a = bitOr(n * 32, bitOr((n + t_iWrap) / 134217728, 16)) + b
       else a = bitOr(n * 32, n / 134217728) + b
       n = bitOr(bitAnd(a, c), bitAnd(b, bitNot(c))) + d + x[i + 6] - 1069501632
       if(n < 0) then d = bitOr(n * 512, bitOr((n + t_iWrap) / 8388608, 256)) + a
       else d = bitOr(n * 512, n / 8388608) + a
       n = bitOr(bitAnd(d, b), bitAnd(a, bitNot(b))) + c + x[i + 11] + 643717713
       if(n < 0) then c = bitOr(n * 16384, bitOr((n + t_iWrap) / 262144, 8192)) + d
       else c = bitOr(n * 16384, n / 262144) + d
       n = bitOr(bitAnd(c, a), bitAnd(d, bitNot(a))) + b + x[i] - 373897302
       if(n < 0) then b = bitOr(n * 1048576, bitOr((n + t_iWrap) / 4096, 524288)) + c
       else b = bitOr(n * 1048576, n / 4096) + c
       n = bitOr(bitAnd(b, d), bitAnd(c, bitNot(d))) + a + x[i + 5] - 701558691
       if(n < 0) then a = bitOr(n * 32, bitOr((n + t_iWrap) / 134217728, 16)) + b
       else a = bitOr(n * 32, n / 134217728) + b
       n = bitOr(bitAnd(a, c), bitAnd(b, bitNot(c))) + d + x[i + 10] + 38016083
       if(n < 0) then d = bitOr(n * 512, bitOr((n + t_iWrap) / 8388608, 256)) + a
       else d = bitOr(n * 512, n / 8388608) + a
       n = bitOr(bitAnd(d, b), bitAnd(a, bitNot(b))) + c + x[i + 15] - 660478335
       if(n < 0) then c = bitOr(n * 16384, bitOr((n + t_iWrap) / 262144, 8192)) + d
       else c = bitOr(n * 16384, n / 262144) + d
       n = bitOr(bitAnd(c, a), bitAnd(d, bitNot(a))) + b + x[i + 4] - 405537848
       if(n < 0) then b = bitOr(n * 1048576, bitOr((n + t_iWrap) / 4096, 524288)) + c
       else b = bitOr(n * 1048576, n / 4096) + c
       n = bitOr(bitAnd(b, d), bitAnd(c, bitNot(d))) + a + x[i + 9] + 568446438
       if(n < 0) then a = bitOr(n * 32, bitOr((n + t_iWrap) / 134217728, 16)) + b
       else a = bitOr(n * 32, n / 134217728) + b
       n = bitOr(bitAnd(a, c), bitAnd(b, bitNot(c))) + d + x[i + 14] - 1019803690
       if(n < 0) then d = bitOr(n * 512, bitOr((n + t_iWrap) / 8388608, 256)) + a
       else d = bitOr(n * 512, n / 8388608) + a
       n = bitOr(bitAnd(d, b), bitAnd(a, bitNot(b))) + c + x[i + 3] - 187363961
       if(n < 0) then c = bitOr(n * 16384, bitOr((n + t_iWrap) / 262144, 8192)) + d
       else c = bitOr(n * 16384, n / 262144) + d
       n = bitOr(bitAnd(c, a), bitAnd(d, bitNot(a))) + b + x[i + 8] + 1163531501
       if(n < 0) then b = bitOr(n * 1048576, bitOr((n + t_iWrap) / 4096, 524288)) + c
       else b = bitOr(n * 1048576, n / 4096) + c
       n = bitOr(bitAnd(b, d), bitAnd(c, bitNot(d))) + a + x[i + 13] - 1444681467
       if(n < 0) then a = bitOr(n * 32, bitOr((n + t_iWrap) / 134217728, 16)) + b
       else a = bitOr(n * 32, n / 134217728) + b
       n = bitOr(bitAnd(a, c), bitAnd(b, bitNot(c))) + d + x[i + 2] - 51403784
       if(n < 0) then d = bitOr(n * 512, bitOr((n + t_iWrap) / 8388608, 256)) + a
       else d = bitOr(n * 512, n / 8388608) + a
       n = bitOr(bitAnd(d, b), bitAnd(a, bitNot(b))) + c + x[i + 7] + 1735328473
       if(n < 0) then c = bitOr(n * 16384, bitOr((n + t_iWrap) / 262144, 8192)) + d
       else c = bitOr(n * 16384, n / 262144) + d
       n = bitOr(bitAnd(c, a), bitAnd(d, bitNot(a))) + b + x[i + 12] - 1926607734
       if(n < 0) then b = bitOr(n * 1048576, bitOr((n + t_iWrap) / 4096, 524288)) + c
       else b = bitOr(n * 1048576, n / 4096) + c
       -- Round(3) --
       n = bitXor(bitXor(b, c), d) + a + x[i + 5] - 378558
       if(n < 0) then a = bitOr(n * 16, bitOr((n + t_iWrap) / 268435456, 8)) + b
       else a = bitOr(n * 16, n / 268435456) + b
       n = bitXor(bitXor(a, b), c) + d + x[i + 8] - 2022574463
       if(n < 0) then d = bitOr(n * 2048, bitOr((n + t_iWrap) / 2097152, 1024)) + a
       else d = bitOr(n * 2048, n / 2097152) + a
       n = bitXor(bitXor(d, a), b) + c + x[i + 11] + 1839030562
       if(n < 0) then c = bitOr(n * 65536, bitOr((n + t_iWrap) / 65536, 32768)) + d
       else c = bitOr(n * 65536, n / 65536) + d
       n = bitXor(bitXor(c, d), a) + b + x[i + 14] - 35309556
       if(n < 0) then b = bitOr(n * 8388608, bitOr((n + t_iWrap) / 512, 4194304)) + c
       else b = bitOr(n * 8388608, n / 512) + c
       n = bitXor(bitXor(b, c), d) + a + x[i + 1] - 1530992060
       if(n < 0) then a = bitOr(n * 16, bitOr((n + t_iWrap) / 268435456, 8)) + b
       else a = bitOr(n * 16, n / 268435456) + b
       n = bitXor(bitXor(a, b), c) + d + x[i + 4] + 1272893353
       if(n < 0) then d = bitOr(n * 2048, bitOr((n + t_iWrap) / 2097152, 1024)) + a
       else d = bitOr(n * 2048, n / 2097152) + a
       n = bitXor(bitXor(d, a), b) + c + x[i + 7] - 155497632
       if(n < 0) then c = bitOr(n * 65536, bitOr((n + t_iWrap) / 65536, 32768)) + d
       else c = bitOr(n * 65536, n / 65536) + d
       n = bitXor(bitXor(c, d), a) + b + x[i + 10] - 1094730640
       if(n < 0) then b = bitOr(n * 8388608, bitOr((n + t_iWrap) / 512, 4194304)) + c
       else b = bitOr(n * 8388608, n / 512) + c
       n = bitXor(bitXor(b, c), d) + a + x[i + 13] + 681279174
       if(n < 0) then a = bitOr(n * 16, bitOr((n + t_iWrap) / 268435456, 8)) + b
       else a = bitOr(n * 16, n / 268435456) + b
       n = bitXor(bitXor(a, b), c) + d + x[i] - 358537222
       if(n < 0) then d = bitOr(n * 2048, bitOr((n + t_iWrap) / 2097152, 1024)) + a
       else d = bitOr(n * 2048, n / 2097152) + a
       n = bitXor(bitXor(d, a), b) + c + x[i + 3] - 722521979
       if(n < 0) then c = bitOr(n * 65536, bitOr((n + t_iWrap) / 65536, 32768)) + d
       else c = bitOr(n * 65536, n / 65536) + d
       n = bitXor(bitXor(c, d), a) + b + x[i + 6] + 76029189
       if(n < 0) then b = bitOr(n * 8388608, bitOr((n + t_iWrap) / 512, 4194304)) + c
       else b = bitOr(n * 8388608, n / 512) + c
       n = bitXor(bitXor(b, c), d) + a + x[i + 9] - 640364487
       if(n < 0) then a = bitOr(n * 16, bitOr((n + t_iWrap) / 268435456, 8)) + b
       else a = bitOr(n * 16, n / 268435456) + b
       n = bitXor(bitXor(a, b), c) + d + x[i + 12] - 421815835
       if(n < 0) then d = bitOr(n * 2048, bitOr((n + t_iWrap) / 2097152, 1024)) + a
       else d = bitOr(n * 2048, n / 2097152) + a
       n = bitXor(bitXor(d, a), b) + c + x[i + 15] + 530742520
       if(n < 0) then c = bitOr(n * 65536, bitOr((n + t_iWrap) / 65536, 32768)) + d
       else c = bitOr(n * 65536, n / 65536) + d
       n = bitXor(bitXor(c, d), a) + b + x[i + 2] - 995338651
       if(n < 0) then b = bitOr(n * 8388608, bitOr((n + t_iWrap) / 512, 4194304)) + c
       else b = bitOr(n * 8388608, n / 512) + c
       -- Round(4) --
       n = bitXor(c, bitOr(b, bitNot(d))) + a + x[i] - 198630844
       if(n < 0) then a = bitOr(n * 64, bitOr((n + t_iWrap) / 67108864, 32)) + b
       else a = bitOr(n * 64, n / 67108864) + b
       n = bitXor(b, bitOr(a, bitNot(c))) + d + x[i + 7] + 1126891415
       if(n < 0) then d = bitOr(n * 1024, bitOr((n + t_iWrap) / 4194304, 512)) + a
       else d = bitOr(n * 1024, n / 4194304) + a
       n = bitXor(a, bitOr(d, bitNot(b))) + c + x[i + 14] - 1416354905
       if(n < 0) then c = bitOr(n * 32768, bitOr((n + t_iWrap) / 131072, 16384)) + d
       else c = bitOr(n * 32768, n / 131072) + d
       n = bitXor(d, bitOr(c, bitNot(a))) + b + x[i + 5] - 57434055
       if(n < 0) then b = bitOr(n * 2097152, bitOr((n + t_iWrap) / 2048, 1048576)) + c
       else b = bitOr(n * 2097152, n / 2048) + c
       n = bitXor(c, bitOr(b, bitNot(d))) + a + x[i + 12] + 1700485571
       if(n < 0) then a = bitOr(n * 64, bitOr((n + t_iWrap) / 67108864, 32)) + b
       else a = bitOr(n * 64, n / 67108864) + b
       n = bitXor(b, bitOr(a, bitNot(c))) + d + x[i + 3] - 1894986606
       if(n < 0) then d = bitOr(n * 1024, bitOr((n + t_iWrap) / 4194304, 512)) + a
       else d = bitOr(n * 1024, n / 4194304) + a
       n = bitXor(a, bitOr(d, bitNot(b))) + c + x[i + 10] - 1051523
       if(n < 0) then c = bitOr(n * 32768, bitOr((n + t_iWrap) / 131072, 16384)) + d
       else c = bitOr(n * 32768, n / 131072) + d
       n = bitXor(d, bitOr(c, bitNot(a))) + b + x[i + 1] - 2054922799
       if(n < 0) then b = bitOr(n * 2097152, bitOr((n + t_iWrap) / 2048, 1048576)) + c
       else b = bitOr(n * 2097152, n / 2048) + c
       n = bitXor(c, bitOr(b, bitNot(d))) + a + x[i + 8] + 1873313359
       if(n < 0) then a = bitOr(n * 64, bitOr((n + t_iWrap) / 67108864, 32)) + b
       else a = bitOr(n * 64, n / 67108864) + b
       n = bitXor(b, bitOr(a, bitNot(c))) + d + x[i + 15] - 30611744
       if(n < 0) then d = bitOr(n * 1024, bitOr((n + t_iWrap) / 4194304, 512)) + a
       else d = bitOr(n * 1024, n / 4194304) + a
       n = bitXor(a, bitOr(d, bitNot(b))) + c + x[i + 6] - 1560198380
       if(n < 0) then c = bitOr(n * 32768, bitOr((n + t_iWrap) / 131072, 16384)) + d
       else c = bitOr(n * 32768, n / 131072) + d
       n = bitXor(d, bitOr(c, bitNot(a))) + b + x[i + 13] + 1309151649
       if(n < 0) then b = bitOr(n * 2097152, bitOr((n + t_iWrap) / 2048, 1048576)) + c
       else b = bitOr(n * 2097152, n / 2048) + c
       n = bitXor(c, bitOr(b, bitNot(d))) + a + x[i + 4] - 145523070
       if(n < 0) then a = bitOr(n * 64, bitOr((n + t_iWrap) / 67108864, 32)) + b
       else a = bitOr(n * 64, n / 67108864) + b
       n = bitXor(b, bitOr(a, bitNot(c))) + d + x[i + 11] - 1120210379
       if(n < 0) then d = bitOr(n * 1024, bitOr((n + t_iWrap) / 4194304, 512)) + a
       else d = bitOr(n * 1024, n / 4194304) + a
       n = bitXor(a, bitOr(d, bitNot(b))) + c + x[i + 2] + 718787259
       if(n < 0) then c = bitOr(n * 32768, bitOr((n + t_iWrap) / 131072, 16384)) + d
       else c = bitOr(n * 32768, n / 131072) + d
       n = bitXor(d, bitOr(c, bitNot(a))) + b + x[i + 9] - 343485551
       if(n < 0) then b = bitOr(n * 2097152, bitOr((n + t_iWrap) / 2048, 1048576)) + c
       else b = bitOr(n * 2097152, n / 2048) + c
       a = a + olda
       b = b + oldb
       c = c + oldc
       d = d + oldd
       i = i + 16
   end repeat
   t_iArr = [a, b, c, d]
   ba = bytearray()
   p = 1
   repeat with i in t_iArr
       if(i > 0) then
           repeat with n = 1 to 4
               ba[p] = (i mod 256)
               i = i / 256
               p = p+1
           end repeat
       else
           i = bitNot(i)
           repeat with n = 1 to 4
               ba[p] = 255-(i mod 256)
               i = i / 256
               p = p+1
           end repeat
       end if
   end repeat
   ba.position = 1
   return ba

end</lang>

<lang Lingo>tests = [] tests.add("") tests.add("a") tests.add("abc") tests.add("message digest") tests.add("abcdefghijklmnopqrstuvwxyz") tests.add("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") tests.add("12345678901234567890123456789012345678901234567890123456789012345678901234567890") repeat with t in tests

   ba = md5(t)
   put ba.toHexString(1, ba.length)

end repeat</lang>

Output:
-- "d4 1d 8c d9 8f 00 b2 04 e9 80 09 98 ec f8 42 7e"
-- "0c c1 75 b9 c0 f1 b6 a8 31 c3 99 e2 69 77 26 61"
-- "90 01 50 98 3c d2 4f b0 d6 96 3f 7d 28 e1 7f 72"
-- "f9 6b 69 7d 7c b7 93 8d 52 5a 2f 31 aa f1 61 d0"
-- "c3 fc d3 d7 61 92 e4 00 7d fb 49 6c ca 67 e1 3b"
-- "d1 74 ab 98 d2 77 d9 f5 a5 61 1c 2c 9f 41 9d 9f"
-- "57 ed f4 a2 2b e3 c9 55 ac 49 da 2e 21 07 b6 7a"

Lua

With advent of 5.3, Lua can now calculate a string representation of an md5 hash.

<lang lua>-- shift amounts local s = {

 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20,
 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21

}

-- constants local K = {

 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391,

}

local function leftRotate(x, c)

 return (x << c) | (x >> (32-c))

end

local function getInt(byteArray, n)

 return (byteArray[n+3]<<24) + (byteArray[n+2]<<16) + (byteArray[n+1]<<8) + byteArray[n]

end

--- converts 32bit integer n to a little endian hex representation -- @tparam integer n local function lE(n)

 local s = 
 for i = 0, 3 do
   s = ('%s%02x'):format(s, (n>>(i*8))&0xff)
 end
 return s

end

--- md5 -- @tparam string message local function md5(message)

 local a0, b0, c0, d0 = 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476
 local bytes = {message:byte(1, -1)}
 
 -- insert 1 bit (and the rest of the byte)
 table.insert(bytes, 0x80)
 -- pad with zeros until we have *just enough*
 local p = #bytes%64
 if p > 56 then
   p = p - 64
 end
 for _ = p+1, 56 do
   table.insert(bytes, 0)
 end
 -- insert the initial message length, in little-endian
 local len = ((#message)<<3)&0xffffffffffffffff -- length in bits
 for i = 0, 7 do
   table.insert(bytes, (len>>(i*8))&0xff)
 end


 for i = 0, #bytes//64-1 do
   local a, b, c, d = a0, b0, c0, d0
   for j = 0, 63 do
     local F, g
     -- permutate
     if j <= 15 then
       F = (b & c) | (~b & d)
       g = j
     elseif j <= 31 then
       F = (d & b) | (~d & c)
       g = (5*j + 1) & 15
     elseif j <= 47 then
       F = b ~ c ~ d
       g = (3*j + 5) & 15
     else
       F = c ~ (b | ~d)
       g = (7*j) & 15
     end
     F = (F + a + K[j+1] + getInt(bytes, i*64+g*4+1))&0xffffffff
     -- shuffle
     a = d
     d = c
     c = b
     b = (b + leftRotate(F, s[j+1]))&0xffffffff
   end
   -- update internal state
   a0 = (a0 + a)&0xffffffff
   b0 = (b0 + b)&0xffffffff
   c0 = (c0 + c)&0xffffffff
   d0 = (d0 + d)&0xffffffff
 end
 -- lua doesn't support any other byte strings. Could convert to a wacky string but this is more printable.
 return lE(a0)..lE(b0)..lE(c0)..lE(d0)

end

local demo = {

 [""] = "d41d8cd98f00b204e9800998ecf8427e",  
 ["a"] = "0cc175b9c0f1b6a831c399e269772661",
 ["abc"] = "900150983cd24fb0d6963f7d28e17f72",
 ["message digest"] = "f96b697d7cb7938d525a2f31aaf161d0",
 ["abcdefghijklmnopqrstuvwxyz"] = "c3fcd3d76192e4007dfb496cca67e13b",
 ["ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"] = "d174ab98d277d9f5a5611c2c9f419d9f",
 ["12345678901234567890123456789012345678901234567890123456789012345678901234567890"] = "57edf4a22be3c955ac49da2e2107b67a",

}

for k, v in pairs(demo) do

 local m = md5(k)
 print(("%s [%2s] <== \"%s\""):format(m, m==v and 'OK' or , k))

end</lang>

Mathematica

<lang Mathematica>md5[string_String] :=

Module[{r = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 
    22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 
    11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 
    15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21}, 
  k = Table[Floor[2^32*Abs@Sin@i], {i, 1, 64}], h0 = 16^^67452301, 
  h1 = 16^^efcdab89, h2 = 16^^98badcfe, h3 = 16^^10325476, 
  data = Partition[
    Join[FromDigits[Reverse@#, 256] & /@ 
        Partition[
         PadRight[Append[#, 128], Mod[56, 64, Length@# + 1]], 4], 
       Reverse@IntegerDigits[8 Length@#, 2^32, 2]] &@
     ImportString[string, "Binary"], 16], a, b, c, d, f, g}, 
 Do[{a, b, c, d} = {h0, h1, h2, h3}; 
  Do[Which[1 <= i <= 16, 
    f = BitOr[BitAnd[b, c], BitAnd[BitNot[b], d]]; g = i - 1, 
    17 <= i <= 32, f = BitOr[BitAnd[d, b], BitAnd[BitNot[d], c]]; 
    g = Mod[5 i - 4, 16], 33 <= i <= 48, f = BitXor[b, c, d]; 
    g = Mod[3 i + 2, 16], 49 <= i <= 64, 
    f = BitXor[c, BitOr[b, BitNot[d] + 2^32]]; 
    g = Mod[7 i - 7, 16]]; {a, b, c, d} = {d, 
     BitOr[BitShiftLeft[#1, #2], BitShiftRight[#1, 32 - #2]] &[
       Mod[a + f + ki + wg + 1, 2^32], ri] + b, b, 
     c}, {i, 1, 64}]; {h0, h1, h2, h3} = 
   Mod[{h0, h1, h2, h3} + {a, b, c, d}, 2^32], {w, data}]; 
 "0x" ~~ IntegerString[
   FromDigits[
    Flatten[Reverse@IntegerDigits[#, 256, 4] & /@ {h0, h1, h2, h3}], 
    256], 16, 32]]

</lang> Example: <lang Mathematica>md5["12345678901234567890123456789012345678901234567890123456789012345678901234567890"]</lang> Output: <lang Mathematica>0x57edf4a22be3c955ac49da2e2107b67a</lang>

MATLAB / Octave

See the implementation at MD5#MATLAB.

Modula-3

<lang modula3>INTERFACE MD5;

IMPORT Word;

TYPE Digest = ARRAY [0..15] OF CHAR; TYPE Buffer = ARRAY [0..63] OF CHAR;

TYPE T = RECORD

 state: ARRAY [0..3] OF Word.T;
 count: ARRAY [0..1] OF Word.T;
 buffer: Buffer;

END;

PROCEDURE Init(VAR md5ctx: T); PROCEDURE Update(VAR md5ctx: T; input: TEXT); PROCEDURE Final(VAR md5ctx: T): Digest; PROCEDURE ToText(hash: Digest): TEXT;

END MD5.</lang> <lang modula3>MODULE MD5;

IMPORT Word, Text, Fmt;

CONST S11 = 7; S12 = 12; S13 = 17; S14 = 22;

     S21 = 5; S22 = 9; S23 = 14; S24 = 20;
     S31 = 4; S32 = 11; S33 = 16; S34 = 23;
     S41 = 6; S42 = 10; S43 = 15; S44 = 21;
     pad1 = "\200\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
     pad2 = "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
     pad3 = "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
     pad4 = "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
     padding = pad1 & pad2 & pad3 & pad4;

PROCEDURE Init(VAR md5ctx: T) =

 BEGIN
   <*ASSERT Word.Size = 32*>
   md5ctx.count[0] := 0;
   md5ctx.count[1] := 0;
   md5ctx.state[0] := 16_67452301;
   md5ctx.state[1] := 16_efcdab89;
   md5ctx.state[2] := 16_98badcfe;
   md5ctx.state[3] := 16_10325476;
 END Init;

PROCEDURE Transform(VAR state: ARRAY [0..3] OF Word.T;

                   VAR input: Buffer) =
 VAR a, b, c, d: INTEGER;
     x: ARRAY [0..15] OF INTEGER;
 PROCEDURE Decode(VAR x: ARRAY [0..15] OF INTEGER;
                  VAR input: Buffer) =
   BEGIN
     FOR i := 0 TO 15 DO
       x[i] := Word.Insert(x[i], ORD(input[4*i+0]), 0, 8);
       x[i] := Word.Insert(x[i], ORD(input[4*i+1]), 8, 8);
       x[i] := Word.Insert(x[i], ORD(input[4*i+2]), 16, 8);
       x[i] := Word.Insert(x[i], ORD(input[4*i+3]), 24, 8);
     END;
   END Decode;
 PROCEDURE FF(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
   PROCEDURE F(x, y, z: INTEGER): INTEGER =
     BEGIN
       RETURN Word.Or(Word.And(x, y), Word.And(Word.Not(x), z));
     END F;
   BEGIN
     a := b + Word.Rotate(a + F(b, c, d) + x + ac, s);
   END FF;
 PROCEDURE GG(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
   PROCEDURE G(x, y, z: INTEGER): INTEGER =
     BEGIN
       RETURN Word.Or(Word.And(x, z), Word.And(y, Word.Not(z)));
     END G;
   BEGIN
     a := b + Word.Rotate(a + G(b, c, d) + x + ac, s);
   END GG;
 PROCEDURE HH(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
   PROCEDURE H(x, y, z: INTEGER): INTEGER =
     BEGIN
       RETURN Word.Xor(x, Word.Xor(y,z));
     END H;
   BEGIN
     a := b + Word.Rotate(a + H(b, c, d) + x + ac, s);
   END HH;
 PROCEDURE II(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
   PROCEDURE I(x, y, z: INTEGER): INTEGER =
     BEGIN
       RETURN Word.Xor(y, Word.Or(x, Word.Not(z)))
     END I;
   BEGIN
     a := b + Word.Rotate(a + I(b, c, d) + x + ac, s)
   END II;
 BEGIN
   Decode(x, input);
   
   a := state[0];
   b := state[1];
   c := state[2];
   d := state[3];
   
   (* Round 1 *)
   FF(a, b, c, d, x[ 0], S11, 16_d76aa478); (* 1 *)
   FF(d, a, b, c, x[ 1], S12, 16_e8c7b756); (* 2 *)
   FF(c, d, a, b, x[ 2], S13, 16_242070db); (* 3 *)
   FF(b, c, d, a, x[ 3], S14, 16_c1bdceee); (* 4 *)
   FF(a, b, c, d, x[ 4], S11, 16_f57c0faf); (* 5 *)
   FF(d, a, b, c, x[ 5], S12, 16_4787c62a); (* 6 *)
   FF(c, d, a, b, x[ 6], S13, 16_a8304613); (* 7 *)
   FF(b, c, d, a, x[ 7], S14, 16_fd469501); (* 8 *)
   FF(a, b, c, d, x[ 8], S11, 16_698098d8); (* 9 *)
   FF(d, a, b, c, x[ 9], S12, 16_8b44f7af); (* 10 *)
   FF(c, d, a, b, x[10], S13, 16_ffff5bb1); (* 11 *)
   FF(b, c, d, a, x[11], S14, 16_895cd7be); (* 12 *)
   FF(a, b, c, d, x[12], S11, 16_6b901122); (* 13 *)
   FF(d, a, b, c, x[13], S12, 16_fd987193); (* 14 *)
   FF(c, d, a, b, x[14], S13, 16_a679438e); (* 15 *)
   FF(b, c, d, a, x[15], S14, 16_49b40821); (* 16 *)
   (* Round 2 *)
   GG(a, b, c, d, x[ 1], S21, 16_f61e2562); (* 17 *)
   GG(d, a, b, c, x[ 6], S22, 16_c040b340); (* 18 *)
   GG(c, d, a, b, x[11], S23, 16_265e5a51); (* 19 *)
   GG(b, c, d, a, x[ 0], S24, 16_e9b6c7aa); (* 20 *)
   GG(a, b, c, d, x[ 5], S21, 16_d62f105d); (* 21 *)
   GG(d, a, b, c, x[10], S22, 16_02441453); (* 22 *)
   GG(c, d, a, b, x[15], S23, 16_d8a1e681); (* 23 *)
   GG(b, c, d, a, x[ 4], S24, 16_e7d3fbc8); (* 24 *)
   GG(a, b, c, d, x[ 9], S21, 16_21e1cde6); (* 25 *)
   GG(d, a, b, c, x[14], S22, 16_c33707d6); (* 26 *)
   GG(c, d, a, b, x[ 3], S23, 16_f4d50d87); (* 27 *)
   GG(b, c, d, a, x[ 8], S24, 16_455a14ed); (* 28 *)
   GG(a, b, c, d, x[13], S21, 16_a9e3e905); (* 29 *)
   GG(d, a, b, c, x[ 2], S22, 16_fcefa3f8); (* 30 *)
   GG(c, d, a, b, x[ 7], S23, 16_676f02d9); (* 31 *)
   GG(b, c, d, a, x[12], S24, 16_8d2a4c8a); (* 32 *)
   (* Round 3 *)
   HH(a, b, c, d, x[ 5], S31, 16_fffa3942); (* 33 *)
   HH(d, a, b, c, x[ 8], S32, 16_8771f681); (* 34 *)
   HH(c, d, a, b, x[11], S33, 16_6d9d6122); (* 35 *)
   HH(b, c, d, a, x[14], S34, 16_fde5380c); (* 36 *)
   HH(a, b, c, d, x[ 1], S31, 16_a4beea44); (* 37 *)
   HH(d, a, b, c, x[ 4], S32, 16_4bdecfa9); (* 38 *)
   HH(c, d, a, b, x[ 7], S33, 16_f6bb4b60); (* 39 *)
   HH(b, c, d, a, x[10], S34, 16_bebfbc70); (* 40 *)
   HH(a, b, c, d, x[13], S31, 16_289b7ec6); (* 41 *)
   HH(d, a, b, c, x[ 0], S32, 16_eaa127fa); (* 42 *)
   HH(c, d, a, b, x[ 3], S33, 16_d4ef3085); (* 43 *)
   HH(b, c, d, a, x[ 6], S34, 16_04881d05); (* 44 *)
   HH(a, b, c, d, x[ 9], S31, 16_d9d4d039); (* 45 *)
   HH(d, a, b, c, x[12], S32, 16_e6db99e5); (* 46 *)
   HH(c, d, a, b, x[15], S33, 16_1fa27cf8); (* 47 *)
   HH(b, c, d, a, x[ 2], S34, 16_c4ac5665); (* 48 *)
   (* Round 4 *)
   II(a, b, c, d, x[ 0], S41, 16_f4292244); (* 49 *)
   II(d, a, b, c, x[ 7], S42, 16_432aff97); (* 50 *)
   II(c, d, a, b, x[14], S43, 16_ab9423a7); (* 51 *)
   II(b, c, d, a, x[ 5], S44, 16_fc93a039); (* 52 *)
   II(a, b, c, d, x[12], S41, 16_655b59c3); (* 53 *)
   II(d, a, b, c, x[ 3], S42, 16_8f0ccc92); (* 54 *)
   II(c, d, a, b, x[10], S43, 16_ffeff47d); (* 55 *)
   II(b, c, d, a, x[ 1], S44, 16_85845dd1); (* 56 *)
   II(a, b, c, d, x[ 8], S41, 16_6fa87e4f); (* 57 *)
   II(d, a, b, c, x[15], S42, 16_fe2ce6e0); (* 58 *)
   II(c, d, a, b, x[ 6], S43, 16_a3014314); (* 59 *)
   II(b, c, d, a, x[13], S44, 16_4e0811a1); (* 60 *)
   II(a, b, c, d, x[ 4], S41, 16_f7537e82); (* 61 *)
   II(d, a, b, c, x[11], S42, 16_bd3af235); (* 62 *)
   II(c, d, a, b, x[ 2], S43, 16_2ad7d2bb); (* 63 *)
   II(b, c, d, a, x[ 9], S44, 16_eb86d391); (* 64 *)
   state[0] := Word.Plus(state[0], a);
   state[1] := Word.Plus(state[1], b);
   state[2] := Word.Plus(state[2], c);
   state[3] := Word.Plus(state[3], d);
 END Transform;

PROCEDURE Update(VAR md5ctx: T; input: TEXT) =

 VAR index, i, j, partLen: Word.T;
     locbuff: Buffer;
 BEGIN
   index := Word.And(Word.Shift(md5ctx.count[0], -3), 16_3F);
   md5ctx.count[0] := 
       Word.Plus(md5ctx.count[0], Word.Shift(Text.Length(input), 3));
   IF md5ctx.count[0] < Text.Length(input) THEN
     INC(md5ctx.count[1]);
   END;
   md5ctx.count[1] := md5ctx.count[1] + Word.Shift(Text.Length(input), -29);
   partLen := 64 - index;
   IF Text.Length(input) >= partLen THEN
     FOR i := index TO 63 DO
       md5ctx.buffer[i] := Text.GetChar(input, i-index);
     END;
     Transform(md5ctx.state, md5ctx.buffer);
     i := partLen;
     WHILE (i + 63) < Text.Length(input) DO
       FOR j := 0 TO 63 DO
         locbuff[j] := Text.GetChar(input, i+j);
       END;
       Transform(md5ctx.state, locbuff);
       INC(i, 64);
     END;
     index := 0;
   ELSE
     i := 0;
   END;
   j := 0;
   WHILE i+j < Text.Length(input) DO
     md5ctx.buffer[j+index] := Text.GetChar(input, i+j);
     INC(j);
   END;
 END Update;

PROCEDURE Final(VAR md5ctx: T): Digest=

 VAR bits: ARRAY [0..7] OF CHAR;
     index, padLen: INTEGER;
     digest: Digest;
 PROCEDURE Encode(VAR output: ARRAY OF CHAR;
                  VAR input: ARRAY OF Word.T;
                  count: INTEGER) =
   BEGIN
     FOR i := 0 TO count DO
       output[i*4+0] := VAL(Word.Extract(input[i],  0, 8), CHAR);
       output[i*4+1] := VAL(Word.Extract(input[i],  8, 8), CHAR);
       output[i*4+2] := VAL(Word.Extract(input[i], 16, 8), CHAR);
       output[i*4+3] := VAL(Word.Extract(input[i], 24, 8), CHAR)
     END;
   END Encode; 
 BEGIN
   Encode(bits, md5ctx.count, 1);
   index := Word.And(Word.Shift(md5ctx.count[0], -3), 16_3F);
   IF index < 56 THEN
     padLen := 56 - index;
   ELSE
     padLen := 120 - index;
   END;
   Update(md5ctx, Text.Sub(padding, 0, padLen));
   Update(md5ctx, Text.FromChars(bits));
   Encode(digest, md5ctx.state, 3);
   RETURN digest;
 END Final;

PROCEDURE ToText(hash: Digest): TEXT =

 VAR buf: TEXT := "";
 BEGIN
   FOR i := 0 TO 15 DO
     buf := buf & Fmt.Pad(Fmt.Int(ORD(hash[i]), 16), 2, '0');
   END;
   RETURN buf;
 END ToText;

BEGIN END MD5.</lang> Example usage: <lang modula3>MODULE Main;

IMPORT MD5, IO;

VAR md5ctx: MD5.T;

BEGIN

 MD5.Init(md5ctx);
 MD5.Update(md5ctx, "The quick brown fox jumped over the lazy dog's back");
 IO.Put(MD5.ToText(MD5.Final(md5ctx)) & "\n");

END Main.</lang> Output:

e38ca1d920c4b8b8d3946b2c72f01680

Nim

<lang nim>import sequtils

const

 ChunkSize = 512 div 8
 SumSize = 128 div 8

proc extractChunk(msg : seq[uint8], chunk: var openarray[uint32], offset: int) =

 var
   srcIndex = offset
 for dstIndex in 0 .. < 16:
   chunk[dstIndex] = 0
   for ii in 0 .. < 4:
     chunk[dstIndex] = chunk[dstIndex] shr 8
     chunk[dstIndex] = chunk[dstIndex] or (msg[srcIndex].uint32 shl 24)
     srcIndex.inc

proc leftRotate(val: uint32, shift: int) : uint32 =

 result = (val shl shift) or (val shr (32 - shift))
 

proc md5Sum(msg : seq[uint8]) : array[SumSize, uint8] =

 const
   s : array[ChunkSize, int] =
         [ 7, 12, 17, 22,  7, 12, 17, 22,
           7, 12, 17, 22,  7, 12, 17, 22,
           5,  9, 14, 20,  5,  9, 14, 20,
           5,  9, 14, 20,  5,  9, 14, 20,
           4, 11, 16, 23,  4, 11, 16, 23,
           4, 11, 16, 23,  4, 11, 16, 23,
           6, 10, 15, 21,  6, 10, 15, 21,
           6, 10, 15, 21,  6, 10, 15, 21 ]
   K : array[ChunkSize, uint32] =
         [ 0xd76aa478'u32, 0xe8c7b756'u32, 0x242070db'u32, 0xc1bdceee'u32,
           0xf57c0faf'u32, 0x4787c62a'u32, 0xa8304613'u32, 0xfd469501'u32,
           0x698098d8'u32, 0x8b44f7af'u32, 0xffff5bb1'u32, 0x895cd7be'u32,
           0x6b901122'u32, 0xfd987193'u32, 0xa679438e'u32, 0x49b40821'u32,
           0xf61e2562'u32, 0xc040b340'u32, 0x265e5a51'u32, 0xe9b6c7aa'u32,
           0xd62f105d'u32, 0x02441453'u32, 0xd8a1e681'u32, 0xe7d3fbc8'u32,
           0x21e1cde6'u32, 0xc33707d6'u32, 0xf4d50d87'u32, 0x455a14ed'u32,
           0xa9e3e905'u32, 0xfcefa3f8'u32, 0x676f02d9'u32, 0x8d2a4c8a'u32,
           0xfffa3942'u32, 0x8771f681'u32, 0x6d9d6122'u32, 0xfde5380c'u32,
           0xa4beea44'u32, 0x4bdecfa9'u32, 0xf6bb4b60'u32, 0xbebfbc70'u32,
           0x289b7ec6'u32, 0xeaa127fa'u32, 0xd4ef3085'u32, 0x04881d05'u32,
           0xd9d4d039'u32, 0xe6db99e5'u32, 0x1fa27cf8'u32, 0xc4ac5665'u32,
           0xf4292244'u32, 0x432aff97'u32, 0xab9423a7'u32, 0xfc93a039'u32,
           0x655b59c3'u32, 0x8f0ccc92'u32, 0xffeff47d'u32, 0x85845dd1'u32,
           0x6fa87e4f'u32, 0xfe2ce6e0'u32, 0xa3014314'u32, 0x4e0811a1'u32,
           0xf7537e82'u32, 0xbd3af235'u32, 0x2ad7d2bb'u32, 0xeb86d391'u32 ]


 # Pad with 1-bit, and fill with 0's up to 448 bits mod 512
 var paddedMsgSize = msg.len + 1
 var remain = (msg.len + 1) mod ChunkSize
 if remain > (448 div 8):
   paddedMsgSize += ChunkSize - remain + (448 div 8)
 else:
   paddedMsgSize += (448 div 8) - remain
 var paddingSize = paddedMsgSize - msg.len
 var padding = newSeq[uint8](paddingSize)
 padding[0] = 0x80
 # Pad with number of *bits* in original message, little-endian
 var sizePadding = newSeq[uint8](8)
 var size = msg.len * 8
 for ii in 0 .. < 4:
   sizePadding[ii] = uint8(size and 0xff)
   size = size shr 8
 var paddedMsg = concat(msg, padding, sizePadding)
 var accum = [ 0x67452301'u32, 0xefcdab89'u32, 0x98badcfe'u32, 0x10325476'u32 ]
 for offset in countup(0, paddedMsg.len - 1, ChunkSize):
   var A = accum[0]
   var B = accum[1]
   var C = accum[2]
   var D = accum[3]
   var F : uint32
   var g : int
   var M : array[16, uint32]
   var dTemp : uint32
   extractChunk(paddedMsg, M, offset)
   # This is pretty much the same as Wikipedia's MD5 entry
   for ii in 0 .. 63:
     if ii <= 15:
       F = (B and C) or ((not B) and D)
       g = ii
     elif ii <= 31:
       F = (D and B) or ((not D) and C)
       g = (5 * ii + 1) mod 16
     elif ii <= 47:
       F = B xor C xor D
       g = (3 * ii + 5) mod 16
     else:
       F = C xor (B or (not D))
       g = (7 * ii) mod 16
       
     dTemp = D
     D = C
     C = B
     B = B + leftRotate((A + F + K[ii] + M[g]), s[ii])
     A = dTemp
   accum[0] += A
   accum[1] += B
   accum[2] += C
   accum[3] += D
 # Convert four 32-bit accumulators to 16 byte array, little-endian
 var dstIdx : int
 for acc in accum:
   var tmp = acc
   for ii in 0 .. < 4:
     result[dstIdx] = uint8(tmp and 0xff)
     tmp = tmp shr 8
     dstIdx.inc
  1. Only needed to convert from string to uint8 sequence

iterator items * (str : string) : uint8 =

 for ii in 0 .. < len(str):
   yield str[ii].uint8

proc main =

 var msg = ""
 var sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0xD4'u8, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,
                 0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E ] )
 msg = "The quick brown fox jumps over the lazy dog"
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0x9E'u8, 0x10, 0x7D, 0x9D, 0x37, 0x2B, 0xB6, 0x82,
                 0x6B, 0xD8, 0x1D, 0x35, 0x42, 0xA4, 0x19, 0xD6 ] )
 msg = "The quick brown fox jumps over the lazy dog."
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0xE4'u8, 0xD9, 0x09, 0xC2, 0x90, 0xD0, 0xFB, 0x1C,
                0xA0, 0x68, 0xFF, 0xAD, 0xDF, 0x22, 0xCB, 0xD0 ])


 # Message size around magic 512 bits
 msg = "01234567890123456789012345678901234567890123456789012345678901234"
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0xBE'u8, 0xB9, 0xF4, 0x8B, 0xC8, 0x02, 0xCA, 0x5C,
                 0xA0, 0x43, 0xBC, 0xC1, 0x5E, 0x21, 0x9A, 0x5A ])
 msg = "0123456789012345678901234567890123456789012345678901234567890123"
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0x7F'u8, 0x7B, 0xFD, 0x34, 0x87, 0x09, 0xDE, 0xEA,
                 0xAC, 0xE1, 0x9E, 0x3F, 0x53, 0x5F, 0x8C, 0x54 ])
 msg = "012345678901234567890123456789012345678901234567890123456789012"
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0xC5'u8, 0xE2, 0x56, 0x43, 0x7E, 0x75, 0x80, 0x92,
                 0xDB, 0xFE, 0x06, 0x28, 0x3E, 0x48, 0x90, 0x19 ])


 # Message size around magic 448 bits
 msg = "01234567890123456789012345678901234567890123456789012345"
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0x8A'u8, 0xF2, 0x70, 0xB2, 0x84, 0x76, 0x10, 0xE7,
                 0x42, 0xB0, 0x79, 0x1B, 0x53, 0x64, 0x8C, 0x09 ])
 msg = "0123456789012345678901234567890123456789012345678901234"
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0x6E'u8, 0x7A, 0x4F, 0xC9, 0x2E, 0xB1, 0xC3, 0xF6,
                 0xE6, 0x52, 0x42, 0x5B, 0xCC, 0x8D, 0x44, 0xB5 ])
 msg = "012345678901234567890123456789012345678901234567890123"
 sum = md5Sum(toSeq(msg.items()))
 assert(sum == [ 0x3D'u8, 0xFF, 0x83, 0xC8, 0xFA, 0xDD, 0x26, 0x37,
                 0x0D, 0x5B, 0x09, 0x84, 0x09, 0x64, 0x44, 0x57 ])

main()</lang>

ooRexx

Works with: ooRexx version 4.2.0 (and later)

<lang ooRexx>

  1. !/usr/bin/rexx

/* Expected results:

  0xd41d8cd98f00b204e9800998ecf8427e <== ""  
  0x0cc175b9c0f1b6a831c399e269772661 <== "a"
  0x900150983cd24fb0d6963f7d28e17f72 <== "abc"
  0xf96b697d7cb7938d525a2f31aaf161d0 <== "message digest"
  0xc3fcd3d76192e4007dfb496cca67e13b <== "abcdefghijklmnopqrstuvwxyz"
  0xd174ab98d277d9f5a5611c2c9f419d9f <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
  0x57edf4a22be3c955ac49da2e2107b67a <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
  • /

md5 = .md5~new; md5~update(""); say md5~digest md5 = .md5~new; md5~update("a"); say md5~digest md5 = .md5~new; md5~update("abc"); say md5~digest md5 = .md5~new; md5~update("message digest"); say md5~digest md5 = .md5~new("abcdefghijklmnopqrstuvwxyz"); say md5~digest md5 = .md5~new("ABCDEFGHIJKLMNOPQRSTUVWXYZ"); md5~update("abcdefghijklmnopqrstuvwxyz0123456789"); say md5~digest md5 = .md5~new; md5~update("12345678901234567890123456789012345678901234567890123456789012345678901234567890"); say md5~digest

-- requires OORexx 4.2.0 or later -- standard numeric digits of 9 is not enough in this case

options digits 20

-- Implementation mainly based on pseudocode in https://en.wikipedia.org/wiki/MD5

class md5 public
method init

expose a0 b0 c0 d0 count buffer index K. s -- instance variables use strict arg chunk="" -- Initialize message digest a0 = .int32~new('67452301'x,"C") -- A b0 = .int32~new('efcdab89'x,"C") -- B c0 = .int32~new('98badcfe'x,"C") -- C d0 = .int32~new('10325476'x,"C") -- D -- The 512 bit chunk buffer buffer = .mutablebuffer~new('00'x~copies(64),64) -- The position in the buffer to insert new input index = 1 -- message bytecount count = 0 -- initialize leftrotate amounts nrs = .array~of(7,12,17,22) s = nrs~union(nrs)~union(nrs)~union(nrs) nrs = .array~of(5,9,14,20) s = s~union(nrs)~union(nrs)~union(nrs)~union(nrs) nrs = .array~of(4,11,16,23) s = s~union(nrs)~union(nrs)~union(nrs)~union(nrs) nrs = .array~of(6,10,15,21) s = s~union(nrs)~union(nrs)~union(nrs)~union(nrs) -- initialize sinus derived constants. -- sin function from RXMath Library shipped with OORexx -- see ::routine directive at the end of the code do i=0 to 63

 K.i = .int32~new(((2**32)*(sin(i+1,16,R)~abs))~floor) 

end -- process initial string if any self~update(chunk) exit

method update
 expose a0 b0 c0 d0 count buffer index K. s  -- instance variables
 use strict arg chunk
 count += chunk~length
 if chunk~length<65-index then do
   buffer~overlay(chunk,index)
   index += chunk~length
 end
 else do
   split = 65-index+1
   parse var chunk part =(split) chunk
   buffer~overlay(part,index)
   index = 65
 end
 -- Only proces completely filled buffer
 do while index=65
   A = a0
   B = b0
   C = c0
   D = d0
   do i=0 to 63
     select 
       when i<16 then do
         F = D~xor(B~and(C~xor(D)))
         g = i
       end
       when i<32 then do
         F = C~xor(D~and(B~xor(C)))
         g = (5*i+1)//16
       end
       when i<48 then do
         F = B~xor(C)~xor(D)
         g = (3*i+5)//16
       end
       otherwise do
         F = C~xor(B~or(D~xor(.int32~new('ffffffff'x,"C"))))
         g = (7*i)//16
       end
     end
     M = .int32~new(buffer~substr(g*4+1,4)~reverse,"C")  -- 32bit word in little-endian
     dTemp = D
     D = C
     C = B
     B = (B + (A+F+K.i+M)~bitrotate(s[i+1]))
     A = dTemp
   end
   a0 = a0+A
   b0 = b0+B
   c0 = c0+C
   d0 = d0+D
   parse var chunk part 65 chunk
   index = part~length+1
   buffer~overlay(part,1,part~length)
 end

exit

method digest
 expose a0 b0 c0 d0 count buffer index K s -- instance variables
 padlen = 64
 if index<57 then padlen = 57-index
 if index>57 then padlen = 121-index
 padding = '00'x~copies(padlen)~bitor('80'x)
 bitcount = count*8//2**64
 lowword = bitcount//2**32
 hiword = bitcount%2**32
 lowcount = lowword~d2c(4)~reverse -- make it little-endian
 hicount = hiword~d2c(4)~reverse   -- make it little-endian
 self~update(padding || lowcount || hicount)

return a0~string || b0~string || c0~string || d0~string

-- A convenience class to encapsulate operations on non OORexx-like -- things as little-endian 32-bit words

class int32 public
attribute arch class
method init class
 self~arch = "little-endian"   -- can be adapted for multiple architectures 

-- Method to create an int32 like object -- Input can be a OORexx whole number (type="I") or -- a character string of 4 bytes (type="C") -- input truncated or padded to 32-bit word/string

method init
 expose char4 int32
 use strict arg input, type="Integer"
 -- type must be one of "I"nteger or "C"haracter
 t = type~subchar(1)~upper
 select
   when t=='I' then do
     char4 = input~d2c(4)
     int32 = char4~c2d
   end
   when t=='C' then do
     char4 = input~right(4,'00'x)
     int32 = char4~c2d
   end
   otherwise do
     raise syntax 93.915 array("IC",type)
   end
 end

exit

method xor -- wrapper for OORexx bitxor method
 expose char4
 use strict arg other

return .int32~new(char4~bitxor(other~char),"C")

method and -- wrapper for OORexx bitand method
 expose char4
 use strict arg other

return .int32~new(char4~bitand(other~char),"C")

method or -- wrapper for OORexx bitor method
 expose char4
 use strict arg other

return .int32~new(char4~bitor(other~char),"C")

method bitleft -- OORexx shift (<<) implementation
 expose char4
 use strict arg bits
 bstring = char4~c2x~x2b
 bstring = bstring~substr(bits+1)~left(bstring~length,'0')

return .int32~new(bstring~b2x~x2d)

method bitright -- OORexx shift (>>) implementation
 expose char4
 use strict arg bits, signed=.false
 bstring = char4~c2x~x2b
 fill = '0'
 if signed then fill = bstring~subchar(1)
 bstring = bstring~left(bstring~length-bits)~right(bstring~length,fill)

return .int32~new(bstring~b2x~x2d)

method bitnot -- OORexx not implementation
 expose char4

return .int32~new(char4~bitxor('ffffffff'x)~c2d,"C")

method bitrotate -- OORexx (left) rotate method
 expose char4
 use strict arg bits, direction='left'
 d = direction~subchar(1)~upper
 if d=='L' then do
   leftpart = self~bitleft(bits)
   rightpart = self~bitright(32-bits)
 end
 else do
   leftpart = self~bitleft(32-bits)
   rightpart = self~bitright(bits)
 end

return rightpart~or(leftpart)

method int -- retrieve integer as number
 expose int32

return int32

method char -- retrieve integer as characters
 expose char4

return char4

method '+' -- OORexx method to add 2 .int32 instances
 expose int32
 use strict arg other

return .int32~new(int32+other~int)

method string -- retrieve integer as hexadecimal string
 expose char4

return char4~reverse~c2x~lower

-- Simplify function names for the necessary 'RxMath' functions

routine sin EXTERNAL "LIBRARY rxmath RxCalcSin"

</lang>

Perl

Works with: Perl version 5.10.1 (and later)

<lang perl>use strict; use warnings; use integer; use Test::More;

BEGIN { plan tests => 7 }

sub A() { 0x67_45_23_01 } sub B() { 0xef_cd_ab_89 } sub C() { 0x98_ba_dc_fe } sub D() { 0x10_32_54_76 } sub MAX() { 0xFFFFFFFF }

sub padding {

   my $l = length (my $msg = shift() . chr(128));
   $msg .= "\0" x (($l%64<=56?56:120)-$l%64);
   $l = ($l-1)*8;
   $msg .= pack 'VV', $l & MAX , ($l >> 16 >> 16);

}

sub rotate_left($$) {

   ($_[0] << $_[1]) | (( $_[0] >> (32 - $_[1])  )  & ((1 << $_[1]) - 1));

}

sub gen_code {

 # Discard upper 32 bits on 64 bit archs.
 my $MSK = ((1 << 16) << 16) ? ' & ' . MAX : ;
 my %f = (
   FF => "X0=rotate_left((X3^(X1&(X2^X3)))+X0+X4+X6$MSK,X5)+X1$MSK;",
   GG => "X0=rotate_left((X2^(X3&(X1^X2)))+X0+X4+X6$MSK,X5)+X1$MSK;",
   HH => "X0=rotate_left((X1^X2^X3)+X0+X4+X6$MSK,X5)+X1$MSK;",
   II => "X0=rotate_left((X2^(X1|(~X3)))+X0+X4+X6$MSK,X5)+X1$MSK;",
 );
 my %s = (  # shift lengths
   S11 => 7, S12 => 12, S13 => 17, S14 => 22, S21 => 5, S22 => 9, S23 => 14,
   S24 => 20, S31 => 4, S32 => 11, S33 => 16, S34 => 23, S41 => 6, S42 => 10,
   S43 => 15, S44 => 21
 );
 my $insert = "\n";
 while(defined( my $data =  )) {
   chomp $data;
   next unless $data =~ /^[FGHI]/;
   my ($func,@x) = split /,/, $data;
   my $c = $f{$func};
   $c =~ s/X(\d)/$x[$1]/g;
   $c =~ s/(S\d{2})/$s{$1}/;
   $c =~ s/^(.*)=rotate_left\((.*),(.*)\)\+(.*)$//;
   my $su = 32 - $3;
   my $sh = (1 << $3) - 1;
   $c = "$1=(((\$r=$2)<<$3)|((\$r>>$su)&$sh))+$4";
   $insert .= "\t$c\n";
 }
 close DATA;
 my $dump = '
 sub round {
   my ($a,$b,$c,$d) = @_[0 .. 3];
   my $r;' . $insert . '
   $_[0]+$a' . $MSK . ', $_[1]+$b ' . $MSK .
   ', $_[2]+$c' . $MSK . ', $_[3]+$d' . $MSK . ';
 }';
 eval $dump;

}

gen_code();

sub _encode_hex { unpack 'H*', $_[0] }

sub md5 {

   my $message = padding(join,@_);
   my ($a,$b,$c,$d) = (A,B,C,D);
   my $i;
   for $i (0 .. (length $message)/64-1) {
       my @X = unpack 'V16', substr $message,$i*64,64;
       ($a,$b,$c,$d) = round($a,$b,$c,$d,@X);
   }
   pack 'V4',$a,$b,$c,$d;

}

my $strings = {

   'd41d8cd98f00b204e9800998ecf8427e' => ,
   '0cc175b9c0f1b6a831c399e269772661' => 'a',
   '900150983cd24fb0d6963f7d28e17f72' => 'abc',
   'f96b697d7cb7938d525a2f31aaf161d0' => 'message digest',
   'c3fcd3d76192e4007dfb496cca67e13b' => 'abcdefghijklmnopqrstuvwxyz',
   'd174ab98d277d9f5a5611c2c9f419d9f' => 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',
   '57edf4a22be3c955ac49da2e2107b67a' => '12345678901234567890123456789012345678901234567890123456789012345678901234567890',

};

for my $k (keys %$strings) {

   my $digest = _encode_hex md5($strings->{$k});
   is($digest, $k, "$digest is MD5 digest $strings->{$k}");

}

__DATA__ FF,$a,$b,$c,$d,$_[4],7,0xd76aa478,/* 1 */ FF,$d,$a,$b,$c,$_[5],12,0xe8c7b756,/* 2 */ FF,$c,$d,$a,$b,$_[6],17,0x242070db,/* 3 */ FF,$b,$c,$d,$a,$_[7],22,0xc1bdceee,/* 4 */ FF,$a,$b,$c,$d,$_[8],7,0xf57c0faf,/* 5 */ FF,$d,$a,$b,$c,$_[9],12,0x4787c62a,/* 6 */ FF,$c,$d,$a,$b,$_[10],17,0xa8304613,/* 7 */ FF,$b,$c,$d,$a,$_[11],22,0xfd469501,/* 8 */ FF,$a,$b,$c,$d,$_[12],7,0x698098d8,/* 9 */ FF,$d,$a,$b,$c,$_[13],12,0x8b44f7af,/* 10 */ FF,$c,$d,$a,$b,$_[14],17,0xffff5bb1,/* 11 */ FF,$b,$c,$d,$a,$_[15],22,0x895cd7be,/* 12 */ FF,$a,$b,$c,$d,$_[16],7,0x6b901122,/* 13 */ FF,$d,$a,$b,$c,$_[17],12,0xfd987193,/* 14 */ FF,$c,$d,$a,$b,$_[18],17,0xa679438e,/* 15 */ FF,$b,$c,$d,$a,$_[19],22,0x49b40821,/* 16 */ GG,$a,$b,$c,$d,$_[5],5,0xf61e2562,/* 17 */ GG,$d,$a,$b,$c,$_[10],9,0xc040b340,/* 18 */ GG,$c,$d,$a,$b,$_[15],14,0x265e5a51,/* 19 */ GG,$b,$c,$d,$a,$_[4],20,0xe9b6c7aa,/* 20 */ GG,$a,$b,$c,$d,$_[9],5,0xd62f105d,/* 21 */ GG,$d,$a,$b,$c,$_[14],9,0x2441453,/* 22 */ GG,$c,$d,$a,$b,$_[19],14,0xd8a1e681,/* 23 */ GG,$b,$c,$d,$a,$_[8],20,0xe7d3fbc8,/* 24 */ GG,$a,$b,$c,$d,$_[13],5,0x21e1cde6,/* 25 */ GG,$d,$a,$b,$c,$_[18],9,0xc33707d6,/* 26 */ GG,$c,$d,$a,$b,$_[7],14,0xf4d50d87,/* 27 */ GG,$b,$c,$d,$a,$_[12],20,0x455a14ed,/* 28 */ GG,$a,$b,$c,$d,$_[17],5,0xa9e3e905,/* 29 */ GG,$d,$a,$b,$c,$_[6],9,0xfcefa3f8,/* 30 */ GG,$c,$d,$a,$b,$_[11],14,0x676f02d9,/* 31 */ GG,$b,$c,$d,$a,$_[16],20,0x8d2a4c8a,/* 32 */ HH,$a,$b,$c,$d,$_[9],4,0xfffa3942,/* 33 */ HH,$d,$a,$b,$c,$_[12],11,0x8771f681,/* 34 */ HH,$c,$d,$a,$b,$_[15],16,0x6d9d6122,/* 35 */ HH,$b,$c,$d,$a,$_[18],23,0xfde5380c,/* 36 */ HH,$a,$b,$c,$d,$_[5],4,0xa4beea44,/* 37 */ HH,$d,$a,$b,$c,$_[8],11,0x4bdecfa9,/* 38 */ HH,$c,$d,$a,$b,$_[11],16,0xf6bb4b60,/* 39 */ HH,$b,$c,$d,$a,$_[14],23,0xbebfbc70,/* 40 */ HH,$a,$b,$c,$d,$_[17],4,0x289b7ec6,/* 41 */ HH,$d,$a,$b,$c,$_[4],11,0xeaa127fa,/* 42 */ HH,$c,$d,$a,$b,$_[7],16,0xd4ef3085,/* 43 */ HH,$b,$c,$d,$a,$_[10],23,0x4881d05,/* 44 */ HH,$a,$b,$c,$d,$_[13],4,0xd9d4d039,/* 45 */ HH,$d,$a,$b,$c,$_[16],11,0xe6db99e5,/* 46 */ HH,$c,$d,$a,$b,$_[19],16,0x1fa27cf8,/* 47 */ HH,$b,$c,$d,$a,$_[6],23,0xc4ac5665,/* 48 */ II,$a,$b,$c,$d,$_[4],6,0xf4292244,/* 49 */ II,$d,$a,$b,$c,$_[11],10,0x432aff97,/* 50 */ II,$c,$d,$a,$b,$_[18],15,0xab9423a7,/* 51 */ II,$b,$c,$d,$a,$_[9],21,0xfc93a039,/* 52 */ II,$a,$b,$c,$d,$_[16],6,0x655b59c3,/* 53 */ II,$d,$a,$b,$c,$_[7],10,0x8f0ccc92,/* 54 */ II,$c,$d,$a,$b,$_[14],15,0xffeff47d,/* 55 */ II,$b,$c,$d,$a,$_[5],21,0x85845dd1,/* 56 */ II,$a,$b,$c,$d,$_[12],6,0x6fa87e4f,/* 57 */ II,$d,$a,$b,$c,$_[19],10,0xfe2ce6e0,/* 58 */ II,$c,$d,$a,$b,$_[10],15,0xa3014314,/* 59 */ II,$b,$c,$d,$a,$_[17],21,0x4e0811a1,/* 60 */ II,$a,$b,$c,$d,$_[8],6,0xf7537e82,/* 61 */ II,$d,$a,$b,$c,$_[15],10,0xbd3af235,/* 62 */ II,$c,$d,$a,$b,$_[6],15,0x2ad7d2bb,/* 63 */ II,$b,$c,$d,$a,$_[13],21,0xeb86d391,/* 64 */</lang>

Output:
1..7
ok 1 - c3fcd3d76192e4007dfb496cca67e13b is MD5 digest abcdefghijklmnopqrstuvwxyz
ok 2 - f96b697d7cb7938d525a2f31aaf161d0 is MD5 digest message digest
ok 3 - 900150983cd24fb0d6963f7d28e17f72 is MD5 digest abc
ok 4 - d41d8cd98f00b204e9800998ecf8427e is MD5 digest
ok 5 - 57edf4a22be3c955ac49da2e2107b67a is MD5 digest 12345678901234567890123456789012345678901234567890123456789012345678901234567890
ok 6 - 0cc175b9c0f1b6a831c399e269772661 is MD5 digest a
ok 7 - d174ab98d277d9f5a5611c2c9f419d9f is MD5 digest ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789

Perl 6

Works with: rakudo version 2018.03

<lang perl6>sub infix:<⊞>(uint32 $a, uint32 $b --> uint32) { ($a + $b) +& 0xffffffff } sub infix:«<<<»(uint32 $a, UInt $n --> uint32) { ($a +< $n) +& 0xffffffff +| ($a +> (32-$n)) }

constant FGHI = { ($^a +& $^b) +| (+^$a +& $^c) },

               { ($^a +& $^c) +| ($^b +& +^$c) },
               { $^a +^ $^b +^ $^c             },
               { $^b +^ ($^a +| +^$^c)         };

constant _S = flat (7, 12, 17, 22) xx 4,

                 (5,  9, 14, 20) xx 4,
                 (4, 11, 16, 23) xx 4,
                 (6, 10, 15, 21) xx 4;

constant T = (floor(abs(sin($_ + 1)) * 2**32) for ^64);

constant k = flat ( $_ for ^16),

                 ((5*$_ + 1) % 16 for ^16),
                 ((3*$_ + 5) % 16 for ^16),
                 ((7*$_    ) % 16 for ^16);

sub little-endian($w, $n, *@v) {

   my \step1 = $w X* ^$n;
   my \step2 = @v X+> step1;
   step2 X% 2**$w;

}

sub md5-pad(Blob $msg) {

   my $bits = 8 * $msg.elems;
   my @padded = flat $msg.list, 0x80, 0x00 xx -($bits div 8 + 1 + 8) % 64;
   flat @padded.map({ :256[$^d,$^c,$^b,$^a] }), little-endian(32, 2, $bits);

}

sub md5-block(@H, @X) {

   my uint32 ($A, $B, $C, $D) = @H;
   ($A, $B, $C, $D) = ($D, $B ⊞ (($A ⊞ FGHI[$_ div 16]($B, $C, $D) ⊞ T[$_] ⊞ @X[k[$_]]) <<< _S[$_]), $B, $C) for ^64;
   @H «⊞=» ($A, $B, $C, $D);

}

sub md5(Blob $msg --> Blob) {

   my uint32 @M = md5-pad($msg);
   my uint32 @H = 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476;
   md5-block(@H, @M[$_ .. $_+15]) for 0, 16 ...^ +@M;
   Blob.new: little-endian(8, 4, @H);

}

use Test; plan 7;

for 'd41d8cd98f00b204e9800998ecf8427e', ,

   '0cc175b9c0f1b6a831c399e269772661', 'a',
   '900150983cd24fb0d6963f7d28e17f72', 'abc',
   'f96b697d7cb7938d525a2f31aaf161d0', 'message digest',
   'c3fcd3d76192e4007dfb496cca67e13b', 'abcdefghijklmnopqrstuvwxyz',
   'd174ab98d277d9f5a5611c2c9f419d9f', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',
   '57edf4a22be3c955ac49da2e2107b67a', '12345678901234567890123456789012345678901234567890123456789012345678901234567890'

-> $expected, $msg {

   my $digest = md5($msg.encode('ascii')).list».fmt('%02x').join;
   is($digest, $expected, "$digest is MD5 digest of '$msg'");

}</lang>

Output:
1..7
ok 1 - d41d8cd98f00b204e9800998ecf8427e is MD5 digest of ''
ok 2 - 0cc175b9c0f1b6a831c399e269772661 is MD5 digest of 'a'
ok 3 - 900150983cd24fb0d6963f7d28e17f72 is MD5 digest of 'abc'
ok 4 - f96b697d7cb7938d525a2f31aaf161d0 is MD5 digest of 'message digest'
ok 5 - c3fcd3d76192e4007dfb496cca67e13b is MD5 digest of 'abcdefghijklmnopqrstuvwxyz'
ok 6 - d174ab98d277d9f5a5611c2c9f419d9f is MD5 digest of 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
ok 7 - 57edf4a22be3c955ac49da2e2107b67a is MD5 digest of '12345678901234567890123456789012345678901234567890123456789012345678901234567890'

Phix

Non-optimised. Originally written by Davi Tassinari de Figueiredo. Included in the distribution as demo\rosetta\md5.exw <lang Phix>function uxor(atom data1,atom data2) atom result = xor_bits(data1,data2)

   if result<0 then result += #100000000 end if
   return result

end function

function uor(atom data1,atom data2) atom result = or_bits(data1,data2)

   if result<0 then result += #100000000 end if
   return result

end function

function r32(atom a)

   return remainder(a,#100000000)

end function

function rol(atom word,integer bits) -- left rotate the bits of a 32-bit number by the specified number of bits

   return r32(word*power(2,bits))+floor(word/power(2,32-bits))

end function

constant K = {#d76aa478, #e8c7b756, #242070db, #c1bdceee, #f57c0faf, #4787c62a, #a8304613, #fd469501,

#698098d8, #8b44f7af, #ffff5bb1, #895cd7be, #6b901122, #fd987193, #a679438e, #49b40821,
#f61e2562, #c040b340, #265e5a51, #e9b6c7aa, #d62f105d, #02441453, #d8a1e681, #e7d3fbc8,
#21e1cde6, #c33707d6, #f4d50d87, #455a14ed, #a9e3e905, #fcefa3f8, #676f02d9, #8d2a4c8a,
#fffa3942, #8771f681, #6d9d6122, #fde5380c, #a4beea44, #4bdecfa9, #f6bb4b60, #bebfbc70,
#289b7ec6, #eaa127fa, #d4ef3085, #04881d05, #d9d4d039, #e6db99e5, #1fa27cf8, #c4ac5665,
#f4292244, #432aff97, #ab9423a7, #fc93a039, #655b59c3, #8f0ccc92, #ffeff47d, #85845dd1,
#6fa87e4f, #fe2ce6e0, #a3014314, #4e0811a1, #f7537e82, #bd3af235, #2ad7d2bb, #eb86d391}

constant m_block = {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,

                   2, 7,12, 1, 6,11,16, 5,10,15, 4, 9,14, 3, 8,13,
                   6, 9,12,15, 2, 5, 8,11,14, 1, 4, 7,10,13,16, 3,
                   1, 8,15, 6,13, 4,11, 2, 9,16, 7,14, 5,12, 3,10}

constant c_words = {#67452301,#efcdab89,#98badcfe,#10325476}

sequence words

function divide_in_words(sequence message) -- Divides the string into words (32-bit numbers) sequence res

   res = repeat(0,length(message)/4)
   for word=1 to length(message)/4 do
       res[word] = bytes_to_int(message[word*4-3..word*4])
   end for
   return res

end function

procedure process_block(sequence block) -- Updates the words according to the contents of the block atom a,b,c,d

   block = divide_in_words(block)
   a = words[1]
   b = words[2]
   c = words[3]
   d = words[4]
   -- Round 1
   for step=1 to 16 by 4 do
       a = r32(b+rol(r32(a+block[m_block[step  ]]+K[step  ]+uor(and_bits(b,c),and_bits(not_bits(b),d))), 7))
       d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uor(and_bits(a,b),and_bits(not_bits(a),c))),12))
       c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uor(and_bits(d,a),and_bits(not_bits(d),b))),17))
       b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uor(and_bits(c,d),and_bits(not_bits(c),a))),22))
   end for
   -- Round 2
   for step=17 to 32 by 4 do
       a = r32(b+rol(r32(a+block[m_block[step  ]]+K[step  ]+uor(and_bits(b,d),and_bits(c,not_bits(d)))), 5))
       d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uor(and_bits(a,c),and_bits(b,not_bits(c)))), 9))
       c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uor(and_bits(d,b),and_bits(a,not_bits(b)))),14))
       b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uor(and_bits(c,a),and_bits(d,not_bits(a)))),20))
   end for
   -- Round 3
   for step=33 to 48 by 4 do
       a = r32(b+rol(r32(a+block[m_block[step  ]]+K[step  ]+uxor(b,xor_bits(c,d))), 4))
       d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uxor(a,xor_bits(b,c))),11))
       c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uxor(d,xor_bits(a,b))),16))
       b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uxor(c,xor_bits(d,a))),23))
   end for
   -- Round 4
   for step=49 to 64 by 4 do
       a = r32(b+rol(r32(a+block[m_block[step  ]]+K[step  ]+uxor(c,or_bits(b,not_bits(d)))), 6))
       d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uxor(b,or_bits(a,not_bits(c)))),10))
       c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uxor(a,or_bits(d,not_bits(b)))),15))
       b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uxor(d,or_bits(c,not_bits(a)))),21))
   end for
   -- Update the words
   words[1] = r32(words[1]+a)
   words[2] = r32(words[2]+b)
   words[3] = r32(words[3]+c)
   words[4] = r32(words[4]+d)

end procedure

function pad_message(sequence message) -- Add bytes to the end of the message so it can be divided -- in an exact number of 64-byte blocks. integer bytes_to_add

   bytes_to_add = 64-remainder(length(message)+9,64)
   if bytes_to_add=64 then bytes_to_add = 0 end if
   message = message&#80&repeat(0,bytes_to_add)&
             int_to_bytes(length(message)*8)&{0,0,0,0}
   return message

end function


function md5(sequence message) -- Given a string, returns a 16-byte hash of it.

   words = c_words -- Initialize the H words
   message = pad_message(message)  -- Add bytes to the message
   -- Process each 64-byte block
   for block=1 to length(message) by 64 do
       process_block(message[block..block+63])
   end for
   -- Convert hash into bytes
   return int_to_bytes(words[1])&    -- Return the hash
          int_to_bytes(words[2])&
          int_to_bytes(words[3])&
          int_to_bytes(words[4])

end function

constant fmt = "0x%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n"

printf(1,fmt,md5("")) printf(1,fmt,md5("a")) printf(1,fmt,md5("abc")) printf(1,fmt,md5("message digest")) printf(1,fmt,md5("abcdefghijklmnopqrstuvwxyz")) printf(1,fmt,md5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")) printf(1,fmt,md5("12345678901234567890123456789012345678901234567890123456789012345678901234567890"))</lang>

Output:
0xd41d8cd98f00b204e9800998ecf8427e
0x0cc175b9c0f1b6a831c399e269772661
0x900150983cd24fb0d6963f7d28e17f72
0xf96b697d7cb7938d525a2f31aaf161d0
0xc3fcd3d76192e4007dfb496cca67e13b
0xd174ab98d277d9f5a5611c2c9f419d9f
0x57edf4a22be3c955ac49da2e2107b67a


PicoLisp

This is an implementation of the pseudo-code in the Wikipedia article. Special care had to be taken with modulo 32-bit arithmetics, as PicoLisp supports only numbers of unspecified size. <lang PicoLisp>(scl 12) (load "@lib/math.l") # For 'sin'

(de *Md5-R

  7 12 17 22  7 12 17 22  7 12 17 22  7 12 17 22
  5  9 14 20  5  9 14 20  5  9 14 20  5  9 14 20
  4 11 16 23  4 11 16 23  4 11 16 23  4 11 16 23
  6 10 15 21  6 10 15 21  6 10 15 21  6 10 15 21 )

(de *Md5-K

  ~(make
     (for I 64
        (link
           (/ (* (abs (sin (* I 1.0))) `(** 2 32)) 1.0) ) ) ) )

(de mod32 (N)

  (& N `(hex "FFFFFFFF")) )

(de not32 (N)

  (x| N `(hex "FFFFFFFF")) )

(de add32 @

  (mod32 (pass +)) )

(de leftRotate (X C)

  (| (mod32 (>> (- C) X)) (>> (- 32 C) X)) )

(de md5 (Str)

  (let Len (length Str)
     (setq Str
        (conc
           (need
              (- 8 (* 64 (/ (+ Len 1 8 63) 64)))  # Pad to 64-8 bytes
              (conc
                 (mapcar char (chop Str))   # Works only with ASCII characters
                 (cons `(hex "80")) )       # '1' bit
              0 )                           # Pad with '0'
           (make
              (setq Len (* 8 Len))
              (do 8
                 (link (& Len 255))
                 (setq Len (>> 8 Len )) ) ) ) ) )
  (let
     (H0 `(hex "67452301")
        H1 `(hex "EFCDAB89")
        H2 `(hex "98BADCFE")
        H3 `(hex "10325476") )
     (while Str
        (let
           (A H0  B H1  C H2  D H3
              W (make
                 (do 16
                    (link
                       (apply |
                          (mapcar >> (0 -8 -16 -24) (cut 4 'Str)) ) ) ) ) )
              (use (Tmp F G)
                 (for I 64
                    (cond
                       ((>= 16 I)
                          (setq
                             F (| (& B C) (& (not32 B) D))
                             G I ) )
                       ((>= 32 I)
                          (setq
                             F (| (& D B) (& (not32 D) C))
                             G (inc (& (inc (* 5 (dec I))) 15)) ) )
                       ((>= 48 I)
                          (setq
                             F (x| B C D)
                             G (inc (& (+ 5 (* 3 (dec I))) 15)) ) )
                       (T
                          (setq
                             F (x| C (| B (not32 D)))
                             G (inc (& (* 7 (dec I)) 15)) ) ) )
                    (setq
                       Tmp D
                       D C
                       C B
                       B
                       (add32 B
                          (leftRotate
                             (add32 A F (get *Md5-K I) (get W G))
                             (get *Md5-R I) ) )
                       A Tmp ) ) )
              (setq
                 H0 (add32 H0 A)
                 H1 (add32 H1 B)
                 H2 (add32 H2 C)
                 H3 (add32 H3 D) ) ) )
     (pack
        (make
           (for N (list H0 H1 H2 H3)
              (do 4  # Convert to little endian hex string
                 (link (pad 2 (hex (& N 255))))
                 (setq N (>> 8 N)) ) ) ) ) ) )</lang>

Output:

: (md5 "")
-> "D41D8CD98F00B204E9800998ECF8427E"
: (md5 "a")
-> "0CC175B9C0F1B6A831C399E269772661"
: (md5 "abc")
-> "900150983CD24FB0D6963F7D28E17F72"
: (md5 "message digest")
-> "F96B697D7CB7938D525A2F31AAF161D0"
: (md5 "abcdefghijklmnopqrstuvwxyz")
-> "C3FCD3D76192E4007DFB496CCA67E13B"
: (md5 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")
-> "D174AB98D277D9F5A5611C2C9F419D9F"
: (md5 "12345678901234567890123456789012345678901234567890123456789012345678901234567890")
-> "57EDF4A22BE3C955AC49DA2E2107B67A"

Python

Works with: Python version 3.2

Note that the following code focuses on brevity and elegance instead of performance, since Python isn't very good at number crunching anyway. If performance is important, the best solution is to use the built-in md5 module, written in C.

<lang python>import math

rotate_amounts = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,

                 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20,
                 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
                 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21]

constants = [int(abs(math.sin(i+1)) * 2**32) & 0xFFFFFFFF for i in range(64)]

init_values = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476]

functions = 16*[lambda b, c, d: (b & c) | (~b & d)] + \

           16*[lambda b, c, d: (d & b) | (~d & c)] + \
           16*[lambda b, c, d: b ^ c ^ d] + \
           16*[lambda b, c, d: c ^ (b | ~d)]

index_functions = 16*[lambda i: i] + \

                 16*[lambda i: (5*i + 1)%16] + \
                 16*[lambda i: (3*i + 5)%16] + \
                 16*[lambda i: (7*i)%16]

def left_rotate(x, amount):

   x &= 0xFFFFFFFF
   return ((x<<amount) | (x>>(32-amount))) & 0xFFFFFFFF

def md5(message):

   message = bytearray(message) #copy our input into a mutable buffer
   orig_len_in_bits = (8 * len(message)) & 0xffffffffffffffff
   message.append(0x80)
   while len(message)%64 != 56:
       message.append(0)
   message += orig_len_in_bits.to_bytes(8, byteorder='little')
   hash_pieces = init_values[:]
   for chunk_ofst in range(0, len(message), 64):
       a, b, c, d = hash_pieces
       chunk = message[chunk_ofst:chunk_ofst+64]
       for i in range(64):
           f = functions[i](b, c, d)
           g = index_functions[i](i)
           to_rotate = a + f + constants[i] + int.from_bytes(chunk[4*g:4*g+4], byteorder='little')
           new_b = (b + left_rotate(to_rotate, rotate_amounts[i])) & 0xFFFFFFFF
           a, b, c, d = d, new_b, b, c
       for i, val in enumerate([a, b, c, d]):
           hash_pieces[i] += val
           hash_pieces[i] &= 0xFFFFFFFF
   
   return sum(x<<(32*i) for i, x in enumerate(hash_pieces))
       

def md5_to_hex(digest):

   raw = digest.to_bytes(16, byteorder='little')
   return '{:032x}'.format(int.from_bytes(raw, byteorder='big'))

if __name__=='__main__':

   demo = [b"", b"a", b"abc", b"message digest", b"abcdefghijklmnopqrstuvwxyz",
           b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
           b"12345678901234567890123456789012345678901234567890123456789012345678901234567890"]
   for message in demo:
       print(md5_to_hex(md5(message)),' <= "',message.decode('ascii'),'"', sep=)

</lang>

Implementation notes:

  • The code works with whole bytes, arbitrary message length is not supported.
  • Instead of doing an if-else chain in the inner loop, we build a list of functions to use for each iteration. An if-else chain would probably be faster, but this shows off the language features better.
  • Python integers don't ever overflow (they are implemented internally as bignums), so the code actually has to emulate 32-bit overflow by masking manually where it matters. On the other hand, this allows us to return the digest as a regular 128-bit number instead of a bytes object.
  • The code makes heavy use of int.from_bytes() and int.to_bytes() to convert between bytes and integers. These methods were introduced in Python 3.2. In earlier versions, you needed to use more cumbersome ways to convert between the two types.
  • The multiple assignment feature allows us to easily decompose the four items in hash_pieces into individual variables, and to shuffle around the four helper variables at the end of every iteration without introducing a temporary variable.

Racket

For an implementation of md5 in Racket see: github.com/racket/racket/blob/master/racket/collects/file/md5.rkt <lang racket>

  1. lang racket

(require file/md5) (md5 #"Rosetta Code") </lang> Output: <lang racket>

  1. "cca1bf66b09554e10f837838c3d3efb1"

</lang>

REXX

This REXX program uses the test suite that is from the IETF RFC (1321) contained in the   MD5 Message─Digest Algorithm,   April 1992. <lang rexx>/*REXX program tests the MD5 procedure (below) as per a test suite from IETF RFC (1321).*/ @.1 = /*─────MD5 test suite [from above doc].*/ @.2 = 'a' @.3 = 'abc' @.4 = 'message digest' @.5 = 'abcdefghijklmnopqrstuvwxyz' @.6 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' @.7 = 12345678901234567890123456789012345678901234567890123456789012345678901234567890 @.0 = 7 /* [↑] last value doesn't need quotes.*/

               do m=1  for  @.0;         say    /*process each of the seven messages.  */
               say ' in ='  @.m                 /*display the      in      message.    */
               say 'out ='  MD5(@.m)            /*   "     "       out        "        */
               end   /*m*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ MD5: procedure; parse arg !; numeric digits 20 /*insure there's enough decimal digits.*/

    a= '67452301'x;         b= "efcdab89"x;         c= '98badcfe'x;        d= "10325476"x
    #=length(!)                                 /*length in bytes of the input message.*/
    L=# *8 //512;   if L<448  then plus=448 - L /*is the length  less   than  448 ?    */
                    if L>448  then plus=960 - L /* "  "     "   greater   "    "       */
                    if L=448  then plus=512     /* "  "     "    equal   to    "       */
                                                /* [↓]  a little of this, ···          */
    $=! || "80"x || copies('0'x,plus%8-1)reverse(right(d2c(8*#), 4, '0'x)) || '00000000'x
                                                /* [↑]       ···  and a little of that.*/
        do j=0  for length($) % 64              /*process the message  (lots of steps).*/
        a_=a;      b_=b;      c_=c;       d_=d  /*save the  original values  for later.*/
        chunk=j * 64                            /*calculate the  size  of the chunks.  */
                      do k=1  for 16            /*process the message in chunks.       */
                      !.k=reverse( substr($, chunk + 1 + 4*(k-1), 4) )   /*magic stuff.*/
                      end   /*k*/                                        /*────step────*/
        a  =  .p1( a,   b,   c,   d,    0,    7,   3614090360)           /*■■■■  1 ■■■■*/
        d  =  .p1( d,   a,   b,   c,    1,   12,   3905402710)           /*■■■■  2 ■■■■*/
        c  =  .p1( c,   d,   a,   b,    2,   17,    606105819)           /*■■■■  3 ■■■■*/
        b  =  .p1( b,   c,   d,   a,    3,   22,   3250441966)           /*■■■■  4 ■■■■*/
        a  =  .p1( a,   b,   c,   d,    4,    7,   4118548399)           /*■■■■  5 ■■■■*/
        d  =  .p1( d,   a,   b,   c,    5,   12,   1200080426)           /*■■■■  6 ■■■■*/
        c  =  .p1( c,   d,   a,   b,    6,   17,   2821735955)           /*■■■■  7 ■■■■*/
        b  =  .p1( b,   c,   d,   a,    7,   22,   4249261313)           /*■■■■  8 ■■■■*/
        a  =  .p1( a,   b,   c,   d,    8,    7,   1770035416)           /*■■■■  9 ■■■■*/
        d  =  .p1( d,   a,   b,   c,    9,   12,   2336552879)           /*■■■■ 10 ■■■■*/
        c  =  .p1( c,   d,   a,   b,   10,   17,   4294925233)           /*■■■■ 11 ■■■■*/
        b  =  .p1( b,   c,   d,   a,   11,   22,   2304563134)           /*■■■■ 12 ■■■■*/
        a  =  .p1( a,   b,   c,   d,   12,    7,   1804603682)           /*■■■■ 13 ■■■■*/
        d  =  .p1( d,   a,   b,   c,   13,   12,   4254626195)           /*■■■■ 14 ■■■■*/
        c  =  .p1( c,   d,   a,   b,   14,   17,   2792965006)           /*■■■■ 15 ■■■■*/
        b  =  .p1( b,   c,   d,   a,   15,   22,   1236535329)           /*■■■■ 16 ■■■■*/
        a  =  .p2( a,   b,   c,   d,    1,    5,   4129170786)           /*■■■■ 17 ■■■■*/
        d  =  .p2( d,   a,   b,   c,    6,    9,   3225465664)           /*■■■■ 18 ■■■■*/
        c  =  .p2( c,   d,   a,   b,   11,   14,    643717713)           /*■■■■ 19 ■■■■*/
        b  =  .p2( b,   c,   d,   a,    0,   20,   3921069994)           /*■■■■ 20 ■■■■*/
        a  =  .p2( a,   b,   c,   d,    5,    5,   3593408605)           /*■■■■ 21 ■■■■*/
        d  =  .p2( d,   a,   b,   c,   10,    9,     38016083)           /*■■■■ 22 ■■■■*/
        c  =  .p2( c,   d,   a,   b,   15,   14,   3634488961)           /*■■■■ 23 ■■■■*/
        b  =  .p2( b,   c,   d,   a,    4,   20,   3889429448)           /*■■■■ 24 ■■■■*/
        a  =  .p2( a,   b,   c,   d,    9,    5,    568446438)           /*■■■■ 25 ■■■■*/
        d  =  .p2( d,   a,   b,   c,   14,    9,   3275163606)           /*■■■■ 26 ■■■■*/
        c  =  .p2( c,   d,   a,   b,    3,   14,   4107603335)           /*■■■■ 27 ■■■■*/
        b  =  .p2( b,   c,   d,   a,    8,   20,   1163531501)           /*■■■■ 28 ■■■■*/
        a  =  .p2( a,   b,   c,   d,   13,    5,   2850285829)           /*■■■■ 29 ■■■■*/
        d  =  .p2( d,   a,   b,   c,    2,    9,   4243563512)           /*■■■■ 30 ■■■■*/
        c  =  .p2( c,   d,   a,   b,    7,   14,   1735328473)           /*■■■■ 31 ■■■■*/
        b  =  .p2( b,   c,   d,   a,   12,   20,   2368359562)           /*■■■■ 32 ■■■■*/
        a  =  .p3( a,   b,   c,   d,    5,    4,   4294588738)           /*■■■■ 33 ■■■■*/
        d  =  .p3( d,   a,   b,   c,    8,   11,   2272392833)           /*■■■■ 34 ■■■■*/
        c  =  .p3( c,   d,   a,   b,   11,   16,   1839030562)           /*■■■■ 35 ■■■■*/
        b  =  .p3( b,   c,   d,   a,   14,   23,   4259657740)           /*■■■■ 36 ■■■■*/
        a  =  .p3( a,   b,   c,   d,    1,    4,   2763975236)           /*■■■■ 37 ■■■■*/
        d  =  .p3( d,   a,   b,   c,    4,   11,   1272893353)           /*■■■■ 38 ■■■■*/
        c  =  .p3( c,   d,   a,   b,    7,   16,   4139469664)           /*■■■■ 39 ■■■■*/
        b  =  .p3( b,   c,   d,   a,   10,   23,   3200236656)           /*■■■■ 40 ■■■■*/
        a  =  .p3( a,   b,   c,   d,   13,    4,    681279174)           /*■■■■ 41 ■■■■*/
        d  =  .p3( d,   a,   b,   c,    0,   11,   3936430074)           /*■■■■ 42 ■■■■*/
        c  =  .p3( c,   d,   a,   b,    3,   16,   3572445317)           /*■■■■ 43 ■■■■*/
        b  =  .p3( b,   c,   d,   a,    6,   23,     76029189)           /*■■■■ 44 ■■■■*/
        a  =  .p3( a,   b,   c,   d,    9,    4,   3654602809)           /*■■■■ 45 ■■■■*/
        d  =  .p3( d,   a,   b,   c,   12,   11,   3873151461)           /*■■■■ 46 ■■■■*/
        c  =  .p3( c,   d,   a,   b,   15,   16,    530742520)           /*■■■■ 47 ■■■■*/
        b  =  .p3( b,   c,   d,   a,    2,   23,   3299628645)           /*■■■■ 48 ■■■■*/
        a  =  .p4( a,   b,   c,   d,    0,    6,   4096336452)           /*■■■■ 49 ■■■■*/
        d  =  .p4( d,   a,   b,   c,    7,   10,   1126891415)           /*■■■■ 50 ■■■■*/
        c  =  .p4( c,   d,   a,   b,   14,   15,   2878612391)           /*■■■■ 51 ■■■■*/
        b  =  .p4( b,   c,   d,   a,    5,   21,   4237533241)           /*■■■■ 52 ■■■■*/
        a  =  .p4( a,   b,   c,   d,   12,    6,   1700485571)           /*■■■■ 53 ■■■■*/
        d  =  .p4( d,   a,   b,   c,    3,   10,   2399980690)           /*■■■■ 54 ■■■■*/
        c  =  .p4( c,   d,   a,   b,   10,   15,   4293915773)           /*■■■■ 55 ■■■■*/
        b  =  .p4( b,   c,   d,   a,    1,   21,   2240044497)           /*■■■■ 56 ■■■■*/
        a  =  .p4( a,   b,   c,   d,    8,    6,   1873313359)           /*■■■■ 57 ■■■■*/
        d  =  .p4( d,   a,   b,   c,   15,   10,   4264355552)           /*■■■■ 58 ■■■■*/
        c  =  .p4( c,   d,   a,   b,    6,   15,   2734768916)           /*■■■■ 59 ■■■■*/
        b  =  .p4( b,   c,   d,   a,   13,   21,   1309151649)           /*■■■■ 60 ■■■■*/
        a  =  .p4( a,   b,   c,   d,    4,    6,   4149444226)           /*■■■■ 61 ■■■■*/
        d  =  .p4( d,   a,   b,   c,   11,   10,   3174756917)           /*■■■■ 62 ■■■■*/
        c  =  .p4( c,   d,   a,   b,    2,   15,    718787259)           /*■■■■ 63 ■■■■*/
        b  =  .p4( b,   c,   d,   a,    9,   21,   3951481745)           /*■■■■ 64 ■■■■*/
        a  =  .a(a_, a);         b=.a(b_, b);          c=.a(c_, c);        d=.a(d_, d)
        end   /*j*/
    return .rx(a).rx(b).rx(c).rx(d)             /*same as:  .rx(a) || .rx(b) ||  ···   */

/*──────────────────────────────────────────────────────────────────────────────────────*/ .a: return right( d2c( c2d( arg(1) ) + c2d( arg(2) ) ), 4, '0'x) .h: return bitxor( bitxor( arg(1), arg(2) ), arg(3) ) .i: return bitxor( arg(2), bitor(arg(1), bitxor(arg(3), 'ffffffff'x) ) ) .f: return bitor( bitand(arg(1), arg(2)), bitand(bitxor(arg(1), 'ffffffff'x), arg(3) ) ) .g: return bitor( bitand(arg(1), arg(3)), bitand(arg(2), bitxor(arg(3), 'ffffffff'x) ) ) .rx: return c2x( reverse( arg(1) ) ) .Lr: procedure; parse arg _,#; if #==0 then return _ /*left bit rotate.*/

                ?=x2b(c2x(_));    return x2c( b2x( right(? || left(?, #), length(?) ) ) )

.p1: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1

              return .a(.Lr(right(d2c(_+c2d(w) + c2d(.f(x,y,z)) + c2d(!.n)),4,'0'x),m),x)

.p2: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1

              return .a(.Lr(right(d2c(_+c2d(w) + c2d(.g(x,y,z)) + c2d(!.n)),4,'0'x),m),x)

.p3: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1

              return .a(.Lr(right(d2c(_+c2d(w) + c2d(.h(x,y,z)) + c2d(!.n)),4,'0'x),m),x)

.p4: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1

              return .a(.Lr(right(d2c(c2d(w) + c2d(.i(x,y,z)) + c2d(!.n)+_),4,'0'x),m),x)</lang>
output   when using the default input:
 in =
out = D41D8CD98F00B204E9800998ECF8427E

 in = a
out = 0CC175B9C0F1B6A831C399E269772661

 in = abc
out = 900150983CD24FB0D6963F7D28E17F72

 in = message digest
out = F96B697D7CB7938D525A2F31AAF161D0

 in = abcdefghijklmnopqrstuvwxyz
out = C3FCD3D76192E4007DFB496CCA67E13B

 in = ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
out = D174AB98D277D9F5A5611C2C9F419D9F

 in = 12345678901234567890123456789012345678901234567890123456789012345678901234567890
out = 57EDF4A22BE3C955AC49DA2E2107B67A

RPG

Based on my Java implementation. Uses free-form RPG and a CTDATA section to hold lookup tables. Converts input from EBCDIC to ASCII before hashing.

<lang RPG>**FREE Ctl-opt MAIN(Main); Ctl-opt DFTACTGRP(*NO) ACTGRP(*NEW);

dcl-pr QDCXLATE EXTPGM('QDCXLATE');

 dataLen         packed(5 : 0) CONST;
 data            char(32767) options(*VARSIZE);
 conversionTable char(10) CONST;

end-pr;

dcl-c MASK32 CONST(4294967295); dcl-s SHIFT_AMTS int(3) dim(16) CTDATA PERRCD(16); dcl-s MD5_TABLE_T int(20) dim(64) CTDATA PERRCD(4);

dcl-proc Main;

 dcl-s inputData char(45);
 dcl-s inputDataLen int(10) INZ(0);
 dcl-s outputHash char(16);
 dcl-s outputHashHex char(32);
 
 DSPLY 'Input: '  inputData;
 inputData = %trim(inputData);
 inputDataLen = %len(%trim(inputData));
 DSPLY ('Input=' + inputData);
 DSPLY ('InputLen=' + %char(inputDataLen));
 
 // Convert from EBCDIC to ASCII
 if inputDataLen > 0;
   QDCXLATE(inputDataLen : inputData : 'QTCPASC');
 endif;
 CalculateMD5(inputData : inputDataLen : outputHash);
 // Convert to hex
 ConvertToHex(outputHash : 16 : outputHashHex);
 DSPLY ('MD5: ' + outputHashHex);
 return;

end-proc;

dcl-proc CalculateMD5;

 dcl-pi *N;
   message    char(65535) options(*VARSIZE) CONST;
   messageLen int(10) value;
   outputHash char(16);
 end-pi;
 dcl-s numBlocks int(10);
 dcl-s padding char(72);
 dcl-s a int(20) INZ(1732584193);
 dcl-s b int(20) INZ(4023233417);
 dcl-s c int(20) INZ(2562383102);
 dcl-s d int(20) INZ(271733878);
 dcl-s buffer int(20) dim(16) INZ(0);
 dcl-s i int(10);
 dcl-s j int(10);
 dcl-s k int(10);
 dcl-s multiplier int(20);
 dcl-s index int(10);
 dcl-s originalA int(20);
 dcl-s originalB int(20);
 dcl-s originalC int(20);
 dcl-s originalD int(20);
 dcl-s div16 int(10);
 dcl-s f int(20);
 dcl-s tempInt int(20);
 dcl-s bufferIndex int(10);
 dcl-ds byteToInt QUALIFIED;
   n int(5) INZ(0);
   c char(1) OVERLAY(n : 2);
 end-ds;
 
 numBlocks = (messageLen + 8) / 64 + 1;
 MD5_FillPadding(messageLen : numBlocks : padding);
 for i = 0 to numBlocks - 1;
   index = i * 64;
   
   // Read message as little-endian 32-bit words
   for j = 1 to 16;
     multiplier = 1;
     for k = 1 to 4;
       index += 1;
       if index <= messageLen;
         byteToInt.c = %subst(message : index : 1);
       else;
         byteToInt.c = %subst(padding : index - messageLen : 1);
       endif;
       buffer(j) += multiplier * byteToInt.n;
       multiplier *= 256;
     endfor;
   endfor;
   
   originalA = a;
   originalB = b;
   originalC = c;
   originalD = d;
   
   for j = 0 to 63;
     div16 = j / 16;
     select;
       when div16 = 0;
         f = %bitor(%bitand(b : c) : %bitand(%bitnot(b) : d));
         bufferIndex = j;
       
       when div16 = 1;
         f = %bitor(%bitand(b : d) : %bitand(c : %bitnot(d)));
         bufferIndex = %bitand(j * 5 + 1 : 15);
       
       when div16 = 2;
         f = %bitxor(b : %bitxor(c : d));
         bufferIndex = %bitand(j * 3 + 5 : 15);
       
       when div16 = 3;
         f = %bitxor(c : %bitor(b : Mask32Bit(%bitnot(d))));
         bufferIndex = %bitand(j * 7 : 15);
     endsl;
     tempInt = Mask32Bit(b + RotateLeft32Bit(a + f + buffer(bufferIndex + 1) + MD5_TABLE_T(j + 1) :
                                             SHIFT_AMTS(div16 * 4 + %bitand(j : 3) + 1)));
     a = d;
     d = c;
     c = b;
     b = tempInt;
   endfor;
   a = Mask32Bit(a + originalA);
   b = Mask32Bit(b + originalB);
   c = Mask32Bit(c + originalC);
   d = Mask32Bit(d + originalD);
 endfor;
 
 for i = 0 to 3;
   if i = 0;
     tempInt = a;
   elseif i = 1;
     tempInt = b;
   elseif i = 2;
     tempInt = c;
   else;
     tempInt = d;
   endif;
   
   for j = 0 to 3;
     byteToInt.n = %bitand(tempInt : 255);
     %subst(outputHash : i * 4 + j + 1 : 1) = byteToInt.c;
     tempInt /= 256;
   endfor;
 endfor;
 return;

end-proc;

dcl-proc MD5_FillPadding;

 dcl-pi *N;
   messageLen int(10);
   numBlocks int(10);
   padding char(72);
 end-pi;
 dcl-s totalLen int(10);
 dcl-s paddingSize int(10);
 dcl-ds *N;
   messageLenBits int(20);
   mlb_bytes char(8) OVERLAY(messageLenBits);
 end-ds;
 dcl-s i int(10);
 
 %subst(padding : 1 : 1) = X'80';
 totalLen = numBlocks * 64;
 paddingSize = totalLen - messageLen; // 9 to 72
 messageLenBits = messageLen;
 messageLenBits *= 8;
 for i = 1 to 8;
   %subst(padding : paddingSize - i + 1 : 1) = %subst(mlb_bytes : i : 1);
 endfor;
 for i = 2 to paddingSize - 8;
   %subst(padding : i : 1) = X'00';
 endfor;
 return;

end-proc;

dcl-proc RotateLeft32Bit;

 dcl-pi *N int(20);
   n int(20) value;
   amount int(3) value;
 end-pi;
 dcl-s i int(3);
 
 n = Mask32Bit(n);
 for i = 1 to amount;
   n *= 2;
   if n >= 4294967296;
     n -= MASK32;
   endif;
 endfor;
 return n;

end-proc;

dcl-proc Mask32Bit;

 dcl-pi *N int(20);
   n int(20) value;
 end-pi;
 return %bitand(n : MASK32);

end-proc;

dcl-proc ConvertToHex;

 dcl-pi *N;
   inputData    char(32767) options(*VARSIZE) CONST;
   inputDataLen int(10) value;
   outputData   char(65534) options(*VARSIZE);
 end-pi;
 dcl-c HEX_CHARS CONST('0123456789ABCDEF');
 dcl-s i int(10);
 dcl-s outputOffset int(10) INZ(1);
 dcl-ds dataStruct QUALIFIED;
   numField int(5) INZ(0);
   // IBM i is big-endian
   charField char(1) OVERLAY(numField : 2);
 end-ds;
 
 for i = 1 to inputDataLen;
   dataStruct.charField = %BitAnd(%subst(inputData : i : 1) : X'F0');
   dataStruct.numField /= 16;
   %subst(outputData : outputOffset : 1) = %subst(HEX_CHARS : dataStruct.numField + 1 : 1);
   outputOffset += 1;
   dataStruct.charField = %BitAnd(%subst(inputData : i : 1) : X'0F');
   %subst(outputData : outputOffset : 1) = %subst(HEX_CHARS : dataStruct.numField + 1 : 1);
   outputOffset += 1;
 endfor;
 return;

end-proc;

    • CTDATA SHIFT_AMTS
 7 12 17 22  5  9 14 20  4 11 16 23  6 10 15 21
    • CTDATA MD5_TABLE_T
         3614090360          3905402710           606105819          3250441966
         4118548399          1200080426          2821735955          4249261313
         1770035416          2336552879          4294925233          2304563134
         1804603682          4254626195          2792965006          1236535329
         4129170786          3225465664           643717713          3921069994
         3593408605            38016083          3634488961          3889429448
          568446438          3275163606          4107603335          1163531501
         2850285829          4243563512          1735328473          2368359562
         4294588738          2272392833          1839030562          4259657740
         2763975236          1272893353          4139469664          3200236656
          681279174          3936430074          3572445317            76029189
         3654602809          3873151461           530742520          3299628645
         4096336452          1126891415          2878612391          4237533241
         1700485571          2399980690          4293915773          2240044497
         1873313359          4264355552          2734768916          1309151649
         4149444226          3174756917           718787259          3951481745</lang>

Sample output:

 DSPLY  Input:
 abcdefghijklmnopqrstuvwxyz
 DSPLY  Input=abcdefghijklmnopqrstuvwxyz
 DSPLY  InputLen=26
 DSPLY  MD5: C3FCD3D76192E4007DFB496CCA67E13B


Rust

A translation of RFC (1321), to highlight the algorithm itself in bare form. Notable Rust features are the strict limits on casting, explicit description of bit-widths and wrap-around operations, and macros for the Rounds. This made it easy to translate and debug, although a bit 'wordy' in sections, and requiring special code to transliterate between strings and integers.

Reasonable speed was desired; Profiling revealed the "copy block to X" loop as hot. This loops casts arrays of 8 bit integers into 32 bit integers, which Rust does very slowly in 'safe' code, so an unsafe transmute, and, on big-endian machines a byteswap, was used. Runtime is 120-150% slower than standard linux /usr/bin/md5sum.

As with others implementations, this will not allow bit-lengths non-divisible by 8; this ability can be added in about 8 lines of code but no examples appear to be available for verification of correctness, and so it was elided.

<lang C>

  1. ![allow(non_snake_case)] // RFC 1321 uses many capitalized variables

use std::mem;

fn md5(mut msg: Vec<u8>) -> (u32, u32, u32, u32) {

   let bitcount = msg.len().saturating_mul(8) as u64;
   // Step 1: Append Padding Bits
   msg.push(0b10000000);
   while (msg.len() * 8) % 512 != 448 {
       msg.push(0u8);
   }
   // Step 2. Append Length  (64 bit integer)
   msg.extend(&[
       bitcount as u8,
       (bitcount >> 8) as u8,
       (bitcount >> 16) as u8,
       (bitcount >> 24) as u8,
       (bitcount >> 32) as u8,
       (bitcount >> 40) as u8,
       (bitcount >> 48) as u8,
       (bitcount >> 56) as u8,
   ]);
   // Step 3. Initialize MD Buffer
   /*A four-word buffer (A,B,C,D) is used to compute the message digest.
   Here each of A, B, C, D is a 32-bit register.*/
   let mut A = 0x67452301u32;
   let mut B = 0xefcdab89u32;
   let mut C = 0x98badcfeu32;
   let mut D = 0x10325476u32;
   // Step 4. Process Message in 16-Word Blocks
   /* We first define four auxiliary functions */
   let F = |X: u32, Y: u32, Z: u32| -> u32 { X & Y | !X & Z };
   let G = |X: u32, Y: u32, Z: u32| -> u32 { X & Z | Y & !Z };
   let H = |X: u32, Y: u32, Z: u32| -> u32 { X ^ Y ^ Z };
   let I = |X: u32, Y: u32, Z: u32| -> u32 { Y ^ (X | !Z) };
   /* This step uses a 64-element table T[1 ... 64] constructed from the sine function.  */
   let T = [
       0x00000000, // enable use as a 1-indexed table
       0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613,
       0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193,
       0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d,
       0x02441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
       0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122,
       0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa,
       0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, 0xf4292244,
       0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
       0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb,
       0xeb86d391,
   ];
   /* Process each 16-word block. (since 1 word is 4 bytes, then 16 words is 64 bytes) */
   for mut block in msg.chunks_exact_mut(64) {
       /* Copy block into X. */
       #![allow(unused_mut)]
       let mut X = unsafe { mem::transmute::<&mut [u8], &mut [u32]>(&mut block) };
       #[cfg(target_endian = "big")]
       for j in 0..16 {
           X[j] = X[j].swap_bytes();
       }
       /* Save Registers A,B,C,D */
       let AA = A;
       let BB = B;
       let CC = C;
       let DD = D;
       /* Round 1.  Let [abcd k s i] denote the operation
       a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
       macro_rules! op1 {
           ($a:ident,$b:ident,$c:ident,$d:ident,$k:expr,$s:expr,$i:expr) => {
               $a = $b.wrapping_add(
                   ($a.wrapping_add(F($b, $c, $d))
                       .wrapping_add(X[$k])
                       .wrapping_add(T[$i]))
                   .rotate_left($s),
               )
           };
       }
       /* Do the following 16 operations. */
       op1!(A, B, C, D, 0, 7, 1);
       op1!(D, A, B, C, 1, 12, 2);
       op1!(C, D, A, B, 2, 17, 3);
       op1!(B, C, D, A, 3, 22, 4);
       op1!(A, B, C, D, 4, 7, 5);
       op1!(D, A, B, C, 5, 12, 6);
       op1!(C, D, A, B, 6, 17, 7);
       op1!(B, C, D, A, 7, 22, 8);
       op1!(A, B, C, D, 8, 7, 9);
       op1!(D, A, B, C, 9, 12, 10);
       op1!(C, D, A, B, 10, 17, 11);
       op1!(B, C, D, A, 11, 22, 12);
       op1!(A, B, C, D, 12, 7, 13);
       op1!(D, A, B, C, 13, 12, 14);
       op1!(C, D, A, B, 14, 17, 15);
       op1!(B, C, D, A, 15, 22, 16);
       /* Round 2. Let [abcd k s i] denote the operation
       a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
       macro_rules! op2 {
           ($a:ident,$b:ident,$c:ident,$d:ident,$k:expr,$s:expr,$i:expr) => {
               $a = $b.wrapping_add(
                   ($a.wrapping_add(G($b, $c, $d))
                       .wrapping_add(X[$k])
                       .wrapping_add(T[$i]))
                   .rotate_left($s),
               )
           };
       }
       /* Do the following 16 operations. */
       op2!(A, B, C, D, 1, 5, 17);
       op2!(D, A, B, C, 6, 9, 18);
       op2!(C, D, A, B, 11, 14, 19);
       op2!(B, C, D, A, 0, 20, 20);
       op2!(A, B, C, D, 5, 5, 21);
       op2!(D, A, B, C, 10, 9, 22);
       op2!(C, D, A, B, 15, 14, 23);
       op2!(B, C, D, A, 4, 20, 24);
       op2!(A, B, C, D, 9, 5, 25);
       op2!(D, A, B, C, 14, 9, 26);
       op2!(C, D, A, B, 3, 14, 27);
       op2!(B, C, D, A, 8, 20, 28);
       op2!(A, B, C, D, 13, 5, 29);
       op2!(D, A, B, C, 2, 9, 30);
       op2!(C, D, A, B, 7, 14, 31);
       op2!(B, C, D, A, 12, 20, 32);
       /* Round 3. Let [abcd k s t] denote the operation
       a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
       macro_rules! op3 {
           ($a:ident,$b:ident,$c:ident,$d:ident,$k:expr,$s:expr,$i:expr) => {
               $a = $b.wrapping_add(
                   ($a.wrapping_add(H($b, $c, $d))
                       .wrapping_add(X[$k])
                       .wrapping_add(T[$i]))
                   .rotate_left($s),
               )
           };
       }
       /* Do the following 16 operations. */
       op3!(A, B, C, D, 5, 4, 33);
       op3!(D, A, B, C, 8, 11, 34);
       op3!(C, D, A, B, 11, 16, 35);
       op3!(B, C, D, A, 14, 23, 36);
       op3!(A, B, C, D, 1, 4, 37);
       op3!(D, A, B, C, 4, 11, 38);
       op3!(C, D, A, B, 7, 16, 39);
       op3!(B, C, D, A, 10, 23, 40);
       op3!(A, B, C, D, 13, 4, 41);
       op3!(D, A, B, C, 0, 11, 42);
       op3!(C, D, A, B, 3, 16, 43);
       op3!(B, C, D, A, 6, 23, 44);
       op3!(A, B, C, D, 9, 4, 45);
       op3!(D, A, B, C, 12, 11, 46);
       op3!(C, D, A, B, 15, 16, 47);
       op3!(B, C, D, A, 2, 23, 48);
       /* Round 4. Let [abcd k s t] denote the operation
       a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
       macro_rules! op4 {
           ($a:ident,$b:ident,$c:ident,$d:ident,$k:expr,$s:expr,$i:expr) => {
               $a = $b.wrapping_add(
                   ($a.wrapping_add(I($b, $c, $d))
                       .wrapping_add(X[$k])
                       .wrapping_add(T[$i]))
                   .rotate_left($s),
               )
           };
       }
       /* Do the following 16 operations. */
       op4!(A, B, C, D, 0, 6, 49);
       op4!(D, A, B, C, 7, 10, 50);
       op4!(C, D, A, B, 14, 15, 51);
       op4!(B, C, D, A, 5, 21, 52);
       op4!(A, B, C, D, 12, 6, 53);
       op4!(D, A, B, C, 3, 10, 54);
       op4!(C, D, A, B, 10, 15, 55);
       op4!(B, C, D, A, 1, 21, 56);
       op4!(A, B, C, D, 8, 6, 57);
       op4!(D, A, B, C, 15, 10, 58);
       op4!(C, D, A, B, 6, 15, 59);
       op4!(B, C, D, A, 13, 21, 60);
       op4!(A, B, C, D, 4, 6, 61);
       op4!(D, A, B, C, 11, 10, 62);
       op4!(C, D, A, B, 2, 15, 63);
       op4!(B, C, D, A, 9, 21, 64);
       /* . . . increment each of the four registers by the value 
       it had before this block was started.) */
       A = A.wrapping_add(AA);
       B = B.wrapping_add(BB);
       C = C.wrapping_add(CC);
       D = D.wrapping_add(DD);
   }
   (
       A.swap_bytes(),
       B.swap_bytes(),
       C.swap_bytes(),
       D.swap_bytes(),
   )

}

fn md5_utf8(smsg: &str) -> String {

   let mut msg = vec![0u8; 0];
   msg.extend(smsg.as_bytes());
   let (A, B, C, D) = md5(msg);
   format!("{:08x}{:08x}{:08x}{:08x}", A, B, C, D)

}

fn main() {

   assert!(md5_utf8("") == "d41d8cd98f00b204e9800998ecf8427e");
   assert!(md5_utf8("a") == "0cc175b9c0f1b6a831c399e269772661");
   assert!(md5_utf8("abc") == "900150983cd24fb0d6963f7d28e17f72");
   assert!(md5_utf8("message digest") == "f96b697d7cb7938d525a2f31aaf161d0");
   assert!(md5_utf8("abcdefghijklmnopqrstuvwxyz") == "c3fcd3d76192e4007dfb496cca67e13b");
   assert!(md5_utf8("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") == "d174ab98d277d9f5a5611c2c9f419d9f");
   assert!(md5_utf8("12345678901234567890123456789012345678901234567890123456789012345678901234567890") == "57edf4a22be3c955ac49da2e2107b67a");

} </lang>

Scala

<lang Scala>object MD5 extends App {

 def hash(s: String) = {
   def b = s.getBytes("UTF-8")
   def m = java.security.MessageDigest.getInstance("MD5").digest(b)
   BigInt(1, m).toString(16).reverse.padTo(32, "0").reverse.mkString
 }
 assert("d41d8cd98f00b204e9800998ecf8427e" == hash(""))
 assert("0000045c5e2b3911eb937d9d8c574f09" == hash("iwrupvqb346386"))
 assert("0cc175b9c0f1b6a831c399e269772661" == hash("a"))
 assert("900150983cd24fb0d6963f7d28e17f72" == hash("abc"))
 assert("f96b697d7cb7938d525a2f31aaf161d0" == hash("message digest"))
 assert("c3fcd3d76192e4007dfb496cca67e13b" == hash("abcdefghijklmnopqrstuvwxyz"))
 assert("d174ab98d277d9f5a5611c2c9f419d9f" == hash("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"))
 assert("57edf4a22be3c955ac49da2e2107b67a" == hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890"))

}</lang>

Seed7

The example below contains the implementation of the function md5 from the library msgdigest.s7i.

<lang seed7>$ include "seed7_05.s7i";

 include "bytedata.s7i";
 include "bin32.s7i";
 include "float.s7i";
 include "math.s7i";
  1. Use binary integer part of the sines of integers (Radians) as constants:

const func array integer: createMd5Table is func

 result
   var array integer: k is 64 times 0;
 local
   var integer: index is 0;
 begin
   for index range 1 to 64 do
     k[index] := trunc(abs(sin(flt(index))) * 2.0 ** 32);
   end for;
 end func;

const func string: md5 (in var string: message) is func

 result
   var string: digest is "";
 local
   # Specify the per-round shift amounts
   const array integer: shiftAmount is [] (
       7, 12, 17, 22,  7, 12, 17, 22,  7, 12, 17, 22,  7, 12, 17, 22,
       5,  9, 14, 20,  5,  9, 14, 20,  5,  9, 14, 20,  5,  9, 14, 20,
       4, 11, 16, 23,  4, 11, 16, 23,  4, 11, 16, 23,  4, 11, 16, 23,
       6, 10, 15, 21,  6, 10, 15, 21,  6, 10, 15, 21,  6, 10, 15, 21);
   const array integer: k is createMd5Table;
   var integer: length is 0;
   var integer: chunkIndex is 0;
   var integer: index is 0;
   var array bin32: m is 16 times bin32.value;
   var integer: a0 is 16#67452301;   # a
   var integer: b0 is 16#efcdab89;   # b
   var integer: c0 is 16#98badcfe;   # c
   var integer: d0 is 16#10325476;   # d
   var bin32: a is bin32(0);
   var bin32: b is bin32(0);
   var bin32: c is bin32(0);
   var bin32: d is bin32(0);
   var bin32: f is bin32(0);
   var integer: g is 0;
   var bin32: temp is bin32(0);
 begin
   length := length(message);
   # Append the bit '1' to the message.
   message &:= '\16#80;';
   # Append '0' bits, so that the resulting bit length is congruent to 448 (mod 512).
   message &:= "\0;" mult 63 - (length + 8) mod 64;
   # Append length of message (before pre-processing), in bits, as 64-bit little-endian integer.
   message &:= int64AsEightBytesLe(8 * length);
   # Process the message in successive 512-bit chunks:
   for chunkIndex range 1 to length(message) step 64 do
     # Break chunk into sixteen 32-bit little-endian words.
     for index range 1 to 16 do
       m[index] := bin32(bytes2Int(message[chunkIndex + 4 * pred(index) len 4], UNSIGNED, LE));
     end for;
     a := bin32(a0 mod 16#100000000);
     b := bin32(b0 mod 16#100000000);
     c := bin32(c0 mod 16#100000000);
     d := bin32(d0 mod 16#100000000);
     for index range 1 to 64 do
       if index <= 16 then
         f := d >< (b & (c >< d));
         g := index;
       elsif index <= 32 then
         f := c >< (d & (b >< c));
         g := (5 * index - 4) mod 16 + 1;
       elsif index <= 48 then
         f := b >< c >< d;
         g := (3 * index + 2) mod 16 + 1;
       else
         f := c >< (b | (bin32(16#ffffffff) >< d));
         g := (7 * pred(index)) mod 16 + 1;
       end if;
       temp := d;
       d := c;
       c := b;
       b := bin32((ord(b) +
            ord(rotLeft(bin32((ord(a) + ord(f) + k[index] + ord(m[g])) mod 16#100000000),
                        shiftAmount[index]))) mod 16#100000000);
       a := temp;
     end for;
     # Add this chunk's hash to result so far:
     a0 +:= ord(a);
     b0 +:= ord(b);
     c0 +:= ord(c);
     d0 +:= ord(d);
   end for;
   # Produce the final hash value:
   digest := int32AsFourBytesLe(a0) &
             int32AsFourBytesLe(b0) &
             int32AsFourBytesLe(c0) &
             int32AsFourBytesLe(d0);
 end func;

const func boolean: checkMd5 (in string: message, in string: hexMd5) is

 return hex(md5(message)) = hexMd5;

const proc: main is func

 begin
   if  checkMd5("", "d41d8cd98f00b204e9800998ecf8427e") and
       checkMd5("a", "0cc175b9c0f1b6a831c399e269772661") and
       checkMd5("abc", "900150983cd24fb0d6963f7d28e17f72") and
       checkMd5("message digest", "f96b697d7cb7938d525a2f31aaf161d0") and
       checkMd5("abcdefghijklmnopqrstuvwxyz", "c3fcd3d76192e4007dfb496cca67e13b") and
       checkMd5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "d174ab98d277d9f5a5611c2c9f419d9f") and
       checkMd5("12345678901234567890123456789012345678901234567890123456789012345678901234567890", "57edf4a22be3c955ac49da2e2107b67a") then
     writeln("md5 is computed correct");
   else
     writeln("There is an error in the md5 function");
   end if;
 end func;</lang>

Original source: [3]

Output:
md5 is computed correct

Sidef

Translation of: Perl 6

<lang ruby>class MD5(String msg) {

   method init {
       msg = msg.bytes
   }
   const FGHI = [
] const S = [ [7, 12, 17, 22] * 4, [5, 9, 14, 20] * 4, [4, 11, 16, 23] * 4, [6, 10, 15, 21] * 4, ].flat const T = 64.of {|i| floor(abs(sin(i+1)) * 1<<32) } const K = [ ^16 -> map {|n| n }, ^16 -> map {|n| (5*n + 1) % 16 }, ^16 -> map {|n| (3*n + 5) % 16 }, ^16 -> map {|n| (7*n ) % 16 }, ].flat func radix(Number b, Array a) { ^a -> sum {|i| b**i * a[i] } } func little_endian(Number w, Number n, Array v) { var step1 = (^n »*» w) var step2 = (v ~X>> step1) step2 »%» (1 << w) } func block(Number a, Number b) { (a + b) & 0xffffffff } func srble(Number a, Number n) { (a << n) & 0xffffffff | (a >> (32-n)) } func md5_pad(msg) { var bits = 8*msg.len var padded = [msg..., 128, [0] * (-(floor(bits / 8) + 1 + 8) % 64)].flat gather { padded.each_slice(4, {|*a| take(radix(256, a)) }) take(little_endian(32, 2, [bits])) }.flat } func md5_block(Array H, Array X) { var (A, B, C, D) = H... for i in ^64 { (A, B, C, D) = (D, block(B, srble( block( block( block(A, FGHI[floor(i / 16)](B, C, D)), T[i] ), X[K[i]] ), S[i]) ), B, C) } for k,v in ([A, B, C, D].kv) { H[k] = block(H[k], v) } return H } method md5_hex { self.md5.map {|n| '%02x' % n }.join } method md5 { var M = md5_pad(msg) var H = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476] for i in (range(0, M.end, 16)) { md5_block(H, M.ft(i, i+15)) } little_endian(8, 4, H) } } var tests = [ ['d41d8cd98f00b204e9800998ecf8427e', ], ['0cc175b9c0f1b6a831c399e269772661', 'a'], ['900150983cd24fb0d6963f7d28e17f72', 'abc'], ['f96b697d7cb7938d525a2f31aaf161d0', 'message digest'], ['c3fcd3d76192e4007dfb496cca67e13b', 'abcdefghijklmnopqrstuvwxyz'], ['d174ab98d277d9f5a5611c2c9f419d9f', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'], ['57edf4a22be3c955ac49da2e2107b67a', '12345678901234567890123456789012345678901234567890123456789012345678901234567890'], ] for md5,msg in tests { var hash = MD5(msg).md5_hex say "#{hash} : #{msg}" if (hash != md5) { say "\tHowever, that is incorrect (expected: #{md5})" } }</lang>
Output:
d41d8cd98f00b204e9800998ecf8427e : 
0cc175b9c0f1b6a831c399e269772661 : a
900150983cd24fb0d6963f7d28e17f72 : abc
f96b697d7cb7938d525a2f31aaf161d0 : message digest
c3fcd3d76192e4007dfb496cca67e13b : abcdefghijklmnopqrstuvwxyz
d174ab98d277d9f5a5611c2c9f419d9f : ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
57edf4a22be3c955ac49da2e2107b67a : 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Swift

Swift implementation of the pseudo-code found in the Wikipedia article.

Original source: CryptoSwift

<lang swift>

   import Foundation
   public class MD5 {
       /** specifies the per-round shift amounts */
       private let s: [UInt32] = [7, 12, 17, 22,  7, 12, 17, 22,  7, 12, 17, 22,  7, 12, 17, 22,
                          5,  9, 14, 20,  5,  9, 14, 20,  5,  9, 14, 20,  5,  9, 14, 20,
                          4, 11, 16, 23,  4, 11, 16, 23,  4, 11, 16, 23,  4, 11, 16, 23,
                          6, 10, 15, 21,  6, 10, 15, 21,  6, 10, 15, 21,  6, 10, 15, 21]
       
       /** binary integer part of the sines of integers (Radians) */
       private let K: [UInt32] = (0 ..< 64).map { UInt32(0x100000000 * abs(sin(Double($0 + 1)))) }
       
       let a0: UInt32 = 0x67452301
       let b0: UInt32 = 0xefcdab89
       let c0: UInt32 = 0x98badcfe
       let d0: UInt32 = 0x10325476
       
       private var message: NSData
       
       //MARK: Public
       
       public init(_ message: NSData) {
           self.message = message
       }
       
       public func calculate() -> NSData? {
           var tmpMessage: NSMutableData = NSMutableData(data: message)
           let wordSize = sizeof(UInt32)
           
           var aa = a0
           var bb = b0
           var cc = c0
           var dd = d0
           
           // Step 1. Append Padding Bits
           tmpMessage.appendBytes([0x80]) // append one bit (Byte with one bit) to message
           
           // append "0" bit until message length in bits ≡ 448 (mod 512)
           while tmpMessage.length % 64 != 56 {
               tmpMessage.appendBytes([0x00])
           }
           
           // Step 2. Append Length a 64-bit representation of lengthInBits
           var lengthInBits = (message.length * 8)
           var lengthBytes = lengthInBits.bytes(64 / 8)
           tmpMessage.appendBytes(reverse(lengthBytes));
           
           // Process the message in successive 512-bit chunks:
           let chunkSizeBytes = 512 / 8
           var leftMessageBytes = tmpMessage.length
           for var i = 0; i < tmpMessage.length; i = i + chunkSizeBytes, leftMessageBytes -= chunkSizeBytes {
               let chunk = tmpMessage.subdataWithRange(NSRange(location: i, length: min(chunkSizeBytes,leftMessageBytes)))
               
               // break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15
               // println("wordSize \(wordSize)");
               var M:[UInt32] = [UInt32](count: 16, repeatedValue: 0)
               for x in 0..<M.count {
                   var range = NSRange(location:x * wordSize, length: wordSize)
                   chunk.getBytes(&M[x], range:range);
               }
               
               // Initialize hash value for this chunk:
               var A:UInt32 = a0
               var B:UInt32 = b0
               var C:UInt32 = c0
               var D:UInt32 = d0
               
               var dTemp:UInt32 = 0
               
               // Main loop
               for j in 0...63 {
                   var g = 0
                   var F:UInt32 = 0
                   
                   switch (j) {
                   case 0...15:
                       F = (B & C) | ((~B) & D)
                       g = j
                       break
                   case 16...31:
                       F = (D & B) | (~D & C)
                       g = (5 * j + 1) % 16
                       break
                   case 32...47:
                       F = B ^ C ^ D
                       g = (3 * j + 5) % 16
                       break
                   case 48...63:
                       F = C ^ (B | (~D))
                       g = (7 * j) % 16
                       break
                   default:
                       break
                   }
                   dTemp = D
                   D = C
                   C = B
                   B = B &+ rotateLeft((A &+ F &+ K[j] &+ M[g]), s[j])
                   A = dTemp    
               }
               
               aa = aa &+ A
               bb = bb &+ B
               cc = cc &+ C
               dd = dd &+ D
           }
           var buf: NSMutableData = NSMutableData();
           buf.appendBytes(&aa, length: wordSize)
           buf.appendBytes(&bb, length: wordSize)
           buf.appendBytes(&cc, length: wordSize)
           buf.appendBytes(&dd, length: wordSize)
           
           return buf.copy() as? NSData;
       }
       //MARK: Class
       class func calculate(message: NSData) -> NSData?
       {
           return MD5(message).calculate();
       }
       
       //MARK: Private
       private func rotateLeft(x:UInt32, _ n:UInt32) -> UInt32 {
           return (x &<< n) | (x &>> (32 - n))
       }
   }

</lang>

From-scratch implementation based on the solutions on this page without needing any external libraries: <lang swift>import Foundation

let shift : [UInt32] = [7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21] let table: [UInt32] = (0 ..< 64).map { UInt32(0x100000000 * abs(sin(Double($0 + 1)))) }

func md5(var message: [UInt8]) -> [UInt8] {

 var messageLenBits = UInt64(message.count) * 8
 message.append(0x80)
 while message.count % 64 != 56 {
   message.append(0)
 }
 
 var lengthBytes = [UInt8](count: 8, repeatedValue: 0)
 UnsafeMutablePointer<UInt64>(lengthBytes).memory = messageLenBits.littleEndian
 message += lengthBytes
 
 var a : UInt32 = 0x67452301
 var b : UInt32 = 0xEFCDAB89
 var c : UInt32 = 0x98BADCFE
 var d : UInt32 = 0x10325476
 for chunkOffset in stride(from: 0, to: message.count, by: 64) {
   let chunk = UnsafePointer<UInt32>(UnsafePointer<UInt8>(message) + chunkOffset)
   let originalA = a
   let originalB = b
   let originalC = c
   let originalD = d
   for j in 0 ..< 64 {
     var f : UInt32 = 0
     var bufferIndex = j
     let round = j >> 4
     switch round {
     case 0:
       f = (b & c) | (~b & d)
     case 1:
       f = (b & d) | (c & ~d)
       bufferIndex = (bufferIndex*5 + 1) & 0x0F
     case 2:
       f = b ^ c ^ d
       bufferIndex = (bufferIndex*3 + 5) & 0x0F
     case 3:
       f = c ^ (b | ~d)
       bufferIndex = (bufferIndex * 7) & 0x0F
     default:
       assert(false)
     }
     let sa = shift[(round<<2)|(j&3)]
     let tmp = a &+ f &+ UInt32(littleEndian: chunk[bufferIndex]) &+ table[j]
     a = d
     d = c
     c = b
     b = b &+ (tmp << sa | tmp >> (32-sa))
   }
   a = a &+ originalA
   b = b &+ originalB
   c = c &+ originalC
   d = d &+ originalD
 }
 
 var result = [UInt8](count: 16, repeatedValue: 0)
 for (i, n) in enumerate([a, b, c, d]) {
   UnsafeMutablePointer<UInt32>(result)[i] = n.littleEndian
 }
 return result

}

func toHexString(bytes: [UInt8]) -> String {

 return "".join(bytes.map { String(format:"%02x", $0) })

}

for (hashCode, string) in [

 ("d41d8cd98f00b204e9800998ecf8427e", ""),
 ("0cc175b9c0f1b6a831c399e269772661", "a"),
 ("900150983cd24fb0d6963f7d28e17f72", "abc"),
 ("f96b697d7cb7938d525a2f31aaf161d0", "message digest"),
 ("c3fcd3d76192e4007dfb496cca67e13b", "abcdefghijklmnopqrstuvwxyz"),
 ("d174ab98d277d9f5a5611c2c9f419d9f",
   "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"),
 ("57edf4a22be3c955ac49da2e2107b67a", "12345678901234567890" +
   "123456789012345678901234567890123456789012345678901234567890")] {
     println(hashCode)
     println(toHexString(md5(Array(string.utf8))))
     println()

}</lang>

Output:
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e

0cc175b9c0f1b6a831c399e269772661
0cc175b9c0f1b6a831c399e269772661

900150983cd24fb0d6963f7d28e17f72
900150983cd24fb0d6963f7d28e17f72

f96b697d7cb7938d525a2f31aaf161d0
f96b697d7cb7938d525a2f31aaf161d0

c3fcd3d76192e4007dfb496cca67e13b
c3fcd3d76192e4007dfb496cca67e13b

d174ab98d277d9f5a5611c2c9f419d9f
d174ab98d277d9f5a5611c2c9f419d9f

57edf4a22be3c955ac49da2e2107b67a
57edf4a22be3c955ac49da2e2107b67a

Tcl

This code is extracted from the md5 package in
Library: tcllib
, and is originally due to Don Libes's transcription of the code in the MD5 specification. It should not be deployed in production normally; the md5 package should be used in preference as it is usually built to be faster.

<lang tcl># We just define the body of md5::md5 here; later we regsub to inline a few

  1. function calls for speed

variable ::md5::md5body {

   ### Step 1. Append Padding Bits
   set msgLen [string length $msg]
   set padLen [expr {56 - $msgLen%64}]
   if {$msgLen % 64 > 56} {

incr padLen 64

   }
   # pad even if no padding required
   if {$padLen == 0} {

incr padLen 64

   }
   # append single 1b followed by 0b's
   append msg [binary format "a$padLen" \200]
   ### Step 2. Append Length
   # RFC doesn't say whether to use little- or big-endian; code demonstrates
   # little-endian.
   # This step limits our input to size 2^32b or 2^24B
   append msg [binary format "i1i1" [expr {8*$msgLen}] 0]
   ### Step 3. Initialize MD Buffer
   set A [expr 0x67452301]
   set B [expr 0xefcdab89]
   set C [expr 0x98badcfe]
   set D [expr 0x10325476]
   ### Step 4. Process Message in 16-Word Blocks
   # process each 16-word block
   # RFC doesn't say whether to use little- or big-endian; code says
   # little-endian.
   binary scan $msg i* blocks
   # loop over the message taking 16 blocks at a time
   foreach {X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15} $blocks {

# Save A as AA, B as BB, C as CC, and D as DD. set AA $A set BB $B set CC $C set DD $D

# Round 1. # Let [abcd k s i] denote the operation # a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). # [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4] set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X0 + $T01}] 7]}] set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X1 + $T02}] 12]}] set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X2 + $T03}] 17]}] set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X3 + $T04}] 22]}] # [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8] set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X4 + $T05}] 7]}] set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X5 + $T06}] 12]}] set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X6 + $T07}] 17]}] set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X7 + $T08}] 22]}] # [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12] set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X8 + $T09}] 7]}] set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X9 + $T10}] 12]}] set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X10 + $T11}] 17]}] set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X11 + $T12}] 22]}] # [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16] set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X12 + $T13}] 7]}] set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X13 + $T14}] 12]}] set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X14 + $T15}] 17]}] set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X15 + $T16}] 22]}]

# Round 2. # Let [abcd k s i] denote the operation # a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). # Do the following 16 operations. # [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20] set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X1 + $T17}] 5]}] set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X6 + $T18}] 9]}] set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X11 + $T19}] 14]}] set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X0 + $T20}] 20]}] # [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24] set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X5 + $T21}] 5]}] set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X10 + $T22}] 9]}] set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X15 + $T23}] 14]}] set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X4 + $T24}] 20]}] # [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28] set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X9 + $T25}] 5]}] set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X14 + $T26}] 9]}] set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X3 + $T27}] 14]}] set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X8 + $T28}] 20]}] # [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32] set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X13 + $T29}] 5]}] set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X2 + $T30}] 9]}] set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X7 + $T31}] 14]}] set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X12 + $T32}] 20]}]

# Round 3. # Let [abcd k s t] [sic] denote the operation # a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). # Do the following 16 operations. # [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36] set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X5 + $T33}] 4]}] set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X8 + $T34}] 11]}] set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X11 + $T35}] 16]}] set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X14 + $T36}] 23]}] # [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40] set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X1 + $T37}] 4]}] set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X4 + $T38}] 11]}] set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X7 + $T39}] 16]}] set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X10 + $T40}] 23]}] # [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44] set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X13 + $T41}] 4]}] set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X0 + $T42}] 11]}] set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X3 + $T43}] 16]}] set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X6 + $T44}] 23]}] # [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48] set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X9 + $T45}] 4]}] set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X12 + $T46}] 11]}] set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X15 + $T47}] 16]}] set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X2 + $T48}] 23]}]

# Round 4. # Let [abcd k s t] [sic] denote the operation # a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). # Do the following 16 operations. # [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52] set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X0 + $T49}] 6]}] set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X7 + $T50}] 10]}] set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X14 + $T51}] 15]}] set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X5 + $T52}] 21]}] # [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56] set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X12 + $T53}] 6]}] set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X3 + $T54}] 10]}] set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X10 + $T55}] 15]}] set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X1 + $T56}] 21]}] # [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60] set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X8 + $T57}] 6]}] set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X15 + $T58}] 10]}] set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X6 + $T59}] 15]}] set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X13 + $T60}] 21]}] # [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64] set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X4 + $T61}] 6]}] set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X11 + $T62}] 10]}] set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X2 + $T63}] 15]}] set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X9 + $T64}] 21]}]

# Then perform the following additions. (That is increment each of the # four registers by the value it had before this block was started.) incr A $AA incr B $BB incr C $CC incr D $DD

   }
   ### Step 5. Output
   # ... begin with the low-order byte of A, and end with the high-order byte
   # of D.
   return [bytes $A][bytes $B][bytes $C][bytes $D]

}

      1. Here we inline/regsub the functions F, G, H, I and <<<

namespace eval ::md5 {

   #proc md5pure::F {x y z} {expr {(($x & $y) | ((~$x) & $z))}}
   regsub -all -- {\[ *F +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \2) | ((~\1) \& \3))} md5body
   #proc md5pure::G {x y z} {expr {(($x & $z) | ($y & (~$z)))}}
   regsub -all -- {\[ *G +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \3) | (\2 \& (~\3)))} md5body
   #proc md5pure::H {x y z} {expr {$x ^ $y ^ $z}}
   regsub -all -- {\[ *H +(\$.) +(\$.) +(\$.) *\]} $md5body {(\1 ^ \2 ^ \3)} md5body
   #proc md5pure::I {x y z} {expr {$y ^ ($x | (~$z))}}
   regsub -all -- {\[ *I +(\$.) +(\$.) +(\$.) *\]} $md5body {(\2 ^ (\1 | (~\3)))} md5body
   # inline <<< (bitwise left-rotate)
   regsub -all -- {\[ *<<< +\[ *expr +({[^\}]*})\] +([0-9]+) *\]} $md5body {(([set x [expr \1]] << \2) |  (($x >> R\2) \& S\2))} md5body
   # now replace the R and S
   variable map {}
   variable i
   foreach i {

7 12 17 22 5 9 14 20 4 11 16 23 6 10 15 21

   } {

lappend map R$i [expr {32 - $i}] S$i [expr {0x7fffffff >> (31-$i)}]

   }
   # inline the values of T
   variable tName
   variable tVal
   foreach tName {

T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60 T61 T62 T63 T64

   } tVal {

0xd76aa478 0xe8c7b756 0x242070db 0xc1bdceee 0xf57c0faf 0x4787c62a 0xa8304613 0xfd469501 0x698098d8 0x8b44f7af 0xffff5bb1 0x895cd7be 0x6b901122 0xfd987193 0xa679438e 0x49b40821

0xf61e2562 0xc040b340 0x265e5a51 0xe9b6c7aa 0xd62f105d 0x2441453 0xd8a1e681 0xe7d3fbc8 0x21e1cde6 0xc33707d6 0xf4d50d87 0x455a14ed 0xa9e3e905 0xfcefa3f8 0x676f02d9 0x8d2a4c8a

0xfffa3942 0x8771f681 0x6d9d6122 0xfde5380c 0xa4beea44 0x4bdecfa9 0xf6bb4b60 0xbebfbc70 0x289b7ec6 0xeaa127fa 0xd4ef3085 0x4881d05 0xd9d4d039 0xe6db99e5 0x1fa27cf8 0xc4ac5665

0xf4292244 0x432aff97 0xab9423a7 0xfc93a039 0x655b59c3 0x8f0ccc92 0xffeff47d 0x85845dd1 0x6fa87e4f 0xfe2ce6e0 0xa3014314 0x4e0811a1 0xf7537e82 0xbd3af235 0x2ad7d2bb 0xeb86d391

   } {

lappend map \$$tName $tVal

   }
   set md5body [string map $map $md5body]
   # Finally, define the proc
   proc md5 {msg} $md5body
   # unset auxiliary variables
   unset md5body tName tVal map
   proc byte0 {i} {expr {0xff & $i}}
   proc byte1 {i} {expr {(0xff00 & $i) >> 8}}
   proc byte2 {i} {expr {(0xff0000 & $i) >> 16}}
   proc byte3 {i} {expr {((0xff000000 & $i) >> 24) & 0xff}}
   proc bytes {i} {
       format %0.2x%0.2x%0.2x%0.2x [byte0 $i] [byte1 $i] [byte2 $i] [byte3 $i]
   }

}</lang> Demonstration code: <lang tcl>foreach {hash <- string} {

  0xd41d8cd98f00b204e9800998ecf8427e ==> ""  
  0x0cc175b9c0f1b6a831c399e269772661 ==> "a"
  0x900150983cd24fb0d6963f7d28e17f72 ==> "abc"
  0xf96b697d7cb7938d525a2f31aaf161d0 ==> "message digest"
  0xc3fcd3d76192e4007dfb496cca67e13b ==> "abcdefghijklmnopqrstuvwxyz"
  0xd174ab98d277d9f5a5611c2c9f419d9f ==> "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
  0x57edf4a22be3c955ac49da2e2107b67a ==> "12345678901234567890123456789012345678901234567890123456789012345678901234567890"

} {

   puts "“$string” -> [md5::md5 $string] (officially: $hash)"

}</lang>

x86 Assembly

Works with: nasm

Uses DOS interrupts for display.

<lang asm>section .text org 0x100 mov di, md5_for_display mov si, test_input_1 mov cx, test_input_1_len call compute_md5 call display_md5 mov si, test_input_2 mov cx, test_input_2_len call compute_md5 call display_md5 mov si, test_input_3 mov cx, test_input_3_len call compute_md5 call display_md5 mov si, test_input_4 mov cx, test_input_4_len call compute_md5 call display_md5 mov si, test_input_5 mov cx, test_input_5_len call compute_md5 call display_md5 mov si, test_input_6 mov cx, test_input_6_len call compute_md5 call display_md5 mov si, test_input_7 mov cx, test_input_7_len call compute_md5 call display_md5 mov ax, 0x4c00 int 21h

md5_for_display times 16 db 0 HEX_CHARS db '0123456789ABCDEF'

display_md5: mov ah, 9 mov dx, display_str_1 int 0x21 push cx push si mov cx, 16 mov si, di xor bx, bx .loop: lodsb mov bl, al and bl, 0x0F push bx mov bl, al shr bx, 4 mov ah, 2 mov dl, [HEX_CHARS + bx] int 0x21 pop bx mov dl, [HEX_CHARS + bx] int 0x21 dec cx jnz .loop mov ah, 9 mov dx, display_str_2 int 0x21 pop si pop cx test cx, cx jz do_newline mov ah, 2 display_string: lodsb mov dl, al int 0x21 dec cx jnz display_string do_newline: mov ah, 9 mov dx, display_str_3 int 0x21 ret;

compute_md5: ; si --> input bytes, cx = input len, di --> 16-byte output buffer ; assumes all in the same segment cld pusha push di push si mov [message_len], cx

mov bx, cx shr bx, 6 mov [ending_bytes_block_num], bx mov [num_blocks], bx inc word [num_blocks] shl bx, 6 add si, bx and cx, 0x3f push cx mov di, ending_bytes rep movsb mov al, 0x80 stosb pop cx sub cx, 55 neg cx jge add_padding add cx, 64 inc word [num_blocks] add_padding: mov al, 0 rep stosb xor eax, eax mov ax, [message_len] shl eax, 3 mov cx, 8 store_message_len: stosb shr eax, 8 dec cx jnz store_message_len pop si mov [md5_a], dword INIT_A mov [md5_b], dword INIT_B mov [md5_c], dword INIT_C mov [md5_d], dword INIT_D block_loop: push cx cmp cx, [ending_bytes_block_num] jne backup_abcd ; switch buffers if towards the end where padding needed mov si, ending_bytes backup_abcd: push dword [md5_d] push dword [md5_c] push dword [md5_b] push dword [md5_a] xor cx, cx xor eax, eax main_loop: push cx mov ax, cx shr ax, 4 test al, al jz pass0 cmp al, 1 je pass1 cmp al, 2 je pass2 ; pass3 mov eax, [md5_c] mov ebx, [md5_d] not ebx or ebx, [md5_b] xor eax, ebx jmp do_rotate

pass0: mov eax, [md5_b] mov ebx, eax and eax, [md5_c] not ebx and ebx, [md5_d] or eax, ebx jmp do_rotate

pass1: mov eax, [md5_d] mov edx, eax and eax, [md5_b] not edx and edx, [md5_c] or eax, edx jmp do_rotate

pass2: mov eax, [md5_b] xor eax, [md5_c] xor eax, [md5_d] do_rotate: add eax, [md5_a] mov bx, cx shl bx, 1 mov bx, [BUFFER_INDEX_TABLE + bx] add eax, [si + bx] mov bx, cx shl bx, 2 add eax, dword [TABLE_T + bx] mov bx, cx ror bx, 2 shr bl, 2 rol bx, 2 mov cl, [SHIFT_AMTS + bx] rol eax, cl add eax, [md5_b] push eax push dword [md5_b] push dword [md5_c] push dword [md5_d] pop dword [md5_a] pop dword [md5_d] pop dword [md5_c] pop dword [md5_b] pop cx inc cx cmp cx, 64 jb main_loop ; add to original values pop eax add [md5_a], eax pop eax add [md5_b], eax pop eax add [md5_c], eax pop eax add [md5_d], eax ; advance pointers add si, 64 pop cx inc cx cmp cx, [num_blocks] jne block_loop mov cx, 4 mov si, md5_a pop di rep movsd popa ret

section .data

INIT_A equ 0x67452301 INIT_B equ 0xEFCDAB89 INIT_C equ 0x98BADCFE INIT_D equ 0x10325476

SHIFT_AMTS db 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21

TABLE_T dd 0xD76AA478, 0xE8C7B756, 0x242070DB, 0xC1BDCEEE, 0xF57C0FAF, 0x4787C62A, 0xA8304613, 0xFD469501, 0x698098D8, 0x8B44F7AF, 0xFFFF5BB1, 0x895CD7BE, 0x6B901122, 0xFD987193, 0xA679438E, 0x49B40821, 0xF61E2562, 0xC040B340, 0x265E5A51, 0xE9B6C7AA, 0xD62F105D, 0x02441453, 0xD8A1E681, 0xE7D3FBC8, 0x21E1CDE6, 0xC33707D6, 0xF4D50D87, 0x455A14ED, 0xA9E3E905, 0xFCEFA3F8, 0x676F02D9, 0x8D2A4C8A, 0xFFFA3942, 0x8771F681, 0x6D9D6122, 0xFDE5380C, 0xA4BEEA44, 0x4BDECFA9, 0xF6BB4B60, 0xBEBFBC70, 0x289B7EC6, 0xEAA127FA, 0xD4EF3085, 0x04881D05, 0xD9D4D039, 0xE6DB99E5, 0x1FA27CF8, 0xC4AC5665, 0xF4292244, 0x432AFF97, 0xAB9423A7, 0xFC93A039, 0x655B59C3, 0x8F0CCC92, 0xFFEFF47D, 0x85845DD1, 0x6FA87E4F, 0xFE2CE6E0, 0xA3014314, 0x4E0811A1, 0xF7537E82, 0xBD3AF235, 0x2AD7D2BB, 0xEB86D391 BUFFER_INDEX_TABLE dw 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 4, 24, 44, 0, 20, 40, 60, 16, 36, 56, 12, 32, 52, 8, 28, 48, 20, 32, 44, 56, 4, 16, 28, 40, 52, 0, 12, 24, 36, 48, 60, 8, 0, 28, 56, 20, 48, 12, 40, 4, 32, 60, 24, 52, 16, 44, 8, 36 ending_bytes_block_num dw 0 ending_bytes times 128 db 0 message_len dw 0 num_blocks dw 0 md5_a dd 0 md5_b dd 0 md5_c dd 0 md5_d dd 0

display_str_1 db '0x$' display_str_2 db ' <== "$' display_str_3 db '"', 13, 10, '$'

test_input_1: test_input_1_len equ $ - test_input_1 test_input_2 db 'a' test_input_2_len equ $ - test_input_2 test_input_3 db 'abc' test_input_3_len equ $ - test_input_3 test_input_4 db 'message digest' test_input_4_len equ $ - test_input_4 test_input_5 db 'abcdefghijklmnopqrstuvwxyz' test_input_5_len equ $ - test_input_5 test_input_6 db 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' test_input_6_len equ $ - test_input_6 test_input_7 db '12345678901234567890123456789012345678901234567890123456789012345678901234567890' test_input_7_len equ $ - test_input_7</lang>

Output:

0xD41D8CD98F00B204E9800998ECF8427E <== ""
0x0CC175B9C0F1B6A831C399E269772661 <== "a"
0x900150983CD24FB0D6963F7D28E17F72 <== "abc"
0xF96B697D7CB7938D525A2F31AAF161D0 <== "message digest"
0xC3FCD3D76192E4007DFB496CCA67E13B <== "abcdefghijklmnopqrstuvwxyz"
0xD174AB98D277D9F5A5611C2C9F419D9F <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57EDF4A22BE3C955AC49DA2E2107B67A <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"