Faulhaber's triangle

From Rosetta Code
Faulhaber's triangle is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:



where is the nth-Bernoulli number.


The first 5 rows of Faulhaber's triangle, are:

    1
  1/2  1/2
  1/6  1/2  1/3
    0  1/4  1/2  1/4
-1/30    0  1/3  1/2  1/5


Using the third row of the triangle, we have:


Task
  • show the first 10 rows of Faulhaber's triangle.
  • using the 18th row of Faulhaber's triangle, compute the sum: (extra credit).
See also


C++

Translation of: C#

Uses C++ 17 <lang cpp>#include <exception>

  1. include <iomanip>
  2. include <iostream>
  3. include <numeric>
  4. include <sstream>
  5. include <vector>

class Frac { public: Frac(long n, long d) { if (d == 0) { throw new std::runtime_error("d must not be zero"); }

long nn = n; long dd = d; if (nn == 0) { dd = 1; } else if (dd < 0) { nn = -nn; dd = -dd; }

long g = abs(std::gcd(nn, dd)); if (g > 1) { nn /= g; dd /= g; }

num = nn; denom = dd; }

Frac operator-() const { return Frac(-num, denom); }

Frac operator+(const Frac& rhs) const { return Frac(num*rhs.denom + denom * rhs.num, rhs.denom*denom); }

Frac operator-(const Frac& rhs) const { return Frac(num*rhs.denom - denom * rhs.num, rhs.denom*denom); }

Frac operator*(const Frac& rhs) const { return Frac(num*rhs.num, denom*rhs.denom); }

friend std::ostream& operator<<(std::ostream&, const Frac&);

static Frac ZERO() { return Frac(0, 1); }

private: long num; long denom; };

std::ostream & operator<<(std::ostream & os, const Frac &f) { if (f.num == 0 || f.denom == 1) { return os << f.num; }

std::stringstream ss; ss << f.num << "/" << f.denom; return os << ss.str(); }

Frac bernoulli(int n) { if (n < 0) { throw new std::runtime_error("n may not be negative or zero"); }

std::vector<Frac> a; for (int m = 0; m <= n; m++) { a.push_back(Frac(1, m + 1)); for (int j = m; j >= 1; j--) { a[j - 1] = (a[j - 1] - a[j]) * Frac(j, 1); } }

// returns 'first' Bernoulli number if (n != 1) return a[0]; return -a[0]; }

int binomial(int n, int k) { if (n < 0 || k < 0 || n < k) { throw new std::runtime_error("parameters are invalid"); } if (n == 0 || k == 0) return 1;

int num = 1; for (int i = k + 1; i <= n; i++) { num *= i; }

int denom = 1; for (int i = 2; i <= n - k; i++) { denom *= i; }

return num / denom; }

std::vector<Frac> faulhaberTraingle(int p) { std::vector<Frac> coeffs;

for (int i = 0; i < p + 1; i++) { coeffs.push_back(Frac::ZERO()); }

Frac q{ 1, p + 1 }; int sign = -1; for (int j = 0; j <= p; j++) { sign *= -1; coeffs[p - j] = q * Frac(sign, 1) * Frac(binomial(p + 1, j), 1) * bernoulli(j); }

return coeffs; }

int main() { using namespace std;

for (int i = 0; i < 10; i++) { vector<Frac> coeffs = faulhaberTraingle(i); for (auto it = coeffs.begin(); it != coeffs.end(); it++) { cout << right << setw(5) << *it << " "; } cout << endl; }

return 0; }</lang>

Output:
    1
  1/2    1/2
  1/6    1/2    1/3
    0    1/4    1/2    1/4
-1/30      0    1/3    1/2    1/5
    0  -1/12      0   5/12    1/2    1/6
 1/42      0   -1/6      0    1/2    1/2    1/7
    0   1/12      0  -7/24      0   7/12    1/2    1/8
-1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9
    0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10

C#

Translation of: Java

<lang csharp>using System;

namespace FaulhabersTriangle {

   internal class Frac {
       private long num;
       private long denom;
       public static readonly Frac ZERO = new Frac(0, 1);
       public static readonly Frac ONE = new Frac(1, 1);
       public Frac(long n, long d) {
           if (d == 0) {
               throw new ArgumentException("d must not be zero");
           }
           long nn = n;
           long dd = d;
           if (nn == 0) {
               dd = 1;
           }
           else if (dd < 0) {
               nn = -nn;
               dd = -dd;
           }
           long g = Math.Abs(Gcd(nn, dd));
           if (g > 1) {
               nn /= g;
               dd /= g;
           }
           num = nn;
           denom = dd;
       }
       private static long Gcd(long a, long b) {
           if (b == 0) {
               return a;
           }
           return Gcd(b, a % b);
       }
       public static Frac operator -(Frac self) {
           return new Frac(-self.num, self.denom);
       }
       public static Frac operator +(Frac lhs, Frac rhs) {
           return new Frac(lhs.num * rhs.denom + lhs.denom * rhs.num, rhs.denom * lhs.denom);
       }
       public static Frac operator -(Frac lhs, Frac rhs) {
           return lhs + -rhs;
       }
       public static Frac operator *(Frac lhs, Frac rhs) {
           return new Frac(lhs.num * rhs.num, lhs.denom * rhs.denom);
       }
       public static bool operator <(Frac lhs, Frac rhs) {
           double x = (double)lhs.num / lhs.denom;
           double y = (double)rhs.num / rhs.denom;
           return x < y;
       }
       public static bool operator >(Frac lhs, Frac rhs) {
           double x = (double)lhs.num / lhs.denom;
           double y = (double)rhs.num / rhs.denom;
           return x > y;
       }
       public static bool operator ==(Frac lhs, Frac rhs) {
           return lhs.num == rhs.num && lhs.denom == rhs.denom;
       }
       public static bool operator !=(Frac lhs, Frac rhs) {
           return lhs.num != rhs.num || lhs.denom != rhs.denom;
       }
       public override string ToString() {
           if (denom == 1) {
               return num.ToString();
           }
           return string.Format("{0}/{1}", num, denom);
       }
       public override bool Equals(object obj) {
           var frac = obj as Frac;
           return frac != null &&
                  num == frac.num &&
                  denom == frac.denom;
       }
       public override int GetHashCode() {
           var hashCode = 1317992671;
           hashCode = hashCode * -1521134295 + num.GetHashCode();
           hashCode = hashCode * -1521134295 + denom.GetHashCode();
           return hashCode;
       }
   }
   class Program {
       static Frac Bernoulli(int n) {
           if (n < 0) {
               throw new ArgumentException("n may not be negative or zero");
           }
           Frac[] a = new Frac[n + 1];
           for (int m = 0; m <= n; m++) {
               a[m] = new Frac(1, m + 1);
               for (int j = m; j >= 1; j--) {
                   a[j - 1] = (a[j - 1] - a[j]) * new Frac(j, 1);
               }
           }
           // returns 'first' Bernoulli number
           if (n != 1) return a[0];
           return -a[0];
       }
       static int Binomial(int n, int k) {
           if (n < 0 || k < 0 || n < k) {
               throw new ArgumentException();
           }
           if (n == 0 || k == 0) return 1;
           int num = 1;
           for (int i = k + 1; i <= n; i++) {
               num = num * i;
           }
           int denom = 1;
           for (int i = 2; i <= n - k; i++) {
               denom = denom * i;
           }
           return num / denom;
       }
       static Frac[] FaulhaberTriangle(int p) {
           Frac[] coeffs = new Frac[p + 1];
           for (int i = 0; i < p + 1; i++) {
               coeffs[i] = Frac.ZERO;
           }
           Frac q = new Frac(1, p + 1);
           int sign = -1;
           for (int j = 0; j <= p; j++) {
               sign *= -1;
               coeffs[p - j] = q * new Frac(sign, 1) * new Frac(Binomial(p + 1, j), 1) * Bernoulli(j);
           }
           return coeffs;
       }
       static void Main(string[] args) {
           for (int i = 0; i < 10; i++) {
               Frac[] coeffs = FaulhaberTriangle(i);
               foreach (Frac coeff in coeffs) {
                   Console.Write("{0,5}  ", coeff);
               }
               Console.WriteLine();
           }
       }
   }

}</lang>

Output:
    1
  1/2    1/2
  1/6    1/2    1/3
    0    1/4    1/2    1/4
-1/30      0    1/3    1/2    1/5
    0  -1/12      0   5/12    1/2    1/6
 1/42      0   -1/6      0    1/2    1/2    1/7
    0   1/12      0  -7/24      0   7/12    1/2    1/8
-1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9
    0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10

D

Translation of: Kotlin

<lang D>import std.algorithm : fold; import std.conv : to; import std.exception : enforce; import std.format : formattedWrite; import std.numeric : cmp, gcd; import std.range : iota; import std.stdio; import std.traits;

auto abs(T)(T val) if (isNumeric!T) {

   if (val < 0) {
       return -val;
   }
   return val;

}

struct Frac {

   long num;
   long denom;
   enum ZERO = Frac(0, 1);
   enum ONE = Frac(1, 1);
   this(long n, long d) in {
       enforce(d != 0, "Parameter d may not be zero.");
   } body {
       auto nn = n;
       auto dd = d;
       if (nn == 0) {
           dd = 1;
       } else if (dd < 0) {
           nn = -nn;
           dd = -dd;
       }
       auto g = gcd(abs(nn), abs(dd));
       if (g > 1) {
           nn /= g;
           dd /= g;
       }
       num = nn;
       denom = dd;
   }
   auto opBinary(string op)(Frac rhs) const {
       static if (op == "+" || op == "-") {
           return mixin("Frac(num*rhs.denom"~op~"denom*rhs.num, rhs.denom*denom)");
       } else if (op == "*") {
           return Frac(num*rhs.num, denom*rhs.denom);
       }
   }
   auto opUnary(string op : "-")() const {
       return Frac(-num, denom);
   }
   int opCmp(Frac rhs) const {
       return cmp(cast(real) this, cast(real) rhs);
   }
   bool opEquals(Frac rhs) const {
       return num == rhs.num && denom == rhs.denom;
   }
   void toString(scope void delegate(const(char)[]) sink) const {
       if (denom == 1) {
           formattedWrite(sink, "%d", num);
       } else {
           formattedWrite(sink, "%d/%s", num, denom);
       }
   }
   T opCast(T)() const if (isFloatingPoint!T) {
       return cast(T) num / denom;
   }

}

auto abs(Frac f) {

   if (f.num >= 0) {
       return f;
   }
   return -f;

}

auto bernoulli(int n) in {

   enforce(n >= 0, "Parameter n must not be negative.");

} body {

   Frac[] a;
   a.length = n+1;
   a[0] = Frac.ZERO;
   foreach (m; 0..n+1) {
       a[m] = Frac(1, m+1);
       foreach_reverse (j; 1..m+1) {
           a[j-1] = (a[j-1] - a[j]) * Frac(j, 1);
       }
   }
   if (n != 1) {
       return a[0];
   }
   return -a[0];

}

auto binomial(int n, int k) in {

   enforce(n>=0 && k>=0 && n>=k);

} body {

   if (n==0 || k==0) return 1;
   auto num = iota(k+1, n+1).fold!"a*b"(1);
   auto den = iota(2, n-k+1).fold!"a*b"(1);
   return num / den;

}

Frac[] faulhaberTriangle(int p) {

   Frac[] coeffs;
   coeffs.length = p+1;
   coeffs[0] = Frac.ZERO;
   auto q = Frac(1, p+1);
   auto sign = -1;
   foreach (j; 0..p+1) {
       sign *= -1;
       coeffs[p - j] = q * Frac(sign, 1) * Frac(binomial(p+1, j), 1) * bernoulli(j);
   }
   return coeffs;

}

void main() {

   foreach (i; 0..10) {
       auto coeffs = faulhaberTriangle(i);
       foreach (coeff; coeffs) {
           writef("%5s  ", coeff.to!string);
       }
       writeln;
   }
   writeln;

}</lang>

Output:
    1
  1/2    1/2
  1/6    1/2    1/3
    0    1/4    1/2    1/4
-1/30      0    1/3    1/2    1/5
    0  -1/12      0   5/12    1/2    1/6
 1/42      0   -1/6      0    1/2    1/2    1/7
    0   1/12      0  -7/24      0   7/12    1/2    1/8
-1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9
    0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10

F#

The Function

<lang fsharp> // Generate Faulhaber's Triangle. Nigel Galloway: May 8th., 2018 let Faulhaber=let fN n = (1N - List.sum n)::n

             let rec Faul a b=seq{let t = fN (List.mapi(fun n g->b*g/BigRational.FromInt(n+2)) a)
                                  yield t
                                  yield! Faul t (b+1N)}
             Faul [] 0N

</lang>

The Task

<lang fsharp> Faulhaber |> Seq.take 10 |> Seq.iter (printfn "%A") </lang>

Output:
[1N]
[1/2N; 1/2N]
[1/6N; 1/2N; 1/3N]
[0N; 1/4N; 1/2N; 1/4N]
[-1/30N; 0N; 1/3N; 1/2N; 1/5N]
[0N; -1/12N; 0N; 5/12N; 1/2N; 1/6N]
[1/42N; 0N; -1/6N; 0N; 1/2N; 1/2N; 1/7N]
[0N; 1/12N; 0N; -7/24N; 0N; 7/12N; 1/2N; 1/8N]
[-1/30N; 0N; 2/9N; 0N; -7/15N; 0N; 2/3N; 1/2N; 1/9N]
[0N; -3/20N; 0N; 1/2N; 0N; -7/10N; 0N; 3/4N; 1/2N; 1/10N]

FreeBASIC

Library: GMP

<lang freebasic>' version 12-08-2017 ' compile with: fbc -s console ' uses GMP

  1. Include Once "gmp.bi"
  1. Define i_max 17

Dim As UInteger i, j, x Dim As String s Dim As ZString Ptr gmp_str : gmp_str = Allocate(100)

Dim As Mpq_ptr n, tmp1, tmp2, sum, one, zero n = Allocate(Len(__mpq_struct)) : Mpq_init(n) tmp1 = Allocate(Len(__mpq_struct)) : Mpq_init(tmp1) tmp2 = Allocate(Len(__mpq_struct)) : Mpq_init(tmp2) sum = Allocate(Len(__mpq_struct)) : Mpq_init(sum) zero = Allocate(Len(__mpq_struct)) : Mpq_init(zero) one = Allocate(Len(__mpq_struct)) : Mpq_init(one) Mpq_set_ui(zero, 0, 0) ' 0/0 = 0 Mpq_set_ui(one , 1, 1) ' 1/1 = 1

Dim As Mpq_ptr Faulhaber_triangle(0 To i_max, 1 To i_max +1) ' only initialize the variables we need For i = 0 To i_max

   For j = 1 To i +1
       Faulhaber_triangle(i, j) = Allocate(Len(__Mpq_struct))
       Mpq_init(Faulhaber_triangle(i, j))
   Next

Next

Mpq_set(Faulhaber_triangle(0, 1), one)

' we calculate the first 18 rows For i = 1 To i_max

   Mpq_set(sum, zero)
   For j = i +1 To 2 Step -1
       Mpq_set_ui(tmp1, i, j)            ' i / j
       Mpq_set(tmp2, Faulhaber_triangle(i -1, j -1))
       Mpq_mul(Faulhaber_triangle(i, j), tmp2, tmp1)
       Mpq_canonicalize(Faulhaber_triangle(i, j))
       Mpq_add(sum, sum, Faulhaber_triangle(i, j))
   Next
   Mpq_sub(Faulhaber_triangle(i, 1), one, sum)

Next

Print "The first 10 rows" For i = 0 To 9

   For j = 1 To i +1
       Mpq_get_str(gmp_str, 10, Faulhaber_triangle(i, j))
       s = Space(6) + *gmp_str + Space(6)
       x = InStr(s,"/")
       If x = 0 Then x = 7               ' in case of 0 or 1
       Print Mid(s, x -3, 7);
   Next
   Print

Next print

' using the 17'the row Mpq_set(sum, zero) Mpq_set_ui(n, 1000, 1) ' 1000/1 = 1000 Mpq_set(tmp2, n) For j = 1 To 18

   Mpq_mul(tmp1, n, Faulhaber_triangle(17, j))
   Mpq_add(sum, sum, tmp1)
   Mpq_mul(n, n, tmp2)

Next

Mpq_get_str(gmp_str, 10, sum) Print *gmp_str

' free memory DeAllocate(gmp_str) Mpq_clear(tmp1) : Mpq_clear(tmp2) : Mpq_clear(n) Mpq_clear(zero) : Mpq_clear(one)  : Mpq_clear(sum)

For i = 0 To i_max

   For j = 1 To i +1
       Mpq_clear(Faulhaber_triangle(i, j))
   Next

Next

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
The first 10 rows
   1   
  1/2    1/2  
  1/6    1/2    1/3  
   0     1/4    1/2    1/4  
 -1/30    0     1/3    1/2    1/5  
   0    -1/12    0     5/12   1/2    1/6  
  1/42    0    -1/6     0     1/2    1/2    1/7  
   0     1/12    0    -7/24    0     7/12   1/2    1/8  
 -1/30    0     2/9     0    -7/15    0     2/3    1/2    1/9  
   0    -3/20    0     1/2     0    -7/10    0     3/4    1/2    1/10 

56056972216555580111030077961944183400198333273050000

Go

Translation of: Kotlin

Except that there is no need to roll our own Frac type when we can use the big.Rat type from the Go standard library. <lang go>package main

import (

   "fmt"
   "math/big"

)

func bernoulli(n uint) *big.Rat {

   a := make([]big.Rat, n+1)
   z := new(big.Rat)
   for m := range a {
       a[m].SetFrac64(1, int64(m+1))
       for j := m; j >= 1; j-- {
           d := &a[j-1]
           d.Mul(z.SetInt64(int64(j)), d.Sub(d, &a[j]))
       }
   }
   // return the 'first' Bernoulli number
   if n != 1 {
       return &a[0]
   }
   a[0].Neg(&a[0])
   return &a[0]

}

func binomial(n, k int) int64 {

   if n <= 0 || k <= 0 || n < k {
       return 1
   }
   var num, den int64 = 1, 1
   for i := k + 1; i <= n; i++ {
       num *= int64(i)
   }
   for i := 2; i <= n-k; i++ {
       den *= int64(i)
   }
   return num / den

}

func faulhaberTriangle(p int) []big.Rat {

   coeffs := make([]big.Rat, p+1)
   q := big.NewRat(1, int64(p)+1)
   t := new(big.Rat)
   u := new(big.Rat)
   sign := -1
   for j := range coeffs {
       sign *= -1
       d := &coeffs[p-j]
       t.SetInt64(int64(sign))
       u.SetInt64(binomial(p+1, j))
       d.Mul(q, t)
       d.Mul(d, u)
       d.Mul(d, bernoulli(uint(j)))
   }
   return coeffs

}

func main() {

   for i := 0; i < 10; i++ {
       coeffs := faulhaberTriangle(i)
       for _, coeff := range coeffs {
           fmt.Printf("%5s  ", coeff.RatString())
       }
       fmt.Println()
   }
   fmt.Println()
   // get coeffs for (k + 1)th row
   k := 17
   cc := faulhaberTriangle(k)
   n := int64(1000)
   nn := big.NewRat(n, 1)
   np := big.NewRat(1, 1)
   sum := new(big.Rat)
   tmp := new(big.Rat)
   for _, c := range cc {
       np.Mul(np, nn)
       tmp.Set(np)
       tmp.Mul(tmp, &c)
       sum.Add(sum, tmp)
   }
   fmt.Println(sum.RatString())

}</lang>

Output:
    1  
  1/2    1/2  
  1/6    1/2    1/3  
    0    1/4    1/2    1/4  
-1/30      0    1/3    1/2    1/5  
    0  -1/12      0   5/12    1/2    1/6  
 1/42      0   -1/6      0    1/2    1/2    1/7  
    0   1/12      0  -7/24      0   7/12    1/2    1/8  
-1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9  
    0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10  

56056972216555580111030077961944183400198333273050000

Haskell

Works with: GHC version 7.10.3

<lang haskell>import Data.Ratio (Ratio, numerator, denominator, (%)) import Control.Arrow ((&&&))

-- FAULHABER ------------------------------------------------------------------- -- Infinite list of rows of Faulhaber's triangle faulhaberTriangle :: Rational faulhaberTriangle =

 tail $
 scanl
   (\rs n ->
       let xs = zipWith ((*) . (n %)) [2 ..] rs
       in 1 - sum xs : xs)
   []
   [0 ..]

-- p -> n -> Sum of the p-th powers of the first n positive integers faulhaber :: Int -> Rational -> Rational faulhaber p n = sum (zipWith ((*) . (n ^)) [1 ..] (faulhaberTriangle !! p))

-- DISPLAY --------------------------------------------------------------------- -- (Max numerator+denominator widths) -> Column width -> Filler -> Ratio -> String justifyRatio :: (Int, Int) -> Int -> Char -> Rational -> String justifyRatio (wn, wd) n c nd =

 let [num, den] = [numerator, denominator] <*> [nd]
     w = max n (wn + wd + 2) -- Minimum column width, or more if specified.
 in if 1 == den
      then center w c (show num)
      else let (q, r) = quotRem (w - 1) 2
           in concat
                [ justifyRight q c (show num)
                , "/"
                , justifyLeft (q + r) c (show den)
                ]

center, justifyLeft, justifyRight :: Int -> Char -> String -> String center n c s =

 let (q, r) = quotRem (n - length s) 2
 in concat [replicate q c, s, replicate (q + r) c]

justifyLeft n c s = take n (s ++ replicate n c)

justifyRight n c s = drop (length s) (replicate n c ++ s)

-- List of Ratios -> (Max numerator width, Max denominator width) maxWidths :: Rational -> (Int, Int) maxWidths xss =

 let widest f xs = maximum $ fmap (length . show . f) xs
 in widest numerator &&& widest denominator $ concat xss

-- TEST ------------------------------------------------------------------------ main :: IO () main = do

 let triangle = take 10 faulhaberTriangle
     widths = maxWidths triangle
 mapM_
   putStrLn
   [ unlines ((justifyRatio widths 8 ' ' =<<) <$> triangle)
   , (show . numerator) (faulhaber 17 1000)
   ]</lang>
Output:
   1    
  1/2     1/2   
  1/6     1/2     1/3   
   0      1/4     1/2     1/4   
 -1/30     0      1/3     1/2     1/5   
   0     -1/12     0      5/12    1/2     1/6   
  1/42     0     -1/6      0      1/2     1/2     1/7   
   0      1/12     0     -7/24     0      7/12    1/2     1/8   
 -1/30     0      2/9      0     -7/15     0      2/3     1/2     1/9   
   0     -3/20     0      1/2      0     -7/10     0      3/4     1/2     1/10  

56056972216555580111030077961944183400198333273050000

Java

Translation of: Kotlin
Works with: Java version 8

<lang Java>import java.math.BigDecimal; import java.math.MathContext; import java.util.Arrays; import java.util.stream.LongStream;

public class FaulhabersTriangle {

   private static final MathContext MC = new MathContext(256);
   private static long gcd(long a, long b) {
       if (b == 0) {
           return a;
       }
       return gcd(b, a % b);
   }
   private static class Frac implements Comparable<Frac> {
       private long num;
       private long denom;
       public static final Frac ZERO = new Frac(0, 1);
       public Frac(long n, long d) {
           if (d == 0) throw new IllegalArgumentException("d must not be zero");
           long nn = n;
           long dd = d;
           if (nn == 0) {
               dd = 1;
           } else if (dd < 0) {
               nn = -nn;
               dd = -dd;
           }
           long g = Math.abs(gcd(nn, dd));
           if (g > 1) {
               nn /= g;
               dd /= g;
           }
           num = nn;
           denom = dd;
       }
       public Frac plus(Frac rhs) {
           return new Frac(num * rhs.denom + denom * rhs.num, rhs.denom * denom);
       }
       public Frac unaryMinus() {
           return new Frac(-num, denom);
       }
       public Frac minus(Frac rhs) {
           return this.plus(rhs.unaryMinus());
       }
       public Frac times(Frac rhs) {
           return new Frac(this.num * rhs.num, this.denom * rhs.denom);
       }
       @Override
       public int compareTo(Frac o) {
           double diff = toDouble() - o.toDouble();
           return Double.compare(diff, 0.0);
       }
       @Override
       public boolean equals(Object obj) {
           return null != obj && obj instanceof Frac && this.compareTo((Frac) obj) == 0;
       }
       @Override
       public String toString() {
           if (denom == 1) {
               return Long.toString(num);
           }
           return String.format("%d/%d", num, denom);
       }
       public double toDouble() {
           return (double) num / denom;
       }
       public BigDecimal toBigDecimal() {
           return BigDecimal.valueOf(num).divide(BigDecimal.valueOf(denom), MC);
       }
   }
   private static Frac bernoulli(int n) {
       if (n < 0) throw new IllegalArgumentException("n may not be negative or zero");
       Frac[] a = new Frac[n + 1];
       Arrays.fill(a, Frac.ZERO);
       for (int m = 0; m <= n; ++m) {
           a[m] = new Frac(1, m + 1);
           for (int j = m; j >= 1; --j) {
               a[j - 1] = a[j - 1].minus(a[j]).times(new Frac(j, 1));
           }
       }
       // returns 'first' Bernoulli number
       if (n != 1) return a[0];
       return a[0].unaryMinus();
   }
   private static long binomial(int n, int k) {
       if (n < 0 || k < 0 || n < k) throw new IllegalArgumentException();
       if (n == 0 || k == 0) return 1;
       long num = LongStream.rangeClosed(k + 1, n).reduce(1, (a, b) -> a * b);
       long den = LongStream.rangeClosed(2, n - k).reduce(1, (acc, i) -> acc * i);
       return num / den;
   }
   private static Frac[] faulhaberTriangle(int p) {
       Frac[] coeffs = new Frac[p + 1];
       Arrays.fill(coeffs, Frac.ZERO);
       Frac q = new Frac(1, p + 1);
       int sign = -1;
       for (int j = 0; j <= p; ++j) {
           sign *= -1;
           coeffs[p - j] = q.times(new Frac(sign, 1)).times(new Frac(binomial(p + 1, j), 1)).times(bernoulli(j));
       }
       return coeffs;
   }
   public static void main(String[] args) {
       for (int i = 0; i <= 9; ++i) {
           Frac[] coeffs = faulhaberTriangle(i);
           for (Frac coeff : coeffs) {
               System.out.printf("%5s  ", coeff);
           }
           System.out.println();
       }
       System.out.println();
       // get coeffs for (k + 1)th row
       int k = 17;
       Frac[] cc = faulhaberTriangle(k);
       int n = 1000;
       BigDecimal nn = BigDecimal.valueOf(n);
       BigDecimal np = BigDecimal.ONE;
       BigDecimal sum = BigDecimal.ZERO;
       for (Frac c : cc) {
           np = np.multiply(nn);
           sum = sum.add(np.multiply(c.toBigDecimal()));
       }
       System.out.println(sum.toBigInteger());
   }

}</lang>

Output:
    1  
  1/2    1/2  
  1/6    1/2    1/3  
    0    1/4    1/2    1/4  
-1/30      0    1/3    1/2    1/5  
    0  -1/12      0   5/12    1/2    1/6  
 1/42      0   -1/6      0    1/2    1/2    1/7  
    0   1/12      0  -7/24      0   7/12    1/2    1/8  
-1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9  
    0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10  

JavaScript

ES6

Translation of: Haskell

JavaScript is probably not the right instrument to choose for this task, which requires both a ratio number type and arbitrary precision integers. JavaScript has neither – its only numeric datatype is the IEEE 754 double-precision floating-point format number, into which integers and all else must fit. (See the built-in JS name Number.MAX_SAFE_INTEGER)

This means that we can print Faulhaber's triangle (hand-coding some rudimentary ratio-arithmetic functions), but our only reward for evaluating faulhaber(17, 1000) is an integer overflow. With JS integers out of the box, we can get about as far as faulhaber(17, 8), or faulhaber(4, 1000).

(Further progress would entail implementing some hand-crafted representation of arbitrary precision integers – perhaps a bit beyond the intended scope of this task, and good enough motivation to use a different language) <lang JavaScript>(() => {

   // Order of Faulhaber's triangle -> rows of Faulhaber's triangle
   // faulHaberTriangle :: Int -> Ratio Int
   const faulhaberTriangle = n =>
       map(x => tail(
               scanl((a, x) => {
                   const ys = map((nd, i) =>
                       ratioMult(nd, Ratio(x, i + 2)), a);
                   return cons(ratioMinus(Ratio(1, 1), ratioSum(ys)), ys);
               }, [], enumFromTo(0, x))
           ),
           enumFromTo(0, n));
   // p -> n -> Sum of the p-th powers of the first n positive integers
   // faulhaber :: Int -> Ratio Int -> Ratio Int
   const faulhaber = (p, n) =>
       ratioSum(map(
           (nd, i) => ratioMult(nd, Ratio(raise(n, i + 1), 1)),
           last(faulhaberTriangle(p))
       ));
   // RATIOS -----------------------------------------------------------------
   // (Max numr + denr widths) -> Column width -> Filler -> Ratio -> String
   // justifyRatio :: (Int, Int) -> Int -> Char -> Ratio Integer -> String
   const justifyRatio = (ws, n, c, nd) => {
       const
           w = max(n, ws.nMax + ws.dMax + 2),
           [num, den] = [nd.num, nd.den];
       return all(Number.isSafeInteger, [num, den]) ? (
           den === 1 ? center(w, c, show(num)) : (() => {
               const [q, r] = quotRem(w - 1, 2);
               return concat([
                   justifyRight(q, c, show(num)),
                   '/',
                   justifyLeft(q + r, c, (show(den)))
               ]);
           })()
       ) : "JS integer overflow ... ";
   };
   // Ratio :: Int -> Int -> Ratio
   const Ratio = (n, d) => ({
       num: n,
       den: d
   });
   // ratioMinus :: Ratio -> Ratio -> Ratio
   const ratioMinus = (nd, nd1) => {
       const
           d = lcm(nd.den, nd1.den);
       return simpleRatio({
           num: (nd.num * (d / nd.den)) - (nd1.num * (d / nd1.den)),
           den: d
       });
   };
   // ratioMult :: Ratio -> Ratio -> Ratio
   const ratioMult = (nd, nd1) => simpleRatio({
       num: nd.num * nd1.num,
       den: nd.den * nd1.den
   });
   // ratioPlus :: Ratio -> Ratio -> Ratio
   const ratioPlus = (nd, nd1) => {
       const
           d = lcm(nd.den, nd1.den);
       return simpleRatio({
           num: (nd.num * (d / nd.den)) + (nd1.num * (d / nd1.den)),
           den: d
       });
   };
   // ratioSum :: [Ratio] -> Ratio
   const ratioSum = xs =>
       simpleRatio(foldl((a, x) => ratioPlus(a, x), {
           num: 0,
           den: 1
       }, xs));
   // ratioWidths :: Ratio -> {nMax::Int, dMax::Int}
   const ratioWidths = xss => {
       return foldl((a, x) => {
           const [nw, dw] = ap(
               [compose(length, show)], [x.num, x.den]
           ), [an, ad] = ap(
               [curry(flip(lookup))(a)], ['nMax', 'dMax']
           );
           return {
               nMax: nw > an ? nw : an,
               dMax: dw > ad ? dw : ad
           };
       }, {
           nMax: 0,
           dMax: 0
       }, concat(xss));
   };
   // simpleRatio :: Ratio -> Ratio
   const simpleRatio = nd => {
       const g = gcd(nd.num, nd.den);
       return {
           num: nd.num / g,
           den: nd.den / g
       };
   };
   // GENERIC FUNCTIONS ------------------------------------------------------
   // all :: (a -> Bool) -> [a] -> Bool
   const all = (f, xs) => xs.every(f);
   // A list of functions applied to a list of arguments
   // <*> :: [(a -> b)] -> [a] -> [b]
   const ap = (fs, xs) => //
       [].concat.apply([], fs.map(f => //
           [].concat.apply([], xs.map(x => [f(x)]))));
   // Size of space -> filler Char -> Text -> Centered Text
   // center :: Int -> Char -> Text -> Text
   const center = (n, c, s) => {
       const [q, r] = quotRem(n - s.length, 2);
       return concat(concat([replicate(q, c), s, replicate(q + r, c)]));
   };
   // compose :: (b -> c) -> (a -> b) -> (a -> c)
   const compose = (f, g) => x => f(g(x));
   // concat :: a -> [a] | [String] -> String
   const concat = xs =>
       xs.length > 0 ? (() => {
           const unit = typeof xs[0] === 'string' ?  : [];
           return unit.concat.apply(unit, xs);
       })() : [];
   // cons :: a -> [a] -> [a]
   const cons = (x, xs) => [x].concat(xs);
   // 2 or more arguments
   // curry :: Function -> Function
   const curry = (f, ...args) => {
       const go = xs => xs.length >= f.length ? (f.apply(null, xs)) :
           function () {
               return go(xs.concat(Array.from(arguments)));
           };
       return go([].slice.call(args, 1));
   };
   // enumFromTo :: Int -> Int -> [Int]
   const enumFromTo = (m, n) =>
       Array.from({
           length: Math.floor(n - m) + 1
       }, (_, i) => m + i);
   // flip :: (a -> b -> c) -> b -> a -> c
   const flip = f => (a, b) => f.apply(null, [b, a]);
   // foldl :: (b -> a -> b) -> b -> [a] -> b
   const foldl = (f, a, xs) => xs.reduce(f, a);
   // gcd :: Integral a => a -> a -> a
   const gcd = (x, y) => {
       const _gcd = (a, b) => (b === 0 ? a : _gcd(b, a % b)),
           abs = Math.abs;
       return _gcd(abs(x), abs(y));
   };
   // head :: [a] -> a
   const head = xs => xs.length ? xs[0] : undefined;
   // intercalate :: String -> [a] -> String
   const intercalate = (s, xs) => xs.join(s);
   // justifyLeft :: Int -> Char -> Text -> Text
   const justifyLeft = (n, cFiller, strText) =>
       n > strText.length ? (
           (strText + cFiller.repeat(n))
           .substr(0, n)
       ) : strText;
   // justifyRight :: Int -> Char -> Text -> Text
   const justifyRight = (n, cFiller, strText) =>
       n > strText.length ? (
           (cFiller.repeat(n) + strText)
           .slice(-n)
       ) : strText;
   // last :: [a] -> a
   const last = xs => xs.length ? xs.slice(-1)[0] : undefined;
   // length :: [a] -> Int
   const length = xs => xs.length;
   // lcm :: Integral a => a -> a -> a
   const lcm = (x, y) =>
       (x === 0 || y === 0) ? 0 : Math.abs(Math.floor(x / gcd(x, y)) * y);
   // lookup :: Eq a => a -> [(a, b)] -> Maybe b
   const lookup = (k, pairs) => {
       if (Array.isArray(pairs)) {
           let m = pairs.find(x => x[0] === k);
           return m ? m[1] : undefined;
       } else {
           return typeof pairs === 'object' ? (
               pairs[k]
           ) : undefined;
       }
   };
   // map :: (a -> b) -> [a] -> [b]
   const map = (f, xs) => xs.map(f);
   // max :: Ord a => a -> a -> a
   const max = (a, b) => b > a ? b : a;
   // min :: Ord a => a -> a -> a
   const min = (a, b) => b < a ? b : a;
   // quotRem :: Integral a => a -> a -> (a, a)
   const quotRem = (m, n) => [Math.floor(m / n), m % n];
   // raise :: Num -> Int -> Num
   const raise = (n, e) => Math.pow(n, e);
   // replicate :: Int -> a -> [a]
   const replicate = (n, x) =>
       Array.from({
           length: n
       }, () => x);
   // scanl :: (b -> a -> b) -> b -> [a] -> [b]
   const scanl = (f, startValue, xs) =>
       xs.reduce((a, x) => {
           const v = f(a.acc, x);
           return {
               acc: v,
               scan: cons(a.scan, v)
           };
       }, {
           acc: startValue,
           scan: [startValue]
       })
       .scan;
   // show :: a -> String
   const show = (...x) =>
       JSON.stringify.apply(
           null, x.length > 1 ? [x[0], null, x[1]] : x
       );
   // tail :: [a] -> [a]
   const tail = xs => xs.length ? xs.slice(1) : undefined;
   // unlines :: [String] -> String
   const unlines = xs => xs.join('\n');


   // TEST -------------------------------------------------------------------
   const
       triangle = faulhaberTriangle(9),
       widths = ratioWidths(triangle);
   return unlines(
           map(row =>
               concat(map(cell =>
                   justifyRatio(widths, 8, ' ', cell), row)), triangle)
       ) +
       '\n\n' + unlines(
           [
               'faulhaber(17, 1000)',
               justifyRatio(widths, 0, ' ', faulhaber(17, 1000)),
               '\nfaulhaber(17, 8)',
               justifyRatio(widths, 0, ' ', faulhaber(17, 8)),
               '\nfaulhaber(4, 1000)',
               justifyRatio(widths, 0, ' ', faulhaber(4, 1000)),
           ]
       );

})();</lang>

Output:
   1    
  1/2     1/2   
  1/6     1/2     1/3   
   0      1/4     1/2     1/4   
 -1/30     0      1/3     1/2     1/5   
   0     -1/12     0      5/12    1/2     1/6   
  1/42     0     -1/6      0      1/2     1/2     1/7   
   0      1/12     0     -7/24     0      7/12    1/2     1/8   
 -1/30     0      2/9      0     -7/15     0      2/3     1/2     1/9   
   0     -3/20     0      1/2      0     -7/10     0      3/4     1/2     1/10  

faulhaber(17, 1000)
JS integer overflow ... 

faulhaber(17, 8)
2502137235710736

faulhaber(4, 1000)
200500333333300

Kotlin

Uses appropriately modified code from the Faulhaber's Formula task: <lang scala>// version 1.1.2

import java.math.BigDecimal import java.math.MathContext

val mc = MathContext(256)

fun gcd(a: Long, b: Long): Long = if (b == 0L) a else gcd(b, a % b)

class Frac : Comparable<Frac> {

   val num: Long
   val denom: Long
   companion object {
       val ZERO = Frac(0, 1)
       val ONE  = Frac(1, 1)
   }
   constructor(n: Long, d: Long) {
       require(d != 0L)
       var nn = n
       var dd = d
       if (nn == 0L) {
           dd = 1
       }
       else if (dd < 0) {
           nn = -nn
           dd = -dd
       }
       val g = Math.abs(gcd(nn, dd))
       if (g > 1) {
           nn /= g
           dd /= g
       }
       num = nn
       denom = dd
   }
   constructor(n: Int, d: Int) : this(n.toLong(), d.toLong())
   operator fun plus(other: Frac) =
       Frac(num * other.denom + denom * other.num, other.denom * denom)
   operator fun unaryMinus() = Frac(-num, denom)
   operator fun minus(other: Frac) = this + (-other)
   operator fun times(other: Frac) = Frac(this.num * other.num, this.denom * other.denom)
   fun abs() = if (num >= 0) this else -this
   override fun compareTo(other: Frac): Int {
       val diff = this.toDouble() - other.toDouble()
       return when {
           diff < 0.0  -> -1
           diff > 0.0  -> +1
           else        ->  0
       }
   }
   override fun equals(other: Any?): Boolean {
      if (other == null || other !is Frac) return false
      return this.compareTo(other) == 0
   }
   override fun toString() = if (denom == 1L) "$num" else "$num/$denom"
   fun toDouble() = num.toDouble() / denom
   fun toBigDecimal() = BigDecimal(num).divide(BigDecimal(denom), mc)

}

fun bernoulli(n: Int): Frac {

   require(n >= 0)
   val a = Array(n + 1) { Frac.ZERO }
   for (m in 0..n) {
       a[m] = Frac(1, m + 1)
       for (j in m downTo 1) a[j - 1] = (a[j - 1] - a[j]) * Frac(j, 1)
   }
   return if (n != 1) a[0] else -a[0] // returns 'first' Bernoulli number

}

fun binomial(n: Int, k: Int): Long {

   require(n >= 0 && k >= 0 && n >= k)
   if (n == 0 || k == 0) return 1
   val num = (k + 1..n).fold(1L) { acc, i -> acc * i }
   val den = (2..n - k).fold(1L) { acc, i -> acc * i }
   return num / den

}

fun faulhaberTriangle(p: Int): Array<Frac> {

   val coeffs = Array(p + 1) { Frac.ZERO }
   val q = Frac(1, p + 1)
   var sign = -1
   for (j in 0..p) {
       sign *= -1
       coeffs[p - j] = q * Frac(sign, 1) * Frac(binomial(p + 1, j), 1) * bernoulli(j)
   }
   return coeffs

}

fun main(args: Array<String>) {

   for (i in 0..9){
       val coeffs = faulhaberTriangle(i)
       for (coeff in coeffs) print("${coeff.toString().padStart(5)}  ")
       println()
   }
   println()
   // get coeffs for (k + 1)th row
   val k = 17
   val cc = faulhaberTriangle(k)
   val n = 1000
   val nn  = BigDecimal(n)
   var np  = BigDecimal.ONE
   var sum = BigDecimal.ZERO
   for (c in cc) {
       np *= nn
       sum += np * c.toBigDecimal()
   }
   println(sum.toBigInteger())

}</lang>

Output:
    1  
  1/2    1/2  
  1/6    1/2    1/3  
    0    1/4    1/2    1/4  
-1/30      0    1/3    1/2    1/5  
    0  -1/12      0   5/12    1/2    1/6  
 1/42      0   -1/6      0    1/2    1/2    1/7  
    0   1/12      0  -7/24      0   7/12    1/2    1/8  
-1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9  
    0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10  

56056972216555580111030077961944183400198333273050000

Perl

Library: ntheory

<lang perl>use 5.010; use List::Util qw(sum); use Math::BigRat try => 'GMP'; use ntheory qw(binomial bernfrac);

sub faulhaber_triangle {

   my ($p) = @_;
   map {
       Math::BigRat->new(bernfrac($_))
         * binomial($p, $_)
         / $p
   } reverse(0 .. $p-1);

}

  1. First 10 rows of Faulhaber's triangle

foreach my $p (1 .. 10) {

   say map { sprintf("%6s", $_) } faulhaber_triangle($p);

}

  1. Extra credit

my $p = 17; my $n = Math::BigInt->new(1000); my @r = faulhaber_triangle($p+1); say "\n", sum(map { $r[$_] * $n**($_ + 1) } 0 .. $#r);</lang>

Output:
     1
   1/2   1/2
   1/6   1/2   1/3
     0   1/4   1/2   1/4
 -1/30     0   1/3   1/2   1/5
     0 -1/12     0  5/12   1/2   1/6
  1/42     0  -1/6     0   1/2   1/2   1/7
     0  1/12     0 -7/24     0  7/12   1/2   1/8
 -1/30     0   2/9     0 -7/15     0   2/3   1/2   1/9
     0 -3/20     0   1/2     0 -7/10     0   3/4   1/2  1/10

56056972216555580111030077961944183400198333273050000

Perl 6

Works with: Rakudo version 2017.05
Translation of: Sidef

<lang perl6># Helper subs

sub infix:<reduce> (\prev, \this) { this.key => this.key * (this.value - prev.value) }

sub next-bernoulli ( (:key($pm), :value(@pa)) ) {

   $pm + 1 => [ map *.value, [\reduce] ($pm + 2 ... 1) Z=> 1 / ($pm + 2), |@pa ]

}

constant bernoulli = (0 => [1.FatRat], &next-bernoulli ... *).map: { .value[*-1] };

sub binomial (Int $n, Int $p) { combinations($n, $p).elems }

sub asRat (FatRat $r) { $r ?? $r.denominator == 1 ?? $r.numerator !! $r.nude.join('/') !! 0 }


  1. The task

sub faulhaber_triangle ($p) { map { binomial($p + 1, $_) * bernoulli[$_] / ($p + 1) }, ($p ... 0) }

  1. First 10 rows of Faulhaber's triangle:

say faulhaber_triangle($_)».&asRat.fmt('%5s') for ^10; say ;

  1. Extra credit:

my $p = 17; my $n = 1000; say sum faulhaber_triangle($p).kv.map: { $^value * $n**($^key + 1) }</lang>

Output:
    1
  1/2   1/2
  1/6   1/2   1/3
    0   1/4   1/2   1/4
-1/30     0   1/3   1/2   1/5
    0 -1/12     0  5/12   1/2   1/6
 1/42     0  -1/6     0   1/2   1/2   1/7
    0  1/12     0 -7/24     0  7/12   1/2   1/8
-1/30     0   2/9     0 -7/15     0   2/3   1/2   1/9
    0 -3/20     0   1/2     0 -7/10     0   3/4   1/2  1/10

56056972216555580111030077961944183400198333273050000

Phix

Translation of: C#

<lang Phix>include builtins\pfrac.e -- (0.8.0+)

function bernoulli(integer n)

   sequence a = {}
   for m=0 to n do
       a = append(a,{1,m+1})
       for j=m to 1 by -1 do
           a[j] = frac_mul({j,1},frac_sub(a[j+1],a[j]))
       end for
   end for
   if n!=1 then return a[1] end if
   return frac_uminus(a[1])

end function

function binomial(integer n, k)

   if n<0 or k<0 or n<k then ?9/0 end if
   if n=0 or k=0 then return 1 end if
   atom num = 1,
        denom = 1
   for i=k+1 to n do
       num *= i
   end for
   for i=2 to n-k do
       denom *= i
   end for
   return num / denom

end function

function faulhaber_triangle(integer p, bool asString=true)

   sequence coeffs = repeat(frac_zero,p+1)
   for j=0 to p do
       frac coeff = frac_mul({binomial(p+1,j),p+1},bernoulli(j))
       coeffs[p-j+1] = iff(asString?sprintf("%5s",{frac_sprint(coeff)}):coeff)
   end for
   return coeffs

end function

for i=0 to 9 do

   printf(1,"%s\n",{join(faulhaber_triangle(i),"  ")})

end for puts(1,"\n")

sequence row18 = faulhaber_triangle(17,false) frac res = frac_zero atom t1 = time()+1 integer lim = 1000 for k=1 to lim do

   bigatom nn = BA_ONE
   for i=1 to length(row18) do
       res = frac_add(res,frac_mul(row18[i],{nn,1}))
       nn = ba_mul(nn,lim)
   end for
   if time()>t1 then printf(1,"calculating, k=%d...\r",k) t1 = time()+1 end if

end for printf(1,"%s \n",{frac_sprint(res)})</lang>

Output:
    1
  1/2    1/2
  1/6    1/2    1/3
    0    1/4    1/2    1/4
-1/30      0    1/3    1/2    1/5
    0  -1/12      0   5/12    1/2    1/6
 1/42      0   -1/6      0    1/2    1/2    1/7
    0   1/12      0  -7/24      0   7/12    1/2    1/8
-1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9
    0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10

56056972216555580111030077961944183400198333273050000

Python

Translation of: Haskell

<lang python>from itertools import (accumulate, count, islice, starmap) from fractions import (Fraction)


  1. faulhaber :: Integer -> Integer -> Integer

def faulhaber(p, n):

   """Sum of the p-th powers of the first n positive integers"""
   return sum(
       list(starmap(
           lambda x, y: y * (n ** x),
           zip(count(1), faulhaberTriangle(p)[-1])
       ))
   )


  1. faulhaberTriangle :: Int -> Fraction

def faulhaberTriangle(m):

   def go(rs, n):
       xs = list(starmap(
           lambda x, y: Fraction(n, x) * y,
           zip(islice(count(2), m), rs)
       ))
       return [1 - sum(xs)] + xs
   return list(accumulate(
       [[]] + list(islice(count(0), 1 + m)),
       go
   ))[1:]


  1. TEST ----------------------------------------------------

faulhabers = map(

   lambda ln: list(map(
       lambda r: str(r.numerator).rjust(2, ' ') + (
           '/' + str(r.denominator).ljust(5, ' ') if (
               r.denominator > 1
           ) else '      '
       ),
       ln
   )),
   faulhaberTriangle(9)

)

for row in faulhabers:

   print (.join(row))

print () print (

   faulhaber(17, 1000)

)</lang>

Output:
 1      
 1/2     1/2    
 1/6     1/2     1/3    
 0       1/4     1/2     1/4    
-1/30    0       1/3     1/2     1/5    
 0      -1/12    0       5/12    1/2     1/6    
 1/42    0      -1/6     0       1/2     1/2     1/7    
 0       1/12    0      -7/24    0       7/12    1/2     1/8    
-1/30    0       2/9     0      -7/15    0       2/3     1/2     1/9    
 0      -3/20    0       1/2     0      -7/10    0       3/4     1/2     1/10   

56056972216555580111030077961944183400198333273050000

Racket

<lang racket>#lang racket (require math/number-theory)

(define (second-bernoulli-number n)

 (if (= n 1) 1/2 (bernoulli-number n)))

(define (faulhaber-row:formulaic p)

 (let ((p+1 (+ p 1)))
   (reverse
    (for/list ((j (in-range p+1)))
      (* (/ p+1) (second-bernoulli-number j) (binomial p+1 j))))))

(define (sum-k^p:formulaic p n)

 (for/sum ((f (faulhaber-row:formulaic p)) (i (in-naturals 1)))
   (* f (expt n i))))

(module+ main

 (map faulhaber-row:formulaic (range 10))
 (sum-k^p:formulaic 17 1000))

(module+ test

 (require rackunit)
 (check-equal? (sum-k^p:formulaic 17 1000)
               (for/sum ((k (in-range 1 (add1 1000)))) (expt k 17))))</lang>
Output:
'((1) (1/2 1/2) (1/6 1/2 1/3) (0 1/4 1/2 1/4) (-1/30 0 1/3 1/2 1/5) (0 -1/12 0 5/12 1/2 1/6) (1/42 0 -1/6 0 1/2 1/2 1/7) (0 1/12 0 -7/24 0 7/12 1/2 1/8) (-1/30 0 2/9 0 -7/15 0 2/3 1/2 1/9) (0 -3/20 0 1/2 0 -7/10 0 3/4 1/2 1/10))
56056972216555580111030077961944183400198333273050000

REXX

<lang rexx>Numeric Digits 100 Do r=0 To 20

 ra=r-1
 If r=0 Then
   f.r.1=1
 Else Do
   rsum=0
   Do c=2 To r+1
     ca=c-1
     f.r.c=fdivide(fmultiply(f.ra.ca,r),c)
     rsum=fsum(rsum,f.r.c)
     End
   f.r.1=fsubtract(1,rsum)
   End
 End

Do r=0 To 9

 ol=
 Do c=1 To r+1
   ol=ol right(f.r.c,5)
   End
 Say ol
 End

Say x=0 Do c=1 To 18

 x=fsum(x,fmultiply(f.17.c,(1000**c)))
 End

Say k(x) s=0 Do k=1 To 1000

 s=s+k**17
 End

Say s Exit

fmultiply: Procedure Parse Arg a,b Parse Var a ad '/' an Parse Var b bd '/' bn If an= Then an=1 If bn= Then bn=1 res=(abs(ad)*abs(bd))'/'||(an*bn) Return s(ad,bd)k(res)

fdivide: Procedure Parse Arg a,b Parse Var a ad '/' an Parse Var b bd '/' bn If an= Then an=1 If bn= Then bn=1 res=s(ad,bd)(abs(ad)*bn)'/'||(an*abs(bd)) Return k(res)

fsum: Procedure Parse Arg a,b Parse Var a ad '/' an Parse Var b bd '/' bn If an= Then an=1 If bn= Then bn=1 n=an*bn d=ad*bn+bd*an res=d'/'n Return k(res)

fsubtract: Procedure Parse Arg a,b Parse Var a ad '/' an Parse Var b bd '/' bn If an= Then an=1 If bn= Then bn=1 n=an*bn d=ad*bn-bd*an res=d'/'n Return k(res)

s: Procedure Parse Arg ad,bd s=sign(ad)*sign(bd) If s<0 Then Return '-'

      Else Return 

k: Procedure Parse Arg a Parse Var a ad '/' an Select

 When ad=0 Then Return 0
 When an=1 Then Return ad
 Otherwise Do
   g=gcd(ad,an)
   ad=ad/g
   an=an/g
   Return ad'/'an
   End
 End

gcd: procedure Parse Arg a,b if b = 0 then return abs(a) return gcd(b,a//b)</lang>

Output:
     1
   1/2   1/2
   1/6   1/2   1/3
     0   1/4   1/2   1/4
 -1/30     0   1/3   1/2   1/5
     0 -1/12     0  5/12   1/2   1/6
  1/42     0  -1/6     0   1/2   1/2   1/7
     0  1/12     0 -7/24     0  7/12   1/2   1/8
 -1/30     0   2/9     0 -7/15     0   2/3   1/2   1/9
     0 -3/20     0   1/2     0 -7/10     0   3/4   1/2  1/10

56056972216555580111030077961944183400198333273050000
56056972216555580111030077961944183400198333273050000

Sidef

<lang ruby>func faulhaber_triangle(p) {

   { binomial(p, _) * bernoulli(_) / p }.map(p ^.. 0)

}

    1. First 10 rows of Faulhaber's triangle:

{ |p|

   say faulhaber_triangle(p).map{ '%6s' % .as_rat }.join

} << 1..10

    1. Extra credit:

const p = 17 const n = 1000

say say faulhaber_triangle(p+1).map_kv {|k,v| v * n**(k+1) }.sum</lang>

Output:
     1
   1/2   1/2
   1/6   1/2   1/3
     0   1/4   1/2   1/4
 -1/30     0   1/3   1/2   1/5
     0 -1/12     0  5/12   1/2   1/6
  1/42     0  -1/6     0   1/2   1/2   1/7
     0  1/12     0 -7/24     0  7/12   1/2   1/8
 -1/30     0   2/9     0 -7/15     0   2/3   1/2   1/9
     0 -3/20     0   1/2     0 -7/10     0   3/4   1/2  1/10

56056972216555580111030077961944183400198333273050000

zkl

Uses the code from Faulhaber's formula#zkl and GMP (Gnu Multi Precision library). <lang zkl>foreach p in (10){

  faulhaberFormula(p).apply("%7s".fmt).concat().println();

}

// each term of faulhaberFormula is BigInt/BigInt [1..].zipWith(fcn(n,rat){ rat*BN(1000).pow(n) }, faulhaberFormula(17)) .walk() // -->(0, -3617/60 * 1000^2, 0, 595/3 * 1000^4 ...) .reduce('+) // rat + rat + ... .println();</lang>

Output:
      1
    1/2    1/2
    1/6    1/2    1/3
      0    1/4    1/2    1/4
  -1/30      0    1/3    1/2    1/5
      0  -1/12      0   5/12    1/2    1/6
   1/42      0   -1/6      0    1/2    1/2    1/7
      0   1/12      0  -7/24      0   7/12    1/2    1/8
  -1/30      0    2/9      0  -7/15      0    2/3    1/2    1/9
      0  -3/20      0    1/2      0  -7/10      0    3/4    1/2   1/10
56056972216555580111030077961944183400198333273050000