External sort

From Rosetta Code
Revision as of 17:18, 5 July 2021 by PureFox (talk | contribs) (Added Wren)
External sort is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Sort a huge file too large to fit into memory.


The algorithm consists in reading a large file to be sorted in chunks of data small enough to fit in main memory, sort each of the chunks, write them out to a temporary file, and finally combined the smaller subfiles into a single larger file.

For more info see: https://en.wikipedia.org/wiki/External_sorting

The sorting algorithm can be any popular sort, like quicksort.

For simplicity one can assume that the file consists of fixed length integers and that the sort function is less-than (<).

AppleScript

This effort uses an in-place Quicksort, which tends to move things around less than a merge sort and so hopefully means fewer writes to the file and a less long wait for the task to finish. It suits the characteristics of AppleScript's File Read/Write commands and the fact that stable sorting isn't required with integers.

A "half chunk" of integers at a time is read to each of two buffer lists covering different sections of the file range being partitioned. Only those integers needing to be swapped are written back to the file and each list is replaced as it's used up. When the converging sections eventually overlap, a single list is used instead which is updated in parallel with the file to ensure that the partitioning repeat stops in the right place. Partitions less than a "chunk" in length are sorted in memory with a heap sort. (The Foundation framework has a built-in NSMutableArray sort which is faster than a vanilla heap sort — even with the necessary derivation of NSMutableArrays from the lists and lists from the sorted arrays — but I don't know how well this fits the task's "low memory" conceit.)

<lang applescript>(* Quicksort algorithm: S.A.R. (Tony) Hoare, 1960. Optimisations by Robert Sedgewick and others at various times. Heap sort algorithm: J.W.J. Williams, 1964.

  • )

use AppleScript version "2.3.1" -- MacOS 10.9 (Mavericks) or later — for these 'use' commands! use internalSorter : script "Heap sort" -- <https://www.rosettacode.org/wiki/Sorting_algorithms/Heapsort#AppleScript>. use scripting additions

-- Configuration. property maxChunkSize : 256000 -- 256 KBytes (64000 AppleScript integers). The larger this figure can be, the less slow the sort. property integerSize : 4 property maxInternalSortSize : maxChunkSize

on externalSort(theFile) -- Param: file, alias, or HFS path.

   (* Properties and handlers for the sort. *)
   script o
       -- Precalculated values.
       property twiceIntegerSize : integerSize + integerSize
       property maxHalfChunkSize : maxChunkSize div twiceIntegerSize * integerSize
       -- Reference number of the system file handle for the open file.
       property fRef : missing value
       -- Start byte indices of integers in the file.
       property i : missing value
       property j : missing value
       -- Start byte indices of the most recent additions to pivot stores in the file.
       property pLeft : missing value
       property pRight : missing value
       -- Two buffer lists and assocatiated info.
       property leftList : missing value
       property leftEndByte : missing value -- End byte index of equivalent range in file.
       property a : missing value -- Left list index.
       property leftListLength : missing value
       property rightList : missing value
       property rightStartByte : missing value -- Start byte index of equivalent range in file.
       property b : missing value -- Right list index.        
       -- Whether or not down to single-list working.
       property singleList : missing value
       
       (* Quicksort handler. Sorts a file of integers in place. *)
       on qsrt(l, r) -- Params: start-byte indices in the file of the first and last integers in a range to be partitioned.    
           repeat -- Tail call elimination repeat.
               -- Prime the properties for this range.
               set {i, j, pLeft, pRight, leftEndByte, a, leftListLength, rightStartByte, b, singleList} to ¬
                   {l, r, l - integerSize, r + integerSize, l - 1, 0, 0, r + integerSize, 0, false}
               -- Get the first and last integers in the range, setting up the first two buffer lists in the process.
               set leftValue to nextLeftInteger(l, r)
               set rightValue to nextRightInteger(l, r)
               -- Read a third integer directly from the middle of the range in the file.
               set pivot to (read fRef from ((l + r - 2) div twiceIntegerSize * integerSize + 1) for integerSize as integer)
               -- Choose one of the three as the pivot (median-of-3 pivot selection).
               set leftGreaterThanRight to (leftValue > rightValue)
               if (leftValue > pivot) then
                   if (leftGreaterThanRight) then
                       if (rightValue > pivot) then set pivot to rightValue
                   else
                       set pivot to leftValue
                   end if
               else if (pivot > rightValue) then
                   if (leftGreaterThanRight) then
                       set pivot to leftValue
                   else
                       set pivot to rightValue
                   end if
               end if
               -- Whichever's now the pivot, swap the outermost two if the left's greater than the right.
               -- If either of them *is* the pivot, advance the pivot store boundary on the relevant side.
               if (leftGreaterThanRight) then
                   write leftValue to fRef as integer starting at r
                   write rightValue to fRef as integer starting at l
                   if (leftValue = pivot) then
                       set pRight to r
                   else if (rightValue = pivot) then
                       set pLeft to l
                   end if
               else
                   if (leftValue = pivot) then set pLeft to l
                   if (rightValue = pivot) then set pRight to r
               end if
               
               -- Continue partitioning the range.
               set i to l + integerSize
               set j to r - integerSize
               repeat until (i > j) -- Partitioning repeat.
                   set leftValue to nextLeftInteger(l, r)
                   repeat while (leftValue < pivot)
                       set i to i + integerSize
                       set leftValue to nextLeftInteger(l, r)
                   end repeat
                   
                   set rightValue to nextRightInteger(l, r)
                   repeat while (rightValue > pivot)
                       set j to j - integerSize
                       set rightValue to nextRightInteger(l, r)
                   end repeat
                   
                   if (j > i) then
                       -- Three-way partitioning: if either value to be swapped is a pivot instance, extend the pivot store
                       -- on the destination side and, if the appropriated slot isn't already the pivot destination, swap its
                       -- current content for (a copy of) the pivot and use the retrieved value instead in the main swap.
                       if (leftValue = pivot) then
                           set pRight to pRight - integerSize
                           if (pRight > j) then
                               set leftValue to (read fRef from pRight for integerSize as integer)
                               write pivot as integer to fRef starting at pRight
                           end if
                       end if
                       if (rightValue = pivot) then
                           set pLeft to pLeft + integerSize
                           if (pLeft < i) then
                               set rightValue to (read fRef from pLeft for integerSize as integer)
                               write pivot as integer to fRef starting at pLeft
                           end if
                       end if
                       -- Write the values to be swapped to the appropriate places in the file.
                       write rightValue to fRef as integer starting at i
                       write leftValue to fRef as integer starting at j
                       -- If down to a single buffer list, update this too so that the repeat will know when to stop.
                       if (singleList) then
                           set item a of my leftList to rightValue
                           set item b of my leftList to leftValue
                       end if
                   else if (i > j) then
                       exit repeat
                   end if
                   
                   set i to i + integerSize
                   set j to j - integerSize
               end repeat -- Partitioning.
               
               -- Swap any stored pivot instances into the slots next to the crossed indices
               -- and advance the indices to exclude the pivots from the rest of the sort. 
               repeat with p from l to pLeft by integerSize
                   if (j > pLeft) then
                       write (read fRef from j for integerSize as integer) to fRef as integer starting at p
                       write pivot to fRef as integer starting at j
                       set j to j - integerSize
                   else
                       -- Don't bother swapping where store and target slots overlap.
                       set j to p - integerSize
                       exit repeat
                   end if
               end repeat
               repeat with p from r to pRight by -integerSize
                   if (i < pRight) then
                       write (read fRef from i for integerSize as integer) to fRef as integer starting at p
                       write pivot to fRef as integer starting at i
                       set i to i + integerSize
                   else
                       set i to p + integerSize
                       exit repeat
                   end if
               end repeat
               
               -- Where the new partitions are short enough, sort them in memory with a non-recursive sort.
               -- Otherwise subpartition the shorter one recursively, then the longer iteratively.
               set leftDiff to j - l
               set rightDiff to r - i
               if (leftDiff < rightDiff) then
                   set {shorterDiff, ls, rs, longerDiff, l} to {leftDiff, l, j, rightDiff, i}
               else
                   set {shorterDiff, ls, rs, longerDiff, r} to {rightDiff, i, r, leftDiff, j}
               end if
               if (shorterDiff < maxInternalSortSize) then
                   if (rs > ls) then sortInMemory(ls, rs)
               else
                   qsrt(ls, rs)
               end if
               if (longerDiff < maxInternalSortSize) then
                   if (r > l) then sortInMemory(l, r)
                   exit repeat -- … and return from the handler.
               end if
               -- Otherwise go round again to handle the longer partition.
           end repeat -- Tail call elimination.
       end qsrt
       
       (* Return the next integer from the left buffer list, setting up or replacing the list as necessary. *)
       on nextLeftInteger(l, r)
           set a to a + 1
           if (a > leftListLength) then
               -- The existing left list has been used up or doesn't yet exist.
               set leftEndByte to leftEndByte + maxHalfChunkSize
               -- Derive a new left list from the next half-chunk of data — unless any of this is already
               -- covered by the other list, in which case replace both lists with a single one.
               if (leftEndByte < rightStartByte) then
                   set leftList to (read fRef from i for maxHalfChunkSize as integer) as list
                   set a to 1
                   set leftListLength to (count leftList)
               else
                   goToSingleList(l, r)
                   set b to b + 1
               end if
           end if
           
           return item a of my leftList
       end nextLeftInteger
       
       (* Return the next integer from the right buffer list, simile. *)
       on nextRightInteger(l, r)
           set b to b - 1
           if (b < 1) then
               set rightStartByte to rightStartByte - maxHalfChunkSize
               if (rightStartByte > leftEndByte) then
                   set rightList to (read fRef from rightStartByte for maxHalfChunkSize as integer) as list
                   set b to (count rightList)
               else
                   goToSingleList(l, r)
               end if
           end if
           
           return item b of my rightList
       end nextRightInteger
       
       (* Set up a single buffer list for use in the closing stage of a partitioning repeat. *)
       on goToSingleList(l, r)
           -- The range to read from the file is from bytes i to (j + integerSize - 1)
           -- PLUS an integer either side, if these are within the range being partitioned,
           -- to help ensure that the partitioning repeat stops in the right place.
           if (i > l) then
               set readStart to i - integerSize
               set a to 2
           else
               set readStart to i
               set a to 1
           end if
           if (j < r) then
               set readEnd to j + twiceIntegerSize - 1
           else
               set readEnd to j + integerSize - 1
           end if
           -- Ditch the existing right list.
           set rightList to missing value
           -- Read the integers from the calculated range and set both list properties to the same result instance.
           set leftList to (read fRef from readStart to readEnd as integer) as list
           set rightList to leftList
           -- Set the other relevant properties.
           set b to (count rightList)
           if (j < r) then set b to b - 1
           set leftListLength to b
           set singleList to true
       end goToSingleList
       
       (* Read integers from a given range in the file, sort them in memory, and write them back to the same range. *)
       on sortInMemory(l, r)
           set rightList to missing value
           set leftList to (read fRef from l to (r + integerSize - 1) as integer) as list
           tell internalSorter to sort(leftList, 1, -1)
           read fRef from l for 0 -- Set the file handle's position pointer.
           repeat with x from 1 to (count leftList)
               write (item x of my leftList) as integer to fRef
           end repeat
       end sortInMemory
   end script
   
   (* Main handler code. Sets up and starts the sort. *)
   
   -- Check the input.
   try
       set theFile to theFile as alias
   on error
       display dialog "The specified file doesn't exist." buttons {"Stop"} default button 1 cancel button 1 with icon stop
   end try
   set fileSize to (get eof theFile)
   if (fileSize is 0) then
       display dialog "The file is empty." buttons {"Stop"} default button 1 cancel button 1 with icon stop
   else if (fileSize mod integerSize > 0) then
       display dialog ¬
           "The file size isn't an exact number of integers." buttons {"Stop"} default button 1 cancel button 1 with icon stop
   end if
   
   -- Get the user to specify the destination file. Can be the original.
   set oldPath to theFile as text
   set astid to AppleScript's text item delimiters
   set AppleScript's text item delimiters to ":"
   tell oldPath to set {rootPath, oldName} to {text 1 thru text item -2, text item -1}
   set AppleScript's text item delimiters to "."
   tell oldName to set newName to text 1 thru text item -2 & " (sorted copy)." & text item -1
   set AppleScript's text item delimiters to astid
   set newFile to ¬
       (choose file name with prompt "Save the sorted result as…" default name newName default location (rootPath as alias))
   -- If the original wasn't chosen, copy the data to the new location.
   -- There are simpler ways to copy a file, but this still practically instantaneous
   -- and definitely only involves maxChunkSize bytes at a time.
   if (newFile as text is not oldPath) then
       set readRef to (open for access theFile)
       set writeRef to (open for access newFile with write permission)
       try
           set eof writeRef to 0
           repeat with i from 1 to fileSize by maxChunkSize
               set d to (read readRef for maxChunkSize as data)
               write d as data to writeRef
           end repeat
           close access writeRef
           close access readRef
       on error errMsg
           close access writeRef
           close access readRef
           display dialog errMsg buttons {"Stop"} default button 1 cancel button 1 with icon stop
       end try
       set theFile to newFile
   end if
   
   -- Open the target file with write permission and perform the sort.
   set o's fRef to (open for access theFile with write permission)
   try
       -- Handler parameters: first-byte indices of the first and last integers in the file.
       if (fileSize > maxChunkSize) then
           tell o to qsrt(1, fileSize + 1 - integerSize)
       else
           tell o to sortInMemory(1, fileSize + 1 - integerSize)
       end if
       
       close access o's fRef
   on error errMsg
       close access o's fRef
       display dialog errMsg buttons {"Stop"} default button 1 cancel button 1 with icon stop
   end try
   
   -- Return the specifier for the sorted file.
   return theFile

end externalSort

set theFile to (path to desktop as text) & "Test.dat" set sortedFile to externalSort(theFile)</lang>

C++

Sort a file of integers using external merge sort.

The input file is read into a single 32 byte buffer (8 ints) and the 8 ints are sorted and then written to a temp file on disk as strings.

This continues until all the numbers from the input file are read and distributed into files of 8 integer strings.

The last file may be less than 8 integers.

All the temp files are opened as ifstreams in a dynamic pointer array.

A minheap reads ints from each file stream in turn, and outputs its contents to the output file.

(The heap generally only fills to 6 items before it writes its contents to the output file.)

All sorted streams are merged in this way out to an external output file merged.txt.

<lang cpp> /* ExternalSort.cpp */


  1. include <iostream>
  2. include <fstream>
  3. include <queue>
  4. include <string>
  5. include <algorithm>
  6. include <cstdio>


/* function signatures */

int main(int argc, char* argv[]); void write_vals(int* const, const size_t, const size_t); std::string mergeFiles(size_t);


/* Comparison object

  compares first item of 2 std::pairs of ints
  true if first item is larger or the same.
  MinHeap sorts with this. 
  It gets called a lot, so the simpler the better.
  STL api stipulates boolean predicate
  A "functor" object defines a function call operator () that returns a value. 
  • /

struct Compare {

 // compare 2 pairs by first element 
 bool operator() ( std::pair<int, int>& p1,  std::pair<int, int>& p2 )
 {
   return p1.first >= p2.first; // Ascending order
 }

};



/* aliases */

using ipair = std::pair<int,int>;

using pairvector = std::vector<ipair>;

using MinHeap = std::priority_queue< ipair, pairvector, Compare >;



/* constants */

const size_t memsize = 32; // 32 bytes

const size_t chunksize = memsize / sizeof(int); // 8 int

const std::string tmp_prefix{"tmp_out_"}; // tmpfile prefix

const std::string tmp_suffix{".txt"}; // tmpfile suffix

const std::string merged_file{"merged.txt"}; // output file


/* functions */

// write int array to file void write_vals( int* const values, const size_t size, const size_t chunk ) {

 // tmp_out_1.txt,  tmp_out_2.txt ... 
 std::string output_file = (tmp_prefix + std::to_string(chunk) + tmp_suffix);
   
 std::ofstream ofs(output_file.c_str()); //output file
 for (int i=0; i<size; i++)  
   ofs << values[i] << '\t';
 
   ofs << '\n';
 ofs.close();

}


/* merge all external sorted files into one

  output file (same size as original input file) */

std::string mergeFiles(size_t chunks, const std::string& merge_file ) {

 std::ofstream ofs( merge_file.c_str() );
   
 MinHeap  minHeap;
 // array of ifstreams 
 std::ifstream* ifs_tempfiles = new std::ifstream[chunks];

 for (size_t i = 1; i<=chunks; i++) 
   {
     int topval = 0;	
     // generate a unique name for temp file (temp_out_1.txt , temp_out_2.txt ..) 
     std::string sorted_file = (tmp_prefix + std::to_string(i) + tmp_suffix);
      
     // open an input file stream object for each name
     ifs_tempfiles[i-1].open( sorted_file.c_str() ); // bind to tmp_out_{i}.txt
     // get val from temp file
     if (ifs_tempfiles[i-1].is_open()) 

{ ifs_tempfiles[i-1] >> topval; // first value in the file (min)

ipair top(topval, (i-1)); // 2nd value is tempfile number

minHeap.push( top ); // minHeap autosorts }

   }
 
 while (minHeap.size() > 0) 
   {
     int next_val = 0;
     ipair min_pair = minHeap.top(); // get min
     minHeap.pop();
     ofs << min_pair.first << ' ';  // write value to file
 
     std::flush(ofs);
     if ( ifs_tempfiles[min_pair.second] >> next_val) 

{

ipair np( next_val, min_pair.second );

minHeap.push( np ); }

   }

 // close open files
 for (int i = 1; i <= chunks; i++) 
   {
     ifs_tempfiles[i-1].close();
   }
 ofs << '\n';
 ofs.close();
   
 delete[] ifs_tempfiles; // free memory

 return merged_file;  // string

}



int main(int argc, char* argv[] ) {

 if (argc < 2)
   {
     std::cerr << "usage:  ExternalSort <filename> \n";
     return 1;
   }
 // open input file for reading
 std::ifstream ifs( argv[1] );  
 
 if ( ifs.fail() )
   {
     std::cerr << "error opening " << argv[1] << "\n";
     return 2;
   }


 // temp array for input (small)  (32 bytes -- 8 ints)
 int* inputValues = new int[chunksize];

 int chunk = 1;    // counter (which chunk)
 int val = 0;      // int  for reading
 int count = 0;    // count reads
 bool done = false; 
 std::cout << "internal buffer is " << memsize << " bytes" << "\n"; 
 // read chunksize values from input file 
 while (ifs >> val) 
   {
     done = false;
     inputValues[count] = val;
     count++;
     if (count == chunksize) 

{

std::sort(inputValues, inputValues + count);

write_vals(inputValues, count, chunk); // output vals to

chunk ++;

count = 0;

done = true; }

   } // while 


 if (! done)  // one more file
   {
     std::sort(inputValues, inputValues + count);
   
     write_vals(inputValues, count, chunk); // output vals to 
   }
 else 
   {
     chunk --;  // fix overshoot
   }


 ifs.close();   // done with original input file
   
 delete[] inputValues; // free dynamically allocated memory
   
 // perform external mergesort on sorted temp files, if any.
 if ( chunk == 0 ) 
   std::cout << "no data found\n";
 else
   std::cout << "Sorted output is in file: " << mergeFiles(chunk, merged_file ) << "\n";
    
 return EXIT_SUCCESS;

}

/* compile: clang++ -std=c++11 -Wall -pedantic -o ExternalSort ExternalSort.cpp */

/* inputfile integers -- one per line for simplicity */ </lang>

Output:

input:

2 65 76 88 55 22 35 11 76 99 7 111 4 55 34 63 22 13 45 9 0 112 123 345 456 8 654 678 999 888 10 3 555 534 236 143 860 648 1 627 711 223 332 5 443 445

tmp_out_1.txt

 2	11	22	35	55	65	76	88 

tmp_out_2.txt

 4	7	34	55	63	76	99	111 

tmp_out_3.txt

 0	9	13	22	45	112	123	345 

tmp_out_4.txt

 3	8	10	456	654	678	888	999 

tmp_out_5.txt

 1	143	236	534	555	627	648	860 

tmp_out_6.txt

 5	223	332	443	445	711 

merged.txt:

0 1 2 3 4 5 7 8 9 10 11 13 22 22 34 35 45 55 55 63 65 76 76 88 99 111 112 123 143 223 236 332 345 443 445 456 534 555 627 648 654 678 711 860 888 999


Go

This is a translation of the C++ code here which implements external sorting using a merge sort. In the interests of brevity, the extensive comments in the C++ version have been largely omitted.

A small test file consisting of random integers has been generated and sorted to demonstrate that the approach works. <lang go>package main

import (

   "fmt"
   "io"
   "log"
   "math"
   "math/rand"
   "os"
   "time"

)

type MinHeapNode struct{ element, index int }

type MinHeap struct{ nodes []MinHeapNode }

func left(i int) int {

   return (2*i + 1)

}

func right(i int) int {

   return (2*i + 2)

}

func newMinHeap(nodes []MinHeapNode) *MinHeap {

   mh := new(MinHeap)
   mh.nodes = nodes
   for i := (len(nodes) - 1) / 2; i >= 0; i-- {
       mh.minHeapify(i)
   }
   return mh

}

func (mh *MinHeap) getMin() MinHeapNode {

   return mh.nodes[0]

}

func (mh *MinHeap) replaceMin(x MinHeapNode) {

   mh.nodes[0] = x
   mh.minHeapify(0)

}

func (mh *MinHeap) minHeapify(i int) {

   l, r := left(i), right(i)
   smallest := i
   heapSize := len(mh.nodes)
   if l < heapSize && mh.nodes[l].element < mh.nodes[i].element {
       smallest = l
   }
   if r < heapSize && mh.nodes[r].element < mh.nodes[smallest].element {
       smallest = r
   }
   if smallest != i {
       mh.nodes[i], mh.nodes[smallest] = mh.nodes[smallest], mh.nodes[i]
       mh.minHeapify(smallest)
   }

}

func merge(arr []int, l, m, r int) {

   n1, n2 := m-l+1, r-m
   tl := make([]int, n1)
   tr := make([]int, n2)
   copy(tl, arr[l:])
   copy(tr, arr[m+1:])
   i, j, k := 0, 0, l
   for i < n1 && j < n2 {
       if tl[i] <= tr[j] {
           arr[k] = tl[i]
           k++
           i++
       } else {
           arr[k] = tr[j]
           k++
           j++
       }
   }
   for i < n1 {
       arr[k] = tl[i]
       k++
       i++
   }
   for j < n2 {
       arr[k] = tr[j]
       k++
       j++
   }

}

func mergeSort(arr []int, l, r int) {

   if l < r {
       m := l + (r-l)/2
       mergeSort(arr, l, m)
       mergeSort(arr, m+1, r)
       merge(arr, l, m, r)
   }

}

// Merge k sorted files: es0,es1 etc. func mergeFiles(outputFile string, n, k int) {

   in := make([]*os.File, k)
   var err error
   for i := 0; i < k; i++ {
       fileName := fmt.Sprintf("es%d", i)
       in[i], err = os.Open(fileName)
       check(err)
   }
   out, err := os.Create(outputFile)
   check(err)
   nodes := make([]MinHeapNode, k)
   i := 0
   for ; i < k; i++ {
       _, err = fmt.Fscanf(in[i], "%d", &nodes[i].element)
       if err == io.EOF {
           break
       }
       check(err)
       nodes[i].index = i
   }
   hp := newMinHeap(nodes[:i])
   count := 0
   for count != i {
       root := hp.getMin()
       fmt.Fprintf(out, "%d ", root.element)
       _, err = fmt.Fscanf(in[root.index], "%d", &root.element)
       if err == io.EOF {
           root.element = math.MaxInt32
           count++
       } else {
           check(err)
       }
       hp.replaceMin(root)
   }
   for j := 0; j < k; j++ {
       in[j].Close()
   }
   out.Close()

}

func check(err error) {

   if err != nil {
       log.Fatal(err)
   }

}

// Create initial runs, divide them evenly amongst the output files // and then merge-sort them. func createInitialRuns(inputFile string, runSize, numWays int) {

   in, err := os.Open(inputFile)
   out := make([]*os.File, numWays)
   for i := 0; i < numWays; i++ {
       fileName := fmt.Sprintf("es%d", i) // es0, es1 etc.
       out[i], err = os.Create(fileName)
       check(err)
   }
   arr := make([]int, runSize)
   moreInput := true
   nextOutputFile := 0
   var i int
   for moreInput {
       for i = 0; i < runSize; i++ {
           _, err := fmt.Fscanf(in, "%d", &arr[i])
           if err == io.EOF {
               moreInput = false
               break
           }
           check(err)
       }
       mergeSort(arr, 0, i-1)
       for j := 0; j < i; j++ {
           fmt.Fprintf(out[nextOutputFile], "%d ", arr[j])
       }
       nextOutputFile++
   }
   for j := 0; j < numWays; j++ {
       out[j].Close()
   }
   in.Close()

}

func externalSort(inputFile, outputFile string, numWays, runSize int) {

   createInitialRuns(inputFile, runSize, numWays)
   mergeFiles(outputFile, runSize, numWays)

}

func main() {

   // Create a small test file of 40 random ints and split it into 4 files
   // of 10 integers each.
   numWays := 4
   runSize := 10
   inputFile := "input.txt"
   outputFile := "output.txt"
   in, err := os.Create(inputFile)
   check(err)
   rand.Seed(time.Now().UnixNano())
   for i := 0; i < numWays*runSize; i++ {
       fmt.Fprintf(in, "%d ", rand.Intn(math.MaxInt32))
   }
   in.Close()
   externalSort(inputFile, outputFile, numWays, runSize)
   // remove temporary files
   for i := 0; i < numWays; i++ {
       fileName := fmt.Sprintf("es%d", i)
       err = os.Remove(fileName)
       check(err)
   }

}</lang>

Output:

Contents of input.txt:

921996447 760852351 223421434 1245608832 745990119 1414811249 1947335121 762344474 588429291 993452626 2592794 491133923 1275871423 1152039534 649892156 278215570 595760601 1878223040 1267371451 2097209826 1409628494 1147072290 309824251 108477605 1705270413 1821354697 1703557665 473708588 110138202 1292465428 946557804 148800949 1471244316 1508853596 1306802817 1016358698 1661284048 527644251 546155704 337874167

Contents of output.txt:

2592794 108477605 110138202 148800949 223421434 278215570 309824251 337874167 473708588 491133923 527644251 546155704 588429291 595760601 649892156 745990119 760852351 762344474 921996447 946557804 993452626 1016358698 1147072290 1152039534 1245608832 1267371451 1275871423 1292465428 1306802817 1409628494 1414811249 1471244316 1508853596 1661284048 1703557665 1705270413 1821354697 1878223040 1947335121 2097209826

j

Untested on a memory mapped file. <lang J> NB. Apply an in-place sorting algorithm to a memory mapped file NB. in-place sort is translation of in-place python quicksort.

require 'jmf' JCHAR map_jmf_ 'DATA'; 'file.huge' NB. The noun DATA now refers to the memory mapped file. NB. Use: quicksort DATA


NB. use: quicksort DATA quicksort=: 3 :'qsinternal 0 , <:@:# ARRAY=: y' NB. ARRAY is global

qsinternal=: 3 :0

'start stop'=. y
if. 0 < stop - start do.
 'left right pivot'=. start, stop, start{ARRAY   NB. pivot, left, right = array[start], start, stop
 while. left <: right do.           NB. while left <= right:
  while. pivot > left { ARRAY do.   NB. while array[left] < pivot:
   left=. >: left
  end.
  while. pivot < right { ARRAY do.  NB. while array[right] > pivot:
   right=. <: right                 NB. right -= 1
  end.
  if. left <: right do.             NB. if left <= right:
   NB. mapped files work by reference, assignment not required, but for testing.
   ARRAY=: (left, right) {`(|.@:[)`]} ARRAY NB. array[left], array[right] = array[right], array[left]
   left=. >: left                   NB. left += 1
   right=. <: right                 NB. right -= 1
  end.
 end.
 qsinternal start , right    NB. _quicksort(array, start, right)
 qsinternal left , stop      NB. _quicksort(array, left, stop)
end.
i. 0 0  NB. verbs return the final noun

) </lang>

Demonstration the sorting works:

   quicksort ?~10
   ARRAY
0 1 2 3 4 5 6 7 8 9
   

Julia

<lang julia>intfile = open("/tmp/mmap.bin", "r+")

arr = Mmap.mmap(intfile, Vector{Int64}, (div(stat(intfile).size, 8))) # Int64 is 8 bytes

sort!(arr) </lang>

Perl

Simulate task by reading from 'DATA' handle and using tiny record limit. As written, works for any numeric input, but could define any kind of customized sorting. <lang perl>use strict; use warnings;

my $max = 4; # records per merge file my(@chunk,@tempf);

sub mysort ($$) { return $_[0] <=> $_[1] }

sub store {

   my($a) = @_;
   my $f = IO::File->new_tmpfile; # self-deleting after program exit
   print $f sort mysort @$a;
   seek $f, 0, 0 or warn "Oops: $!";
   push(@tempf, { fh => $f, queued => scalar <$f> } );

}

  1. read input and create sorted temporary files

while () {

   push @chunk, $_;
   store(\@chunk), @chunk = () if @chunk == $max;

} store(\@chunk) if @chunk;

  1. merge everything

while (1) {

   my($lowest) = (sort { mysort($a->{queued}, $b->{queued}); } grep(defined $_->{queued}, @tempf) )[0];
   last unless $lowest->{queued};
   print $lowest->{queued};
   $lowest->{queued} = $lowest->{fh}->getline();

}

__DATA__ 432 345 321 543 987 456 678 123 765 567 876 654 789 234</lang>

Output:
123
234
321
345
432
456
543
567
654
678
765
789
876
987

Phix

Slight variation on Stream_Merge <lang Phix>include builtins/pqueue.e include builtins/pfile.e -- write_lines() - not [yet] documented

procedure add(integer fn, pq)

   object line = gets(fn)
   if line=-1 then
       close(fn)
   else
       pq_add({fn,line}, pq)
   end if

end procedure

procedure sort_files(sequence filenames)

   for i=1 to length(filenames) do
       sequence lines = get_text(filenames[i],GT_LF_STRIPPED),
                sorted = sort(lines)
       printf(1,"%s:%v => %v\n",{filenames[i],lines,sorted})
       if write_lines(filenames[i],sorted)!=1 then ?9/0 end if
   end for

end procedure

procedure merge_files(integer outfn, sequence filenames)

   integer pq = pq_new()
   for i=1 to length(filenames) do
       add(open(filenames[i], "r"),pq)
   end for
   while not pq_empty(pq) do
       {integer fn, string line} = pq_pop(pq)
       puts(outfn,line)
       add(fn, pq)
   end while
   pq_destroy(pq)

end procedure

procedure test()

   integer nf = rand(5),   -- number of files
           lp = 3          -- lines per file
   sequence filenames = {},
            lines = shuffle(tagset(nf*lp))
   for i=1 to nf do
       string filename = sprintf("file%d.txt",i)
       filenames = append(filenames,filename)
       integer fn = open(filename,"w")
       for l=1 to lp do
           printf(fn,"Line %02d\n",lines[l])
       end for
       lines = lines[lp+1..$]
       close(fn)
   end for
   printf(1,"sorting %d lines split over %d files\n",{nf*lp,nf})
   sort_files(filenames)
   integer outfn = 1 -- or open("results.txt","w")
   merge_files(outfn,filenames)

-- close(outfn)

   for i=1 to nf do
       {} = delete_file(filenames[i])
   end for

end procedure test()</lang>

Output:
sorting 9 lines split over 3 files
file1.txt:{"Line 04","Line 01","Line 09"} => {"Line 01","Line 04","Line 09"}
file2.txt:{"Line 06","Line 07","Line 02"} => {"Line 02","Line 06","Line 07"}
file3.txt:{"Line 08","Line 03","Line 05"} => {"Line 03","Line 05","Line 08"}
Line 01
Line 02
Line 03
Line 04
Line 05
Line 06
Line 07
Line 08
Line 09

Python

A technique demonstrated with a short string character data. <lang python>

  1. ! /usr/bin/python3

   $ # example session in bash
   $ python3 external_sort.py 
   expect 123456789
   memory size 1 passed
   memory size 2 passed
   memory size 3 passed
   memory size 4 passed
   memory size 5 passed
   memory size 6 passed
   memory size 7 passed
   memory size 8 passed
   memory size 9 passed
   memory size 10 passed
   memory size 11 passed

import io

def sort_large_file(n: int, source: open, sink: open, file_opener = open)->None:

   
       approach:
           break the source into files of size n
           sort each of these files
           merge these onto the sink
   
   # store sorted chunks into files of size n
   mergers = []
   while True:
       text = list(source.read(n))
       if not len(text):
           break;
       text.sort()
       merge_me = file_opener()
       merge_me.write(.join(text))
       mergers.append(merge_me)
       merge_me.seek(0)
   # merge onto sink
   stack_tops = [f.read(1) for f in mergers]
   while stack_tops:
       c = min(stack_tops)
       sink.write(c)
       i = stack_tops.index(c)
       t = mergers[i].read(1)
       if t:
           stack_tops[i] = t
       else:
           del stack_tops[i]
           mergers[i].close()
           del mergers[i]  # __del__ method of file_opener should delete the file

def main():

   
       test case
       sort 6,7,8,9,2,5,3,4,1 with several memory sizes
   
   # load test case into a file like object
   input_file_too_large_for_memory = io.StringIO('678925341')
   # generate the expected output
   t = list(input_file_too_large_for_memory.read())
   t.sort()
   expect = .join(t)
   print('expect', expect)
   # attempt to sort with several memory sizes
   for memory_size in range(1,12):
       input_file_too_large_for_memory.seek(0)
       output_file_too_large_for_memory = io.StringIO()
       sort_large_file(memory_size, input_file_too_large_for_memory, output_file_too_large_for_memory, io.StringIO)
       output_file_too_large_for_memory.seek(0)
       assert(output_file_too_large_for_memory.read() == expect)
       print('memory size {} passed'.format(memory_size))

if __name__ == '__main__':

  example = main
  example()

</lang>

Raku

(formerly Perl 6) Borrowing from Stream_Merge here. Temporary files are automatically deleted when program is done, so no explicit clean-up required. <lang perl6>use File::Temp;

sub merge_streams ( @streams ) {

   my @s = @streams.map({ hash( STREAM => $_, HEAD => .get ) }).grep({ .<HEAD>.defined });
   return gather while @s {
       my $h = @s.min: +*.<HEAD>;
       take $h<HEAD>;
       $h<HEAD> := $h<STREAM>.get
           orelse @s .= grep( { $_ !=== $h } );
   }

}

sub store (@values) {

   my ($filename,$filehandle) = tempfile(:prefix('external-sort.'));
   $filehandle.say: join "\n", @values.sort: +*;
   $filename

}

  1. we're going to pretend that this is a long stream of input from stdin...

my (@chunk,@files); for (<43 2 45 32 15 4 3 -9 45 66 0 42 78 123 -11 76 55 87 -2 64 92 34>) {

   @chunk.push: $_;
   @files.push: store(@chunk) and @chunk = () if @chunk.elems == 4; # limit of records per merge file

} @files.push: store(@chunk) if @chunk;

say join ' ', merge_streams @files».&open;</lang>

Output:
-11 -9 -2 0 2 3 4 15 32 34 42 43 45 45 55 64 66 76 78 87 92 123

REXX

Programming note:   the method used to generate the input file is to create the file with   N   records,
breaking up the records into sort work files of no more than   10   records   (limit).
The sort work files are then sorted with an external sort, and then merged into one big file.

This particular example uses the DOS   SORT   and   DEL   commands. <lang rexx>/*REXX pgm reads a file, splits into smaller files, sorts 'em, combines into sorted file*/ parse arg FID n lim seed . /*obtain optional arguments from the CL*/ if FID== | FID=="," then FID= 'SORT_EXT.OUT' /*name of the output (sorted) file. */ if n== | n=="," then n= 500 /*number of records (rand #s) to gen. */ if lim== | lim=="," then lim= 10 /*number of records per SORTWORK file. */ if datatype(seed, 'W') then call random ,,seed /*Numeric? Then use it as a rand seed.*/ sWork = 'SORTWORK.' /*the filename of the SORTWORK files.*/ call gen n,lim /*generate SORTWORK.nnn files. */ call srt # /*sort records in all SORTWORK files.*/ call mrg /*merge records in the SORTWORK files.*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ mrg: procedure expose FID sWork; parse arg # /*#: the number of SORTWORK files. */

    @.= copies('ff'x, 1e5)                      /*no value should be larger than this. */
    call lineout FID, , 1                       /*position the output file at rec # 1. */
       do j=1  until @.j==@.;    call rdr j     /*read any number of  SORTWORK  files, */
       end   /*j*/                              /*but initially just 1 record per file.*/
    j=j-1                                       /*adj. J; read from a non─existent file*/
       do forever;            y=@.;   z=0       /*find the lowest value for  N  values.*/
         do k=1  for j                          /*traipse through the stemmed  @ array.*/
         if @.k==@.  then     call rdr k        /*Not defined?  Then read a file record*/
         if @.k<<y  then do;  y=@.k;  z=k;  end /*Lowest so far? Then mark this as min.*/
         end   /*k*/                            /* [↑]  note use of << exact comparison*/
       if z==0  then leave                      /*Any more records?   No, close file.  */
       call lineout FID, @.z                    /*write the value to the output file.  */
       call rdr z                               /*re-populate a value from the # file. */
       end   /*forever*/                        /*keep reading/merging until exhausted.*/
    call lineout FID                            /*close the output file (just in case).*/
    'DEL'  sWORK"*"                             /*delete all the  SORTWORK  files.     */
    return

/*──────────────────────────────────────────────────────────────────────────────────────*/ gen: procedure expose #; parse arg m,siz; d= digits() /*for justify. */

    # = 0                                       /*number of  SORTWORK.nnn  files so far*/
         do j=1  for m;          #= 1   +   j % siz                  /*create workfile#*/
         call lineout  'SORTWORK.'#,  right(random(, 1e5), d)        /*write rand #.   */
         end   /*j*/
                     do k=1  for #;  call lineout 'SORTWORK.'#;  end /*close a workfile*/
         return

/*──────────────────────────────────────────────────────────────────────────────────────*/ rdr: parse arg a; @.a=@.; f=sWork||a; if lines(f)\==0 then @.a= linein(f); return /*──────────────────────────────────────────────────────────────────────────────────────*/ srt: procedure expose sWork; parse arg #

          do j=1  for #;   fn= sWORK || j;  'SORT'  fn  "/O" fn;  end  /*j*/;      return</lang>



Wren

Translation of: Go
Library: Wren-dynamic
Library: Wren-sort
Library: Wren-str

A bit simpler than the Go version as we use fixed length integers which (together with a following space) can be sorted as strings. <lang ecmascript>import "io" for File import "random" for Random import "/dynamic" for Struct import "/sort" for Sort import "/str" for Str

var MinHeapNode = Struct.create("MinHeapNode", ["element", "index"])

class MinHeap {

   construct new(nodes) {
       _nodes = nodes
       var start = ((_nodes.count-1)/2).floor
       for (i in start..0) minHeapify(i)
   }
   left(i)  { 2*i + 1 }
   right(i) { 2*i + 2 }
   nodes { _nodes }
   min { _nodes[0] }
   replaceMin(x) {
       _nodes[0] = x
       minHeapify(0)
   }
   minHeapify(i) {
       var l = left(i)
       var r = right(i)
       var smallest = i
       var heapSize = _nodes.count
       if (l < heapSize && Str.lt(_nodes[l].element, _nodes[i].element)) smallest = l
       if (r < heapSize && Str.lt(_nodes[r].element, _nodes[smallest].element)) smallest = r
       if (smallest != i) {
           _nodes.swap(i, smallest)
           minHeapify(smallest)
       }
   }

}

// Merge k sorted files: es0,es1 etc. var mergeFiles = Fn.new { |outputFile, k, e|

   var inp = List.filled(k, null)
   var offset = List.filled(k, 0) // current offset for each input file
   for (i in 0...k) {
       var fileName = "es%(i)"
       inp[i] = File.open(fileName)
   }
   var out = File.create(outputFile)
   var nodes = List.filled(k, null)
   for (i in 0...k) nodes[i] = MinHeapNode.new(0, 0)
   var i = 0
   while (i < k) {
       var bytes = inp[i].readBytes(e)
       if (bytes.count < e) break  // end of file reached
       nodes[i].element = bytes
       nodes[i].index = i
       offset[i] = offset[i] + e
       i = i + 1
   }
   var hp = MinHeap.new(nodes[0...i])
   var count = 0
   while (count != i) {
       var root = hp.min
       out.writeBytes(root.element)
       var bytes = inp[root.index].readBytes(e, offset[root.index])
       if (bytes.count < e) {  // end of file reached
           root.element = "999999 "
           count = count + 1
       } else {
           root.element = bytes
           offset[root.index] = offset[root.index] + e
       }
       hp.replaceMin(root)
   }
   for (j in 0...k) inp[j].close()
   out.close()

}

// Create initial runs, divide them evenly amongst the output files // and then merge-sort them. var createInitialRuns = Fn.new { |inputFile, numWays, runSize, elementSize|

   var inp = File.open(inputFile)
   var offset = 0
   for (i in 0...numWays) {
       var fileName = "es%(i)"  // es0, es1 etc.
       var bytes = inp.readBytes(runSize * elementSize, offset)
       offset = offset + runSize * elementSize
       var numbers = Str.chunks(bytes, elementSize)
       numbers = Sort.merge(numbers)
       File.create(fileName) { |f| f.writeBytes(numbers.join("")) }
   }
   inp.close()

}

var externalSort = Fn.new { |inputFile, outputFile, numWays, runSize, elementSize|

   createInitialRuns.call(inputFile, numWays, runSize, elementSize)
   mergeFiles.call(outputFile, numWays, elementSize)

}

// Create a small test file of 40 random 6 digit integers and split it into 4 files // of 10 such integers each. var numWays = 4 var runSize = 10 var elementSize = 7 // 6 digits + a following space var inputFile = "external_sort_input.txt" var outputFile = "external_sort_output.txt" var inp = File.create(inputFile) var rand = Random.new() var min = 100000 var max = 999999 for (i in 0...numWays*runSize) inp.writeBytes("%(rand.int(min, max).toString) ") inp.close() externalSort.call(inputFile, outputFile, numWays, runSize, elementSize) // remove temporary files for (i in 0...numWays) {

   var fileName = "es%(i)"
   File.delete(fileName)

}</lang>

Output:

Sample run:

Contents of external_sort_input.txt:
195387 279593 270645 457221 187563 459521 984067 443317 890630 986820 357072 302605 354825 295908 541221 273855 318978 913819 961359 776939 337617 640070 100140 266938 597987 305187 731698 449166 388165 121283 516001 256453 197931 660491 785453 544828 346520 532447 688793 194774 

Contents of external_sort_output.txt:
100140 121283 187563 194774 195387 197931 256453 266938 270645 273855 279593 295908 302605 305187 318978 337617 346520 354825 357072 388165 443317 449166 457221 459521 516001 532447 541221 544828 597987 640070 660491 688793 731698 776939 785453 890630 913819 961359 984067 986820