Conway's Game of Life

From Rosetta Code
Revision as of 01:58, 3 January 2011 by rosettacode>Dgamey (→‎Icon and Unicon: header simplification)
Task
Conway's Game of Life
You are encouraged to solve this task according to the task description, using any language you may know.

The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.

Conway's game of life is described here:

A cell C is represented by a 1 when alive or 0 when dead, in an m-by-m square array of cells. We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:

   C   N                 new C
   1   0,1             ->  0  # Lonely
   1   4,5,6,7,8       ->  0  # Overcrowded
   1   2,3             ->  1  # Lives
   0   3               ->  1  # It takes three to give birth!
   0   0,1,2,4,5,6,7,8 ->  0  # Barren

Assume cells beyond the boundary are always dead.

The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.

Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.

6502 Assembly

Works with: [6502asm.com] version 1.2

<lang 6502asm>randfill: stx $01  ;$200 for indirect

           ldx #$02         ;addressing
           stx $02

randloop: lda $fe ;generate random

           and #$01         ;pixels on the
           sta ($01),Y      ;screen
           jsr inc0103
           cmp #$00
           bne randloop
           lda $02
           cmp #$06
           bne randloop


clearmem: lda #$df ;set $07df-$0a20

           sta $01          ;to $#00
           lda #$07
           sta $02

clearbyte: lda #$00

           sta ($01),Y
           jsr inc0103
           cmp #$20
           bne clearbyte
           lda $02
           cmp #$0a
           bne clearbyte


starttick: copyscreen: lda #$00 ;set up source

           sta $01          ;pointer at
           sta $03          ;$01/$02 and
           lda #$02         ;dest pointer
           sta $02          ;at $03/$04
           lda #$08
           sta $04
           ldy #$00

copybyte: lda ($01),Y ;copy pixel to

           sta ($03),Y      ;back buffer
           jsr inc0103      ;increment pointers
           cmp #$00         ;check to see
           bne copybyte     ;if we're at $600
           lda $02          ;if so, we've
           cmp #$06         ;copied the
           bne copybyte     ;entire screen


conway: lda #$df ;apply conway rules

           sta $01          ;reset the pointer
           sta $03          ;to $#01df/$#07df
           lda #$01         ;($200 - $21)
           sta $02          ;($800 - $21)
           lda #$07
           sta $04

onecell: lda #$00 ;process one cell

           ldy #$01         ;upper cell
           clc
           adc ($03),Y
           ldy #$41         ;lower cell
           clc
           adc ($03),Y

chkleft: tax ;check to see

           lda $01          ;if we're at the
           and #$1f         ;left edge
           tay
           txa
           cpy #$1f
           beq rightcells

leftcells: ldy #$00 ;upper-left cell

           clc
           adc ($03),Y
           ldy #$20         ;left cell
           clc
           adc ($03),Y
           ldy #$40         ;lower-left cell
           clc
           adc ($03),Y

chkright: tax ;check to see

           lda $01          ;if we're at the
           and #$1f         ;right edge
           tay
           txa
           cpy #$1e
           beq evaluate

rightcells: ldy #$02 ;upper-right cell

           clc
           adc ($03),Y
           ldy #$22         ;right cell
           clc
           adc ($03),Y
           ldy #$42         ;lower-right cell
           clc
           adc ($03),Y

evaluate: ldx #$01 ;evaluate total

           ldy #$21         ;for current cell
           cmp #$03         ;3 = alive
           beq storex
           ldx #$00
           cmp #$02         ;2 = alive if
           bne storex       ;c = alive
           lda ($03),Y
           and #$01
           tax

storex: txa ;store to screen

           sta ($01),Y
           jsr inc0103      ;move to next cell

conwayloop: cmp #$e0 ;if not last cell,

           bne onecell      ;process next cell
           lda $02
           cmp #$05
           bne onecell
           jmp starttick    ;run next tick


inc0103: lda $01 ;increment $01

           cmp #$ff         ;and $03 as 16-bit
           bne onlyinc01    ;pointers
           inc $02
           inc $04

onlyinc01: inc $01

           lda $01
           sta $03
           rts</lang>

Ada

<lang ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Life is

  type Cell is (O, X); -- Two states of a cell
     -- Computation of neighborhood
  function "+" (L, R : Cell) return Integer is
  begin
     case L is
        when O =>
           case R is
              when O => return 0;
              when X => return 1;
           end case;
        when X =>
           case R is
              when O => return 1;
              when X => return 2;
           end case;
     end case;
  end "+";
  function "+" (L : Integer; R : Cell) return Integer is
  begin
     case R is
        when O => return L;
        when X => return L + 1;
     end case;
  end "+";
     -- A colony of cells. The borders are dire and unhabited
  type Petri_Dish is array (Positive range <>, Positive range <>) of Cell;
  procedure Step (Culture : in out Petri_Dish) is
     Above : array (Culture'Range (2)) of Cell := (others => O);
     Left  : Cell;
     This  : Cell;
  begin
     for I in Culture'First (1) + 1 .. Culture'Last (1) - 1 loop
        Left := O;
        for J in Culture'First (2) + 1 .. Culture'Last (2) - 1 loop
           case Above        (J-1) + Above        (J) + Above        (J+1) +
                Left                                  + Culture (I,   J+1) +
                Culture (I+1, J-1) + Culture (I+1, J) + Culture (I+1, J+1) is
              when 2 =>     -- Survives if alive
                 This := Culture (I, J);
              when 3 =>     -- Survives or else multiplies
                 This := X;
              when others => -- Dies
                 This := O;
           end case;
           Above (J-1) := Left;
           Left        := Culture (I, J);
           Culture (I, J) := This;
        end loop;
        Above (Above'Last - 1) := Left;
     end loop;
  end Step;
  procedure Put (Culture : Petri_Dish) is
  begin
     for I in Culture'Range loop
        for J in Culture'Range loop
           case Culture (I, J) is
              when O => Put (' ');
              when X => Put ('#');
           end case;
        end loop;
        New_Line;
     end loop;
  end Put;
  Blinker : Petri_Dish := (2..4 =>(O,O,X,O,O), 1|5 =>(O,O,O,O,O));
  Glider  : Petri_Dish :=
            (  (O,O,O,O,O,O,O,O,O,O,O),
               (O,O,X,O,O,O,O,O,O,O,O),
               (O,O,O,X,O,O,O,O,O,O,O),
               (O,X,X,X,O,O,O,O,O,O,O),
               (O,O,O,O,O,O,O,O,O,O,O),
               (O,O,O,O,O,O,O,O,O,O,O)
            );

begin

  for Generation in 1..3 loop
     Put_Line ("Blinker" & Integer'Image (Generation));
     Put (Blinker);
     Step (Blinker);
  end loop;
  for Generation in 1..5 loop
     Put_Line ("Glider" & Integer'Image (Generation));
     Put (Glider);
     Step (Glider);
  end loop;

end Life;</lang> The solution uses one cell thick border around square Petri dish as uninhabited dire land. This simplifies computations of neighborhood. Sample output contains 3 generations of the blinker and 5 of the glider:

Sample output:

Blinker 1

  #
  #
  #

Blinker 2


 ###


Blinker 3

  #
  #
  #

Glider 1

  #
   #
 ###


Glider 2


 # #
  ##
  #

Glider 3


   #
 # #
  ##

Glider 4


  #
   ##
  ##

Glider 5


   #
    #
  ###

ALGOL 68

See Conway's Game of Life/ALGOL 68

APL

[1]

AutoHotkey

ahk discussion <lang autohotkey>rows := cols := 10  ; set grid dimensions i = -1,0,1, -1,1, -1,0,1  ; neighbors' x-offsets j = -1,-1,-1, 0,0, 1,1,1  ; neighbors' y-offsets StringSplit i, i, `,  ; make arrays StringSplit j, j, `,

Loop % rows {  ; setup grid of checkboxes

  r := A_Index, y := r*17-8                     ; looks good in VISTA
  Loop % cols {
     c := A_Index, x := c*17-5
     Gui Add, CheckBox, x%x% y%y% w17 h17 vv%c%_%r% gCheck
  }

} Gui Add, Button, % "x12 w" x+2, step  ; button to step to next generation Gui Show Return

Check:

  GuiControlGet %A_GuiControl%                  ; manual set of cells

Return

ButtonStep:  ; move to next generation

  Loop % rows {
     r := A_Index
     Loop % cols {
        c := A_Index, n := 0
        Loop 8                                  ; w[x,y] <- new states
           x := c+i%A_Index%, y := r+j%A_Index%, n += 1=v%x%_%y%
        GuiControl,,v%c%_%r%,% w%c%_%r% := v%c%_%r% ? n=2 || n=3 : n=3
     }
  }
  Loop % rows {                                 ; update v[x,y] = states
     r := A_Index
     Loop % cols
        v%A_Index%_%r% := w%A_Index%_%r%
  }

Return

GuiClose:  ; exit when GUI is closed ExitApp</lang>

C

See Conway's Game of Life/C

Clojure

In keeping with idiomatic Clojure, the solution is implemented as discrete, composable functions and datastructures rather than one big blob of code. <lang lisp>(defstruct grid :w :h :cells)

(defn get-cell

 "Returns the value at x,y. The grid is treated as a torus, such that both x and 
 y coordinates will wrap around if greater than width and height respectively."
 [grid x y]
 (let [x (mod x (:w grid))
       y (mod y (:h grid))]
   (-> grid :cells (nth y) (nth x))))

(defn neighbors

 "Returns a lazy sequence of all neighbors of the specified cell." 
 [grid x y]
 (for [j [(dec y) y (inc y)]
       i [(dec x) x (inc x)]
       :when (not (and (= i x) (= j y)))]
   (get-cell grid i j)))

(defn evolve-cell

 "Returns the new state of the specifed cell." 
 [grid x y]
 (let [c (get-cell grid x y)
       n (reduce + (neighbors grid x y))]
   (if (or (and (zero? c) (= 3 n))
           (and (= 1 c) (or (= 2 n) (= 3 n))))
     1 0)))

(defn evolve-grid

 "Returns a new grid whose cells have all been evolved." 
 [grid]
 (assoc grid :cells 
   (vec (for [y (range (:h grid))]
     (vec (for [x (range (:w grid))]
       (evolve-cell grid x y)))))))

(defn generations [grid]

 "Returns a lazy sequence of the grid, and all subsequent generations."
 (iterate evolve-grid grid))</lang>

The above does the work of creating subsequent generations of an initial grid. Now we add in some functions to create and display the grids: <lang lisp>(defn make-grid [w h & row-patterns]

 (let [cells (vec (for [rp row-patterns]
               (vec (mapcat #(take %1 (repeat %2)) rp (cycle [0 1])))))]
   (if (and (= h (count cells))
            (every? #(= w (count %)) cells))
     (struct grid w h cells)
     (throw (IllegalArgumentException. "Resulting cells do not match expected width/height.")))))

(defn display-row [row]

 (do (dorun (map print (map #(if (zero? %) " . " "[X]") row))) (println)))

(defn display-grid [grid]

 (dorun (map display-row (:cells grid))))

(defn display-grids [grids]

 (dorun 
   (interleave
     (repeatedly println)
     (map display-grid grids))))</lang>

Thus, running: <lang lisp>(def blinker (make-grid 5 5 [5] [5] [1 3 1] [5] [5])) (display-grids (take 3 (generations blinker)))</lang> Outputs:

 .  .  .  .  . 
 .  .  .  .  . 
 . [X][X][X] . 
 .  .  .  .  . 
 .  .  .  .  . 

 .  .  .  .  . 
 .  . [X] .  . 
 .  . [X] .  . 
 .  . [X] .  . 
 .  .  .  .  . 

 .  .  .  .  . 
 .  .  .  .  . 
 . [X][X][X] . 
 .  .  .  .  . 
 .  .  .  .  . 

Similarly we can simply jump to a particular generation: <lang lisp>(def figure-eight (make-grid 10 10 [10] [10] [2 3 5] [2 3 5] [2 3 5] [5 3 2] [5 3 2] [5 3 2] [10] [10])) (display-grid figure-eight) (display-grid (nth (generations figure-eight) 7))</lang> Outputs:

 .  .  .  .  .  .  .  .  .  . 
 .  .  .  .  .  .  .  .  .  . 
 .  . [X][X][X] .  .  .  .  . 
 .  . [X][X][X] .  .  .  .  . 
 .  . [X][X][X] .  .  .  .  . 
 .  .  .  .  . [X][X][X] .  . 
 .  .  .  .  . [X][X][X] .  . 
 .  .  .  .  . [X][X][X] .  . 
 .  .  .  .  .  .  .  .  .  . 
 .  .  .  .  .  .  .  .  .  . 

 .  .  .  .  .  .  .  .  .  . 
 .  .  .  .  .  .  .  .  .  . 
 .  . [X][X] .  .  .  .  .  . 
 .  . [X][X] . [X] .  .  .  . 
 .  .  .  .  .  . [X] .  .  . 
 .  .  . [X] .  .  .  .  .  . 
 .  .  .  . [X] . [X][X] .  . 
 .  .  .  .  .  . [X][X] .  . 
 .  .  .  .  .  .  .  .  .  . 
 .  .  .  .  .  .  .  .  .  . 

Common Lisp

<lang lisp>(defun next-life (array &optional results)

 (let* ((dimensions (array-dimensions array))
        (results (or results (make-array dimensions :element-type 'bit))))
   (destructuring-bind (rows columns) dimensions
     (labels ((entry (row col)
                "Return array(row,col) for valid (row,col) else 0."
                (if (or (not (< -1 row rows))
                        (not (< -1 col columns)))
                  0
                  (aref array row col)))
              (neighbor-count (row col &aux (count 0))
                "Return the sum of the neighbors of (row,col)."
                (dolist (r (list (1- row) row (1+ row)) count)
                  (dolist (c (list (1- col) col (1+ col)))
                    (unless (and (eql r row) (eql c col))
                      (incf count (entry r c))))))
              (live-or-die? (current-state neighbor-count)
                (if (or (and (eql current-state 1)
                             (<=  2 neighbor-count 3))
                        (and (eql current-state 0)
                             (eql neighbor-count 3)))
                  1
                  0)))
       (dotimes (row rows results)
         (dotimes (column columns)
           (setf (aref results row column)
                 (live-or-die? (aref array row column)
                               (neighbor-count row column)))))))))

(defun print-grid (grid &optional (out *standard-output*))

 (destructuring-bind (rows columns) (array-dimensions grid)
   (dotimes (r rows grid)
     (dotimes (c columns (terpri out))
       (write-char (if (zerop (aref grid r c)) #\+ #\#) out)))))

(defun run-life (&optional world (iterations 10) (out *standard-output*))

 (let* ((world (or world (make-array '(10 10) :element-type 'bit)))
        (result (make-array (array-dimensions world) :element-type 'bit)))
   (do ((i 0 (1+ i))) ((eql i iterations) world)
     (terpri out) (print-grid world out)
     (psetq world (next-life world result)
            result world))))</lang>

<lang lisp>(run-life (make-array '(3 3)

                     :element-type 'bit
                     :initial-contents '((0 0 0) 
                                         (1 1 1)
                                         (0 0 0)))
         3)</lang>

produces

+++
###
+++

+#+
+#+
+#+

+++
###
+++

D

The implementation keeps universe in ubyte array, alive state is kept as 0x10 bit value, lower 4 bits are used for calculations of number of neighbors.

Output is generated every time it's printed, this probably isn't the best idea.

Library: tango

<lang D>import tango.io.Stdout; import tango.core.Thread; import tango.text.convert.Integer;

class GameOfLife {

   private:
       static const int ClearNeighboursCountMask = 0xf0;
       static const int NeighboursCountMask = 0xf;
       static const int AliveMask = 0x10;
       ubyte[][] universe2d;
   public:
       this(int x = 60, int y = 20)
       {
           assert (x > 0 && y > 0, "oh noez, universe collapsed!");
           universe2d = new ubyte[][](y + 2, x + 2);
       }
       void opIndexAssign(int v, size_t y, size_t x)
       {   
           if (!v || v == ' ') universe2d[y][x] = 0;
           else universe2d[y][x] = AliveMask;
       }
       void opIndexAssign(char[][] v, size_t y, size_t x)
       {   
           foreach (rowIdx, row; v)
               foreach (cellIdx, cell; row)
                   this[y + rowIdx, x + cellIdx] = cell;
       }
       // 
       char[] toString()
       {
           char[] ret;
           ret.length = 2*(universe2d[0].length + 1);
           ret[] = '=';
           ret ~= "\n";
           foreach (row; universe2d[1 .. $-1]) {
               ret ~= "|";
               foreach (ref cell; row)
                   if (cell & AliveMask) ret ~= "[]";
                   else ret ~= "  ";
               ret ~= "|\n";
           }
           ret ~= ret[0 .. 2*(universe2d[0].length + 1)];
           return ret;
       }

}

int main(char[][] args) {

   auto uni = new GameOfLife(80, 20);
   char[][] glider1 = [ "  #", "# #", " ##" ];
   char[][] glider2 = [ "$  ", "$ $", "$$ " ];
   char[][] lwss = [ " X  X", "X    ", "X   X", "XXXX " ];
   uni.iteration;
   uni[3, 2] = glider1;
   uni[3,15] = glider2;
   uni[3,19] = glider1;
   uni[3,32] = glider2;
   uni[5,50] = lwss;
   // clear screen :>
   for (int j = 0; j < 100; j++) Stdout.newline;
   for (int i = 0; i < 300; i++)
   {
       Stdout (uni).newline;
       uni.iteration;
       Thread.sleep(0.1);
   }
   return 0;

}</lang>

E

Just does three generations of a blinker in a dead-boundary grid, as specified. (User:Kevin Reid has graphical and wrapping versions.)

<lang e>def gridWidth := 3 def gridHeight := 3 def X := 0..!gridWidth def Y := 0..!gridHeight

def makeFlexList := <elib:tables.makeFlexList> def makeGrid() {

 def storage := makeFlexList.fromType(<type:java.lang.Boolean>, gridWidth * gridHeight)
 storage.setSize(gridWidth * gridHeight)
 def grid {
   to __printOn(out) {
     for y in Y {
       out.print("[")
       for x in X {
         out.print(grid[x, y].pick("#", " "))
       }
       out.println("]")
     }
   }
   to get(xb :int, yb :int) {
     return if (xb =~ x :X && yb =~ y :Y) {
       storage[y * gridWidth + x]
     } else {
       false
     }
   }
   to put(x :X, y :Y, c :boolean) { 
     storage[y * gridWidth + x] := c
   }
 }
 return grid

}

def mooreNeighborhood := [[-1,-1],[0,-1],[1,-1],[-1,0],[1,0],[-1,1],[0,1],[1,1]] def computeNextLife(prevGrid, nextGrid) {

 for y in Y {
   for x in X {
     var neighbors := 0
     for [nx, ny] ? (prevGrid[x+nx, y+ny]) in mooreNeighborhood {
       neighbors += 1
     }
     def self := prevGrid[x, y]
     nextGrid[x, y] := (self && neighbors == 2 || neighbors == 3)
   }
 }

}

var currentFrame := makeGrid() var nextFrame := makeGrid() currentFrame[1, 0] := true currentFrame[1, 1] := true currentFrame[1, 2] := true

for _ in 1..3 {

 def frame := nextFrame
 computeNextLife(currentFrame, frame)
 nextFrame := currentFrame
 currentFrame := frame
 println(currentFrame)

}</lang>

F#

The following F# implementation uses

for visualization and is easily compiled into a standalone executable:

<lang fsharp>let count (a: _ [,]) x y =

 let m, n = a.GetLength 0, a.GetLength 1
 let mutable c = 0
 for x in x-1..x+1 do
   for y in y-1..y+1 do
     if x>=0 && x<m && y>=0 && y<n && a.[x, y] then
       c <- c + 1
 if a.[x, y] then c-1 else c

let rule (a: _ [,]) x y =

 match a.[x, y], count a x y with
 | true, (2 | 3) | false, 3 -> true
 | _ -> false

open System.Windows open System.Windows.Media.Imaging

[<System.STAThread>] do

 let rand = System.Random()
 let n = 256
 let game = Array2D.init n n (fun _ _ -> rand.Next 2 = 0) |> ref
 let image = Controls.Image(Stretch=Media.Stretch.Uniform)
 let format = Media.PixelFormats.Gray8
 let pixel = Array.create (n*n) 0uy
 let update _ =
   game := rule !game |> Array2D.init n n
   for x in 0..n-1 do
     for y in 0..n-1 do
       pixel.[x+y*n] <- if (!game).[x, y] then 255uy else 0uy
   image.Source <-
     BitmapSource.Create(n, n, 1.0, 1.0, format, null, pixel, n)
 Media.CompositionTarget.Rendering.Add update
 Window(Content=image, Title="Game of Life")
 |> (Application()).Run |> ignore</lang>

Forth

gencell uses an optimization for the core Game of Life rules: new state = (old state | neighbors == 3).

<lang forth> \ The fast wrapping requires dimensions that are powers of 2.

1 6 lshift constant w \ 64
1 4 lshift constant h \ 16

: rows    w * 2* ;
1 rows constant row
h rows constant size

create world size allot
world   value old
old w + value new

variable gens
: clear  world size erase     0 gens ! ;
: age  new old to new to old  1 gens +! ;

: col+  1+ ;
: col-  1- dup w and + ; \ avoid borrow into row
: row+  row + ;
: row-  row - ;
: wrap ( i -- i ) [ size w - 1- ] literal and ;
: w@ ( i -- 0/1 ) wrap old + c@ ;
: w! ( 0/1 i -- ) wrap old + c! ;

: foreachrow ( xt -- )
  size 0 do  I over execute  row +loop drop ;

: showrow ( i -- ) cr
  old + w over + swap do I c@ if [char] * else bl then emit loop ;
: show  ['] showrow foreachrow  cr ." Generation " gens @ . ;

: sum-neighbors ( i -- i n )
  dup  col- row- w@
  over      row- w@ +
  over col+ row- w@ +
  over col-      w@ +
  over col+      w@ +
  over col- row+ w@ +
  over      row+ w@ +
  over col+ row+ w@ + ;
: gencell ( i -- )
  sum-neighbors  over old + c@
  or 3 = 1 and   swap new + c! ;
: genrow ( i -- )
  w over + swap do I gencell loop ;
: gen  ['] genrow foreachrow  age ;

: life  begin gen 0 0 at-xy show key? until ;
\ patterns
char | constant '|'
: pat ( i addr len -- )
  rot dup 2swap  over + swap do
    I c@ '|' = if drop row+ dup else
    I c@ bl  = 1+ over w!  col+ then
  loop 2drop ;

: blinker s" ***" pat ;
: toad s" ***| ***" pat ;
: pentomino s" **| **| *" pat ;
: pi s" **| **|**" pat ;
: glider s"  *|  *|***" pat ;
: pulsar s" *****|*   *" pat ;
: ship s"  ****|*   *|    *|   *" pat ;
: pentadecathalon s" **********" pat ;
: clock s"  *|  **|**|  *" pat ;
clear  0 glider show
 *
  *
***

Generation 0  ok
gen show

* *
 **
 *
Generation 1  ok</lang>

Fortran

Works with: Fortran version 90 and later

<lang fortran> PROGRAM LIFE_2D

  IMPLICIT NONE

  INTEGER, PARAMETER :: gridsize = 10
  LOGICAL :: cells(0:gridsize+1,0:gridsize+1) = .FALSE.
  INTEGER :: i, j, generation=0
  REAL :: rnums(gridsize,gridsize)

!  Start patterns
!  **************
!  cells(2,1:3) = .TRUE.                                                  ! Blinker
!  cells(3,4:6) = .TRUE. ; cells(4,3:5) = .TRUE.                          ! Toad
!  cells(1,2) = .TRUE. ; cells(2,3) = .TRUE. ; cells(3,1:3) = .TRUE.      ! Glider
   cells(3:5,3:5) = .TRUE. ; cells(6:8,6:8) = .TRUE.                      ! Figure of Eight
!  CALL RANDOM_SEED
!  CALL RANDOM_NUMBER(rnums)
!  WHERE (rnums>0.6) cells(1:gridsize,1:gridsize) = .TRUE.                ! Random universe
  
  CALL Drawgen(cells(1:gridsize, 1:gridsize), generation)
  DO generation = 1, 8
     CALL Nextgen(cells)
     CALL Drawgen(cells(1:gridsize, 1:gridsize), generation)
  END DO

CONTAINS

  SUBROUTINE Drawgen(cells, gen)
    LOGICAL, INTENT(IN OUT) :: cells(:,:)
    INTEGER, INTENT(IN) :: gen

    WRITE(*, "(A,I0)") "Generation ", gen 
    DO i = 1, SIZE(cells,1)
       DO j = 1, SIZE(cells,2)
          IF (cells(i,j)) THEN
             WRITE(*, "(A)", ADVANCE = "NO") "#"
          ELSE
             WRITE(*, "(A)", ADVANCE = "NO") " "
          END IF
       END DO
       WRITE(*,*)
    END DO
    WRITE(*,*)
  END SUBROUTINE Drawgen

 SUBROUTINE Nextgen(cells)
    LOGICAL, INTENT(IN OUT) :: cells(0:,0:)
    LOGICAL :: buffer(0:SIZE(cells, 1)-1, 0:SIZE(cells, 2)-1)
    INTEGER :: neighbours, i, j
  
    buffer = cells   ! Store current status
    DO i = 1, SIZE(cells, 1)-2
       DO j = 1, SIZE(cells, 2)-2
         if(buffer(i, j)) then
           neighbours = sum(count(buffer(i-1:i+1, j-1:j+1), 1)) - 1
         else
           neighbours = sum(count(buffer(i-1:i+1, j-1:j+1), 1))
         end if
 
         SELECT CASE(neighbours)
           CASE (0:1, 4:8)
              cells(i,j) = .FALSE.
 
           CASE (2)
              ! No change
 
           CASE (3)
              cells(i,j) = .TRUE.
         END SELECT
         
       END DO
    END DO
 END SUBROUTINE Nextgen

END PROGRAM LIFE_2D</lang>

Sample output:

Blinker
 Generation 0
    
  ### 
    
 
 Generation 1
  #  
  #  
  #  
 
 Generation 2
    
 ###
Figure of Eight (a period eight oscillator)
 Generation 0
           
           
   ###      
   ###      
   ###      
      ###   
      ###   
      ###   
           
           
 
 Generation 1
           
    #       
   # #      
  #   #     
   #   #    
    #   #   
     #   #  
      # #   
       #    
           
 
 Generation 2
           
    #       
   ###      
  ### #     
   #   #    
    #   #   
     # ###  
      ###   
       #    
           
 
 Generation 3
           
   ###      
  #         
  #   #     
  #  # #    
    # #  #  
     #   #  
         #  
      ###   
           
 
 Generation 4
    #       
   ##       
  # ##      
 ###  #     
   # # #    
    # # #   
     #  ### 
      ## #  
       ##   
       #    
 
 Generation 5
   ##       
           
 #   #      
 #    #     
   # # #    
    # # #   
     #    # 
      #   # 
           
       ##   
 
 Generation 6
           
    #       
           
  # ###     
    ## #    
    # ##    
     ### #  
           
       #    
           
 
 Generation 7
           
           
   ##       
   ## #     
       #    
    #       
     # ##   
       ##   
           
         
 
 Generation 8
           
           
   ###      
   ###      
   ###      
      ###   
      ###   
      ###

Haskell

<lang haskell>import Data.Array

type Grid = Array Int Bool

-- The grid is flattened into one dimension for simplicity.

life :: Int -> Int -> Grid -> Grid {- Returns the given Grid advanced by one generation. -} life w h old =

   listArray (bounds old) (map f coords)
 where coords = [(x, y) | y <- [0 .. h - 1], x <- [0 .. w - 1]]
       f (x, y) | c && (n == 2 || n == 3) = True
                | not c && n == 3         = True
                | otherwise               = False
         where c = get x y
               n = count [get (x + x') (y + y') |
                   x' <- [-1, 0, 1], y' <- [-1, 0, 1],
                   not (x' == 0 && y' == 0)]
       get x y | x < 0 || x == w = False
               | y < 0 || y == h = False
               | otherwise       = old ! (x + y*w)

count :: [Bool] -> Int count [] = 0 count (False : l) = count l count (True  : l) = 1 + count l</lang>

Example of use:

<lang haskell>grid :: [String] -> (Int, Int, Grid) grid l = (width, height, a)

 where (width, height) = (length $ head l, length l)
       a = listArray (0, width * height - 1) $ concatMap f l
       f = map g
       g '.' = False
       g _   = True

printGrid :: Int -> Grid -> IO () printGrid width = mapM_ f . split width . elems

 where f = putStrLn . map g
       g False = '.'
       g _     = '#'

split :: Int -> [a] -> a split _ [] = [] split n l = a : split n b

 where (a, b) = splitAt n l

blinker = grid

  [".#.",
   ".#.",
   ".#."]

glider = grid

  ["............",
   "............",
   "............",
   ".......###..",
   ".......#....",
   "........#...",
   "............"]

printLife :: Int -> (Int, Int, Grid) -> IO () printLife n (w, h, g) = mapM_ f $ take n $ iterate (life w h) g

 where f g = do
           putStrLn "------------------------------"
           printGrid w g

main = printLife 10 glider</lang>

Icon and Unicon

Works with: Unicon

<lang icon>global limit

procedure main(args)

   n := args[1] | 50        # default is a 50x50 grid
   limit := args[2] | &null #  optional limit to number of generations
   write("Enter the starting pattern, end with EOF")
   grid := getInitialGrid(n)
   play(grid)

end

  1. This procedure reads in the initial pattern, inserting it
  2. into an nXn grid of cells. The nXn grid also gets a
  3. new border of empty cells, which just makes the test simpler
  4. for determining what do with a cell on each generation.
  5. It would be better to let the user move the cursor and click
  6. on cells to create/delete living cells, but this version
  7. assumes a simple ASCII terminal.

procedure getInitialGrid(n)

   static notBlank, allStars
   initial {
       notBlank := ~' '            
       allStars := repl("*",*notBlank)
       }
   g := []                # store as an array of strings
   put(g,repl(" ",n))
   while r := read() do {                        # read in rows of grid
       r := left(r,n)                            #   force each to length n
       put(g," "||map(r,notBlank,allStars)||" ") #   and making any life a '*'
       }
   while *g ~= (n+2) do
       put(g,repl(" ",n))
  
   return g

end

  1. Simple-minded procedure to 'play' Life from a starting grid.

procedure play(grid)

   while not allDone(grid) do {
       display(grid)
       grid := onePlay(grid)
       }

end

  1. Display the grid

procedure display(g)

   write(repl("-",*g[1]))
   every write(!g)
   write(repl("-",*g[1]))

end

  1. Compute one generation of Life from the current one.

procedure onePlay(g)

   ng := []
   every put(ng, !g)        # new generation starts as copy of old
   every ng[r := 2 to *g-1][c := 2 to *g-1] := case sum(g,r,c) of {
                           3:       "*"     # cell lives (or is born)
                           2:       g[r][c] # cell unchanged
                           default: " "     # cell dead
                           }
   return ng

end

  1. Return the number of living cells surrounding the current cell.

procedure sum(g,r,c)

   cnt := 0
   every (i := -1 to 1, j := -1 to 1) do
       if ((i ~= 0) | (j ~= 0)) & (g[r+i][c+j] == "*") then cnt +:= 1
   return cnt

end

  1. Check to see if all the cells have died or we've exceeded the
  2. number of allowed generations.

procedure allDone(g)

  static count
  initial count := 0
  return ((count +:= 1) > \limit) | (trim(!g) == " ")

end</lang>

A sample run:

->life 3 3
Enter the starting pattern, end with EOF

***
---
   
     
 *** 
   
   
---
---
   
  *  
  *  
  *
   
---
---
   
     
 *** 
   
   
---
->

J

Solution: <lang j>pad=: 0,0,~0,.0,.~] life=: (_3 _3 (+/ e. 3+0,4&{)@,;._3 ])@pad</lang>

Example: <lang j> life^:0 1 2 #:0 7 0 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0</lang>

JAMES II/Rule-based Cellular Automata

Library: JAMES II

<lang j2carules>@caversion 1;

dimensions 2;

//using Moore neighborhood neighborhood moore;

//available states state DEAD, ALIVE;

/*

if current state is ALIVE and the 
neighborhood does not contain 2 or 
3 ALIVE states the cell changes to 
DEAD
  • /

rule{ALIVE}:!ALIVE{2,3}->DEAD;

/*

if current state is DEAD and there 
are exactly 3 ALIVE cells in the 
neighborhood the cell changes to 
ALIVE
  • /

rule{DEAD}:ALIVE{3}->ALIVE;</lang> Animated output for the blinker example:

Java

<lang java>public class GameOfLife{ public static void main(String[] args){ String[] dish= { "_#_", "_#_", "_#_",}; int gens= 3; for(int i= 0;i < gens;i++){ System.out.println("Generation " + i + ":"); print(dish); dish= life(dish); } }

public static String[] life(String[] dish){ String[] newGen= new String[dish.length]; for(int row= 0;row < dish.length;row++){//each row newGen[row]= ""; for(int i= 0;i < dish[row].length();i++){//each char in the row String above= "";//neighbors above String same= "";//neighbors in the same row String below= "";//neighbors below if(i == 0){//all the way on the left //no one above if on the top row //otherwise grab the neighbors from above above= (row == 0) ? null : dish[row - 1].substring(i, i + 2); same= dish[row].substring(i + 1, i + 2); //no one below if on the bottom row //otherwise grab the neighbors from below below= (row == dish.length - 1) ? null : dish[row + 1] .substring(i, i + 2); }else if(i == dish[row].length() - 1){//right //no one above if on the top row //otherwise grab the neighbors from above above= (row == 0) ? null : dish[row - 1].substring(i - 1, i + 1); same= dish[row].substring(i - 1, i); //no one below if on the bottom row //otherwise grab the neighbors from below below= (row == dish.length - 1) ? null : dish[row + 1] .substring(i - 1, i + 1); }else{//anywhere else //no one above if on the top row //otherwise grab the neighbors from above above= (row == 0) ? null : dish[row - 1].substring(i - 1, i + 2); same= dish[row].substring(i - 1, i) + dish[row].substring(i + 1, i + 2); //no one below if on the bottom row //otherwise grab the neighbors from below below= (row == dish.length - 1) ? null : dish[row + 1] .substring(i - 1, i + 2); } int neighbors= getNeighbors(above, same, below); if(neighbors < 2 || neighbors > 3){ newGen[row]+= "_";//<2 or >3 neighbors -> die }else if(neighbors == 3){ newGen[row]+= "#";//3 neighbors -> spawn/live }else{ newGen[row]+= dish[row].charAt(i);//2 neighbors -> stay } } } return newGen; }

public static int getNeighbors(String above, String same, String below){ int ans= 0; if(above != null){//no one above for(char x: above.toCharArray()){//each neighbor from above if(x == '#') ans++;//count it if someone is here } } for(char x: same.toCharArray()){//two on either side if(x == '#') ans++;//count it if someone is here } if(below != null){//no one below for(char x: below.toCharArray()){//each neighbor below if(x == '#') ans++;//count it if someone is here } } return ans; }

public static void print(String[] dish){ for(String s: dish){ System.out.println(s); } } }</lang> Output:

Generation 0:
_#_
_#_
_#_
Generation 1:
___
###
___
Generation 2:
_#_
_#_
_#_

Lua

<lang lua>function Evolve( cell )

   local m = #cell
   local cell2 = {}
   for i = 1, m do
       cell2[i] = {}
       for j = 1, m do
           cell2[i][j] = cell[i][j]
       end
   end
   
   for i = 1, m do
       for j = 1, m do
           local count
           if cell2[i][j] == 0 then count = 0 else count = -1 end
           for x = -1, 1 do
               for y = -1, 1 do
                   if i+x >= 1 and i+x <= m and j+y >= 1 and j+y <= m and cell2[i+x][j+y] == 1 then count = count + 1 end
               end
           end
           if count < 2 or count > 3 then cell[i][j] = 0 end
           if count == 3 then cell[i][j] = 1 end
       end
   end
    
   return cell

end


m = 3 -- number rows / colums num_iterations = 10

cell = {} for i = 1, m do

   cell[i] = {}
   for j = 1, m do
       cell[i][j] = 0
   end

end

cell[2][2], cell[2][1], cell[2][3] = 1, 1, 1

for l = 1, num_iterations do

   for i = 1, m do
       for j = 1, m do
           if cell[i][j] == 1 then io.write( "#" ) else io.write( " " ) end
       end
       io.write( "\n" )
   end    
   
   cell = Evolve( cell )

end </lang>

MATLAB

MATLAB has a builtin Game of Life GUI. Type <lang matlab>life</lang> to run it. To view the code, type

<lang matlab>open(fullfile(matlabroot, 'toolbox', 'matlab', 'demos', 'life.m'))</lang>

Mathematica

Mathematica has cellular automaton functionality built in, so implementing Conway's Game of Life is a one-liner: <lang Mathematica>CellularAutomaton[{224,{2,{{2,2,2},{2,1,2},{2,2,2}}},{1,1}}, startconfiguration, steps];</lang> Example of a glyder progressing 8 steps and showing the 9 frames afterwards as grids of hashes and dots: <lang Mathematica>results=CellularAutomaton[{224,{2,{{2,2,2},{2,1,2},{2,2,2}}},{1,1}},{{{0,1,0},{0,0,1},{1,1,1}},0},8];

Do[Print[i-1];Print[Grid[resultsi/.{1->"#",0->"."}]];,{i,1,Length[results]}]</lang>

gives back:

0
.#...
..#..
###..
.....
.....

1
.....
#.#..
.##..
.#...
.....

2
.....
..#..
#.#..
.##..
.....

3
.....
.#...
..##.
.##..
.....

4
.....
..#..
...#.
.###.
.....

5
.....
.....
.#.#.
..##.
..#..

6
.....
.....
...#.
.#.#.
..##.

7
.....
.....
..#..
...##
..##.

8
.....
.....
...#.
....#
..###

OCaml

<lang ocaml>let get g x y =

 try g.(x).(y)
 with _ -> 0

let neighbourhood g x y =

 (get g (x-1) (y-1)) +
 (get g (x-1) (y  )) +
 (get g (x-1) (y+1)) +
 (get g (x  ) (y-1)) +
 (get g (x  ) (y+1)) +
 (get g (x+1) (y-1)) +
 (get g (x+1) (y  )) +
 (get g (x+1) (y+1)) 

let next_cell g x y =

 let n = neighbourhood g x y in
 match g.(x).(y), n with
 | 1, 0 | 1, 1                      -> 0  (* lonely *)
 | 1, 4 | 1, 5 | 1, 6 | 1, 7 | 1, 8 -> 0  (* overcrowded *)
 | 1, 2 | 1, 3                      -> 1  (* lives *)
 | 0, 3                             -> 1  (* get birth *)
 | _ (* 0, (0|1|2|4|5|6|7|8) *)     -> 0  (* barren *)

let copy g = Array.map Array.copy g

let next g =

 let width = Array.length g
 and height = Array.length g.(0)
 and new_g = copy g in
 for x = 0 to pred width do
   for y = 0 to pred height do
     new_g.(x).(y) <- (next_cell g x y)
   done
 done;
 (new_g)

let print g =

 let width = Array.length g
 and height = Array.length g.(0) in
 for x = 0 to pred width do
   for y = 0 to pred height do
     if g.(x).(y) = 0
     then print_char '.'
     else print_char 'o'
   done;
   print_newline()
 done</lang>

put the code above in a file named "life.ml", and then use it in the ocaml toplevel like this:

# #use "life.ml";;
val get : int array array -> int -> int -> int = <fun>
val neighbourhood : int array array -> int -> int -> int = <fun>
val next_cell : int array array -> int -> int -> int = <fun>
val copy : 'a array array -> 'a array array = <fun>
val next : int array array -> int array array = <fun>
val print : int array array -> unit = <fun>

# let g = [|
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 1; 1; 1; 0; 0; 0; |];
  [| 0; 0; 0; 1; 1; 1; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
  [| 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; |];
|] ;;
val g : int array array =
  [|[|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 1; 1; 1; 0; 0; 0|];
    [|0; 0; 0; 1; 1; 1; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
    [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|]|]
# print g;;
..........
..........
..........
..........
....ooo...
...ooo....
..........
..........
..........
..........
- : unit = ()
# print (next g) ;;
..........
..........
..........
.....o....
...o..o...
...o..o...
....o.....
..........
..........
..........
- : unit = ()

Oz

<lang oz>declare

 Rules = [rule(c:1 n:[0 1]             new:0)  %% Lonely
          rule(c:1 n:[4 5 6 7 8]       new:0)  %% Overcrowded
          rule(c:1 n:[2 3]             new:1)  %% Lives
          rule(c:0 n:[3]               new:1)  %% It takes three to give birth!
          rule(c:0 n:[0 1 2 4 5 6 7 8] new:0)  %% Barren
         ]
 Blinker = ["..."
            "###"
            "..."]
 Toad = ["...."
         ".###"
         "###."
         "...."]
 Glider = [".#.........."
           "..#........."
           "###........."
           "............"
           "............"
           "............"
           "............"
           "............"
           "............"
           "............"
           "............"]
 Init = Blinker
 MaxGen = 2
 %% G(i) -> G(i+1)
 fun {Evolve Gi}
    fun {Get X#Y}
       Row = {CondSelect Gi Y unit}
    in
       {CondSelect Row X 0} %% cells beyond boundaries are dead (0)
    end
    fun {GetNeighbors X Y}
       {Map [X-1#Y-1  X#Y-1  X+1#Y-1
             X-1#Y           X+1#Y
             X-1#Y+1  X#Y+1  X+1#Y+1]
        Get}
    end
 in
    {Record.mapInd Gi
     fun {$ Y Row}
        {Record.mapInd Row
         fun {$ X C}
            N = {Sum {GetNeighbors X Y}}
         in
            for Rule in Rules return:Return do
               if C == Rule.c andthen {Member N Rule.n} then
                  {Return Rule.new}
               end
            end
         end}
     end}
 end
 %% For example: [".#"
 %%                "#."] -> grid(1:row(1:0 2:1) 2:row(1:1 2:0))
 fun {ReadG LinesList}
    {List.toTuple grid
     {Map LinesList
      fun {$ Line}
         {List.toTuple row
          {Map Line
           fun {$ C}
              if C == &. then 0
              elseif C == &# then 1
              end
           end}}
      end}}
 end
 %% Inverse to ReadG
 fun {ShowG G}
    {Map {Record.toList G}
     fun {$ Row}
        {Map {Record.toList Row}
         fun {$ C}
            if C == 0 then &.
            elseif C == 1 then &#
            end
         end}
     end}
 end
 %% Helpers
 fun {Sum Xs} {FoldL Xs Number.'+' 0} end
 fun lazy {Iterate F V} V|{Iterate F {F V}} end
 G0 = {ReadG Init}
 Gn = {Iterate Evolve G0}

in

 for
    Gi in Gn
    I in 0..MaxGen
 do
    {System.showInfo "\nGen. "#I}
    {ForAll {ShowG Gi} System.showInfo}
 end</lang>

Perl

This a perl example the simulates Conway's life starting with a random grid of the given size for the given number of steps. Example:

life.pl numrows numcols numiterations 
life.pl 5 10 15 

would do 15 iterations over 5 rows and 10 columns.

<lang perl>my ($width, $height, $generations) = @ARGV;

my $printed;

sub generate {

  (map
      {[ (map { rand () < 0.5 } 1 .. $width), 0 ]}
      1 .. $height),
  [(0) x ($width + 1)];

}

sub nexgen {

  my @prev = map {[@$_]} @_;
  my @new = map {[ (0) x ($width + 1) ]} 0 .. $height;
  foreach my $row ( 0 .. $height - 1 ) {
      foreach my $col ( 0 .. $width - 1 ) {
          my $val =
            $prev[ $row - 1 ][ $col - 1 ] +
            $prev[ $row - 1 ][ $col     ] +
            $prev[ $row - 1 ][ $col + 1 ] +
            $prev[ $row     ][ $col - 1 ] +
            $prev[ $row     ][ $col + 1 ] +
            $prev[ $row + 1 ][ $col - 1 ] +
            $prev[ $row + 1 ][ $col     ] +
            $prev[ $row + 1 ][ $col + 1 ];
          $new[$row][$col] =
              ( $prev[$row][$col] && $val == 2 || $val == 3 );
      }
  }
  return @new;

}

sub printlife {

  my @life = @_;
  if ($printed) {

# Move the cursor up to print over prior generation. print "\e[1A" x $height;

  }
  $printed = 1;
  foreach my $row ( 0 .. $height - 1 ) {
      foreach my $col ( 0 .. $width - 1 ) {
          print($life[$row][$col]
            ? "\e[33;45;1m \e[0m"
            : "\e[1;34;1m \e[0m");
      }
      print "\n";
  }

}

my @life = generate; print "Start\n"; printlife @life; foreach my $stage ( 1 .. $generations ) {

  sleep 1;
  print "Generation $stage\n\e[1A";
  @life = nexgen @life;
  printlife @life;

} print "\n";</lang>

Perl 6

Works with: Rakudo version #22 "Thousand Oaks"

<lang perl6>class Grid {

   has Int $.width;
   has Int $.height;
   has @!a;
   multi method new (@a) {
   # Makes a new grid with @!a equal to @a.
       Grid.bless(*,
           width => @a[0].elems, height => @a.elems,
           a => @a)
   }
   multi method new (Str $s) {
   # Interprets the string as a grid.
       Grid.new(map
           { [map { $^c eq '#' ?? True !! False }, split , $^l] },
           grep /\N/, split "\n", $s)
   }
   method clone { Grid.new(map { [$^x.clone] }, @!a) }
   method Str {
       [~] map
           { [~] map({ $^c ?? '#' !! '.' }, |$^row), "\n" },
           @!a
   }
   method alive (Int $row, Int $col --> Bool) {
       0 <= $row < $.height and 0 <= $col < $.width
           and @!a[$row][$col];
   }
   method nextgen {
       my $prev = self.clone;
       for ^$.height -> $row {
           for ^$.width -> $col {
               my $v = [+]
                   map({ $prev.alive($^r, $^c) },
                       ($col - 1, $col, $col + 1 X
                        $row - 1, $row, $row + 1)),
                   -$prev.alive($row, $col);
               @!a[$row][$col] =
                   $prev.alive($row, $col) && $v == 2 || $v == 3;
           }
       }
   }

}</lang>

An example of use:

<lang perl6>my Grid $glider .= new ' ............ ............ ............ .......###.. .......#.... ........#... ............';

loop {

   say $glider;
   sleep 1;
   $glider.nextgen;

}</lang>

PicoLisp

This example uses 'grid' and 'disp' from "lib/simul.l". These functions maintain an array of multiply linked objects, and are also used in the chess program and other games in the distribution. <lang PicoLisp>(load "@lib/simul.l")

(de life (DX DY . Init)

  (let Grid (grid DX DY)
     (for This Init
        (=: life T) )
     (loop
        (disp Grid NIL
           '((This) (if (: life) "X " "  ")) )
        (wait 1000)
        (for Col Grid
           (for This Col
              (let N  # Count neighbors
                 (cnt
                    '((Dir) (get (Dir This) 'life))
                    (quote
                       west east south north
                       ((X) (south (west X)))
                       ((X) (north (west X)))
                       ((X) (south (east X)))
                       ((X) (north (east X))) ) )
                 (=: next  # Next generation
                    (if (: life)
                       (>= 3 N 2)
                       (= N 3) ) ) ) ) )
        (for Col Grid  # Update
           (for This Col
              (=: life (: next)) ) ) ) ) )

(life 5 5 b3 c3 d3)</lang> Output:

 5
 4
 3   X X X
 2
 1
   a b c d e
 5
 4     X
 3     X
 2     X
 1
   a b c d e
 5
 4
 3   X X X
 2
 1
   a b c d e

PureBasic

<lang PureBasic>EnableExplicit Define.i x, y ,Xmax ,Ymax ,N Xmax = 13 : Ymax = 20 Dim world.i(Xmax+1,Ymax+1) Dim Nextworld.i(Xmax+1,Ymax+1)

Glider test
------------------------------------------
world(1,1)=1 : world(1,2)=0 : world(1,3)=0
world(2,1)=0 : world(2,2)=1 : world(2,3)=1
world(3,1)=1 : world(3,2)=1 : world(3,3)=0
------------------------------------------

OpenConsole() EnableGraphicalConsole(1) ClearConsole() Print("Press any key to interrupt") Repeat

 ConsoleLocate(0,2)
 PrintN(LSet("", Xmax+2, "-"))
;---------- endless world ---------
 For y = 1 To Ymax
   world(0,y)=world(Xmax,y)
   world(Xmax+1,y)=world(1,y)  
 Next
 For x = 1 To Xmax
   world(x,0)=world(x,Ymax)
   world(x,Ymax+1)=world(x,1)
 Next
 world(0     ,0     )=world(Xmax,Ymax)
 world(Xmax+1,Ymax+1)=world(1   ,1   )
 world(Xmax+1,0     )=world(1   ,Ymax)
 world(     0,Ymax+1)=world(Xmax,1   )
;---------- endless world ---------
 For y = 1 To Ymax
   Print("|") 
   For x = 1 To Xmax
     Print(Chr(32+world(x,y)*3))
     N = world(x-1,y-1)+world(x-1,y)+world(x-1,y+1)+world(x,y-1)
     N + world(x,y+1)+world(x+1,y-1)+world(x+1,y)+world(x+1,y+1)
     If (world(x,y) And (N = 2 Or N = 3))Or (world(x,y)=0 And N = 3)
       Nextworld(x,y)=1      
     Else
       Nextworld(x,y)=0
     EndIf
   Next
   PrintN("|")
 Next
 PrintN(LSet("", Xmax+2, "-"))
 Delay(100) 
 ;Swap world() , Nextworld()    ;PB  <4.50
 CopyArray(Nextworld(), world());PB =>4.50
 Dim Nextworld.i(Xmax+1,Ymax+1) 

Until Inkey() <> ""

PrintN("Press any key to exit"): Repeat: Until Inkey() <> ""</lang> Sample output:

Python

This implementation uses defaultdict(int) to create dictionaries that return the result of calling int(), i.e. zero for any key not in the dictionary. This 'trick allows celltable to be initialized to just those keys with a value of 1.

Python allows many types other than strings and ints to be keys in a dictionary. The example uses a dictionary with keys that are a two entry tuple to represent the universe, which also returns a default value of zero. This simplifies the calculation N as out-of-bounds indexing of universe returns zero.

<lang python>import random from collections import defaultdict

printdead, printlive = '-#' maxgenerations = 3 cellcount = 3,3 celltable = defaultdict(int, {

(1, 2): 1,
(1, 3): 1,
(0, 3): 1,
} ) # Only need to populate with the keys leading to life
    1. Start States
  1. blinker

u = universe = defaultdict(int) u[(1,0)], u[(1,1)], u[(1,2)] = 1,1,1

    1. toad
  1. u = universe = defaultdict(int)
  2. u[(5,5)], u[(5,6)], u[(5,7)] = 1,1,1
  3. u[(6,6)], u[(6,7)], u[(6,8)] = 1,1,1
    1. glider
  1. u = universe = defaultdict(int)
  2. maxgenerations = 16
  3. u[(5,5)], u[(5,6)], u[(5,7)] = 1,1,1
  4. u[(6,5)] = 1
  5. u[(7,6)] = 1
    1. random start
  1. universe = defaultdict(int,
  2. # array of random start values
  3. ( ((row, col), random.choice((0,1)))
  4. for col in range(cellcount[0])
  5. for row in range(cellcount[1])
  6. ) ) # returns 0 for out of bounds

for i in range(maxgenerations):

   print "\nGeneration %3i:" % ( i, )
   for row in range(cellcount[1]):
       print "  ", .join(str(universe[(row,col)])
                           for col in range(cellcount[0])).replace(
                               '0', printdead).replace('1', printlive)
   nextgeneration = defaultdict(int)
   for row in range(cellcount[1]):
       for col in range(cellcount[0]):
           nextgeneration[(row,col)] = celltable[
               ( universe[(row,col)],
                 -universe[(row,col)] + sum(universe[(r,c)]
                                            for r in range(row-1,row+2)
                                            for c in range(col-1, col+2) )
               ) ]
   universe = nextgeneration</lang>

Sample output:

Generation   0:
   ---
   ###
   ---

Generation   1:
   -#-
   -#-
   -#-

Generation   2:
   ---
   ###
   ---

R

<lang r># Generates a new board - either a random one, sample blinker or gliders, or user specified. gen.board <- function(type="random", nrow=3, ncol=3, seeds=NULL) {

   if(type=="random")
   {
      return(matrix(runif(nrow*ncol) > 0.5, nrow=nrow, ncol=ncol))
   } else if(type=="blinker")
   {
      seeds <- list(c(2,1),c(2,2),c(2,3))
   } else if(type=="glider")
   {
      seeds <- list(c(1,2),c(2,3),c(3,1), c(3,2), c(3,3))
   }
   board <- matrix(FALSE, nrow=nrow, ncol=ncol) 
   for(k in seq_along(seeds))
   {
     board[seedsk[1],seedsk[2]] <- TRUE
   }
   board

}

  1. Returns the number of living neighbours to a location

count.neighbours <- function(x,i,j) {

  sum(x[max(1,i-1):min(nrow(x),i+1),max(1,j-1):min(ncol(x),j+1)]) - x[i,j]

}

  1. Implements the rulebase

determine.new.state <- function(board, i, j) {

  N <- count.neighbours(board,i,j)
  (N == 3 || (N ==2 && board[i,j]))

}

  1. Generates the next interation of the board from the existing one

evolve <- function(board) {

  newboard <- board
  for(i in seq_len(nrow(board)))
  {
     for(j in seq_len(ncol(board)))
     {
        newboard[i,j] <- determine.new.state(board,i,j)         
     }   
  }
  newboard

}

  1. Plays the game. By default, the board is shown in a plot window, though output to the console if possible.

game.of.life <- function(board, nsteps=50, timebetweensteps=0.25, graphicaloutput=TRUE) {

  if(!require(lattice)) stop("lattice package could not be loaded")   
  nr <- nrow(board)
  
  for(i in seq_len(nsteps))
  {
     if(graphicaloutput) 
     {
        print(levelplot(t(board[nr:1,]), colorkey=FALSE)) 
     } else print(board)  
      
     Sys.sleep(timebetweensteps)
     
     newboard <- evolve(board)
     
     if(all(newboard==board))
     {
        message("board is static")
        break
     } else if(sum(newboard) < 1)
     {
        message("everything is dead")
        break
     } else board <- newboard
  }   
  invisible(board)

}

  1. Example usage

game.of.life(gen.board("blinker")) game.of.life(gen.board("glider", 18, 20)) game.of.life(gen.board(, 50, 50))</lang>

Ruby

<lang ruby>def game_of_life(name, size, generations, initial_life=nil)

 board = new_board size
 seed board, size, initial_life
 print_board board, 0, name
 reason = generations.times do |gen|
   new = evolve board, size
   print_board new, gen+1, name
   break :all_dead if barren? new, size
   break :static   if board == new
   board = new
 end
 if    reason == :all_dead then puts "no more life."
 elsif reason == :static   then puts "no movement"
 else puts "specified lifetime ended"
 end

end

def new_board(n)

 Array.new(n) {Array.new(n, 0)}

end

def seed(board, n, points=nil)

 if points.nil?
   # randomly seed board
   srand
   indices = []
   n.times {|x| n.times {|y| indices << [x,y] }}
   indices.shuffle[0,10].each {|x,y| board[y][x] = 1}
 else
   points.each {|x, y| board[y][x] = 1}
 end

end

def evolve(board, n)

 new = new_board n
 n.times {|i| n.times {|j| new[i][j] = fate board, i, j, n}}
 new

end

def fate(board, i, j, n)

 i1 = [0, i-1].max; i2 = [i+1, n-1].min
 j1 = [0, j-1].max; j2 = [j+1, n-1].min
 sum = 0
 for ii in (i1..i2)
   for jj in (j1..j2)
     sum += board[ii][jj] if not (ii == i and jj == j)
   end
 end
 (sum == 3 or (sum == 2 and board[i][j] == 1)) ? 1 : 0

end

def barren?(board, n)

 n.times {|i| n.times {|j| return false if board[i][j] == 1}}
 true

end

def print_board(m, generation, name)

 puts "#{name}: generation #{generation}"
 m.each {|row| row.each {|val| print "#{val == 1 ? '#' : '.'} "}; puts}
 puts

end


game_of_life "blinker", 3, 2, [[1,0],[1,1],[1,2]]

  1. game_of_life "glider", 4, 4, [[1,0],[2,1],[0,2],[1,2],[2,2]]
  2. game_of_life "random", 5, 10</lang>

Scala

See Conway's Game of Life/Scala

Scheme

Works with: Scheme version implementing R6RS (tested with PLT Scheme, Petite Chez Scheme)

<lang Scheme>

An R6RS Scheme implementation of Conway's Game of Life --- assumes
all cells outside the defined grid are dead
if n is outside bounds of list, return 0 else value at n

(define (nth n lst)

 (cond ((> n (length lst)) 0)
       ((< n 1) 0)
       ((= n 1) (car lst))
       (else (nth (- n 1) (cdr lst)))))
return the next state of the supplied universe

(define (next-universe universe)

 ;value at (x, y)
 (define (cell x y)
   (if (list? (nth y universe))
       (nth x (nth y universe))
       0))
 ;sum of the values of the cells surrounding (x, y)
 (define (neighbor-sum x y)
   (+ (cell (- x 1) (- y 1))
      (cell (- x 1) y)
      (cell (- x 1) (+ y 1))
      (cell x (- y 1))
      (cell x (+ y 1))
      (cell (+ x 1) (- y 1))
      (cell (+ x 1) y)
      (cell (+ x 1) (+ y 1))))
 ;next state of the cell at (x, y)
 (define (next-cell x y)
   (let ((cur (cell x y))
         (ns (neighbor-sum x y)))
     (cond ((and (= cur 1)
                 (or (< ns 2) (> ns 3)))
            0)
           ((and (= cur 0) (= ns 3))
            1)
           (else cur))))
 ;next state of row n
 (define (row n out)
   (let ((w (length (car universe))))
     (if (= (length out) w)
         out
         (row n
              (cons (next-cell (- w (length out)) n)
                    out)))))
 ;a range of ints from bot to top
 (define (int-range bot top)
   (if (> bot top) '()
       (cons bot (int-range (+ bot 1) top))))
 (map (lambda (n)
        (row n '()))
      (int-range 1 (length universe))))
represent the universe as a string

(define (universe->string universe)

 (define (prettify row)
   (apply string-append
          (map (lambda (b)
                 (if (= b 1) "#" "-"))
               row)))
 (if (null? universe)
     ""
     (string-append (prettify (car universe))
                    "\n"
                    (universe->string (cdr universe)))))
starting with seed, show reps states of the universe

(define (conway seed reps)

 (when (> reps 0)
   (display (universe->string seed))
   (newline)
   (conway (next-universe seed) (- reps 1))))
--- Example Universes --- ;;
blinker in a 3x3 universe

(conway '((0 1 0)

         (0 1 0)
         (0 1 0)) 5)
glider in an 8x8 universe

(conway '((0 0 1 0 0 0 0 0)

         (0 0 0 1 0 0 0 0)
         (0 1 1 1 0 0 0 0)
         (0 0 0 0 0 0 0 0)
         (0 0 0 0 0 0 0 0)
         (0 0 0 0 0 0 0 0)
         (0 0 0 0 0 0 0 0)
         (0 0 0 0 0 0 0 0)) 30)</lang>

Sample output:

-#-
-#-
-#-

---
###
---

-#-
-#-
-#-

---
###
---

-#-
-#-
-#-

--#-----
---#----
-###----
--------
--------
--------
--------
--------

--------
-#-#----
--##----
--#-----
--------
--------
--------
--------

--------
---#----
-#-#----
--##----
--------
--------
--------
--------

--------
--#-----
---##---
--##----
--------
--------
--------
--------

--------
---#----
----#---
--###---
--------
--------
--------
--------

--------
--------
--#-#---
---##---
---#----
--------
--------
--------

--------
--------
----#---
--#-#---
---##---
--------
--------
--------

--------
--------
---#----
----##--
---##---
--------
--------
--------

--------
--------
----#---
-----#--
---###--
--------
--------
--------

--------
--------
--------
---#-#--
----##--
----#---
--------
--------

--------
--------
--------
-----#--
---#-#--
----##--
--------
--------

--------
--------
--------
----#---
-----##-
----##--
--------
--------

--------
--------
--------
-----#--
------#-
----###-
--------
--------

--------
--------
--------
--------
----#-#-
-----##-
-----#--
--------

--------
--------
--------
--------
------#-
----#-#-
-----##-
--------

--------
--------
--------
--------
-----#--
------##
-----##-
--------

--------
--------
--------
--------
------#-
-------#
-----###
--------

--------
--------
--------
--------
--------
-----#-#
------##
------#-

--------
--------
--------
--------
--------
-------#
-----#-#
------##

--------
--------
--------
--------
--------
------#-
-------#
------##

--------
--------
--------
--------
--------
--------
-------#
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

--------
--------
--------
--------
--------
--------
------##
------##

SETL

Compiler: GNU SETL

This version uses a live cell set representation (set of coordinate pairs.) This example first appeared here. <lang setl>program life;

const

 initialMatrix =
   [".....",
    "..#..",
    "...#.",
    ".###.",
    "....."];

loop init

 s := initialLiveSet();

do

 output(s);
 nm := {[[x+dx, y+dy], [x, y]]: [x, y] in s, dx in {-1..1}, dy in {-1..1}};
 s := {c: t = nm{c} | 3 in {#t, #(t less c)}};

end;

proc output(s);

 system("clear");
 (for y in [0..24])
   (for x in [0..78])
     nprint(if [x, y] in s then "#" else " " end);
   end;
   print();
 end;
 select([], 250);

end proc;

proc initialLiveSet();

 return {[x,y]: row = initialMatrix(y), c = row(x) | c = '#'};

end proc;

end program;</lang>

SystemVerilog

Note using non-blocking assignments, so that the code behaves as if every cell is updated in parallel on each clock edge. (I didn't need to use a clock here, but doing so looks more like standard verilog coding that is familiar to hardware designers). <lang SystemVerilog>module gol;

 parameter NUM_ROWS = 20;
 parameter NUM_COLS = 32;
 bit [NUM_COLS:1] cell[1:NUM_ROWS];
 bit clk;
 initial begin
   cell[10][10:8] = 3'b111;
   cell[11][10:8] = 3'b100;
   cell[12][10:8] = 3'b010;
   repeat(8) #5 clk = ~clk;
 end
 always @(posedge clk) begin
   foreach (cell[y,x]) begin
     automatic int count = $countones({ cell[y-1][x-1+:3], cell[y][x-1], cell[y][x+1], cell[y+1][x-1+:3] });
     if (count == 3) cell[y][x] <= 1'b1;
     else if (count != 2) cell[y][x] <= 1'b0;
   end
 end
 always @(negedge clk) begin
   $display("--");
   foreach (cell[y]) $display( "  %b", cell[y] );
 end

endmodule</lang>

Tcl

Works with: Tcl version 8.5

<lang tcl>package require Tcl 8.5

proc main {} {

   evolve 3 blinker [initialize_tableau {3 3} {{0 1} {1 1} {2 1}}]
   evolve 5 glider  [initialize_tableau {4 4} {{0 1} {1 2} {2 0} {2 1} {2 2}}]

}

proc evolve {generations name tableau} {

   for {set gen 1} {$gen <= $generations} {incr gen} {
       puts "$name generation $gen:"
       print $tableau
       set tableau [next_generation $tableau]
   }
   puts ""

}

proc initialize_tableau {size initial_life} {

   lassign $size ::max_x ::max_y 
   set tableau [blank_tableau]
   foreach point $initial_life {
       lset tableau {*}$point 1
   }
   return $tableau

}

proc blank_tableau {} {

   return [lrepeat $::max_x [lrepeat $::max_y 0]]

}

proc print {tableau} {

   foreach row $tableau {puts [string map {0 . 1 #} [join $row]]}

}

proc next_generation {tableau} {

   set new [blank_tableau]
   for {set x 0} {$x < $::max_x} {incr x} {
       for {set y 0} {$y < $::max_y} {incr y} {
           lset new $x $y [fate [list $x $y] $tableau]
       }
   }
   return $new

}

proc fate {point tableau} {

   set current [value $point $tableau]
   set neighbours [sum_neighbours $point $tableau]
   return [expr {($neighbours == 3) || ($neighbours == 2 && $current == 1)}]

}

proc value {point tableau} {

   return [lindex $tableau {*}$point]

}

proc sum_neighbours {point tableau} {

   set sum 0
   foreach neighbour [get_neighbours $point] {
       incr sum [value $neighbour $tableau]
   }
   return $sum

}

proc get_neighbours {point} {

   lassign $point x y
   set results [list]
   foreach x_off {-1 0 1} {
       foreach y_off {-1 0 1} {
           if { ! ($x_off == 0 && $y_off == 0)} {
               set i [expr {$x + $x_off}] 
               set j [expr {$y + $y_off}]
               if {(0 <= $i && $i < $::max_x) && (0 <= $j && $j < $::max_y)} {
                   lappend results [list $i $j]
               }
           }
       }
   }
   return $results

}

main</lang>

blinker generation 1:
. # .
. # .
. # .
blinker generation 2:
. . .
# # #
. . .
blinker generation 3:
. # .
. # .
. # .

glider generation 1:
. # . .
. . # .
# # # .
. . . .
glider generation 2:
. . . .
# . # .
. # # .
. # . .
glider generation 3:
. . . .
. . # .
# . # .
. # # .
glider generation 4:
. . . .
. # . .
. . # #
. # # .
glider generation 5:
. . . .
. . # .
. . . #
. # # #

TI-89 BASIC

This program draws its cells as 2x2 blocks on the graph screen. In order to avoid needing external storage for the previous generation, it uses the upper-left corner of each block to mark the next generation's state in all cells, then updates each cell to match its corner pixel.

A further improvement would be to have an option to start with the existing picture rather than clearing, and stop at a point where the picture has clean 2x2 blocks.

<lang ti89b>Define life(pattern) = Prgm

 Local x,y,nt,count,save,xl,yl,xh,yh
 Define nt(y,x) = when(pxlTest(y,x), 1, 0)
 
 {}→save
 setGraph("Axes", "Off")→save[1]
 setGraph("Grid", "Off")→save[2]
 setGraph("Labels", "Off")→save[3]
 FnOff
 PlotOff
 ClrDraw
 If pattern = "blinker" Then
   36→yl
   40→yh
   78→xl
   82→xh
   PxlOn  36,80
   PxlOn  38,80
   PxlOn  40,80
 ElseIf pattern = "glider" Then
   30→yl
   40→yh
   76→xl
   88→xh
   PxlOn  38,76
   PxlOn  36,78
   PxlOn  36,80
   PxlOn  38,80
   PxlOn  40,80
 ElseIf pattern = "r" Then
   38-5*2→yl
   38+5*2→yh
   80-5*2→xl
   80+5*2→xh
   PxlOn  38,78
   PxlOn  36,82
   PxlOn  36,80
   PxlOn  38,80
   PxlOn  40,80
 EndIf
 While getKey() = 0
   © Expand upper-left corner to whole cell
   For y,yl,yh,2
     For x,xl,xh,2
       If pxlTest(y,x) Then
         PxlOn y+1,x
         PxlOn y+1,x+1
         PxlOn y,  x+1
       Else
         PxlOff y+1,x
         PxlOff y+1,x+1
         PxlOff y,  x+1
       EndIf
     EndFor
   EndFor
   © Compute next generation
   For y,yl,yh,2
     For x,xl,xh,2
       nt(y-1,x-1) + nt(y-1,x) + nt(y-1,x+2) + nt(y,x-1) + nt(y+1,x+2) + nt(y+2,x-1) + nt(y+2,x+1) + nt(y+2,x+2) → count
       If count = 3 Then
         PxlOn y,x
       ElseIf count ≠ 2 Then
         PxlOff y,x
       EndIf
     EndFor
   EndFor
 EndWhile
 © Restore changed options
 setGraph("Axes", save[1])
 setGraph("Grid", save[2])
 setGraph("Labels", save[3])

EndPrgm</lang>

Ursala

Three functions are defined: rule takes a pair (c,<n..>) representing a cell and its list of neighboring cells to the new cell, neighborhoods takes board of cells <<c..>..> to a structure <<(c,<n..>)..>..> explicitly pairing each cell with its neighborhood, and evolve(n) takes a board <<c..>..> to a sequence of n boards evolving from it.

<lang Ursala>#import std

  1. import nat

rule = -: ^(~&,~&l?(~&r-={2,3},~&r-={3})^|/~& length@F)* pad0 iota512

neighborhoods = ~&thth3hthhttPCPthPTPTX**K7S+ swin3**+ swin3@hNSPiCihNCT+ --<0>*+ 0-*

evolve "n" = next"n" rule**+ neighborhoods</lang> test program: <lang Ursala>blinker =

(==`O)**t -[ +++ OOO +++]-

glider =

(==`O)**t -[ +O++++ ++O+++ OOO+++ ++++++ ++++++]-

  1. show+

examples = mat0 ~&?(`O!,`+!)*** evolve3(blinker)-- evolve5(glider)</lang> output:

+++
OOO
+++

+O+
+O+
+O+

+++
OOO
+++

+O++++
++O+++
OOO+++
++++++
++++++

++++++
O+O+++
+OO+++
+O++++
++++++

++++++
++O+++
O+O+++
+OO+++
++++++

++++++
+O++++
++OO++
+OO+++
++++++

++++++
++O+++
+++O++
+OOO++
++++++

Vedit macro language

This implementation uses an edit buffer for data storage and to show results. For purpose of this task, the macro writes the initial pattern in the buffer. However, easier way to enter patterns would be by editing them directly in the edit buffer before starting the macro (in which case the Ins_Text commands would be omitted).

The macro calculates one generation and then waits for a key press before calculating the next generation.

The algorithm used is kind of reverse to the one normally used in Life implementations. Instead of counting cells around each location, this implementation finds each living cell and then increments the values of the 8 surrounding cells. After going through all the living cells, each location of the grid contains an unique ascii value depending on the original value (dead or alive) and the number of living cells in surrounding positions. Two Replace commands are then used to change characters into '.' or 'O' to represent dead and living cells in the new generation.

<lang vedit>IT("Generation 0 ") IN IT(".O.") IN IT(".O.") IN IT(".O.")

  1. 9 = 2 // number of generations to calculate
  2. 10 = Cur_Line
  3. 11 = Cur_Col-1

for (#2 = 1; #2 <= #9; #2++) {

   Update()
   Get_Key("Next gen...", STATLINE)
   Call("calculate")
   itoa(#2, 20, LEFT)
   GL(1) GC(12) Reg_Ins(20, OVERWRITE)

} EOF Return

// Calculate one generation

calculate:

Goto_Line(2) While (At_EOF == 0) {

 Search("|A",ERRBREAK)		// find next living cell
 #3 = Cur_Line
 #4 = #7 = #8 = Cur_Col
 if (#4 > 1) {			// increment cell at left
     #7 = #4-1
     Goto_Col(#7)
     Ins_Char(Cur_Char+1,OVERWRITE)
 }
 if (#4 < #11) {		// increment cell at right
     #8 = #4+1
     Goto_Col(#8)
     Ins_Char(Cur_Char+1,OVERWRITE)
 }
 if (#3 > 2) {			// increment 3 cells above
     Goto_Line(#3-1)
     Call("inc_3")
 }
 if (#3 < #10) {		// increment 3 cells below
     Goto_Line(#3+1)
     Call("inc_3")
 }
 Goto_Line(#3)
 Goto_Col(#4+1)

}

Replace("[1QR]", "O", REGEXP+BEGIN+ALL) // these cells alive Replace("[/-7P-X]", ".", REGEXP+BEGIN+ALL) // these cells dead Return

// increment values of 3 characters in a row

inc_3:

for (#1 = #7; #1 <= #8; #1++) {

 Goto_Col(#1)
 Ins_Char(Cur_Char+1,OVERWRITE)

} Return</lang>

Output: <lang vedit>Generation 0 .O. .O. .O.

Generation 1 ... OOO ...

Generation 2 .O. .O. .O.</lang>

ZPL

<lang ZPL>program Life;

config var

    n : integer = 100;

region

    BigR = [0 .. n+1, 0 .. n+1];
    R    = [1 .. n,   1 .. n  ];

direction

    nw   = [-1, -1]; north = [-1, 0]; ne   = [-1, 1];
    west = [ 0, -1];                  east = [ 0, 1];
    sw   = [ 1, -1]; south = [ 1, 0]; se   = [ 1, 1];

var

    TW   : [BigR] boolean; -- The World
    NN   : [R]    integer; -- Number of Neighbours

procedure Life(); begin

    -- Initialize world
    [R]  repeat
         NN := TW@nw   + TW@north + TW@ne   +
               TW@west +            TW@east + 
               TW@sw   + TW@south + TW@se;
         TW := (TW & NN = 2) | ( NN = 3);
    until !(|<< TW);

end;</lang>