Ludic numbers

From Rosetta Code
Revision as of 12:55, 14 March 2020 by Thundergnat (talk | contribs) (Rename Perl 6 -> Raku, alphabetize, minor clean-up)
Task
Ludic numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Ludic numbers   are related to prime numbers as they are generated by a sieve quite like the Sieve of Eratosthenes is used to generate prime numbers.

The first ludic number is   1.

To generate succeeding ludic numbers create an array of increasing integers starting from   2.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...

(Loop)

  • Take the first member of the resultant array as the next ludic number   2.
  • Remove every   2nd   indexed item from the array (including the first).
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...
  • (Unrolling a few loops...)
  • Take the first member of the resultant array as the next ludic number   3.
  • Remove every   3rd   indexed item from the array (including the first).
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 ...
  • Take the first member of the resultant array as the next ludic number   5.
  • Remove every   5th   indexed item from the array (including the first).
5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 ...
  • Take the first member of the resultant array as the next ludic number   7.
  • Remove every   7th   indexed item from the array (including the first).
7 11 13 17 23 25 29 31 37 41 43 47 53 55 59 61 67 71 73 77 83 85 89 91 97 ...
  • ...
  • Take the first member of the current array as the next ludic number   L.
  • Remove every   Lth   indexed item from the array (including the first).
  • ...


Task
  • Generate and show here the first 25 ludic numbers.
  • How many ludic numbers are there less than or equal to 1000?
  • Show the 2000..2005th ludic numbers.



Stretch goal

Show all triplets of ludic numbers < 250.

  • A triplet is any three numbers             where all three numbers are also ludic numbers.



360 Assembly

Translation of: Fortran

<lang 360asm>* Ludic numbers 23/04/2016 LUDICN CSECT

        USING  LUDICN,R15         set base register
        LH     R9,NMAX            r9=nmax
        SRA    R9,1               r9=nmax/2
        LA     R6,2               i=2

LOOPI1 CR R6,R9 do i=2 to nmax/2

        BH     ELOOPI1
        LA     R1,LUDIC-1(R6)     @ludic(i)
        CLI    0(R1),X'01'        if ludic(i)
        BNE    ELOOPJ1
        SR     R8,R8              n=0
        LA     R7,1(R6)           j=i+1

LOOPJ1 CH R7,NMAX do j=i+1 to nmax

        BH     ELOOPJ1
        LA     R1,LUDIC-1(R7)     @ludic(j)
        CLI    0(R1),X'01'        if ludic(j)
        BNE    NOTJ1
        LA     R8,1(R8)           n=n+1

NOTJ1 CR R8,R6 if n=i

        BNE    NDIFI
        LA     R1,LUDIC-1(R7)     @ludic(j)
        MVI    0(R1),X'00'        ludic(j)=false
        SR     R8,R8              n=0

NDIFI LA R7,1(R7) j=j+1

        B      LOOPJ1

ELOOPJ1 LA R6,1(R6) i=i+1

        B      LOOPI1

ELOOPI1 XPRNT =C'First 25 ludic numbers:',23

        LA     R10,BUF            @buf=0
        SR     R8,R8              n=0
        LA     R6,1               i=1

LOOPI2 CH R6,NMAX do i=1 to nmax

        BH     ELOOPI2
        LA     R1,LUDIC-1(R6)     @ludic(i)
        CLI    0(R1),X'01'        if ludic(i)
        BNE    NOTI2
        XDECO  R6,XDEC            i
        MVC    0(4,R10),XDEC+8    output i 
        LA     R10,4(R10)         @buf=@buf+4
        LA     R8,1(R8)           n=n+1
        LR     R2,R8              n
        SRDA   R2,32
        D      R2,=F'5'           r2=mod(n,5)
        LTR    R2,R2              if mod(n,5)=0
        BNZ    NOTI2
        XPRNT  BUF,20
        LA     R10,BUF            @buf=0

NOTI2 EQU *

        CH     R8,=H'25'          if n=25
        BE     ELOOPI2
        LA     R6,1(R6)           i=i+1
        B      LOOPI2

ELOOPI2 MVC BUF(25),=C'Ludic numbers below 1000:'

        SR     R8,R8              n=0
        LA     R6,1               i=1

LOOPI3 CH R6,=H'999' do i=1 to 999

        BH     ELOOPI3
        LA     R1,LUDIC-1(R6)     @ludic(i)
        CLI    0(R1),X'01'        if ludic(i)
        BNE    NOTI3
        LA     R8,1(R8)           n=n+1

NOTI3 LA R6,1(R6) i=i+1

        B      LOOPI3

ELOOPI3 XDECO R8,XDEC edit n

        MVC    BUF+25(6),XDEC+6   output n
        XPRNT  BUF,31             print buffer
        MVC    BUF(80),=CL80'Ludic numbers 2000 to 2005:'
        LA     R10,BUF+28         @buf=28
        SR     R8,R8              n=0
        LA     R6,1               i=1

LOOPI4 CH R6,NMAX do i=1 to nmax

        BH     ELOOPI4
        LA     R1,LUDIC-1(R6)     @ludic(i)
        CLI    0(R1),X'01'        if ludic(i)
        BNE    NOTI4
        LA     R8,1(R8)           n=n+1
        CH     R8,=H'2000'        if n>=2000
        BL     NOTI4
        XDECO  R6,XDEC            edit i
        MVC    0(6,R10),XDEC+6    output i
        LA     R10,6(R10)         @buf=@buf+6
        CH     R8,=H'2005'        if n=2005
        BE     ELOOPI4

NOTI4 LA R6,1(R6) i=i+1

        B      LOOPI4

ELOOPI4 XPRNT BUF,80 print buffer

        XPRNT  =C'Ludic triplets below 250:',25
        LA     R6,1               i=1

LOOPI5 CH R6,=H'243' do i=1 to 243

        BH     ELOOPI5
        LA     R1,LUDIC-1(R6)     @ludic(i)
        CLI    0(R1),X'01'        if ludic(i)
        BNE    ITERI5
        LA     R1,LUDIC+1(R6)     @ludic(i+2)
        CLI    0(R1),X'01'        if ludic(i+2)
        BNE    ITERI5
        LA     R1,LUDIC+5(R6)     @ludic(i+6)
        CLI    0(R1),X'01'        if ludic(i+6)
        BNE    ITERI5
        MVC    BUF+0(1),=C'['     [
        XDECO  R6,XDEC            edit i
        MVC    BUF+1(4),XDEC+8    output i
        LA     R2,2(R6)           i+2
        XDECO  R2,XDEC            edit i+2
        MVC    BUF+5(4),XDEC+8    output i+2
        LA     R2,6(R6)           i+6
        XDECO  R2,XDEC            edit i+6
        MVC    BUF+9(4),XDEC+8    output i+6
        MVC    BUF+13(1),=C']'    ]
        XPRNT  BUF,14             print buffer

ITERI5 LA R6,1(R6) i=i+1

        B      LOOPI5

ELOOPI5 XR R15,R15 set return code

        BR     R14                return to caller
        LTORG  

BUF DS CL80 buffer XDEC DS CL12 decimal editor NMAX DC H'25000' nmax LUDIC DC 25000X'01' ludic(nmax)=true

        YREGS
        END    LUDICN</lang>
Output:
First 25 ludic numbers:
   1   2   3   5   7
  11  13  17  23  25
  29  37  41  43  47
  53  61  67  71  77
  83  89  91  97 107
Ludic numbers below 1000:   142
Ludic numbers 2000 to 2005:  21475 21481 21487 21493 21503 21511
Ludic triplets below 250:
[   1   3   7]
[   5   7  11]
[  11  13  17]
[  23  25  29]
[  41  43  47]
[ 173 175 179]
[ 221 223 227]
[ 233 235 239]

ABAP

Works with NW 7.40 SP8 <lang ABAP>CLASS lcl_ludic DEFINITION CREATE PUBLIC.

 PUBLIC SECTION.
   TYPES: t_ludics TYPE SORTED TABLE OF i WITH UNIQUE KEY table_line.
   TYPES: BEGIN OF t_triplet,
            i1 TYPE i,
            i2 TYPE i,
            i3 TYPE i,
          END OF t_triplet.
   TYPES: t_triplets TYPE STANDARD TABLE OF t_triplet WITH EMPTY KEY.
   CLASS-METHODS:
     ludic_up_to
       IMPORTING i_int           TYPE i
       RETURNING VALUE(r_ludics) TYPE t_ludics,
     get_triplets
       IMPORTING i_ludics          TYPE t_ludics
       RETURNING VALUE(r_triplets) TYPE t_triplets.
   "RETURNING parameters (CallByValue) only used for readability of the demo
   "in "Real Life" you should use EXPORTING (CallByRef) for tables

ENDCLASS.

cl_demo_output=>begin_section( 'First 25 Ludics' ). cl_demo_output=>write( lcl_ludic=>ludic_up_to( 110 ) ).

cl_demo_output=>begin_section( 'Ludics up to 1000' ). cl_demo_output=>write( lines( lcl_ludic=>ludic_up_to( 1000 ) ) ).

cl_demo_output=>begin_section( '2000th - 2005th Ludics' ). DATA(ludics) = lcl_ludic=>ludic_up_to( 22000 ). cl_demo_output=>write( VALUE lcl_ludic=>t_ludics( FOR i = 2000 WHILE i <= 2005 ( ludics[ i ] ) ) ).

cl_demo_output=>begin_section( 'Triplets up to 250' ). cl_demo_output=>write( lcl_ludic=>get_triplets( lcl_ludic=>ludic_up_to( 250 ) ) ).

cl_demo_output=>display( ).

CLASS lcl_ludic IMPLEMENTATION.

 METHOD ludic_up_to.
   r_ludics = VALUE #( FOR i = 2 WHILE i <= i_int ( i ) ).
   DATA(cursor) = 0.
   WHILE cursor < lines( r_ludics ).
     cursor = cursor + 1.
     DATA(this_ludic) = r_ludics[ cursor ].
     DATA(remove_cursor) = cursor + this_ludic.
     WHILE remove_cursor <= lines( r_ludics ).
       DELETE r_ludics INDEX remove_cursor.
       remove_cursor = remove_cursor + this_ludic - 1.
     ENDWHILE.
   ENDWHILE.
   INSERT 1 INTO TABLE r_ludics.  "add one as the first Ludic number (per definition)
 ENDMETHOD.
 METHOD get_triplets.
   DATA(i) = 0.
   WHILE i < lines( i_ludics ) - 2.
     i = i + 1.
     DATA(this_ludic) = i_ludics[ i ].
     IF  line_exists( i_ludics[ table_line = this_ludic + 2 ] )
     AND line_exists( i_ludics[ table_line = this_ludic + 6 ] ).
       r_triplets = VALUE #(
          BASE r_triplets
          ( i1 = i_ludics[ table_line = this_ludic ]
            i2 = i_ludics[ table_line = this_ludic + 2 ]
            i3 = i_ludics[ table_line = this_ludic + 6 ]
          )
       ).
     ENDIF.
   ENDWHILE.
 ENDMETHOD.

ENDCLASS.</lang>

Output:
First 25 Ludics
1 
2 
3 
5 
7 
11 
13 
17 
23 
25 
29 
37 
41 
43 
47 
53 
61 
67 
71 
77 
83 
89 
91 
97 
107 

Ludics up to 1000
142 

2000th - 2005th Ludics
21475 
21481 
21487 
21493 
21503 
21511 

Triplets up to 250
1 3 7 
5 7 11 
11 13 17 
23 25 29 
41 43 47 
173 175 179 
221 223 227 
233 235 239 

Ada

<lang Ada>with Ada.Text_IO; with Ada.Containers.Vectors;

procedure Ludic_Numbers is

  package Lucid_Lists is
     new Ada.Containers.Vectors (Positive, Natural);
  use Lucid_Lists;
  List : Vector;
  procedure Fill is
     use type Ada.Containers.Count_Type;
     Vec   : Vector;
     Lucid : Natural;
     Index : Positive;
  begin
     Append (List, 1);
     for I in 2 .. 22_000 loop
        Append (Vec, I);
     end loop;
     loop
        Lucid := First_Element (Vec);
        Append (List, Lucid);
        Index := First_Index (Vec);
        loop
           Delete (Vec, Index);
           Index := Index + Lucid - 1;
           exit when Index > Last_Index (Vec);
        end loop;
        exit when Length (Vec) <= 1;
     end loop;
  end Fill;
  procedure Put_Lucid (First, Last : in Natural) is
     use Ada.Text_IO;
  begin
     Put_Line ("Lucid numbers " & First'Image & " to " & Last'Image & ":");
     for I in First .. Last loop
        Put (Natural'(List (I))'Image);
     end loop;
     New_Line;
  end Put_Lucid;
  procedure Count_Lucid (Below : in Natural) is
     Count : Natural := 0;
  begin
     for Lucid of List loop
        if Lucid <= Below then
           Count := Count + 1;
        end if;
     end loop;
     Ada.Text_IO.Put_Line ("There are " & Count'Image & " lucid numbers <=" & Below'Image);
  end Count_Lucid;
  procedure Find_Triplets (Limit : in Natural) is
     function Is_Lucid (Value : in Natural) return Boolean is
     begin
        for X in 1 .. Limit loop
           if List (X) = Value then
              return True;
           end if;
        end loop;
        return False;
     end Is_Lucid;
     use Ada.Text_IO;
     Index : Natural;
     Lucid : Natural;
  begin
     Put_Line ("All triplets of lucid numbers <" & Limit'Image);
     Index := First_Index (List);
     while List (Index) < Limit loop
        Lucid := List (Index);
        if Is_Lucid (Lucid + 2) and Is_Lucid (Lucid + 6) then
           Put ("(");
           Put (Lucid'Image);
           Put (Natural'(Lucid + 2)'Image);
           Put (Natural'(Lucid + 6)'Image);
           Put_Line (")");
        end if;
        Index := Index + 1;
     end loop;
  end Find_Triplets;

begin

  Fill;
  Put_Lucid (First => 1,
             Last  => 25);
  Count_Lucid (Below => 1000);
  Put_Lucid (First => 2000,
             Last  => 2005);
  Find_Triplets (Limit => 250);

end Ludic_Numbers;</lang>

Output:
Lucid numbers  1 to  25:
 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107
There are  142 lucid numbers <= 1000
Lucid numbers  2000 to  2005:
 21475 21481 21487 21493 21503 21511
All triplets of lucid numbers < 250
( 1 3 7)
( 5 7 11)
( 11 13 17)
( 23 25 29)
( 41 43 47)
( 173 175 179)
( 221 223 227)
( 233 235 239)

ALGOL 68

<lang algol68># find some Ludic numbers #

  1. sieve the Ludic numbers up to 30 000 #

INT max number = 30 000; [ 1 : max number ]INT candidates; FOR n TO UPB candidates DO candidates[ n ] := n OD; FOR n FROM 2 TO UPB candidates OVER 2 DO

   IF candidates[ n ] /= 0 THEN
       # have a ludic number                             #
       INT number count := -1;
       FOR remove pos FROM n TO UPB candidates DO
           IF candidates[ remove pos ] /= 0 THEN
               # have a number we haven't elminated yet  #
               number count +:= 1;
               IF number count = n THEN
                   # this number should be removed       #
                   candidates[ remove pos ] := 0;
                   number count := 0
               FI
           FI
       OD
   FI                

OD;

  1. show some Ludic numbers and counts #

print( ( "Ludic numbers: " ) ); INT ludic count := 0; FOR n TO UPB candidates DO

   IF candidates[ n ] /= 0 THEN
       # have a ludic number                             #
       ludic count +:= 1;
       IF ludic count < 26 THEN
           # this is one of the first few Ludic numbers  #
           print( ( " ", whole( n, 0 ) ) );
           IF ludic count = 25 THEN
               print( ( " ...", newline ) )
           FI
       FI;
       IF ludic count = 2000 THEN
           print( ( "Ludic numbers 2000-2005: ", whole( n, 0 ) ) )
       ELIF ludic count > 2000 AND ludic count < 2006 THEN
           print( ( " ", whole( n, 0 ) ) );
           IF ludic count = 2005 THEN
               print( ( newline ) )
           FI
       FI
   FI;
   IF n = 1000 THEN
       # count ludic numbers up to 1000                  #
       print( ( "There are ", whole( ludic count, 0 ), " Ludic numbers up to 1000", newline ) )
   FI

OD;

  1. find the Ludic triplets below 250 #

print( ( "Ludic triplets below 250:", newline ) ); FOR n TO 250 - 6 DO

   IF candidates[ n ] /= 0 AND candidates[ n + 2 ] /= 0 AND candidates[ n + 6 ] /= 0 THEN
       # have a triplet                                   #
       print( ( "    ", whole( n, -3 ), ", ", whole( n + 2, -3 ), ", ", whole( n + 6, -3 ), newline ) )
   FI

OD</lang>

Output:
Ludic numbers:  1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107 ...
There are 142 Ludic numbers up to 1000
Ludic numbers 2000-2005: 21475 21481 21487 21493 21503 21511
Ludic triplets below 250:
      1,   3,   7
      5,   7,  11
     11,  13,  17
     23,  25,  29
     41,  43,  47
    173, 175, 179
    221, 223, 227
    233, 235, 239

AutoHotkey

Works with: AutoHotkey 1.1

<lang AutoHotkey>#NoEnv SetBatchLines, -1 Ludic := LudicSieve(22000)

Loop, 25  ; the first 25 ludic numbers Task1 .= Ludic[A_Index] " "

for i, Val in Ludic  ; the number of ludic numbers less than or equal to 1000 if (Val <= 1000) Task2++ else break

Loop, 6  ; the 2000..2005'th ludic numbers Task3 .= Ludic[1999 + A_Index] " "

for i, Val in Ludic {  ; all triplets of ludic numbers < 250 if (Val + 6 > 249) break if (Ludic[i + 1] = Val + 2 && Ludic[i + 2] = Val + 6 || i = 1) Task4 .= "(" Val " " Val + 2 " " Val + 6 ") " }

MsgBox, % "First 25:`t`t" Task1 . "`nLudics below 1000:`t" Task2 . "`nLudic 2000 to 2005:`t" Task3 . "`nTriples below 250:`t" Task4 return

LudicSieve(Limit) { Arr := [], Ludic := [] Loop, % Limit Arr.Insert(A_Index) Ludic.Insert(Arr.Remove(1)) while Arr.MaxIndex() != 1 { Ludic.Insert(n := Arr.Remove(1)) , Removed := 0 Loop, % Arr.MaxIndex() // n { Arr.Remove(A_Index * n - Removed) , Removed++ } } Ludic.Insert(Arr[1]) return Ludic }</lang>

Output:
First 25:		1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107 
Ludics below 1000:	142
Ludic 2000 to 2005:	21475 21481 21487 21493 21503 21511 
Triples below 250:	(1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239) 

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>

typedef unsigned uint; typedef struct { uint i, v; } filt_t;

// ludics with at least so many elements and reach at least such value uint* ludic(uint min_len, uint min_val, uint *len) { uint cap, i, v, active = 1, nf = 0; filt_t *f = calloc(cap = 2, sizeof(*f)); f[1].i = 4;

for (v = 1; ; ++v) { for (i = 1; i < active && --f[i].i; i++);

if (i < active) f[i].i = f[i].v; else if (nf == f[i].i) f[i].i = f[i].v, ++active; // enable one more filter else { if (nf >= cap) f = realloc(f, sizeof(*f) * (cap*=2)); f[nf] = (filt_t){ v + nf, v }; if (++nf >= min_len && v >= min_val) break; } }

// pack the sequence into a uint[] // filt_t struct was used earlier for cache locality in loops uint *x = (void*) f; for (i = 0; i < nf; i++) x[i] = f[i].v; x = realloc(x, sizeof(*x) * nf);

*len = nf; return x; }

int find(uint *a, uint v) { uint i; for (i = 0; a[i] <= v; i++) if (v == a[i]) return 1; return 0; }

int main(void) { uint len, i, *x = ludic(2005, 1000, &len);

printf("First 25:"); for (i = 0; i < 25; i++) printf(" %u", x[i]); putchar('\n');

for (i = 0; x[i] <= 1000; i++); printf("Ludics below 1000: %u\n", i);

printf("Ludic 2000 to 2005:"); for (i = 2000; i <= 2005; i++) printf(" %u", x[i - 1]); putchar('\n');

printf("Triples below 250:"); for (i = 0; x[i] + 6 <= 250; i++) if (find(x, x[i] + 2) && find(x, x[i] + 6)) printf(" (%u %u %u)", x[i], x[i] + 2, x[i] + 6);

putchar('\n');

free(x); return 0; }</lang>

Output:
First 25: 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107
Ludics below 1000: 142
Ludic 2000 to 2005: 21475 21481 21487 21493 21503 21511
Triples below 250: (1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239)

C#

<lang csharp>using System; using System.Linq; using System.Collections.Generic;

public class Program {

   public static void Main()
   {
       Console.WriteLine("First 25 ludic numbers:");
       Console.WriteLine(string.Join(", ", LudicNumbers(150).Take(25)));
       Console.WriteLine();
       
       Console.WriteLine($"There are {LudicNumbers(1001).Count()} ludic numbers below 1000");
       Console.WriteLine();
       
       foreach (var ludic in LudicNumbers(22000).Skip(1999).Take(6)
               .Select((n, i) => $"#{i+2000} = {n}")) {
           Console.WriteLine(ludic);
       }
       Console.WriteLine();
       
       Console.WriteLine("Triplets below 250:");
       var queue = new Queue<int>(5);
       foreach (int x in LudicNumbers(255)) {
           if (queue.Count == 5) queue.Dequeue();
           queue.Enqueue(x);
           if (x - 6 < 250 && queue.Contains(x - 6) && queue.Contains(x - 4)) {
               Console.WriteLine($"{x-6}, {x-4}, {x}");
           }
       }
   }
   
   public static IEnumerable<int> LudicNumbers(int limit) {
       yield return 1;
       //Like a linked list, but with value types.
       //Create 2 extra entries at the start to avoid ugly index calculations
       //and another at the end to avoid checking for index-out-of-bounds.
       Entry[] values = Enumerable.Range(0, limit + 1).Select(n => new Entry(n)).ToArray();
       for (int i = 2; i < limit; i = values[i].Next) {
           yield return values[i].N;
           int start = i;
           while (start < limit) {
               Unlink(values, start);
               for (int step = 0; step < i && start < limit; step++)
                   start = values[start].Next;
           }
       }
   }
   
   static void Unlink(Entry[] values, int index) {
       values[values[index].Prev].Next = values[index].Next;
       values[values[index].Next].Prev = values[index].Prev;
   }
   

}

struct Entry {

   public Entry(int n) : this() {
       N = n;
       Prev = n - 1;
       Next = n + 1;
   }
   
   public int N { get; }
   public int Prev { get; set; }
   public int Next { get; set; }

}</lang>

Output:
First 25 ludic numbers:
1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107

There are 142 ludic numbers below 1000

#2000 = 21475
#2001 = 21481
#2002 = 21487
#2003 = 21493
#2004 = 21503
#2005 = 21511

Triplets below 250:
1, 3, 7
5, 7, 11
11, 13, 17
23, 25, 29
41, 43, 47
173, 175, 179
221, 223, 227
233, 235, 239

C++

<lang cpp>

  1. include <vector>
  2. include <iostream>

using namespace std;

class ludic { public:

   void ludicList()
   {
       _list.push_back( 1 );
       vector<int> v;
       for( int x = 2; x < 22000; x++ )
           v.push_back( x );
       while( true )
       {
           vector<int>::iterator i = v.begin();
           int z = *i;
           _list.push_back( z );
           while( true )
           {
               i = v.erase( i );
               if( distance( i, v.end() ) <= z - 1 ) break;
               advance( i, z - 1 );
           }
           if( v.size() < 1 ) return;
       }
   }
   void show( int s, int e )
   {
       for( int x = s; x < e; x++ )
           cout << _list[x] << " ";
   }
   void findTriplets( int e )
   {
       int lu, x = 0;
       while( _list[x] < e )
       {
           lu = _list[x];
           if( inList( lu + 2 ) && inList( lu + 6 ) )
               cout << "(" << lu << " " << lu + 2 << " " << lu + 6 << ")\n";
           x++;
       }
   }
   int count( int e )
   {
       int x = 0, c = 0;
       while( _list[x++] <= 1000 ) c++;
       return c;
   }

private:

   bool inList( int lu )
   {
       for( int x = 0; x < 250; x++ )
           if( _list[x] == lu ) return true;
       return false;
   }
   vector<int> _list;

};

int main( int argc, char* argv[] ) {

   ludic l;
   l.ludicList();
   cout << "first 25 ludic numbers:" << "\n";
   l.show( 0, 25 );
   cout << "\n\nThere are " << l.count( 1000 ) << " ludic numbers <= 1000" << "\n";
   cout << "\n2000 to 2005'th ludic numbers:" << "\n";
   l.show( 1999, 2005 );
   cout << "\n\nall triplets of ludic numbers < 250:" << "\n";
   l.findTriplets( 250 );
   cout << "\n\n";
   return system( "pause" );

} </lang>

Output:
first 25 ludic numbers:
1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107

There are 142 ludic numbers <= 1000

2000 to 2005'th ludic numbers:
21475 21481 21487 21493 21503 21511

all triplets of ludic numbers < 250:
(1 3 7)
(5 7 11)
(11 13 17)
(23 25 29)
(41 43 47)
(173 175 179)
(221 223 227)
(233 235 239)

Clojure

<lang clojure>(defn ints-from [n]

 (cons n (lazy-seq (ints-from (inc n)))))

(defn drop-nth [n seq]

  (cond 
     (zero?    n) seq
     (empty? seq) []
     :else (concat (take (dec n) seq) (lazy-seq (drop-nth n (drop n seq))))))

(def ludic ((fn ludic

  ([] (ludic 1))
  ([n] (ludic n (ints-from (inc n))))
  ([n [f & r]] (cons n (lazy-seq (ludic f (drop-nth f r))))))))

(defn ludic? [n] (= (first (filter (partial <= n) ludic)) n))

(print "First 25: ") (println (take 25 ludic)) (print "Count below 1000: ") (println (count (take-while (partial > 1000) ludic))) (print "2000th through 2005th: ") (println (map (partial nth ludic) (range 1999 2005))) (print "Triplets < 250: ") (println (filter (partial every? ludic?)

        (for [i (range 250)] (list i (+ i 2) (+ i 6)))))</lang>
Output:
First 25: (1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107)
Count below 1000: 142
2000th through 2005th: (21475 21481 21487 21493 21503 21511)
Triplets < 250: ((1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239))

Common Lisp

<lang lisp>(defun ludic-numbers (max &optional n)

 (loop with numbers = (make-array (1+ max) :element-type 'boolean :initial-element t)
       for i from 2 to max
       until (and n (= num-results (1- n))) ; 1 will be added at the end
       when (aref numbers i)
         collect i into results
         and count t into num-results
         and do (loop for j from i to max
                      count (aref numbers j) into counter
                      when (= (mod counter i) 1)
                        do (setf (aref numbers j) nil))
       finally (return (cons 1 results))))

(defun main ()

 (format t "First 25 ludic numbers:~%")
 (format t "~{~D~^ ~}~%" (ludic-numbers 100 25))
 (terpri)
 (format t "How many ludic numbers <= 1000?~%")
 (format t "~D~%" (length (ludic-numbers 1000)))
 (terpri)
 (let ((numbers (ludic-numbers 30000 2005)))
   (format t "~{#~D: ~D~%~}"
           (mapcan #'list '(2000 2001 2002 2003 2004 2005) (nthcdr 1999 numbers))))
 (terpri)
 (loop with numbers = (ludic-numbers 250)
         initially (format t "Triplets:~%")
       for x in numbers
       when (and (find (+ x 2) numbers)
                 (find (+ x 6) numbers))
         do (format t "~3D ~3D ~3D~%" x (+ x 2) (+ x 6))))</lang>
Output:
First 25 ludic numbers:
1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97

How many ludic numbers <= 1000?
142

#2000: 21475
#2001: 21481
#2002: 21487
#2003: 21493
#2004: 21503
#2005: 21511

Triplets:
  1   3   7
  5   7  11
 11  13  17
 23  25  29
 41  43  47
173 175 179
221 223 227
233 235 239

D

opApply Version

Translation of: Python
Translation of: Perl 6

<lang d>struct Ludics(T) {

   int opApply(int delegate(in ref T) dg) {
       int result;
       T[] rotor, taken = [T(1)];
       result = dg(taken[0]);
       if (result) return result;
       for (T i = 2; ; i++) { // Shoud be stopped if T has a max.
           size_t j = 0;
           for (; j < rotor.length; j++)
               if (!--rotor[j])
                   break;
           if (j < rotor.length) {
               rotor[j] = taken[j + 1];
           } else {
               result = dg(i);
               if (result) return result;
               taken ~= i;
               rotor ~= taken[j + 1];
           }
       }
   }

}

void main() {

   import std.stdio, std.range, std.algorithm;
   // std.algorithm.take can't be used here.
   uint[] L;
   foreach (const x; Ludics!uint())
       if (L.length < 2005)
           L ~= x;
       else
           break;
   writeln("First 25 ludic primes:\n", L.take(25));
   writefln("\nThere are %d ludic numbers <= 1000.",
            L.until!q{ a > 1000 }.walkLength);
   writeln("\n2000'th .. 2005'th ludic primes:\n", L[1999 .. 2005]);
   enum m = 250;
   const triplets = L.filter!(x => x + 6 < m &&
                                   L.canFind(x + 2) && L.canFind(x + 6))
                    // Ugly output:
                    //.map!(x => tuple(x, x + 2, x + 6)).array;
                    .map!(x => [x, x + 2, x + 6]).array;
   writefln("\nThere are %d triplets less than %d:\n%s",
            triplets.length, m, triplets);

}</lang>

Output:
First 25 ludic primes:
[1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107]

There are 142 ludic numbers <= 1000.

2000'th .. 2005'th ludic primes:
[21475, 21481, 21487, 21493, 21503, 21511]

There are 8 triplets less than 250:
[[1, 3, 7], [5, 7, 11], [11, 13, 17], [23, 25, 29], [41, 43, 47], [173, 175, 179], [221, 223, 227], [233, 235, 239]]

The run-time is about 0.03 seconds or less. It takes about 2.0 seconds to generate 50_000 Ludic numbers with ldc2 compiler.

Range Version

This is the same code modified to be a Range. <lang d>struct Ludics(T) {

   T[] rotor, taken = [T(1)];
   T i;
   size_t j;
   T front = 1; // = taken[0];
   bool running = false;
   static immutable bool empty = false;
   void popFront() pure nothrow @safe {
       if (running)
           goto RESUME;
       else
           running = true;
       i = 2;
       while (true) {
           j = 0;
           while (j < rotor.length) {
               rotor[j]--;
               if (!rotor[j])
                   break;
               j++;
           }
           if (j < rotor.length) {
               rotor[j] = taken[j + 1];
           } else {
               front = i;
               return;
       RESUME:
               taken ~= i;
               rotor ~= taken[j + 1];
           }
           i++; // Could overflow if T has a max.
       }
   }

}

void main() {

   import std.stdio, std.range, std.algorithm, std.array;
   Ludics!uint L;
   writeln("First 25 ludic primes:\n", L.take(25));
   writefln("\nThere are %d ludic numbers <= 1000.",
            L.until!q{ a > 1000 }.walkLength);
   writeln("\n2000'th .. 2005'th ludic primes:\n", L.drop(1999).take(6));
   enum uint m = 250;
   const few = L.until!(x => x > m).array;
   const triplets = few.filter!(x => x + 6 < m && few.canFind(x + 2)
                                     && few.canFind(x + 6))
                    // Ugly output:
                    //.map!(x => tuple(x, x + 2, x + 6)).array;
                    .map!(x => [x, x + 2, x + 6]).array;
   writefln("\nThere are %d triplets less than %d:\n%s",
            triplets.length, m, triplets);

}</lang> The output is the same. This version is slower, it takes about 3.3 seconds to generate 50_000 Ludic numbers with ldc2 compiler.

Range Generator Version

<lang d>void main() {

   import std.stdio, std.range, std.algorithm, std.concurrency;
   Generator!T ludics(T)() {
       return new typeof(return)({
           T[] rotor, taken = [T(1)];
           yield(taken[0]);
           for (T i = 2; ; i++) { // Shoud be stopped if T has a max.
               size_t j = 0;
               for (; j < rotor.length; j++)
                   if (!--rotor[j])
                       break;
               if (j < rotor.length) {
                   rotor[j] = taken[j + 1];
               } else {
                   yield(i);
                   taken ~= i;
                   rotor ~= taken[j + 1];
               }
           }
       });
   }
   const L = ludics!uint.take(2005).array;
   writeln("First 25 ludic primes:\n", L.take(25));
   writefln("\nThere are %d ludic numbers <= 1000.",
            L.until!q{ a > 1000 }.walkLength);
   writeln("\n2000'th .. 2005'th ludic primes:\n", L[1999 .. 2005]);
   enum m = 250;
   const triplets = L.filter!(x => x + 6 < m &&
                                   L.canFind(x + 2) && L.canFind(x + 6))
                    // Ugly output:
                    //.map!(x => tuple(x, x + 2, x + 6)).array;
                    .map!(x => [x, x + 2, x + 6]).array;
   writefln("\nThere are %d triplets less than %d:\n%s",
            triplets.length, m, triplets);

}</lang> The result is the same.

Eiffel

<lang Eiffel> class LUDIC_NUMBERS

create make

feature

make (n: INTEGER) -- Initialized arrays for find_ludic_numbers. require n_positive: n > 0 local i: INTEGER do create initial.make_filled (0, 1, n - 1) create ludic_numbers.make_filled (1, 1, 1) from i := 2 until i > n loop initial.put (i, i - 1) i := i + 1 end find_ludic_numbers end

ludic_numbers: ARRAY [INTEGER]

feature {NONE}

initial: ARRAY [INTEGER]

find_ludic_numbers -- Ludic numbers in array ludic_numbers. local count: INTEGER new_array: ARRAY [INTEGER] last: INTEGER do create new_array.make_from_array (initial) last := initial.count from count := 1 until count > last loop if ludic_numbers [ludic_numbers.count] /= new_array [1] then ludic_numbers.force (new_array [1], count + 1) end new_array := delete_i_elements (new_array) count := count + 1 end end

delete_i_elements (ar: ARRAY [INTEGER]): ARRAY [INTEGER] --- Array with all multiples of 'ar[1]' deleted. require ar_not_empty: ar.count > 0 local s_array: ARRAY [INTEGER] i, k: INTEGER length: INTEGER do create s_array.make_empty length := ar.count from i := 0 k := 1 until i = length loop if (i) \\ (ar [1]) /= 0 then s_array.force (ar [i + 1], k) k := k + 1 end i := i + 1 end if s_array.count = 0 then Result := ar else Result := s_array end ensure not_empty: not Result.is_empty end

end </lang> Test: <lang Eiffel> class APPLICATION

create make

feature

make local k, count: INTEGER do create ludic.make (22000) io.put_string ("%NLudic numbers up to 25. %N") across ludic.ludic_numbers.subarray (1, 25) as ld loop io.put_string (ld.item.out + "%N") end io.put_string ("%NLudic numbers from 2000 ... 2005. %N") across ludic.ludic_numbers.subarray (2000, 2005) as ld loop io.put_string (ld.item.out + "%N") end io.put_string ("%NNumber of Ludic numbers smaller than 1000. %N") from k := 1 until ludic.ludic_numbers [k] >= 1000 loop k := k + 1 count := count + 1 end io.put_integer (count) end

ludic: LUDIC_NUMBERS

end </lang>

Output:
Ludic numbers up to 25.
1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107

Ludic numbers from 2000 ... 2005.
21475
21481
21487
21493
21503
21511

Number of Ludic numbers smaller than 1000.
142

Elixir

Works with: Elixir version 1.3.1

<lang elixir>defmodule Ludic do

 def numbers(n \\ 100000) do
   [h|t] = Enum.to_list(1..n)
   numbers(t, [h])
 end
 
 defp numbers(list, nums) when length(list) < hd(list), do: Enum.reverse(nums, list)
 defp numbers([h|_]=list, nums) do
   Enum.drop_every(list, h) |> numbers([h | nums])
 end
 
 def task do
   IO.puts "First 25 : #{inspect numbers(200) |> Enum.take(25)}"
   IO.puts "Below 1000: #{length(numbers(1000))}"
   tuple = numbers(25000) |> List.to_tuple
   IO.puts "2000..2005th: #{ inspect for i <- 1999..2004, do: elem(tuple, i) }"
   ludic = numbers(250)
   triple = for x <- ludic, x+2 in ludic, x+6 in ludic, do: [x, x+2, x+6]
   IO.puts "Triples below 250: #{inspect triple, char_lists: :as_lists}"
 end

end

Ludic.task</lang>

Output:
First 25 : [1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107]
Below 1000: 142
2000..2005th: [21475, 21481, 21487, 21493, 21503, 21511]
Triples below 250: [[1, 3, 7], [5, 7, 11], [11, 13, 17], [23, 25, 29], [41, 43, 47], [173, 175, 179], [221, 223, 227], [233, 235, 239]]

Factor

<lang factor>USING: formatting fry kernel make math math.ranges namespaces prettyprint.config sequences sequences.extras ; IN: rosetta-code.ludic-numbers

next-ludic ( seq -- seq' )
   dup first '[ nip _ mod zero? not ] filter-index ;
ludics-upto-2005 ( -- a )
   22,000 2 swap [a,b] [ ! 22k suffices to produce 2005 ludics
       1 , [ building get length 2005 = ]
       [ dup first , next-ludic ] until drop
   ] { } make ;
ludic-demo ( -- )
   100 margin set ludics-upto-2005
   [ 6 tail* ] [ [ 1000 < ] count ] [ 25 head ] tri
   "First 25 ludic numbers:\n%u\n\n"
   "Count of ludic numbers less than 1000:\n%d\n\n"
   "Ludic numbers 2000 to 2005:\n%u\n" [ printf ] tri@ ;

MAIN: ludic-demo</lang>

Output:
First 25 ludic numbers:
{ 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107 }

Count of ludic numbers less than 1000:
142

Ludic numbers 2000 to 2005:
{ 21475 21481 21487 21493 21503 21511 }

Fortran

Works with: Fortran version 95 and later

<lang fortran>program ludic_numbers

 implicit none
 
 integer, parameter :: nmax = 25000
 logical :: ludic(nmax) = .true.
 integer :: i, j, n
 do i = 2, nmax / 2
   if (ludic(i)) then
     n = 0
     do j = i+1, nmax
       if(ludic(j)) n = n + 1
       if(n == i) then
         ludic(j) = .false.
         n = 0
       end if
     end do
   end if
 end do
 write(*, "(a)", advance = "no") "First 25 Ludic numbers: "
 n = 0
 do i = 1, nmax
   if(ludic(i)) then
     write(*, "(i0, 1x)", advance = "no") i
     n = n + 1
   end if
   if(n == 25) exit
 end do  
  
 write(*, "(/, a)", advance = "no") "Ludic numbers below 1000: "
 write(*, "(i0)") count(ludic(:999))

 write(*, "(a)", advance = "no") "Ludic numbers 2000 to 2005: " 
 n = 0
 do i = 1, nmax
   if(ludic(i)) then
      n = n + 1
      if(n >= 2000) then
        write(*, "(i0, 1x)", advance = "no") i
        if(n == 2005) exit
      end if
    end if
 end do  
 write(*, "(/, a)", advance = "no") "Ludic Triplets below 250: "
 do i = 1, 243
   if(ludic(i) .and. ludic(i+2) .and. ludic(i+6)) then
      write(*, "(a, 2(i0, 1x), i0, a, 1x)", advance = "no") "[", i, i+2, i+6, "]"
   end if  
 end do

end program</lang> Output:

First 25 Ludic numbers: 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107 
Ludic numbers below 1000: 142
Ludic numbers 2000 to 2005: 21475 21481 21487 21493 21503 21511 
Ludic Triplets below 250: [1 3 7] [5 7 11] [11 13 17] [23 25 29] [41 43 47] [173 175 179] [221 223 227] [233 235 239]

FreeBASIC

<lang freebasic>' FB 1.05.0 Win64

' As it would be too expensive to actually remove elements from the array ' we instead set an element to 0 if it has been removed.

Sub ludic(n As Integer, lu() As Integer)

 If n < 1 Then Return
 Redim lu(1 To n)
 lu(1) = 1
 If n = 1 Then Return
 Dim As Integer count = 1, count2
 Dim As Integer i, j, k = 1
 Dim As Integer ub = 22000  big enough to deal with up to 2005 ludic numbers
 Dim a(2 To ub) As Integer
 For i = 2 To ub : a(i) = i : Next
 Do
    k += 1
    For i = k to ub
      If a(i) > 0 Then 
        count += 1 
        lu(count) = a(i)
        If n = count Then Return
        a(i) = 0  
        k = i             
        Exit For
      End If
    Next 
    count2 = 0
    j = k + 1 
    While j <= ub
      If a(j) > 0 Then
        count2 +=1
        If count2 = k Then
          a(j) = 0
          count2 = 0
        End If
      End If
      j += 1
    Wend
  Loop
    

End Sub

Dim i As Integer Dim lu() As Integer ludic(2005, lu()) Print "The first 25 Ludic numbers are :" For i = 1 To 25

 Print Using "###"; lu(i); 
 Print " ";

Next Print

Dim As Integer Count = 0 For i = 1 To 1000

 If lu(i) <= 1000 Then
   count += 1
 Else
   Exit For
 End If

Next Print Print "There are"; count; " Ludic numbers <= 1000" Print

Print "The 2000th to 2005th Ludics are :" For i = 2000 To 2005

 Print lu(i); " ";

Next Print : Print

Print "The Ludic triplets below 250 are : " Dim As Integer j, k, ldc Dim b As Boolean For i = 1 To 248

  ldc = lu(i)
  If ldc >= 244 Then Exit For
  b = False
  For j = i + 1 To 249
    If lu(j) = ldc + 2 Then
      b = True
      k = j
      Exit For
    ElseIf lu(j) > ldc + 2 Then
      Exit For
    End If
  Next j
  If b = False Then Continue For
  For j = k + 1 To 250
    If lu(j) = ldc + 6 Then
      Print "("; Str(ldc); ","; ldc + 2; ","; ldc + 6; ")"
      Exit For
    ElseIf lu(j) > ldc + 6 Then
      Exit For
    End If
  Next j

Next i Erase lu Print

Print "Press any key to quit" Sleep </lang>

Output:
The first 25 Ludic numbers are :
  1   2   3   5   7  11  13  17  23  25  29  37  41  43  47  53  61  67  71  77
 83  89  91  97 107

There are 142 Ludic numbers <= 1000

The 2000th to 2005th Ludics are :
 21475  21481  21487  21493  21503  21511

The Ludic triplets below 250 are :
(1, 3, 7)
(5, 7, 11)
(11, 13, 17)
(23, 25, 29)
(41, 43, 47)
(173, 175, 179)
(221, 223, 227)
(233, 235, 239)

Go

<lang go>package main

import "fmt"

// Ludic returns a slice of Ludic numbers stopping after // either n entries or when max is exceeded. // Either argument may be <=0 to disable that limit. func Ludic(n int, max int) []uint32 { const maxInt32 = 1<<31 - 1 // i.e. math.MaxInt32 if max > 0 && n < 0 { n = maxInt32 } if n < 1 { return nil } if max < 0 { max = maxInt32 } sieve := make([]uint32, 10760) // XXX big enough for 2005 Ludics sieve[0] = 1 sieve[1] = 2 if n > 2 { // We start with even numbers already removed for i, j := 2, uint32(3); i < len(sieve); i, j = i+1, j+2 { sieve[i] = j } // We leave the Ludic numbers in place, // k is the index of the next Ludic for k := 2; k < n; k++ { l := int(sieve[k]) if l >= max { n = k break } i := l l-- // last is the last valid index last := k + i - 1 for j := k + i + 1; j < len(sieve); i, j = i+1, j+1 { last = k + i sieve[last] = sieve[j] if i%l == 0 { j++ } } // Truncate down to only the valid entries if last < len(sieve)-1 { sieve = sieve[:last+1] } } } if n > len(sieve) { panic("program error") // should never happen } return sieve[:n] }

func has(x []uint32, v uint32) bool { for i := 0; i < len(x) && x[i] <= v; i++ { if x[i] == v { return true } } return false }

func main() { // Ludic() is so quick we just call it repeatedly fmt.Println("First 25:", Ludic(25, -1)) fmt.Println("Numner of Ludics below 1000:", len(Ludic(-1, 1000))) fmt.Println("Ludic 2000 to 2005:", Ludic(2005, -1)[1999:])

fmt.Print("Tripples below 250:") x := Ludic(-1, 250) for i, v := range x[:len(x)-2] { if has(x[i+1:], v+2) && has(x[i+2:], v+6) { fmt.Printf(", (%d %d %d)", v, v+2, v+6) } } fmt.Println() }</lang> Run in Go Playground.

Output:
First 25: [1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107]
Numner of Ludics below 1000: 142
Ludic 2000 to 2005: [21475 21481 21487 21493 21503 21511]
Tripples below 250:, (1 3 7), (5 7 11), (11 13 17), (23 25 29), (41 43 47), (173 175 179), (221 223 227), (233 235 239)

Haskell

<lang haskell>import Data.List (unfoldr, genericSplitAt)

ludic :: [Integer] ludic = 1 : unfoldr (\xs@(x:_) -> Just (x, dropEvery x xs)) [2 ..]

 where
   dropEvery n = concatMap tail . unfoldr (Just . genericSplitAt n)

main :: IO () main = do

 print $ take 25 ludic
 (print . length) $ takeWhile (<= 1000) ludic
 print $ take 6 $ drop 1999 ludic

-- haven't done triplets task yet</lang>

Output:
[1,2,3,5,7,11,13,17,23,25,29,37,41,43,47,53,61,67,71,77,83,89,91,97,107]
142
[21475,21481,21487,21493,21503,21511]

The filter for dropping every n-th number can be delayed until it's needed, which speeds up the generator, more so when a longer sequence is taken. <lang haskell>ludic = 1:2 : f 3 [3..] [(4,2)] where f n (x:xs) yy@((i,y):ys) | n == i = f n (dropEvery y xs) ys | otherwise = x : f (1+n) xs (yy ++ [(n+x, x)])

dropEvery n s = a ++ dropEvery n (tail b) where (a,b) = splitAt (n-1) s

main = print $ ludic !! 10000</lang>

Icon and Unicon

This is inefficient, but was fun to code as a cascade of filters. Works in both languages. <lang unicon>global num, cascade, sieve, nfilter

procedure main(A)

   lds := ludic(2005)		# All we need for the four tasks.
   every writes("First 25:" | (" "||!lds)\25 | "\n")
   every (n := 0) +:= (!lds < 1000, 1)
   write("There are ",n," Ludic numbers < 1000.")
   every writes("2000th through 2005th: " | (lds[2000 to 20005]||" ") | "\n")
   writes("Triplets:")
   every (250 > (x := !lds)) & (250 > (x+2 = !lds)) & (250 > (x+6 = !lds)) do
       writes(" [",x,",",x+2,",",x+6,"]")
   write()

end

procedure ludic(limit)

   candidates := create seq(2)
   put(cascade := [], create {
       repeat {
           report(l := num, limit)
           put(cascade, create (cnt:=0, repeat ((cnt+:=1)%l=0, @sieve) | @@nfilter))
           cascade[-2] :=: cascade[-1]  # keep this sink as the last filter
           @sieve
           }
       })
   sieve := create while num := @candidates do @@(nfilter := create !cascade)
   report(1, limit)
   return @sieve

end

procedure report(ludic, limit)

   static count, lds
   initial {count := 0; lds := []}
   if (count +:= 1) > limit then lds@&main
   put(lds, ludic)

end</lang>

Output:

->ludic    
First 25: 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107
There are 142 Ludic numbers < 1000.
2000th through 20005th: 21475 21481 21487 21493 21503 21511 
Triplets: [1,3,7] [5,7,11] [11,13,17] [23,25,29] [41,43,47] [173,175,179] [221,223,227] [233,235,239]
->

J

Solution (naive / brute force):<lang j> ludic =: _1 |.!.1 [: {."1 [: (#~ 0 ~: {. | i.@#)^:a: 2 + i.</lang> Examples:<lang j> # ludic 110 NB. 110 is sufficient to generate 25 Ludic numbers 25

  ludic 110    NB. First 25 Ludic numbers

1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107

  #ludic 1000  NB. 142 Ludic numbers <= 1000

142

  # ludic 22000   NB. 22000 is sufficient to generate > 2005 Ludic numbers

2042

  (2000+i.6) { ludic 22000  NB. Ludic numbers 2000-2005

21481 21487 21493 21503 21511 21523

  0 2 6 (] (*./ .e.~ # |:@]) +/) ludic 250  NB. Ludic triplets <= 250
 1   3   7
 5   7  11
11  13  17
23  25  29
41  43  47

173 175 179 221 223 227 233 235 239</lang>

Java

Works with: Java version 1.5+

This example uses pre-calculated ranges for the first and third task items (noted in comments). <lang java5>import java.util.ArrayList; import java.util.List;

public class Ludic{ public static List<Integer> ludicUpTo(int n){ List<Integer> ludics = new ArrayList<Integer>(n); for(int i = 1; i <= n; i++){ //fill the initial list ludics.add(i); }

//start at index 1 because the first ludic number is 1 and we don't remove anything for it for(int cursor = 1; cursor < ludics.size(); cursor++){ int thisLudic = ludics.get(cursor); //the first item in the list is a ludic number int removeCursor = cursor + thisLudic; //start removing that many items later while(removeCursor < ludics.size()){ ludics.remove(removeCursor); //remove the next item removeCursor = removeCursor + thisLudic - 1; //move the removal cursor up as many spaces as we need to //then back one to make up for the item we just removed } } return ludics; }

public static List<List<Integer>> getTriplets(List<Integer> ludics){ List<List<Integer>> triplets = new ArrayList<List<Integer>>(); for(int i = 0; i < ludics.size() - 2; i++){ //only need to check up to the third to last item int thisLudic = ludics.get(i); if(ludics.contains(thisLudic + 2) && ludics.contains(thisLudic + 6)){ List<Integer> triplet = new ArrayList<Integer>(3); triplet.add(thisLudic); triplet.add(thisLudic + 2); triplet.add(thisLudic + 6); triplets.add(triplet); } } return triplets; }

public static void main(String[] srgs){ System.out.println("First 25 Ludics: " + ludicUpTo(110)); //110 will get us 25 numbers System.out.println("Ludics up to 1000: " + ludicUpTo(1000).size()); System.out.println("2000th - 2005th Ludics: " + ludicUpTo(22000).subList(1999, 2005)); //22000 will get us 2005 numbers System.out.println("Triplets up to 250: " + getTriplets(ludicUpTo(250))); } }</lang>

Output:
First 25 Ludics: [1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107]
Ludics up to 1000: 142
2000th - 2005th Ludics: [21475, 21481, 21487, 21493, 21503, 21511]
Triplets up to 250: [[1, 3, 7], [5, 7, 11], [11, 13, 17], [23, 25, 29], [41, 43, 47], [173, 175, 179], [221, 223, 227], [233, 235, 239]]

JavaScript

ES6

<lang JavaScript>/**

* Boilerplate to simply get an array filled between 2 numbers
* @param {!number} s Start here (inclusive)
* @param {!number} e End here (inclusive)
*/

const makeArr = (s, e) => new Array(e + 1 - s).fill(s).map((e, i) => e + i);

/**

* Remove every n-th element from the given array
* @param {!Array} arr
* @param {!number} n
* @return {!Array}
*/

const filterAtInc = (arr, n) => arr.filter((e, i) => (i + 1) % n);

/**

* Generate ludic numbers
* @param {!Array} arr
* @param {!Array} result
* @return {!Array}
*/

const makeLudic = (arr, result) => {

 const iter = arr.shift();
 result.push(iter);
 return arr.length ? makeLudic(filterAtInc(arr, iter), result) : result;

};

/**

* Our Ludic numbers. This is a bit of a cheat, as we already know beforehand
* up to where our seed array needs to go in order to exactly get to the
* 2005th Ludic number.
* @type {!Array<!number>}
*/

const ludicResult = makeLudic(makeArr(2, 21512), [1]);


// Below is just logging out the results. /**

* Given a number, return a function that takes an array, and return the
* count of all elements smaller than the given
* @param {!number} n
* @return {!Function}
*/

const smallerThanN = n => arr => {

 return arr.reduce((p,c) => {
   return c <= n ? p + 1 : p
 }, 0)

}; const smallerThan1K = smallerThanN(1000);

console.log('\nFirst 25 Ludic Numbers:'); console.log(ludicResult.filter((e, i) => i < 25).join(', '));

console.log('\nTotal Ludic numbers smaller than 1000:'); console.log(smallerThan1K(ludicResult));

console.log('\nThe 2000th to 2005th ludic numbers:'); console.log(ludicResult.filter((e, i) => i > 1998).join(', '));

console.log('\nTriplets smaller than 250:'); ludicResult.forEach(e => {

 if (e + 6 < 250 && ludicResult.indexOf(e + 2) > 0 && ludicResult.indexOf(e + 6) > 0) {
   console.log([e, e + 2, e + 6].join(', '));
 }

});</lang>

First 25 Ludic Numbers:
1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107

Total Ludic numbers smaller than 1000:
142

The 2000th to 2005th ludic numbers:
21475, 21481, 21487, 21493, 21503, 21511

Triplets smaller than 250:
1, 3, 7
5, 7, 11
11, 13, 17
23, 25, 29
41, 43, 47
173, 175, 179
221, 223, 227
233, 235, 239

Julia

<lang Julia> function ludic_filter{T<:Integer}(n::T)

   0 < n || throw(DomainError())
   slud = trues(n)
   for i in 2:(n-1)
       slud[i] || continue
       x = 0
       for j in (i+1):n
           slud[j] || continue
           x += 1
           x %= i
           x == 0 || continue
           slud[j] = false
       end
   end
   return slud

end

ludlen = 10^5 slud = ludic_filter(ludlen) ludics = collect(1:ludlen)[slud]

n = 25 println("Generate and show here the first ", n, " ludic numbers.") print(" ") crwid = 76 wid = 0 for i in 1:(n-1)

   s = @sprintf "%d, " ludics[i]
   wid += length(s)
   if crwid < wid
       print("\n    ")
       wid = 0
   end
   print(s)

end println(ludics[n])

n = 10^3 println() println("How many ludic numbers are there less than or equal to ", n, "?") println(" ", sum(slud[1:n]))

lo = 2000 hi = lo+5 println() println("Show the ", lo, "..", hi, "'th ludic numbers.") for i in lo:hi

   println("    Ludic(", i, ") = ", ludics[i])

end

n = 250 println() println("Show all triplets of ludic numbers < ", n) for i = 1:n-7

   slud[i] || continue
   j = i+2
   slud[j] || continue
   k = i+6
   slud[k] || continue
   println("    ", i, ", ", j, ", ", k)

end </lang>

Output:
Generate and show here the first 25 ludic numbers.
    1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 
    83, 89, 91, 97, 107

How many ludic numbers are there less than or equal to 1000?
    142

Show the 2000..2005'th ludic numbers.
    Ludic(2000) = 21475
    Ludic(2001) = 21481
    Ludic(2002) = 21487
    Ludic(2003) = 21493
    Ludic(2004) = 21503
    Ludic(2005) = 21511

Show all triplets of ludic numbers < 250
    1, 3, 7
    5, 7, 11
    11, 13, 17
    23, 25, 29
    41, 43, 47
    173, 175, 179
    221, 223, 227
    233, 235, 239

Kotlin

Translation of: FreeBASIC

<lang scala>// version 1.0.6

/* Rather than remove elements from a MutableList which would be a relatively expensive operation

  we instead use two arrays:
  
  1. An array of the Ludic numbers to be returned.
  2. A 'working' array of a suitable size whose elements are set to 0 to denote removal. */

fun ludic(n: Int): IntArray {

   if (n < 1) return IntArray(0)
   val lu = IntArray(n)  // array of Ludic numbers required
   lu[0] = 1
   if (n == 1) return lu
   var count = 1
   var count2: Int
   var j: Int
   var k = 1
   var ub = n * 11  // big enough to deal with up to 2005 ludic numbers
   val a = IntArray(ub) { it }  // working array
   while (true) {
       k += 1
       for (i in k until ub) {
           if (a[i] > 0) {
               count +=1
               lu[count - 1] = a[i]
               if (n == count) return lu
               a[i] = 0
               k = i
               break
           }
       }
       count2 = 0
       j = k + 1
       while (j < ub) {
           if (a[j] > 0) {
               count2 +=1
               if (count2 == k) {
                   a[j] = 0
                   count2 = 0
               }
           }
           j += 1
       }
   }

}

fun main(args: Array<String>) {

   val lu: IntArray = ludic(2005)
   println("The first 25 Ludic numbers are :")  
   for (i in 0 .. 24) print("%4d".format(lu[i]))
 
   val count = lu.count { it <= 1000 }
   println("\n\nThere are $count Ludic numbers <= 1000" )
   println("\nThe 2000th to 2005th Ludics are :")
   for (i in 1999 .. 2004) print("${lu[i]}  ")
   println("\n\nThe Ludic triplets below 250 are : ")
   var k: Int = 0
   var ldc: Int
   var b: Boolean
   for (i in 0 .. 247) {
       ldc = lu[i]
       if (ldc >= 244) break
       b = false
       for (j in i + 1 .. 248) {
            if (lu[j] == ldc + 2) {
                b = true
                k = j
                break
            }
            else if (lu[j] > ldc + 2) break
       }
       if (!b) continue
       for (j in k + 1 .. 249) {
           if (lu[j] == ldc + 6) {
               println("($ldc, ${ldc + 2}, ${ldc + 6})")
               break
           }
           else if (lu[j] > ldc + 6) break
       }
   }    

}</lang>

Output:
The first 25 Ludic numbers are :
   1   2   3   5   7  11  13  17  23  25  29  37  41  43  47  53  61  67  71  77  83  89  91  97 107

There are 142 Ludic numbers <= 1000

The 2000th to 2005th Ludics are :
21475  21481  21487  21493  21503  21511

The Ludic triplets below 250 are :
(1, 3, 7)
(5, 7, 11)
(11, 13, 17)
(23, 25, 29)
(41, 43, 47)
(173, 175, 179)
(221, 223, 227)
(233, 235, 239)

Lua

<lang Lua>-- Return table of ludic numbers below limit function ludics (limit)

   local ludList, numList, index = {1}, {}
   for n = 2, limit do table.insert(numList, n) end
   while #numList > 0 do
       index = numList[1]
       table.insert(ludList, index)
       for key = #numList, 1, -1 do
           if key % index == 1 then table.remove(numList, key) end
       end
   end
   return ludList

end

-- Return true if n is found in t or false otherwise function foundIn (t, n)

   for k, v in pairs(t) do
       if v == n then return true end
   end
   return false

end

-- Display msg followed by all values in t function show (msg, t)

   io.write(msg)
   for _, v in pairs(t) do io.write(" " .. v) end
   print("\n")

end

-- Main procedure local first25, under1k, inRange, tripList, triplets = {}, 0, {}, {}, {} for k, v in pairs(ludics(30000)) do

   if k <= 25 then table.insert(first25, v) end
   if v <= 1000 then under1k = under1k + 1 end
   if k >= 2000 and k <= 2005 then table.insert(inRange, v) end
   if v < 250 then table.insert(tripList, v) end

end for _, x in pairs(tripList) do

   if foundIn(tripList, x + 2) and foundIn(tripList, x + 6) then
       table.insert(triplets, "\n{" .. x .. "," .. x+2 .. "," .. x+6 .. "}")
   end

end show("First 25:", first25) print(under1k .. " are less than or equal to 1000\n") show("2000th to 2005th:", inRange) show("Triplets:", triplets)</lang>

Output:
First 25: 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107

142 are less than or equal to 1000

2000th to 2005th: 21475 21481 21487 21493 21503 21511

Triplets:
{1,3,7}
{5,7,11}
{11,13,17}
{23,25,29}
{41,43,47}
{173,175,179}
{221,223,227}
{233,235,239}

Mathematica

<lang Mathematica>n=10^5; Ludic={1}; seq=Range[2,n]; ClearAll[DoStep] DoStep[seq:{f_,___}]:=Module[{out=seq},

AppendTo[Ludic,f];
out;;;;f=Sequence[];
out

] Nest[DoStep,seq,2500];</lang>

Output:
Ludic[[;; 25]]
LengthWhile[Ludic, # < 1000 &]
Ludic[[2000 ;; 2005]]
Select[Subsets[Select[Ludic, # < 250 &], {3}], Differences[#] == {2, 4} &]

{1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107}
142
{21475, 21481, 21487, 21493, 21503, 21511}
{{1, 3, 7}, {5, 7, 11}, {11, 13, 17}, {23, 25, 29}, {41, 43, 47}, {173, 175, 179}, {221, 223, 227}, {233, 235, 239}}

Objeck

Translation of: Java

<lang objeck>use Collection.Generic;

class Ludic {

 function : Main(args : String[]) ~ Nil {
   ludics := LudicUpTo(110);
   Show("First 25 Ludics: ", ludics, 0, ludics->Size());
   System.IO.Console->Print("Ludics up to 1000: ")->PrintLine(LudicUpTo(1000)->Size());
   ludics := LudicUpTo(22000);
   Show("2000th - 2005th Ludics: ", ludics, 1999, 2005);
   Show("Triplets up to 250: ", GetTriplets(LudicUpTo(250)));
 }
 
 function : LudicUpTo(n : Int) ~ CompareVector<IntHolder> {
   ludics := CompareVector->New()<IntHolder>;
   for(i := 1; i <= n; i++;){
     ludics->AddBack(i);
   };
    
   for(cursor := 1; cursor < ludics->Size(); cursor++;) {
     thisLudic := ludics->Get(cursor);
     removeCursor := cursor + thisLudic;
     while(removeCursor < ludics->Size()){
       ludics->Remove(removeCursor);
       removeCursor := removeCursor + thisLudic - 1;
     };
   };
   return ludics;
 }
 function : GetTriplets(ludics : CompareVector<IntHolder>) ~ Vector<CompareVector<IntHolder> > {
   triplets := Vector->New()<CompareVector<IntHolder> >;
   for(i := 0; i < ludics->Size() - 2; i++;){
     thisLudic := ludics->Get(i);
     if(ludics->Has(thisLudic + 2) & ludics->Has(thisLudic + 6)){
       triplet := CompareVector->New()<IntHolder>;
       triplet->AddBack(thisLudic);
       triplet->AddBack(thisLudic + 2);
       triplet->AddBack(thisLudic + 6);
       triplets->AddBack(triplet);
     };
   };
   return triplets;
 }
 function : Show(title : String, ludics : CompareVector<IntHolder>, start : Int, end : Int) ~ Nil {
   title->Print();
   '['->Print();
   for(i := start; i < end; i +=1;) {
     ludics->Get(i)->Get()->Print();
     if(i + 1 < ludics->Size()) {
       ','->Print();
     };
   };
   ']'->PrintLine();
 }
 function : Show(title : String, triplets : Vector<CompareVector<IntHolder> >) ~ Nil {
   title->PrintLine();
   each(i : triplets) {
     triplet := triplets->Get(i);
     Show("\t", triplet, 0, triplet->Size());
   };
 }

} </lang>

Output:
First 25 Ludics: [1,2,3,5,7,11,13,17,23,25,29,37,41,43,47,53,61,67,71,77,83,89,91,97,107]
Ludics up to 1000: 142
2000th - 2005th Ludics: [21475,21481,21487,21493,21503,21511,]
Triplets up to 250:
        [1,3,7]
        [5,7,11]
        [11,13,17]
        [23,25,29]
        [41,43,47]
        [173,175,179]
        [221,223,227]
        [233,235,239]

Oforth

<lang Oforth>: ludic(n) | ludics l p |

  ListBuffer newSize(n) seqFrom(2, n) over addAll ->l
  ListBuffer newSize(n) dup add(1) dup ->ludics
  while(l notEmpty) [
     l removeFirst dup ludics add ->p  
     l size p / p * while(dup 1 > ) [ dup l removeAt drop p - ] drop
     ] ;
ludics

| l i |

  ludic(22000) ->l
  "First 25     : " print l left(25) println
  "Below 1000   : " print l filter(#[ 1000 < ]) size println
  "2000 to 2005 : " print l extract(2000, 2005) println
  250 loop: i [
     l include(i) ifFalse: [ continue ]
     l include(i 2 +) ifFalse: [ continue ]
     l include(i 6 +) ifFalse: [ continue ]
     i print ", " print i 2 + print ", " print i 6 + println
     ] ;</lang>
Output:
First 25     : [1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107]
Below 1000   : 142
2000 to 2005 : [21475, 21481, 21487, 21493, 21503, 21511]
1, 3, 7
5, 7, 11
11, 13, 17
23, 25, 29
41, 43, 47
173, 175, 179
221, 223, 227
233, 235, 239

PARI/GP

Works with: PARI/GP version 2.7.4 and above

Version #1. Creating vector of ludic numbers' flags, where the index of each flag=1 is the ludic number.

<lang parigp> \\ Creating Vlf - Vector of ludic numbers' flags, \\ where the index of each flag=1 is the ludic number. \\ 2/28/16 aev ludic(maxn)={my(Vlf=vector(maxn,z,1),n2=maxn\2,k,j1); for(i=2,n2,

   if(Vlf[i], k=0; j1=i+1;
      for(j=j1,maxn, if(Vlf[j], k++); if(k==i, Vlf[j]=0; k=0))
     ); 
  );

return(Vlf); }

{ \\ Required tests: my(Vr,L=List(),k=0,maxn=25000); Vr=ludic(maxn); print("The first 25 Ludic numbers: "); for(i=1,maxn, if(Vr[i]==1, k++; print1(i," "); if(k==25, break))); print("");print(""); k=0; for(i=1,999, if(Vr[i]==1, k++)); print("Ludic numbers below 1000: ",k); print(""); k=0; print("Ludic numbers 2000 to 2005: "); for(i=1,maxn, if(Vr[i]==1, k++; if(k>=2000&&k<=2005, listput(L,i)); if(k>2005, break))); for(i=1,6, print1(L[i]," ")); print(""); print(""); print("Ludic Triplets below 250: "); for(i=1,250, if(Vr[i]&&Vr[i+2]&&Vr[i+6], print1("(",i," ",i+2," ",i+6,") "))); } </lang>

Output:
The first 25 Ludic numbers:
1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107

Ludic numbers below 1000: 142

Ludic numbers 2000 to 2005:
21475 21481 21487 21493 21503 21511

Ludic Triplets below 250:
(1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239)

Version #2. Creating vector of ludic numbers.

Upgraded script from A003309 to meet task requirements.

<lang parigp> \\ Creating Vl - Vector of ludic numbers. \\ 2/28/16 aev ludic2(maxn)={my(Vw=vector(maxn, x, x+1),Vl=Vec([1]),vwn=#Vw,i); while(vwn>0, i=Vw[1]; Vl=concat(Vl,[i]);

Vw=vector((vwn*(i-1))\i,x,Vw[(x*i+i-2)\(i-1)]); vwn=#Vw

); return(Vl); } { \\ Required tests: my(Vr,L=List(),k=0,maxn=22000,vrs,vi); Vr=ludic2(maxn); vrs=#Vr; print("The first 25 Ludic numbers: "); for(i=1,25, print1(Vr[i]," ")); print("");print(""); k=0; for(i=1,vrs, if(Vr[i]<1000, k++, break)); print("Ludic numbers below 1000: ",k); print(""); k=0; print("Ludic numbers 2000 to 2005: "); for(i=2000,2005, print1(Vr[i]," ")); print("");print(""); print("Ludic Triplets below 250: "); for(i=1,vrs, vi=Vr[i]; if(i==1,print1("(",vi," ",vi+2," ",vi+6,") "); next); if(vi+6<250,if(Vr[i+1]==vi+2&&Vr[i+2]==vi+6, print1("(",vi," ",vi+2," ",vi+6,") ")))); } </lang>

Output:
The first 25 Ludic numbers:
1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107

Ludic numbers below 1000: 142

Ludic numbers 2000 to 2005:
21475 21481 21487 21493 21503 21511

Ludic Triplets below 250:
(1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239)

Pascal

Inspired by "rotors" of perl 6 . Runtime nearly quadratic: maxLudicCnt = 10000 -> 0.03 s =>maxLudicCnt= 100000 -> 3 s <lang pascal>program lucid; {$IFDEF FPC}

 {$MODE objFPC} // useful for x64

{$ENDIF}

const

 //66164 -> last < 1000*1000;
 maxLudicCnt = 2005;//must be > 1

type

 tDelta = record
            dNum,
            dCnt : LongInt;
          end;
 tpDelta = ^tDelta;
 tLudicList = array of tDelta;
 tArrdelta =array[0..0] of tDelta;
 tpLl = ^tArrdelta;

function isLudic(plL:tpLl;maxIdx:nativeInt):boolean; var

 i,
 cn : NativeInt;

Begin

 //check if n is 'hit' by a prior ludic number
 For i := 1 to maxIdx do
   with plL^[i] do
   Begin
     //Mask read modify write reread
     //dec(dCnt);IF dCnt= 0
     cn := dCnt;
     IF cn = 1 then
     Begin
       dcnt := dNum;
       isLudic := false;
       EXIT;
      end;
     dcnt := cn-1;
   end;
 isLudic := true;

end;

procedure CreateLudicList(var Ll:tLudicList); var

 plL : tpLl;
 n,LudicCnt : NativeUint;

begin

 // special case 1
 n := 1;
 Ll[0].dNum := 1;
 plL := @Ll[0];
 LudicCnt := 0;
 repeat
   inc(n);
   If isLudic(plL,LudicCnt ) then
   Begin
     inc(LudicCnt);
     with plL^[LudicCnt] do
     Begin
       dNum := n;
       dCnt := n;
     end;
     IF (LudicCnt >= High(LL)) then
       BREAK;
   end;
 until false;

end;

procedure firstN(var Ll:tLudicList;cnt: NativeUint); var

 i : NativeInt;

Begin

 writeln('First ',cnt,' ludic numbers:');
 For i := 0 to cnt-2 do
   write(Ll[i].dNum,',');
 writeln(Ll[cnt-1].dNum);

end;

procedure triples(var Ll:tLudicList;max: NativeUint); var

 i,
 chk : NativeUint;

Begin

 // special case 1,3,7
 writeln('Ludic triples below ',max);
 write('(',ll[0].dNum,',',ll[2].dNum,',',ll[4].dNum,') ');
 For i := 1 to High(Ll) do
 Begin
   chk := ll[i].dNum;
   If chk> max then
     break;
   If (ll[i+2].dNum = chk+6) AND (ll[i+1].dNum = chk+2) then
     write('(',ll[i].dNum,',',ll[i+1].dNum,',',ll[i+2].dNum,') ');
 end;
 writeln;
 writeln;

end;

procedure LastLucid(var Ll:tLudicList;start,cnt: NativeUint); var

 limit,i : NativeUint;

Begin

 dec(start);
 limit := high(Ll);
 IF cnt >= limit then
   cnt := limit;
 if start+cnt >limit then
   start := limit-cnt;
 writeln(Start+1,'.th to ',Start+cnt+1,'.th ludic number');
 For i := 0 to cnt-1 do
   write(Ll[i+start].dNum,',');
 writeln(Ll[start+cnt].dNum);
 writeln;

end;

function CountLudic(var Ll:tLudicList;Limit: NativeUint):NativeUint; var

 i,res : NativeUint;

Begin

 res := 0;
 For i := 0 to High(Ll) do begin
   IF Ll[i].dnum <= Limit then
     inc(res)
   else
     BREAK;
 CountLudic:= res;

end;

end; var

 LudicList : tLudicList;

BEGIN

 setlength(LudicList,maxLudicCnt);
 CreateLudicList(LudicList);
 firstN(LudicList,25);
 writeln('There are ',CountLudic(LudicList,1000),' ludic numbers below 1000');
 LastLucid(LudicList,2000,5);
 LastLucid(LudicList,maxLudicCnt,5);
 triples(LudicList,250);//all-> (LudicList,LudicList[High(LudicList)].dNum);

END.</lang>

Output:
First 25 ludic numbers:1,2,3,5,7,11,13,17,23,25,29,37,41,43,47,53,61,67,71,77,83,89,91,97,107
There are 142 ludic numbers below 1000
2000.th to 2005.th ludic number
21475,21481,21487,21493,21503,21511

99995.th to 100000.th ludic number
1561243,1561291,1561301,1561307,1561313,1561333

Ludic triples below 250
(1,3,7) (5,7,11) (11,13,17) (23,25,29) (41,43,47) (173,175,179) (221,223,227) (233,235,239)

real  0m2.921s 

Using an array of byte, each containing the distance to the next ludic number. 64-Bit needs only ~ 60% runtime of 32-Bit. Three times slower than the Version 1. Much space left for improvements, like memorizing the count of ludics of intervals of size 1024 or so, to do bigger steps.Something like skiplist. <lang pascal>program ludic; {$IFDEF FPC}{$MODE DELPHI}{$ELSE}{$APPTYPE CONSOLE}{$ENDIF} uses

 sysutils;

const

 MAXNUM =21511;// > 1
 //1561333;-> 100000 ludic numbers
 //1561243,1561291,1561301,1561307,1561313,1561333

type

 tarrLudic = array of byte;
 tLudics = array of LongWord;

var

 Ludiclst : tarrLudic;

procedure Firsttwentyfive; var

 i,actLudic : NativeInt;

Begin

 writeln('First 25 ludic numbers');
 actLudic:= 1;
 For i := 1 to 25 do
 Begin
   write(actLudic:3,',');
   inc(actLudic,Ludiclst[actLudic]);
   IF i MOD 5 = 0 then
     writeln(#8#32);
 end;
 writeln;

end;

procedure CountBelowOneThousand; var

 cnt,actLudic : NativeInt;

Begin

 write('Count of ludic numbers below 1000 = ');
 actLudic:= 1;
 cnt := 1;
 while actLudic <= 1000 do
 Begin
   inc(actLudic,Ludiclst[actLudic]);
   inc(cnt);
 end;
 dec(cnt);
 writeln(cnt);writeln;

end;

procedure Show2000til2005; var

 cnt,actLudic : NativeInt;

Begin

 writeln('ludic number #2000 to #2005');
 actLudic:= 1;
 cnt := 1;
 while cnt < 2000 do
 Begin
   inc(actLudic,Ludiclst[actLudic]);
   inc(cnt);
 end;
 while cnt < 2005 do
 Begin
   write(actLudic,',');
   inc(actLudic,Ludiclst[actLudic]);
   inc(cnt);
 end;
 writeln(actLudic);writeln;

end;

procedure ShowTriplets; var

 actLudic,lastDelta : NativeInt;

Begin

 writeln('ludic numbers triplets below 250');
 actLudic:= 1;
 while actLudic < 250-5 do
 Begin
   IF (Ludiclst[actLudic]   <> 0) AND
      (Ludiclst[actLudic+2] <> 0) AND
      (Ludiclst[actLudic+6] <> 0) then
     writeln('{',actLudic,'|',actLudic+2,'|',actLudic+6,'} ');
   inc(actLudic);
 end;
 writeln;

end;

procedure CheckMaxdist; var

 actLudic,Delta,MaxDelta : NativeInt;

Begin

 MaxDelta := 0;
 actLudic:= 1;
 repeat
   delta := Ludiclst[actLudic];
   inc(actLudic,delta);
   IF MAxDelta<delta then
      MAxDelta:= delta;
 until actLudic>= MAXNUM;
 writeln('MaxDist ',MAxDelta);writeln;

end;

function GetLudics:tLudics; //Array of byte containing the distance to next ludic number //eliminated numbers are set to 0 var

 i,actLudic,actcnt,delta,actPos,lastPos,ludicCnt: NativeInt;

Begin

 setlength(Ludiclst,MAXNUM+1);
 For i := MAXNUM downto 0 do
   Ludiclst[i]:= 1;
 actLudic := 1;
 ludicCnt := 1;
 repeat
   inc(actLudic,Ludiclst[actLudic]);
   IF actLudic> MAXNUM then
     BREAK;
   inc(ludicCnt);
   actPos := actLudic;
   actcnt := 0;
   // Only if there are enough ludics left
   IF MaxNum-ludicCnt-actPos > actPos then
   Begin
   //eliminate every element in actLudic-distance
     //delta so i can set Ludiclst[actpos] to zero
     delta := Ludiclst[actpos];
     repeat
       lastPos := actPos;
       inc(actpos,delta);
       if actPos>=MAXNUM then
         BREAK;
       delta := Ludiclst[actpos];
       inc(actcnt);
       IF actcnt= actLudic then
       Begin
         inc(Ludiclst[LastPos],delta);
         //mark as not ludic
         Ludiclst[actpos] := 0;
         actcnt := 0;
       end;
     until false;
   end;
 until false;
 writeln(ludicCnt,' ludic numbers upto ',MAXNUM,#13#10);

end;

BEGIN

 GetLudics;
 CheckMaxdist;
 Firsttwentyfive;CountBelowOneThousand;Show2000til2005;ShowTriplets ;
 setlength(Ludiclst,0)

END.</lang>

Output:
2005 ludic numbers upto 21511

MaxDist 56

First 25 ludic numbers
  1,  2,  3,  5,  7 
 11, 13, 17, 23, 25 
 29, 37, 41, 43, 47 
 53, 61, 67, 71, 77 
 83, 89, 91, 97,107 

Count of ludic numbers below 1000 = 142

ludic number #2000 to #2005
21475,21481,21487,21493,21503,21511

ludic numbers triplets below 250
{1|3|7} 
{5|7|11} 
{11|13|17} 
{23|25|29} 
{41|43|47} 
{173|175|179} 
{221|223|227} 
{233|235|239} 
real    0m0.003s

100000 ludic numbers upto 1561334
...
real    0m8.438s

Perl

The "ludic" subroutine caches the longest generated sequence so far. It also generates the candidates only if no candidates remain. <lang perl>#!/usr/bin/perl use warnings; use strict; use feature qw{ say };

{ my @ludic = (1);

   my $max = 3;
   my @candidates;
   sub sieve {
       my $l = shift;
       for (my $i = 0; $i <= $#candidates; $i += $l) {
           splice @candidates, $i, 1;
       }
   }
   sub ludic {
       my ($type, $n) = @_;
       die "Arg0 Type must be 'count' or 'max'\n"
            unless grep $_ eq $type, qw( count max );
       die "Arg1 Number must be > 0\n" if 0 >= $n;
       return (@ludic[ 0 .. $n - 1 ]) if 'count' eq $type and @ludic >= $n;
       return (grep $_ <= $n, @ludic) if 'max'   eq $type and $ludic[-1] >= $n;
       while (1) {
           if (@candidates) {
               last if ('max' eq $type and $candidates[0] > $n)
                    or ($n == @ludic);
               push @ludic, $candidates[0];
               sieve($ludic[-1] - 1);
           } else {
               $max *= 2;
               @candidates = 2 .. $max;
               for my $l (@ludic) {
                   sieve($l - 1) unless 1 == $l;
               }
           }
       }
       return (@ludic)
   }

}

my @triplet; my %ludic; undef @ludic{ ludic(max => 250) }; for my $i (keys %ludic) {

   push @triplet, $i if exists $ludic{ $i + 2 } and exists $ludic { $i + 6 };

}

say 'First 25: ', join ' ', ludic(count => 25); say 'Count < 1000: ', scalar ludic(max => 1000); say '2000..2005th: ', join ' ', (ludic(count => 2005))[1999 .. 2004]; say 'triplets < 250: ', join ' ',

                       map { '(' . join(' ',$_, $_ + 2, $_ + 6) . ')' }
                       sort { $a <=> $b } @triplet;</lang>
Output:
First 25:       1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107
Count < 1000:   142
2000..2005th:   21475 21481 21487 21493 21503 21511
triplets < 250: (1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239)

Phix

Translation of: Fortran

<lang Phix>constant LUMAX = 25000 sequence ludic = repeat(1,LUMAX) integer n for i=2 to LUMAX/2 do

   if ludic[i] then
       n = 0
       for j=i+1 to LUMAX do
           n += ludic[j]
           if n=i then
               ludic[j] = 0
               n = 0
           end if
       end for
   end if

end for

sequence s = {} for i=1 to LUMAX do

   if ludic[i] then
       s &= i
       if length(s)=25 then exit end if
   end if

end for printf(1,"First 25 Ludic numbers: %s\n",{sprint(s)}) printf(1,"Ludic numbers below 1000: %d\n",{sum(ludic[1..1000])}) s = {} n = 0 for i=1 to LUMAX do

   if ludic[i] then
       n += 1
       if n>=2000 then
           s &= i
           if n=2005 then exit end if
       end if
   end if

end for printf(1,"Ludic numbers 2000 to 2005: %s\n",{sprint(s)}) s = {} for i=1 to 243 do

   if ludic[i] and ludic[i+2] and ludic[i+6] then
      s = append(s,{i,i+2,i+6})
   end if  

end for printf(1,"There are %d Ludic triplets below 250: %s\n",{length(s),sprint(s)})</lang>

Output:
First 25 Ludic numbers: {1,2,3,5,7,11,13,17,23,25,29,37,41,43,47,53,61,67,71,77,83,89,91,97,107}
Ludic numbers below 1000: 142
Ludic numbers 2000 to 2005: {21475,21481,21487,21493,21503,21511}
There are 8 Ludic triplets below 250: {{1,3,7},{5,7,11},{11,13,17},{23,25,29},{41,43,47},{173,175,179},{221,223,227},{233,235,239}}

PicoLisp

<lang PicoLisp>(de drop (Lst)

  (let N (car Lst)
     (make
        (for (I . X) (cdr Lst)
           (unless (=0 (% I N)) (link X)) ) ) ) )

(de comb (M Lst)

  (cond
     ((=0 M) '(NIL))
     ((not Lst))
     (T
        (conc
           (mapcar
              '((Y) (cons (car Lst) Y))
              (comb (dec M) (cdr Lst)) )
           (comb M (cdr Lst)) ) ) ) )
          

(de ludic (N)

  (let Ludic (range 1 100000)
     (make
        (link (pop 'Ludic))
        (do (dec N)
           (link (car Ludic))
           (setq Ludic (drop Ludic)) ) ) ) )

(let L (ludic 2005)

  (println (head 25 L))
  (println (cnt '((X) (< X 1000)) L))
  (println (tail 6 L))
  (println
     (filter
        '((Lst)
           (and
             (= (+ 2 (car Lst)) (cadr Lst))
             (= (+ 6 (car Lst)) (caddr Lst)) ) )
        (comb
           3
           (filter '((X) (< X 250)) L) ) ) ) )

(bye)</lang>

Output:

(1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107) 142 (21475 21481 21487 21493 21503 21511)

((1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239))

PL/I

<lang PL/I>Ludic_numbers: procedure options (main); /* 18 April 2014 */

  declare V(2:22000) fixed, L(2200) fixed;
  declare (step, i, j, k, n) fixed binary;

Ludic: procedure;

  n = hbound(V,1); k = 1; L(1) = 1;
  do i = 2 to n; V(i) = i; end;
  do forever;
     
     k = k + 1; L(k), step = V(2);
     do i = 2 to n by step;
        V(i) = 0;
     end;
     call compress;
     if L(k) >= 21511 then leave;
  end;
  put skip list ('The first 25 Ludic numbers are:');
  put skip edit ( (L(i) do i = 1 to 25) ) (F(4));
  k = 0;
  do i = 1 by 1;
     if L(i) < 1000 then k = k + 1; else leave;
  end;
  put skip list ('There are ' || trim(k) || ' Ludic numbers < 1000');
  put skip list ('Six Ludic numbers from the 2000-th:');
  put skip edit ( (L(i) do i = 2000 to 2005) ) (f(7));
  /* Triples are values of the form x, x+2, x+6 */
  put skip list ('Triples are:');
  put skip;
  i = 1;
  put edit ('(', L(1), L(3), L(5), ') ' ) (A, 3 F(4), A);
  do i = 1 by 1 while (L(i+2) <= 250);
     if (L(i) = L(i+1) - 2) & (L(i) = L(i+2) - 6) then
        put edit ('(', L(i), L(i+1), L(i+2), ') ' ) (A, 3 F(4), A);
  end;

compress: procedure;

  j = 2;
  do i = 2 to n;
     if V(i) ^= 0 then do; V(j) = V(i); j = j + 1; end;
  end;
  n = j-1;

end compress;

end Ludic;

call Ludic;

end Ludic_numbers;</lang> Output:

The first 25 Ludic numbers are: 
   1   2   3   5   7  11  13  17  23  25  29  37  41  43  47
  53  61  67  71  77  83  89  91  97 107
There are 142 Ludic numbers < 1000 
Six Ludic numbers from the 2000-th: 
  21475  21481  21487  21493  21503  21511
Triples are: 
(   1   3  7) (   5   7  11) (  11  13  17) (  23  25  29) (  41  43  47)
( 173 175 179) ( 221 223 227) ( 233 235 239)

PL/SQL

<lang plsql>SET SERVEROUTPUT ON DECLARE

 c_limit CONSTANT PLS_INTEGER := 25000;
 TYPE t_nums IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;
 v_nums t_nums;
 v_ludic t_nums;
 v_count_ludic PLS_INTEGER;
 v_count_pos PLS_INTEGER;
 v_pos PLS_INTEGER;
 v_next_ludic PLS_INTEGER;
 FUNCTION is_ludic(p_num PLS_INTEGER) RETURN BOOLEAN IS
 BEGIN
   FOR i IN 1..v_ludic.COUNT LOOP
     EXIT WHEN v_ludic(i) > p_num;
     IF v_ludic(i) = p_num THEN
       RETURN TRUE;
     END IF;
   END LOOP;
   RETURN FALSE;
 END;

BEGIN

 FOR i IN 1..c_limit LOOP
   v_nums(i) := i;
 END LOOP;
 v_count_ludic := 1;
 v_next_ludic := 1;
 v_ludic(v_count_ludic) := v_next_ludic;
 v_nums.DELETE(1);
 WHILE v_nums.COUNT > 0 LOOP
   v_pos := v_nums.FIRST;
   v_next_ludic := v_nums(v_pos);
   v_count_ludic := v_count_ludic + 1;
   v_ludic(v_count_ludic) := v_next_ludic;
   v_count_pos := 0;
   WHILE v_pos IS NOT NULL LOOP
     IF MOD(v_count_pos, v_next_ludic) = 0 THEN
       v_nums.DELETE(v_pos);
     END IF;
     v_pos := v_nums.NEXT(v_pos);
     v_count_pos := v_count_pos + 1;
   END LOOP;
 END LOOP;
 dbms_output.put_line('Generate and show here the first 25 ludic numbers.');
 FOR i IN 1..25 LOOP
   dbms_output.put(v_ludic(i) || ' ');
 END LOOP;
 dbms_output.put_line();
 dbms_output.put_line('How many ludic numbers are there less than or equal to 1000?');
 v_count_ludic := 0;
 FOR i IN 1..v_ludic.COUNT LOOP
   EXIT WHEN v_ludic(i) > 1000;
   v_count_ludic := v_count_ludic + 1;
 END LOOP;
 dbms_output.put_line(v_count_ludic);
 dbms_output.put_line('Show the 2000..2005th ludic numbers.');
 FOR i IN 2000..2005 LOOP
   dbms_output.put(v_ludic(i) || ' ');
 END LOOP;
 dbms_output.put_line();
 dbms_output.put_line('A triplet is any three numbers x, x + 2, x + 6 where all three numbers are also ludic numbers.');
 dbms_output.put_line('Show all triplets of ludic numbers < 250 (Stretch goal)');
 FOR i IN 1..v_ludic.COUNT LOOP
   EXIT WHEN (v_ludic(i)+6) >= 250;
   IF is_ludic(v_ludic(i)+2) AND is_ludic(v_ludic(i)+6) THEN
     dbms_output.put_line(v_ludic(i) || ', ' || (v_ludic(i)+2) || ', ' || (v_ludic(i)+6));
   END IF;
 END LOOP;

END; / </lang>

Output:
Generate and show here the first 25 ludic numbers.
1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107 
How many ludic numbers are there less than or equal to 1000?
142
Show the 2000..2005'th ludic numbers.
21475 21481 21487 21493 21503 21511 
A triplet is any three numbers x, x + 2, x + 6 where all three numbers are also ludic numbers.
Show all triplets of ludic numbers < 250 (Stretch goal)
1, 3, 7
5, 7, 11
11, 13, 17
23, 25, 29
41, 43, 47
173, 175, 179
221, 223, 227
233, 235, 239

PowerShell

Works with: PowerShell version 2

<lang PowerShell>

  1. Start with a pool large enough to meet the requirements

$Pool = [System.Collections.ArrayList]( 2..22000 )

  1. Start with 1, because it's grandfathered in

$Ludic = @( 1 )

  1. While the size of the pool is still larger than the next Ludic number...

While ( $Pool.Count -gt $Pool[0] )

   {
   #  Add the next Ludic number to the list
   $Ludic += $Pool[0]

   #  Remove from the pool all entries whose index is a multiple of the next Ludic number
   [math]::Truncate( ( $Pool.Count - 1 )/ $Pool[0])..0 | ForEach { $Pool.RemoveAt( $_ * $Pool[0] ) }
   }

  1. Add the rest of the numbers in the pool to the list of Ludic numbers

$Ludic += $Pool.ToArray() </lang> <lang PowerShell>

  1. Display the first 25 Ludic numbers

$Ludic[0..24] -join ", "

  1. Display the count of all Ludic numbers under 1000

$Ludic.Where{ $_ -le 1000 }.Count

  1. Display the 2000th through the 2005th Ludic number

$Ludic[1999..2004] -join ", "

  1. Display all Ludic triplets less than 250

$TripletStart = $Ludic.Where{ $_ -lt 244 -and ( $_ + 2 ) -in $Ludic -and ( $_ + 6 ) -in $Ludic } $TripletStart.ForEach{ $_, ( $_ + 2 ), ( $_ + 6 ) -join ", " } </lang>

Output:
1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107

142

21475, 21481, 21487, 21493, 21503, 21511

1, 3, 7
5, 7, 11
11, 13, 17
23, 25, 29
41, 43, 47
173, 175, 179
221, 223, 227
233, 235, 239

Python

Python: Fast

<lang python>def ludic(nmax=100000):

   yield 1
   lst = list(range(2, nmax + 1))
   while lst:
       yield lst[0]
       del lst[::lst[0]]

ludics = [l for l in ludic()]

print('First 25 ludic primes:') print(ludics[:25]) print("\nThere are %i ludic numbers <= 1000"

     % sum(1 for l in ludics if l <= 1000)) 

print("\n2000'th..2005'th ludic primes:") print(ludics[2000-1: 2005])

n = 250 triplets = [(x, x+2, x+6)

           for x in ludics
           if x+6 < n and x+2 in ludics and x+6 in ludics]

print('\nThere are %i triplets less than %i:\n %r'

     % (len(triplets), n, triplets))</lang>
Output:
First 25 ludic primes:
[1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107]

There are 142 ludic numbers <= 1000

2000'th..2005'th ludic primes:
[21475, 21481, 21487, 21493, 21503, 21511]

There are 8 triplets less than 250:
  [(1, 3, 7), (5, 7, 11), (11, 13, 17), (23, 25, 29), (41, 43, 47), (173, 175, 179), (221, 223, 227), (233, 235, 239)]

Python: No set maximum

The following version of function ludic will return ludic numbers until reaching system limits. It is less efficient than the fast version as all lucid numbers so far are cached; on exhausting the current lst a new list of twice the size is created and the previous deletions applied before continuing. <lang python>def ludic(nmax=64):

   yield 1
   taken = []
   while True:
       lst, nmax = list(range(2, nmax + 1)), nmax * 2
       for t in taken:
           del lst[::t]
       while lst:
           t = lst[0]
           taken.append(t)
           yield t
           del lst[::t]</lang>

Output is the same as for the fast version.

Racket

<lang racket>#lang racket (define lucid-sieve-size 25000) ; this should be enough to do me! (define lucid?

 (let ((lucid-bytes-sieve
        (delay
          (define sieve-bytes (make-bytes lucid-sieve-size 1))       
          (bytes-set! sieve-bytes 0 0) ; not a lucid number
          (define (sieve-pass L)
            (let loop ((idx (add1 L)) (skip (sub1 L)))
              (cond
                [(= idx lucid-sieve-size)
                 (for/first ((rv (in-range (add1 L) lucid-sieve-size))
                             #:unless (zero? (bytes-ref sieve-bytes rv))) rv)]
                [(zero? (bytes-ref sieve-bytes idx))
                 (loop (add1 idx) skip)]
                [(= skip 0)
                 (bytes-set! sieve-bytes idx 0)
                 (loop (add1 idx) (sub1 L))]
                [else (loop (add1 idx) (sub1 skip))])))
          (let loop ((l 2))
            (when l (loop (sieve-pass l))))
          sieve-bytes)))
   
   (λ (n) (= 1 (bytes-ref (force lucid-bytes-sieve) n)))))

(define (dnl . things) (for-each displayln things))

(dnl

"Generate and show here the first 25 ludic numbers."
(for/list ((_ 25) (l (sequence-filter lucid? (in-naturals)))) l)
"How many ludic numbers are there less than or equal to 1000?"
(for/sum ((n 1001) #:when (lucid? n)) 1)
"Show the 2000..2005'th ludic numbers."
(for/list ((i 2006) (l (sequence-filter lucid? (in-naturals))) #:when (>= i 2000)) l)
#<<EOS

A triplet is any three numbers x, x + 2, x + 6 where all three numbers are also ludic numbers. Show all triplets of ludic numbers < 250 (Stretch goal) EOS

(for/list ((x (in-range 250)) #:when (and (lucid? x) (lucid? (+ x 2)) (lucid? (+ x 6))))
  (list x (+ x 2) (+ x 6))))</lang>
Output:
Generate and show here the first 25 ludic numbers.
(1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107)
How many ludic numbers are there less than or equal to 1000?
142
Show the 2000..2005'th ludic numbers.
(21481 21487 21493 21503 21511 21523)
A triplet is any three numbers x, x + 2, x + 6 where all three numbers are
also ludic numbers. Show all triplets of ludic numbers < 250 (Stretch goal)
((1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239))
cpu time: 18753 real time: 18766 gc time: 80

Raku

(formerly Perl 6)

Works with: rakudo version 2015-09-18

This implementation has no arbitrary upper limit, since it can keep adding new rotors on the fly. It just gets slower and slower instead... :-) <lang perl6>constant @ludic = gather {

       my @taken = take 1;
       my @rotor;

       for 2..* -> $i {
           loop (my $j = 0; $j < @rotor; $j++) {
               --@rotor[$j] or last;
           }
           if $j < @rotor {
               @rotor[$j] = @taken[$j+1];
           }
           else {
               push @taken, take $i;
               push @rotor, @taken[$j+1];
           }
       }
   }

say @ludic[^25]; say "Number of Ludic numbers <= 1000: ", +(@ludic ...^ * > 1000); say "Ludic numbers 2000..2005: ", @ludic[1999..2004];

my \l250 = set @ludic ...^ * > 250; say "Ludic triples < 250: ", gather

   for l250.keys.sort -> $a {
       my $b = $a + 2;
       my $c = $a + 6;
       take "<$a $b $c>" if $b ∈ l250 and $c ∈ l250;
   }</lang>
Output:
(1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107)
Number of Ludic numbers <= 1000: 142
Ludic numbers 2000..2005: (21475 21481 21487 21493 21503 21511)
Ludic triples < 250: (<1 3 7> <5 7 11> <11 13 17> <23 25 29> <41 43 47> <173 175 179> <221 223 227> <233 235 239>)

REXX

<lang rexx>/*REXX program displays (a range of) ludic numbers, or a count of when a range is used.*/ parse arg N count bot top triples . /*obtain optional arguments from the CL*/ if N== | N=="," then N=25 /*Not specified? Then use the default.*/ if count== | count=="," then count=1000 /* " " " " " " */ if bot== | bot=="," then bot=2000 /* " " " " " " */ if top== | top=="," then top=2005 /* " " " " " " */ if triples== | triples=="," then triples=250-1 /* " " " " " " */ $=ludic( max(N, count, bot, top, triples) ) /*generate enough ludic nums.*/ say 'The first ' N " ludic numbers: " subword($,1,25) /*display 1st N ludic nums.*/

           do j=1  until word($, j) > count;   end        /*process up to a specific #.*/

say say "There are " j-1 ' ludic numbers that are ≤ ' count say say "The " bot '───►' top ' (inclusive) ludic numbers are: ' subword($, bot)

  1. =0

@=; do j=1 for words($); _=word($,j) /*it is known that ludic _ exists. */

    if _>=triples  then leave                   /*only process up to a specific number.*/
    if wordpos(_+2, $)==0  |  wordpos(_+6, $)==0  then iterate  /*Not triple?  Skip it.*/
    #=#+1;             @=@ '◄'_  _+2  _+6"► "   /*bump the triple counter,  and  ···   */
    end   /*j*/                                 /* [↑]  append the found triple ──►  @ */

say if @== then say 'From 1──►'triples", no triples found."

         else  say  'From 1──►'triples", "     #     ' triples found:'      @

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ ludic: procedure; parse arg m,,@; $=1 2 /*$≡ludic numbers superset; @≡sequence*/

           do j=3  by 2  to  m*15;  @=@ j;  end /*construct an initial list of numbers.*/
      @=@' ';                       n=words(@)  /*append a blank to the number sequence*/
           do  while n\==0;  f=word(@,1); $=$ f /*examine the first word in @; add to $*/
                 do d=1  by f while d<=n; n=n-1 /*use 1st number, elide all occurrences*/
                 @=changestr(' 'word(@, d)" ",  @,  ' . ')   /*crossout a number in  @ */
                 end   /*d*/                    /* [↑]  done eliding the "1st" number. */
           @=translate(@, , .)                  /*change dots to blanks; count numbers.*/
           end        /*while*/                 /* [↑]  done eliding ludic numbers.    */
      return subword($, 1, m)                   /*return a  range  of  ludic  numbers. */</lang>

Some older REXXes don't have a   changestr   BIF,   so one is included here   ──►   CHANGESTR.REX.

output   using the default values for input:

The first  25  ludic numbers:  1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107

There are  142  ludic numbers that are  ≤  1000

The  2000 ───► 2005  (inclusive)  ludic numbers are:  21475 21481 21487 21493 21503 21511

From 1──►249,  8  triples found:  ◄1 3 7►  ◄5 7 11►  ◄11 13 17►  ◄23 25 29►  ◄41 43 47►  ◄173 175 179►  ◄221 223 227►  ◄233 235 239►

Ring

<lang ring>

  1. Project : Ludic numbers

ludic = list(300) resludic = [] nr = 1 for n = 1 to len(ludic)

    ludic[n] = n+1

next see "the first 25 Ludic numbers are:" + nl ludicnumbers(ludic) showarray(resludic) see nl

see "Ludic numbers below 1000: " ludic = list(3000) resludic = [] for n = 1 to len(ludic)

    ludic[n] = n+1

next ludicnumbers(ludic) showarray2(resludic) see nr see nl + nl

see "the 2000..2005th Ludic numbers are:" + nl ludic = list(60000) resludic = [] for n = 1 to len(ludic)

    ludic[n] = n+1

next ludicnumbers(ludic) showarray3(resludic)

func ludicnumbers(ludic)

     for n = 1 to len(ludic)
         delludic = [] 
         for m = 1 to len(ludic) step ludic[1]
             add(delludic, m)
         next
         add(resludic, ludic[1])
         for p = len(delludic)  to 1 step -1
             del(ludic, delludic[p])
         next
     next 

func showarray(vect)

     see "[1, "
     svect = ""
     for n = 1 to 24
         svect = svect + vect[n] + ", "
     next
     svect = left(svect, len(svect) - 2)
     see svect
     see "]" + nl

func showarray2(vect)

     for n = 1 to len(vect)
         if vect[n] <= 1000
            nr = nr + 1
         ok
     next
     return nr

func showarray3(vect)

     see "["
     svect = ""
     for n = 1999 to 2004
         svect = svect + vect[n] + ", "
     next
     svect = left(svect, len(svect) - 2)
     see svect
     see "]" + nl 

</lang> Output:

the first 25 Ludic numbers are:
[1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107]

Ludic numbers below 1000: 142

the 2000..2005th ludic numbers are:
[21475, 21481, 21487, 21493, 21503, 21511]

Ruby

<lang ruby>def ludic(nmax=100000)

 Enumerator.new do |y|
   y << 1
   ary = *2..nmax
   until ary.empty?
     y << (n = ary.first)
     (0...ary.size).step(n){|i| ary[i] = nil}
     ary.compact!
   end
 end

end

puts "First 25 Ludic numbers:", ludic.first(25).to_s

puts "Ludics below 1000:", ludic(1000).count

puts "Ludic numbers 2000 to 2005:", ludic.first(2005).last(6).to_s

ludics = ludic(250).to_a puts "Ludic triples below 250:",

    ludics.select{|x| ludics.include?(x+2) and ludics.include?(x+6)}.map{|x| [x, x+2, x+6]}.to_s</lang>
Output:
First 25 Ludic numbers:
[1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107]
Ludics below 1000:
142
Ludic numbers 2000 to 2005:
[21475, 21481, 21487, 21493, 21503, 21511]
Ludic triples below 250:
[[1, 3, 7], [5, 7, 11], [11, 13, 17], [23, 25, 29], [41, 43, 47], [173, 175, 179], [221, 223, 227], [233, 235, 239]]

Scala

In this example, we define a function to drop every nth element from a list and use it to build a lazily evaluated list of all Ludic numbers. We then generate a lazy list of triplets and filter for the triplets of Ludic numbers.

<lang scala>object Ludic {

 def main(args: Array[String]): Unit = {
   println(
     s"""|First 25 Ludic Numbers: ${ludic.take(25).mkString(", ")}
         |Ludic Numbers <= 1000: ${ludic.takeWhile(_ <= 1000).size}
         |2000-2005th Ludic Numbers: ${ludic.slice(1999, 2005).mkString(", ")}
         |Triplets <= 250: ${triplets.takeWhile(_._3 <= 250).mkString(", ")}""".stripMargin)
 }
 
 def dropByN[T](lst: LazyList[T], len: Int): LazyList[T] = lst.grouped(len).flatMap(_.init).to(LazyList)
 def ludic: LazyList[Int] = 1 #:: LazyList.unfold(LazyList.from(2)){case n +: ns => Some((n, dropByN(ns, n)))}
 def triplets: LazyList[(Int, Int, Int)] = LazyList.from(1).map(n => (n, n + 2, n + 6)).filter{case (a, b, c) => Seq(a, b, c).forall(ludic.takeWhile(_ <= c).contains)}

}</lang>

Output:
First 25 Ludic Numbers: 1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107
Ludic Numbers <= 1000: 142
2000-2005th Ludic Numbers: 21475, 21481, 21487, 21493, 21503, 21511
Triplets <= 250: (1,3,7), (5,7,11), (11,13,17), (23,25,29), (41,43,47), (173,175,179), (221,223,227), (233,235,239)

Seed7

<lang seed7>$ include "seed7_05.s7i";

const func set of integer: ludicNumbers (in integer: n) is func

 result
   var set of integer: ludicNumbers is {1};
 local
   var set of integer: sieve is EMPTY_SET;
   var integer: ludicNumber is 0;
   var integer: number is 0;
   var integer: count is 0;
 begin
   sieve := {2 .. n};
   while sieve <> EMPTY_SET do
     ludicNumber := min(sieve);
     incl(ludicNumbers, ludicNumber);
     count := 0;
     for number range sieve do
       if count rem ludicNumber = 0 then
         excl(sieve, number);
       end if;
       incr(count);
     end for;
   end while;
 end func;

const integer: limit is 22000; const set of integer: ludicNumbers is ludicNumbers(limit);

const proc: main is func

 local
   var integer: number is 0;
   var integer: count is 0;
 begin
   write("First 25:");
   for number range ludicNumbers until count = 25 do
     write(" " <& number);
     incr(count);
   end for;
   writeln;
   count := 0;
   for number range ludicNumbers until number > 1000 do
     incr(count);
   end for;
   writeln("Ludics below 1000: " <& count);
   write("Ludic 2000 to 2005:");
   count := 0;
   for number range ludicNumbers until count >= 2005 do
     incr(count);
     if count >= 2000 then
       write(" " <& number);
     end if;
   end for;
   writeln;
   write("Triples below 250:");
   for number range ludicNumbers until number > 250 do
     if number + 2 in ludicNumbers and number + 6 in ludicNumbers then
       write(" (" <& number <& ", " <& number + 2 <& ", " <& number + 6 <& ")");
     end if;
   end for;
   writeln;
 end func;</lang>
Output:
First 25: 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107
Ludics below 1000: 142
Ludic 2000 to 2005: 21475 21481 21487 21493 21503 21511
Triples below 250: (1, 3, 7) (5, 7, 11) (11, 13, 17) (23, 25, 29) (41, 43, 47) (173, 175, 179) (221, 223, 227) (233, 235, 239)

SequenceL

<lang sequenceL> import <Utilities/Set.sl>;

ludic(v(1), result(1)) := let n := head(v); filtered[i] := v[i] when (i-1) mod n /= 0; in result when size(v) < 1 else ludic(filtered, result ++ [n]);

count : int(1) * int * int -> int; count(v(1), top, index) := index-1 when v[index] > top else count(v, top, index + 1);

main() := let ludics := ludic(2...100000, [1]); ludics250 := ludics[1 ... count(ludics, 250, 1)]; triplets[i] := [i, i+2, i+6] when elementOf(i+2, ludics250) and elementOf(i+6, ludics250) foreach i within ludics250; in "First 25:\n" ++ toString(ludics[1...25]) ++ "\n\nLudics below 1000:\n" ++ toString(count(ludics, 1000, 1)) ++ "\n\nLudic 2000 to 2005:\n" ++ toString(ludics[2000...2005]) ++ "\n\nTriples below 250:\n" ++ toString(triplets) ; </lang>

Output:
First 25:
[1,2,3,5,7,11,13,17,23,25,29,37,41,43,47,53,61,67,71,77,83,89,91,97,107]

Ludics below 1000:
142

Ludic 2000 to 2005:
[21475,21481,21487,21493,21503,21511]

Triples below 250:
[[1,3,7],[5,7,11],[11,13,17],[23,25,29],[41,43,47],[173,175,179],[221,223,227],[233,235,239]]

Sidef

Translation of: Ruby

<lang ruby>func ludics_upto(nmax=100000) {

 Enumerator({ |collect|
   collect(1)
   var arr = @(2..nmax)
   while (arr) {
     collect(var n = arr[0])
     arr.range.by(n).each {|i| arr[i] = nil}
     arr.compact!
   }
 })

}

func ludics_first(n) {

   ludics_upto(n * n.log2).first(n)

}

say("First 25 Ludic numbers: ", ludics_first(25).join(' ')) say("Ludics below 1000: ", ludics_upto(1000).len) say("Ludic numbers 2000 to 2005: ", ludics_first(2005).last(6).join(' '))

var a = ludics_upto(250).to_a say("Ludic triples below 250: ", a.grep{|x| a.contains_all([x+2, x+6]) } \

                                 .map {|x| '(' + [x, x+2, x+6].join(' ') + ')' } \
                                 .join(' '))</lang>
Output:
First 25 Ludic numbers: 1 2 3 5 7 11 13 17 23 25 29 37 41 43 47 53 61 67 71 77 83 89 91 97 107
Ludics below 1000: 142
Ludic numbers 2000 to 2005: 21475 21481 21487 21493 21503 21511
Ludic triples below 250: (1 3 7) (5 7 11) (11 13 17) (23 25 29) (41 43 47) (173 175 179) (221 223 227) (233 235 239)

Tcl

Works with: Tcl version 8.6

The limit on the number of values generated is the depth of stack; this can be set to arbitrarily deep to go as far as you want. Provided you are prepared to wait for the values to be generated. <lang tcl>package require Tcl 8.6

proc ludic n {

   global ludicList ludicGenerator
   for {} {[llength $ludicList] <= $n} {lappend ludicList $i} {

set i [$ludicGenerator] set ludicGenerator [coroutine L_$i apply {{gen k} { yield [info coroutine] while true { set val [$gen] if {[incr i] == $k} {set i 0} else {yield $val} } }} $ludicGenerator $i]

   }
   return [lindex $ludicList $n]

}

  1. Bootstrap the generator sequence

set ludicList [list 1] set ludicGenerator [coroutine L_1 apply {{} {

   set n 1
   yield [info coroutine]
   while true {yield [incr n]}

}}]

  1. Default of 1000 is not enough

interp recursionlimit {} 5000

for {set i 0;set l {}} {$i < 25} {incr i} {lappend l [ludic $i]} puts "first25: [join $l ,]"

for {set i 0} {[ludic $i] <= 1000} {incr i} {} puts "below=1000: $i"

for {set i 1999;set l {}} {$i < 2005} {incr i} {lappend l [ludic $i]} puts "2000-2005: [join $l ,]"

for {set i 0} {[ludic $i] < 256} {incr i} {set isl([ludic $i]) $i} for {set i 1;set l {}} {$i < 250} {incr i} {

   if {[info exists isl($i)] && [info exists isl([expr {$i+2}])] && [info exists isl([expr {$i+6}])]} {

lappend l ($i,[expr {$i+2}],[expr {$i+6}])

   }

} puts "triplets: [join $l ,]"</lang>

Output:
first25: 1,2,3,5,7,11,13,17,23,25,29,37,41,43,47,53,61,67,71,77,83,89,91,97,107
below=1000: 142
2000-2005: 21475,21481,21487,21493,21503,21511
triplets: (1,3,7),(5,7,11),(11,13,17),(23,25,29),(41,43,47),(173,175,179),(221,223,227),(233,235,239)

VBScript

<lang vb> Set list = CreateObject("System.Collections.Arraylist") Set ludic = CreateObject("System.Collections.Arraylist")

'populate the list For i = 1 To 25000 list.Add i Next

'set 1 as the first ludic number ludic.Add list(0) list.RemoveAt(0)

'variable to count ludic numbers <= 1000 up_to_1k = 1

'determine the succeeding ludic numbers For j = 2 To 2005 If list.Count > 0 Then If list(0) <= 1000 Then up_to_1k = up_to_1k + 1 End If ludic.Add list(0) Else Exit For End If increment = list(0) - 1 n = 0 Do While n <= list.Count - 1 list.RemoveAt(n) n = n + increment Loop Next

'the first 25 ludics WScript.StdOut.WriteLine "First 25 Ludic Numbers:" For k = 0 To 24 If k < 24 Then WScript.StdOut.Write ludic(k) & ", " Else WScript.StdOut.Write ludic(k) End If Next WScript.StdOut.WriteBlankLines(2)

'the number of ludics up to 1000 WScript.StdOut.WriteLine "Ludics up to 1000: " WScript.StdOut.WriteLine up_to_1k WScript.StdOut.WriteBlankLines(1)

'2000th - 2005th ludics WScript.StdOut.WriteLine "The 2000th - 2005th Ludic Numbers:" For k = 1999 To 2004 If k < 2004 Then WScript.StdOut.Write ludic(k) & ", " Else WScript.StdOut.Write ludic(k) End If Next WScript.StdOut.WriteBlankLines(2)

'triplets up to 250: x, x+2, and x+6 WScript.StdOut.WriteLine "Ludic Triplets up to 250: " triplets = "" k = 0 Do While ludic(k) + 6 <= 250 x2 = ludic(k) + 2 x6 = ludic(k) + 6 If ludic.IndexOf(x2,1) > 0 And ludic.IndexOf(x6,1) > 0 Then triplets = triplets & ludic(k) & ", " & x2 & ", " & x6 & vbCrLf End If k = k + 1 Loop WScript.StdOut.WriteLine triplets </lang>

Output:
First 25 Ludic Numbers:
1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107

Ludics up to 1000: 
142

The 2000th - 2005th Ludic Numbers:
21475, 21481, 21487, 21493, 21503, 21511

Ludic Triplets up to 250: 
1, 3, 7
5, 7, 11
11, 13, 17
23, 25, 29
41, 43, 47
173, 175, 179
221, 223, 227
233, 235, 239

zkl

This solution builds an iterator with filters, one for each Ludic number, each extending the previous filter. A "master" iterator sits at the top and provides the interface. When the next Ludic number is requested, the next odd number sent down the list of filters and if it makes to the end, it is the next Ludic number. A new filter is then attached [to the iterator] with a starting index of 1 and which indexes to strike. <lang zkl>fcn dropNth(n,seq){

  seq.tweak(fcn(n,skipper,idx){ if(0==idx.inc()%skipper) Void.Skip else n }

.fp1(n,Ref(1))) // skip every nth number of previous sequence } fcn ludic{ //-->Walker

  Walker(fcn(rw){ w:=rw.value; n:=w.next(); rw.set(dropNth(n,w)); n }

.fp(Ref([3..*,2]))) // odd numbers starting at 3

  .push(1,2);  // first two Ludic numbers

}</lang> <lang zkl>ludic().walk(25).toString(*).println(); ludic().reduce(fcn(sum,n){ if(n<1000) return(sum+1); return(Void.Stop,sum); },0).println(); ludic().drop(1999).walk(6).println(); // Ludic's between 2000 & 2005

ls:=ludic().filter(fcn(n){ (n<250) and True or Void.Stop }); // Ludic's < 250 ls.filter('wrap(n){ ls.holds(n+2) and ls.holds(n+6) }).apply(fcn(n){ T(n,n+2,n+6) }).println();</lang>

Output:
L(1,2,3,5,7,11,13,17,23,25,29,37,41,43,47,53,61,67,71,77,83,89,91,97,107)
142
L(21475,21481,21487,21493,21503,21511)
L(L(1,3,7),L(5,7,11),L(11,13,17),L(23,25,29),L(41,43,47),L(173,175,179),L(221,223,227),L(233,235,239))