Cyclotomic polynomial: Difference between revisions

From Rosetta Code
Content added Content deleted
m (J: remove unnecessary implementation of FFT -- defer to the FFT page for that.)
m (J: fft reference should be to rosettacode page, details can be handled there, also add missing </lang> tag)
Line 2,145: Line 2,145:
=== Another approach ===
=== Another approach ===


As noted in the [http://jsoftware.com/pipermail/programming/2022-March/060209.html J programming forum], we can improve the big-O character of this algorithm by using the [[j:Essays/FFT|fast fourier transform]] for polynomial multiplication and division.
As noted in the [http://jsoftware.com/pipermail/programming/2022-March/060209.html J programming forum], we can improve the big-O character of this algorithm by using the [[Fast Fourier transform]] for polynomial multiplication and division.


<lang J>NB. install'math/fftw'
<lang J>NB. install'math/fftw'
Line 2,169: Line 2,169:
}}
}}


roundreal =: [: <. 0.5 + 9&o.
roundreal =: [: <. 0.5 + 9&o.</lang>


This variation for polynomial division is only valid when there's no remainder to be concerned with (which is the case, here).
This variation for polynomial division is only valid when there's no remainder to be concerned with (which is the case, here).

Revision as of 20:52, 8 March 2022

Task
Cyclotomic polynomial
You are encouraged to solve this task according to the task description, using any language you may know.

The nth Cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial of largest degree with integer coefficients that is a divisor of x^n − 1, and is not a divisor of x^k − 1 for any k < n.


Task
  • Find and print the first 30 cyclotomic polynomials.
  • Find and print the order of the first 10 cyclotomic polynomials that have n or -n as a coefficient.


See also
  • Wikipedia article, Cyclotomic polynomial, showing ways to calculate them.
  • The sequence A013594 with the smallest order of cyclotomic polynomial containing n or -n as a coefficient.

C++

Translation of: Java

<lang cpp>#include <algorithm>

  1. include <iostream>
  2. include <initializer_list>
  3. include <map>
  4. include <vector>

const int MAX_ALL_FACTORS = 100000; const int algorithm = 2; int divisions = 0;

//Note: Cyclotomic Polynomials have small coefficients. Not appropriate for general polynomial usage. class Term { private:

   long m_coefficient;
   long m_exponent;

public:

   Term(long c, long e) : m_coefficient(c), m_exponent(e) {
       // empty
   }
   Term(const Term &t) : m_coefficient(t.m_coefficient), m_exponent(t.m_exponent) {
       // empty
   }
   long coefficient() const {
       return m_coefficient;
   }
   long degree() const {
       return m_exponent;
   }
   Term operator -() const {
       return { -m_coefficient, m_exponent };
   }
   Term operator *(const Term &rhs) const {
       return { m_coefficient * rhs.m_coefficient, m_exponent + rhs.m_exponent };
   }
   Term operator +(const Term &rhs) const {
       if (m_exponent != rhs.m_exponent) {
           throw std::runtime_error("Exponents not equal");
       }
       return { m_coefficient + rhs.m_coefficient, m_exponent };
   }
   friend std::ostream &operator<<(std::ostream &, const Term &);

};

std::ostream &operator<<(std::ostream &os, const Term &t) {

   if (t.m_coefficient == 0) {
       return os << '0';
   }
   if (t.m_exponent == 0) {
       return os << t.m_coefficient;
   }
   if (t.m_coefficient == 1) {
       if (t.m_exponent == 1) {
           return os << 'x';
       }
       return os << "x^" << t.m_exponent;
   }
   if (t.m_coefficient == -1) {
       if (t.m_exponent == 1) {
           return os << "-x";
       }
       return os << "-x^" << t.m_exponent;
   }
   if (t.m_exponent == 1) {
       return os << t.m_coefficient << 'x';
   }
   return os << t.m_coefficient << "x^" << t.m_exponent;

}

class Polynomial { public:

   std::vector<Term> polynomialTerms;
   Polynomial() {
       polynomialTerms.push_back({ 0, 0 });
   }
   Polynomial(std::initializer_list<int> values) {
       if (values.size() % 2 != 0) {
           throw std::runtime_error("Length must be even.");
       }
       bool ready = false;
       long t;
       for (auto v : values) {
           if (ready) {
               polynomialTerms.push_back({ t, v });
           } else {
               t = v;
           }
           ready = !ready;
       }
       std::sort(
           polynomialTerms.begin(), polynomialTerms.end(),
           [](const Term &t, const Term &u) {
               return u.degree() < t.degree();
           }
       );
   }
   Polynomial(const std::vector<Term> &termList) {
       if (termList.size() == 0) {
           polynomialTerms.push_back({ 0, 0 });
       } else {
           for (auto t : termList) {
               if (t.coefficient() != 0) {
                   polynomialTerms.push_back(t);
               }
           }
           if (polynomialTerms.size() == 0) {
               polynomialTerms.push_back({ 0, 0 });
           }
           std::sort(
               polynomialTerms.begin(), polynomialTerms.end(),
               [](const Term &t, const Term &u) {
                   return u.degree() < t.degree();
               }
           );
       }
   }
   Polynomial(const Polynomial &p) : Polynomial(p.polynomialTerms) {
       // empty
   }
   long leadingCoefficient() const {
       return polynomialTerms[0].coefficient();
   }
   long degree() const {
       return polynomialTerms[0].degree();
   }
   bool hasCoefficientAbs(int coeff) {
       for (auto term : polynomialTerms) {
           if (abs(term.coefficient()) == coeff) {
               return true;
           }
       }
       return false;
   }
   Polynomial operator+(const Term &term) const {
       std::vector<Term> termList;
       bool added = false;
       for (size_t index = 0; index < polynomialTerms.size(); index++) {
           auto currentTerm = polynomialTerms[index];
           if (currentTerm.degree() == term.degree()) {
               added = true;
               if (currentTerm.coefficient() + term.coefficient() != 0) {
                   termList.push_back(currentTerm + term);
               }
           } else {
               termList.push_back(currentTerm);
           }
       }
       if (!added) {
           termList.push_back(term);
       }
       return Polynomial(termList);
   }
   Polynomial operator*(const Term &term) const {
       std::vector<Term> termList;
       for (size_t index = 0; index < polynomialTerms.size(); index++) {
           auto currentTerm = polynomialTerms[index];
           termList.push_back(currentTerm * term);
       }
       return Polynomial(termList);
   }
   Polynomial operator+(const Polynomial &p) const {
       std::vector<Term> termList;
       int thisCount = polynomialTerms.size();
       int polyCount = p.polynomialTerms.size();
       while (thisCount > 0 || polyCount > 0) {
           if (thisCount == 0) {
               auto polyTerm = p.polynomialTerms[polyCount - 1];
               termList.push_back(polyTerm);
               polyCount--;
           } else if (polyCount == 0) {
               auto thisTerm = polynomialTerms[thisCount - 1];
               termList.push_back(thisTerm);
               thisCount--;
           } else {
               auto polyTerm = p.polynomialTerms[polyCount - 1];
               auto thisTerm = polynomialTerms[thisCount - 1];
               if (thisTerm.degree() == polyTerm.degree()) {
                   auto t = thisTerm + polyTerm;
                   if (t.coefficient() != 0) {
                       termList.push_back(t);
                   }
                   thisCount--;
                   polyCount--;
               } else if (thisTerm.degree() < polyTerm.degree()) {
                   termList.push_back(thisTerm);
                   thisCount--;
               } else {
                   termList.push_back(polyTerm);
                   polyCount--;
               }
           }
       }
       return Polynomial(termList);
   }
   Polynomial operator/(const Polynomial &v) {
       divisions++;
       Polynomial q;
       Polynomial r(*this);
       long lcv = v.leadingCoefficient();
       long dv = v.degree();
       while (r.degree() >= v.degree()) {
           long lcr = r.leadingCoefficient();
           long s = lcr / lcv;
           Term term(s, r.degree() - dv);
           q = q + term;
           r = r + v * -term;
       }
       return q;
   }
   friend std::ostream &operator<<(std::ostream &, const Polynomial &);

};

std::ostream &operator<<(std::ostream &os, const Polynomial &p) {

   auto it = p.polynomialTerms.cbegin();
   auto end = p.polynomialTerms.cend();
   if (it != end) {
       os << *it;
       it = std::next(it);
   }
   while (it != end) {
       if (it->coefficient() > 0) {
           os << " + " << *it;
       } else {
           os << " - " << -*it;
       }
       it = std::next(it);
   }
   return os;

}

std::vector<int> getDivisors(int number) {

   std::vector<int> divisiors;
   long root = (long)sqrt(number);
   for (int i = 1; i <= root; i++) {
       if (number % i == 0) {
           divisiors.push_back(i);
           int div = number / i;
           if (div != i && div != number) {
               divisiors.push_back(div);
           }
       }
   }
   return divisiors;

}

std::map<int, std::map<int, int>> allFactors;

std::map<int, int> getFactors(int number) {

   if (allFactors.find(number) != allFactors.end()) {
       return allFactors[number];
   }
   std::map<int, int> factors;
   if (number % 2 == 0) {
       auto factorsDivTwo = getFactors(number / 2);
       factors.insert(factorsDivTwo.begin(), factorsDivTwo.end());
       if (factors.find(2) != factors.end()) {
           factors[2]++;
       } else {
           factors.insert(std::make_pair(2, 1));
       }
       if (number < MAX_ALL_FACTORS) {
           allFactors.insert(std::make_pair(number, factors));
       }
       return factors;
   }
   long root = (long)sqrt(number);
   long i = 3;
   while (i <= root) {
       if (number % i == 0) {
           auto factorsDivI = getFactors(number / i);
           factors.insert(factorsDivI.begin(), factorsDivI.end());
           if (factors.find(i) != factors.end()) {
               factors[i]++;
           } else {
               factors.insert(std::make_pair(i, 1));
           }
           if (number < MAX_ALL_FACTORS) {
               allFactors.insert(std::make_pair(number, factors));
           }
           return factors;
       }
       i += 2;
   }
   factors.insert(std::make_pair(number, 1));
   if (number < MAX_ALL_FACTORS) {
       allFactors.insert(std::make_pair(number, factors));
   }
   return factors;

}

std::map<int, Polynomial> COMPUTED; Polynomial cyclotomicPolynomial(int n) {

   if (COMPUTED.find(n) != COMPUTED.end()) {
       return COMPUTED[n];
   }
   if (n == 1) {
       // Polynomial: x - 1
       Polynomial p({ 1, 1, -1, 0 });
       COMPUTED.insert(std::make_pair(1, p));
       return p;
   }
   auto factors = getFactors(n);
   if (factors.find(n) != factors.end()) {
       // n prime
       std::vector<Term> termList;
       for (int index = 0; index < n; index++) {
           termList.push_back({ 1, index });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 2 && factors.find(2) != factors.end() && factors[2] == 1 && factors.find(n / 2) != factors.end() && factors[n / 2] == 1) {
       // n = 2p
       int prime = n / 2;
       std::vector<Term> termList;
       int coeff = -1;
       for (int index = 0; index < prime; index++) {
           coeff *= -1;
           termList.push_back({ coeff, index });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 1 && factors.find(2) != factors.end()) {
       // n = 2^h
       int h = factors[2];
       std::vector<Term> termList;
       termList.push_back({ 1, (int)pow(2, h - 1) });
       termList.push_back({ 1, 0 });
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 1 && factors.find(n) != factors.end()) {
       // n = p^k
       int p = 0;
       int k = 0;
       for (auto iter = factors.begin(); iter != factors.end(); ++iter) {
           p = iter->first;
           k = iter->second;
       }
       std::vector<Term> termList;
       for (int index = 0; index < p; index++) {
           termList.push_back({ 1, index * (int)pow(p, k - 1) });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 2 && factors.find(2) != factors.end()) {
       // n = 2^h * p^k
       int p = 0;
       for (auto iter = factors.begin(); iter != factors.end(); ++iter) {
           if (iter->first != 2) {
               p = iter->first;
           }
       }
       std::vector<Term> termList;
       int coeff = -1;
       int twoExp = (int)pow(2, factors[2] - 1);
       int k = factors[p];
       for (int index = 0; index < p; index++) {
           coeff *= -1;
           termList.push_back({ coeff, index * twoExp * (int)pow(p, k - 1) });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.find(2) != factors.end() && ((n / 2) % 2 == 1) && (n / 2) > 1) {
       //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
       auto cycloDiv2 = cyclotomicPolynomial(n / 2);
       std::vector<Term> termList;
       for (auto term : cycloDiv2.polynomialTerms) {
           if (term.degree() % 2 == 0) {
               termList.push_back(term);
           } else {
               termList.push_back(-term);
           }
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   }
   // General Case
   if (algorithm == 0) {
       // slow - uses basic definition
       auto divisors = getDivisors(n);
       // Polynomial: (x^n - 1)
       Polynomial cyclo({ 1, n, -1, 0 });
       for (auto i : divisors) {
           auto p = cyclotomicPolynomial(i);
           cyclo = cyclo / p;
       }
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (algorithm == 1) {
       //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
       auto divisors = getDivisors(n);
       int maxDivisor = INT_MIN;
       for (auto div : divisors) {
           maxDivisor = std::max(maxDivisor, div);
       }
       std::vector<int> divisorExceptMax;
       for (auto div : divisors) {
           if (maxDivisor % div != 0) {
               divisorExceptMax.push_back(div);
           }
       }
       //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       auto cyclo = Polynomial({ 1, n, -1, 0 }) / Polynomial({ 1, maxDivisor, -1, 0 });
       for (int i : divisorExceptMax) {
           auto p = cyclotomicPolynomial(i);
           cyclo = cyclo / p;
       }
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (algorithm == 2) {
       //  Fastest
       //  Let p ; q be primes such that p does not divide n, and q q divides n.
       //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
       int m = 1;
       auto cyclo = cyclotomicPolynomial(m);
       std::vector<int> primes;
       for (auto iter = factors.begin(); iter != factors.end(); ++iter) {
           primes.push_back(iter->first);
       }
       std::sort(primes.begin(), primes.end());
       for (auto prime : primes) {
           //  CP(m)[x]
           auto cycloM = cyclo;
           //  Compute CP(m)[x^p].
           std::vector<Term> termList;
           for (auto t : cycloM.polynomialTerms) {
               termList.push_back({ t.coefficient(), t.degree() * prime });
           }
           cyclo = Polynomial(termList) / cycloM;
           m = m * prime;
       }
       //  Now, m is the largest square free divisor of n
       int s = n / m;
       //  Compute CP(n)[x] = CP(m)[x^s]
       std::vector<Term> termList;
       for (auto t : cyclo.polynomialTerms) {
           termList.push_back({ t.coefficient(), t.degree() * s });
       }
       cyclo = Polynomial(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else {
       throw std::runtime_error("Invalid algorithm");
   }

}

int main() {

   // initialization
   std::map<int, int> factors;
   factors.insert(std::make_pair(2, 1));
   allFactors.insert(std::make_pair(2, factors));
   // rest of main
   std::cout << "Task 1:  cyclotomic polynomials for n <= 30:\n";
   for (int i = 1; i <= 30; i++) {
       auto p = cyclotomicPolynomial(i);
       std::cout << "CP[" << i << "] = " << p << '\n';
   }
   std::cout << "Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:\n";
   int n = 0;
   for (int i = 1; i <= 10; i++) {
       while (true) {
           n++;
           auto cyclo = cyclotomicPolynomial(n);
           if (cyclo.hasCoefficientAbs(i)) {
               std::cout << "CP[" << n << "] has coefficient with magnitude = " << i << '\n';
               n--;
               break;
           }
       }
   }
   return 0;

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

C#

Translation of: Java
Works with: C sharp version 8

<lang csharp>using System; using System.Collections; using System.Collections.Generic; using System.Linq; using IntMap = System.Collections.Generic.Dictionary<int, int>;

public static class CyclotomicPolynomial {

   public static void Main2() {
       Console.WriteLine("Task 1: Cyclotomic polynomials for n <= 30:");
       for (int i = 1; i <= 30; i++) {
           var p = GetCyclotomicPolynomial(i);
           Console.WriteLine($"CP[{i}] = {p.ToString()}");
       }
       Console.WriteLine();
       Console.WriteLine("Task 2: Smallest cyclotomic polynomial with n or -n as a coefficient:");
       for (int i = 1, n = 0; i <= 10; i++) {
           while (true) {
               n++;
               var p = GetCyclotomicPolynomial(n);
               if (p.Any(t => Math.Abs(t.Coefficient) == i)) {
                   Console.WriteLine($"CP[{n}] has coefficient with magnitude = {i}");
                   n--;
                   break;
               }
           }
       }
   }
   private const int MaxFactors = 100_000;
   private const int Algorithm = 2;
   private static readonly Term x = new Term(1, 1);
   private static readonly Dictionary<int, Polynomial> polyCache =
       new Dictionary<int, Polynomial> { [1] = x - 1 };
   private static readonly Dictionary<int, IntMap> factorCache =
       new Dictionary<int, IntMap> { [2] = new IntMap { [2] = 1 } };
   private static Polynomial GetCyclotomicPolynomial(in int n) {
       if (polyCache.TryGetValue(n, out var result)) return result;
       var factors = GetFactors(n);
       if (factors.ContainsKey(n)) { //n is prime
           result = new Polynomial(from exp in ..n select x[exp]);
       } else if (factors.Count == 2 && factors.Contains(2, 1) && factors.Contains(n/2, 1)) { //n = 2p
           result = new Polynomial(from i in ..(n/2) select (IsOdd(i) ? -x : x)[i]);
       } else if (factors.Count == 1 && factors.TryGetValue(2, out int h)) { //n = 2^h
           result = x[1<<(h-1)] + 1;
       } else if (factors.Count == 1 && !factors.ContainsKey(n)) { // n = p^k
           (int p, int k) = factors.First();
           result = new Polynomial(from i in ..p select x[i * (int)Math.Pow(p, k-1)]);
       } else if (factors.Count == 2 && factors.ContainsKey(2)) { //n = 2^h * p^k
           (int p, int k) = factors.First(entry => entry.Key != 2);
           int twoExp = 1 << (factors[2] - 1);
           result = new Polynomial(from i in ..p select (IsOdd(i) ? -x : x)[i * twoExp * (int)Math.Pow(p, k-1)]);
       } else if (factors.ContainsKey(2) && IsOdd(n/2) && n/2 > 1) { // CP(2m)[x] = CP[-m][x], n is odd > 1
           Polynomial cycloDiv2 = GetCyclotomicPolynomial(n/2);
           result = new Polynomial(from term in cycloDiv2 select IsOdd(term.Exponent) ? -term : term);
           #pragma warning disable CS0162
       } else if (Algorithm == 0) {
           var divisors = GetDivisors(n);
           result = x[n] - 1;
           foreach (int d in divisors) result /= GetCyclotomicPolynomial(d);
       } else if (Algorithm == 1) {
           var divisors = GetDivisors(n).ToList();
           int maxDivisor = divisors.Max();
           result = (x[n] - 1) / (x[maxDivisor] - 1);
           foreach (int d in divisors.Where(div => maxDivisor % div == 0)) {
               result /= GetCyclotomicPolynomial(d);
           }
       } else if (Algorithm == 2) {
           int m = 1;
           result = GetCyclotomicPolynomial(m);
           var primes = factors.Keys.ToList();
           primes.Sort();
           foreach (int prime in primes) {
               var cycloM = result;
               result = new Polynomial(from term in cycloM select term.Coefficient * x[term.Exponent * prime]);
               result /= cycloM;
               m *= prime;
           }
           int s = n / m;
           result = new Polynomial(from term in result select term.Coefficient * x[term.Exponent * s]);
           #pragma warning restore CS0162
       } else {
           throw new InvalidOperationException("Invalid algorithm");
       }
       polyCache[n] = result;
       return result;
   }
   private static bool IsOdd(int i) => (i & 1) != 0;
   private static bool Contains(this IntMap map, int key, int value) => map.TryGetValue(key, out int v) && v == value;
   private static int GetOrZero(this IntMap map, int key) => map.TryGetValue(key, out int v) ? v : 0;
   private static IEnumerable<T> Select<T>(this Range r, Func<int, T> f) => Enumerable.Range(r.Start.Value, r.End.Value - r.Start.Value).Select(f);
   private static IntMap GetFactors(in int n) {
       if (factorCache.TryGetValue(n, out var factors)) return factors;
       factors = new IntMap();
       if (!IsOdd(n)) {
           foreach (var entry in GetFactors(n/2)) factors.Add(entry.Key, entry.Value);
           factors[2] = factors.GetOrZero(2) + 1;
           return Cache(n, factors);
       }
       for (int i = 3; i * i <= n; i+=2) {
           if (n % i == 0) {
               foreach (var entry in GetFactors(n/i)) factors.Add(entry.Key, entry.Value);
               factors[i] = factors.GetOrZero(i) + 1;
               return Cache(n, factors);
           }
       }
       factors[n] = 1;
       return Cache(n, factors);
   }
   private static IntMap Cache(int n, IntMap factors) {
       if (n < MaxFactors) factorCache[n] = factors;
       return factors;
   }
   private static IEnumerable<int> GetDivisors(int n) {
       for (int i = 1; i * i <= n; i++) {
           if (n % i == 0) {
               yield return i;
               int div = n / i;
               if (div != i && div != n) yield return div;
           }
       }
   }
   public sealed class Polynomial : IEnumerable<Term>
   {
       public Polynomial() { }
       public Polynomial(params Term[] terms) : this(terms.AsEnumerable()) { }
       public Polynomial(IEnumerable<Term> terms) {
           Terms.AddRange(terms);
           Simplify();
       }
       private List<Term>? terms;
       private List<Term> Terms => terms ??= new List<Term>();
       public int Count => terms?.Count ?? 0;
       public int Degree => Count == 0 ? -1 : Terms[0].Exponent;
       public int LeadingCoefficient => Count == 0 ? 0 : Terms[0].Coefficient;
       public IEnumerator<Term> GetEnumerator() => Terms.GetEnumerator();
       IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
       public override string ToString() => Count == 0 ? "0" : string.Join(" + ", Terms).Replace("+ -", "- ");
       public static Polynomial operator *(Polynomial p, Term t) => new Polynomial(from s in p select s * t);
       public static Polynomial operator +(Polynomial p, Polynomial q) => new Polynomial(p.Terms.Concat(q.Terms));
       public static Polynomial operator -(Polynomial p, Polynomial q) => new Polynomial(p.Terms.Concat(q.Terms.Select(t => -t)));
       public static Polynomial operator *(Polynomial p, Polynomial q) => new Polynomial(from s in p from t in q select s * t);
       public static Polynomial operator /(Polynomial p, Polynomial q) => p.Divide(q).quotient;
       public (Polynomial quotient, Polynomial remainder) Divide(Polynomial divisor) {
           if (Degree < 0) return (new Polynomial(), this);
           Polynomial quotient = new Polynomial();
           Polynomial remainder = this;
           int lcv = divisor.LeadingCoefficient;
           int dv = divisor.Degree;
           while (remainder.Degree >= divisor.Degree) {
               int lcr = remainder.LeadingCoefficient;
               Term div = new Term(lcr / lcv, remainder.Degree - dv);
               quotient.Terms.Add(div);
               remainder += divisor * -div;
           }
           quotient.Simplify();
           remainder.Simplify();
           return (quotient, remainder);
       }
       private void Simplify() {
           if (Count < 2) return;
           Terms.Sort((a, b) => -a.CompareTo(b));
           for (int i = Terms.Count - 1; i > 0; i--) {
               Term s = Terms[i-1];
               Term t = Terms[i];
               if (t.Exponent == s.Exponent) {
                   Terms[i-1] = new Term(s.Coefficient + t.Coefficient, s.Exponent);
                   Terms.RemoveAt(i);
               }
           }
           Terms.RemoveAll(t => t.IsZero);
       }
   }
   
   public readonly struct Term : IEquatable<Term>, IComparable<Term>
   {
       public Term(int coefficient, int exponent = 0) => (Coefficient, Exponent) = (coefficient, exponent);
       public Term this[int exponent] => new Term(Coefficient, exponent); //Using x[exp] because x^exp has low precedence
       public int Coefficient { get; }
       public int Exponent { get; }
       public bool IsZero => Coefficient == 0;
       public static Polynomial operator +(Term left, Term right) => new Polynomial(left, right);
       public static Polynomial operator -(Term left, Term right) => new Polynomial(left, -right);
       public static implicit operator Term(int coefficient) => new Term(coefficient);
       public static Term operator -(Term t) => new Term(-t.Coefficient, t.Exponent);
       public static Term operator *(Term left, Term right) => new Term(left.Coefficient * right.Coefficient, left.Exponent + right.Exponent);
       public static bool operator ==(Term left, Term right) => left.Equals(right);
       public static bool operator !=(Term left, Term right) => !left.Equals(right);
       public static bool operator  <(Term left, Term right) => left.CompareTo(right)  < 0;
       public static bool operator  >(Term left, Term right) => left.CompareTo(right)  > 0;
       public static bool operator <=(Term left, Term right) => left.CompareTo(right) <= 0;
       public static bool operator >=(Term left, Term right) => left.CompareTo(right) >= 0;
       public bool Equals(Term other) => Exponent == other.Exponent && Coefficient == other.Coefficient;
       public override bool Equals(object? obj) => obj is Term t && Equals(t);
       public override int GetHashCode() => Coefficient.GetHashCode() * 31 + Exponent.GetHashCode();
       public int CompareTo(Term other) {
           int c = Exponent.CompareTo(other.Exponent);
           if (c != 0) return c;
           return Coefficient.CompareTo(other.Coefficient);
       }
       public override string ToString() => (Coefficient, Exponent) switch {
           (0,  _) => "0",
           (_,  0) => $"{Coefficient}",
           (1,  1) => "x",
           (-1, 1) => "-x",
           (_,  1) => $"{Coefficient}x",
           (1,  _) => $"x^{Exponent}",
           (-1, _) => $"-x^{Exponent}",
                   _ => $"{Coefficient}x^{Exponent}"
       };
   }

}</lang>

Output:
Task 1: Cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2: Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

D

Translation of: Kotlin

<lang d>import std.algorithm; import std.exception; import std.format; import std.functional; import std.math; import std.range; import std.stdio;

immutable MAX_ALL_FACTORS = 100_000; immutable ALGORITHM = 2;

//Note: Cyclotomic Polynomials have small coefficients. Not appropriate for general polynomial usage.

struct Term {

   private long m_coefficient;
   private long m_exponent;
   public this(long c, long e) {
       m_coefficient = c;
       m_exponent = e;
   }
   public long coefficient() const {
       return m_coefficient;
   }
   public long exponent() const {
       return m_exponent;
   }
   public Term opUnary(string op)() const {
       static if (op == "-") {
           return Term(-m_coefficient, m_exponent);
       } else {
           assert(false, "Not implemented");
       }
   }
   public Term opBinary(string op)(Term term) const {
       static if (op == "+") {
           if (exponent() != term.exponent()) {
               assert(false, "Error 102: Exponents not equals.");
           }
           return Term(coefficient() + term.coefficient(), exponent());
       } else if (op == "*") {
           return Term(coefficient() * term.coefficient(), exponent() + term.exponent());
       } else {
           assert(false, "Not implemented: " ~ op);
       }
   }
   public void toString(scope void delegate(const(char)[]) sink) const {
       auto spec = singleSpec("%s");
       if (m_coefficient == 0) {
           sink("0");
       } else if (m_exponent == 0) {
           formatValue(sink, m_coefficient, spec);
       } else if (m_coefficient == 1) {
           if (m_exponent == 1) {
               sink("x");
           } else {
               sink("x^");
               formatValue(sink, m_exponent, spec);
           }
       } else if (m_coefficient == -1) {
           if (m_exponent == 1) {
               sink("-x");
           } else {
               sink("-x^");
               formatValue(sink, m_exponent, spec);
           }
       } else if (m_exponent == 1) {
           formatValue(sink, m_coefficient, spec);
           sink("x");
       } else {
           formatValue(sink, m_coefficient, spec);
           sink("x^");
           formatValue(sink, m_exponent, spec);
       }
   }

}

struct Polynomial {

   private Term[] terms;
   public this(const Term[] ts...) {
       terms = ts.dup;
       terms.sort!"b.exponent < a.exponent";
   }
   bool hasCoefficientAbs(int coeff) const {
       foreach (term; terms) {
           if (abs(term.coefficient) == coeff) {
               return true;
           }
       }
       return false;
   }
   public long leadingCoefficient() const {
       return terms[0].coefficient();
   }
   public long degree() const {
       if (terms.empty) {
           return -1;
       }
       return terms[0].exponent();
   }
   public Polynomial opBinary(string op)(Term term) const {
       static if (op == "+") {
           Term[] newTerms;
           auto added = false;
           foreach (currentTerm; terms) {
               if (currentTerm.exponent() == term.exponent()) {
                   added = true;
                   if (currentTerm.coefficient() + term.coefficient() != 0) {
                       newTerms ~= currentTerm + term;
                   }
               } else {
                   newTerms ~= currentTerm;
               }
           }
           if (!added) {
               newTerms ~= term;
           }
           return Polynomial(newTerms);
       } else if (op == "*") {
           Term[] newTerms;
           foreach (currentTerm; terms) {
               newTerms ~= currentTerm * term;
           }
           return Polynomial(newTerms);
       } else {
           assert(false, "Not implemented: " ~ op);
       }
   }
   public Polynomial opBinary(string op)(Polynomial rhs) const {
       static if (op == "+") {
           Term[] newTerms;
           auto thisCount = terms.length;
           auto polyCount = rhs.terms.length;
           while (thisCount > 0 || polyCount > 0) {
               if (thisCount == 0) {
                   newTerms ~= rhs.terms[polyCount - 1];
                   polyCount--;
               } else if (polyCount == 0) {
                   newTerms ~= terms[thisCount - 1];
                   thisCount--;
               } else {
                   auto thisTerm = terms[thisCount - 1];
                   auto polyTerm = rhs.terms[polyCount - 1];
                   if (thisTerm.exponent() == polyTerm.exponent()) {
                       auto t = thisTerm + polyTerm;
                       if (t.coefficient() != 0) {
                           newTerms ~= t;
                       }
                       thisCount--;
                       polyCount--;
                   } else if (thisTerm.exponent() < polyTerm.exponent()) {
                       newTerms ~= thisTerm;
                       thisCount--;
                   } else {
                       newTerms ~= polyTerm;
                       polyCount--;
                   }
               }
           }
           return Polynomial(newTerms);
       } else if (op == "/") {
           Polynomial q;
           auto r = Polynomial(terms);
           auto lcv = rhs.leadingCoefficient();
           auto dv = rhs.degree();
           while (r.degree() >= rhs.degree()) {
               auto lcr = r.leadingCoefficient();
               auto s = lcr / lcv;
               auto term = Term(s, r.degree() - dv);
               q = q + term;
               r = r + rhs * -term;
           }
           return q;
       } else {
           assert(false, "Not implemented: " ~ op);
       }
   }
   public int opApply(int delegate(Term) dg) const {
       foreach (term; terms) {
           auto rv = dg(term);
           if (rv != 0) {
               return rv;
           }
       }
       return 0;
   }
   public void toString(scope void delegate(const(char)[]) sink) const {
       auto spec = singleSpec("%s");
       if (!terms.empty) {
           formatValue(sink, terms[0], spec);
           foreach (t; terms[1..$]) {
               if (t.coefficient > 0) {
                   sink(" + ");
                   formatValue(sink, t, spec);
               } else {
                   sink(" - ");
                   formatValue(sink, -t, spec);
               }
           }
       }
   }

}

void putAll(K, V)(ref V[K] a, V[K] b) {

   foreach (k, v; b) {
       a[k] = v;
   }

}

void merge(K, V, F)(ref V[K] a, K k, V v, F f) {

   if (k in a) {
       a[k] = f(a[k], v);
   } else {
       a[k] = v;
   }

}

int sum(int a, int b) {

   return a + b;

}

int[int] getFactorsImpl(int number) {

   int[int] factors;
   if (number % 2 == 0) {
       if (number > 2) {
           auto factorsDivTwo = memoize!getFactorsImpl(number / 2);
           factors.putAll(factorsDivTwo);
       }
       factors.merge(2, 1, &sum);
       return factors;
   }
   auto root = sqrt(cast(real) number);
   auto i = 3;
   while (i <= root) {
       if (number % i == 0) {
           factors.putAll(memoize!getFactorsImpl(number / i));
           factors.merge(i, 1, &sum);
           return factors;
       }
       i += 2;
   }
   factors[number] = 1;
   return factors;

} alias getFactors = memoize!getFactorsImpl;

int[] getDivisors(int number) {

   int[] divisors;
   auto root = cast(int)sqrt(cast(real) number);
   foreach (i; 1..root) {
       if (number % i == 0) {
           divisors ~= i;
       }
       auto div = number / i;
       if (div != i && div != number) {
           divisors ~= div;
       }
   }
   return divisors;

}

Polynomial cyclotomicPolynomialImpl(int n) {

   if (n == 1) {
       //  Polynomial:  x - 1
       return Polynomial(Term(1, 1), Term(-1, 0));
   }
   auto factors = getFactors(n);
   if (n in factors) {
       // n prime
       Term[] terms;
       foreach (i; 0..n) {
           terms ~= Term(1, i);
       }
       return Polynomial(terms);
   } else if (factors.length == 2 && 2 in factors && factors[2] == 1 && (n / 2) in factors && factors[n / 2] == 1) {
       //  n = 2p
       auto prime = n / 2;
       Term[] terms;
       auto coeff = -1;
       foreach (i; 0..prime) {
           coeff *= -1;
           terms ~= Term(coeff, i);
       }
       return Polynomial(terms);
   } else if (factors.length == 1 && 2 in factors) {
       //  n = 2^h
       auto h = factors[2];
       Term[] terms;
       terms ~= Term(1, 2 ^^ (h - 1));
       terms ~= Term(1, 0);
       return Polynomial(terms);
   } else if (factors.length == 1 && n !in factors) {
       // n = p^k
       auto p = 0;
       auto k = 0;
       foreach (prime, v; factors) {
           if (prime > p) {
               p = prime;
               k = v;
           }
       }
       Term[] terms;
       foreach (i; 0..p) {
           terms ~= Term(1, (i * p) ^^ (k - 1));
       }
       return Polynomial(terms);
   } else if (factors.length == 2 && 2 in factors) {
       // n = 2^h * p^k
       auto p = 0;
       auto k = 0;
       foreach (prime, v; factors) {
           if (prime != 2 && prime > p) {
               p = prime;
               k = v;
           }
       }
       Term[] terms;
       auto coeff = -1;
       auto twoExp = 2 ^^ (factors[2] - 1);
       foreach (i; 0..p) {
           coeff *= -1;
           auto exponent = i * twoExp * p ^^ (k - 1);
           terms ~= Term(coeff, exponent);
       }
       return Polynomial(terms);
   } else if (2 in factors && n / 2 % 2 == 1 && n / 2 > 1) {
       //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
       auto cycloDiv2 = memoize!cyclotomicPolynomialImpl(n / 2);
       Term[] terms;
       foreach (term; cycloDiv2) {
           if (term.exponent() % 2 == 0) {
               terms ~= term;
           } else {
               terms ~= -term;
           }
       }
       return Polynomial(terms);
   }
   if (ALGORITHM == 0) {
       //  Slow - uses basic definition.
       auto divisors = getDivisors(n);
       //  Polynomial:  ( x^n - 1 )
       auto cyclo = Polynomial(Term(1, n), Term(-1, 0));
       foreach (i; divisors) {
           auto p = memoize!cyclotomicPolynomialImpl(i);
           cyclo = cyclo / p;
       }
       return cyclo;
   }
   if (ALGORITHM == 1) {
       //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
       auto divisors = getDivisors(n);
       auto maxDivisor = int.min;
       foreach (div; divisors) {
           maxDivisor = max(maxDivisor, div);
       }
       int[] divisorsExceptMax;
       foreach (div; divisors) {
           if (maxDivisor % div != 0) {
               divisorsExceptMax ~= div;
           }
       }
       //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       auto cyclo = Polynomial(Term(1, n), Term(-1, 0)) / Polynomial(Term(1, maxDivisor), Term(-1, 0));
       foreach (i; divisorsExceptMax) {
           auto p = memoize!cyclotomicPolynomialImpl(i);
           cyclo = cyclo / p;
       }
       return cyclo;
   }
   if (ALGORITHM == 2) {
       //  Fastest
       //  Let p ; q be primes such that p does not divide n, and q q divides n.
       //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
       auto m = 1;
       auto cyclo = memoize!cyclotomicPolynomialImpl(m);
       auto primes = factors.keys;
       primes.sort;
       foreach (prime; primes) {
           //  CP(m)[x]
           auto cycloM = cyclo;
           //  Compute CP(m)[x^p].
           Term[] terms;
           foreach (term; cycloM) {
               terms ~= Term(term.coefficient(), term.exponent() * prime);
           }
           cyclo = Polynomial(terms) / cycloM;
           m *= prime;
       }
       //  Now, m is the largest square free divisor of n
       auto s = n / m;
       //  Compute CP(n)[x] = CP(m)[x^s]
       Term[] terms;
       foreach (term; cyclo) {
           terms ~= Term(term.coefficient(), term.exponent() * s);
       }
       return Polynomial(terms);
   }
   assert(false, "Error 103: Invalid algorithm");

} alias cyclotomicPolynomial = memoize!cyclotomicPolynomialImpl;

void main() {

   writeln("Task 1:  cyclotomic polynomials for n <= 30:");
  foreach (i; 1 .. 31) {
       auto p = cyclotomicPolynomial(i);
       writefln("CP[%d] = %s", i, p);
  }
   writeln;
   writeln("Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:");
   auto n = 0;
   foreach (i; 1 .. 11) {
        while (true) {
           n++;
           auto cyclo = cyclotomicPolynomial(n);
           if (cyclo.hasCoefficientAbs(i)) {
               writefln("CP[%d] has coefficient with magnitude = %d", n, i);
               n--;
               break;
           }
        }
   }

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^36 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Fermat

This isn't terribly efficient if you have to calculate many cyclotomics- store them in an array rather than using recursion instead if you need to do that- but it showcases Fermat's strength at polynomial expressions. <lang fermat> &(J=x); {adjoin x as the variable in the polynomials}

Func Cyclotomic(n) =

   if n=1 then x-1 fi;                                    {first cyclotomic polynomial is x^n-1}                           
   r:=x^n-1;                                              {caclulate cyclotomic by division}
   for d = 1 to n-1 do
       if Divides(d,n) then
           r:=r\Cyclotomic(d)
       fi;
   od;
   r.;                                                    {return the polynomial}
  

Func Hascoef(n, k) =

   p:=Cyclotomic(n);
   for d = 0 to Deg(p) do
       if |(Coef(p,d))|=k then Return(1) fi
   od;
   0.;
   

for d = 1 to 30 do

   !!(d,' : ',Cyclotomic(d))

od;

for m = 1 to 10 do

   i:=1;
   while not Hascoef(i, m) do
       i:+
   od;
   !!(m,'   :   ',i);

od;</lang>

Go

Translation of: Java

<lang go>package main

import (

   "fmt"
   "log"
   "math"
   "sort"
   "strings"

)

const (

   algo          = 2
   maxAllFactors = 100000

)

func iabs(i int) int {

   if i < 0 {
       return -i
   }
   return i

}

type term struct{ coef, exp int }

func (t term) mul(t2 term) term {

   return term{t.coef * t2.coef, t.exp + t2.exp}

}

func (t term) add(t2 term) term {

   if t.exp != t2.exp {
       log.Fatal("exponents unequal in term.add method")
   }
   return term{t.coef + t2.coef, t.exp}

}

func (t term) negate() term { return term{-t.coef, t.exp} }

func (t term) String() string {

   switch {
   case t.coef == 0:
       return "0"
   case t.exp == 0:
       return fmt.Sprintf("%d", t.coef)
   case t.coef == 1:
       if t.exp == 1 {
           return "x"
       } else {
           return fmt.Sprintf("x^%d", t.exp)
       }
   case t.exp == 1:
       return fmt.Sprintf("%dx", t.coef)
   }
   return fmt.Sprintf("%dx^%d", t.coef, t.exp)

}

type poly struct{ terms []term }

// pass coef, exp in pairs as parameters func newPoly(values ...int) poly {

   le := len(values)
   if le == 0 {
       return poly{[]term{term{0, 0}}}
   }
   if le%2 != 0 {
       log.Fatalf("odd number of parameters (%d) passed to newPoly function", le)
   }
   var terms []term
   for i := 0; i < le; i += 2 {
       terms = append(terms, term{values[i], values[i+1]})
   }
   p := poly{terms}.tidy()
   return p

}

func (p poly) hasCoefAbs(coef int) bool {

   for _, t := range p.terms {
       if iabs(t.coef) == coef {
           return true
       }
   }
   return false

}

func (p poly) add(p2 poly) poly {

   p3 := newPoly()
   le, le2 := len(p.terms), len(p2.terms)
   for le > 0 || le2 > 0 {
       if le == 0 {
           p3.terms = append(p3.terms, p2.terms[le2-1])
           le2--
       } else if le2 == 0 {
           p3.terms = append(p3.terms, p.terms[le-1])
           le--
       } else {
           t := p.terms[le-1]
           t2 := p2.terms[le2-1]
           if t.exp == t2.exp {
               t3 := t.add(t2)
               if t3.coef != 0 {
                   p3.terms = append(p3.terms, t3)
               }
               le--
               le2--
           } else if t.exp < t2.exp {
               p3.terms = append(p3.terms, t)
               le--
           } else {
               p3.terms = append(p3.terms, t2)
               le2--
           }
       }
   }
   return p3.tidy()

}

func (p poly) addTerm(t term) poly {

   q := newPoly()
   added := false
   for i := 0; i < len(p.terms); i++ {
       ct := p.terms[i]
       if ct.exp == t.exp {
           added = true
           if ct.coef+t.coef != 0 {
               q.terms = append(q.terms, ct.add(t))
           }
       } else {
           q.terms = append(q.terms, ct)
       }
   }
   if !added {
       q.terms = append(q.terms, t)
   }
   return q.tidy()

}

func (p poly) mulTerm(t term) poly {

   q := newPoly()
   for i := 0; i < len(p.terms); i++ {
       ct := p.terms[i]
       q.terms = append(q.terms, ct.mul(t))
   }
   return q.tidy()

}

func (p poly) div(v poly) poly {

   q := newPoly()
   lcv := v.leadingCoef()
   dv := v.degree()
   for p.degree() >= v.degree() {
       lcp := p.leadingCoef()
       s := lcp / lcv
       t := term{s, p.degree() - dv}
       q = q.addTerm(t)
       p = p.add(v.mulTerm(t.negate()))
   }
   return q.tidy()

}

func (p poly) leadingCoef() int {

   return p.terms[0].coef

}

func (p poly) degree() int {

   return p.terms[0].exp

}

func (p poly) String() string {

   var sb strings.Builder
   first := true
   for _, t := range p.terms {
       if first {
           sb.WriteString(t.String())
           first = false
       } else {
           sb.WriteString(" ")
           if t.coef > 0 {
               sb.WriteString("+ ")
               sb.WriteString(t.String())
           } else {
               sb.WriteString("- ")
               sb.WriteString(t.negate().String())
           }
       }
   }
   return sb.String()

}

// in place descending sort by term.exp func (p poly) sortTerms() {

   sort.Slice(p.terms, func(i, j int) bool {
       return p.terms[i].exp > p.terms[j].exp
   })

}

// sort terms and remove any unnecesary zero terms func (p poly) tidy() poly {

   p.sortTerms()
   if p.degree() == 0 {
       return p
   }
   for i := len(p.terms) - 1; i >= 0; i-- {
       if p.terms[i].coef == 0 {
           copy(p.terms[i:], p.terms[i+1:])
           p.terms[len(p.terms)-1] = term{0, 0}
           p.terms = p.terms[:len(p.terms)-1]
       }
   }
   if len(p.terms) == 0 {
       p.terms = append(p.terms, term{0, 0})
   }
   return p

}

func getDivisors(n int) []int {

   var divs []int
   sqrt := int(math.Sqrt(float64(n)))
   for i := 1; i <= sqrt; i++ {
       if n%i == 0 {
           divs = append(divs, i)
           d := n / i
           if d != i && d != n {
               divs = append(divs, d)
           }
       }
   }
   return divs

}

var (

   computed   = make(map[int]poly)
   allFactors = make(map[int]map[int]int)

)

func init() {

   f := map[int]int{2: 1}
   allFactors[2] = f

}

func getFactors(n int) map[int]int {

   if f, ok := allFactors[n]; ok {
       return f
   }
   factors := make(map[int]int)
   if n%2 == 0 {
       factorsDivTwo := getFactors(n / 2)
       for k, v := range factorsDivTwo {
           factors[k] = v
       }
       factors[2]++
       if n < maxAllFactors {
           allFactors[n] = factors
       }
       return factors
   }
   prime := true
   sqrt := int(math.Sqrt(float64(n)))
   for i := 3; i <= sqrt; i += 2 {
       if n%i == 0 {
           prime = false
           for k, v := range getFactors(n / i) {
               factors[k] = v
           }
           factors[i]++
           if n < maxAllFactors {
               allFactors[n] = factors
           }
           return factors
       }
   }
   if prime {
       factors[n] = 1
       if n < maxAllFactors {
           allFactors[n] = factors
       }
   }
   return factors

}

func cycloPoly(n int) poly {

   if p, ok := computed[n]; ok {
       return p
   }
   if n == 1 {
       // polynomial: x - 1
       p := newPoly(1, 1, -1, 0)
       computed[1] = p
       return p
   }
   factors := getFactors(n)
   cyclo := newPoly()
   if _, ok := factors[n]; ok {
       // n is prime
       for i := 0; i < n; i++ {
           cyclo.terms = append(cyclo.terms, term{1, i})
       }
   } else if len(factors) == 2 && factors[2] == 1 && factors[n/2] == 1 {
       // n == 2p
       prime := n / 2
       coef := -1
       for i := 0; i < prime; i++ {
           coef *= -1
           cyclo.terms = append(cyclo.terms, term{coef, i})
       }
   } else if len(factors) == 1 {
       if h, ok := factors[2]; ok {
           // n == 2^h
           cyclo.terms = append(cyclo.terms, term{1, 1 << (h - 1)}, term{1, 0})
       } else if _, ok := factors[n]; !ok {
           // n == p ^ k
           p := 0
           for prime := range factors {
               p = prime
           }
           k := factors[p]
           for i := 0; i < p; i++ {
               pk := int(math.Pow(float64(p), float64(k-1)))
               cyclo.terms = append(cyclo.terms, term{1, i * pk})
           }
       }
   } else if len(factors) == 2 && factors[2] != 0 {
       // n = 2^h * p^k
       p := 0
       for prime := range factors {
           if prime != 2 {
               p = prime
           }
       }
       coef := -1
       twoExp := 1 << (factors[2] - 1)
       k := factors[p]
       for i := 0; i < p; i++ {
           coef *= -1
           pk := int(math.Pow(float64(p), float64(k-1)))
           cyclo.terms = append(cyclo.terms, term{coef, i * twoExp * pk})
       }
   } else if factors[2] != 0 && ((n/2)%2 == 1) && (n/2) > 1 {
       //  CP(2m)[x] == CP(-m)[x], n odd integer > 1
       cycloDiv2 := cycloPoly(n / 2)
       for _, t := range cycloDiv2.terms {
           t2 := t
           if t.exp%2 != 0 {
               t2 = t.negate()
           }
           cyclo.terms = append(cyclo.terms, t2)
       }
   } else if algo == 0 {
       // slow - uses basic definition
       divs := getDivisors(n)
       // polynomial: x^n - 1
       cyclo = newPoly(1, n, -1, 0)
       for _, i := range divs {
           p := cycloPoly(i)
           cyclo = cyclo.div(p)
       }
   } else if algo == 1 {
       //  faster - remove max divisor (and all divisors of max divisor)
       //  only one divide for all divisors of max divisor
       divs := getDivisors(n)
       maxDiv := math.MinInt32
       for _, d := range divs {
           if d > maxDiv {
               maxDiv = d
           }
       }
       var divsExceptMax []int
       for _, d := range divs {
           if maxDiv%d != 0 {
               divsExceptMax = append(divsExceptMax, d)
           }
       }
       // polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       cyclo = newPoly(1, n, -1, 0)
       cyclo = cyclo.div(newPoly(1, maxDiv, -1, 0))
       for _, i := range divsExceptMax {
           p := cycloPoly(i)
           cyclo = cyclo.div(p)
       }
   } else if algo == 2 {
       //  fastest
       //  let p, q be primes such that p does not divide n, and q divides n
       //  then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
       m := 1
       cyclo = cycloPoly(m)
       var primes []int
       for prime := range factors {
           primes = append(primes, prime)
       }
       sort.Ints(primes)
       for _, prime := range primes {
           //  CP(m)[x]
           cycloM := cyclo
           //  compute CP(m)[x^p]
           var terms []term
           for _, t := range cycloM.terms {
               terms = append(terms, term{t.coef, t.exp * prime})
           }
           cyclo = newPoly()
           cyclo.terms = append(cyclo.terms, terms...)
           cyclo = cyclo.tidy()
           cyclo = cyclo.div(cycloM)
           m *= prime
       }
       //  now, m is the largest square free divisor of n
       s := n / m
       //  Compute CP(n)[x] = CP(m)[x^s]
       var terms []term
       for _, t := range cyclo.terms {
           terms = append(terms, term{t.coef, t.exp * s})
       }
       cyclo = newPoly()
       cyclo.terms = append(cyclo.terms, terms...)
   } else {
       log.Fatal("invalid algorithm")
   }
   cyclo = cyclo.tidy()
   computed[n] = cyclo
   return cyclo

}

func main() {

   fmt.Println("Task 1:  cyclotomic polynomials for n <= 30:")
   for i := 1; i <= 30; i++ {
       p := cycloPoly(i)
       fmt.Printf("CP[%2d] = %s\n", i, p)
   }
   fmt.Println("\nTask 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:")
   n := 0
   for i := 1; i <= 10; i++ {
       for {
           n++
           cyclo := cycloPoly(n)
           if cyclo.hasCoefAbs(i) {
               fmt.Printf("CP[%d] has coefficient with magnitude = %d\n", n, i)
               n--
               break
           }
       }
   }

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[ 1] = x - 1
CP[ 2] = x + 1
CP[ 3] = x^2 + x + 1
CP[ 4] = x^2 + 1
CP[ 5] = x^4 + x^3 + x^2 + x + 1
CP[ 6] = x^2 - x + 1
CP[ 7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[ 8] = x^4 + 1
CP[ 9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Haskell

Uses synthetic polynomial division and simple memoization.

<lang haskell>import Data.List import Data.Numbers.Primes (primeFactors)

negateVar p = zipWith (*) p $ reverse $ take (length p) $ cycle [1,-1]

lift p 1 = p lift p n = intercalate (replicate (n-1) 0) (pure <$> p)

shortDiv :: [Integer] -> [Integer] -> [Integer] shortDiv p1 (_:p2) = unfoldr go (length p1 - length p2, p1)

 where
   go (0, _) = Nothing
   go (i, h:t) = Just (h, (i-1, zipWith (+) (map (h *) ker) t))
   ker = negate <$> p2 ++ repeat 0

primePowerFactors = sortOn fst . map (\x-> (head x, length x)) . group . primeFactors

-- simple memoization cyclotomics :: Integer cyclotomics = cyclotomic <$> [0..]

cyclotomic :: Int -> [Integer] cyclotomic 0 = [0] cyclotomic 1 = [1, -1] cyclotomic 2 = [1, 1] cyclotomic n = case primePowerFactors n of

 -- for n = 2^k
 [(2,h)]       -> 1 : replicate (2 ^ (h-1) - 1) 0 ++ [1]
 -- for prime n
 [(p,1)]       -> replicate n 1
 -- for power of prime n
 [(p,m)]       -> lift (cyclotomics !! p) (p^(m-1))
 -- for n = 2*p and prime p
 [(2,1),(p,1)] -> take (n `div` 2) $ cycle [1,-1]
 -- for n = 2*m and odd m
 (2,1):_       -> negateVar $ cyclotomics !! (n `div` 2)
 -- general case
 (p, m):ps     -> let cm = cyclotomics !! (n `div` (p ^ m))
                  in lift (lift cm p `shortDiv` cm) (p^(m-1))</lang>

Simple examples

λ> cyclotomic 7
[1,1,1,1,1,1,1]

λ> cyclotomic 9
[1,0,0,1,0,0,1]

λ> cyclotomic 16
[1,0,0,0,0,0,0,0,1]

The task solution

<lang haskell>showPoly [] = "0" showPoly p = foldl1 (\r -> (r ++) . term) $

            dropWhile null $
            foldMap (\(c, n) -> [show c ++ expt n]) $
            zip (reverse p) [0..]
 where
   expt = \case 0 -> ""
                1 -> "*x"
                n -> "*x^" ++ show n
   term = \case [] -> ""
                '0':'*':t -> ""
                '-':'1':'*':t -> " - " ++ t
                '1':'*':t -> " + " ++ t
                '-':t -> " - " ++ t
                t -> " + " ++ t     

main = do

 mapM_ (print . showPoly . cyclotomic) [1..30]
 putStrLn $ replicate 40 '-'
 
 mapM_ showLine $ take 4 task2
 where
   showLine (j, i, l) = putStrLn $ concat [ show j
                                           , " appears in CM(", show i
                                           , ") of length ", show l ]
   -- in order to make computations faster we leave only each 5-th polynomial
   task2 = (1,1,2) : tail (search 1 $ zip [0,5..] $ skipBy 5 cyclotomics)
     where
       search i ((k, p):ps) = if i `notElem` (abs <$> p)
                              then search i ps
                              else (i, k, length p) : search (i+1) ((k, p):ps)

skipBy n [] = [] skipBy n lst = let (x:_, b) = splitAt n lst in x:skipBy n b</lang>

Result

"-1 + x^1"
"1 + x^1"
"1 + x^1 + x^2"
"1 + x^2"
"1 + x^1 + x^2 + x^3 + x^4"
"1 - x^1 + x^2"
"1 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6"
"1 + x^4"
"1 + x^3 + x^6"
"1 - x^1 + x^2 - x^3 + x^4"
"1 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10"
"1 - x^2 + x^4"
"1 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12"
"1 - x^1 + x^2 - x^3 + x^4 - x^5 + x^6"
"1 - x^1 + x^3 - x^4 + x^5 - x^7 + x^8"
"1 + x^8"
"1 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16"
"1 - x^3 + x^6"
"1 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18"
"1 - x^2 + x^4 - x^6 + x^8"
"1 - x^1 + x^3 - x^4 + x^6 - x^8 + x^9 - x^11 + x^12"
"1 - x^1 + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10"
"1 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + x^21 + x^22"
"1 - x^4 + x^8"
"1 + x^5 + x^10 + x^15 + x^20"
"1 - x^1 + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12"
"1 + x^9 + x^18"
"1 - x^2 + x^4 - x^6 + x^8 - x^10 + x^12"
"1 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + x^21 + x^22 + x^23 + x^24 + x^25 + x^26 + x^27 + x^28"
"1 + x^1 - x^3 - x^4 - x^5 + x^7 + x^8"
----------------------------------------
1 appears in CM(1) having 2 terms
2 appears in CM(105) having 49 terms
3 appears in CM(385) having 241 terms
4 appears in CM(1365) having 577 terms
5 appears in CM(1785) having 769 terms
6 appears in CM(2805) having 1281 terms
7 appears in CM(3135) having 1441 terms
8 appears in CP(6545) having 3841 terms
9 appears in CP(6545) having 3841 terms
10 appears in CP(10465) having 6337 terms

Computations take a while...

J

For values up to 70, we can find cyclotomic polynomials by finding a polynomial with roots of unity relatively prime to the order of the polynomial:

<lang J>cyclo=: {{<.-:1+(++) p. 1;^0j2p1* y%~1+I.1=y+.1+i.y}}</lang>

This approach suggests that cyclotomic polynomial zero should be f0(x)= 1

Implementation of routine to find nth cyclotomic polynomial:

<lang J>{{ if.0>nc<'cache' do.cache=:y end.}} (,1);_1 1

cyclotomic=: {{

  if.y<#cache do.
    if.#c=. y{::cache do.
      c return.
    end.
  end.
  c=. unpad cyclotomic000 y
  if. y>:#cache do. cache=:(100+y){.cache end.
  cache=: (<c) y} cache
  c

}}

cyclotomic000=: {{ assert.0<y

  'q p'=. __ q: y
  if. 1=#q do.
    ,(y%*/q) {."0 q#1
  elseif.2={.q do.
    ,(y%*/q) {."0 (* 1 _1 $~ #) cyclotomic */}.q
  elseif. 1 e. 1 < p do.
    ,(y%*/q) {."0 cyclotomic */q
  else.
    (_1,(-y){.1) pDiv ;+//.@(*/)each/ cyclotomic each}:*/@>,{1,each q
  end.

}}


NB. discard high order zero coefficients in representation of polynomial unpad=: {.~ 1+0 i:~0=]

NB. polynomial division, optimized for somewhat sparse polynomials pDiv=: Template:Q=. $j=. 2 + x -&</lang>

If you take all the divisors of a number. (For example, for 12, the divisors are: 1, 2, 3, 4, 6 and 12) and find the product of their cyclotomic polynomials (for example, for 12, x-1, x+1, x2+x+1, x2+1, x2-x+1, and x4-x2+1) you get xn-1 (for 12, that would of course be x12-1).

Notes:

  • the coefficients of a cyclotomic polynomials after 1 form a palindrome (that's the q#1 phrase in the implementation).
  • the coefficients of the cyclotomic polynomial for a prime number has as many terms as that number, and the coefficients are all 1.
  • powers of primes add zero coefficients to the polynomial (that's the ,(y%*/q) {."0 ... phrase in the implementation). This means that we can mostly ignore powers of prime numbers -- they're just going to correspond to zeros we add to the base polynomial.
  • an even base cyclotomic polynomial is the same as the corresponding odd base cyclotomic polynomial except with x replaced by negative x. (that's the (* 1 _1 $~ #) phrase in the implementation.
  • To deal with the general case, we use polynomial division, xn-1 divided by the polynomial product the cyclotomic polynomials of the proper divisors of number we're looking for.
  • +//.@(*/) is polynomial product in J.

Task examples:

<lang J>taskfmt=: {{

 c=. ":each j=.cyclotomic y
 raw=. rplc&'_-' ;:inv}.,'+';"0|.(*|j)#c('(',[,],')'"_)each '*x^',&":L:0 <"0 i.#c
 txt=. raw rplc'(1*x^0)';'1';'(-1*x^0)';'(-1)';'*x^1)';'*x)'
 LF,~'CP[',y,&":']= ',rplc&('(x)';'x';'+ (-1)';'- 1')txt rplc'(1*';'(';'(-1*';'(-'

}}

taskorder=: {{

 r=.$k=.0
 while.y>#r do.k=.k+1
   if.(1+#r) e.|cyclotomic k do.
     r=. r,k
     k=. k-1
   end.
 end.r

}}

  ;taskfmt each 1+i.30

CP[1]= x - 1 CP[2]= x + 1 CP[3]= (x^2) + x + 1 CP[4]= (x^2) + 1 CP[5]= (x^4) + (x^3) + (x^2) + x + 1 CP[6]= (x^2) + (-x) + 1 CP[7]= (x^6) + (x^5) + (x^4) + (x^3) + (x^2) + x + 1 CP[8]= (x^4) + 1 CP[9]= (x^6) + (x^3) + 1 CP[10]= (x^4) + (-x^3) + (x^2) + (-x) + 1 CP[11]= (x^10) + (x^9) + (x^8) + (x^7) + (x^6) + (x^5) + (x^4) + (x^3) + (x^2) + x + 1 CP[12]= (x^4) + (-x^2) + 1 CP[13]= (x^12) + (x^11) + (x^10) + (x^9) + (x^8) + (x^7) + (x^6) + (x^5) + (x^4) + (x^3) + (x^2) + x + 1 CP[14]= (x^6) + (-x^5) + (x^4) + (-x^3) + (x^2) + (-x) + 1 CP[15]= (x^8) + (-x^7) + (x^5) + (-x^4) + (x^3) + (-x) + 1 CP[16]= (x^8) + 1 CP[17]= (x^16) + (x^15) + (x^14) + (x^13) + (x^12) + (x^11) + (x^10) + (x^9) + (x^8) + (x^7) + (x^6) + (x^5) + (x^4) + (x^3) + (x^2) + x + 1 CP[18]= (x^6) + (-x^3) + 1 CP[19]= (x^18) + (x^17) + (x^16) + (x^15) + (x^14) + (x^13) + (x^12) + (x^11) + (x^10) + (x^9) + (x^8) + (x^7) + (x^6) + (x^5) + (x^4) + (x^3) + (x^2) + x + 1 CP[20]= (x^8) + (-x^6) + (x^4) + (-x^2) + 1 CP[21]= (x^12) + (-x^11) + (x^9) + (-x^8) + (x^6) + (-x^4) + (x^3) + (-x) + 1 CP[22]= (x^10) + (-x^9) + (x^8) + (-x^7) + (x^6) + (-x^5) + (x^4) + (-x^3) + (x^2) + (-x) + 1 CP[23]= (x^22) + (x^21) + (x^20) + (x^19) + (x^18) + (x^17) + (x^16) + (x^15) + (x^14) + (x^13) + (x^12) + (x^11) + (x^10) + (x^9) + (x^8) + (x^7) + (x^6) + (x^5) + (x^4) + (x^3) + (x^2) + x + 1 CP[24]= (x^8) + (-x^4) + 1 CP[25]= (x^20) + (x^15) + (x^10) + (x^5) + 1 CP[26]= (x^12) + (-x^11) + (x^10) + (-x^9) + (x^8) + (-x^7) + (x^6) + (-x^5) + (x^4) + (-x^3) + (x^2) + (-x) + 1 CP[27]= (x^18) + (x^9) + 1 CP[28]= (x^12) + (-x^10) + (x^8) + (-x^6) + (x^4) + (-x^2) + 1 CP[29]= (x^28) + (x^27) + (x^26) + (x^25) + (x^24) + (x^23) + (x^22) + (x^21) + (x^20) + (x^19) + (x^18) + (x^17) + (x^16) + (x^15) + (x^14) + (x^13) + (x^12) + (x^11) + (x^10) + (x^9) + (x^8) + (x^7) + (x^6) + (x^5) + (x^4) + (x^3) + (x^2) + x + 1 CP[30]= (x^8) + (x^7) + (-x^5) + (-x^4) + (-x^3) + x + 1

  (,.~#\) taskorder 10
1     1
2   105
3   385
4  1365
5  1785
6  2805
7  3135
8  6545
9  6545

10 10465</lang>

Another approach

As noted in the J programming forum, we can improve the big-O character of this algorithm by using the Fast Fourier transform for polynomial multiplication and division.

<lang J>NB. install'math/fftw' require'math/fftw'

cyclotomic000=: {{ assert.0<y

 if. y = 1 do. _1 1 return. end.
 'q p'=. __ q: y
 if. 1=#q do.
   ,(y%*/q) {."0 q#1
 elseif.2={.q do.
   ,(y%*/q) {."0 (* 1 _1 $~ #) cyclotomic */}.q
 elseif. 1 e. 1 < p do.
   ,(y%*/q) {."0 cyclotomic */q
 else.
   lgl=. {:$ ctlist=. cyclotomic "0 }:*/@>,{1,each q    NB. ctlist is 2-d table of polynomial divisors
   lgd=. # dividend=. _1,(-y){.1                        NB. (x^n) - 1, and its size
   lg=.  >.&.(2&^.)   lgl >. lgd                        NB. required lengths of all polynomials for fft transforms
                      NB. really, "divisor" is the fft of the divisor!
            divisor=. */ fftw"1 lg{."1 ctlist           NB. FFT article doesn't deal with lists of multiplicands
   unpad roundreal ifftw"1 divisor %~ fftw lg{.dividend NB. similar to article's multiplication
 end.

}}

roundreal =: [: <. 0.5 + 9&o.</lang>

This variation for polynomial division is only valid when there's no remainder to be concerned with (which is the case, here).

This approach gave slightly over a 16x speedup for taskorder 10, from a 2 element cache, with an approximately 50% increased memory footprint. (Remember, of course, that benchmarks and benchmark ratios have dependencies on computer architecture and language implementation, and the host environment.)

Java

<lang java> import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.TreeMap;

public class CyclotomicPolynomial {

   @SuppressWarnings("unused")
   private static int divisions = 0;
   private static int algorithm = 2;
   
   public static void main(String[] args) throws Exception {
       System.out.println("Task 1:  cyclotomic polynomials for n <= 30:");
       for ( int i = 1 ; i <= 30 ; i++ ) {
           Polynomial p = cyclotomicPolynomial(i);
           System.out.printf("CP[%d] = %s%n", i, p);
       }
       System.out.println("Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:");
       int n = 0;
       for ( int i = 1 ; i <= 10 ; i++ ) {
           while ( true ) {
               n++;
               Polynomial cyclo = cyclotomicPolynomial(n);
               if ( cyclo.hasCoefficientAbs(i) ) {
                   System.out.printf("CP[%d] has coefficient with magnitude = %d%n", n, i);
                   n--;
                   break;
               }
           }
       }
   }
   private static final Map<Integer, Polynomial> COMPUTED = new HashMap<>();
   
   private static Polynomial cyclotomicPolynomial(int n) {
       if ( COMPUTED.containsKey(n) ) {
           return COMPUTED.get(n);
       }
       
       //System.out.println("COMPUTE:  n = " + n);
       
       if ( n == 1 ) {
           //  Polynomial:  x - 1
           Polynomial p = new Polynomial(1, 1, -1, 0);
           COMPUTED.put(1, p);
           return p;
       }
       Map<Integer,Integer> factors = getFactors(n);
       
       if ( factors.containsKey(n) ) {
           //  n prime
           List<Term> termList = new ArrayList<>();
           for ( int index = 0 ; index < n ; index++ ) {
               termList.add(new Term(1, index));
           }
           
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 2 && factors.containsKey(2) && factors.get(2) == 1 && factors.containsKey(n/2) && factors.get(n/2) == 1 ) {
           //  n = 2p
           int prime = n/2;
           List<Term> termList = new ArrayList<>();
           int coeff = -1;
           for ( int index = 0 ; index < prime ; index++ ) {
               coeff *= -1;
               termList.add(new Term(coeff, index));
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 1 && factors.containsKey(2) ) {
           //  n = 2^h
           int h = factors.get(2);
           List<Term> termList = new ArrayList<>();
           termList.add(new Term(1, (int) Math.pow(2, h-1)));
           termList.add(new Term(1, 0));
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 1 && ! factors.containsKey(n) ) {
           // n = p^k
           int p = 0;
           for ( int prime : factors.keySet() ) {
               p = prime;
           }
           int k = factors.get(p);
           List<Term> termList = new ArrayList<>();
           for ( int index = 0 ; index < p ; index++ ) {
               termList.add(new Term(1, index * (int) Math.pow(p, k-1)));
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 2 && factors.containsKey(2) ) {
           //  n = 2^h * p^k
           int p = 0;
           for ( int prime : factors.keySet() ) {
               if ( prime != 2 ) {
                   p = prime;
               }
           }
           List<Term> termList = new ArrayList<>();
           int coeff = -1;
           int twoExp = (int) Math.pow(2, factors.get(2)-1);
           int k = factors.get(p);
           for ( int index = 0 ; index < p ; index++ ) {
               coeff *= -1;
               termList.add(new Term(coeff, index * twoExp * (int) Math.pow(p, k-1)));
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;            
       }
       else if ( factors.containsKey(2) && ((n/2) % 2 == 1) && (n/2) > 1 ) {
           //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
           Polynomial cycloDiv2 = cyclotomicPolynomial(n/2);
           List<Term> termList = new ArrayList<>();
           for ( Term term : cycloDiv2.polynomialTerms ) {
               termList.add(term.exponent % 2 == 0 ? term : term.negate());
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;            
       }
       
       //  General Case
       
       if ( algorithm == 0 ) {
           //  Slow - uses basic definition.
           List<Integer> divisors = getDivisors(n);
           //  Polynomial:  ( x^n - 1 )
           Polynomial cyclo = new Polynomial(1, n, -1, 0);
           for ( int i : divisors ) {
               Polynomial p = cyclotomicPolynomial(i);
               cyclo = cyclo.divide(p);
           }
           
           COMPUTED.put(n, cyclo);            
           return cyclo;
       }
       else if ( algorithm == 1 ) {
           //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
           List<Integer> divisors = getDivisors(n);
           int maxDivisor = Integer.MIN_VALUE;
           for ( int div : divisors ) {
               maxDivisor = Math.max(maxDivisor, div);
           }
           List<Integer> divisorsExceptMax = new ArrayList<Integer>();
           for ( int div : divisors ) {
               if ( maxDivisor % div != 0 ) {
                   divisorsExceptMax.add(div);
               }
           }
           //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
           Polynomial cyclo = new Polynomial(1, n, -1, 0).divide(new Polynomial(1, maxDivisor, -1, 0));
           for ( int i : divisorsExceptMax ) {
               Polynomial p = cyclotomicPolynomial(i);
               cyclo = cyclo.divide(p);
           }
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( algorithm == 2 ) {
           //  Fastest
           //  Let p ; q be primes such that p does not divide n, and q q divides n.
           //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
           int m = 1;
           Polynomial cyclo = cyclotomicPolynomial(m);
           List<Integer> primes = new ArrayList<>(factors.keySet());
           Collections.sort(primes);
           for ( int prime : primes ) {
               //  CP(m)[x]
               Polynomial cycloM = cyclo;
               //  Compute CP(m)[x^p].
               List<Term> termList = new ArrayList<>();
               for ( Term t : cycloM.polynomialTerms ) {
                   termList.add(new Term(t.coefficient, t.exponent * prime));
               }
               cyclo = new Polynomial(termList).divide(cycloM);
               m = m * prime;
           }
           //  Now, m is the largest square free divisor of n
           int s = n / m;
           //  Compute CP(n)[x] = CP(m)[x^s]
           List<Term> termList = new ArrayList<>();
           for ( Term t : cyclo.polynomialTerms ) {
               termList.add(new Term(t.coefficient, t.exponent * s));
           }
           cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else {
           throw new RuntimeException("ERROR 103:  Invalid algorithm.");
       }
   }
   
   private static final List<Integer> getDivisors(int number) {
       List<Integer> divisors = new ArrayList<Integer>();
       long sqrt = (long) Math.sqrt(number);
       for ( int i = 1 ; i <= sqrt ; i++ ) {
           if ( number % i == 0 ) {
               divisors.add(i);
               int div = number / i;
               if ( div != i && div != number ) {
                   divisors.add(div);
               }
           }
       }
       return divisors;
   }
   private static final Map<Integer,Map<Integer,Integer>> allFactors = new TreeMap<Integer,Map<Integer,Integer>>();
   static {
       Map<Integer,Integer> factors = new TreeMap<Integer,Integer>();
       factors.put(2, 1);
       allFactors.put(2, factors);
   }
   public static Integer MAX_ALL_FACTORS = 100000;
   public static final Map<Integer,Integer> getFactors(Integer number) {
       if ( allFactors.containsKey(number) ) {
           return allFactors.get(number);
       }
       Map<Integer,Integer> factors = new TreeMap<Integer,Integer>();
       if ( number % 2 == 0 ) {
           Map<Integer,Integer> factorsdDivTwo = getFactors(number/2);
           factors.putAll(factorsdDivTwo);
           factors.merge(2, 1, (v1, v2) -> v1 + v2);
           if ( number < MAX_ALL_FACTORS ) 
               allFactors.put(number, factors);
           return factors;
       }
       boolean prime = true;
       long sqrt = (long) Math.sqrt(number);
       for ( int i = 3 ; i <= sqrt ; i += 2 ) {
           if ( number % i == 0 ) {
               prime = false;
               factors.putAll(getFactors(number/i));
               factors.merge(i, 1, (v1, v2) -> v1 + v2);
               if ( number < MAX_ALL_FACTORS ) 
                   allFactors.put(number, factors);
               return factors;
           }
       }
       if ( prime ) {
           factors.put(number, 1);
           if ( number < MAX_ALL_FACTORS ) 
               allFactors.put(number, factors);
       }
       return factors;
   }
   
   private static final class Polynomial {
       private List<Term> polynomialTerms;
       
       //  Format - coeff, exp, coeff, exp, (repeating in pairs) . . .
       public Polynomial(int ... values) {
           if ( values.length % 2 != 0 ) {
               throw new IllegalArgumentException("ERROR 102:  Polynomial constructor.  Length must be even.  Length = " + values.length);
           }
           polynomialTerms = new ArrayList<>();
           for ( int i = 0 ; i < values.length ; i += 2 ) {
               Term t = new Term(values[i], values[i+1]);
               polynomialTerms.add(t);
           }
           Collections.sort(polynomialTerms, new TermSorter());
       }
       
       public Polynomial() {
           //  zero
           polynomialTerms = new ArrayList<>();
           polynomialTerms.add(new Term(0,0));
       }
       
       private boolean hasCoefficientAbs(int coeff) {
           for ( Term term : polynomialTerms ) {
               if ( Math.abs(term.coefficient) == coeff ) {
                   return true;
               }
           }
           return false;
       }
       
       private Polynomial(List<Term> termList) {
           if ( termList.size() == 0 ) {
               //  zero
               termList.add(new Term(0,0));
           }
           else {
               //  Remove zero terms if needed
               for ( int i = 0 ; i < termList.size() ; i++ ) {
                   if ( termList.get(i).coefficient == 0 ) {
                       termList.remove(i);
                   }
               }
           }
           if ( termList.size() == 0 ) {
               //  zero
               termList.add(new Term(0,0));
           }
           polynomialTerms = termList;
           Collections.sort(polynomialTerms, new TermSorter());
       }
       
       public Polynomial divide(Polynomial v) {
           //long start = System.currentTimeMillis();
           divisions++;
           Polynomial q = new Polynomial();
           Polynomial r = this;
           long lcv = v.leadingCoefficient();
           long dv = v.degree();
           while ( r.degree() >= v.degree() ) {
               long lcr = r.leadingCoefficient();
               long s = lcr / lcv;  //  Integer division
               Term term = new Term(s, r.degree() - dv);
               q = q.add(term);
               r = r.add(v.multiply(term.negate()));
           }
           //long end = System.currentTimeMillis();
           //System.out.printf("Divide:  Elapsed = %d, Degree 1 = %d, Degree 2 = %d%n", (end-start), this.degree(), v.degree());
           return q;
       }
       public Polynomial add(Polynomial polynomial) {
           List<Term> termList = new ArrayList<>();
           int thisCount = polynomialTerms.size();
           int polyCount = polynomial.polynomialTerms.size();
           while ( thisCount > 0 || polyCount > 0 ) {
               Term thisTerm = thisCount == 0 ? null : polynomialTerms.get(thisCount-1);
               Term polyTerm = polyCount == 0 ? null : polynomial.polynomialTerms.get(polyCount-1);
               if ( thisTerm == null ) {
                   termList.add(polyTerm.clone());
                   polyCount--;
               }
               else if (polyTerm == null ) {
                   termList.add(thisTerm.clone());
                   thisCount--;
               }
               else if ( thisTerm.degree() == polyTerm.degree() ) {
                   Term t = thisTerm.add(polyTerm);
                   if ( t.coefficient != 0 ) {
                       termList.add(t);
                   }
                   thisCount--;
                   polyCount--;
               }
               else if ( thisTerm.degree() < polyTerm.degree() ) {
                   termList.add(thisTerm.clone());
                   thisCount--;
               }
               else {
                   termList.add(polyTerm.clone());
                   polyCount--;
               }
           }
           return new Polynomial(termList);
       }
       public Polynomial add(Term term) {
           List<Term> termList = new ArrayList<>();
           boolean added = false;
           for ( int index = 0 ; index < polynomialTerms.size() ; index++ ) {
               Term currentTerm = polynomialTerms.get(index);
               if ( currentTerm.exponent == term.exponent ) {
                   added = true;
                   if ( currentTerm.coefficient + term.coefficient != 0 ) {
                       termList.add(currentTerm.add(term));
                   }
               }
               else {
                   termList.add(currentTerm.clone());
               }
           }
           if ( ! added ) {
               termList.add(term.clone());
           }
           return new Polynomial(termList);
       }
       public Polynomial multiply(Term term) {
           List<Term> termList = new ArrayList<>();
           for ( int index = 0 ; index < polynomialTerms.size() ; index++ ) {
               Term currentTerm = polynomialTerms.get(index);
               termList.add(currentTerm.clone().multiply(term));
           }
           return new Polynomial(termList);
       }
       public Polynomial clone() {
           List<Term> clone = new ArrayList<>();
           for ( Term t : polynomialTerms ) {
               clone.add(new Term(t.coefficient, t.exponent));
           }
           return new Polynomial(clone);
       }
       public long leadingCoefficient() {

// long coefficient = 0; // long degree = Integer.MIN_VALUE; // for ( Term t : polynomialTerms ) { // if ( t.degree() > degree ) { // coefficient = t.coefficient; // degree = t.degree(); // } // }

           return polynomialTerms.get(0).coefficient;
       }
       public long degree() {

// long degree = Integer.MIN_VALUE; // for ( Term t : polynomialTerms ) { // if ( t.degree() > degree ) { // degree = t.degree(); // } // }

           return polynomialTerms.get(0).exponent;
       }
       
       @Override
       public String toString() {
           StringBuilder sb = new StringBuilder();
           boolean first = true;
           for ( Term term : polynomialTerms ) {
               if ( first ) {
                   sb.append(term);
                   first = false;
               }
               else {
                   sb.append(" ");
                   if ( term.coefficient > 0 ) {
                       sb.append("+ ");
                       sb.append(term);
                   }
                   else {
                       sb.append("- ");
                       sb.append(term.negate());
                   }
               }
           }
           return sb.toString();
       }
   }
   
   private static final class TermSorter implements Comparator<Term> {
       @Override
       public int compare(Term o1, Term o2) {
           return (int) (o2.exponent - o1.exponent);
       }        
   }
   
   //  Note:  Cyclotomic Polynomials have small coefficients.  Not appropriate for general polynomial usage.
   private static final class Term {
       long coefficient;
       long exponent;
       
       public Term(long c, long e) {
           coefficient = c;
           exponent = e;
       }
       
       public Term clone() {
           return new Term(coefficient, exponent);
       }
       
       public Term multiply(Term term) {
           return new Term(coefficient * term.coefficient, exponent + term.exponent);
       }
       
       public Term add(Term term) {
           if ( exponent != term.exponent ) {
               throw new RuntimeException("ERROR 102:  Exponents not equal.");
           }
           return new Term(coefficient + term.coefficient, exponent);
       }
       public Term negate() {
           return new Term(-coefficient, exponent);
       }
       
       public long degree() {
           return exponent;
       }
       
       @Override
       public String toString() {
           if ( coefficient == 0 ) {
               return "0";
           }
           if ( exponent == 0 ) {
               return "" + coefficient;
           }
           if ( coefficient == 1 ) {
               if ( exponent == 1 ) {
                   return "x";
               }
               else {
                   return "x^" + exponent;
               }
           }
           if ( exponent == 1 ) {
               return coefficient + "x";
           }
           return coefficient + "x^" + exponent;
       }
   }

} </lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Julia

<lang julia>using Primes, Polynomials

  1. memoize cache for recursive calls

const cyclotomics = Dict([1 => Poly([big"-1", big"1"]), 2 => Poly([big"1", big"1"])])

  1. get all integer divisors of an integer, except itself

function divisors(n::Integer)

   f = [one(n)]
   for (p, e) in factor(n)
       f = reduce(vcat, [f * p^j for j in 1:e], init=f)
   end
   return resize!(f, length(f) - 1)

end

"""

   cyclotomic(n::Integer)

Calculate the n -th cyclotomic polynomial. See wikipedia article at bottom of section /wiki/Cyclotomic_polynomial#Fundamental_tools The algorithm is reliable but slow for large n > 1000. """ function cyclotomic(n::Integer)

   if haskey(cyclotomics, n)
       c = cyclotomics[n]
   elseif isprime(n)
       c = Poly(ones(BigInt, n))
       cyclotomics[n] = c
   else  # recursive formula seen in wikipedia article
       c = Poly([big"-1"; zeros(BigInt, n - 1); big"1"])
       for d in divisors(n)
           c ÷= cyclotomic(d)
       end
       cyclotomics[n] = c
   end
   return c

end

println("First 30 cyclotomic polynomials:") for i in 1:30

   println(rpad("$i:  ", 5), cyclotomic(BigInt(i)))

end

const dig = zeros(BigInt, 10) for i in 1:1000000

   if all(x -> x != 0, dig)
       break
   end
   for coef in coeffs(cyclotomic(i))
       x = abs(coef)
       if 0 < x < 11 && dig[Int(x)] == 0
           dig[Int(x)] = coef < 0 ? -i : i
       end
   end

end for (i, n) in enumerate(dig)

   println("The cyclotomic polynomial Φ(", abs(n), ") has a coefficient that is ", n < 0 ? -i : i)

end

</lang>

Output:
First 30 cyclotomic polynomials:
1:   Poly(-1 + x)
2:   Poly(1 + x)
3:   Poly(1 + x + x^2)
4:   Poly(1.0 + 1.0*x^2)
5:   Poly(1 + x + x^2 + x^3 + x^4)
6:   Poly(1.0 - 1.0*x + 1.0*x^2)
7:   Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)
8:   Poly(1.0 + 1.0*x^4)
9:   Poly(1.0 + 1.0*x^3 + 1.0*x^6)
10:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4)
11:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)
12:  Poly(1.0 - 1.0*x^2 + 1.0*x^4)
13:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)
14:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4 - 1.0*x^5 + 1.0*x^6)
15:  Poly(1.0 - 1.0*x + 1.0*x^3 - 1.0*x^4 + 1.0*x^5 - 1.0*x^7 + 1.0*x^8)
16:  Poly(1.0 + 1.0*x^8)
17:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16)
18:  Poly(1.0 - 1.0*x^3 + 1.0*x^6)
19:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18)
20:  Poly(1.0 - 1.0*x^2 + 1.0*x^4 - 1.0*x^6 + 1.0*x^8)
21:  Poly(1.0 - 1.0*x + 1.0*x^3 - 1.0*x^4 + 1.0*x^6 - 1.0*x^8 + 1.0*x^9 - 1.0*x^11 + 1.0*x^12)
22:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4 - 1.0*x^5 + 1.0*x^6 - 1.0*x^7 + 1.0*x^8 - 1.0*x^9 + 1.0*x^10)
23:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + x^21 + x^22)
24:  Poly(1.0 - 1.0*x^4 + 1.0*x^8)
25:  Poly(1.0 + 1.0*x^5 + 1.0*x^10 + 1.0*x^15 + 1.0*x^20)
26:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4 - 1.0*x^5 + 1.0*x^6 - 1.0*x^7 + 1.0*x^8 - 1.0*x^9 + 1.0*x^10 - 1.0*x^11 + 1.0*x^12)
27:  Poly(1.0 + 1.0*x^9 + 1.0*x^18)
28:  Poly(1.0 - 1.0*x^2 + 1.0*x^4 - 1.0*x^6 + 1.0*x^8 - 1.0*x^10 + 1.0*x^12)
29:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + x^21 + x^22 + x^23 + x^24 + x^25 + x^26 + x^27 + x^28)
30:  Poly(1.0 + 1.0*x - 1.0*x^3 - 1.0*x^4 - 1.0*x^5 + 1.0*x^7 + 1.0*x^8)
The cyclotomic polynomial Φ(1) has a coefficient that is -1
The cyclotomic polynomial Φ(105) has a coefficient that is -2
The cyclotomic polynomial Φ(385) has a coefficient that is -3
The cyclotomic polynomial Φ(1365) has a coefficient that is -4
The cyclotomic polynomial Φ(1785) has a coefficient that is 5
The cyclotomic polynomial Φ(2805) has a coefficient that is -6
The cyclotomic polynomial Φ(3135) has a coefficient that is 7
The cyclotomic polynomial Φ(6545) has a coefficient that is -8
The cyclotomic polynomial Φ(6545) has a coefficient that is 9
The cyclotomic polynomial Φ(10465) has a coefficient that is 10

Kotlin

Translation of: Java

<lang scala>import java.util.TreeMap import kotlin.math.abs import kotlin.math.pow import kotlin.math.sqrt

private const val algorithm = 2

fun main() {

   println("Task 1:  cyclotomic polynomials for n <= 30:")
   for (i in 1..30) {
       val p = cyclotomicPolynomial(i)
       println("CP[$i] = $p")
   }
   println()
   println("Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:")
   var n = 0
   for (i in 1..10) {
       while (true) {
           n++
           val cyclo = cyclotomicPolynomial(n)
           if (cyclo!!.hasCoefficientAbs(i)) {
               println("CP[$n] has coefficient with magnitude = $i")
               n--
               break
           }
       }
   }

}

private val COMPUTED: MutableMap<Int, Polynomial> = HashMap() private fun cyclotomicPolynomial(n: Int): Polynomial? {

   if (COMPUTED.containsKey(n)) {
       return COMPUTED[n]
   }
   if (n == 1) {
       //  Polynomial:  x - 1
       val p = Polynomial(1, 1, -1, 0)
       COMPUTED[1] = p
       return p
   }
   val factors = getFactors(n)
   if (factors.containsKey(n)) {
       //  n prime
       val termList: MutableList<Term> = ArrayList()
       for (index in 0 until n) {
           termList.add(Term(1, index.toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 2 && factors.containsKey(2) && factors[2] == 1 && factors.containsKey(n / 2) && factors[n / 2] == 1) {
       //  n = 2p
       val prime = n / 2
       val termList: MutableList<Term> = ArrayList()
       var coeff = -1
       for (index in 0 until prime) {
           coeff *= -1
           termList.add(Term(coeff.toLong(), index.toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 1 && factors.containsKey(2)) {
       //  n = 2^h
       val h = factors[2]!!
       val termList: MutableList<Term> = ArrayList()
       termList.add(Term(1, 2.0.pow((h - 1).toDouble()).toLong()))
       termList.add(Term(1, 0))
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 1 && !factors.containsKey(n)) {
       // n = p^k
       var p = 0
       for (prime in factors.keys) {
           p = prime
       }
       val k = factors[p]!!
       val termList: MutableList<Term> = ArrayList()
       for (index in 0 until p) {
           termList.add(Term(1, (index * p.toDouble().pow(k - 1.toDouble()).toInt()).toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 2 && factors.containsKey(2)) {
       //  n = 2^h * p^k
       var p = 0
       for (prime in factors.keys) {
           if (prime != 2) {
               p = prime
           }
       }
       val termList: MutableList<Term> = ArrayList()
       var coeff = -1
       val twoExp = 2.0.pow((factors[2]!!) - 1.toDouble()).toInt()
       val k = factors[p]!!
       for (index in 0 until p) {
           coeff *= -1
           termList.add(Term(coeff.toLong(), (index * twoExp * p.toDouble().pow(k - 1.toDouble()).toInt()).toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.containsKey(2) && n / 2 % 2 == 1 && n / 2 > 1) {
       //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
       val cycloDiv2 = cyclotomicPolynomial(n / 2)
       val termList: MutableList<Term> = ArrayList()
       for (term in cycloDiv2!!.polynomialTerms) {
           termList.add(if (term.exponent % 2 == 0L) term else term.negate())
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   }
   //  General Case
   return when (algorithm) {
       0 -> {
           //  Slow - uses basic definition.
           val divisors = getDivisors(n)
           //  Polynomial:  ( x^n - 1 )
           var cyclo = Polynomial(1, n, -1, 0)
           for (i in divisors) {
               val p = cyclotomicPolynomial(i)
               cyclo = cyclo.divide(p)
           }
           COMPUTED[n] = cyclo
           cyclo
       }
       1 -> {
           //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
           val divisors = getDivisors(n)
           var maxDivisor = Int.MIN_VALUE
           for (div in divisors) {
               maxDivisor = maxDivisor.coerceAtLeast(div)
           }
           val divisorsExceptMax: MutableList<Int> = ArrayList()
           for (div in divisors) {
               if (maxDivisor % div != 0) {
                   divisorsExceptMax.add(div)
               }
           }
           //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
           var cyclo = Polynomial(1, n, -1, 0).divide(Polynomial(1, maxDivisor, -1, 0))
           for (i in divisorsExceptMax) {
               val p = cyclotomicPolynomial(i)
               cyclo = cyclo.divide(p)
           }
           COMPUTED[n] = cyclo
           cyclo
       }
       2 -> {
           //  Fastest
           //  Let p ; q be primes such that p does not divide n, and q q divides n.
           //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
           var m = 1
           var cyclo = cyclotomicPolynomial(m)
           val primes = factors.keys.toMutableList()
           primes.sort()
           for (prime in primes) {
               //  CP(m)[x]
               val cycloM = cyclo
               //  Compute CP(m)[x^p].
               val termList: MutableList<Term> = ArrayList()
               for (t in cycloM!!.polynomialTerms) {
                   termList.add(Term(t.coefficient, t.exponent * prime))
               }
               cyclo = Polynomial(termList).divide(cycloM)
               m *= prime
           }
           //  Now, m is the largest square free divisor of n
           val s = n / m
           //  Compute CP(n)[x] = CP(m)[x^s]
           val termList: MutableList<Term> = ArrayList()
           for (t in cyclo!!.polynomialTerms) {
               termList.add(Term(t.coefficient, t.exponent * s))
           }
           cyclo = Polynomial(termList)
           COMPUTED[n] = cyclo
           cyclo
       }
       else -> {
           throw RuntimeException("ERROR 103:  Invalid algorithm.")
       }
   }

}

private fun getDivisors(number: Int): List<Int> {

   val divisors: MutableList<Int> = ArrayList()
   val sqrt = sqrt(number.toDouble()).toLong()
   for (i in 1..sqrt) {
       if (number % i == 0L) {
           divisors.add(i.toInt())
           val div = (number / i).toInt()
           if (div.toLong() != i && div != number) {
               divisors.add(div)
           }
       }
   }
   return divisors

}

private fun crutch(): MutableMap<Int, Map<Int, Int>> {

   val allFactors: MutableMap<Int, Map<Int, Int>> = TreeMap()
   val factors: MutableMap<Int, Int> = TreeMap()
   factors[2] = 1
   allFactors[2] = factors
   return allFactors

}

private val allFactors = crutch()

var MAX_ALL_FACTORS = 100000

fun getFactors(number: Int): Map<Int, Int> {

   if (allFactors.containsKey(number)) {
       return allFactors[number]!!
   }
   val factors: MutableMap<Int, Int> = TreeMap()
   if (number % 2 == 0) {
       val factorsDivTwo = getFactors(number / 2)
       factors.putAll(factorsDivTwo)
       factors.merge(2, 1) { a: Int?, b: Int? -> Integer.sum(a!!, b!!) }
       if (number < MAX_ALL_FACTORS) allFactors[number] = factors
       return factors
   }
   val sqrt = sqrt(number.toDouble()).toLong()
   var i = 3
   while (i <= sqrt) {
       if (number % i == 0) {
           factors.putAll(getFactors(number / i))
           factors.merge(i, 1) { a: Int?, b: Int? -> Integer.sum(a!!, b!!) }
           if (number < MAX_ALL_FACTORS) {
               allFactors[number] = factors
           }
           return factors
       }
       i += 2
   }
   factors[number] = 1
   if (number < MAX_ALL_FACTORS) {
       allFactors[number] = factors
   }
   return factors

}

private class Polynomial {

   val polynomialTerms: MutableList<Term>
   //  Format - coeff, exp, coeff, exp, (repeating in pairs) . . .
   constructor(vararg values: Int) {
       require(values.size % 2 == 0) { "ERROR 102:  Polynomial constructor.  Length must be even.  Length = " + values.size }
       polynomialTerms = mutableListOf()
       var i = 0
       while (i < values.size) {
           val t = Term(values[i].toLong(), values[i + 1].toLong())
           polynomialTerms.add(t)
           i += 2
       }
       polynomialTerms.sortWith(TermSorter())
   }
   constructor() {
       //  zero
       polynomialTerms = ArrayList()
       polynomialTerms.add(Term(0, 0))
   }
   fun hasCoefficientAbs(coeff: Int): Boolean {
       for (term in polynomialTerms) {
           if (abs(term.coefficient) == coeff.toLong()) {
               return true
           }
       }
       return false
   }
   constructor(termList: MutableList<Term>) {
       if (termList.isEmpty()) {
           //  zero
           termList.add(Term(0, 0))
       } else {
           //  Remove zero terms if needed
           termList.removeIf { t -> t.coefficient == 0L }
       }
       if (termList.size == 0) {
           //  zero
           termList.add(Term(0, 0))
       }
       polynomialTerms = termList
       polynomialTerms.sortWith(TermSorter())
   }
   fun divide(v: Polynomial?): Polynomial {
       var q = Polynomial()
       var r = this
       val lcv = v!!.leadingCoefficient()
       val dv = v.degree()
       while (r.degree() >= v.degree()) {
           val lcr = r.leadingCoefficient()
           val s = lcr / lcv //  Integer division
           val term = Term(s, r.degree() - dv)
           q = q.add(term)
           r = r.add(v.multiply(term.negate()))
       }
       return q
   }
   fun add(polynomial: Polynomial): Polynomial {
       val termList: MutableList<Term> = ArrayList()
       var thisCount = polynomialTerms.size
       var polyCount = polynomial.polynomialTerms.size
       while (thisCount > 0 || polyCount > 0) {
           val thisTerm = if (thisCount == 0) null else polynomialTerms[thisCount - 1]
           val polyTerm = if (polyCount == 0) null else polynomial.polynomialTerms[polyCount - 1]
           when {
               thisTerm == null -> {
                   termList.add(polyTerm!!.clone())
                   polyCount--
               }
               polyTerm == null -> {
                   termList.add(thisTerm.clone())
                   thisCount--
               }
               thisTerm.degree() == polyTerm.degree() -> {
                   val t = thisTerm.add(polyTerm)
                   if (t.coefficient != 0L) {
                       termList.add(t)
                   }
                   thisCount--
                   polyCount--
               }
               thisTerm.degree() < polyTerm.degree() -> {
                   termList.add(thisTerm.clone())
                   thisCount--
               }
               else -> {
                   termList.add(polyTerm.clone())
                   polyCount--
               }
           }
       }
       return Polynomial(termList)
   }
   fun add(term: Term): Polynomial {
       val termList: MutableList<Term> = ArrayList()
       var added = false
       for (currentTerm in polynomialTerms) {
           if (currentTerm.exponent == term.exponent) {
               added = true
               if (currentTerm.coefficient + term.coefficient != 0L) {
                   termList.add(currentTerm.add(term))
               }
           } else {
               termList.add(currentTerm.clone())
           }
       }
       if (!added) {
           termList.add(term.clone())
       }
       return Polynomial(termList)
   }
   fun multiply(term: Term): Polynomial {
       val termList: MutableList<Term> = ArrayList()
       for (currentTerm in polynomialTerms) {
           termList.add(currentTerm.clone().multiply(term))
       }
       return Polynomial(termList)
   }
   fun leadingCoefficient(): Long {
       return polynomialTerms[0].coefficient
   }
   fun degree(): Long {
       return polynomialTerms[0].exponent
   }
   override fun toString(): String {
       val sb = StringBuilder()
       var first = true
       for (term in polynomialTerms) {
           if (first) {
               sb.append(term)
               first = false
           } else {
               sb.append(" ")
               if (term.coefficient > 0) {
                   sb.append("+ ")
                   sb.append(term)
               } else {
                   sb.append("- ")
                   sb.append(term.negate())
               }
           }
       }
       return sb.toString()
   }

}

private class TermSorter : Comparator<Term> {

   override fun compare(o1: Term, o2: Term): Int {
       return (o2.exponent - o1.exponent).toInt()
   }

}

// Note: Cyclotomic Polynomials have small coefficients. Not appropriate for general polynomial usage. private class Term(var coefficient: Long, var exponent: Long) {

   fun clone(): Term {
       return Term(coefficient, exponent)
   }
   fun multiply(term: Term): Term {
       return Term(coefficient * term.coefficient, exponent + term.exponent)
   }
   fun add(term: Term): Term {
       if (exponent != term.exponent) {
           throw RuntimeException("ERROR 102:  Exponents not equal.")
       }
       return Term(coefficient + term.coefficient, exponent)
   }
   fun negate(): Term {
       return Term(-coefficient, exponent)
   }
   fun degree(): Long {
       return exponent
   }
   override fun toString(): String {
       if (coefficient == 0L) {
           return "0"
       }
       if (exponent == 0L) {
           return "" + coefficient
       }
       if (coefficient == 1L) {
           return if (exponent == 1L) {
               "x"
           } else {
               "x^$exponent"
           }
       }
       return if (exponent == 1L) {
           coefficient.toString() + "x"
       } else coefficient.toString() + "x^" + exponent
   }

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Maple

<lang maple>with(NumberTheory): for n to 30 do lprint(Phi(n,x)) od:

x-1 x+1 x^2+x+1 x^2+1 x^4+x^3+x^2+x+1 x^2-x+1 x^6+x^5+x^4+x^3+x^2+x+1 x^4+1 x^6+x^3+1 x^4-x^3+x^2-x+1 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 x^4-x^2+1 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 x^6-x^5+x^4-x^3+x^2-x+1 x^8-x^7+x^5-x^4+x^3-x+1 x^8+1 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 x^6-x^3+1 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 x^8-x^6+x^4-x^2+1 x^12-x^11+x^9-x^8+x^6-x^4+x^3-x+1 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 x^8-x^4+1 x^20+x^15+x^10+x^5+1 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 x^18+x^9+1 x^12-x^10+x^8-x^6+x^4-x^2+1 x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 x^8+x^7-x^5-x^4-x^3+x+1

PhiSet:=[seq(map(abs,{coeffs(Phi(k,x),x)}),k=1..15000)]: [seq(ListTools:-SelectFirst(s->member(n,s),PhiSet,output=indices),n=1..20)];

  1. [1, 105, 385, 1365, 1785, 2805, 3135, 6545, 6545, 10465, 10465,
  2. 10465, 10465, 10465, 11305, 11305, 11305, 11305, 11305, 11305]</lang>

Mathematica / Wolfram Language

<lang Mathematica>Cyclotomic[#, x] & /@ Range[30] // Column i = 1; n = 10; PrintTemporary[Dynamic[{magnitudes, i}]]; magnitudes = ConstantArray[True, n]; While[Or @@ magnitudes,

coeff = Abs[CoefficientList[Cyclotomic[i, x], x]];
coeff = Select[coeff, Between[{1, n}]];
coeff = DeleteDuplicates[coeff];
If[Or @@ magnitudescoeff,
 Do[
  If[magnitudesc == True,
   Print["CyclotomicPolynomial(", i, 
    ") has coefficient with magnitude ", c]
   ]
  ,
  {c, coeff}
  ];
 magnitudescoeff = False;
 ];
i++;
]</lang>
Output:
-1+x
1+x
1+x+x^2
1+x^2
1+x+x^2+x^3+x^4
1-x+x^2
1+x+x^2+x^3+x^4+x^5+x^6
1+x^4
1+x^3+x^6
1-x+x^2-x^3+x^4
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10
1-x^2+x^4
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12
1-x+x^2-x^3+x^4-x^5+x^6
1-x+x^3-x^4+x^5-x^7+x^8
1+x^8
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16
1-x^3+x^6
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16+x^17+x^18
1-x^2+x^4-x^6+x^8
1-x+x^3-x^4+x^6-x^8+x^9-x^11+x^12
1-x+x^2-x^3+x^4-x^5+x^6-x^7+x^8-x^9+x^10
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16+x^17+x^18+x^19+x^20+x^21+x^22
1-x^4+x^8
1+x^5+x^10+x^15+x^20
1-x+x^2-x^3+x^4-x^5+x^6-x^7+x^8-x^9+x^10-x^11+x^12
1+x^9+x^18
1-x^2+x^4-x^6+x^8-x^10+x^12
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16+x^17+x^18+x^19+x^20+x^21+x^22+x^23+x^24+x^25+x^26+x^27+x^28
1+x-x^3-x^4-x^5+x^7+x^8

CyclotomicPolynomial(1) has coefficient with magnitude 1
CyclotomicPolynomial(105) has coefficient with magnitude 2
CyclotomicPolynomial(385) has coefficient with magnitude 3
CyclotomicPolynomial(1365) has coefficient with magnitude 4
CyclotomicPolynomial(1785) has coefficient with magnitude 5
CyclotomicPolynomial(2805) has coefficient with magnitude 6
CyclotomicPolynomial(3135) has coefficient with magnitude 7
CyclotomicPolynomial(6545) has coefficient with magnitude 8
CyclotomicPolynomial(6545) has coefficient with magnitude 9
CyclotomicPolynomial(10465) has coefficient with magnitude 10

Nim

Translation of: Java

We use Java algorithm with ideas from C#, D, Go and Kotlin. We have kept only algorithm number 2 as other algorithms are much less efficient. We have also done some Nim specific improvements in order to get better performances.

<lang Nim>import algorithm, math, sequtils, strformat, tables

type

 Term = tuple[coeff: int; exp: Natural]
 Polynomial = seq[Term]
 # Table used to represent the list of factors of a number.
 # If, for a number "n", "k" is present in the table "f" of its factors,
 # "f[k]" contains the exponent of "k" in the prime factor decomposition.
 Factors = Table[int, int]


  1. Miscellaneous.
    1. Parity tests.

template isOdd(n: int): bool = (n and 1) != 0 template isEven(n: int): bool = (n and 1) == 0

  1. ---------------------------------------------------------------------------------------------------

proc sort(poly: var Polynomial) {.inline.} =

 ## Sort procedure for the terms of a polynomial (high degree first).
 algorithm.sort(poly, proc(x, y: Term): int = cmp(x.exp, y.exp), Descending)


  1. Superscripts.

const Superscripts: array['0'..'9', string] = ["⁰", "¹", "²", "³", "⁴", "⁵", "⁶", "⁷", "⁸", "⁹"]

func superscript(n: Natural): string =

 ## Return the Unicode string to use to represent an exponent.
 if n == 1:
   return ""
 for d in $n:
   result.add(Superscripts[d])


  1. Term operations.

func term(coeff, exp: int): Term =

 ## Create a term.
 if exp < 0:
   raise newException(ValueError, "term exponent cannot be negative")
 (coeff, Natural exp)
  1. ---------------------------------------------------------------------------------------------------

func `*`(a, b: Term): Term =

 ## Multiply two terms.
 (a.coeff * b.coeff, Natural a.exp + b.exp)
  1. ---------------------------------------------------------------------------------------------------

func `+`(a, b: Term): Term =

 ## Add two terms.
 if a.exp != b.exp:
   raise newException(ValueError, "addition of terms with unequal exponents")
 (a.coeff + b.coeff, a.exp)
  1. ---------------------------------------------------------------------------------------------------

func `-`(a: Term): Term =

 ## Return the opposite of a term.
 (-a.coeff, a.exp)
  1. ---------------------------------------------------------------------------------------------------

func `$`(a: Term): string =

 ## Return the string representation of a term.
 if a.coeff == 0: "0"
 elif a.exp == 0: $a.coeff
 elif a.coeff == 1: 'x' & superscript(a.exp)
 elif a.coeff == -1: "-x" & superscript(a.exp)
 else: $a.coeff & 'x' & superscript(a.exp)


  1. Polynomial.

func polynomial(terms: varargs[Term]): Polynomial =

 ## Create a polynomial described by its terms.
 for t in terms:
   if t.coeff != 0:
     result.add(t)
 if result.len == 0:
   return @[term(0, 0)]
 sort(result)
  1. ---------------------------------------------------------------------------------------------------

func hasCoeffAbs(poly: Polynomial; coeff: int): bool =

 ## Return true if the polynomial contains a given coefficient.
 for t in poly:
   if abs(t.coeff) == coeff:
     return true
  1. ---------------------------------------------------------------------------------------------------

func leadingCoeff(poly: Polynomial): int {.inline.} =

 ## Return the coefficient of the term with the highest degree.
 poly[0].coeff
  1. ---------------------------------------------------------------------------------------------------

func degree(poly: Polynomial): int {.inline.} =

 ## Return the degree of the polynomial.
 if poly.len == 0: -1
 else: poly[0].exp
  1. ---------------------------------------------------------------------------------------------------

func `+`(poly: Polynomial; someTerm: Term): Polynomial =

 ## Add a term to a polynomial.
 var added = false
 for currTerm in poly:
   if currterm.exp == someTerm.exp:
     added = true
     if currTerm.coeff + someTerm.coeff != 0:
       result.add(currTerm + someTerm)
   else:
     result.add(currTerm)
 if not added:
   result.add(someTerm)
  1. ---------------------------------------------------------------------------------------------------

func `+`(a, b: Polynomial): Polynomial =

 ## Add two polynomials.
 var aIndex = a.high
 var bIndex = b.high
 while aIndex >= 0 or bIndex >= 0:
   if aIndex < 0:
     result &= b[bIndex]
     dec bIndex
   elif bIndex < 0:
     result &= a[aIndex]
     dec aIndex
   else:
     let t1 = a[aIndex]
     let t2 = b[bIndex]
     if t1.exp == t2.exp:
       let t3 = t1 + t2
       if t3.coeff != 0:
         result.add(t3)
       dec aIndex
       dec bIndex
     elif t1.exp < t2.exp:
       result.add(t1)
       dec aIndex
     else:
       result.add(t2)
       dec bIndex
 sort(result)
  1. ---------------------------------------------------------------------------------------------------

func `*`(poly: Polynomial; someTerm: Term): Polynomial =

 ## Multiply a polynomial by a term.
 for currTerm in poly:
   result.add(currTerm * someTerm)
  1. ---------------------------------------------------------------------------------------------------

func `/`(a, b: Polynomial): Polynomial =

 ## Divide a polynomial by another polynomial.
 var a = a
 let lcb = b.leadingCoeff
 let db = b.degree
 while a.degree >= b.degree:
   let lca = a.leadingCoeff
   let s = lca div lcb
   let t = term(s, a.degree - db)
   result = result + t
   a = a + b * -t
  1. ---------------------------------------------------------------------------------------------------

func `$`(poly: Polynomial): string =

 ## Return the string representation of a polynomial.
 for t in poly:
   if result.len == 0:
     result.add($t)
   else:
     if t.coeff > 0:
       result.add('+')
       result.add($t)
     else:
       result.add('-')
       result.add($(-t))


  1. Cyclotomic polynomial.

var

 # Cache of list of factors.
 factorCache: Table[int, Factors] = {2: {2: 1}.toTable}.toTable
 # Cache of cyclotomic polynomials. Initialized with 1 -> x - 1.
 polyCache: Table[int, Polynomial] = {1: polynomial(term(1, 1), term(-1, 0))}.toTable
  1. ---------------------------------------------------------------------------------------------------

proc getFactors(n: int): Factors =

 ## Return the list of factors of a number.
 if n in factorCache:
   return factorCache[n]
 if n.isEven:
   result = getFactors(n div 2)
   result[2] = result.getOrDefault(2) + 1
   factorCache[n] = result
   return
 var i = 3
 while i * i <= n:
   if n mod i == 0:
     result = getFactors( n div i)
     result[i] = result.getOrDefault(i) + 1
     factorCache[n] = result
     return
   inc i, 2
 result[n] = 1
 factorCache[n] = result
  1. ---------------------------------------------------------------------------------------------------

proc cycloPoly(n: int): Polynomial =

 ## Find the nth cyclotomic polynomial.
 if n in polyCache:
   return polyCache[n]
 let factors = getFactors(n)
 if n in factors:
   # n is prime.
   for i in countdown(n - 1, 0):       # Add the terms by decreasing degrees.
     result.add(term(1, i))
 elif factors.len == 2 and factors.getOrDefault(2) == 1 and factors.getOrDefault(n div 2) == 1:
   # n = 2 x prime.
   let prime = n div 2
   var coeff = -1
   for i in countdown(prime - 1, 0):   # Add the terms by decreasing degrees.
     coeff *= -1
     result.add(term(coeff, i))
 elif factors.len == 1 and 2 in factors:
   # n = 2 ^ h.
   let h = factors[2]
   result.add([term(1, 1 shl (h - 1)), term(1, 0)])
 elif factors.len == 1 and n notin factors:
   # n = prime ^ k.
   var p, k = 0
   for prime, v in factors.pairs:
     if prime > p:
       p = prime
       k = v
   for i in countdown(p - 1, 0):       # Add the terms by decreasing degrees.
     result.add(term(1, i * p^(k-1)))
 elif factors.len == 2 and 2 in factors:
   # n = 2 ^ h x prime ^ k.
   var p, k = 0
   for prime, v in factors.pairs:
     if prime != 2 and prime > p:
       p = prime
       k = v
   var coeff = -1
   let twoExp = 1 shl (factors[2] - 1)
   for i in countdown(p - 1, 0):       # Add the terms by decreasing degrees.
     coeff *= -1
     result.add(term(coeff, i * twoExp * p^(k-1)))
 elif 2 in factors and isOdd(n div 2) and n div 2 > 1:
   # CP(2m)[x] = CP(-m)[x], n odd integer > 1.
   let cycloDiv2 = cycloPoly(n div 2)
   for t in cycloDiv2:
     result.add(if t.exp.isEven: t else: -t)
 else:
   # Let p, q be primes such that p does not divide n, and q divides n.
   # Then CP(np)[x] = CP(n)[x^p] / CP(n)[x].
   var m = 1
   var cyclo = cycloPoly(m)
   let primes = sorted(toSeq(factors.keys))
   for prime in primes:
     # Compute CP(m)[x^p].
     var terms: Polynomial
     for t in cyclo:
       terms.add(term(t.coeff, t.exp * prime))
     cyclo = terms / cyclo
     m *= prime
   # Now, m is the largest square free divisor of n.
   let s = n div m
   # Compute CP(n)[x] = CP(m)[x^s].
   for t in cyclo:
     result.add(term(t.coeff, t.exp * s))
 polyCache[n] = result


  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

echo "Cyclotomic polynomials for n ⩽ 30:" for i in 1..30:

 echo &"Φ{'(' & $i & ')':4} = {cycloPoly(i)}"

echo "" echo "Smallest cyclotomic polynomial with n or -n as a coefficient:" var n = 0 for i in 1..10:

 while true:
   inc n
   if cycloPoly(n).hasCoeffAbs(i):
     echo &"Φ{'(' & $n & ')':7} has coefficient with magnitude = {i}"
     dec n
     break</lang>
Output:

The program runs in 41 seconds on our reasonably performing laptop.

Cyclotomic polynomials for n ⩽ 30:
Φ(1)  = x-1
Φ(2)  = x+1
Φ(3)  = x²+x+1
Φ(4)  = x²+1
Φ(5)  = x⁴+x³+x²+x+1
Φ(6)  = x²-x+1
Φ(7)  = x⁶+x⁵+x⁴+x³+x²+x+1
Φ(8)  = x⁴+1
Φ(9)  = x⁶+x³+1
Φ(10) = x⁴-x³+x²-x+1
Φ(11) = x¹⁰+x⁹+x⁸+x⁷+x⁶+x⁵+x⁴+x³+x²+x+1
Φ(12) = x⁴-x²+1
Φ(13) = x¹²+x¹¹+x¹⁰+x⁹+x⁸+x⁷+x⁶+x⁵+x⁴+x³+x²+x+1
Φ(14) = x⁶-x⁵+x⁴-x³+x²-x+1
Φ(15) = x⁸-x⁷+x⁵-x⁴+x³-x+1
Φ(16) = x⁸+1
Φ(17) = x¹⁶+x¹⁵+x¹⁴+x¹³+x¹²+x¹¹+x¹⁰+x⁹+x⁸+x⁷+x⁶+x⁵+x⁴+x³+x²+x+1
Φ(18) = x⁶-x³+1
Φ(19) = x¹⁸+x¹⁷+x¹⁶+x¹⁵+x¹⁴+x¹³+x¹²+x¹¹+x¹⁰+x⁹+x⁸+x⁷+x⁶+x⁵+x⁴+x³+x²+x+1
Φ(20) = x⁸-x⁶+x⁴-x²+1
Φ(21) = x¹²-x¹¹+x⁹-x⁸+x⁶-x⁴+x³-x+1
Φ(22) = x¹⁰-x⁹+x⁸-x⁷+x⁶-x⁵+x⁴-x³+x²-x+1
Φ(23) = x²²+x²¹+x²⁰+x¹⁹+x¹⁸+x¹⁷+x¹⁶+x¹⁵+x¹⁴+x¹³+x¹²+x¹¹+x¹⁰+x⁹+x⁸+x⁷+x⁶+x⁵+x⁴+x³+x²+x+1
Φ(24) = x⁸-x⁴+1
Φ(25) = x²⁰+x¹⁵+x¹⁰+x⁵+1
Φ(26) = x¹²-x¹¹+x¹⁰-x⁹+x⁸-x⁷+x⁶-x⁵+x⁴-x³+x²-x+1
Φ(27) = x¹⁸+x⁹+1
Φ(28) = x¹²-x¹⁰+x⁸-x⁶+x⁴-x²+1
Φ(29) = x²⁸+x²⁷+x²⁶+x²⁵+x²⁴+x²³+x²²+x²¹+x²⁰+x¹⁹+x¹⁸+x¹⁷+x¹⁶+x¹⁵+x¹⁴+x¹³+x¹²+x¹¹+x¹⁰+x⁹+x⁸+x⁷+x⁶+x⁵+x⁴+x³+x²+x+1
Φ(30) = x⁸+x⁷-x⁵-x⁴-x³+x+1

Smallest cyclotomic polynomial with n or -n as a coefficient:
Φ(1)     has coefficient with magnitude = 1
Φ(105)   has coefficient with magnitude = 2
Φ(385)   has coefficient with magnitude = 3
Φ(1365)  has coefficient with magnitude = 4
Φ(1785)  has coefficient with magnitude = 5
Φ(2805)  has coefficient with magnitude = 6
Φ(3135)  has coefficient with magnitude = 7
Φ(6545)  has coefficient with magnitude = 8
Φ(6545)  has coefficient with magnitude = 9
Φ(10465) has coefficient with magnitude = 10

PARI/GP

Cyclotomic polynomials are a built-in function. <lang parigp> for(n=1,30,print(n," : ",polcyclo(n)))

contains_coeff(n, d) = p=polcyclo(n);for(k=0,poldegree(p),if(abs(polcoef(p,k))==d,return(1)));return(0)

for(d=1,10,i=1; while(contains_coeff(i,d)==0,i=i+1);print(d," : ",i)) </lang>

Output:

1 : x - 1 2 : x + 1 3 : x^2 + x + 1 4 : x^2 + 1 5 : x^4 + x^3 + x^2 + x + 1 6 : x^2 - x + 1 7 : x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 8 : x^4 + 1 9 : x^6 + x^3 + 1 10 : x^4 - x^3 + x^2 - x + 1 11 : x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 12 : x^4 - x^2 + 1 13 : x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 14 : x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 15 : x^8 - x^7 + x^5 - x^4 + x^3 - x + 1 16 : x^8 + 1 17 : x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 18 : x^6 - x^3 + 1 19 : x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 20 : x^8 - x^6 + x^4 - x^2 + 1 21 : x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1 22 : x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 23 : x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 24 : x^8 - x^4 + 1 25 : x^20 + x^15 + x^10 + x^5 + 1 26 : x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 27 : x^18 + x^9 + 1 28 : x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1 29 : x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 30 : x^8 + x^7 - x^5 - x^4 - x^3 + x + 1 1 : 1 2 : 105 3 : 385 4 : 1365 5 : 1785 6 : 2805 7 : 3135 8 : 6545 9 : 6545 10 : 10465

Perl

Conveniently, the module Math::Polynomial::Cyclotomic exists to do all the work. An exponent too large error prevents reaching the 10th step of the 2nd part of the task. <lang perl>use feature 'say'; use List::Util qw(first); use Math::Polynomial::Cyclotomic qw(cyclo_poly_iterate);

say 'First 30 cyclotomic polynomials:'; my $it = cyclo_poly_iterate(1); say "$_: " . $it->() for 1 .. 30;

say "\nSmallest cyclotomic polynomial with n or -n as a coefficient:"; $it = cyclo_poly_iterate(1);

for (my ($n, $k) = (1, 1) ; $n <= 10 ; ++$k) {

   my $poly = $it->();
   while (my $c = first { abs($_) == $n } $poly->coeff) {
       say "CP $k has coefficient with magnitude = $n";
       $n++;
   }

}</lang>

Output:
First 30 cyclotomic polynomials:
1: (x - 1)
2: (x + 1)
3: (x^2 + x + 1)
4: (x^2 + 1)
5: (x^4 + x^3 + x^2 + x + 1)
6: (x^2 - x + 1)
7: (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
8: (x^4 + 1)
9: (x^6 + x^3 + 1)
10: (x^4 - x^3 + x^2 - x + 1)
11: (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
12: (x^4 - x^2 + 1)
13: (x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
14: (x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
15: (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
16: (x^8 + 1)
17: (x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
18: (x^6 - x^3 + 1)
19: (x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
20: (x^8 - x^6 + x^4 - x^2 + 1)
21: (x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1)
22: (x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
23: (x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
24: (x^8 - x^4 + 1)
25: (x^20 + x^15 + x^10 + x^5 + 1)
26: (x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
27: (x^18 + x^9 + 1)
28: (x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1)
29: (x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
30: (x^8 + x^7 - x^5 - x^4 - x^3 + x + 1)

Smallest cyclotomic polynomial with n or -n as a coefficient:
CP 1 has coefficient with magnitude = 1
CP 105 has coefficient with magnitude = 2
CP 385 has coefficient with magnitude = 3
CP 1365 has coefficient with magnitude = 4
CP 1785 has coefficient with magnitude = 5
CP 2805 has coefficient with magnitude = 6
CP 3135 has coefficient with magnitude = 7
CP 6545 has coefficient with magnitude = 8
CP 6545 has coefficient with magnitude = 9

Phix

Translation of: Julia

Uses several routines from Polynomial_long_division#Phix, tweaked slightly to check remainder is zero and trim the quotient.

-- demo\rosetta\Cyclotomic_Polynomial.exw
with javascript_semantics
function degree(sequence p)
    for i=length(p) to 1 by -1 do
        if p[i]!=0 then return i end if
    end for
    return -1
end function
 
function poly_div(sequence n, d)
    while length(d)<length(n) do d &=0 end while
    integer dn = degree(n),
            dd = degree(d)
    if dd<0 then throw("divide by zero") end if
    sequence quot = repeat(0,dn)
    while dn>=dd do
        integer k = dn-dd
        integer qk = n[dn]/d[dd]
        quot[k+1] = qk
        sequence d2 = d[1..length(d)-k]
        for i=1 to length(d2) do
            integer mi = -i
            n[mi] -= d2[mi]*qk
        end for
        dn = degree(n)
    end while
--  return {quot,n} -- (n is now the remainder)
    if n!=repeat(0,length(n)) then ?9/0 end if
    while quot[$]=0 do quot = quot[1..$-1] end while
    return quot
end function
 
function poly(sequence si)
-- display helper
    string r = ""
    for t=length(si) to 1 by -1 do
        integer sit = si[t]
        if sit!=0 then
            if sit=1 and t>1 then
                r &= iff(r=""? "":" + ")
            elsif sit=-1 and t>1 then
                r &= iff(r=""?"-":" - ")
            else
                if r!="" then
                    r &= iff(sit<0?" - ":" + ")
                    sit = abs(sit)
                end if
                r &= sprintf("%d",sit)
            end if
            r &= iff(t>1?"x"&iff(t>2?sprintf("^%d",t-1):""):"")
        end if
    end for
    if r="" then r="0" end if
    return r
end function
--</Polynomial_long_division.exw> 
 
--# memoize cache for recursive calls
constant cyclotomics = new_dict({{1,{-1,1}},{2,{1,1}}})
 
function cyclotomic(integer n)
--
-- Calculate the nth cyclotomic polynomial.
-- See wikipedia article at bottom of section /wiki/Cyclotomic_polynomial#Fundamental_tools
-- The algorithm is reliable but slow for large n > 1000.
--
    sequence c
    if getd_index(n,cyclotomics)!=NULL then
        c = getd(n,cyclotomics)
    else
        if is_prime(n) then
            c = repeat(1,n)
        else  -- recursive formula seen in wikipedia article
            c = -1&repeat(0,n-1)&1
            sequence f = factors(n,-1)
            for i=1 to length(f) do
                c = poly_div(c,deep_copy(cyclotomic(f[i])))
            end for
        end if
        setd(n,c,cyclotomics)
    end if
    return c
end function
 
for i=1 to 30 do
    sequence z = cyclotomic(i)
    string s = poly(z)
    printf(1,"cp(%2d) = %s\n",{i,s})
    if i>1 and z!=reverse(z) then ?9/0 end if -- sanity check
end for
    
integer found = 0, n = 1, cheat = 0
sequence fn = repeat(false,10),
         nxt = {105,385,1365,1785,2805,3135,6545,6545,10465,10465}
atom t1 = time()+1
puts(1,"\n")
while found<iff(platform()=JS?5:10) do
    sequence z = cyclotomic(n)
    for i=1 to length(z) do
        atom azi = abs(z[i])
        if azi>=1 and azi<=10 and fn[azi]=0 then
            printf(1,"cp(%d) has a coefficient with magnitude %d\n",{n,azi})
            cheat = azi -- (comment this out to prevent cheating!)
            found += 1
            fn[azi] = true
            t1 = time()+1
        end if
    end for
    if cheat then {n,cheat} = {nxt[cheat],0} else n += iff(n=1?4:10) end if
    if time()>t1 and platform()!=JS then
        printf(1,"working (%d) ...\r",n)
        t1 = time()+1
    end if
end while
Output:

If you disable the cheating, and if in a particularly self harming mood replace it with n+=1, you will get exactly the same output, eventually.
(The distributed version contains simple instrumentation showing cp(1260) executes the line in the heart of poly_div() that subtracts a multiple of qk over 15 million times.)

cp( 1) = x - 1
cp( 2) = x + 1
cp( 3) = x^2 + x + 1
cp( 4) = x^2 + 1
cp( 5) = x^4 + x^3 + x^2 + x + 1
cp( 6) = x^2 - x + 1
cp( 7) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp( 8) = x^4 + 1
cp( 9) = x^6 + x^3 + 1
cp(10) = x^4 - x^3 + x^2 - x + 1
cp(11) = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(12) = x^4 - x^2 + 1
cp(13) = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(14) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
cp(15) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
cp(16) = x^8 + 1
cp(17) = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(18) = x^6 - x^3 + 1
cp(19) = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(20) = x^8 - x^6 + x^4 - x^2 + 1
cp(21) = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
cp(22) = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
cp(23) = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(24) = x^8 - x^4 + 1
cp(25) = x^20 + x^15 + x^10 + x^5 + 1
cp(26) = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
cp(27) = x^18 + x^9 + 1
cp(28) = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
cp(29) = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(30) = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

cp(1) has a coefficient with magnitude 1
cp(105) has a coefficient with magnitude 2
cp(385) has a coefficient with magnitude 3
cp(1365) has a coefficient with magnitude 4
cp(1785) has a coefficient with magnitude 5
cp(2805) has a coefficient with magnitude 6
cp(3135) has a coefficient with magnitude 7
cp(6545) has a coefficient with magnitude 8
cp(6545) has a coefficient with magnitude 9
cp(10465) has a coefficient with magnitude 10

Python

<lang python>from itertools import count, chain from collections import deque

def primes(_cache=[2, 3]):

   yield from _cache
   for n in count(_cache[-1]+2, 2):
       if isprime(n):
           _cache.append(n)
           yield n

def isprime(n):

   for p in primes():
       if n%p == 0:
           return False
       if p*p > n:
           return True

def factors(n):

   for p in primes():
   # prime factoring is such a non-issue for small numbers that, for
   # this example, we might even just say
   # for p in count(2):
       if p*p > n:
           if n > 1:
               yield(n, 1, 1)
           break
       if n%p == 0:
           cnt = 0
           while True:
               n, cnt = n//p, cnt+1
               if n%p != 0: break
           yield p, cnt, n
  1. ^^ not the most sophisticated prime number routines, because no need
  1. Returns (list1, list2) representing the division between
  2. two polinomials. A list p of integers means the product
  3. (x^p[0] - 1) * (x^p[1] - 1) * ...

def cyclotomic(n):

   def poly_div(num, den):
       return (num[0] + den[1], num[1] + den[0])
   def elevate(poly, n): # replace poly p(x) with p(x**n)
       powerup = lambda p, n: [a*n for a in p]
       return poly if n == 1 else (powerup(poly[0], n), powerup(poly[1], n))


   if n == 0:
       return ([], [])
   if n == 1:
       return ([1], [])
   p, m, r = next(factors(n))
   poly = cyclotomic(r)
   return elevate(poly_div(elevate(poly, p), poly), p**(m-1))

def to_text(poly):

   def getx(c, e):
       if e == 0:
           return '1'
       elif e == 1:
           return 'x'
       return 'x' + (.join('⁰¹²³⁴⁵⁶⁷⁸⁹'[i] for i in map(int, str(e))))
   parts = []
   for (c,e) in (poly):
       if c < 0:
           coef = ' - ' if c == -1 else f' - {-c} '
       else:
           coef = (parts and ' + ' or ) if c == 1 else f' + {c}'
       parts.append(coef + getx(c,e))
   return .join(parts)

def terms(poly):

   # convert above representation of division to (coef, power) pairs
   def merge(a, b):
       # a, b should be deques. They may change during the course.
       while a or b:
           l = a[0] if a else (0, -1) # sentinel value
           r = b[0] if b else (0, -1)
           if l[1] > r[1]:
               a.popleft()
           elif l[1] < r[1]:
               b.popleft()
               l = r
           else:
               a.popleft()
               b.popleft()
               l = (l[0] + r[0], l[1])
           yield l
   def mul(poly, p): # p means polynomial x^p - 1
       poly = list(poly)
       return merge(deque((c, e+p) for c,e in poly),
                    deque((-c, e) for c,e in poly))
   def div(poly, p): # p means polynomial x^p - 1
       q = deque()
       for c,e in merge(deque(poly), q):
           if c:
               q.append((c, e - p))
               yield (c, e - p)
           if e == p: break
   p = [(1, 0)]  # 1*x^0, i.e. 1
   for x in poly[0]: # numerator
       p = mul(p, x)
   for x in sorted(poly[1], reverse=True): # denominator
       p = div(p, x)
   return p

for n in chain(range(11), [2]):

   print(f'{n}: {to_text(terms(cyclotomic(n)))}')

want = 1 for n in count():

   c = [c for c,_ in terms(cyclotomic(n))]
   while want in c or -want in c:
       print(f'C[{want}]: {n}')
       want += 1</lang>
Output:

Only showing first 10 polynomials to avoid clutter.

0: 1
1: x - 1
2: x + 1
3: x² + x + 1
4: x² + 1
5: x⁴ + x³ + x² + x + 1
6: x² - x + 1
7: x⁶ + x⁵ + x⁴ + x³ + x² + x + 1
8: x⁴ + 1
9: x⁶ + x³ + 1
10: x⁴ - x³ + x² - x + 1
105: x⁴⁸ + x⁴⁷ + x⁴⁶ - x⁴³ - x⁴² - 2 x⁴¹ - x⁴⁰ - x³⁹ + x³⁶ + x³⁵ + x³⁴ + x³³ + x³² + x³¹ - x²⁸ - x²⁶ - x²⁴ - x²² - x²⁰ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² - x⁹ - x⁸ - 2 x⁷ - x⁶ - x⁵ + x² + x + 1
C[1]: 0
C[2]: 105
C[3]: 385
C[4]: 1365
C[5]: 1785
C[6]: 2805
C[7]: 3135
C[8]: 6545
C[9]: 6545
C[10]: 10465
C[11]: 10465
C[12]: 10465
C[13]: 10465
C[14]: 10465
C[15]: 11305
C[16]: 11305
C[17]: 11305
C[18]: 11305
C[19]: 11305
C[20]: 11305
C[21]: 11305
C[22]: 15015
C[23]: 15015

Raku

(formerly Perl 6)

Works with: Rakudo version 2020.01
Translation of: Perl

Uses the same library as Perl, so comes with the same caveats. <lang perl6>use Math::Polynomial::Cyclotomic:from<Perl5> <cyclo_poly_iterate cyclo_poly>;

say 'First 30 cyclotomic polynomials:'; my $iterator = cyclo_poly_iterate(1); say "Φ($_) = " ~ super $iterator().Str for 1..30;

say "\nSmallest cyclotomic polynomial with |n| as a coefficient:"; say "Φ(1) has a coefficient magnitude: 1";

my $index = 0; for 2..9 -> $coefficient {

   loop {
       $index += 5;
       my \Φ = cyclo_poly($index);
       next unless Φ ~~ / $coefficient\* /;
       say "Φ($index) has a coefficient magnitude: $coefficient";
       $index -= 5;
       last;
   }

}

sub super ($str) {

   $str.subst( / '^' (\d+) /, { $0.trans([<0123456789>.comb] => [<⁰¹²³⁴⁵⁶⁷⁸⁹>.comb]) }, :g)

}</lang>

First 30 cyclotomic polynomials:
Φ(1) = (x - 1)
Φ(2) = (x + 1)
Φ(3) = (x² + x + 1)
Φ(4) = (x² + 1)
Φ(5) = (x⁴ + x³ + x² + x + 1)
Φ(6) = (x² - x + 1)
Φ(7) = (x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(8) = (x⁴ + 1)
Φ(9) = (x⁶ + x³ + 1)
Φ(10) = (x⁴ - x³ + x² - x + 1)
Φ(11) = (x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(12) = (x⁴ - x² + 1)
Φ(13) = (x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(14) = (x⁶ - x⁵ + x⁴ - x³ + x² - x + 1)
Φ(15) = (x⁸ - x⁷ + x⁵ - x⁴ + x³ - x + 1)
Φ(16) = (x⁸ + 1)
Φ(17) = (x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(18) = (x⁶ - x³ + 1)
Φ(19) = (x¹⁸ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(20) = (x⁸ - x⁶ + x⁴ - x² + 1)
Φ(21) = (x¹² - x¹¹ + x⁹ - x⁸ + x⁶ - x⁴ + x³ - x + 1)
Φ(22) = (x¹⁰ - x⁹ + x⁸ - x⁷ + x⁶ - x⁵ + x⁴ - x³ + x² - x + 1)
Φ(23) = (x²² + x²¹ + x²⁰ + x¹⁹ + x¹⁸ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(24) = (x⁸ - x⁴ + 1)
Φ(25) = (x²⁰ + x¹⁵ + x¹⁰ + x⁵ + 1)
Φ(26) = (x¹² - x¹¹ + x¹⁰ - x⁹ + x⁸ - x⁷ + x⁶ - x⁵ + x⁴ - x³ + x² - x + 1)
Φ(27) = (x¹⁸ + x⁹ + 1)
Φ(28) = (x¹² - x¹⁰ + x⁸ - x⁶ + x⁴ - x² + 1)
Φ(29) = (x²⁸ + x²⁷ + x²⁶ + x²⁵ + x²⁴ + x²³ + x²² + x²¹ + x²⁰ + x¹⁹ + x¹⁸ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(30) = (x⁸ + x⁷ - x⁵ - x⁴ - x³ + x + 1)

Smallest cyclotomic polynomial with |n| as a coefficient:
Φ(1) has a coefficient magnitude: 1
Φ(105) has a coefficient magnitude: 2
Φ(385) has a coefficient magnitude: 3
Φ(1365) has a coefficient magnitude: 4
Φ(1785) has a coefficient magnitude: 5
Φ(2805) has a coefficient magnitude: 6
Φ(3135) has a coefficient magnitude: 7
Φ(6545) has a coefficient magnitude: 8
Φ(6545) has a coefficient magnitude: 9

Sidef

Solution based on polynomial interpolation (slow). <lang ruby>var Poly = require('Math::Polynomial') Poly.string_config(Hash(fold_sign => true, prefix => "", suffix => ""))

func poly_interpolation(v) {

   v.len.of {|n| v.len.of {|k| n**k } }.msolve(v)

}

say "First 30 cyclotomic polynomials:" for k in (1..30) {

   var a = (k+1).of { cyclotomic(k, _) }
   var Φ = poly_interpolation(a)
   say ("Φ(#{k}) = ", Poly.new(Φ...))

}

say "\nSmallest cyclotomic polynomial with n or -n as a coefficient:" for n in (1..10) { # very slow

   var k = (1..Inf -> first {|k|
       poly_interpolation((k+1).of { cyclotomic(k, _) }).first { .abs == n }
   })
   say "Φ(#{k}) has coefficient with magnitude #{n}"

}</lang>

Slightly faster solution, using the Math::Polynomial::Cyclotomic Perl module. <lang ruby>var Poly = require('Math::Polynomial')

          require('Math::Polynomial::Cyclotomic')

Poly.string_config(Hash(fold_sign => true, prefix => "", suffix => ""))

say "First 30 cyclotomic polynomials:" for k in (1..30) {

   say ("Φ(#{k}) = ", Poly.new.cyclotomic(k))

}

say "\nSmallest cyclotomic polynomial with n or -n as a coefficient:" for n in (1..10) {

   var p = Poly.new
   var k = (1..Inf -> first {|k|
       [p.cyclotomic(k).coeff].first { .abs == n }
   })
   say "Φ(#{k}) has coefficient with magnitude = #{n}"

}</lang>

Output:
First 30 cyclotomic polynomials:
Φ(1) = x - 1
Φ(2) = x + 1
Φ(3) = x^2 + x + 1
Φ(4) = x^2 + 1
Φ(5) = x^4 + x^3 + x^2 + x + 1
Φ(6) = x^2 - x + 1
Φ(7) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(8) = x^4 + 1
Φ(9) = x^6 + x^3 + 1
Φ(10) = x^4 - x^3 + x^2 - x + 1
Φ(11) = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(12) = x^4 - x^2 + 1
Φ(13) = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(14) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
Φ(15) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
Φ(16) = x^8 + 1
Φ(17) = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(18) = x^6 - x^3 + 1
Φ(19) = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(20) = x^8 - x^6 + x^4 - x^2 + 1
Φ(21) = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
Φ(22) = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
Φ(23) = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(24) = x^8 - x^4 + 1
Φ(25) = x^20 + x^15 + x^10 + x^5 + 1
Φ(26) = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
Φ(27) = x^18 + x^9 + 1
Φ(28) = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
Φ(29) = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(30) = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Smallest cyclotomic polynomial with n or -n as a coefficient:
Φ(1) has coefficient with magnitude = 1
Φ(105) has coefficient with magnitude = 2
Φ(385) has coefficient with magnitude = 3
Φ(1365) has coefficient with magnitude = 4
Φ(1785) has coefficient with magnitude = 5
Φ(2805) has coefficient with magnitude = 6
Φ(3135) has coefficient with magnitude = 7
^C

Visual Basic .NET

Translation of: C++

<lang vbnet>Imports System.Text

Module Module1

   Private ReadOnly MAX_ALL_FACTORS As Integer = 100_000
  1. Const ALGORITHM = 2
   Class Term
       Implements IComparable(Of Term)
       Public ReadOnly Property Coefficient As Long
       Public ReadOnly Property Exponent As Long
       Public Sub New(c As Long, Optional e As Long = 0)
           Coefficient = c
           Exponent = e
       End Sub
       Public Shared Operator -(t As Term) As Term
           Return New Term(-t.Coefficient, t.Exponent)
       End Operator
       Public Shared Operator +(lhs As Term, rhs As Term) As Term
           If lhs.Exponent <> rhs.Exponent Then
               Throw New ArgumentException("Exponents not equal")
           End If
           Return New Term(lhs.Coefficient + rhs.Coefficient, lhs.Exponent)
       End Operator
       Public Shared Operator *(lhs As Term, rhs As Term) As Term
           Return New Term(lhs.Coefficient * rhs.Coefficient, lhs.Exponent + rhs.Exponent)
       End Operator
       Public Function CompareTo(other As Term) As Integer Implements IComparable(Of Term).CompareTo
           Return -Exponent.CompareTo(other.Exponent)
       End Function
       Public Overrides Function ToString() As String
           If Coefficient = 0 Then
               Return "0"
           End If
           If Exponent = 0 Then
               Return Coefficient.ToString
           End If
           If Coefficient = 1 Then
               If Exponent = 1 Then
                   Return "x"
               End If
               Return String.Format("x^{0}", Exponent)
           End If
           If Coefficient = -1 Then
               If Exponent = 1 Then
                   Return "-x"
               End If
               Return String.Format("-x^{0}", Exponent)
           End If
           If Exponent = 1 Then
               Return String.Format("{0}x", Coefficient)
           End If
           Return String.Format("{0}x^{1}", Coefficient, Exponent)
       End Function
   End Class
   Class Polynomial
       Implements IEnumerable(Of Term)
       Private ReadOnly polyTerms As New List(Of Term)
       Public Sub New()
           polyTerms.Add(New Term(0))
       End Sub
       Public Sub New(ParamArray values() As Term)
           If values.Length = 0 Then
               polyTerms.Add(New Term(0))
           Else
               polyTerms.AddRange(values)
           End If
           Normalize()
       End Sub
       Public Sub New(values As IEnumerable(Of Term))
           polyTerms.AddRange(values)
           If polyTerms.Count = 0 Then
               polyTerms.Add(New Term(0))
           End If
           Normalize()
       End Sub
       Public Function LeadingCoeficient() As Long
           Return polyTerms(0).Coefficient
       End Function
       Public Function Degree() As Long
           Return polyTerms(0).Exponent
       End Function
       Public Function HasCoefficentAbs(coeff As Long) As Boolean
           For Each t In polyTerms
               If Math.Abs(t.Coefficient) = coeff Then
                   Return True
               End If
           Next
           Return False
       End Function
       Public Function GetEnumerator() As IEnumerator(Of Term) Implements IEnumerable(Of Term).GetEnumerator
           Return polyTerms.GetEnumerator
       End Function
       Private Function IEnumerable_GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator
           Return polyTerms.GetEnumerator
       End Function
       Private Sub Normalize()
           polyTerms.Sort(Function(a As Term, b As Term) a.CompareTo(b))
       End Sub
       Public Shared Operator +(lhs As Polynomial, rhs As Term) As Polynomial
           Dim terms As New List(Of Term)
           Dim added = False
           For Each ct In lhs
               If ct.Exponent = rhs.Exponent Then
                   added = True
                   If ct.Coefficient + rhs.Coefficient <> 0 Then
                       terms.Add(ct + rhs)
                   End If
               Else
                   terms.Add(ct)
               End If
           Next
           If Not added Then
               terms.Add(rhs)
           End If
           Return New Polynomial(terms)
       End Operator
       Public Shared Operator *(lhs As Polynomial, rhs As Term) As Polynomial
           Dim terms As New List(Of Term)
           For Each ct In lhs
               terms.Add(ct * rhs)
           Next
           Return New Polynomial(terms)
       End Operator
       Public Shared Operator +(lhs As Polynomial, rhs As Polynomial) As Polynomial
           Dim terms As New List(Of Term)
           Dim thisCount = lhs.polyTerms.Count
           Dim polyCount = rhs.polyTerms.Count
           While thisCount > 0 OrElse polyCount > 0
               If thisCount = 0 Then
                   Dim polyTerm = rhs.polyTerms(polyCount - 1)
                   terms.Add(polyTerm)
                   polyCount -= 1
               ElseIf polyCount = 0 Then
                   Dim thisTerm = lhs.polyTerms(thisCount - 1)
                   terms.Add(thisTerm)
                   thisCount -= 1
               Else
                   Dim polyTerm = rhs.polyTerms(polyCount - 1)
                   Dim thisTerm = lhs.polyTerms(thisCount - 1)
                   If thisTerm.Exponent = polyTerm.Exponent Then
                       Dim t = thisTerm + polyTerm
                       If t.Coefficient <> 0 Then
                           terms.Add(t)
                       End If
                       thisCount -= 1
                       polyCount -= 1
                   ElseIf thisTerm.Exponent < polyTerm.Exponent Then
                       terms.Add(thisTerm)
                       thisCount -= 1
                   Else
                       terms.Add(polyTerm)
                       polyCount -= 1
                   End If
               End If
           End While
           Return New Polynomial(terms)
       End Operator
       Public Shared Operator *(lhs As Polynomial, rhs As Polynomial) As Polynomial
           Throw New Exception("Not implemented")
       End Operator
       Public Shared Operator /(lhs As Polynomial, rhs As Polynomial) As Polynomial
           Dim q As New Polynomial
           Dim r = lhs
           Dim lcv = rhs.LeadingCoeficient
           Dim dv = rhs.Degree
           While r.Degree >= rhs.Degree
               Dim lcr = r.LeadingCoeficient
               Dim s = lcr \ lcv
               Dim t As New Term(s, r.Degree() - dv)
               q += t
               r += rhs * -t
           End While
           Return q
       End Operator
       Public Overrides Function ToString() As String
           Dim builder As New StringBuilder
           Dim it = polyTerms.GetEnumerator()
           If it.MoveNext Then
               builder.Append(it.Current)
           End If
           While it.MoveNext
               If it.Current.Coefficient < 0 Then
                   builder.Append(" - ")
                   builder.Append(-it.Current)
               Else
                   builder.Append(" + ")
                   builder.Append(it.Current)
               End If
           End While
           Return builder.ToString
       End Function
   End Class
   Function GetDivisors(number As Integer) As List(Of Integer)
       Dim divisors As New List(Of Integer)
       Dim root = CType(Math.Sqrt(number), Long)
       For i = 1 To root
           If number Mod i = 0 Then
               divisors.Add(i)
               Dim div = number \ i
               If div <> i AndAlso div <> number Then
                   divisors.Add(div)
               End If
           End If
       Next
       Return divisors
   End Function
   Private ReadOnly allFactors As New Dictionary(Of Integer, Dictionary(Of Integer, Integer)) From {{2, New Dictionary(Of Integer, Integer) From Template:2, 1}}
   Function GetFactors(number As Integer) As Dictionary(Of Integer, Integer)
       If allFactors.ContainsKey(number) Then
           Return allFactors(number)
       End If
       Dim factors As New Dictionary(Of Integer, Integer)
       If number Mod 2 = 0 Then
           Dim factorsDivTwo = GetFactors(number \ 2)
           For Each pair In factorsDivTwo
               If Not factors.ContainsKey(pair.Key) Then
                   factors.Add(pair.Key, pair.Value)
               End If
           Next
           If factors.ContainsKey(2) Then
               factors(2) += 1
           Else
               factors.Add(2, 1)
           End If
           If number < MAX_ALL_FACTORS Then
               allFactors.Add(number, factors)
           End If
           Return factors
       End If
       Dim root = CType(Math.Sqrt(number), Long)
       Dim i = 3L
       While i <= root
           If number Mod i = 0 Then
               Dim factorsDivI = GetFactors(number \ i)
               For Each pair In factorsDivI
                   If Not factors.ContainsKey(pair.Key) Then
                       factors.Add(pair.Key, pair.Value)
                   End If
               Next
               If factors.ContainsKey(i) Then
                   factors(i) += 1
               Else
                   factors.Add(i, 1)
               End If
               If number < MAX_ALL_FACTORS Then
                   allFactors.Add(number, factors)
               End If
               Return factors
           End If
           i += 2
       End While
       factors.Add(number, 1)
       If number < MAX_ALL_FACTORS Then
           allFactors.Add(number, factors)
       End If
       Return factors
   End Function
   Private ReadOnly computedPolynomials As New Dictionary(Of Integer, Polynomial)
   Function CyclotomicPolynomial(n As Integer) As Polynomial
       If computedPolynomials.ContainsKey(n) Then
           Return computedPolynomials(n)
       End If
       If n = 1 Then
           REM polynomial: x - 1
           Dim p As New Polynomial(New Term(1, 1), New Term(-1))
           computedPolynomials.Add(n, p)
           Return p
       End If
       Dim factors = GetFactors(n)
       Dim terms As New List(Of Term)
       Dim cyclo As Polynomial
       If factors.ContainsKey(n) Then
           REM n prime
           For index = 1 To n
               terms.Add(New Term(1, index - 1))
           Next
           cyclo = New Polynomial(terms)
           computedPolynomials.Add(n, cyclo)
           Return cyclo
       ElseIf factors.Count = 2 AndAlso factors.ContainsKey(2) AndAlso factors(2) = 1 AndAlso factors.ContainsKey(n / 2) AndAlso factors(n / 2) = 1 Then
           REM n = 2p
           Dim prime = n \ 2
           Dim coeff = -1
           For index = 1 To prime
               coeff *= -1
               terms.Add(New Term(coeff, index - 1))
           Next
           cyclo = New Polynomial(terms)
           computedPolynomials.Add(n, cyclo)
           Return cyclo
       ElseIf factors.Count = 1 AndAlso factors.ContainsKey(2) Then
           REM n = 2^h
           Dim h = factors(2)
           terms = New List(Of Term) From {
               New Term(1, Math.Pow(2, h - 1)),
               New Term(1)
           }
           cyclo = New Polynomial(terms)
           computedPolynomials.Add(n, cyclo)
           Return cyclo
       ElseIf factors.Count = 1 AndAlso factors.ContainsKey(n) Then
           REM n = p^k
           Dim p = 0
           Dim k = 0
           For Each it In factors
               p = it.Key
               k = it.Value
           Next
           For index = 1 To p
               terms.Add(New Term(1, (index - 1) * Math.Pow(p, k - 1)))
           Next
           cyclo = New Polynomial(terms)
           computedPolynomials.Add(n, cyclo)
           Return cyclo
       ElseIf factors.Count = 2 AndAlso factors.ContainsKey(2) Then
           REM n = 2^h * p^k
           Dim p = 0
           For Each it In factors
               If it.Key <> 2 Then
                   p = it.Key
               End If
           Next
           Dim coeff = -1
           Dim twoExp = CType(Math.Pow(2, factors(2) - 1), Long)
           Dim k = factors(p)
           For index = 1 To p
               coeff *= -1
               terms.Add(New Term(coeff, (index - 1) * twoExp * Math.Pow(p, k - 1)))
           Next
           cyclo = New Polynomial(terms)
           computedPolynomials.Add(n, cyclo)
           Return cyclo
       ElseIf factors.ContainsKey(2) AndAlso (n / 2) Mod 2 = 1 AndAlso n / 2 > 1 Then
           REM CP(2m)[x] = CP(-m)[x], n odd integer > 1
           Dim cycloDiv2 = CyclotomicPolynomial(n \ 2)
           For Each t In cycloDiv2
               If t.Exponent Mod 2 = 0 Then
                   terms.Add(t)
               Else
                   terms.Add(-t)
               End If
           Next
           cyclo = New Polynomial(terms)
           computedPolynomials.Add(n, cyclo)
           Return cyclo
       End If
  1. If ALGORITHM = 0 Then
       REM slow - uses basic definition
       Dim divisors = GetDivisors(n)
       REM Polynomial: (x^n - 1)
       cyclo = New Polynomial(New Term(1, n), New Term(-1))
       For Each i In divisors
           Dim p = CyclotomicPolynomial(i)
           cyclo /= p
       Next
       computedPolynomials.Add(n, cyclo)
       Return cyclo
  1. ElseIf ALGORITHM = 1 Then
       REM Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
       Dim divisors = GetDivisors(n)
       Dim maxDivisor = Integer.MinValue
       For Each div In divisors
           maxDivisor = Math.Max(maxDivisor, div)
       Next
       Dim divisorExceptMax As New List(Of Integer)
       For Each div In divisors
           If maxDivisor Mod div <> 0 Then
               divisorExceptMax.Add(div)
           End If
       Next
       REM Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       cyclo = New Polynomial(New Term(1, n), New Term(-1)) / New Polynomial(New Term(1, maxDivisor), New Term(-1))
       For Each i In divisorExceptMax
           Dim p = CyclotomicPolynomial(i)
           cyclo /= p
       Next
       computedPolynomials.Add(n, cyclo)
       Return cyclo
  1. ElseIf ALGORITHM = 2 Then
       REM Fastest
       REM Let p ; q be primes such that p does not divide n, and q divides n
       REM Then Cp(np)[x] = CP(n)[x^p] / CP(n)[x]
       Dim m = 1
       cyclo = CyclotomicPolynomial(m)
       Dim primes As New List(Of Integer)
       For Each it In factors
           primes.Add(it.Key)
       Next
       primes.Sort()
       For Each prime In primes
           REM CP(m)[x]
           Dim cycloM = cyclo
           REM Compute CP(m)[x^p]
           terms = New List(Of Term)
           For Each t In cyclo
               terms.Add(New Term(t.Coefficient, t.Exponent * prime))
           Next
           cyclo = New Polynomial(terms) / cycloM
           m *= prime
       Next
       REM Now, m is the largest square free divisor of n
       Dim s = n \ m
       REM Compute CP(n)[x] = CP(m)[x^s]
       terms = New List(Of Term)
       For Each t In cyclo
           terms.Add(New Term(t.Coefficient, t.Exponent * s))
       Next
       cyclo = New Polynomial(terms)
       computedPolynomials.Add(n, cyclo)
       Return cyclo
  1. Else
       Throw New Exception("Invalid algorithm")
  1. End If
   End Function
   Sub Main()
       Console.WriteLine("Task 1:  cyclotomic polynomials for n <= 30:")
       For i = 1 To 30
           Dim p = CyclotomicPolynomial(i)
           Console.WriteLine("CP[{0}] = {1}", i, p)
       Next
       Console.WriteLine()
       Console.WriteLine("Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:")
       Dim n = 0
       For i = 1 To 10
           While True
               n += 1
               Dim cyclo = CyclotomicPolynomial(n)
               If cyclo.HasCoefficentAbs(i) Then
                   Console.WriteLine("CP[{0}] has coefficient with magnitude = {1}", n, i)
                   n -= 1
                   Exit While
               End If
           End While
       Next
   End Sub

End Module</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Wren

Translation of: Go
Library: Wren-trait
Library: Wren-sort
Library: Wren-math
Library: Wren-fmt

Second part is very slow. Limited to first 7 to finish in a reasonable time - 5 minutes on my machine. <lang ecmascript>import "/trait" for Stepped import "/sort" for Sort import "/math" for Int, Nums import "/fmt" for Fmt

var algo = 2 var maxAllFactors = 1e5

class Term {

   construct new(coef, exp) {
       _coef = coef
       _exp = exp
   }
   coef { _coef }
   exp  { _exp }
   *(t) { Term.new(_coef * t.coef, _exp + t.exp) }
   +(t) {
       if (_exp != t.exp) Fiber.abort("Exponents unequal in term '+' method.")
       return Term.new(_coef + t.coef, _exp)
   }
   - { Term.new(-_coef, _exp) }
   toString {
       if (_coef == 0) return "0"
       if (_exp == 0)  return _coef.toString
       if (_coef == 1) return (_exp == 1) ? "x" : "x^%(_exp)"
       if (_exp == 1)  return "%(_coef)x"
       return "%(_coef)x^%(_exp)"
   }

}

class Poly {

   // pass coef, exp in pairs as parameters
   construct new(values) {
       var le = values.count
       if (le == 0) {
           _terms = [Term.new(0, 0)]
       } else {
           if (le%2 != 0) Fiber.abort("Odd number of parameters(%(le)) passed to Poly constructor.")
           _terms = []
           for (i in Stepped.new(0...le, 2)) _terms.add(Term.new(values[i], values[i+1]))
           tidy()
       }
   }
   terms { _terms }
   hasCoefAbs(coef) { _terms.any { |t| t.coef.abs == coef } }
   +(p2) {
       var p3 = Poly.new([])
       var le = _terms.count
       var le2 = p2.terms.count
       while (le > 0 || le2 > 0) {
           if (le == 0) {
               p3.terms.add(p2.terms[le2-1])
               le2 = le2 - 1
           } else if (le2 == 0) {
               p3.terms.add(_terms[le-1])
               le = le - 1
           } else {
               var t = _terms[le-1]
               var t2 = p2.terms[le2-1]
               if (t.exp == t2.exp) {
                   var t3 = t + t2
                   if (t3.coef != 0) p3.terms.add(t3)
                   le = le - 1
                   le2 = le2 - 1
               } else if (t.exp < t2.exp) {
                   p3.terms.add(t)
                   le = le - 1
               } else {
                   p3.terms.add(t2)
                   le2 = le2 - 1
               }
           }
       }
       p3.tidy()
       return p3
   }
   addTerm(t) {
       var q = Poly.new([])
       var added = false
       for (i in 0..._terms.count) {
           var ct = _terms[i]
           if (ct.exp == t.exp) {
               added = true
               if (ct.coef + t.coef != 0) q.terms.add(ct + t)
           } else {
               q.terms.add(ct)
           }
       }
       if (!added) q.terms.add(t)
       q.tidy()
       return q
   }
   mulTerm(t) {
       var q = Poly.new([])
       for (i in 0..._terms.count) {
           var ct = _terms[i]
           q.terms.add(ct * t)
       }
       q.tidy()
       return q
   }
   /(v) {
       var p = this
       var q = Poly.new([])
       var lcv = v.leadingCoef
       var dv = v.degree
       while (p.degree >= v.degree) {
           var lcp = p.leadingCoef
           var s = (lcp/lcv).truncate
           var t = Term.new(s, p.degree - dv)
           q = q.addTerm(t)
           p = p + v.mulTerm(-t) 
       }
       q.tidy()
       return q
   }
   leadingCoef { _terms[0].coef }
   degree { _terms[0].exp }
   toString {
       var sb = ""
       var first = true
       for (t in _terms) {
           if (first) {
               sb = sb + t.toString
               first = false
           } else {
               sb = sb + " "
               if (t.coef > 0) {
                   sb = sb + "+ "
                   sb = sb + t.toString
               } else {
                   sb = sb + "- "
                   sb = sb + (-t).toString
               }
           }
       }
       return sb
   }
   // in place descending sort by term.exp
   sortTerms() {
       var cmp  = Fn.new { |t1, t2| (t2.exp - t1.exp).sign }
       Sort.quick(_terms, 0, _terms.count-1, cmp)
   }
   // sort terms and remove any unnecesary zero terms
   tidy() {
       sortTerms()
       if (degree > 0) {
           for (i in _terms.count-1..0) {
               if (_terms[i].coef == 0) _terms.removeAt(i)
           }
           if (_terms.count == 0) _terms.add(Term.new(0, 0))
       }
   }

}

var computed = {} var allFactors = {2: {2: 1}}

var getFactors // recursive function getFactors = Fn.new { |n|

   var f = allFactors[n]
   if (f) return f
   var factors = {}
   if (n%2 == 0) {
       var factorsDivTwo = getFactors.call(n/2)
       for (me in factorsDivTwo) factors[me.key] = me.value
       factors[2] = factors[2] ? factors[2] + 1 : 1
       if (n < maxAllFactors) allFactors[n] = factors
       return factors
   }
   var prime = true
   var sqrt = n.sqrt.floor
   var i = 3
   while (i <= sqrt){
       if (n%i == 0) {
           prime = false
           for (me in getFactors.call(n/i)) factors[me.key] = me.value
           factors[i] = factors[i] ? factors[i] + 1 : 1
           if (n < maxAllFactors) allFactors[n] = factors
           return factors
       }
       i = i + 2
   }
   if (prime) {
       factors[n] = 1
       if (n < maxAllFactors) allFactors[n] = factors
   }
   return factors

}

var cycloPoly // recursive function cycloPoly = Fn.new { |n|

   var p = computed[n]
   if (p) return p
   if (n == 1) {
       // polynomialL x - 1
       p = Poly.new([1, 1, -1, 0])
       computed[1] = p
       return p
   }
   var factors = getFactors.call(n)
   var cyclo = Poly.new([])
   if (factors[n]) {
       // n is prime
       for (i in 0...n) cyclo.terms.add(Term.new(1, i))
   } else if (factors.count == 2 && factors[2] == 1 && factors[n/2] == 1) {
       // n == 2p
       var prime = n / 2
       var coef = -1
       for (i in 0...prime) {
           coef = coef * (-1)
           cyclo.terms.add(Term.new(coef, i))
       }
   } else if (factors.count == 1) {
       var h = factors[2]
       if (h) { // n == 2^h
           cyclo.terms.addAll([Term.new(1, 1 << (h-1)), Term.new(1, 0)])
       } else if (!factors[n]) {
           // n == p ^ k
          var p = 0
          for (prime in factors.keys) p = prime
          var k = factors[p]
          for (i in 0...p) {
               var pk = p.pow(k-1).floor
               cyclo.terms.add(Term.new(1, i * pk))
          }
       }
   } else if (factors.count == 2 && factors[2]) {
       // n = 2^h * p^k
       var p = 0
       for (prime in factors.keys) if (prime != 2) p = prime
       var coef = -1
       var twoExp = 1 << (factors[2] - 1)
       var k = factors[p]
       for (i in 0...p) {
           coef = coef * (-1)
           var pk = p.pow(k-1).floor
           cyclo.terms.add(Term.new(coef, i * twoExp * pk))
       }
   } else if (factors[2] && (n/2) % 2 == 1 && (n/2) > 1) {
       //  CP(2m)[x] == CP(-m)[x], n odd integer > 1
       var cycloDiv2 = cycloPoly.call(n/2)
       for (t in cycloDiv2.terms) {
           var t2 = t
           if (t.exp % 2 != 0) t2 = -t
           cyclo.terms.add(t2)
       }
   } else if (algo == 0) {
       // slow - uses basic definition
       var divs = Int.properDivisors(n)
       // polynomial: x^n - 1
       var cyclo = Poly.new([1, n, -1, 0])
       for (i in divs) {
           var p = cycloPoly.call(i)
           cyclo = cyclo / p
       }
   } else if (algo == 1) {
       //  faster - remove max divisor (and all divisors of max divisor)
       //  only one divide for all divisors of max divisor
       var divs = Int.properDivisors(n)
       var maxDiv = Nums.max(divs)
       var divsExceptMax = divs.where { |d| maxDiv % d != 0 }.toList
       // polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       cyclo = Poly.new([1, n, -1, 0])
       cyclo = cyclo / Poly.new([1, maxDiv, -1, 0])
       for (i in divsExceptMax) {
           var p = cycloPoly.call(i)
           cyclo = cyclo / p
       }
   } else if (algo == 2) {
       //  fastest
       //  let p, q be primes such that p does not divide n, and q divides n
       //  then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
       var m = 1
       cyclo = cycloPoly.call(m)
       var primes = []
       for (prime in factors.keys) primes.add(prime)
       Sort.quick(primes)
       for (prime in primes) {
           // CP(m)[x]
           var cycloM = cyclo
           // compute CP(m)[x^p]
           var terms = []
           for (t in cycloM.terms) terms.add(Term.new(t.coef, t.exp * prime))
           cyclo = Poly.new([])
           cyclo.terms.addAll(terms)
           cyclo.tidy()
           cyclo = cyclo / cycloM
           m = m * prime
       }
       //  now, m is the largest square free divisor of n 
       var s = n / m
       //  Compute CP(n)[x] = CP(m)[x^s]
       var terms = []
       for (t in cyclo.terms) terms.add(Term.new(t.coef, t.exp * s))
       cyclo = Poly.new([])
       cyclo.terms.addAll(terms)
   } else {
       Fiber.abort("Invalid algorithm.")
   }
   cyclo.tidy()
   computed[n] = cyclo
   return cyclo

}

System.print("Task 1: cyclotomic polynomials for n <= 30:") for (i in 1..30) {

   var p = cycloPoly.call(i)
   Fmt.print("CP[$2d] = $s", i, p)

}

System.print("\nTask 2: Smallest cyclotomic polynomial with n or -n as a coefficient:") var n = 0 for (i in 1..7) {

    while(true) {
       n = n + 1
       var cyclo = cycloPoly.call(n)
       if (cyclo.hasCoefAbs(i)) {
           Fmt.print("CP[$d] has coefficient with magnitude = $d", n, i)
           n = n - 1
           break
       }
   }

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[ 1] = x - 1
CP[ 2] = x + 1
CP[ 3] = x^2 + x + 1
CP[ 4] = x^2 + 1
CP[ 5] = x^4 + x^3 + x^2 + x + 1
CP[ 6] = x^2 - x + 1
CP[ 7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[ 8] = x^4 + 1
CP[ 9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7