Currying: Difference between revisions

56,968 bytes added ,  3 months ago
m
(Nimrod -> Nim)
 
(129 intermediate revisions by 62 users not shown)
Line 1:
{{task}}{{Wikipedia|Currying}}
{{Wikipedia|Currying}}
Create a simple demonstrative example of [[wp:Currying|Currying]] in the specific language.
 
 
;Task:
Create a simple demonstrative example of [[wp:Currying|Currying]] in a specific language.
 
Add any historic details as to how the feature made its way into the language.
<!-- from: http://en.wikipedia.org/w/index.php?title=Currying&direction=prev&oldid=142127294 -->
[[Category:Functions and subroutines]]
<br><br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F addN(n)
F adder(x)
R x + @=n
R adder
 
V add2 = addN(2)
V add3 = addN(3)
print(add2(7))
print(add3(7))</syntaxhighlight>
 
{{out}}
<pre>
9
10
</pre>
 
=={{header|Ada}}==
Ada lacks explicit support for currying, or indeed just about any form of functional programming at all. However if one views generic subprograms as approximately equivalent to higher order functions, and generic packages as approximately equivalent to closures, then the desired functionality can still be achieved. The chief limitation is that separate generic support packages must exist for each arity that is to be curried.
 
Support package spec:
<syntaxhighlight lang="ada">generic
type Argument_1 (<>) is limited private;
type Argument_2 (<>) is limited private;
type Argument_3 (<>) is limited private;
type Return_Value (<>) is limited private;
 
with function Func
(A : in Argument_1;
B : in Argument_2;
C : in Argument_3)
return Return_Value;
package Curry_3 is
 
generic
First : in Argument_1;
package Apply_1 is
 
generic
Second : in Argument_2;
package Apply_2 is
 
function Apply_3
(Third : in Argument_3)
return Return_Value;
 
end Apply_2;
 
end Apply_1;
 
end Curry_3;</syntaxhighlight>
 
Support package body:
<syntaxhighlight lang="ada">package body Curry_3 is
 
package body Apply_1 is
 
package body Apply_2 is
 
function Apply_3
(Third : in Argument_3)
return Return_Value is
begin
return Func (First, Second, Third);
end Apply_3;
 
end Apply_2;
 
end Apply_1;
 
end Curry_3;</syntaxhighlight>
 
Currying a function:
<syntaxhighlight lang="ada">with Curry_3, Ada.Text_IO;
 
procedure Curry_Test is
 
function Sum
(X, Y, Z : in Integer)
return Integer is
begin
return X + Y + Z;
end Sum;
 
package Curried is new Curry_3
(Argument_1 => Integer,
Argument_2 => Integer,
Argument_3 => Integer,
Return_Value => Integer,
Func => Sum);
 
package Sum_5 is new Curried.Apply_1 (5);
package Sum_5_7 is new Sum_5.Apply_2 (7);
Result : Integer := Sum_5_7.Apply_3 (3);
 
begin
 
Ada.Text_IO.Put_Line ("Five plus seven plus three is" & Integer'Image (Result));
 
end Curry_Test;</syntaxhighlight>
 
Output:
<pre>Five plus seven plus three is 15</pre>
 
=={{header|Aime}}==
Curry a function printing an integer, on a given number of characters, with commas inserted every given number of digits, with a given number of digits, in a given base:
<syntaxhighlight lang="aime">ri(list l)
{
l[0] = apply.apply(l[0]);
}
curry(object o)
{
(o.__count - 1).times(ri, list(o));
}
main(void)
{
o_wbfxinteger.curry()(16)(3)(12)(16)(1 << 30);
0;
}
</syntaxhighlight>
{{out}}
<pre> 000,040,000,000</pre>
 
=={{header|ALGOL 68}}==
In 1968 [[wp:Charles H. Lindsey|C.H. Lindsey]] proposed for '''partial parametrisation''' for ALGOL 68, this is implemented as an extension in [[wp:ALGOL 68G]].
<langsyntaxhighlight lang="algol68"># Raising a function to a power #
 
MODE FUN = PROC (REAL) REAL;
Line 16 ⟶ 147:
 
REAL x = read real;
print ((new line, sin (3 * x), 3 * sin (x) - 4 * (sin ** 3) (x)))</langsyntaxhighlight>
 
=={{header|C#AppleScript}}==
 
The nearest thing to a first-class function in AppleScript is a 'script' in which a 'handler' (with some default or vanilla name like 'call' or 'lambda') is embedded. First class use of an ordinary 2nd class 'handler' function requires 'lifting' it into an enclosing script – a process which can be abstracted to a general mReturn function.
 
<syntaxhighlight lang="applescript">-- curry :: (Script|Handler) -> Script
on curry(f)
script
on |λ|(a)
script
on |λ|(b)
|λ|(a, b) of mReturn(f)
end |λ|
end script
end |λ|
end script
end curry
 
 
-- TESTS ----------------------------------------------------------------------
 
-- add :: Num -> Num -> Num
on add(a, b)
a + b
end add
 
-- product :: Num -> Num -> Num
on product(a, b)
a * b
end product
 
-- Test 1.
curry(add)
 
--> «script»
 
 
-- Test 2.
curry(add)'s |λ|(2)
 
--> «script»
 
 
-- Test 3.
curry(add)'s |λ|(2)'s |λ|(3)
 
--> 5
 
 
-- Test 4.
map(curry(product)'s |λ|(7), enumFromTo(1, 10))
 
--> {7, 14, 21, 28, 35, 42, 49, 56, 63, 70}
 
 
-- Combined:
{curry(add), ¬
curry(add)'s |λ|(2), ¬
curry(add)'s |λ|(2)'s |λ|(3), ¬
map(curry(product)'s |λ|(7), enumFromTo(1, 10))}
 
--> {«script», «script», 5, {7, 14, 21, 28, 35, 42, 49, 56, 63, 70}}
 
 
-- GENERIC FUNCTIONS ----------------------------------------------------------
 
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if n < m then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end enumFromTo
 
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
 
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn</syntaxhighlight>
{{Out}}
<pre>{«script», «script», 5, {7, 14, 21, 28, 35, 42, 49, 56, 63, 70}}</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">addN: function [n][
return function [x] with 'n [
return x + n
]
]
 
add2: addN 2
add3: addN 3
 
do [
print add2 7
print add3 7
]</syntaxhighlight>
 
{{out}}
 
<pre>9
10</pre>
 
=={{header|BASIC}}==
==={{header|FreeBASIC}}===
FreeBASIC is not a functional language and does not support either currying or nested functions/lambdas which are typically used by otherwise imperative languages to implement the former. The nearest I could get to currying using the features which the language does support is the following:
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
Type CurriedAdd
As Integer i
Declare Function add(As Integer) As Integer
End Type
 
Function CurriedAdd.add(j As Integer) As Integer
Return i + j
End Function
 
Function add (i As Integer) as CurriedAdd
Return Type<CurriedAdd>(i)
End Function
 
Print "3 + 4 ="; add(3).add(4)
Print "2 + 6 ="; add(2).add(6)
Sleep</syntaxhighlight>
 
{{out}}
<pre>
3 + 4 = 7
2 + 6 = 8
</pre>
 
==={{header|Visual Basic .NET}}===
'''Compiler:''' Roslyn Visual Basic (language version >=15.3)
 
Functions are not curried in VB.NET, so this entry details functions that take a function and return functions that act as if the original function were curried (i.e. each takes one parameter and returns another function that takes one parameter, with the function for which all parameters of the original function are supplied calling the original function with those arguments.
 
====Fixed-arity approach====
Uses generics and lambdas returning lambdas.
<syntaxhighlight lang="vbnet">Option Explicit On
Option Infer On
Option Strict On
 
Module Currying
' The trivial curry.
Function Curry(Of T1, TResult)(func As Func(Of T1, TResult)) As Func(Of T1, TResult)
' At least satisfy the implicit contract that the result isn't reference-equal to the original function.
Return Function(a) func(a)
End Function
 
Function Curry(Of T1, T2, TResult)(func As Func(Of T1, T2, TResult)) As Func(Of T1, Func(Of T2, TResult))
Return Function(a) Function(b) func(a, b)
End Function
 
Function Curry(Of T1, T2, T3, TResult)(func As Func(Of T1, T2, T3, TResult)) As Func(Of T1, Func(Of T2, Func(Of T3, TResult)))
Return Function(a) Function(b) Function(c) func(a, b, c)
End Function
 
' And so on.
End Module</syntaxhighlight>
 
Test code:
<syntaxhighlight lang="vbnet">Module Main
' An example binary function.
Function Add(a As Integer, b As Integer) As Integer
Return a + b
End Function
 
Sub Main()
Dim curriedAdd = Curry(Of Integer, Integer, Integer)(AddressOf Add)
Dim add2To = curriedAdd(2)
 
Console.WriteLine(Add(2, 3))
Console.WriteLine(add2To(3))
Console.WriteLine(curriedAdd(2)(3))
 
' An example ternary function.
Dim substring = Function(s As String, startIndex As Integer, length As Integer) s.Substring(startIndex, length)
Dim curriedSubstring = Curry(substring)
 
Console.WriteLine(substring("abcdefg", 2, 3))
Console.WriteLine(curriedSubstring("abcdefg")(2)(3))
 
' The above is just syntax sugar for this (a call to the Invoke() method of System.Delegate):
Console.WriteLine(curriedSubstring.Invoke("abcdefg").Invoke(2).Invoke(3))
 
Dim substringStartingAt1 = curriedSubstring("abcdefg")(1)
Console.WriteLine(substringStartingAt1(2))
Console.WriteLine(substringStartingAt1(4))
End Sub
End Module</syntaxhighlight>
 
====Late-binding approach====
 
{{libheader|.NET Core|2=>=1.0}}
or both
{{libheader|.NET Framework|2=>=4.5}}
and
{{libheader|System.Collections.Immutable|1.5.0}}
 
Due to VB's syntax, with indexers using parentheses, late-bound invocation expressions are compiled as invocations of the default property of the receiver. Thus, it is not possible to perform a late-bound delegate invocation. This limitation can, however, be circumvented, by declaring a type that wraps a delegate and defines a default property that invokes the delegate. Furthermore, by making this type what is essentially a discriminated union of a delegate and a result and guaranteeing that all invocations return another instance of this type, it is possible for the entire system to work with Option Strict on.
 
<syntaxhighlight lang="vbnet">Option Explicit On
Option Infer On
Option Strict On
 
Module CurryingDynamic
' Cheat visual basic's syntax by defining a type that can be the receiver of what appears to be a method call.
' Needless to say, this is not idiomatic VB.
Class CurryDelegate
ReadOnly Property Value As Object
ReadOnly Property Target As [Delegate]
 
Sub New(value As Object)
Dim curry = TryCast(value, CurryDelegate)
If curry IsNot Nothing Then
Me.Value = curry.Value
Me.Target = curry.Target
ElseIf TypeOf value Is [Delegate] Then
Me.Target = DirectCast(value, [Delegate])
Else
Me.Value = value
End If
End Sub
 
' CurryDelegate could also work as a dynamic n-ary function delegate, if an additional ParamArray argument were to be added.
Default ReadOnly Property Invoke(arg As Object) As CurryDelegate
Get
If Me.Target Is Nothing Then Throw New InvalidOperationException("All curried parameters have already been supplied")
 
Return New CurryDelegate(Me.Target.DynamicInvoke({arg}))
End Get
End Property
 
' A syntactically natural way to assert that the currying is complete and that the result is of the specified type.
Function Unwrap(Of T)() As T
If Me.Target IsNot Nothing Then Throw New InvalidOperationException("Some curried parameters have not yet been supplied.")
Return DirectCast(Me.Value, T)
End Function
End Class
 
Function DynamicCurry(func As [Delegate]) As CurryDelegate
Return DynamicCurry(func, ImmutableList(Of Object).Empty)
End Function
 
' Use ImmutableList to create a new list every time any curried subfunction is called avoiding multiple or repeated
' calls interfering with each other.
Private Function DynamicCurry(func As [Delegate], collectedArgs As ImmutableList(Of Object)) As CurryDelegate
Return If(collectedArgs.Count = func.Method.GetParameters().Length,
New CurryDelegate(func.DynamicInvoke(collectedArgs.ToArray())),
New CurryDelegate(Function(arg As Object) DynamicCurry(func, collectedArgs.Add(arg))))
End Function
End Module</syntaxhighlight>
 
Test code:
<syntaxhighlight lang="vbnet">Module Program
Function Add(a As Integer, b As Integer) As Integer
Return a + b
End Function
 
Sub Main()
' A delegate for the function must be created in order to eagerly perform overload resolution.
Dim curriedAdd = DynamicCurry(New Func(Of Integer, Integer, Integer)(AddressOf Add))
Dim add2To = curriedAdd(2)
 
Console.WriteLine(add2To(3).Unwrap(Of Integer))
Console.WriteLine(curriedAdd(2)(3).Unwrap(Of Integer))
 
Dim substring = Function(s As String, i1 As Integer, i2 As Integer) s.Substring(i1, i2)
Dim curriedSubstring = DynamicCurry(substring)
 
Console.WriteLine(substring("abcdefg", 2, 3))
Console.WriteLine(curriedSubstring("abcdefg")(2)(3).Unwrap(Of String))
 
' The trickery of using a parameterized default property also makes it appear that the "delegate" has an Invoke() method.
Console.WriteLine(curriedSubstring.Invoke("abcdefg").Invoke(2).Invoke(3).Unwrap(Of String))
 
Dim substringStartingAt1 = curriedSubstring("abcdefg")(1)
Console.WriteLine(substringStartingAt1(2).Unwrap(Of String))
Console.WriteLine(substringStartingAt1(4).Unwrap(Of String))
End Sub
End Module
</syntaxhighlight>
 
{{out|note=for both versions}}
<pre>5
5
5
cde
cde
cde
bc
bcde</pre>
 
=={{header|Binary Lambda Calculus}}==
 
In BLC, all multi argument functions are necessarily achieved by currying, since lambda calculus functions (lambdas) are single argument. A good example is the Church numeral 2, which given a function f and an argument x, applies f twice on x: C2 = \f. (\x. f (f x)). This is written in BLC as
 
<pre>00 00 01 110 01 110 01</pre>
 
where 00 denotes lambda, 01 denotes application, and 1^n0 denotes the variable bound by the n'th enclosing lambda. Which is all there is to BCL!
 
=={{header|BQN}}==
All BQN functions can only take 2 arguments, signified by <code>𝕨</code> and <code>𝕩</code> in block definitions. Hence, currying is largely done with the help of combinators like Before(<code>⊸</code>) and After(<code>⟜</code>).
 
Adapted from [[Currying#J|J]].
<syntaxhighlight lang="bqn">Plus3 ← 3⊸+
Plus3_1 ← +⟜3
 
•Show Plus3 1
•Show Plus3_1 1</syntaxhighlight>
<syntaxhighlight lang="text">4
4</syntaxhighlight>
 
=={{header|C}}==
<syntaxhighlight lang="c">
#include<stdarg.h>
#include<stdio.h>
 
long int factorial(int n){
if(n>1)
return n*factorial(n-1);
return 1;
}
 
long int sumOfFactorials(int num,...){
va_list vaList;
long int sum = 0;
va_start(vaList,num);
while(num--)
sum += factorial(va_arg(vaList,int));
va_end(vaList);
return sum;
}
 
int main()
{
printf("\nSum of factorials of [1,5] : %ld",sumOfFactorials(5,1,2,3,4,5));
printf("\nSum of factorials of [3,5] : %ld",sumOfFactorials(3,3,4,5));
printf("\nSum of factorials of [1,3] : %ld",sumOfFactorials(3,1,2,3));
return 0;
}
</syntaxhighlight>
Output:
<pre>
C:\rosettaCode>curry.exe
 
Sum of factorials of [1,5] : 153
Sum of factorials of [3,5] : 150
Sum of factorials of [1,3] : 9
</pre>
 
=={{header|C sharp|C#}}==
This shows how to create syntactically natural currying functions in [[C sharp|C#]].
<langsyntaxhighlight lang="csharp">public delegate int Plus(int y);
public delegate Plus CurriedPlus(int x);
public static CurriedPlus plus =
Line 28 ⟶ 538:
int sum = plus(3)(4); // sum = 7
int sum2= plus(2)(plus(3)(4)) // sum2 = 9
}</langsyntaxhighlight>
 
=={{header|C++}}==
Currying may be achieved in [[C++]] using the [[wp:Standard Template Library|Standard Template Library]] function object adapters (<code>binder1st</code> and <code>binder2nd</code>), and more generically using the [[wp:Boost library|Boost]] <code>bind</code> mechanism.
 
=={{header|Ceylon}}==
{{trans|Groovy}}
<syntaxhighlight lang="ceylon">shared void run() {
function divide(Integer x, Integer y) => x / y;
value partsOf120 = curry(divide)(120);
print("half of 120 is ``partsOf120(2)``
a third is ``partsOf120(3)``
and a quarter is ``partsOf120(4)``");
}</syntaxhighlight>
 
=={{header|Clojure}}==
<syntaxhighlight lang="clojure">(def plus-a-hundred (partial + 100))
(assert (=
(plus-a-hundred 1)
101))
</syntaxhighlight>
 
=={{header|Common Lisp}}==
<langsyntaxhighlight lang="lisp">(defun curry (function &rest args-1)
(lambda (&rest args-2)
(apply function (append args-1 args-2))))
</syntaxhighlight>
</lang>
 
Usage:
<langsyntaxhighlight lang="lisp">
(funcall (curry #'+ 10) 10)
 
20
</syntaxhighlight>
</lang>
 
=={{header|Crystal}}==
Crystal allows currying procs with either <code>Proc#partial</code> or by manually creating closures:
 
<syntaxhighlight lang="ruby">add_things = ->(x1 : Int32, x2 : Int32, x3 : Int32) { x1 + x2 + x3 }
add_curried = add_things.partial(2, 3)
add_curried.call(4) #=> 9
 
def add_two_things(x1)
return ->(x2 : Int32) {
->(x3 : Int32) { x1 + x2 + x3 }
}
end
add13 = add_two_things(3).call(10)
add13.call(5) #=> 18</syntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">void main() {
import std.stdio, std.functional;
 
Line 54 ⟶ 599:
}
 
alias add2 = currypartial!(add, 2);
writeln("Add 2 to 3: ", add(2, 3));
writeln("Add 2 to 3 (curried): ", add2(3));
}</langsyntaxhighlight>
{{out}}
<pre>Add 2 to 3: 5
Add 2 to 3 (curried): 5</pre>
 
=={{header|Delphi}}==
{{libheader| System.SysUtils}}
{{Trans|C#}}
<syntaxhighlight lang="delphi">
program Currying;
 
{$APPTYPE CONSOLE}
{$R *.res}
 
uses
System.SysUtils;
 
var
Plus: TFunc<Integer, TFunc<Integer, Integer>>;
 
begin
Plus :=
function(x: Integer): TFunc<Integer, Integer>
begin
result :=
function(y: Integer): Integer
begin
result := x + y;
end;
end;
 
Writeln(Plus(3)(4));
Writeln(Plus(2)(Plus(3)(4)));
readln;
end.
</syntaxhighlight>
{{out}}
<pre>
7
9
</pre>
 
=={{header|EchoLisp}}==
[[EchoLisp]] has native support for curry, which is implemented thru closures, as shown in [[#Common_Lisp|Common Lisp]] .
<syntaxhighlight lang="text">
;;
;; curry functional definition
;; (define (curry proc . left-args) (lambda right-args (apply proc (append left-args right-args))))
;;
;; right-curry
;; (define (rcurry proc . right-args) (lambda left-args (apply proc (append left-args right-args))))
;;
 
(define add42 (curry + 42))
(add42 666) → 708
 
(map (curry cons 'simon) '( gallubert garfunkel et-merveilles))
→ ((simon . gallubert) (simon . garfunkel) (simon . et-merveilles))
(map (rcurry cons 'simon) '( gallubert garfunkel et-merveilles))
→ ((gallubert . simon) (garfunkel . simon) (et-merveilles . simon))
 
;Implementation : result of currying :
(curry * 2 3 (+ 2 2))
→ (λ _#:g1004 (#apply-curry #* (2 3 4) _#:g1004))
</syntaxhighlight>
 
=={{header|Ecstasy}}==
<syntaxhighlight lang="java">
module CurryPower {
@Inject Console console;
void run() {
function Int(Int, Int) divide = (x,y) -> x / y;
function Int(Int) half = divide(_, 2);
function Int(Int) partsOf120 = divide(120, _);
 
console.print($|half of a dozen is {half(12)}
|half of 120 is {partsOf120(2)}
|a third is {partsOf120(3)}
|and a quarter is {partsOf120(4)}
);
}
}
</syntaxhighlight>
 
{{out}}
<pre>
half of a dozen is 6
half of 120 is 60
a third is 40
and a quarter is 30
</pre>
 
=={{header|Eero}}==
<langsyntaxhighlight lang="objc">#import <stdio.h>
 
int main()
Line 77 ⟶ 709:
 
return 0
</syntaxhighlight>
</lang>
Alternative implementation (there are a few ways to express blocks/lambdas):
<langsyntaxhighlight lang="objc">#import <stdio.h>
 
int main()
Line 91 ⟶ 723:
 
return 0
</syntaxhighlight>
</lang>
 
=={{header|Eiffel}}==
Line 105 ⟶ 737:
 
where FUNCTION [ANY, TUPLE [Y], Z] denotes the type ''Y'' → ''Z'' (agents taking as argument a tuple with a single argument of type Y and returning a result of type Z), which is indeed the type of the agent expression used on the next-to-last line to define the "Result" of g.
 
=={{header|Elixir}}==
 
<pre>
iex(1)> plus = fn x, y -> x + y end
#Function<41.125776118/2 in :erl_eval.expr/6>
iex(2)> plus.(3, 5)
8
iex(3)> plus5 = &plus.(5, &1)
#Function<42.125776118/1 in :erl_eval.expr/6>
iex(4)> plus5.(3)
8
</pre>
 
=={{header|EMal}}==
{{trans|C#}}
<syntaxhighlight lang="emal">
fun plus = fun by int y
return int by int x do return x + y end
end
int sum0 = plus(3)(4)
int sum1 = plus(2)(plus(3)(4))
writeLine(sum0)
writeLine(sum1)
</syntaxhighlight>
{{out}}
<pre>
7
9
</pre>
 
=={{header|Erlang}}==
Line 110 ⟶ 772:
There are three solutions provided for this problem. The simple version is using anonymous functions as other examples of other languages do. The second solution corresponds to the definition of currying. It takes a function of a arity ''n'' and applies a given argument, returning then a function of arity ''n-1''. The solution provided uses metaprogramming facilities to create the new function. Finally, the third solution is a generalization that allows to curry any number of parameters and in a given order.
 
<langsyntaxhighlight lang="erlang">
-module(currying).
 
Line 173 ⟶ 835:
erlang:error(badarg)
end.
</syntaxhighlight>
</lang>
 
 
Line 210 ⟶ 872:
=={{header|F Sharp|F#}}==
{{trans|Python}}
<lang fsharp>let addN n = (+) n</lang>
 
F# is largely based on ML and has a built-in natural method of defining functions that are curried:
<lang fsharp>> let add2 = addN 2;;
 
<syntaxhighlight lang="fsharp">let addN n = (+) n</syntaxhighlight>
 
<syntaxhighlight lang="fsharp">> let add2 = addN 2;;
 
val add2 : (int -> int)
Line 219 ⟶ 884:
val it : (int -> int) = <fun:addN@1>
> add2 7;;
val it : int = 9</langsyntaxhighlight>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">IN: scratchpad 2 [ 3 + ] curry
 
--- Data stack:
[ 2 3 + ]
IN: scratchpad call
 
--- Data stack:
5</syntaxhighlight>
Currying doesn't need to be an atomic operation. <tt>compose</tt> lets you combine quotations.
<syntaxhighlight lang="factor">IN: scratchpad [ 3 4 ] [ 5 + ] compose
 
--- Data stack:
[ 3 4 5 + ]
IN: scratchpad call
 
--- Data stack:
3
9</syntaxhighlight>
 
You can even treat quotations as sequences.
<syntaxhighlight lang="factor">IN: scratchpad { 1 2 3 4 5 } [ 1 + ] { 2 / } append map
 
--- Data stack:
{ 1 1+1/2 2 2+1/2 3 }</syntaxhighlight>
 
Finally, fried quotations are often clearer than using <tt>curry</tt> and <tt>compose</tt>. Use <tt>_</tt> to take objects from the stack and slot them into the quotation.
<syntaxhighlight lang="factor">USE: fry
IN: scratchpad 2 3 '[ _ _ + ]
 
--- Data stack:
[ 2 3 + ]</syntaxhighlight>
 
Use <tt>@</tt> to insert the contents of a quotation into another quotation.
<syntaxhighlight lang="factor">IN: scratchpad { 1 2 3 4 5 } [ 1 + ] '[ 2 + @ ] map
 
--- Data stack:
{ 4 5 6 7 8 }</syntaxhighlight>
 
=={{header|Forth}}==
{{trans|Common Lisp}}
<langsyntaxhighlight lang="forth">: curry ( x xt1 -- xt2 )
swap 2>r :noname r> postpone literal r> compile, postpone ; ;
 
5 ' + curry constant +5
5 +5 execute .
7 +5 execute .</langsyntaxhighlight>
 
{{out}}
<pre>10 12</pre>
 
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Currying}}
 
'''Solution'''
 
In Fōrmulæ, a function is just a named lambda expression, and a function call is just a lambda application.
 
The following is a simple definition of a lambda expression:
 
[[File:Fōrmulæ - Currying 01.png]]
 
When a lambda application is called with the same number of arguments, the result is the habitual:
 
[[File:Fōrmulæ - Currying 02.png]]
 
[[File:Fōrmulæ - Currying 03.png]]
 
However, if a less number of parameters is applied, currying is performed. Notice that the result is another lambda expression.
 
[[File:Fōrmulæ - Currying 04.png]]
 
[[File:Fōrmulæ - Currying 05.png]]
 
Because the result is a lambda expression, it can be used in a lambda application, so we must get the same result:
 
[[File:Fōrmulæ - Currying 06.png]]
 
[[File:Fōrmulæ - Currying 03.png]]
 
Using functions:
 
[[File:Fōrmulæ - Currying 07.png]]
 
[[File:Fōrmulæ - Currying 08.png]]
 
=={{header|GDScript}}==
{{trans|Python}}
 
Uses Godot 4's lambdas. This runs as a script attached to a node.
<syntaxhighlight lang="gdscript">
extends Node
 
func addN(n: int) -> Callable:
return func(x):
return n + x
 
func _ready():
# Test currying
var add2 := addN(2)
print(add2.call(7))
 
get_tree().quit() # Exit
</syntaxhighlight>
 
=={{header|Go}}==
Go has had [http://golang.org/ref/spec#Function_literals function literals]
and [http://golang.org/ref/spec#Method_expressions method expressions]
since before Go  1.0.
[http://golang.org/ref/spec#Method_values Method values] were added
in [http://golang.org/doc/go1.1#method_values Go  1.1].
<langsyntaxhighlight lang="go">package main
 
import (
Line 275 ⟶ 1,035:
fmt.Println("2 + 4 =", fn2(a, 4))
fmt.Println("3 + 5 =", fn2(Foo(3), 5))
}</langsyntaxhighlight>
[http://play.golang.org/p/0YL9YTe-9V Run on the Go Playground.]
 
Line 283 ⟶ 1,043:
 
Example:
<langsyntaxhighlight lang="groovy">def divide = { Number x, Number y ->
x / y
}
Line 289 ⟶ 1,049:
def partsOf120 = divide.curry(120)
 
println "120: half: ${partsOf120(2)}, third: ${partsOf120(3)}, quarter: ${partsOf120(4)}"</langsyntaxhighlight>
 
Results:
Line 298 ⟶ 1,058:
 
Example (using the same "divide()" closure as before):
<langsyntaxhighlight lang="groovy">def half = divide.rcurry(2)
def third = divide.rcurry(3)
def quarter = divide.rcurry(4)
 
println "30: half: ${half(30)}; third: ${third(30)}, quarter: ${quarter(30)}"</langsyntaxhighlight>
 
Results:
Line 311 ⟶ 1,071:
 
=={{header|Haskell}}==
Likewise in Haskell, function type signatures show the currying-based structure of functions (note: "<langsyntaxhighlight lang="haskell">\ -></langsyntaxhighlight>" is Haskell's syntax for anonymous functions, in which the sign <langsyntaxhighlight lang="haskell">\</langsyntaxhighlight> has been chosen for its resemblance to the Greek letter λ (lambda); it is followed by a list of space-separated arguments, and the arrow <langsyntaxhighlight lang="haskell">-></langsyntaxhighlight> separates the arguments list from the function body)
Prelude> let plus = \x y -> x + y
Line 327 ⟶ 1,087:
8
 
In fact, the Haskell definition <langsyntaxhighlight lang="haskell">\x y -> x + y</langsyntaxhighlight> is merely [[wp:syntactic sugar|syntactic sugar]] for <langsyntaxhighlight lang="haskell">\x -> \y -> x + y</langsyntaxhighlight>, which has exactly the same type signature:
 
Prelude> let nested_plus = \x -> \y -> x + y
Prelude> :type nested_plus
nested_plus :: Integer -> Integer -> Integer
 
=={{header|Hy}}==
<syntaxhighlight lang="hy">(defn addN [n]
(fn [x]
(+ x n)))</syntaxhighlight>
<syntaxhighlight lang="hy">=> (setv add2 (addN 2))
=> (add2 7)
9
 
=> ((addN 3) 4)
7</syntaxhighlight>
 
==Icon and {{header|Unicon}}==
Line 338 ⟶ 1,109:
used.
 
<langsyntaxhighlight lang="unicon">procedure main(A)
add2 := addN(2)
write("add2(7) = ",add2(7))
Line 350 ⟶ 1,121:
procedure makeProc(A)
return (@A[1], A[1])
end</langsyntaxhighlight>
 
{{Out}}
Line 362 ⟶ 1,133:
=={{header|Io}}==
A general currying function written in the [[Io]] programming language:
<langsyntaxhighlight lang="io">curry := method(fn,
a := call evalArgs slice(1)
block(
Line 373 ⟶ 1,144:
increment := curry( method(a,b,a+b), 1 )
increment call(5)
// result => 6</langsyntaxhighlight>
 
=={{header|J}}==
 
'''Solution''':Use <tt>&</tt> (bond). This primitive conjunction accepts two arguments: a function (verb) and an object (noun) and binds the object to the function, deriving a new function.
'''Example''':<langsyntaxhighlight lang="j"> threePlus=: 3&+
threePlus 7
10
Line 384 ⟶ 1,155:
halve 20
10
someParabola =: _2 3 1 &p. NB. x^2 + 3x - 2</langsyntaxhighlight>
 
'''Note''': The final example (<tt>someParabola</tt>) shows the single currying primitive (&) combined with J's array oriented nature, permits partial application of a function of any number of arguments.
 
'''Note''': J's adverbs and conjunctions (such as <code>&</code>) will curry themselves when necessary. Thus, for example:
 
<syntaxhighlight lang="j"> with2=: &2
+with2 3
5</syntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java5"> public class Currier<ARG1, ARG2, RET> {
public interface CurriableFunctor<ARG1, ARG2, RET> {
RET evaluate(ARG1 arg1, ARG2 arg2);
Line 426 ⟶ 1,203:
System.out.println(add5.evaluate(new Integer(2)));
}
}</langsyntaxhighlight>
 
===Java 8===
 
<syntaxhighlight lang="java">
import java.util.function.BiFunction;
import java.util.function.Function;
 
public class Curry {
//Curry a method
public static <T, U, R> Function<T, Function<U, R>> curry(BiFunction<T, U, R> biFunction) {
return t -> u -> biFunction.apply(t, u);
}
public static int add(int x, int y) {
return x + y;
}
public static void curryMethod() {
BiFunction<Integer, Integer, Integer> bif = Curry::add;
Function<Integer, Function<Integer, Integer>> add = curry(bif);
Function<Integer, Integer> add5 = add.apply(5);
System.out.println(add5.apply(2));
}
 
//Or declare the curried function in one line
public static void curryDirectly() {
Function<Integer, Function<Integer, Integer>> add = x -> y -> x + y;
Function<Integer, Integer> add5 = add.apply(5);
System.out.println(add5.apply(2));
}
//prints 7 and 7
public static void main(String[] args) {
curryMethod();
curryDirectly();
}
}
</syntaxhighlight>
 
=={{header|JavaScript}}==
 
<lang javascript> function addN(n) {
===ES5===
 
====Partial application====
<syntaxhighlight lang="javascript"> function addN(n) {
var curry = function(x) {
return x + n;
Line 438 ⟶ 1,258:
add2 = addN(2);
alert(add2);
alert(add2(7));</langsyntaxhighlight>
 
====Generic currying====
 
Basic case - returning a curried version of a function of two arguments
 
<syntaxhighlight lang="javascript">(function () {
 
// curry :: ((a, b) -> c) -> a -> b -> c
function curry(f) {
return function (a) {
return function (b) {
return f(a, b);
};
};
}
 
 
// TESTS
 
// product :: Num -> Num -> Num
function product(a, b) {
return a * b;
}
 
// return typeof curry(product);
// --> function
 
// return typeof curry(product)(7)
// --> function
 
//return typeof curry(product)(7)(9)
// --> number
 
return [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
.map(curry(product)(7))
 
// [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
 
})();
</syntaxhighlight>
 
{{Out}}
<syntaxhighlight lang="javascript">[7, 14, 21, 28, 35, 42, 49, 56, 63, 70]</syntaxhighlight>
 
 
Functions of arbitrary arity can also be curried:
 
<syntaxhighlight lang="javascript">(function () {
 
// (arbitrary arity to fully curried)
// extraCurry :: Function -> Function
function extraCurry(f) {
 
// Recursive currying
function _curry(xs) {
return xs.length >= intArgs ? (
f.apply(null, xs)
) : function () {
return _curry(xs.concat([].slice.apply(arguments)));
};
}
 
var intArgs = f.length;
 
return _curry([].slice.call(arguments, 1));
}
 
 
// TEST
 
// product3:: Num -> Num -> Num -> Num
function product3(a, b, c) {
return a * b * c;
}
 
return [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
.map(extraCurry(product3)(7)(2))
 
// [14, 28, 42, 56, 70, 84, 98, 112, 126, 140]
 
})();</syntaxhighlight>
 
{{Out}}
<syntaxhighlight lang="javascript">[14, 28, 42, 56, 70, 84, 98, 112, 126, 140]</syntaxhighlight>
 
===ES6===
 
====Y combinator====
Using a definition of currying that does not imply partial application, only conversion of a function of multiple arguments, e.g.: <syntaxhighlight lang="javascript">(a,b) => expr_using_a_and_b</syntaxhighlight>into a function that takes a series of as many function applications as that function took arguments, e.g.:<syntaxhighlight lang="javascript">a => b => expr_using_a_and_b</syntaxhighlight>
 
One version for functions of a set amount of arguments that takes no rest arguments, and one version for functions with rest argument. The caveat being that if the rest argument would be empty, it still requires a separate application, and multiple rest arguments cannot be curried into multiple applications, since we have to figure out the number of applications from the function signature, not the amount of arguments the user might want to send it.
<syntaxhighlight lang="javascript">let
fix = // This is a variant of the Applicative order Y combinator
f => (f => f(f))(g => f((...a) => g(g)(...a))),
curry =
f => (
fix(
z => (n,...a) => (
n>0
?b => z(n-1,...a,b)
:f(...a)))
(f.length)),
curryrest =
f => (
fix(
z => (n,...a) => (
n>0
?b => z(n-1,...a,b)
:(...b) => f(...a,...b)))
(f.length)),
curriedmax=curry(Math.max),
curryrestedmax=curryrest(Math.max);
print(curriedmax(8)(4),curryrestedmax(8)(4)(),curryrestedmax(8)(4)(9,7,2));
// 8,8,9
</syntaxhighlight>
Neither of these handle propagation of the this value for methods, as ECMAScript 2015 (ES6) fat arrow syntax doesn't allow for this value propagation. Versions could easily be written for those cases using an outer regular function expression and use of Function.prototype.call or Function.prototype.apply. Use of Y combinator could also be removed through use of an inner named function expression instead of the anonymous fat arrow function syntax.
 
====Simple 2 and N argument versions====
 
In the most rudimentary form, for example for mapping a two-argument function over an array:
 
<syntaxhighlight lang="javascript">(() => {
 
// curry :: ((a, b) -> c) -> a -> b -> c
let curry = f => a => b => f(a, b);
 
 
// TEST
 
// product :: Num -> Num -> Num
let product = (a, b) => a * b,
 
// Int -> Int -> Maybe Int -> [Int]
range = (m, n, step) => {
let d = (step || 1) * (n >= m ? 1 : -1);
 
return Array.from({
length: Math.floor((n - m) / d) + 1
}, (_, i) => m + (i * d));
}
 
 
return range(1, 10)
.map(curry(product)(7))
 
// [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
 
})();</syntaxhighlight>
 
{{Out}}
<syntaxhighlight lang="javascript">[7, 14, 21, 28, 35, 42, 49, 56, 63, 70]</syntaxhighlight>
 
 
Or, recursively currying functions of arbitrary arity:
 
<syntaxhighlight lang="javascript">(() => {
 
// (arbitrary arity to fully curried)
// extraCurry :: Function -> Function
let extraCurry = (f, ...args) => {
let intArgs = f.length;
 
// Recursive currying
let _curry = (xs, ...arguments) =>
xs.length >= intArgs ? (
f.apply(null, xs)
) : function () {
return _curry(xs.concat([].slice.apply(arguments)));
};
 
return _curry([].slice.call(args, 1));
};
 
// TEST
 
// product3:: Num -> Num -> Num -> Num
let product3 = (a, b, c) => a * b * c;
 
return [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
.map(extraCurry(product3)(7)(2))
 
// [14, 28, 42, 56, 70, 84, 98, 112, 126, 140]
 
})();</syntaxhighlight>
 
{{Out}}
<syntaxhighlight lang="javascript">[14, 28, 42, 56, 70, 84, 98, 112, 126, 140]</syntaxhighlight>
 
=={{header|jq}}==
 
In jq, functions are filters. Accordingly, we illustrate currying by defining plus(x) to be a filter that adds x to its input, and then define plus5 as plus(5):
<langsyntaxhighlight lang="jq">
def plus(x): . + x;
 
def plus5: plus(5);
</syntaxhighlight>
</lang>
 
We can now use plus5 as a filter, e.g.<syntaxhighlight lang ="jq">3 | plus5</langsyntaxhighlight> produces 8.
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">
function addN(n::Number)::Function
adder(x::Number) = n + x
return adder
end
</syntaxhighlight>
 
{{out}}
<pre>
julia> add2 = addN(2)
(::adder) (generic function with 1 method)
 
julia> add2(1)
3
 
</pre>
 
A shorter form of the above function, also without type specification:
<syntaxhighlight lang="julia">
addN(n) = x -> n + x
</syntaxhighlight>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.1.2
 
fun curriedAdd(x: Int) = { y: Int -> x + y }
 
fun main(args: Array<String>) {
val a = 2
val b = 3
val sum = curriedAdd(a)(b)
println("$a + $b = $sum")
}</syntaxhighlight>
 
{{out}}
<pre>
2 + 3 = 5
</pre>
 
=={{header|Lambdatalk}}==
Called with a number of values lesser than the number of arguments a function memorizes the given values and returns a function waiting for the missing ones.
<syntaxhighlight lang="scheme">
1) just define function a binary function:
{def power {lambda {:a :b} {pow :a :b}}}
-> power
2) and use it:
{power 2 8} // power is a function waiting for two numbers
-> 256
 
{{power 2} 8} // {power 2} is a function waiting for the missing number
-> 256
 
{S.map {power 2} {S.serie 1 10}} // S.map applies the {power 2} unary function
-> 2 4 8 16 32 64 128 256 512 1024 // to a sequence of numbers from 1 to 10
</syntaxhighlight>
 
=={{header|Latitude}}==
 
<syntaxhighlight lang="text">addN := {
takes '[n].
{
$1 + n.
}.
}.
 
add3 := addN 3.
add3 (4). ;; 7</syntaxhighlight>
 
Note that, because of the syntax of the language, it is not possible to call <code>addN</code> in one line the naive way.
<syntaxhighlight lang="latitude">;; addN (3) (4). ;; Syntax error!
;; (addN (3)) (4). ;; Syntax error!
addN (3) call (4). ;; Works as expected.</syntaxhighlight>
 
As a consequence, it is more common in Latitude to return new objects whose methods have meaningful names, rather than returning a curried function.
<syntaxhighlight lang="latitude">addN := {
takes '[n].
Object clone tap {
self do := {
$1 + n.
}.
}.
}.
 
addN 3 do 4. ;; 7</syntaxhighlight>
 
=={{header|LFE}}==
<langsyntaxhighlight lang="lisp">(defun curry (f arg)
(lambda (x)
(apply f
(list arg x))))
</syntaxhighlight>
</lang>
Usage:
<langsyntaxhighlight lang="lisp">
(funcall (curry #'+/2 10) 10)
</syntaxhighlight>
</lang>
 
=={{header|MathematicaLogtalk}}==
<syntaxhighlight lang="logtalk">
| ?- logtalk << call([Z]>>(call([X,Y]>>(Y is X*X), 5, R), Z is R*R), T).
T = 625
yes
</syntaxhighlight>
 
Logtalk support for lambda expressions and currying was introduced in version 2.38.0, released in December 2009.
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">
function curry2(f)
return function(x)
return function(y)
return f(x,y)
end
end
end
 
function add(x,y)
return x+y
end
 
local adder = curry2(add)
assert(adder(3)(4) == 3+4)
local add2 = adder(2)
assert(add2(3) == 2+3)
assert(add2(5) == 2+5)
</syntaxhighlight>
=== another implementation ===
Proper currying, tail call without array packing/unpack.
<syntaxhighlight lang="lua">
local curry do
local call,env = function(fn,...)return fn(...)end
local fmt,cat,rawset,rawget,floor = string.format,table.concat,rawset,rawget,math.floor
local curryHelper = setmetatable({},{
__call = function(me, n, m, ...)return me[n*256+m](...)end,
__index = function(me,k)
local n,m = floor(k / 256), k % 256
local r,s = {},{} for i=1,m do r[i],s[i]='_'..i,'_'..i end s[1+#s]='...'
r,s=cat(r,','),cat(s,',')
s = n<m and fmt('CALL(%s)',r) or fmt('function(...)return ME(%d,%d+select("#",...),%s)end',n,m,s)
local sc = fmt('local %s=... return %s',r,s)
rawset(me,k,(loadstring or load)(sc,'_',nil,env) )
return rawget(me,k)
end})
env = {CALL=call,ME=curryHelper,select=select}
function curry(...)
local pn,n,fn = select('#',...),...
if pn==1 then n,fn = debug.getinfo(n, 'u'),n ; n = n and n.nparams end
if type(n)~='number' or n~=floor(n)then return nil,'invalid curry'
elseif n<=0 then return fn -- edge case
else return curryHelper(n,1,fn)
end
end
end
 
-- test
function add(x,y)
return x+y
end
local adder = curry(add) -- get params count from debug.getinfo
assert(adder(3)(4) == 3+4)
local add2 = adder(2)
assert(add2(3) == 2+3)
assert(add2(5) == 2+5)
</syntaxhighlight>
 
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
Module LikeGroovy {
divide=lambda (x, y)->x/y
partsof120=lambda divide ->divide(120, ![])
Print "half of 120 is ";partsof120(2)
Print "a third is ";partsof120(3)
Print "and a quarter is ";partsof120(4)
}
LikeGroovy
 
Module Joke {
\\ we can call F1(), with any number of arguments, and always read one and then
\\ call itself passing the remain arguments
\\ ![] take stack of values and place it in the next call.
F1=lambda -> {
if empty then exit
Read x
=x+lambda(![])
}
Print F1(F1(2),2,F1(-4))=0
Print F1(-4,F1(2),2)=0
Print F1(2, F1(F1(2),2))=F1(F1(F1(2),2),2)
Print F1(F1(F1(2),2),2)=6
Print F1(2, F1(2, F1(2),2))=F1(F1(F1(2),2, F1(2)),2)
Print F1(F1(F1(2),2, F1(2)),2)=8
Print F1(2, F1(10, F1(2, F1(2),2)))=F1(F1(F1(2),2, F1(2)),2, 10)
Print F1(F1(F1(2),2, F1(2)),2, 10)=18
Print F1(2,2,2,2,10)=18
Print F1()=0
 
Group F2 {
Sum=0
Function Add (x){
.Sum+=x
=x
}
}
Link F2.Add() to F2()
Print F1(F1(F1(F2(2)),F2(2), F1(F2(2))),F2(2))=8
Print F2.Sum=8
}
Joke
</syntaxhighlight>
Without joke, can anyone answer this puzzle?
<syntaxhighlight lang="m2000 interpreter">
Module Puzzle {
Global Group F2 {
Sum=0
Sum2=0
Function Add (x){
.Sum+=x
=x
}
}
F1=lambda -> {
if empty then exit
Read x
Print ">>>", F2.Sum
F2.Sum2++ ' add one each time we read x
=x+lambda(![])
}
Link F2.Add() to F2()
P=F1(F1(F1(F2(2)),F2(2), F1(F2(2))),F2(2))=8
Print F2.Sum=8
Print F2.Sum2=7
\\ We read 7 times x, but we get 8, 2+2+2+2
\\ So 3 times x was zero, or not?
\\ but where we pass zero?
\\ zero return from F1 if no argument pass, so how x get zero??
}
Puzzle
</syntaxhighlight>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
 
Currying can be implemented by nesting the <code>Function</code> function. The following method curries the <code>Plus</code> function.
Line 483 ⟶ 1,721:
Out[5]:= 5
</pre>
 
=={{header|MiniScript}}==
{{trans|Rust}}
<syntaxhighlight lang="miniscript">addN = function(n)
f = function(x)
return n + x
end function
return @f
end function
 
adder = addN(40)
print "The answer to life is " + adder(2) + "."</syntaxhighlight>
 
{{out}}
<pre>The answer to life is 42.</pre>
 
=={{header|Nemerle}}==
Currying isn't built in to Nemerle, but is relatively straightforward to define.
<langsyntaxhighlight Nemerlelang="nemerle">using System;
using System.Console;
Line 505 ⟶ 1,758:
WriteLine($"$(h(30))")
}
}</langsyntaxhighlight>
 
=={{header|Nim}}==
<langsyntaxhighlight lang="nim">proc addN[T](n: T): auto = (proc(x: T): T = x + n)
 
let add2 = addN(2)
echo add2(7)</langsyntaxhighlight>
Alternative syntax:
<langsyntaxhighlight lang="nim">import futuresugar
 
proc addM[T](n: T): auto = (x: T) => x + n
 
let add3 = addM(3)
echo add3(7)</langsyntaxhighlight>
 
=={{header|OCaml}}==
OCaml has a built-in natural method of defining functions that are curried:
<langsyntaxhighlight lang="ocaml">let addnums x y = x+y (* declare a curried function *)
 
let add1 = addnums 1 (* bind the first argument to get another function *)
add1 42 (* apply to actually compute a result, 43 *)</langsyntaxhighlight>
The type of <code>addnums</code> above will be <tt>int -> int -> int</tt>.
 
Line 531 ⟶ 1,784:
 
You can also define a general currying higher-ordered function:
<langsyntaxhighlight lang="ocaml">let curry f x y = f (x,y)
(* Type signature: ('a * 'b -> 'c) -> 'a -> 'b -> 'c *)</langsyntaxhighlight>
This is a function that takes a function as a parameter and returns a function that takes one of the parameters and returns ''another'' function that takes the other parameter and returns the result of applying the parameter function to the pair of arguments.
 
=={{header|Oforth}}==
 
<syntaxhighlight lang="oforth">2 #+ curry => 2+
5 2+ .
7 ok</syntaxhighlight>
 
=={{header|Ol}}==
<syntaxhighlight lang="scheme">
(define (addN n)
(lambda (x) (+ x n)))
 
(let ((add10 (addN 10))
(add20 (addN 20)))
(print "(add10 4) ==> " (add10 4))
(print "(add20 4) ==> " (add20 4)))
</syntaxhighlight>
{{out}}
<pre>
(add10 4) ==> 14
(add20 4) ==> 24
</pre>
 
=={{header|PARI/GP}}==
Simple currying example with closures.
<langsyntaxhighlight lang="parigp">curriedPlus(x)=y->x+y;
curriedPlus(1)(2)</langsyntaxhighlight>
{{out}}
<pre>3</pre>
Line 544 ⟶ 1,819:
=={{header|Perl}}==
This is a [[Perl|Perl 5]] example of a general curry function and curried plus using [[wp:closure (computer science)|closures]]:
<langsyntaxhighlight lang="perl">sub curry{
my ($func, @args) = @_;
 
Line 558 ⟶ 1,833:
 
my $plusXOne = curry(\&plusXY, 1);
print &$plusXOne(3), "\n";</langsyntaxhighlight>
 
=={{header|Perl 6Phix}}==
Phix does not support currying. The closest I can manage is very similar to my solution for closures
All callable objects have an "assuming" method that can do partial application of either positional or named arguments. Here we curry the built-in subtraction operator.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang perl6>my &negative = &infix:<->.assuming(0);
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
say negative 1;</lang>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">curries</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">create_curried</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">partial_args</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">curries</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">curries</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">partial_args</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">return</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">curries</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- (return an integer id)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">call_curried</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">id</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">args</span><span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">{</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">partial_args</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">curries</span><span style="color: #0000FF;">[</span><span style="color: #000000;">id</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">return</span> <span style="color: #7060A8;">call_func</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">partial_args</span><span style="color: #0000FF;">&</span><span style="color: #000000;">args</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">add</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">+</span><span style="color: #000000;">b</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">curried</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">create_curried</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">routine_id</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"add"</span><span style="color: #0000FF;">),{</span><span style="color: #000000;">2</span><span style="color: #0000FF;">})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"2+5=%d\n"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">call_curried</span><span style="color: #0000FF;">(</span><span style="color: #000000;">curried</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">}))</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>-1</pre>
2+5=7
</pre>
<small>(Of course you would probably not have to try too much harder to make it say 2+2=5 instead.)</small>
 
=={{header|PHP}}==
<syntaxhighlight lang="php"><?php
 
function curry($callable)
{
if (_number_of_required_params($callable) === 0) {
return _make_function($callable);
}
if (_number_of_required_params($callable) === 1) {
return _curry_array_args($callable, _rest(func_get_args()));
}
return _curry_array_args($callable, _rest(func_get_args()));
}
 
function _curry_array_args($callable, $args, $left = true)
{
return function () use ($callable, $args, $left) {
if (_is_fullfilled($callable, $args)) {
return _execute($callable, $args, $left);
}
$newArgs = array_merge($args, func_get_args());
if (_is_fullfilled($callable, $newArgs)) {
return _execute($callable, $newArgs, $left);
}
return _curry_array_args($callable, $newArgs, $left);
};
}
 
function _number_of_required_params($callable)
{
if (is_array($callable)) {
$refl = new \ReflectionClass($callable[0]);
$method = $refl->getMethod($callable[1]);
return $method->getNumberOfRequiredParameters();
}
$refl = new \ReflectionFunction($callable);
return $refl->getNumberOfRequiredParameters();
}
 
function _make_function($callable)
{
if (is_array($callable))
return function() use($callable) {
return call_user_func_array($callable, func_get_args());
};
return $callable;
}
 
function _execute($callable, $args, $left)
{
if (! $left) {
$args = array_reverse($args);
}
$placeholders = _placeholder_positions($args);
if (0 < count($placeholders)) {
$n = _number_of_required_params($callable);
if ($n <= _last($placeholders[count($placeholders) - 1])) {
throw new \Exception('Argument Placeholder found on unexpected position!');
}
foreach ($placeholders as $i) {
$args[$i] = $args[$n];
array_splice($args, $n, 1);
}
}
return call_user_func_array($callable, $args);
}
 
function _placeholder_positions($args)
{
return array_keys(array_filter($args, '_is_placeholder'));
}
 
function _is_fullfilled($callable, $args)
{
$args = array_filter($args, function($arg) {
return ! _is_placeholder($arg);
});
return count($args) >= _number_of_required_params($callable);
}
 
function _is_placeholder($arg)
{
return $arg instanceof Placeholder;
}
 
function _rest(array $args)
{
return array_slice($args, 1);
}
 
function product($a, $b)
{
return $a * $b;
}
 
echo json_encode(array_map(curry('product', 7), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]));</syntaxhighlight>
{{out}}<pre>[7,14,21,28,35,42,49,56,63,70]</pre>
 
=={{header|PicoLisp}}==
Line 575 ⟶ 1,969:
: ((multiplier 7) 3)
-> 21</pre>
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">
function Add($x) { return { param($y) return $y + $x }.GetNewClosure() }
</syntaxhighlight>
<syntaxhighlight lang="powershell">
& (Add 1) 2
</syntaxhighlight>
{{Out}}
<pre>
3
</pre>
Add each number in list to its square root:
<syntaxhighlight lang="powershell">
(4,9,16,25 | ForEach-Object { & (add $_) ([Math]::Sqrt($_)) }) -join ", "
</syntaxhighlight>
{{Out}}
<pre>
6, 12, 20, 30
</pre>
 
=={{header|Prolog}}==
Line 591 ⟶ 2,005:
 
=={{header|Python}}==
===Nested defs and functools.partial===
<lang python> def addN(n):
Since Python has had local functions with closures since around 1.0, it's always been possible to create curried functions manually:
<syntaxhighlight lang="python"> def addN(n):
def adder(x):
return x + n
return adder</langsyntaxhighlight>
 
<langsyntaxhighlight lang="python"> >>> add2 = addN(2)
>>> add2
<function adder at 0x009F1E30>
>>> add2(7)
9</langsyntaxhighlight>
 
But Python also comes with a function to build partial functions (with any number of positional or keyword arguments bound in) for you. This was originally in a third-party model called functional, but was added to the stdlib functools module in 2.5. Every year or so, someone suggests either moving it into builtins because it's so useful or removing it from the stdlib entirely because it's so easy to write yourself, but it's been in the functools module since 2.5 and will probably always be there.
<syntaxhighlight lang="python">>>> from functools import partial
>>> from operator import add
>>> add2 = partial(add, 2)
>>> add2
functools.partial(<built-in function add>, 2)
>>> add2(7)
9
>>> double = partial(map, lambda x: x*2)
>>> print(*double(range(5)))
0 2 4 6 8</syntaxhighlight>
 
But for a true curried function that can take arguments one at a time via normal function calls, you have to do a bit of wrapper work to build a callable object that defers to partial until all of the arguments are available. Because of the Python's dynamic nature and flexible calling syntax, there's no way to do this in a way that works for every conceivable valid function, but there are a variety of ways that work for different large subsets. Or just use a third-party library like [https://toolz.readthedocs.io toolz] that's already done it for you:
<syntaxhighlight lang="python">>>> from toolz import curry
>>> import operator
>>> add = curry(operator.add)
>>> add2 = add(2)
>>> add2
<built-in function add>
>>> add2(7)
9
>>> # Toolz also has pre-curried versions of most HOFs from builtins, stdlib, and toolz
>>>from toolz.curried import map
>>> double = map(lambda x: x*2)
>>> print(*double(range(5)))
0 2 4 6 8</syntaxhighlight>
 
===Automatic curry and uncurry functions using lambdas===
 
As an alternative to nesting defs, we can also define curried functions, perhaps more directly, in terms of lambdas.
We can also write a general '''curry''' function, and a corresponding '''uncurry''' function, for automatic derivation of curried and uncurried functions at run-time, without needing to import ''functools.partial'':
 
<syntaxhighlight lang="python"># AUTOMATIC CURRYING AND UNCURRYING OF EXISTING FUNCTIONS
 
 
# curry :: ((a, b) -> c) -> a -> b -> c
def curry(f):
return lambda a: lambda b: f(a, b)
 
 
# uncurry :: (a -> b -> c) -> ((a, b) -> c)
def uncurry(f):
return lambda x, y: f(x)(y)
 
 
# EXAMPLES --------------------------------------
 
# A plain uncurried function with 2 arguments,
 
# justifyLeft :: Int -> String -> String
def justifyLeft(n, s):
return (s + (n * ' '))[:n]
 
 
# and a similar, but manually curried, function.
 
# justifyRight :: Int -> String -> String
def justifyRight(n):
return lambda s: (
((n * ' ') + s)[-n:]
)
 
 
# CURRYING and UNCURRYING at run-time:
 
def main():
for s in [
'Manually curried using a lambda:',
'\n'.join(map(
justifyRight(5),
['1', '9', '10', '99', '100', '1000']
)),
 
'\nAutomatically uncurried:',
uncurry(justifyRight)(5, '10000'),
 
'\nAutomatically curried',
'\n'.join(map(
curry(justifyLeft)(10),
['1', '9', '10', '99', '100', '1000']
))
]:
print (s)
 
 
main()</syntaxhighlight>
{{Out}}
<pre>Manually curried using a lambda:
1
9
10
99
100
1000
 
Automatically uncurried:
10000
 
Automatically curried
1
9
10
99
100
1000 </pre>
 
=={{header|Quackery}}==
 
Quackery does not have a currying function, but one is easily defined.
 
The word <code>curried</code> in the definition below curries the word following it, (which should act on two arguments on the stack), with the argument on the top of the stack. In the shell dialogue in the '''output:''' section the word <code>+</code> is combined with the number <code>5</code> on the top of stack to create the curried lambda nest <code>[ ' 5 + ]</code> which will add 5 the number on the top of stack when it is evaluated with <code>do</code>.
 
In the second example we drop the 8 from the previous example from the stack and then use currying to join "lamb" to "balti".
 
<syntaxhighlight lang="quackery"> [ ' [ ' ] swap nested join
]'[ nested join ] is curried ( x --> [ )</syntaxhighlight>
 
{{out}}
 
<pre>/O> 5 curried +
...
 
Stack: [ ' 5 + ]
 
/O> 3 swap do
...
 
Stack: 8
 
/O> drop
... $ "balti" curried join
... $ "lamb " swap do echo$
...
lamb balti
Stack empty.
</pre>
 
 
=={{header|R}}==
{{works with|R|4.1.0}}
 
We can easily define ''currying'' and ''uncurrying'' for two-argument functions as follows:
 
<syntaxhighlight lang="rsplus">
curry <- \(f) \(x) \(y) f(x, y)
uncurry <- \(f) \(x, y) f(x)(y)
</syntaxhighlight>
 
Here are some examples
 
<syntaxhighlight lang="rsplus">
add_curry <- curry(`+`)
add2 <- add_curry(2)
add2(40)
uncurry(add_curry)(40, 2)
</syntaxhighlight>
 
{{out}}
<pre>
> curry <- \(f) \(x) \(y) f(x, y)
> uncurry <- \(f) \(x, y) f(x)(y)
>
> add_curry <- curry(`+`)
> add2 <- add_curry(2)
> add2(40)
[1] 42
> uncurry(add_curry)(40, 2)
[1] 42
</pre>
 
=={{header|Racket}}==
The simplest way to make a curried functions is to use curry:
 
<langsyntaxhighlight lang="racket">
#lang racket
(((curry +) 3) 2) ; =>5
</syntaxhighlight>
</lang>
 
As an alternative, one can use the following syntax:
<langsyntaxhighlight lang="racket">
#lang racket
 
Line 618 ⟶ 2,204:
 
((curried+ 3) 2) ; => 5
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
All callable objects have an "assuming" method that can do partial application of either positional or named arguments. Here we curry the built-in subtraction operator.
<syntaxhighlight lang="raku" line>my &negative = &infix:<->.assuming(0);
say negative 1;</syntaxhighlight>
{{out}}
<pre>-1</pre>
 
=={{header|REXX}}==
This example is modeled after the &nbsp; '''D''' &nbsp; example.
===specific version===
<langsyntaxhighlight resslang="rexx">/*REXX program demonstrates a REXX currying method to perform addition. */
say 'add 2 to 3: ' add(2 , 3)
say 'add 2 to 3 (curried):' add2(3)
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────subroutines─────────────────────────*/
add: procedure; $= arg(1); do j=2 to arg(); $= $ + arg(j); end; return $
add2: procedure; return add( arg(1), 2)</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the defaults:}}
{{Out}}
<pre>
add 2 to 3: 5
Line 637 ⟶ 2,231:
 
===generic version===
<langsyntaxhighlight lang="rexx">/*REXX program demonstrates a REXX currying method to perform addition. */
say 'add 2 to 3: ' add(2 , 3)
say 'add 2 to 3 (curried):' add2(3)
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────ADD subroutine──────────────────────*/
add: procedure; $= 0; do j=1 for arg()
do k=1 for words( arg(j) ); $= $ + word( arg(j), k)
end /*k*/
end /*j*/
return $
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────ADD2 subroutine─────────────────────*/
add2: procedure; return add( arg(1), 2)</langsyntaxhighlight>
'''{{out|output'''|text=&nbsp; is theidentical same asto the 1<sup>st</sup> REXX version.}} <br><br>
 
<br><br>
=={{header|RPL}}==
RPL has not been designed as a functional programming language, but appropriate words can be created so that it becomes almost one.
For RPL, all programs are functions that can take arguments (or not) from the stack. Programs can easily be converted into strings: it is then possible to have a program rewrite another one, in order to insert the desired argument in the code, thus avoiding to pick it in the stack.
{{works with|Halcyon Calc|4.2.7}}
{| class="wikitable"
! RPL code
! Comment
|-
|
≪ 2 OVER SIZE 1 - SUB
≫ ''''SHAVE'''' STO
→STR '''SHAVE'''
"≪" ROT →STR
IF LAST TYPE 6 == THEN '''SHAVE''' END +
" SWAP " + SWAP + STR→
≫ ''''CURRX'''' STO
→STR '''SHAVE'''
"≪" ROT →STR
IF LAST TYPE 6 == THEN '''SHAVE''' END +
SWAP + STR→
≫ ''''CURRY'''' STO
|
'''SHAVE''' ''( "abcde" -- "bcd" )''
'''CURRX''' ''( a ≪( x y -- z )≫ -- ≪( a y -- z )≫ )''
convert function to string and remove delimiters
rewrite the program beginning
if a is an object name, remove its delimiters
add a SWAP instruction to put a at stack level 2
'''CURRY''' ''( a ≪( x y -- z )≫ -- ≪( x a -- z )≫ )''
convert function to string and remove delimiters
rewrite the program beginning
if a is an object name, remove its delimiters
put the call to a at level 1
|}
Let's demonstrate the curryfication on the following function :
≪ SQ SWAP SQ SWAP - ≫
which calculates <code>x² - y²</code> on x and y passed as arguments resp. in levels 2 and 1 of the stack. The following sequence of instructions:
5 ≪ SQ SWAP SQ SWAP - ≫ '''CURRX''' 'D2SQY' STO
returns a curryfied program stored as the word <code>D2SQY</code>. We can then check it works as planned:
'Y' D2SQY
will return
1: '25-SQ(Y)'
Similarly:
5 ≪ SQ SWAP SQ SWAP - ≫ '''CURRY''' 'D2SQX' STO
will return a new program named <code>D2SQX</code>, which effect on the 'X' argument at stack level 1 will be:
1: 'SQ(X)-25'
It is also possible to pass the reference to the function to be curryfied, rather than the function itself. if <code>≪ SQ SWAP SQ SWAP - ≫</code> is stored as <code>D2SQ</code>, the following command line will have the same effect as above:
5 'D2SQ' '''CURRY''' 'D2SQX' STO
 
=={{header|Ruby}}==
The curry method was added in Ruby 1.9.1. It takes an optional arity argument, which determines the number of arguments to be passed to the proc.
If that number is not reached, the curry method returns a new curried method for the rest of the arguments. (Examples taken from the documentation).
<langsyntaxhighlight lang="ruby">
b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
p b.curry[1][2][3] #=> 6
Line 669 ⟶ 2,320:
p b.curry(5)[1, 2][3, 4][5] #=> 15
p b.curry(1)[1] #=> 1
</syntaxhighlight>
</lang>
 
=={{header|SchemeRust}}==
This is a simple general currying function written in [[Scheme]]:
<lang scheme>;curry:function,args->(function)
;Adding using currying
 
This is a simple currying function written in [[Rust]]:
(define (curry f . args) (lambda x (apply f (append args x))))</lang>
<syntaxhighlight lang="rust">fn add_n(n : i32) -> impl Fn(i32) -> i32 {
This is an example of applying a curried function:
move |x| n + x
<lang scheme>>((curry + 10) 10)
}
20</lang>
=={{header|Swift}}==
<lang Swift>func addN(n:Int)(x:Int) -> Int { return x + n }
 
fn main() {
var add2 = addN(2)
let adder = add_n(40);
println(add2) // (Function)
println!("The answer to life is {}.", adder(2));
println(add2(x:7)) // 9</lang>
}</syntaxhighlight>
There is a bug in Swift (as of 1.1) which forces the second parameter to always be labeled. To avoid it, you can return a closure (or nested function):
<lang Swift>func addN(n:Int)->Int->Int { return {$0 + n} }
 
=={{header|Scala}}==
var add2 = addN(2)
<syntaxhighlight lang="scala">
println(add2) // (Function)
def add(a: Int)(b: Int) = a + b
println(add2(7)) // 9</lang>
val add5 = add(5) _
add5(2)
</syntaxhighlight>
 
=={{header|Sidef}}==
This can be done by using lazy methods:
<syntaxhighlight lang="ruby">var adder = 1.method(:add);
say adder(3); #=> 4</syntaxhighlight>
 
Or by using a generic curry function:
<syntaxhighlight lang="ruby">func curry(f, *args1) {
func (*args2) {
f(args1..., args2...);
}
}
 
func add(a, b) {
a + b
}
 
var adder = curry(add, 1);
say adder(3); #=>4</syntaxhighlight>
 
=={{header|Standard ML}}==
Standard ML has a built-in natural method of defining functions that are curried:
<langsyntaxhighlight lang="sml">fun addnums (x:int) y = x+y (* declare a curried function *)
 
val add1 = addnums 1 (* bind the first argument to get another function *)
add1 42 (* apply to actually compute a result, 43 *)</langsyntaxhighlight>
The type of <code>addnums</code> above will be <tt>int -> int -> int</tt> (the type constraint in the declaration only being necessary because of the polymorphic nature of the <code>+</code> operator).
 
Line 704 ⟶ 2,371:
 
You can also define a general currying higher-ordered function:
<langsyntaxhighlight lang="sml">fun curry f x y = f(x,y)
(* Type signature: ('a * 'b -> 'c) -> 'a -> 'b -> 'c *)</langsyntaxhighlight>
This is a function that takes a function as a parameter and returns a function that takes one of the parameters and returns ''another'' function that takes the other parameter and returns the result of applying the parameter function to the pair of arguments.
 
=={{header|Swift}}==
You can return a closure (or nested function):
<syntaxhighlight lang="swift">func addN(n:Int)->Int->Int { return {$0 + n} }
 
var add2 = addN(2)
println(add2) // (Function)
println(add2(7)) // 9</syntaxhighlight>
 
Prior to Swift 3, there was a curried function definition syntax:
<syntaxhighlight lang="swift">func addN(n:Int)(x:Int) -> Int { return x + n }
 
var add2 = addN(2)
println(add2) // (Function)
println(add2(x:7)) // 9</syntaxhighlight>
However, there was a bug in the above syntax which forces the second parameter to always be labeled. As of Swift 1.2, you could explicitly make the second parameter not labeled:
<syntaxhighlight lang="swift">func addN(n:Int)(_ x:Int) -> Int { return x + n }
 
var add2 = addN(2)
println(add2) // (Function)
println(add2(7)) // 9</syntaxhighlight>
 
=={{header|Tcl}}==
The simplest way to do currying in Tcl is via an interpreter alias:
<langsyntaxhighlight lang="tcl">interp alias {} addone {} ::tcl::mathop::+ 1
puts [addone 6]; # => 7</langsyntaxhighlight>
Tcl doesn't support automatic creation of curried functions though; the general variadic nature of a large proportion of Tcl commands makes that impractical.
===History===
The type of aliases used here are a simple restriction of general inter-interpreter aliases to the case where both the source and target interpreter are the current one; these aliases are a key component of the secure interpreter mechanism introduced in Tcl 7.6, and are the mechanism used to allow access to otherwise-insecure behavior from a secure context (e.g., to write to a ''particular'' file, but not any old file).
 
=={{header|TXR}}==
 
Note: many solutions for this task are conflating currying with partial application. Currying converts an N-argument function into a cascade of one-argument functions. The curry operator doesn't itself bind any arguments; no application is going on. The relationship between currying and partial application is that partial application occurs when the cascade is unraveled as arguments are applied to it: each successive one-argument call in the cascade binds an argument, and when all the arguments are bound, the value of the original function over those arguments is computed.
 
TXR Lisp has an operator called <code>op</code> for partial application. Of course, partial application is done with lambdas under the hood; the operator generates lambdas. Its name is inspired by the same-named operators featured in the Goo language, and in the Common Lisp library <i>cl-op</i>.
 
References:
Goo <code>op</code>: [http://people.csail.mit.edu/jrb/goo/manual.46/goomanual_15.html]
<i>cl-op</i>: [https://cliki.net/cl-op]
 
TXR's <code>op</code> is quite different in that it uses numbered arguments, has some additional features, and is accompanied by a "zoo" of related operators which share its partial application syntax, providing various useful derived behaviors.
 
A two-argument function which subtracts is arguments from 10, and then subtracts five:
 
<syntaxhighlight lang="txrlisp">(op - 10 @1 @2 5)</syntaxhighlight>
 
TXR Lisp doesn't have a predefined function or operator for currying. A function can be manually curried. For instance, the three-argument named function: <code>(defun f (x y z) (* (+ x y) z))</code> can be curried by hand to produce a function <code>g</code> like this:
 
<syntaxhighlight lang="txrlisp">(defun g (x)
(lambda (y)
(lambda (z)
(* (+ x y) z))))</syntaxhighlight>
 
Or, by referring to the definition of <code>f</code>:
 
<syntaxhighlight lang="txrlisp">(defun g (x)
(lambda (y)
(lambda (z)
(f x y z))))</syntaxhighlight>
 
Since a three-argument function can be defined directly, and has advantages like diagnosing incorrect calls which pass fewer than three or more than three arguments, currying is not useful in this language. Similar reasoning applies as given in the "Why not real currying/uncurrying?" paragraph under the Design Rationale of Scheme's SRFI 26.
 
=={{header|Vala}}==
<syntaxhighlight lang="vala">delegate double Dbl_Op(double d);
 
Dbl_Op curried_add(double a) {
return (b) => a + b;
}
 
void main() {
print(@"$(curried_add(3.0)(4.0))\n");
double sum2 = curried_add(2.0) (curried_add(3.0)(4.0)); //sum2 = 9
print(@"$sum2\n");
}</syntaxhighlight>
{{out}}
<pre>
7
9
</pre>
 
=={{header|Wortel}}==
The <code>\</code> operator takes a function and an argument and partial applies the argument to the function. The <code>&\</code> works like the <code>\</code> operator but can also take an array literal and partial applies all the arguments in the array.
<langsyntaxhighlight lang="wortel">@let {
addOne \+ 1
subtractFrom1 \- 1
Line 737 ⟶ 2,475:
!addOne_2 5 ; returns 6
]]
}</langsyntaxhighlight>
 
=={{header|Wren}}==
{{trans|Rust}}
<syntaxhighlight lang="wren">var addN = Fn.new { |n| Fn.new { |x| n + x } }
 
var adder = addN.call(40)
System.print("The answer to life is %(adder.call(2)).")</syntaxhighlight>
 
{{out}}
<pre>
The answer to life is 42.
</pre>
 
=={{header|Z80 Assembly}}==
{{works with|Amstrad CPC}}
The BIOS call <code>&BB75</code> takes HL as input (as if it were an x,y coordinate pair) and outputs a video memory address into HL. Using a fixed input of HL=0x0101 we can effectively reset the drawing cursor to the top left corner of the screen.
<syntaxhighlight lang="z80">macro ResetCursors
ld hl,&0101
call &BB75
endm</syntaxhighlight>
 
=={{header|zkl}}==
zkl doesn't support currying per se (recompilation of f with fixed input to create a new function), it does support partial application, for all objects, for any [number of] positional parameters to create an object of reduced arity.
<langsyntaxhighlight lang="zkl">addOne:= Op("+").fp(1); addOne(5) //-->6
minusOne:=Op("-").fp1(1); minusOne(5) //-->4, note that this fixed 1 as the second parameter
// fix first and third parameters:
foo:=String.fpM("101","<foo>","</foo>"); foo("zkl"); //-->"<foo>zkl</foo>"
fcn g(x){x+1} f:=fcn(f,x){f(x)+x}.fp(g); f(5); //-->11
f:=fcn(f,x){f(x)+x}.fp(fcn(x){x+1}); // above with lambdas all the way down</langsyntaxhighlight>
56

edits