Compiler/AST interpreter

From Rosetta Code
AST interpreter

An AST interpreter interprets an Abstract Syntax Tree (AST) produced by a Syntax Analyzer.

Take the AST output from the Syntax analyzer task, and interpret it as appropriate. Refer to the Syntax analyzer task for details of the AST.

Loading the AST from the syntax analyzer is as simple as (pseudo code)

<lang python>def load_ast()

   line = readline()
   # Each line has at least one token
   line_list = tokenize the line, respecting double quotes
   text = line_list[0] # first token is always the node type
   if text == ";"   # a terminal node
       return NULL
   node_type = text # could convert to internal form if desired
   # A line with two tokens is a leaf node
   # Leaf nodes are: Identifier, Integer, String
   # The 2nd token is the value
   if len(line_list) > 1
       return make_leaf(node_type, line_list[1])
   left = load_ast()
   right = load_ast()
   return make_node(node_type, left, right)</lang>
The interpreter algorithm is relatively simple

<lang python>interp(x)

   if x == NULL return NULL
   elif x.node_type == Integer return x.value converted to an integer
   elif x.node_type == Ident   return the current value of variable x.value
   elif x.node_type == String  return x.value
   elif x.node_type == Assign
                   globals[x.left.value] = interp(x.right)
                   return NULL
   elif x.node_type is a binary operator return interp(x.left) operator interp(x.right)
   elif x.node_type is a unary operator, return return operator interp(x.left)
   elif x.node_type ==  If
                   if (interp(x.left)) then interp(x.right.left)
                   else interp(x.right.right)
                   return NULL
   elif x.node_type == While
                   while (interp(x.left)) do interp(x.right)
                   return NULL
   elif x.node_type == Prtc
                   print interp(x.left) as a character, no newline
                   return NULL
   elif x.node_type == Prti
                   print interp(x.left) as an integer, no newline
                   return NULL
   elif x.node_type == Prts
                   print interp(x.left) as a string, respecting newlines ("\n")
                   return NULL
   elif x.node_type == Sequence
                   interp(x.left)
                   interp(x.right)
                   return NULL
   else
       error("unknown node type")</lang>

Notes:

Because of the simple nature of our tiny language, Semantic analysis is not needed.

Your interpreter should use C like division semantics, for both division and modulus. For division of positive operands, only the non-fractional portion of the result should be returned. In other words, the result should be truncated towards 0.

This means, for instance, that 3 / 2 should result in 1.

For division when one of the operands is negative, the result should be truncated towards 0.

This means, for instance, that 3 / -2 should result in -1.

Test program
prime.t parse | interp

<lang c>/*

Simple prime number generator
*/

count = 1; n = 1; limit = 100; while (n < limit) {

   k=3;
   p=1;
   n=n+2;
   while ((k*k<=n) && (p)) {
       p=n/k*k!=n;
       k=k+2;
   }
   if (p) {
       print(n, " is prime\n");
       count = count + 1;
   }

} print("Total primes found: ", count, "\n"); </lang>

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26
Additional examples

Your solution should pass all the test cases above and the additional tests found Here.

Reference

The C and Python versions can be considered reference implementations.

Related Tasks

ALGOL W

<lang algolw>begin % AST interpreter %

   % parse tree nodes %
   record node( integer         type
              ; reference(node) left, right
              ; integer         iValue % nString/nIndentifier number or nInteger value %
              );
   integer     nIdentifier, nString, nInteger, nSequence, nIf,   nPrtc, nPrts
         ,     nPrti,       nWhile,  nAssign,  nNegate,   nNot,  nMultiply
         ,     nDivide,     nMod,    nAdd,     nSubtract, nLess, nLessEqual
         ,     nGreater,    nGreaterEqual,     nEqual,    nNotEqual,    nAnd, nOr
         ;
   string(14) array ndName ( 1 :: 25 );
   integer    MAX_NODE_TYPE;
   % string literals and identifiers - uses a linked list - a hash table might be better... %
   string(1)   array text ( 0 :: 4095 );
   integer     textNext, TEXT_MAX;
   record textElement ( integer start, length; reference(textElement) next );
   reference(textElement) idList, stList;
   % memory - identifiers hold indexes to locations here %
   integer array data ( 1 :: 4096 );
   % returns a new node with left and right branches %
   reference(node) procedure opNode ( integer value opType; reference(node) value opLeft, opRight ) ; begin
       node( opType, opLeft, opRight, 0 )
   end opNode ;
   % returns a new operand node %
   reference(node) procedure operandNode ( integer value opType, opValue ) ; begin
       node( opType, null, null, opValue )
   end operandNode ;
   % reports an error and stops %
   procedure rtError( string(80) value message ); begin
       integer errorPos;
       write( s_w := 0, "**** Runtime error " );
       errorPos := 0;
       while errorPos < 80 and message( errorPos // 1 ) not = "." do begin
           writeon( s_w := 0, message( errorPos // 1 ) );
           errorPos := errorPos + 1
       end while_not_at_end_of_message ;
       writeon( s_w := 0, "." );
       assert( false )
   end rtError ;
   % reads a node from standard input %
   reference(node) procedure readNode ; begin
       reference(node) resultNode;
       % parses a string from line and stores it in a string in the text array %
       % - if it is not already present in the specified textElement list.     %
       % returns the position of the string in the text array                  %
       integer procedure readString ( reference(textElement) value result txList; string(1) value terminator ) ; begin
           string(256) str;
           integer     sLen, sPos, ePos;
           logical     found;
           reference(textElement) txPos, txLastPos;
           % get the text of the string %
           str  := " ";
           sLen := 0;
           str( sLen // 1 ) := line( lPos // 1 );
           sLen := sLen + 1;
           lPos := lPos + 1;
           while lPos <= 255 and line( lPos // 1 ) not = terminator do begin
               str( sLen // 1 ) := line( lPos // 1 );
               sLen := sLen + 1;
               lPos := lPos + 1
           end while_more_string ;
           if lPos > 255 then rtError( "Unterminated String in node file." );
           % attempt to find the text in the list of strings/identifiers %
           txLastPos := txPos := txList;
           found := false;
           ePos := 0;
           while not found and txPos not = null do begin
               ePos  := ePos + 1;
               found := ( length(txPos) = sLen );
               sPos  := 0;
               while found and sPos < sLen do begin
                   found := str( sPos // 1 ) = text( start(txPos) + sPos );
                   sPos  := sPos + 1
               end while_not_found ;
               txLastPos := txPos;
               if not found then txPos := next(txPos)
           end while_string_not_found ;
           if not found then begin
               % the string/identifier is not in the list - add it %
               ePos := ePos + 1;
               if txList = null then txList := textElement( textNext, sLen, null )
                                else next(txLastPos) := textElement( textNext, sLen, null );
               if textNext + sLen > TEXT_MAX then rtError( "Text space exhausted." )
               else begin
                   for cPos := 0 until sLen - 1 do begin
                       text( textNext ) := str( cPos // 1 );
                       textNext := textNext + 1
                   end for_cPos
               end
           end if_not_found ;
           ePos
       end readString ;
       % gets an integer from the line - no checks for valid digits %
       integer procedure readInteger ; begin
           integer n;
           n := 0;
           while line( lPos // 1 ) not = " " do begin
               n    := ( n * 10 ) + ( decode( line( lPos // 1 ) ) - decode( "0" ) );
               lPos := lPos + 1
           end while_not_end_of_integer ;
           n
       end readInteger ;
       string(256) line;
       string(16)  name;
       integer     lPos, tPos, ndType;
       tPos := lPos := 0;
       readcard( line );
       % get the node type name %
       while line( lPos // 1 ) = " " do lPos := lPos + 1;
       name := "";
       while lPos < 256 and line( lPos // 1 ) not = " " do begin
           name( tPos // 1 ) := line( lPos // 1 );
           lPos := lPos + 1;
           tPos := tPos + 1
       end  while_more_name ;
       % determine the node type %
       ndType         := 1;
       resultNode     := null;
       if name not = ";" then begin
           % not a null node %
           while ndType <= MAX_NODE_TYPE and name not = ndName( ndType ) do ndType := ndType + 1;
           if ndType > MAX_NODE_TYPE then rtError( "Malformed node." );
           % handle the additional parameter for identifier/string/integer, or sub-nodes for operator nodes %
           if ndType = nInteger or ndType = nIdentifier or ndType = nString then begin
               while line( lPos // 1 ) = " " do lPos := lPos + 1;
               if      ndType = nInteger    then resultNode := operandNode( ndType, readInteger )
               else if ndType = nIdentifier then resultNode := operandNode( ndType, readString( idList, " "  ) )
               else  % ndType = nString     %    resultNode := operandNode( ndType, readString( stList, """" ) )
               end
           else begin
               % operator node %
               reference(node) leftNode;
               leftNode   := readNode;
               resultNode := opNode( ndType, leftNode, readNode )
           end
       end if_non_null_node ;
       resultNode
   end readNode ;
   % interprets the specified node and returns the value %
   integer procedure eval ( reference(node) value n ) ; begin
       integer v;
       % prints a string from text, escape sequences are interpreted %
       procedure writeOnText( reference(textElement) value txHead; integer value txNumber ) ;
       begin
           reference(textElement) txPos;
           integer                count;
           txPos := txHead;
           count := 1;
           while count < txNumber and txPos not = null do begin
               txPos := next(txPos);
               count := count + 1
           end while_text_element_not_found ;
           if txPos = null then rtError( "INTERNAL ERROR: text not found." )
           else begin
               % found the text - output it, handling escape sequences %
               integer cPos;
               cPos := 1; % start from 1 to skip over the leading " %
               while cPos < length(txPos) do begin
                   string(1) ch;
                   ch := text( start(txPos) + cPos );
                   if ch not = "\" then writeon( s_w := 0, ch )
                   else begin
                       % escaped character %
                       cPos := cPos + 1;
                       if      cPos > length(txPos) then rtError( "String terminates with ""\""." )
                       else begin
                           ch := text( start(txPos) + cPos );
                           if ch = "n" then % newline % write()
                                       else writeon( s_w := 0, ch )
                       end
                   end;
                   cPos := cPos + 1
               end while_not_end_of_string
           end
       end writeOnText ;
       % returns 1 if val is true, 0 otherwise %
       integer procedure booleanResult ( logical value val ) ; begin
           if val then 1 else 0
       end booleanResult ;
       v := 0;
       if      n = null                 then v := 0
       else if type(n) = nIdentifier    then v := data( iValue(n) )
       else if type(n) = nString        then v := iValue(n)
       else if type(n) = nInteger       then v := iValue(n)
       else if type(n) = nSequence      then begin
           % sequence - evaluate and discard the left branch and return the right branch %
           v := eval(  left(n) );
           v := eval( right(n) )
           end
       else if type(n) = nIf            then % if-else         % begin
           if eval( left(n) ) not = 0 then v := eval(  left(right(n)) )
                                      else v := eval( right(right(n)) );
           v := 0
           end
       else if type(n) = nPrtc          then % print character % writeon( s_w := 0, code( eval( left(n) ) ) )
       else if type(n) = nPrts          then % print string    % writeOnText( stList, eval( left(n) ) )
       else if type(n) = nPrti          then % print integer   % writeon( s_w := 0, i_w := 1, eval( left(n) ) )
       else if type(n) = nWhile         then % while-loop      % begin
           while eval( left(n) ) not = 0 do v := eval( right(n) );
           v := 0
           end
       else if type(n) = nAssign        then % assignment      % data( iValue(left(n)) ) := eval( right(n) )
       else if type(n) = nNegate        then % unary -         % v := - eval( left(n) )
       else if type(n) = nNot           then % unary not       % v := booleanResult( eval( left(n) ) = 0 )
       else if type(n) = nMultiply      then % multiply        % v := eval( left(n) ) * eval( right(n) )
       else if type(n) = nDivide        then % division        % begin
           integer lv, rv;
           lv := eval(  left(n) );
           rv := eval( right(n) );
           if rv = 0 then rtError( "Division by 0." )
           else v := lv div rv
           end
       else if type(n) = nMod           then % modulo          % begin
           integer lv, rv;
           lv := eval(  left(n) );
           rv := eval( right(n) );
           if rv = 0 then rtError( "Right operand of % is 0." )
           else v := lv rem rv
           end
       else if type(n) = nAdd           then % addition        % v := eval( left(n) ) + eval( right(n) )
       else if type(n) = nSubtract      then % subtraction     % v := eval( left(n) ) - eval( right(n) )
       else if type(n) = nLess          then % less-than       % v := booleanResult( eval( left(n) ) <     eval( right(n) ) )
       else if type(n) = nLessEqual     then % less or equal   % v := booleanResult( eval( left(n) ) <=    eval( right(n) ) )
       else if type(n) = nGreater       then % greater-than    % v := booleanResult( eval( left(n) ) >     eval( right(n) ) )
       else if type(n) = nGreaterEqual  then % greater or eq   % v := booleanResult( eval( left(n) ) >=    eval( right(n) ) )
       else if type(n) = nEqual         then % test equal      % v := booleanResult( eval( left(n) ) =     eval( right(n) ) )
       else if type(n) = nNotEqual      then % not-equal       % v := booleanResult( eval( left(n) ) not = eval( right(n) ) )
       else if type(n) = nAnd           then % boolean "and"   % begin
           v := eval( left(n) );
           if v not = 0 then v := eval( right(n) )
           end
       else if type(n) = nOr            then % boolean "or"    % begin
           v := eval( left(n) );
           if v = 0 then v := eval( right(n) );
           end
       else % unknown node % begin
           rtError( "Unknown node type in eval." )
       end;
       v
   end eval ;
   nIdentifier      :=  1; ndName( nIdentifier      ) := "Identifier";   nString    :=  2; ndName( nString   ) := "String";
   nInteger         :=  3; ndName( nInteger         ) := "Integer";      nSequence  :=  4; ndName( nSequence ) := "Sequence";
   nIf              :=  5; ndName( nIf              ) := "If";           nPrtc      :=  6; ndName( nPrtc     ) := "Prtc";
   nPrts            :=  7; ndName( nPrts            ) := "Prts";         nPrti      :=  8; ndName( nPrti     ) := "Prti";
   nWhile           :=  9; ndName( nWhile           ) := "While";        nAssign    := 10; ndName( nAssign   ) := "Assign";
   nNegate          := 11; ndName( nNegate          ) := "Negate";       nNot       := 12; ndName( nNot      ) := "Not";
   nMultiply        := 13; ndName( nMultiply        ) := "Multiply";     nDivide    := 14; ndName( nDivide   ) := "Divide";
   nMod             := 15; ndName( nMod             ) := "Mod";          nAdd       := 16; ndName( nAdd      ) := "Add";
   nSubtract        := 17; ndName( nSubtract        ) := "Subtract";     nLess      := 18; ndName( nLess     ) := "Less";
   nLessEqual       := 19; ndName( nLessEqual       ) := "LessEqual"  ;  nGreater   := 20; ndName( nGreater  ) := "Greater";
   nGreaterEqual    := 21; ndName( nGreaterEqual    ) := "GreaterEqual"; nEqual     := 22; ndName( nEqual    ) := "Equal";
   nNotEqual        := 23; ndName( nNotEqual        ) := "NotEqual";     nAnd       := 24; ndName( nAnd      ) := "And";
   nOr              := 25; ndName( nOr              ) := "Or";
   MAX_NODE_TYPE    := 25; TEXT_MAX := 4095; textNext := 0;
   stList := idList := null;
   % parse the output from the syntax analyser and intetrpret parse tree %
   eval( readNode )

end.</lang>

Output:
3 is prime
5 is prime
7 is prime
11 is prime
...
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

C

Tested with gcc 4.81 and later, compiles warning free with -Wall -Wextra <lang C>#include <stdlib.h>

  1. include <stdio.h>
  2. include <string.h>
  3. include <stdarg.h>
  4. include <ctype.h>
  1. define da_dim(name, type) type *name = NULL; \
                           int _qy_ ## name ## _p = 0;  \
                           int _qy_ ## name ## _max = 0
  1. define da_rewind(name) _qy_ ## name ## _p = 0
  2. define da_redim(name) do {if (_qy_ ## name ## _p >= _qy_ ## name ## _max) \
                               name = realloc(name, (_qy_ ## name ## _max += 32) * sizeof(name[0]));} while (0)
  1. define da_append(name, x) do {da_redim(name); name[_qy_ ## name ## _p++] = x;} while (0)
  2. define da_len(name) _qy_ ## name ## _p
  3. define da_add(name) do {da_redim(name); _qy_ ## name ## _p++;} while (0)

typedef enum {

   nd_Ident, nd_String, nd_Integer, nd_Sequence, nd_If, nd_Prtc, nd_Prts, nd_Prti, nd_While,
   nd_Assign, nd_Negate, nd_Not, nd_Mul, nd_Div, nd_Mod, nd_Add, nd_Sub, nd_Lss, nd_Leq,
   nd_Gtr, nd_Geq, nd_Eql, nd_Neq, nd_And, nd_Or

} NodeType;

typedef struct Tree Tree; struct Tree {

   NodeType node_type;
   Tree *left;
   Tree *right;
   int value;

};

// dependency: Ordered by NodeType, must remain in same order as NodeType enum

struct {

   char       *enum_text;
   NodeType   node_type;

} atr[] = {

   {"Identifier"  , nd_Ident,  },  {"String"      , nd_String,  },
   {"Integer"     , nd_Integer,},  {"Sequence"    , nd_Sequence,},
   {"If"          , nd_If,     },  {"Prtc"        , nd_Prtc,    },
   {"Prts"        , nd_Prts,   },  {"Prti"        , nd_Prti,    },
   {"While"       , nd_While,  },  {"Assign"      , nd_Assign,  },
   {"Negate"      , nd_Negate, },  {"Not"         , nd_Not,     },
   {"Multiply"    , nd_Mul,    },  {"Divide"      , nd_Div,     },
   {"Mod"         , nd_Mod,    },  {"Add"         , nd_Add,     },
   {"Subtract"    , nd_Sub,    },  {"Less"        , nd_Lss,     },
   {"LessEqual"   , nd_Leq,    },  {"Greater"     , nd_Gtr,     },
   {"GreaterEqual", nd_Geq,    },  {"Equal"       , nd_Eql,     },
   {"NotEqual"    , nd_Neq,    },  {"And"         , nd_And,     },
   {"Or"          , nd_Or,     },

};

FILE *source_fp; da_dim(string_pool, const char *); da_dim(global_names, const char *); da_dim(global_values, int);

void error(const char *fmt, ... ) {

   va_list ap;
   char buf[1000];
   va_start(ap, fmt);
   vsprintf(buf, fmt, ap);
   printf("error: %s\n", buf);
   exit(1);

}

Tree *make_node(NodeType node_type, Tree *left, Tree *right) {

   Tree *t = calloc(sizeof(Tree), 1);
   t->node_type = node_type;
   t->left = left;
   t->right = right;
   return t;

}

Tree *make_leaf(NodeType node_type, int value) {

   Tree *t = calloc(sizeof(Tree), 1);
   t->node_type = node_type;
   t->value = value;
   return t;

}

int interp(Tree *x) { /* interpret the parse tree */

   if (!x) return 0;
   switch(x->node_type) {
       case nd_Integer:  return x->value;
       case nd_Ident:    return global_values[x->value];
       case nd_String:   return x->value;
       case nd_Assign:   return global_values[x->left->value] = interp(x->right);
       case nd_Add:      return interp(x->left) +  interp(x->right);
       case nd_Sub:      return interp(x->left) -  interp(x->right);
       case nd_Mul:      return interp(x->left) *  interp(x->right);
       case nd_Div:      return interp(x->left) /  interp(x->right);
       case nd_Mod:      return interp(x->left) %  interp(x->right);
       case nd_Lss:      return interp(x->left) <  interp(x->right);
       case nd_Gtr:      return interp(x->left) >  interp(x->right);
       case nd_Leq:      return interp(x->left) <= interp(x->right);
       case nd_Eql:      return interp(x->left) == interp(x->right);
       case nd_Neq:      return interp(x->left) != interp(x->right);
       case nd_And:      return interp(x->left) && interp(x->right);
       case nd_Or:       return interp(x->left) || interp(x->right);  
       case nd_Negate:   return -interp(x->left);
       case nd_Not:      return !interp(x->left);
       case nd_If:       if (interp(x->left))
                           interp(x->right->left);
                         else
                           interp(x->right->right);
                         return 0;
       case nd_While:    while (interp(x->left))
                           interp(x->right);
                         return 0;
       case nd_Prtc:     printf("%c", interp(x->left));
                         return 0;
       case nd_Prti:     printf("%d", interp(x->left));
                         return 0;
       case nd_Prts:     printf("%s", string_pool[interp(x->left)]);
                         return 0;
       case nd_Sequence: interp(x->left);
                         interp(x->right);
                         return 0;
       default:          error("interp: unknown tree type %d\n", x->node_type);
   }
   return 0;

}

void init_in(const char fn[]) {

   if (fn[0] == '\0')
       source_fp = stdin;
   else {
       source_fp = fopen(fn, "r");
       if (source_fp == NULL)
           error("Can't open %s\n", fn);
   }

}

NodeType get_enum_value(const char name[]) {

   for (size_t i = 0; i < sizeof(atr) / sizeof(atr[0]); i++) {
       if (strcmp(atr[i].enum_text, name) == 0) {
           return atr[i].node_type;
       }
   }
   error("Unknown token %s\n", name);
   return -1;

}

char *read_line(int *len) {

   static char *text = NULL;
   static int textmax = 0;
   for (*len = 0; ; (*len)++) {
       int ch = fgetc(source_fp);
       if (ch == EOF || ch == '\n') {
           if (*len == 0)
               return NULL;
           break;
       }
       if (*len + 1 >= textmax) {
           textmax = (textmax == 0 ? 128 : textmax * 2);
           text = realloc(text, textmax);
       }
       text[*len] = ch;
   }
   text[*len] = '\0';
   return text;

}

char *rtrim(char *text, int *len) { // remove trailing spaces

   for (; *len > 0 && isspace(text[*len - 1]); --(*len))
       ;
   text[*len] = '\0';
   return text;

}

int fetch_string_offset(char *st) {

   int len = strlen(st);
   st[len - 1] = '\0';
   ++st;
   char *p, *q;
   p = q = st;
   while ((*p++ = *q++) != '\0') {
       if (q[-1] == '\\') {
           if (q[0] == 'n') {
               p[-1] = '\n';
               ++q;
           } else if (q[0] == '\\') {
               ++q;
           }
       }
   }
   for (int i = 0; i < da_len(string_pool); ++i) {
       if (strcmp(st, string_pool[i]) == 0) {
           return i;
       }
   }
   da_add(string_pool);
   int n = da_len(string_pool) - 1;
   string_pool[n] = strdup(st);
   return da_len(string_pool) - 1;

}

int fetch_var_offset(const char *name) {

   for (int i = 0; i < da_len(global_names); ++i) {
       if (strcmp(name, global_names[i]) == 0)
           return i;
   }
   da_add(global_names);
   int n = da_len(global_names) - 1;
   global_names[n] = strdup(name);
   da_append(global_values, 0);
   return n;

}

Tree *load_ast() {

   int len;
   char *yytext = read_line(&len);
   yytext = rtrim(yytext, &len);
   // get first token
   char *tok = strtok(yytext, " ");
   if (tok[0] == ';') {
       return NULL;
   }
   NodeType node_type = get_enum_value(tok);
   // if there is extra data, get it
   char *p = tok + strlen(tok);
   if (p != &yytext[len]) {
       int n;
       for (++p; isspace(*p); ++p)
           ;
       switch (node_type) {
           case nd_Ident:      n = fetch_var_offset(p);    break;
           case nd_Integer:    n = strtol(p, NULL, 0);     break;
           case nd_String:     n = fetch_string_offset(p); break;
           default:            error("Unknown node type: %s\n", p);
       }
       return make_leaf(node_type, n);
   }
   Tree *left  = load_ast();
   Tree *right = load_ast();
   return make_node(node_type, left, right);

}

int main(int argc, char *argv[]) {

   init_in(argc > 1 ? argv[1] : "");
   Tree *x = load_ast();
   interp(x);
   return 0;

}</lang>

Output  —  prime numbers output from AST interpreter:

lex prime.t | parse | interp
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

COBOL

Code by Steve Williams. Tested with GnuCOBOL 2.2.

<lang cobol> >>SOURCE FORMAT IS FREE identification division.

  • > this code is dedicated to the public domain
  • > (GnuCOBOL) 2.3-dev.0

program-id. astinterpreter. environment division. configuration section. repository. function all intrinsic. data division. working-storage section. 01 program-name pic x(32) value spaces global. 01 input-name pic x(32) value spaces global. 01 input-status pic xx global.

01 ast-record global.

   03  ast-type pic x(14).
   03  ast-value pic x(48).
   03  filler redefines ast-value.
       05  asl-left pic 999.
       05  asl-right pic 999.

01 error-record pic x(64) value spaces global.

01 loadstack global.

   03  l pic 99 value 0.
   03  l-lim pic 99 value 64.
   03  load-entry occurs 64.
       05  l-node pic x(14).
       05  l-left pic 999.
       05  l-right pic 999.
       05  l-link pic 999.

01 abstract-syntax-tree global.

   03  t pic 999 value 0.
   03  t1 pic 999.
   03  n1 pic 999.
   03  t-lim pic 999 value 998.
   03  filler occurs 998.
       05  leaf.
           07  leaf-type pic x(14).
           07  leaf-value pic x(48).
       05  node redefines leaf.
           07  node-type pic x(14).
           07  node-left pic 999.
           07  node-right pic 999.


01 interpreterstack global.

   03  stack1 pic 99 value 2.
   03  stack2 pic 99 value 1.
   03  stack-lim pic 99 value 32.
   03  stack-entry occurs 32.
        05  stack-source pic 99.
        05  stack usage binary-int.

01 variables global.

   03  v pic 99.
   03  v-max pic 99 value 0.
   03  v-lim pic 99 value 16.
   03  filler occurs 16.
       05  variable-value binary-int.
       05  variable-name pic x(48).

01 strings global.

   03  s pic 99.
   03  s-max pic 99 value 0.
   03  s-lim pic 99 value 16.
   03  filler occurs 16 value spaces.
       05  string-value pic x(48).

01 string-fields global.

   03  string-length pic 99.
   03  string1 pic 99.
   03  length1 pic 99.
   03  count1 pic 99.

01 display-fields global.

   03  display-number pic -(9)9.
   03  display-pending pic x value 'n'.
   03  character-value.
       05  character-number usage binary-char.

procedure division chaining program-name. start-astinterpreter.

   call 'loadast'
   if program-name <> spaces
       call 'readinput' *> close the input-file
   end-if
   >>d perform print-ast
   call 'runast' using t
   if display-pending = 'y'
       display space
   end-if
   stop run
   .

print-ast.

   call 'printast' using t
   display 'ast:' upon syserr
   display 't=' t
   perform varying t1 from 1 by 1 until t1 > t
       if leaf-type(t1) = 'Identifier' or 'Integer' or 'String'
           display t1 space trim(leaf-type(t1)) space trim(leaf-value(t1)) upon syserr
       else
           display t1 space node-left(t1) space node-right(t1) space trim(node-type(t1)) 
               upon syserr
       end-if
   end-perform
   .

identification division. program-id. runast common recursive. data division. working-storage section. 01 word-length constant as length of binary-int. linkage section. 01 n pic 999. procedure division using n. start-runast.

   if n = 0
       exit program
   end-if
   evaluate node-type(n)
   when 'Integer'
       perform push-stack
       move numval(leaf-value(n)) to stack(stack1)
   when 'Identifier'
       perform get-variable-index
       perform push-stack
       move v to stack-source(stack1)
       move variable-value(v) to stack(stack1)
   when 'String'
       perform get-string-index
       perform push-stack
       move s to stack-source(stack1)
   when 'Assign'
       call 'runast' using node-left(n)
       call 'runast' using node-right(n)
       move stack-source(stack2) to v
       move stack(stack1) to variable-value(v)
       perform pop-stack
       perform pop-stack
   when 'If'
       call 'runast' using node-left(n)
       move node-right(n) to n1
       if stack(stack1) <> 0
           call 'runast' using node-left(n1)
       else
           call 'runast' using node-right(n1)
       end-if
       perform pop-stack
   when 'While'
       call 'runast' using node-left(n)
       perform until stack(stack1) = 0
           perform pop-stack
           call 'runast' using node-right(n)
           call 'runast' using node-left(n)
       end-perform
       perform pop-stack
   when 'Add'
       perform get-values
       add stack(stack1) to stack(stack2)
       perform pop-stack
   when 'Subtract'
       perform get-values
       subtract stack(stack1) from stack(stack2)
       perform pop-stack
   when 'Multiply'
       perform get-values
       multiply stack(stack1) by stack(stack2)
       perform pop-stack
   when 'Divide'
       perform get-values
       divide stack(stack1) into stack(stack2)
       perform pop-stack
   when 'Mod'
       perform get-values
       move mod(stack(stack2),stack(stack1)) to stack(stack2)
       perform pop-stack
   when 'Less'
       perform get-values
       if stack(stack2) < stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'Greater'
       perform get-values
       if stack(stack2) > stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'LessEqual'
       perform get-values
       if stack(stack2) <= stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'GreaterEqual'
       perform get-values
       if stack(stack2) >= stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'Equal'
       perform get-values
       if stack(stack2) = stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'NotEqual'
       perform get-values
       if stack(stack2) <> stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'And'
       perform get-values
       call "CBL_AND" using stack(stack1) stack(stack2) by value word-length
       perform pop-stack
   when 'Or'
       perform get-values
       call "CBL_OR" using stack(stack1) stack(stack2) by value word-length
       perform pop-stack
   when 'Not'
       call 'runast' using node-left(n)
       if stack(stack1) = 0
           move 1 to stack(stack1)
       else
           move 0 to stack(stack1)
       end-if
   when 'Negate'
       call 'runast' using node-left(n)
       compute stack(stack1) = - stack(stack1)
   when 'Prtc'
       call 'runast' using node-left(n)
       move stack(stack1) to character-number
       display character-value with no advancing
       move 'y' to display-pending
       perform pop-stack
   when 'Prti'
       call 'runast' using node-left(n)
       move stack(stack1) to display-number
       display trim(display-number) with no advancing
       move 'y' to display-pending
       perform pop-stack
   when 'Prts'
       call 'runast' using node-left(n)
       move stack-source(stack1) to s
       move length(trim(string-value(s))) to string-length
       move 2 to string1
       compute length1 = string-length - 2
       perform until string1 >= string-length
           move 0 to count1
           inspect string-value(s)(string1:length1)
               tallying count1 for characters before initial '\'   *> ' (workaround Rosetta Code highlighter problem)
           evaluate true
           when string-value(s)(string1 + count1 + 1:1) = 'n' *> \n
               display string-value(s)(string1:count1)
               move 'n' to display-pending
               compute string1 = string1 + 2 + count1
               compute length1 = length1 - 2 - count1
           when string-value(s)(string1 + count1 + 1:1) = '\' *> \\ '
               display string-value(s)(string1:count1 + 1) with no advancing
               move 'y' to display-pending
               compute string1 = string1 + 2 + count1
               compute length1 = length1 - 2 - count1
           when other
               display string-value(s)(string1:count1) with no advancing
               move 'y' to display-pending
               add count1 to string1
               subtract count1 from length1
           end-evaluate
       end-perform 
       perform pop-stack
   when 'Sequence'
       call 'runast' using node-left(n)
       call 'runast' using node-right(n)
   when other
       string 'in astinterpreter unknown node type ' node-type(n) into error-record
       call 'reporterror'
   end-evaluate
   exit program
   .

push-stack.

   if stack1 >= s-lim
       string 'in astinterpreter at ' n ' stack overflow' into error-record
       call 'reporterror'
   end-if
   add 1 to stack1 stack2
   initialize stack-entry(stack1)
   .

pop-stack.

   if stack1 < 2
       string 'in astinterpreter at ' n ' stack underflow ' into error-record
       call 'reporterror'
   end-if
   subtract 1 from stack1 stack2
   .

get-variable-index.

   perform varying v from 1 by 1 until v > v-max
   or variable-name(v) = leaf-value(n)
       continue
   end-perform
   if v > v-max
       if v-max = v-lim
           string 'in astinterpreter number of variables exceeds ' v-lim into error-record
           call 'reporterror'
       end-if
       move v to v-max
       move leaf-value(n) to variable-name(v)
       move 0 to variable-value(v)
   end-if
   .

get-string-index.

   perform varying s from 1 by 1 until s > s-max
   or string-value(s) = leaf-value(n)
       continue
   end-perform
   if s > s-max
       if s-max = s-lim
           string 'in astinterpreter number of strings exceeds ' s-lim into error-record
           call 'reporterror'
       end-if
       move s to s-max
       move leaf-value(n) to string-value(s)
   end-if
   .

get-values.

   call 'runast' using node-left(n)
   call 'runast' using node-right(n)
   .

end program runast.

identification division. program-id. loadast common recursive. procedure division. start-loadast.

   if l >= l-lim
       string 'in astinterpreter loadast l exceeds ' l-lim into error-record
       call 'reporterror'
   end-if
   add 1 to l
   call 'readinput'
   evaluate true
   when ast-record = ';'
   when input-status = '10'
       move 0 to return-code
   when ast-type = 'Identifier'
   when ast-type = 'Integer'
   when ast-type = 'String'
       call 'makeleaf' using ast-type ast-value
       move t to return-code
   when ast-type = 'Sequence'
       move ast-type to l-node(l)
       call 'loadast'
       move return-code to l-left(l)
       call 'loadast'
       move t to l-right(l)
       call 'makenode' using l-node(l) l-left(l) l-right(l)
       move t to return-code
   when other
       move ast-type to l-node(l)
       call 'loadast'
       move return-code to l-left(l)
       call 'loadast'
       move return-code to l-right(l)
       call 'makenode' using l-node(l) l-left(l) l-right(l)
       move t to return-code
   end-evaluate
   subtract 1 from l
   .

end program loadast.

identification division. program-id. makenode common. data division. linkage section. 01 parm-type any length. 01 parm-l-left pic 999. 01 parm-l-right pic 999. procedure division using parm-type parm-l-left parm-l-right. start-makenode.

   if t >= t-lim 
       string 'in astinterpreter makenode t exceeds ' t-lim into error-record
       call 'reporterror'
   end-if
   add 1 to t
   move parm-type to node-type(t)
   move parm-l-left to node-left(t)
   move parm-l-right to node-right(t)
   .

end program makenode.

identification division. program-id. makeleaf common. data division. linkage section. 01 parm-type any length. 01 parm-value pic x(48). procedure division using parm-type parm-value. start-makeleaf.

   add 1 to t
   if t >= t-lim 
       string 'in astinterpreter makeleaf t exceeds ' t-lim into error-record
       call 'reporterror'
   end-if
   move parm-type to leaf-type(t)
   move parm-value to leaf-value(t)
   .

end program makeleaf.

identification division. program-id. printast common recursive. data division. linkage section. 01 n pic 999. procedure division using n. start-printast.

   if n = 0
       display ';' upon syserr
       exit program
   end-if
   display leaf-type(n) upon syserr
   evaluate leaf-type(n)
   when 'Identifier'
   when 'Integer'
   when 'String'
       display leaf-type(n) space trim(leaf-value(n)) upon syserr
   when other
       display node-type(n) upon syserr
       call 'printast' using node-left(n)
       call 'printast' using node-right(n)
   end-evaluate
   .

end program printast.

identification division. program-id. readinput common. environment division. input-output section. file-control.

   select input-file assign using input-name
       status is input-status
       organization is line sequential.

data division. file section. fd input-file. 01 input-record pic x(64). procedure division. start-readinput.

   if program-name = spaces
       move '00' to input-status
       accept ast-record on exception move '10' to input-status end-accept
       exit program
   end-if
   if input-name = spaces
       string program-name delimited by space '.ast' into input-name
       open input input-file
       if input-status = '35'
           string 'in astinterpreter ' trim(input-name) ' not found' into error-record
           call 'reporterror'
       end-if
   end-if
   read input-file into ast-record
   evaluate input-status
   when '00'
       continue
   when '10'
       close input-file
   when other
       string 'in astinterpreter ' trim(input-name) ' unexpected input-status: ' input-status
           into error-record
       call 'reporterror'
   end-evaluate
   .

end program readinput.

program-id. reporterror common. procedure division. start-reporterror. report-error.

   display error-record upon syserr
   stop run with error status -1
   .

end program reporterror. end program astinterpreter.</lang>

Output  —  Primes:
prompt$ ./lexer <testcases/Primes | ./parser | ./astinterpreter 
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Forth

Tested with Gforth 0.7.3 <lang Forth>CREATE BUF 0 , \ single-character look-ahead buffer

PEEK BUF @ 0= IF KEY BUF ! THEN BUF @ ;
GETC PEEK 0 BUF ! ;
SPACE? DUP BL = SWAP 9 14 WITHIN OR ;
>SPACE BEGIN PEEK SPACE? WHILE GETC DROP REPEAT ;
DIGIT? 48 58 WITHIN ;
GETINT >SPACE 0
  BEGIN  PEEK DIGIT?
  WHILE  GETC [CHAR] 0 -  SWAP 10 * +  REPEAT ;
GETNAM >SPACE PAD 1+
  BEGIN PEEK SPACE? INVERT
  WHILE GETC OVER C! CHAR+
  REPEAT  PAD TUCK - 1-  PAD C! ;
GETSTR ( -- c-addr u)
  HERE >R 0  >SPACE GETC DROP  \ skip leading "
  BEGIN GETC DUP [CHAR] " <> WHILE C, 1+ REPEAT
  DROP R> SWAP ;
\TYPE BEGIN DUP 0> WHILE
  OVER C@ [CHAR] \ = IF
    1- >R CHAR+ R>
    OVER C@ [CHAR] n = IF CR ELSE
    OVER C@ [CHAR] \ = IF [CHAR] \ EMIT THEN THEN
  ELSE OVER C@ EMIT THEN  1- >R CHAR+ R> REPEAT
  DROP DROP ;
. S>D SWAP OVER DABS <# #S ROT SIGN #> TYPE ;
CONS ( v l -- l) HERE >R SWAP , , R> ;
HEAD ( l -- v) @ ;
TAIL ( l -- l) CELL+ @ ;

CREATE GLOBALS 0 ,

DECLARE ( c-addr -- a-addr) HERE TUCK
  OVER C@ CHAR+  DUP ALLOT CMOVE  HERE SWAP 0 ,
  GLOBALS @ CONS  GLOBALS ! ;
LOOKUP ( c-addr -- a-addr) DUP COUNT GLOBALS @ >R
  BEGIN R@ 0<>
  WHILE R@ HEAD COUNT  2OVER COMPARE 0=
    IF 2DROP DROP  R> HEAD DUP C@ CHAR+ + EXIT
    THEN  R> TAIL >R
  REPEAT
  2DROP RDROP  DECLARE ;

DEFER GETAST

>Identifier GETNAM LOOKUP 0 ;
>Integer GETINT 0 ;
>String GETSTR ;
>; 0 0 ;
NODE ( xt left right -- addr) HERE >R , , , R> ;

CREATE BUF' 12 ALLOT

PREPEND ( c-addr c -- c-addr) BUF' 1+ C!
  COUNT DUP 1+ BUF' C!  BUF' 2 + SWAP CMOVE  BUF' ;
HANDLER ( c-addr -- xt) [CHAR] $ PREPEND FIND
  0= IF ." No handler for AST node '" COUNT TYPE ." '" THEN ;
READER ( c-addr -- xt t | f)
  [CHAR] > PREPEND  FIND  DUP 0= IF NIP THEN ;
READ ( c-addr -- left right) READER
  IF EXECUTE ELSE GETAST GETAST THEN ;
(GETAST) GETNAM DUP HANDLER SWAP READ NODE ;

' (GETAST) IS GETAST

INTERP DUP 2@ ROT [ 2 CELLS ]L + @ EXECUTE ;
$; DROP DROP ;
$Identifier ( l r -- a-addr) DROP @ ;
$Integer ( l r -- n) DROP ;
$String ( l r -- c-addr u) ( noop) ;
$Prtc ( l r --) DROP INTERP EMIT ;
$Prti ( l r --) DROP INTERP . ;
$Prts ( l r --) DROP INTERP \TYPE ;
$Not ( l r --) DROP INTERP 0= ;
$Negate ( l r --) DROP INTERP NEGATE ;
$Sequence ( l r --) SWAP INTERP INTERP ;
$Assign ( l r --) SWAP CELL+ @ >R INTERP R> ! ;
$While ( l r --)
  >R BEGIN DUP INTERP WHILE R@ INTERP REPEAT  RDROP DROP ;
$If ( l r --) SWAP INTERP 0<> IF CELL+ THEN @ INTERP ;
$Subtract ( l r -- n) >R INTERP R> INTERP - ;
$Add >R INTERP R> INTERP + ;
$Mod >R INTERP R> INTERP MOD ;
$Multiply >R INTERP R> INTERP * ;
$Divide >R INTERP S>D R> INTERP SM/REM SWAP DROP ;
$Less >R INTERP R> INTERP < ;
$LessEqual >R INTERP R> INTERP <= ;
$Greater >R INTERP R> INTERP > ;
$GreaterEqual >R INTERP R> INTERP >= ;
$Equal >R INTERP R> INTERP = ;
$NotEqual >R INTERP R> INTERP <> ;
$And >R INTERP IF R> INTERP 0<> ELSE RDROP 0 THEN ;
$Or >R INTERP IF RDROP -1 ELSE R> INTERP 0<> THEN ;

GETAST INTERP </lang> Passes all tests.

Fortran

Works with: gfortran version 11.2.1

The code is Fortran 2008/2018 with the C preprocessor. On case-sensitive systems, you can name the source file Interp.F90, with a capital F, so gfortran will know (without an option flag) to invoke the C preprocessor.

<lang fortran>!!! !!! An implementation of the Rosetta Code interpreter task: !!! https://rosettacode.org/wiki/Compiler/AST_interpreter !!! !!! The implementation is based on the published pseudocode. !!!

module compiler_type_kinds

 use, intrinsic :: iso_fortran_env, only: int32
 use, intrinsic :: iso_fortran_env, only: int64
 implicit none
 private
 ! Synonyms.
 integer, parameter, public :: size_kind = int64
 integer, parameter, public :: length_kind = size_kind
 integer, parameter, public :: nk = size_kind
 ! Synonyms for character capable of storing a Unicode code point.
 integer, parameter, public :: unicode_char_kind = selected_char_kind ('ISO_10646')
 integer, parameter, public :: ck = unicode_char_kind
 ! Synonyms for integers capable of storing a Unicode code point.
 integer, parameter, public :: unicode_ichar_kind = int32
 integer, parameter, public :: ick = unicode_ichar_kind
 ! Synonyms for integers in the runtime code.
 integer, parameter, public :: runtime_int_kind = int64
 integer, parameter, public :: rik = runtime_int_kind

end module compiler_type_kinds

module helper_procedures

 use, non_intrinsic :: compiler_type_kinds, only: nk, ck
 implicit none
 private
 public :: new_storage_size
 public :: next_power_of_two
 public :: isspace
 character(1, kind = ck), parameter :: horizontal_tab_char = char (9, kind = ck)
 character(1, kind = ck), parameter :: linefeed_char = char (10, kind = ck)
 character(1, kind = ck), parameter :: vertical_tab_char = char (11, kind = ck)
 character(1, kind = ck), parameter :: formfeed_char = char (12, kind = ck)
 character(1, kind = ck), parameter :: carriage_return_char = char (13, kind = ck)
 character(1, kind = ck), parameter :: space_char = ck_' '

contains

 elemental function new_storage_size (length_needed) result (size)
   integer(kind = nk), intent(in) :: length_needed
   integer(kind = nk) :: size
   ! Increase storage by orders of magnitude.
   if (2_nk**32 < length_needed) then
      size = huge (1_nk)
   else
      size = next_power_of_two (length_needed)
   end if
 end function new_storage_size


 elemental function next_power_of_two (x) result (y)
   integer(kind = nk), intent(in) :: x
   integer(kind = nk) :: y
   !
   ! It is assumed that no more than 64 bits are used.
   !
   ! The branch-free algorithm is that of
   ! https://archive.is/nKxAc#RoundUpPowerOf2
   !
   ! Fill in bits until one less than the desired power of two is
   ! reached, and then add one.
   !
   y = x - 1
   y = ior (y, ishft (y, -1))
   y = ior (y, ishft (y, -2))
   y = ior (y, ishft (y, -4))
   y = ior (y, ishft (y, -8))
   y = ior (y, ishft (y, -16))
   y = ior (y, ishft (y, -32))
   y = y + 1
 end function next_power_of_two
 elemental function isspace (ch) result (bool)
   character(1, kind = ck), intent(in) :: ch
   logical :: bool
   bool = (ch == horizontal_tab_char) .or.  &
        & (ch == linefeed_char) .or.        &
        & (ch == vertical_tab_char) .or.    &
        & (ch == formfeed_char) .or.        &
        & (ch == carriage_return_char) .or. &
        & (ch == space_char)
 end function isspace

end module helper_procedures

module string_buffers

 use, intrinsic :: iso_fortran_env, only: error_unit
 use, intrinsic :: iso_fortran_env, only: int64
 use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick
 use, non_intrinsic :: helper_procedures
 implicit none
 private
 public :: strbuf_t
 public :: skip_whitespace
 public :: skip_non_whitespace
 public :: skip_whitespace_backwards
 public :: at_end_of_line
 type :: strbuf_t
    integer(kind = nk), private :: len = 0
    !
    ! ‘chars’ is made public for efficient access to the individual
    ! characters.
    !
    character(1, kind = ck), allocatable, public :: chars(:)
  contains
    procedure, pass, private :: ensure_storage => strbuf_t_ensure_storage
    procedure, pass :: to_unicode_full_string => strbuf_t_to_unicode_full_string
    procedure, pass :: to_unicode_substring => strbuf_t_to_unicode_substring
    procedure, pass :: length => strbuf_t_length
    procedure, pass :: set => strbuf_t_set
    procedure, pass :: append => strbuf_t_append
    generic :: to_unicode => to_unicode_full_string
    generic :: to_unicode => to_unicode_substring
    generic :: assignment(=) => set
 end type strbuf_t

contains

 function strbuf_t_to_unicode_full_string (strbuf) result (s)
   class(strbuf_t), intent(in) :: strbuf
   character(:, kind = ck), allocatable :: s
   !
   ! This does not actually ensure that the string is valid Unicode;
   ! any 31-bit ‘character’ is supported.
   !
   integer(kind = nk) :: i
   allocate (character(len = strbuf%len, kind = ck) :: s)
   do i = 1, strbuf%len
      s(i:i) = strbuf%chars(i)
   end do
 end function strbuf_t_to_unicode_full_string
 function strbuf_t_to_unicode_substring (strbuf, i, j) result (s)
   !
   ! ‘Extreme’ values of i and j are allowed, as shortcuts for ‘from
   ! the beginning’, ‘up to the end’, or ‘empty substring’.
   !
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i, j
   character(:, kind = ck), allocatable :: s
   !
   ! This does not actually ensure that the string is valid Unicode;
   ! any 31-bit ‘character’ is supported.
   !
   integer(kind = nk) :: i1, j1
   integer(kind = nk) :: n
   integer(kind = nk) :: k
   i1 = max (1_nk, i)
   j1 = min (strbuf%len, j)
   n = max (0_nk, (j1 - i1) + 1_nk)
   allocate (character(n, kind = ck) :: s)
   do k = 1, n
      s(k:k) = strbuf%chars(i1 + (k - 1_nk))
   end do
 end function strbuf_t_to_unicode_substring
 elemental function strbuf_t_length (strbuf) result (n)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk) :: n
   n = strbuf%len
 end function strbuf_t_length
 subroutine strbuf_t_ensure_storage (strbuf, length_needed)
   class(strbuf_t), intent(inout) :: strbuf
   integer(kind = nk), intent(in) :: length_needed
   integer(kind = nk) :: len_needed
   integer(kind = nk) :: new_size
   type(strbuf_t) :: new_strbuf
   len_needed = max (length_needed, 1_nk)
   if (.not. allocated (strbuf%chars)) then
      ! Initialize a new strbuf%chars array.
      new_size = new_storage_size (len_needed)
      allocate (strbuf%chars(1:new_size))
   else if (ubound (strbuf%chars, 1) < len_needed) then
      ! Allocate a new strbuf%chars array, larger than the current
      ! one, but containing the same characters.
      new_size = new_storage_size (len_needed)
      allocate (new_strbuf%chars(1:new_size))
      new_strbuf%chars(1:strbuf%len) = strbuf%chars(1:strbuf%len)
      call move_alloc (new_strbuf%chars, strbuf%chars)
   end if
 end subroutine strbuf_t_ensure_storage
 subroutine strbuf_t_set (dst, src)
   class(strbuf_t), intent(inout) :: dst
   class(*), intent(in) :: src
   integer(kind = nk) :: n
   integer(kind = nk) :: i
   select type (src)
   type is (character(*, kind = ck))
      n = len (src, kind = nk)
      call dst%ensure_storage(n)
      do i = 1, n
         dst%chars(i) = src(i:i)
      end do
      dst%len = n
   type is (character(*))
      n = len (src, kind = nk)
      call dst%ensure_storage(n)
      do i = 1, n
         dst%chars(i) = src(i:i)
      end do
      dst%len = n
   class is (strbuf_t)
      n = src%len
      call dst%ensure_storage(n)
      dst%chars(1:n) = src%chars(1:n)
      dst%len = n
   class default
      error stop
   end select
 end subroutine strbuf_t_set
 subroutine strbuf_t_append (dst, src)
   class(strbuf_t), intent(inout) :: dst
   class(*), intent(in) :: src
   integer(kind = nk) :: n_dst, n_src, n
   integer(kind = nk) :: i
   select type (src)
   type is (character(*, kind = ck))
      n_dst = dst%len
      n_src = len (src, kind = nk)
      n = n_dst + n_src
      call dst%ensure_storage(n)
      do i = 1, n_src
         dst%chars(n_dst + i) = src(i:i)
      end do
      dst%len = n
   type is (character(*))
      n_dst = dst%len
      n_src = len (src, kind = nk)
      n = n_dst + n_src
      call dst%ensure_storage(n)
      do i = 1, n_src
         dst%chars(n_dst + i) = src(i:i)
      end do
      dst%len = n
   class is (strbuf_t)
      n_dst = dst%len
      n_src = src%len
      n = n_dst + n_src
      call dst%ensure_storage(n)
      dst%chars((n_dst + 1):n) = src%chars(1:n_src)
      dst%len = n
   class default
      error stop
   end select
 end subroutine strbuf_t_append
 function skip_whitespace (strbuf, i) result (j)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i
   integer(kind = nk) :: j
   logical :: done
   j = i
   done = .false.
   do while (.not. done)
      if (at_end_of_line (strbuf, j)) then
         done = .true.
      else if (.not. isspace (strbuf%chars(j))) then
         done = .true.
      else
         j = j + 1
      end if
   end do
 end function skip_whitespace
 function skip_non_whitespace (strbuf, i) result (j)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i
   integer(kind = nk) :: j
   logical :: done
   j = i
   done = .false.
   do while (.not. done)
      if (at_end_of_line (strbuf, j)) then
         done = .true.
      else if (isspace (strbuf%chars(j))) then
         done = .true.
      else
         j = j + 1
      end if
   end do
 end function skip_non_whitespace
 function skip_whitespace_backwards (strbuf, i) result (j)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i
   integer(kind = nk) :: j
   logical :: done
   j = i
   done = .false.
   do while (.not. done)
      if (j == -1) then
         done = .true.
      else if (.not. isspace (strbuf%chars(j))) then
         done = .true.
      else
         j = j - 1
      end if
   end do
 end function skip_whitespace_backwards
 function at_end_of_line (strbuf, i) result (bool)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i
   logical :: bool
   bool = (strbuf%length() < i)
 end function at_end_of_line

end module string_buffers

module reading_one_line_from_a_stream

 use, intrinsic :: iso_fortran_env, only: input_unit
 use, intrinsic :: iso_fortran_env, only: error_unit
 use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick
 use, non_intrinsic :: string_buffers
 implicit none
 private
 ! get_line_from_stream: read an entire input line from a stream into
 ! a strbuf_t.
 public :: get_line_from_stream
 character(1, kind = ck), parameter :: linefeed_char = char (10, kind = ck)
 ! The following is correct for Unix and its relatives.
 character(1, kind = ck), parameter :: newline_char = linefeed_char

contains

 subroutine get_line_from_stream (unit_no, eof, no_newline, strbuf)
   integer, intent(in) :: unit_no
   logical, intent(out) :: eof ! End of file?
   logical, intent(out) :: no_newline ! There is a line but it has no
                                      ! newline? (Thus eof also must
                                      ! be .true.)
   class(strbuf_t), intent(inout) :: strbuf
   character(1, kind = ck) :: ch
   strbuf = 
   call get_ch (unit_no, eof, ch)
   do while (.not. eof .and. ch /= newline_char)
      call strbuf%append (ch)
      call get_ch (unit_no, eof, ch)
   end do
   no_newline = eof .and. (strbuf%length() /= 0)
 end subroutine get_line_from_stream
 subroutine get_ch (unit_no, eof, ch)
   !
   ! Read a single code point from the stream.
   !
   ! Currently this procedure simply inputs ‘ASCII’ bytes rather than
   ! Unicode code points.
   !
   integer, intent(in) :: unit_no
   logical, intent(out) :: eof
   character(1, kind = ck), intent(out) :: ch
   integer :: stat
   character(1) :: c = '*'
   eof = .false.
   if (unit_no == input_unit) then
      call get_input_unit_char (c, stat)
   else
      read (unit = unit_no, iostat = stat) c
   end if
   if (stat < 0) then
      ch = ck_'*'
      eof = .true.
   else if (0 < stat) then
      write (error_unit, '("Input error with status code ", I0)') stat
      stop 1
   else
      ch = char (ichar (c, kind = ick), kind = ck)
   end if
 end subroutine get_ch

!!! !!! If you tell gfortran you want -std=f2008 or -std=f2018, you likely !!! will need to add also -fall-intrinsics or -U__GFORTRAN__ !!! !!! The first way, you get the FGETC intrinsic. The latter way, you !!! get the C interface code that uses getchar(3). !!!

  1. ifdef __GFORTRAN__
 subroutine get_input_unit_char (c, stat)
   !
   ! The following works if you are using gfortran.
   !
   ! (FGETC is considered a feature for backwards compatibility with
   ! g77. However, I know of no way to reconfigure input_unit as a
   ! Fortran 2003 stream, for use with ordinary ‘read’.)
   !
   character, intent(inout) :: c
   integer, intent(out) :: stat
   call fgetc (input_unit, c, stat)
 end subroutine get_input_unit_char
  1. else
 subroutine get_input_unit_char (c, stat)
   !
   ! An alternative implementation of get_input_unit_char. This
   ! actually reads input from the C standard input, which might not
   ! be the same as input_unit.
   !
   use, intrinsic :: iso_c_binding, only: c_int
   character, intent(inout) :: c
   integer, intent(out) :: stat
   interface
      !
      ! Use getchar(3) to read characters from standard input. This
      ! assumes there is actually such a function available, and that
      ! getchar(3) does not exist solely as a macro. (One could write
      ! one’s own getchar() if necessary, of course.)
      !
      function getchar () result (c) bind (c, name = 'getchar')
        use, intrinsic :: iso_c_binding, only: c_int
        integer(kind = c_int) :: c
      end function getchar
   end interface
   integer(kind = c_int) :: i_char
   i_char = getchar ()
   !
   ! The C standard requires that EOF have a negative value. If the
   ! value returned by getchar(3) is not EOF, then it will be
   ! representable as an unsigned char. Therefore, to check for end
   ! of file, one need only test whether i_char is negative.
   !
   if (i_char < 0) then
      stat = -1
   else
      stat = 0
      c = char (i_char)
   end if
 end subroutine get_input_unit_char
  1. endif

end module reading_one_line_from_a_stream

module ast_reader

 !
 ! The AST will be read into an array. Perhaps that will improve
 ! locality, compared to storing the AST as many linked heap nodes.
 !
 ! In any case, implementing the AST this way is an interesting
 ! problem.
 !
 use, intrinsic :: iso_fortran_env, only: input_unit
 use, intrinsic :: iso_fortran_env, only: output_unit
 use, intrinsic :: iso_fortran_env, only: error_unit
 use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick, rik
 use, non_intrinsic :: helper_procedures, only: next_power_of_two
 use, non_intrinsic :: helper_procedures, only: new_storage_size
 use, non_intrinsic :: string_buffers
 use, non_intrinsic :: reading_one_line_from_a_stream
 implicit none
 private
 public :: symbol_table_t
 public :: interpreter_ast_node_t
 public :: interpreter_ast_t
 public :: read_ast
 integer, parameter, public :: node_Nil = 0
 integer, parameter, public :: node_Identifier = 1
 integer, parameter, public :: node_String = 2
 integer, parameter, public :: node_Integer = 3
 integer, parameter, public :: node_Sequence = 4
 integer, parameter, public :: node_If = 5
 integer, parameter, public :: node_Prtc = 6
 integer, parameter, public :: node_Prts = 7
 integer, parameter, public :: node_Prti = 8
 integer, parameter, public :: node_While = 9
 integer, parameter, public :: node_Assign = 10
 integer, parameter, public :: node_Negate = 11
 integer, parameter, public :: node_Not = 12
 integer, parameter, public :: node_Multiply = 13
 integer, parameter, public :: node_Divide = 14
 integer, parameter, public :: node_Mod = 15
 integer, parameter, public :: node_Add = 16
 integer, parameter, public :: node_Subtract = 17
 integer, parameter, public :: node_Less = 18
 integer, parameter, public :: node_LessEqual = 19
 integer, parameter, public :: node_Greater = 20
 integer, parameter, public :: node_GreaterEqual = 21
 integer, parameter, public :: node_Equal = 22
 integer, parameter, public :: node_NotEqual = 23
 integer, parameter, public :: node_And = 24
 integer, parameter, public :: node_Or = 25
 type :: symbol_table_element_t
    character(:, kind = ck), allocatable :: str
 end type symbol_table_element_t
 type :: symbol_table_t
    integer(kind = nk), private :: len = 0_nk
    type(symbol_table_element_t), allocatable, private :: symbols(:)
  contains
    procedure, pass, private :: ensure_storage => symbol_table_t_ensure_storage
    procedure, pass :: look_up_index => symbol_table_t_look_up_index
    procedure, pass :: look_up_name => symbol_table_t_look_up_name
    procedure, pass :: length => symbol_table_t_length
    generic :: look_up => look_up_index
    generic :: look_up => look_up_name
 end type symbol_table_t
 type :: interpreter_ast_node_t
    integer :: node_variety
    integer(kind = rik) :: int ! Runtime integer or symbol index.
    character(:, kind = ck), allocatable :: str ! String value.
    ! The left branch begins at the next node. The right branch
    ! begins at the address of the left branch, plus the following.
    integer(kind = nk) :: right_branch_offset
 end type interpreter_ast_node_t
 type :: interpreter_ast_t
    integer(kind = nk), private :: len = 0_nk
    type(interpreter_ast_node_t), allocatable, public :: nodes(:)
  contains
    procedure, pass, private :: ensure_storage => interpreter_ast_t_ensure_storage
 end type interpreter_ast_t

contains

 subroutine symbol_table_t_ensure_storage (symtab, length_needed)
   class(symbol_table_t), intent(inout) :: symtab
   integer(kind = nk), intent(in) :: length_needed
   integer(kind = nk) :: len_needed
   integer(kind = nk) :: new_size
   type(symbol_table_t) :: new_symtab
   len_needed = max (length_needed, 1_nk)
   if (.not. allocated (symtab%symbols)) then
      ! Initialize a new symtab%symbols array.
      new_size = new_storage_size (len_needed)
      allocate (symtab%symbols(1:new_size))
   else if (ubound (symtab%symbols, 1) < len_needed) then
      ! Allocate a new symtab%symbols array, larger than the current
      ! one, but containing the same symbols.
      new_size = new_storage_size (len_needed)
      allocate (new_symtab%symbols(1:new_size))
      new_symtab%symbols(1:symtab%len) = symtab%symbols(1:symtab%len)
      call move_alloc (new_symtab%symbols, symtab%symbols)
   end if
 end subroutine symbol_table_t_ensure_storage
 elemental function symbol_table_t_length (symtab) result (len)
   class(symbol_table_t), intent(in) :: symtab
   integer(kind = nk) :: len
   len = symtab%len
 end function symbol_table_t_length
 function symbol_table_t_look_up_index (symtab, symbol_name) result (index)
   class(symbol_table_t), intent(inout) :: symtab
   character(*, kind = ck), intent(in) :: symbol_name
   integer(kind = rik) :: index
   !
   ! This implementation simply stores the symbols sequentially into
   ! an array. Obviously, for large numbers of symbols, one might
   ! wish to do something more complex.
   !
   ! Standard Fortran does not come, out of the box, with a massive
   ! runtime library for doing such things. They are, however, no
   ! longer nearly as challenging to implement in Fortran as they
   ! used to be.
   !
   integer(kind = nk) :: i
   i = 1
   index = 0
   do while (index == 0)
      if (i == symtab%len + 1) then
         ! The symbol is new and must be added to the table.
         i = symtab%len + 1
         if (huge (1_rik) < i) then
            ! Symbol indices are assumed to be storable as runtime
            ! integers.
            write (error_unit, '("There are more symbols than can be handled.")')
            stop 1
         end if
         call symtab%ensure_storage(i)
         symtab%len = i
         allocate (symtab%symbols(i)%str, source = symbol_name)
         index = int (i, kind = rik)
      else if (symtab%symbols(i)%str == symbol_name) then
         index = int (i, kind = rik)
      else
         i = i + 1
      end if
   end do
 end function symbol_table_t_look_up_index
 function symbol_table_t_look_up_name (symtab, index) result (symbol_name)
   class(symbol_table_t), intent(inout) :: symtab
   integer(kind = rik), intent(in) :: index
   character(:, kind = ck), allocatable :: symbol_name
   !
   ! This is the reverse of symbol_table_t_look_up_index: given an
   ! index, it finds the symbol’s name.
   !
   if (index < 1 .or. symtab%len < index) then
      ! In correct code, this branch should never be reached.
      error stop
   else
      allocate (symbol_name, source = symtab%symbols(index)%str)
   end if
 end function symbol_table_t_look_up_name
 subroutine interpreter_ast_t_ensure_storage (ast, length_needed)
   class(interpreter_ast_t), intent(inout) :: ast
   integer(kind = nk), intent(in) :: length_needed
   integer(kind = nk) :: len_needed
   integer(kind = nk) :: new_size
   type(interpreter_ast_t) :: new_ast
   len_needed = max (length_needed, 1_nk)
   if (.not. allocated (ast%nodes)) then
      ! Initialize a new ast%nodes array.
      new_size = new_storage_size (len_needed)
      allocate (ast%nodes(1:new_size))
   else if (ubound (ast%nodes, 1) < len_needed) then
      ! Allocate a new ast%nodes array, larger than the current one,
      ! but containing the same nodes.
      new_size = new_storage_size (len_needed)
      allocate (new_ast%nodes(1:new_size))
      new_ast%nodes(1:ast%len) = ast%nodes(1:ast%len)
      call move_alloc (new_ast%nodes, ast%nodes)
   end if
 end subroutine interpreter_ast_t_ensure_storage
 subroutine read_ast (unit_no, strbuf, ast, symtab)
   integer, intent(in) :: unit_no
   type(strbuf_t), intent(inout) :: strbuf
   type(interpreter_ast_t), intent(inout) :: ast
   type(symbol_table_t), intent(inout) :: symtab
   logical :: eof
   logical :: no_newline
   integer(kind = nk) :: after_ast_address
   
   symtab%len = 0
   ast%len = 0
   call build_subtree (1_nk, after_ast_address)
 contains
   recursive subroutine build_subtree (here_address, after_subtree_address)
     integer(kind = nk), value :: here_address
     integer(kind = nk), intent(out) :: after_subtree_address
     integer :: node_variety
     integer(kind = nk) :: i, j
     integer(kind = nk) :: left_branch_address
     integer(kind = nk) :: right_branch_address
     ! Get a line from the parser output.
     call get_line_from_stream (unit_no, eof, no_newline, strbuf)
     if (eof) then
        call ast_error
     else
        ! Prepare to store a new node.
        call ast%ensure_storage(here_address)
        ast%len = here_address
        ! What sort of node is it?
        i = skip_whitespace (strbuf, 1_nk)
        j = skip_non_whitespace (strbuf, i)
        node_variety = strbuf_to_node_variety (strbuf, i, j - 1)
        ast%nodes(here_address)%node_variety = node_variety
        select case (node_variety)
        case (node_Nil)
           after_subtree_address = here_address + 1
        case (node_Identifier)
           i = skip_whitespace (strbuf, j)
           j = skip_non_whitespace (strbuf, i)
           ast%nodes(here_address)%int = &
                &   strbuf_to_symbol_index (strbuf, i, j - 1, symtab)
           after_subtree_address = here_address + 1
        case (node_String)
           i = skip_whitespace (strbuf, j)
           j = skip_whitespace_backwards (strbuf, strbuf%length())
           ast%nodes(here_address)%str = strbuf_to_string (strbuf, i, j)
           after_subtree_address = here_address + 1
        case (node_Integer)
           i = skip_whitespace (strbuf, j)
           j = skip_non_whitespace (strbuf, i)
           ast%nodes(here_address)%int = strbuf_to_int (strbuf, i, j - 1)
           after_subtree_address = here_address + 1
        case default
           ! The node is internal, and has left and right branches.
           ! The left branch will start at left_branch_address; the
           ! right branch will start at left_branch_address +
           ! right_side_offset.
           left_branch_address = here_address + 1
           ! Build the left branch.
           call build_subtree (left_branch_address, right_branch_address)
           ! Build the right_branch.
           call build_subtree (right_branch_address, after_subtree_address)
           ast%nodes(here_address)%right_branch_offset = &
                &   right_branch_address - left_branch_address
        end select
     end if
   end subroutine build_subtree
   
 end subroutine read_ast
 function strbuf_to_node_variety (strbuf, i, j) result (node_variety)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i, j
   integer :: node_variety
   !
   ! This function has not been optimized in any way, unless the
   ! Fortran compiler can optimize it.
   !
   ! Something like a ‘radix tree search’ could be done on the
   ! characters of the strbuf. Or a perfect hash function. Or a
   ! binary search. Etc.
   !
   if (j == i - 1) then
      call ast_error
   else
      select case (strbuf%to_unicode(i, j))
      case (ck_";")
         node_variety = node_Nil
      case (ck_"Identifier")
         node_variety = node_Identifier
      case (ck_"String")
         node_variety = node_String
      case (ck_"Integer")
         node_variety = node_Integer
      case (ck_"Sequence")
         node_variety = node_Sequence
      case (ck_"If")
         node_variety = node_If
      case (ck_"Prtc")
         node_variety = node_Prtc
      case (ck_"Prts")
         node_variety = node_Prts
      case (ck_"Prti")
         node_variety = node_Prti
      case (ck_"While")
         node_variety = node_While
      case (ck_"Assign")
         node_variety = node_Assign
      case (ck_"Negate")
         node_variety = node_Negate
      case (ck_"Not")
         node_variety = node_Not
      case (ck_"Multiply")
         node_variety = node_Multiply
      case (ck_"Divide")
         node_variety = node_Divide
      case (ck_"Mod")
         node_variety = node_Mod
      case (ck_"Add")
         node_variety = node_Add
      case (ck_"Subtract")
         node_variety = node_Subtract
      case (ck_"Less")
         node_variety = node_Less
      case (ck_"LessEqual")
         node_variety = node_LessEqual
      case (ck_"Greater")
         node_variety = node_Greater
      case (ck_"GreaterEqual")
         node_variety = node_GreaterEqual
      case (ck_"Equal")
         node_variety = node_Equal
      case (ck_"NotEqual")
         node_variety = node_NotEqual
      case (ck_"And")
         node_variety = node_And
      case (ck_"Or")
         node_variety = node_Or
      case default
         call ast_error
      end select
   end if
 end function strbuf_to_node_variety
 function strbuf_to_symbol_index (strbuf, i, j, symtab) result (int)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i, j
   type(symbol_table_t), intent(inout) :: symtab
   integer(kind = rik) :: int
   if (j == i - 1) then
      call ast_error
   else
      int = symtab%look_up(strbuf%to_unicode (i, j))
   end if
 end function strbuf_to_symbol_index
 function strbuf_to_int (strbuf, i, j) result (int)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i, j
   integer(kind = rik) :: int
   integer :: stat
   character(:, kind = ck), allocatable :: str
   if (j < i) then
      call ast_error
   else
      allocate (character(len = (j - i) + 1_nk, kind = ck) :: str)
      str = strbuf%to_unicode (i, j)
      read (str, *, iostat = stat) int
      if (stat /= 0) then
         call ast_error
      end if
   end if
 end function strbuf_to_int
 function strbuf_to_string (strbuf, i, j) result (str)
   class(strbuf_t), intent(in) :: strbuf
   integer(kind = nk), intent(in) :: i, j
   character(:, kind = ck), allocatable :: str
   character(1, kind = ck), parameter :: linefeed_char = char (10, kind = ck)
   character(1, kind = ck), parameter :: backslash_char = char (92, kind = ck)
   ! The following is correct for Unix and its relatives.
   character(1, kind = ck), parameter :: newline_char = linefeed_char
   integer(kind = nk) :: k
   integer(kind = nk) :: count
   if (strbuf%chars(i) /= ck_'"' .or. strbuf%chars(j) /= ck_'"') then
      call ast_error
   else
      ! Count how many characters are needed.
      count = 0
      k = i + 1
      do while (k < j)
         count = count + 1
         if (strbuf%chars(k) == backslash_char) then
            k = k + 2
         else
            k = k + 1
         end if
      end do
      allocate (character(len = count, kind = ck) :: str)
      count = 0
      k = i + 1
      do while (k < j)
         if (strbuf%chars(k) == backslash_char) then
            if (k == j - 1) then
               call ast_error
            else
               select case (strbuf%chars(k + 1))
               case (ck_'n')
                  count = count + 1
                  str(count:count) = newline_char
               case (backslash_char)
                  count = count + 1
                  str(count:count) = backslash_char
               case default
                  call ast_error
               end select
               k = k + 2
            end if
         else
            count = count + 1
            str(count:count) = strbuf%chars(k)
            k = k + 1
         end if
      end do
   end if
 end function strbuf_to_string
 subroutine ast_error
   !
   ! It might be desirable to give more detail.
   !
   write (error_unit, '("The AST input seems corrupted.")')
   stop 1
 end subroutine ast_error

end module ast_reader

module ast_interpreter

 use, intrinsic :: iso_fortran_env, only: input_unit
 use, intrinsic :: iso_fortran_env, only: output_unit
 use, intrinsic :: iso_fortran_env, only: error_unit
 use, non_intrinsic :: compiler_type_kinds
 use, non_intrinsic :: ast_reader
 implicit none
 private
 public :: value_t
 public :: variable_table_t
 public :: nil_value
 public :: interpret_ast_node
 integer, parameter, public :: v_Nil = 0
 integer, parameter, public :: v_Integer = 1
 integer, parameter, public :: v_String = 2
 type :: value_t
    integer :: tag = v_Nil
    integer(kind = rik) :: int_val = -(huge (1_rik))
    character(:, kind = ck), allocatable :: str_val
 end type value_t
 type :: variable_table_t
    type(value_t), allocatable :: vals(:)
  contains
    procedure, pass :: initialize => variable_table_t_initialize
 end type variable_table_t
 ! The canonical nil value.
 type(value_t), parameter :: nil_value = value_t ()

contains

 elemental function int_value (int_val) result (val)
   integer(kind = rik), intent(in) :: int_val
   type(value_t) :: val
   val%tag = v_Integer
   val%int_val = int_val
 end function int_value
 elemental function str_value (str_val) result (val)
   character(*, kind = ck), intent(in) :: str_val
   type(value_t) :: val
   val%tag = v_String
   allocate (val%str_val, source = str_val)
 end function str_value
 subroutine variable_table_t_initialize (vartab, symtab)
   class(variable_table_t), intent(inout) :: vartab
   type(symbol_table_t), intent(in) :: symtab
   allocate (vartab%vals(1:symtab%length()), source = nil_value)
 end subroutine variable_table_t_initialize
 recursive subroutine interpret_ast_node (outp, ast, symtab, vartab, address, retval)
   integer, intent(in) :: outp
   type(interpreter_ast_t), intent(in) :: ast
   type(symbol_table_t), intent(in) :: symtab
   type(variable_table_t), intent(inout) :: vartab
   integer(kind = nk) :: address
   type(value_t), intent(inout) :: retval
   integer(kind = rik) :: variable_index
   type(value_t) :: val1, val2, val3
   select case (ast%nodes(address)%node_variety)
   case (node_Nil)
      retval = nil_value
   case (node_Integer)
      retval = int_value (ast%nodes(address)%int)
   case (node_Identifier)
      variable_index = ast%nodes(address)%int
      retval = vartab%vals(variable_index)
   case (node_String)
      retval = str_value (ast%nodes(address)%str)
   case (node_Assign)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val1)
      variable_index = ast%nodes(left_branch (address))%int
      vartab%vals(variable_index) = val1
      retval = nil_value
      
   case (node_Multiply)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call multiply (val1, val2, val3)
      retval = val3
   case (node_Divide)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call divide (val1, val2, val3)
      retval = val3
   case (node_Mod)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call pseudo_remainder (val1, val2, val3)
      retval = val3
   case (node_Add)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call add (val1, val2, val3)
      retval = val3
   case (node_Subtract)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call subtract (val1, val2, val3)
      retval = val3
   case (node_Less)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call less_than (val1, val2, val3)
      retval = val3
   case (node_LessEqual)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call less_than_or_equal_to (val1, val2, val3)
      retval = val3
   case (node_Greater)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call greater_than (val1, val2, val3)
      retval = val3
   case (node_GreaterEqual)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call greater_than_or_equal_to (val1, val2, val3)
      retval = val3
   case (node_Equal)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call equal_to (val1, val2, val3)
      retval = val3
   case (node_NotEqual)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      call not_equal_to (val1, val2, val3)
      retval = val3
   case (node_Negate)
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     retval = int_value (-(rik_cast (val1, ck_'unary -')))
   case (node_Not)
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     retval = int_value (bool2int (rik_cast (val1, ck_'unary !') == 0_rik))
   case (node_And)
     ! For similarity to C, we make this a ‘short-circuiting AND’,
     ! which is really a branching construct rather than a binary
     ! operation.
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     if (rik_cast (val1, ck_&&) == 0_rik) then
        retval = int_value (0_rik)
     else
        call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
        retval = int_value (bool2int (rik_cast (val2, ck_&&) /= 0_rik))
     end if
   case (node_Or)
     ! For similarity to C, we make this a ‘short-circuiting OR’,
     ! which is really a branching construct rather than a binary
     ! operation.
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     if (rik_cast (val1, ck_||) /= 0_rik) then
        retval = int_value (1_rik)
     else
        call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
        retval = int_value (bool2int (rik_cast (val2, ck_||) /= 0_rik))
     end if
   case (node_If)
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     if (rik_cast (val1, ck_'if-else construct') /= 0_rik) then
        call interpret_ast_node (outp, ast, symtab, vartab, &
             &                   left_branch (right_branch (address)), &
             &                   val2)
     else
        call interpret_ast_node (outp, ast, symtab, vartab, &
             &                   right_branch (right_branch (address)), &
             &                   val2)
     end if
     retval = nil_value
   case (node_While)
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     do while (rik_cast (val1, ck_'while construct') /= 0_rik)
        call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
        call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     end do
     retval = nil_value
   case (node_Prtc)
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     write (outp, '(A1)', advance = 'no') &
          &    char (rik_cast (val1, ck_putc), kind = ck)
     retval = nil_value
   case (node_Prti, node_Prts)
     call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
     select case (val1%tag)
     case (v_Integer)
        write (outp, '(I0)', advance = 'no') val1%int_val
     case (v_String)
        write (outp, '(A)', advance = 'no') val1%str_val
     case (v_Nil)
        write (outp, '("(no value)")', advance = 'no')
     case default
        error stop
     end select
     retval = nil_value
   case (node_Sequence)
      call interpret_ast_node (outp, ast, symtab, vartab, left_branch (address), val1)
      call interpret_ast_node (outp, ast, symtab, vartab, right_branch (address), val2)
      retval = nil_value
   case default
      write (error_unit, '("unknown node type")')
      stop 1
   end select
 contains
   elemental function left_branch (here_addr) result (left_addr)
     integer(kind = nk), intent(in) :: here_addr
     integer(kind = nk) :: left_addr
     left_addr = here_addr + 1
   end function left_branch
   elemental function right_branch (here_addr) result (right_addr)
     integer(kind = nk), intent(in) :: here_addr
     integer(kind = nk) :: right_addr
     right_addr = here_addr + 1 + ast%nodes(here_addr)%right_branch_offset
   end function right_branch
 end subroutine interpret_ast_node
 subroutine multiply (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'*'
   z = int_value (rik_cast (x, op) * rik_cast (y, op))
 end subroutine multiply
 subroutine divide (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'/'
   ! Fortran integer division truncates towards zero, as C’s does.
   z = int_value (rik_cast (x, op) / rik_cast (y, op))
 end subroutine divide
 subroutine pseudo_remainder (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   !
   ! I call this ‘pseudo-remainder’ because I consider ‘remainder’ to
   ! mean the *non-negative* remainder in A = (B * Quotient) +
   ! Remainder. See https://doi.org/10.1145%2F128861.128862
   !
   ! The pseudo-remainder gives the actual remainder, if both
   ! operands are positive.
   !
   character(*, kind = ck), parameter :: op = ck_'binary %'
   ! Fortran’s MOD intrinsic, when given integer arguments, works
   ! like C ‘%’.
   z = int_value (mod (rik_cast (x, op), rik_cast (y, op)))
 end subroutine pseudo_remainder
 subroutine add (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary +'
   z = int_value (rik_cast (x, op) + rik_cast (y, op))
 end subroutine add
 subroutine subtract (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary -'
   z = int_value (rik_cast (x, op) - rik_cast (y, op))
 end subroutine subtract
 subroutine less_than (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary <'
   z = int_value (bool2int (rik_cast (x, op) < rik_cast (y, op)))
 end subroutine less_than
 subroutine less_than_or_equal_to (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary <='
   z = int_value (bool2int (rik_cast (x, op) <= rik_cast (y, op)))
 end subroutine less_than_or_equal_to
 subroutine greater_than (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary >'
   z = int_value (bool2int (rik_cast (x, op) > rik_cast (y, op)))
 end subroutine greater_than
 subroutine greater_than_or_equal_to (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary >='
   z = int_value (bool2int (rik_cast (x, op) >= rik_cast (y, op)))
 end subroutine greater_than_or_equal_to
 subroutine equal_to (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary =='
   z = int_value (bool2int (rik_cast (x, op) == rik_cast (y, op)))
 end subroutine equal_to
 subroutine not_equal_to (x, y, z)
   type(value_t), intent(in) :: x, y
   type(value_t), intent(out) :: z
   character(*, kind = ck), parameter :: op = ck_'binary !='
   z = int_value (bool2int (rik_cast (x, op) /= rik_cast (y, op)))
 end subroutine not_equal_to
 function rik_cast (val, operation_name) result (i_val)
   class(*), intent(in) :: val
   character(*, kind = ck), intent(in) :: operation_name
   integer(kind = rik) :: i_val
   select type (val)
   class is (value_t)
      if (val%tag == v_Integer) then
         i_val = val%int_val
      else
         call type_error (operation_name)
      end if
   type is (integer(kind = rik))
      i_val = val
   class default
      call type_error (operation_name)
   end select
 end function rik_cast
 elemental function bool2int (bool) result (int)
   logical, intent(in) :: bool
   integer(kind = rik) :: int
   if (bool) then
      int = 1_rik
   else
      int = 0_rik
   end if
 end function bool2int
 subroutine type_error (operation_name)
   character(*, kind = ck), intent(in) :: operation_name
   write (error_unit, '("type error in ", A)') operation_name
   stop 1
 end subroutine type_error

end module ast_interpreter

program Interp

 use, intrinsic :: iso_fortran_env, only: input_unit
 use, intrinsic :: iso_fortran_env, only: output_unit
 use, intrinsic :: iso_fortran_env, only: error_unit
 use, non_intrinsic :: compiler_type_kinds
 use, non_intrinsic :: string_buffers
 use, non_intrinsic :: ast_reader
 use, non_intrinsic :: ast_interpreter
 implicit none
 integer, parameter :: inp_unit_no = 100
 integer, parameter :: outp_unit_no = 101
 integer :: arg_count
 character(200) :: arg
 integer :: inp
 integer :: outp
 type(strbuf_t) :: strbuf
 type(interpreter_ast_t) :: ast
 type(symbol_table_t) :: symtab
 type(variable_table_t) :: vartab
 type(value_t) :: retval
 arg_count = command_argument_count ()
 if (3 <= arg_count) then
    call print_usage
 else
    if (arg_count == 0) then
       inp = input_unit
       outp = output_unit
    else if (arg_count == 1) then
       call get_command_argument (1, arg)
       inp = open_for_input (trim (arg))
       outp = output_unit
    else if (arg_count == 2) then
       call get_command_argument (1, arg)
       inp = open_for_input (trim (arg))
       call get_command_argument (2, arg)
       outp = open_for_output (trim (arg))
    end if
    call read_ast (inp, strbuf, ast, symtab)
    if (1 <= ubound (ast%nodes, 1)) then
       call vartab%initialize(symtab)
       call interpret_ast_node (outp, ast, symtab, vartab, 1_nk, retval)
    end if
 end if

contains

 function open_for_input (filename) result (unit_no)
   character(*), intent(in) :: filename
   integer :: unit_no
   integer :: stat
   open (unit = inp_unit_no, file = filename, status = 'old', &
        & action = 'read', access = 'stream', form = 'unformatted',  &
        & iostat = stat)
   if (stat /= 0) then
      write (error_unit, '("Error: failed to open ", 1A, " for input")') filename
      stop 1
   end if
   unit_no = inp_unit_no
 end function open_for_input
 function open_for_output (filename) result (unit_no)
   character(*), intent(in) :: filename
   integer :: unit_no
   integer :: stat
   open (unit = outp_unit_no, file = filename, action = 'write', iostat = stat)
   if (stat /= 0) then
      write (error_unit, '("Error: failed to open ", 1A, " for output")') filename
      stop 1
   end if
   unit_no = outp_unit_no
 end function open_for_output
 subroutine print_usage
   character(200) :: progname
   call get_command_argument (0, progname)
   write (output_unit, '("Usage: ", 1A, " [INPUT_FILE [OUTPUT_FILE]]")') &
        &      trim (progname)
 end subroutine print_usage
 

end program Interp</lang>

Output:

$ ./lex compiler-tests/primes.t | ./parse | ./Interp

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Go

Translation of: C

<lang go>package main

import (

   "bufio"
   "fmt"
   "log"
   "os"
   "strconv"
   "strings"

)

type NodeType int

const (

   ndIdent NodeType = iota
   ndString
   ndInteger
   ndSequence
   ndIf
   ndPrtc
   ndPrts
   ndPrti
   ndWhile
   ndAssign
   ndNegate
   ndNot
   ndMul
   ndDiv
   ndMod
   ndAdd
   ndSub
   ndLss
   ndLeq
   ndGtr
   ndGeq
   ndEql
   ndNeq
   ndAnd
   ndOr

)

type Tree struct {

   nodeType NodeType
   left     *Tree
   right    *Tree
   value    int

}

// dependency: Ordered by NodeType, must remain in same order as NodeType enum type atr struct {

   enumText string
   nodeType NodeType

}

var atrs = []atr{

   {"Identifier", ndIdent},
   {"String", ndString},
   {"Integer", ndInteger},
   {"Sequence", ndSequence},
   {"If", ndIf},
   {"Prtc", ndPrtc},
   {"Prts", ndPrts},
   {"Prti", ndPrti},
   {"While", ndWhile},
   {"Assign", ndAssign},
   {"Negate", ndNegate},
   {"Not", ndNot},
   {"Multiply", ndMul},
   {"Divide", ndDiv},
   {"Mod", ndMod},
   {"Add", ndAdd},
   {"Subtract", ndSub},
   {"Less", ndLss},
   {"LessEqual", ndLeq},
   {"Greater", ndGtr},
   {"GreaterEqual", ndGeq},
   {"Equal", ndEql},
   {"NotEqual", ndNeq},
   {"And", ndAnd},
   {"Or", ndOr},

}

var (

   stringPool   []string
   globalNames  []string
   globalValues = make(map[int]int)

)

var (

   err     error
   scanner *bufio.Scanner

)

func reportError(msg string) {

   log.Fatalf("error : %s\n", msg)

}

func check(err error) {

   if err != nil {
       log.Fatal(err)
   }

}

func btoi(b bool) int {

   if b {
       return 1
   }
   return 0

}

func itob(i int) bool {

   if i == 0 {
       return false
   }
   return true

}

func makeNode(nodeType NodeType, left *Tree, right *Tree) *Tree {

   return &Tree{nodeType, left, right, 0}

}

func makeLeaf(nodeType NodeType, value int) *Tree {

   return &Tree{nodeType, nil, nil, value}

}

func interp(x *Tree) int { // interpret the parse tree

   if x == nil {
       return 0
   }
   switch x.nodeType {
   case ndInteger:
       return x.value
   case ndIdent:
       return globalValues[x.value]
   case ndString:
       return x.value
   case ndAssign:
       n := interp(x.right)
       globalValues[x.left.value] = n
       return n
   case ndAdd:
       return interp(x.left) + interp(x.right)
   case ndSub:
       return interp(x.left) - interp(x.right)
   case ndMul:
       return interp(x.left) * interp(x.right)
   case ndDiv:
       return interp(x.left) / interp(x.right)
   case ndMod:
       return interp(x.left) % interp(x.right)
   case ndLss:
       return btoi(interp(x.left) < interp(x.right))
   case ndGtr:
       return btoi(interp(x.left) > interp(x.right))
   case ndLeq:
       return btoi(interp(x.left) <= interp(x.right))
   case ndEql:
       return btoi(interp(x.left) == interp(x.right))
   case ndNeq:
       return btoi(interp(x.left) != interp(x.right))
   case ndAnd:
       return btoi(itob(interp(x.left)) && itob(interp(x.right)))
   case ndOr:
       return btoi(itob(interp(x.left)) || itob(interp(x.right)))
   case ndNegate:
       return -interp(x.left)
   case ndNot:
       if interp(x.left) == 0 {
           return 1
       }
       return 0
   case ndIf:
       if interp(x.left) != 0 {
           interp(x.right.left)
       } else {
           interp(x.right.right)
       }
       return 0
   case ndWhile:
       for interp(x.left) != 0 {
           interp(x.right)
       }
       return 0
   case ndPrtc:
       fmt.Printf("%c", interp(x.left))
       return 0
   case ndPrti:
       fmt.Printf("%d", interp(x.left))
       return 0
   case ndPrts:
       fmt.Print(stringPool[interp(x.left)])
       return 0
   case ndSequence:
       interp(x.left)
       interp(x.right)
       return 0
   default:
       reportError(fmt.Sprintf("interp: unknown tree type %d\n", x.nodeType))
   }
   return 0

}

func getEnumValue(name string) NodeType {

   for _, atr := range atrs {
       if atr.enumText == name {
           return atr.nodeType
       }
   }
   reportError(fmt.Sprintf("Unknown token %s\n", name))
   return -1

}

func fetchStringOffset(s string) int {

   var d strings.Builder
   s = s[1 : len(s)-1]
   for i := 0; i < len(s); i++ {
       if s[i] == '\\' && (i+1) < len(s) {
           if s[i+1] == 'n' {
               d.WriteByte('\n')
               i++
           } else if s[i+1] == '\\' {
               d.WriteByte('\\')
               i++
           }
       } else {
           d.WriteByte(s[i])
       }
   }
   s = d.String()
   for i := 0; i < len(stringPool); i++ {
       if s == stringPool[i] {
           return i
       }
   }
   stringPool = append(stringPool, s)
   return len(stringPool) - 1

}

func fetchVarOffset(name string) int {

   for i := 0; i < len(globalNames); i++ {
       if globalNames[i] == name {
           return i
       }
   }
   globalNames = append(globalNames, name)
   return len(globalNames) - 1

}

func loadAst() *Tree {

   var nodeType NodeType
   var s string
   if scanner.Scan() {
       line := strings.TrimRight(scanner.Text(), " \t")
       tokens := strings.Fields(line)
       first := tokens[0]
       if first[0] == ';' {
           return nil
       }
       nodeType = getEnumValue(first)
       le := len(tokens)
       if le == 2 {
           s = tokens[1]
       } else if le > 2 {
           idx := strings.Index(line, `"`)
           s = line[idx:]
       }
   }
   check(scanner.Err())
   if s != "" {
       var n int
       switch nodeType {
       case ndIdent:
           n = fetchVarOffset(s)
       case ndInteger:
           n, err = strconv.Atoi(s)
           check(err)
       case ndString:
           n = fetchStringOffset(s)
       default:
           reportError(fmt.Sprintf("Unknown node type: %s\n", s))
       }
       return makeLeaf(nodeType, n)
   }    
   left := loadAst()
   right := loadAst()
   return makeNode(nodeType, left, right)

}

func main() {

   ast, err := os.Open("ast.txt")
   check(err)
   defer ast.Close()
   scanner = bufio.NewScanner(ast)
   x := loadAst()
   interp(x)

}</lang>

Output:

Prime Numbers example:

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

J

Implementation:

<lang J>outbuf=: emit=:{{

 outbuf=: outbuf,y
 if.LF e. outbuf do.
   ndx=. outbuf i:LF
   echo ndx{.outbuf
   outbuf=: }.ndx}.outbuf
 end.

}}

load_ast=: {{

 'node_types node_values'=: 2{.|:(({.,&<&<}.@}.)~ i.&' ');._2 y
 1{::0 load_ast 
 node_type=. x{::node_types
 if. node_type-:,';' do. x;a: return.end.
 node_value=. x{::node_values
 if. -.-:node_value do.x;<node_type make_leaf node_value return.end.
 'x left'=.(x+1) load_ast
 'x right'=.(x+1) load_ast
 x;<node_type make_node left right

}}

make_leaf=: ; typ=: 0&{:: val=: left=: 1&{:: right=: 2&{:: make_node=: {{m;n;<y}} id2var=: 'var_',rplc&('z';'zz';'_';'_z')

interp=:{{

 if.y-: do. return.end.
 V=. val y
 W=. ;2}.y
 select.typ y
   case.'Integer'do._".V
   case.'String'do.rplc&('\\';'\';'\n';LF) V-.'"'
   case.'Identifier'do.".id2var V
   case.'Assign'do.[(id2var left V)=: interp W
   case.'Multiply'do.V *&interp W
   case.'Divide'do.V (*&* * <.@%&|)&interp W
   case.'Mod'do.V (*&* * |~&|)&interp W
   case.'Add'do.V +&interp W
   case.'Subtract'do.V -&interp W
   case.'Negate'do.-interp V
   case.'Less'do.V <&interp W
   case.'LessEqual'do.V <:&interp W
   case.'Greater'do.V >&interp W
   case.'GreaterEqual'do.V >&interp W
   case.'Equal'do.V =&interp W
   case.'NotEqual'do.V ~:&interp W
   case.'Not'do.0=interp V
   case.'And'do.V *.&interp W
   case.'Or' do.V +.&interp W
   case.'If'do.if.interp V do.interp left W else.interp right W end.
   case.'While'do.while.interp V do.interp W end.
   case.'Prtc'do.emit u:interp V
   case.'Prti'do.emit rplc&'_-'":interp V
   case.'Prts'do.emit interp V
   case.'Sequence'do.
     interp V
     interp W
     
   case.do.error'unknown node type ',typ y
 end.

}} </lang>

Task example:

<lang J>primes=:{{)n /*

Simple prime number generator
*/

count = 1; n = 1; limit = 100; while (n < limit) {

   k=3;
   p=1;
   n=n+2;
   while ((k*k<=n) && (p)) {
       p=n/k*k!=n;
       k=k+2;
   }
   if (p) {
       print(n, " is prime\n");
       count = count + 1;
   }

} print("Total primes found: ", count, "\n"); }}

 ast_interp syntax lex primes

3 is prime 5 is prime 7 is prime 11 is prime 13 is prime 17 is prime 19 is prime 23 is prime 29 is prime 31 is prime 37 is prime 41 is prime 43 is prime 47 is prime 53 is prime 59 is prime 61 is prime 67 is prime 71 is prime 73 is prime 79 is prime 83 is prime 89 is prime 97 is prime 101 is prime Total primes found: 26

</lang>

Java

<lang java> import java.util.Scanner; import java.io.File; import java.util.List; import java.util.ArrayList; import java.util.Map; import java.util.HashMap;

class Interpreter { static Map<String, Integer> globals = new HashMap<>(); static Scanner s; static List<Node> list = new ArrayList<>(); static Map<String, NodeType> str_to_nodes = new HashMap<>();

static class Node { public NodeType nt; public Node left, right; public String value;

Node() { this.nt = null; this.left = null; this.right = null; this.value = null; } Node(NodeType node_type, Node left, Node right, String value) { this.nt = node_type; this.left = left; this.right = right; this.value = value; } public static Node make_node(NodeType nodetype, Node left, Node right) { return new Node(nodetype, left, right, ""); } public static Node make_node(NodeType nodetype, Node left) { return new Node(nodetype, left, null, ""); } public static Node make_leaf(NodeType nodetype, String value) { return new Node(nodetype, null, null, value); } } static enum NodeType { nd_None(";"), nd_Ident("Identifier"), nd_String("String"), nd_Integer("Integer"), nd_Sequence("Sequence"), nd_If("If"), nd_Prtc("Prtc"), nd_Prts("Prts"), nd_Prti("Prti"), nd_While("While"), nd_Assign("Assign"), nd_Negate("Negate"), nd_Not("Not"), nd_Mul("Multiply"), nd_Div("Divide"), nd_Mod("Mod"), nd_Add("Add"), nd_Sub("Subtract"), nd_Lss("Less"), nd_Leq("LessEqual"), nd_Gtr("Greater"), nd_Geq("GreaterEqual"), nd_Eql("Equal"), nd_Neq("NotEqual"), nd_And("And"), nd_Or("Or");

private final String name;

NodeType(String name) { this.name = name; }

@Override public String toString() { return this.name; } } static String str(String s) { String result = ""; int i = 0; s = s.replace("\"", ""); while (i < s.length()) { if (s.charAt(i) == '\\' && i + 1 < s.length()) { if (s.charAt(i + 1) == 'n') { result += '\n'; i += 2; } else if (s.charAt(i) == '\\') { result += '\\'; i += 2; } } else { result += s.charAt(i); i++; } } return result; } static boolean itob(int i) { return i != 0; } static int btoi(boolean b) { return b ? 1 : 0; } static int fetch_var(String name) { int result; if (globals.containsKey(name)) { result = globals.get(name); } else { globals.put(name, 0); result = 0; } return result; } static Integer interpret(Node n) throws Exception { if (n == null) { return 0; } switch (n.nt) { case nd_Integer: return Integer.parseInt(n.value); case nd_Ident: return fetch_var(n.value); case nd_String: return 1;//n.value; case nd_Assign: globals.put(n.left.value, interpret(n.right)); return 0; case nd_Add: return interpret(n.left) + interpret(n.right); case nd_Sub: return interpret(n.left) - interpret(n.right); case nd_Mul: return interpret(n.left) * interpret(n.right); case nd_Div: return interpret(n.left) / interpret(n.right); case nd_Mod: return interpret(n.left) % interpret(n.right); case nd_Lss: return btoi(interpret(n.left) < interpret(n.right)); case nd_Leq: return btoi(interpret(n.left) <= interpret(n.right)); case nd_Gtr: return btoi(interpret(n.left) > interpret(n.right)); case nd_Geq: return btoi(interpret(n.left) >= interpret(n.right)); case nd_Eql: return btoi(interpret(n.left) == interpret(n.right)); case nd_Neq: return btoi(interpret(n.left) != interpret(n.right)); case nd_And: return btoi(itob(interpret(n.left)) && itob(interpret(n.right))); case nd_Or: return btoi(itob(interpret(n.left)) || itob(interpret(n.right))); case nd_Not: if (interpret(n.left) == 0) { return 1; } else { return 0; } case nd_Negate: return -interpret(n.left); case nd_If: if (interpret(n.left) != 0) { interpret(n.right.left); } else { interpret(n.right.right); } return 0; case nd_While: while (interpret(n.left) != 0) { interpret(n.right); } return 0; case nd_Prtc: System.out.printf("%c", interpret(n.left)); return 0; case nd_Prti: System.out.printf("%d", interpret(n.left)); return 0; case nd_Prts: System.out.print(str(n.left.value));//interpret(n.left)); return 0; case nd_Sequence: interpret(n.left); interpret(n.right); return 0; default: throw new Exception("Error: '" + n.nt + "' found, expecting operator"); } } static Node load_ast() throws Exception { String command, value; String line; Node left, right;

while (s.hasNext()) { line = s.nextLine(); value = null; if (line.length() > 16) { command = line.substring(0, 15).trim(); value = line.substring(15).trim(); } else { command = line.trim(); } if (command.equals(";")) { return null; } if (!str_to_nodes.containsKey(command)) { throw new Exception("Command not found: '" + command + "'"); } if (value != null) { return Node.make_leaf(str_to_nodes.get(command), value); } left = load_ast(); right = load_ast(); return Node.make_node(str_to_nodes.get(command), left, right); } return null; // for the compiler, not needed } public static void main(String[] args) { Node n;

str_to_nodes.put(";", NodeType.nd_None); str_to_nodes.put("Sequence", NodeType.nd_Sequence); str_to_nodes.put("Identifier", NodeType.nd_Ident); str_to_nodes.put("String", NodeType.nd_String); str_to_nodes.put("Integer", NodeType.nd_Integer); str_to_nodes.put("If", NodeType.nd_If); str_to_nodes.put("While", NodeType.nd_While); str_to_nodes.put("Prtc", NodeType.nd_Prtc); str_to_nodes.put("Prts", NodeType.nd_Prts); str_to_nodes.put("Prti", NodeType.nd_Prti); str_to_nodes.put("Assign", NodeType.nd_Assign); str_to_nodes.put("Negate", NodeType.nd_Negate); str_to_nodes.put("Not", NodeType.nd_Not); str_to_nodes.put("Multiply", NodeType.nd_Mul); str_to_nodes.put("Divide", NodeType.nd_Div); str_to_nodes.put("Mod", NodeType.nd_Mod); str_to_nodes.put("Add", NodeType.nd_Add); str_to_nodes.put("Subtract", NodeType.nd_Sub); str_to_nodes.put("Less", NodeType.nd_Lss); str_to_nodes.put("LessEqual", NodeType.nd_Leq); str_to_nodes.put("Greater", NodeType.nd_Gtr); str_to_nodes.put("GreaterEqual", NodeType.nd_Geq); str_to_nodes.put("Equal", NodeType.nd_Eql); str_to_nodes.put("NotEqual", NodeType.nd_Neq); str_to_nodes.put("And", NodeType.nd_And); str_to_nodes.put("Or", NodeType.nd_Or);

if (args.length > 0) { try { s = new Scanner(new File(args[0])); n = load_ast(); interpret(n); } catch (Exception e) { System.out.println("Ex: "+e.getMessage()); } } } }

</lang>

Julia

<lang julia>struct Anode

   node_type::String
   left::Union{Nothing, Anode}
   right::Union{Nothing, Anode}
   value::Union{Nothing, String}

end

make_leaf(t, v) = Anode(t, nothing, nothing, v) make_node(t, l, r) = Anode(t, l, r, nothing)

const OP2 = Dict("Multiply" => "*", "Divide" => "/", "Mod" => "%", "Add" => "+", "Subtract" => "-",

                "Less" => "<", "Greater" => ">", "LessEqual" => "<=", "GreaterEqual" => ">=", 
                "Equal" => "==", "NotEqual" => "!=", "And" => "&&", "Or" => "||")

const OP1 = Dict("Not" => "!", "Minus" => "-")

tobool(i::Bool) = i tobool(i::Int) = (i != 0) tobool(s::String) = eval(Symbol(s)) != 0

const stac = Vector{Any}()

function call2(op, x, y)

   if op in ["And", "Or"]
       x, y = tobool(x), tobool(y)
   end
   eval(Meta.parse("push!(stac, $(x) $(OP2[op]) $(y))"))
   return Int(floor(pop!(stac)))

end

call1(op, x) = (if op in ["Not"] x = tobool(x) end; eval(Meta.parse("$(OP1[op]) $(x)"))) evalpn(op, x, y = nothing) = (haskey(OP2, op) ? call2(op, x, y) : call1(op, x))

function load_ast(io)

   line = strip(readline(io))
   line_list = filter(x -> x != nothing, match(r"(?:(\w+)\s+(\d+|\w+|\".*\")|(\w+|;))", line).captures)
   text = line_list[1]
   if text == ";"
       return nothing
   end
   node_type = text
   if length(line_list) > 1
       return make_leaf(line_list[1], line_list[2])
   end
   left = load_ast(io)
   right = load_ast(io)
   return make_node(line_list[1], left, right)

end

function interp(x)

   if x == nothing return nothing
   elseif x.node_type == "Integer" return parse(Int, x.value)
   elseif x.node_type == "Identifier" return "_" * x.value
   elseif x.node_type == "String" return replace(replace(x.value, "\"" => ""), "\\n" => "\n")
   elseif x.node_type == "Assign" s = "$(interp(x.left)) = $(interp(x.right))"; eval(Meta.parse(s)); return nothing
   elseif x.node_type in keys(OP2) return evalpn(x.node_type, interp(x.left), interp(x.right))
   elseif x.node_type in keys(OP1) return evalpn(x.node_type, interp(x.left))
   elseif x.node_type ==  "If" tobool(eval(interp(x.left))) ? interp(x.right.left) : interp(x.right.right); return nothing
   elseif x.node_type == "While" while tobool(eval(interp(x.left))) interp(x.right) end; return nothing
   elseif x.node_type == "Prtc" print(Char(eval(interp(x.left)))); return nothing
   elseif x.node_type == "Prti" s = interp(x.left); print((i = tryparse(Int, s)) == nothing ? eval(Symbol(s)) : i); return nothing
   elseif x.node_type == "Prts" print(eval(interp(x.left))); return nothing
   elseif x.node_type == "Sequence" interp(x.left); interp(x.right); return nothing
   else
       throw("unknown node type: $x")
   end

end

const testparsed = """ Sequence Sequence Sequence Sequence Sequence

Assign Identifier count Integer 1 Assign Identifier n Integer 1 Assign Identifier limit Integer 100 While Less Identifier n Identifier limit Sequence Sequence Sequence Sequence Sequence

Assign Identifier k Integer 3 Assign Identifier p Integer 1 Assign Identifier n Add Identifier n Integer 2 While And LessEqual Multiply Identifier k Identifier k Identifier n Identifier p Sequence Sequence

Assign Identifier p NotEqual Multiply Divide Identifier n Identifier k Identifier k Identifier n Assign Identifier k Add Identifier k Integer 2 If Identifier p If Sequence Sequence

Sequence Sequence

Prti Identifier n

Prts String \" is prime\\n\"

Assign Identifier count Add Identifier count Integer 1

Sequence Sequence Sequence

Prts String \"Total primes found: \"

Prti Identifier count

Prts String \"\\n\"

"""

const lio = IOBuffer(testparsed)

interp(load_ast(lio))

</lang>

Output:

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Nim

Using AST produced by the parser from the task “syntax analyzer”.

<lang Nim>import os, strutils, streams, tables

import ast_parser

type

 ValueKind = enum valNil, valInt, valString
 # Representation of a value.
 Value = object
   case kind: ValueKind
   of valNil: nil
   of valInt: intVal: int
   of valString: stringVal: string
 # Range of binary operators.
 BinaryOperator = range[nMultiply..nOr]
  1. Table of variables.

var variables: Table[string, Value]

type RunTimeError = object of CatchableError

  1. ---------------------------------------------------------------------------------------------------

template newInt(val: typed): Value =

 ## Create an integer value.
 Value(kind: valInt, intVal: val)
  1. ---------------------------------------------------------------------------------------------------

proc interp(node: Node): Value =

 ## Interpret code starting at "node".
 if node.isNil:
   return Value(kind: valNil)
 case node.kind
 of nInteger:
   result = Value(kind: valInt, intVal: node.intVal)
 of nIdentifier:
   if node.name notin variables:
     raise newException(RunTimeError, "Variable {node.name} is not initialized.")
   result = variables[node.name]
 of nString:
   result = Value(kind: valString, stringVal: node.stringVal)
 of nAssign:
   variables[node.left.name] = interp(node.right)
 of nNegate:
   result = newInt(-interp(node.left).intVal)
 of nNot:
   result = newInt(not interp(node.left).intVal)
 of BinaryOperator.low..BinaryOperator.high:
   let left = interp(node.left)
   let right = interp(node.right)
   case BinaryOperator(node.kind)
   of nMultiply:
     result = newInt(left.intVal * right.intVal)
   of nDivide:
     result = newInt(left.intVal div right.intVal)
   of nMod:
     result = newInt(left.intVal mod right.intVal)
   of nAdd:
     result = newInt(left.intVal + right.intVal)
   of nSubtract:
     result = newInt(left.intVal - right.intVal)
   of nLess:
     result = newInt(ord(left.intVal < right.intVal))
   of nLessEqual:
     result = newInt(ord(left.intVal <= right.intVal))
   of nGreater:
     result = newInt(ord(left.intVal > right.intVal))
   of nGreaterEqual:
     result = newInt(ord(left.intVal >= right.intVal))
   of nEqual:
     result = newInt(ord(left.intVal == right.intVal))
   of nNotEqual:
     result = newInt(ord(left.intVal != right.intVal))
   of nAnd:
     result = newInt(left.intVal and right.intVal)
   of nOr:
     result = newInt(left.intVal or right.intVal)
 of nIf:
   if interp(node.left).intVal != 0:
     discard interp(node.right.left)
   else:
     discard interp(node.right.right)
 of nWhile:
   while interp(node.left).intVal != 0:
     discard interp(node.right)
 of nPrtc:
   stdout.write(chr(interp(node.left).intVal))
 of nPrti:
   stdout.write(interp(node.left).intVal)
 of nPrts:
   stdout.write(interp(node.left).stringVal)
 of nSequence:
   discard interp(node.left)
   discard interp(node.right)
  1. ---------------------------------------------------------------------------------------------------

import re

proc loadAst(stream: Stream): Node =

 ## Load a linear AST and build a binary tree.
 let line = stream.readLine().strip()
 if line.startsWith(';'):
   return nil
 var fields = line.split(' ', 1)
 let kind = parseEnum[NodeKind](fields[0])
 if kind in {nIdentifier, nString, nInteger}:
   if fields.len < 2:
     raise newException(ValueError, "Missing value field for " & fields[0])
   else:
     fields[1] = fields[1].strip()
 case kind
 of nIdentifier:
   return Node(kind: nIdentifier, name: fields[1])
 of nString:
   str = fields[1].replacef(re"([^\\])(\\n)", "$1\n").replace(r"\\", r"\").replace("\"", "")
   return Node(kind: nString, stringVal: str)
 of nInteger:
   return Node(kind: nInteger, intVal: parseInt(fields[1]))
 else:
   if fields.len > 1:
     raise newException(ValueError, "Extra field for " & fields[0])
 let left = stream.loadAst()
 let right = stream.loadAst()
 result = newNode(kind, left, right)
  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

var stream: Stream var toClose = false

if paramCount() < 1:

 stream = newFileStream(stdin)

else:

 stream = newFileStream(paramStr(1))
 toClose = true

let ast = loadAst(stream) if toClose: stream.close()

discard ast.interp()</lang>

Output:

Output from the program ASCII Mandelbrot: https://rosettacode.org/wiki/Compiler/Sample_programs#Ascii_Mandlebrot

1111111111111111111111122222222222222222222222222222222222222222222222222222222222222222222222222211111
1111111111111111111122222222222222222222222222222222222222222222222222222222222222222222222222222222211
1111111111111111112222222222222222222222222222222222222222222222222222222222222222222222222222222222222
1111111111111111222222222222222222233333333333333333333333222222222222222222222222222222222222222222222
1111111111111112222222222222333333333333333333333333333333333333222222222222222222222222222222222222222
1111111111111222222222233333333333333333333333344444456655544443333332222222222222222222222222222222222
1111111111112222222233333333333333333333333444444445567@@6665444444333333222222222222222222222222222222
11111111111222222333333333333333333333334444444445555679@@@@7654444443333333222222222222222222222222222
1111111112222223333333333333333333333444444444455556789@@@@98755544444433333332222222222222222222222222
1111111122223333333333333333333333344444444445556668@@@    @@@76555544444333333322222222222222222222222
1111111222233333333333333333333344444444455566667778@@      @987666555544433333333222222222222222222222
111111122333333333333333333333444444455556@@@@@99@@@@@@    @@@@@@877779@5443333333322222222222222222222
1111112233333333333333333334444455555556679@   @@@               @@@@@@ 8544333333333222222222222222222
1111122333333333333333334445555555556666789@@@                        @86554433333333322222222222222222
1111123333333333333444456666555556666778@@ @                         @@87655443333333332222222222222222
111123333333344444455568@887789@8777788@@@                            @@@@65444333333332222222222222222
111133334444444455555668@@@@@@@@@@@@99@@@                              @@765444333333333222222222222222
111133444444445555556778@@@         @@@@                                @855444333333333222222222222222
11124444444455555668@99@@             @                                 @655444433333333322222222222222
11134555556666677789@@                                                @86655444433333333322222222222222
111                                                                 @@876555444433333333322222222222222
11134555556666677789@@                                                @86655444433333333322222222222222
11124444444455555668@99@@             @                                 @655444433333333322222222222222
111133444444445555556778@@@         @@@@                                @855444333333333222222222222222
111133334444444455555668@@@@@@@@@@@@99@@@                              @@765444333333333222222222222222
111123333333344444455568@887789@8777788@@@                            @@@@65444333333332222222222222222
1111123333333333333444456666555556666778@@ @                         @@87655443333333332222222222222222
1111122333333333333333334445555555556666789@@@                        @86554433333333322222222222222222
1111112233333333333333333334444455555556679@   @@@               @@@@@@ 8544333333333222222222222222222
111111122333333333333333333333444444455556@@@@@99@@@@@@    @@@@@@877779@5443333333322222222222222222222
1111111222233333333333333333333344444444455566667778@@      @987666555544433333333222222222222222222222
1111111122223333333333333333333333344444444445556668@@@    @@@76555544444333333322222222222222222222222
1111111112222223333333333333333333333444444444455556789@@@@98755544444433333332222222222222222222222222
11111111111222222333333333333333333333334444444445555679@@@@7654444443333333222222222222222222222222222
1111111111112222222233333333333333333333333444444445567@@6665444444333333222222222222222222222222222222
1111111111111222222222233333333333333333333333344444456655544443333332222222222222222222222222222222222
1111111111111112222222222222333333333333333333333333333333333333222222222222222222222222222222222222222
1111111111111111222222222222222222233333333333333333333333222222222222222222222222222222222222222222222
1111111111111111112222222222222222222222222222222222222222222222222222222222222222222222222222222222222
1111111111111111111122222222222222222222222222222222222222222222222222222222222222222222222222222222211

Perl

Tested with perl v5.26.1

<lang Perl>#!/usr/bin/perl

use strict; # interpreter.pl - execute a flatAST use warnings; # http://www.rosettacode.org/wiki/Compiler/AST_interpreter use integer;

my %variables;

tree()->run;

sub tree

 {
 my $line = <> // die "incomplete tree\n";
 (local $_, my $arg) = $line =~ /^(\w+|;)\s+(.*)/ or die "bad input $line";
 /String/ ? bless [$arg =~ tr/""//dr =~ s/\\(.)/$1 eq 'n' ? "\n" : $1/ger], $_ :
   /Identifier|Integer/ ? bless [ $arg ], $_ :
   /;/ ? bless [], 'Null' :
   bless [ tree(), tree() ], $_;
 }

sub Add::run { $_[0][0]->run + $_[0][1]->run } sub And::run { $_[0][0]->run && $_[0][1]->run } sub Assign::run { $variables{$_[0][0][0]} = $_[0][1]->run } sub Divide::run { $_[0][0]->run / $_[0][1]->run } sub Equal::run { $_[0][0]->run == $_[0][1]->run ? 1 : 0 } sub Greater::run { $_[0][0]->run > $_[0][1]->run ? 1 : 0 } sub GreaterEqual::run { $_[0][0]->run >= $_[0][1]->run ? 1 : 0 } sub Identifier::run { $variables{$_[0][0]} // 0 } sub If::run { $_[0][0]->run ? $_[0][1][0]->run : $_[0][1][1]->run } sub Integer::run { $_[0][0] } sub Less::run { $_[0][0]->run < $_[0][1]->run ? 1 : 0 } sub LessEqual::run { $_[0][0]->run <= $_[0][1]->run ? 1 : 0 } sub Mod::run { $_[0][0]->run % $_[0][1]->run } sub Multiply::run { $_[0][0]->run * $_[0][1]->run } sub Negate::run { - $_[0][0]->run } sub Not::run { $_[0][0]->run ? 0 : 1 } sub NotEqual::run { $_[0][0]->run != $_[0][1]->run ? 1 : 0 } sub Null::run {} sub Or::run { $_[0][0]->run || $_[0][1]->run } sub Prtc::run { print chr $_[0][0]->run } sub Prti::run { print $_[0][0]->run } sub Prts::run { print $_[0][0][0] } sub Sequence::run { $_->run for $_[0]->@* } sub Subtract::run { $_[0][0]->run - $_[0][1]->run } sub While::run { $_[0][1]->run while $_[0][0]->run }</lang> Passes all tests.

Phix

Reusing parse.e from the Syntax Analyzer task

--
-- demo\rosetta\Compiler\interp.exw
-- ================================
--
with javascript_semantics
include parse.e

sequence vars = {},
         vals = {}

function var_idx(sequence inode)
    if inode[1]!=tk_Identifier then ?9/0 end if
    string ident = inode[2]
    integer n = find(ident,vars)
    if n=0 then
        vars = append(vars,ident)
        vals = append(vals,0)
        n = length(vars)
    end if
    return n
end function

function interp(object t)
    if t!=NULL then
        integer ntype = t[1]
        object t2 = t[2], 
               t3 = iff(length(t)=3?t[3]:0)
        switch ntype do
            case tk_Sequence:       {} = interp(t2) {} = interp(t3)
            case tk_assign:         vals[var_idx(t2)] = interp(t3)
            case tk_Identifier:     return vals[var_idx(t)]
            case tk_Integer:        return t2
            case tk_String:         return t2
            case tk_lt:             return interp(t2) < interp(t3)
            case tk_add:            return interp(t2) + interp(t3)
            case tk_sub:            return interp(t2) - interp(t3)
            case tk_while:          while interp(t2) do {} = interp(t3) end while
            case tk_Prints:         puts(1,interp(t2))
            case tk_Printi:         printf(1,"%d",interp(t2))
            case tk_putc:           printf(1,"%c",interp(t2))
            case tk_and:            return interp(t2) and interp(t3)
            case tk_or:             return interp(t2) or interp(t3)
            case tk_le:             return interp(t2) <= interp(t3)
            case tk_ge:             return interp(t2) >= interp(t3)
            case tk_ne:             return interp(t2) != interp(t3)
            case tk_gt:             return interp(t2) > interp(t3)
            case tk_mul:            return interp(t2) * interp(t3)
            case tk_div:            return trunc(interp(t2)/interp(t3))
            case tk_mod:            return remainder(interp(t2),interp(t3))
            case tk_if:             {} = interp(t3[iff(interp(t2)?2:3)])
            case tk_not:            return not interp(t2)
            case tk_neg:            return - interp(t2)
            else
                error("unknown node type")
        end switch
    end if
    return NULL
end function

procedure main(sequence cl)
    open_files(cl)
    toks = lex()
    object t = parse()
    {} = interp(t)
    close_files()
end procedure

--main(command_line())
main({0,0,"primes.c"})
Output:
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Python

Tested with Python 2.7 and 3.x <lang Python>from __future__ import print_function import sys, shlex, operator

nd_Ident, nd_String, nd_Integer, nd_Sequence, nd_If, nd_Prtc, nd_Prts, nd_Prti, nd_While, \ nd_Assign, nd_Negate, nd_Not, nd_Mul, nd_Div, nd_Mod, nd_Add, nd_Sub, nd_Lss, nd_Leq, \ nd_Gtr, nd_Geq, nd_Eql, nd_Neq, nd_And, nd_Or = range(25)

all_syms = {

   "Identifier"  : nd_Ident,    "String"      : nd_String,
   "Integer"     : nd_Integer,  "Sequence"    : nd_Sequence,
   "If"          : nd_If,       "Prtc"        : nd_Prtc,
   "Prts"        : nd_Prts,     "Prti"        : nd_Prti,
   "While"       : nd_While,    "Assign"      : nd_Assign,
   "Negate"      : nd_Negate,   "Not"         : nd_Not,
   "Multiply"    : nd_Mul,      "Divide"      : nd_Div,
   "Mod"         : nd_Mod,      "Add"         : nd_Add,
   "Subtract"    : nd_Sub,      "Less"        : nd_Lss,
   "LessEqual"   : nd_Leq,      "Greater"     : nd_Gtr,
   "GreaterEqual": nd_Geq,      "Equal"       : nd_Eql,
   "NotEqual"    : nd_Neq,      "And"         : nd_And,
   "Or"          : nd_Or}

input_file = None globals = {}

        • show error and exit

def error(msg):

   print("%s" % (msg))
   exit(1)

class Node:

   def __init__(self, node_type, left = None, right = None, value = None):
       self.node_type  = node_type
       self.left  = left
       self.right = right
       self.value = value

def make_node(oper, left, right = None):

   return Node(oper, left, right)

def make_leaf(oper, n):

   return Node(oper, value = n)

def fetch_var(var_name):

   n = globals.get(var_name, None)
   if n == None:
       globals[var_name] = n = 0
   return n

def interp(x):

   global globals
   if x == None: return None
   elif x.node_type == nd_Integer: return int(x.value)
   elif x.node_type == nd_Ident:   return fetch_var(x.value)
   elif x.node_type == nd_String:  return x.value
   elif x.node_type == nd_Assign:
                   globals[x.left.value] = interp(x.right)
                   return None
   elif x.node_type == nd_Add:     return interp(x.left) +   interp(x.right)
   elif x.node_type == nd_Sub:     return interp(x.left) -   interp(x.right)
   elif x.node_type == nd_Mul:     return interp(x.left) *   interp(x.right)
   # use C like division semantics
   # another way: abs(x) / abs(y) * cmp(x, 0) * cmp(y, 0)
   elif x.node_type == nd_Div:     return int(float(interp(x.left)) / interp(x.right))
   elif x.node_type == nd_Mod:     return int(float(interp(x.left)) % interp(x.right))
   elif x.node_type == nd_Lss:     return interp(x.left) <   interp(x.right)
   elif x.node_type == nd_Gtr:     return interp(x.left) >   interp(x.right)
   elif x.node_type == nd_Leq:     return interp(x.left) <=  interp(x.right)
   elif x.node_type == nd_Geq:     return interp(x.left) >=  interp(x.right)
   elif x.node_type == nd_Eql:     return interp(x.left) ==  interp(x.right)
   elif x.node_type == nd_Neq:     return interp(x.left) !=  interp(x.right)
   elif x.node_type == nd_And:     return interp(x.left) and interp(x.right)
   elif x.node_type == nd_Or:      return interp(x.left) or  interp(x.right)
   elif x.node_type == nd_Negate:  return -interp(x.left)
   elif x.node_type == nd_Not:     return not interp(x.left)
   elif x.node_type ==  nd_If:
                   if (interp(x.left)):
                       interp(x.right.left)
                   else:
                       interp(x.right.right)
                   return None
   elif x.node_type == nd_While:
                   while (interp(x.left)):
                       interp(x.right)
                   return None
   elif x.node_type == nd_Prtc:
                   print("%c" % (interp(x.left)), end=)
                   return None
   elif x.node_type == nd_Prti:
                   print("%d" % (interp(x.left)), end=)
                   return None
   elif x.node_type == nd_Prts:
                   print(interp(x.left), end=)
                   return None
   elif x.node_type == nd_Sequence:
                   interp(x.left)
                   interp(x.right)
                   return None
   else:
       error("error in code generator - found %d, expecting operator" % (x.node_type))

def str_trans(srce):

   dest = ""
   i = 0
   srce = srce[1:-1]
   while i < len(srce):
       if srce[i] == '\\' and i + 1 < len(srce):
           if srce[i + 1] == 'n':
               dest += '\n'
               i += 2
           elif srce[i + 1] == '\\':
               dest += '\\'
               i += 2
       else:
           dest += srce[i]
           i += 1
   return dest

def load_ast():

   line = input_file.readline()
   line_list = shlex.split(line, False, False)
   text = line_list[0]
   value = None
   if len(line_list) > 1:
       value = line_list[1]
       if value.isdigit():
           value = int(value)
   if text == ";":
       return None
   node_type = all_syms[text]
   if value != None:
       if node_type == nd_String:
           value = str_trans(value)
       return make_leaf(node_type, value)
   left = load_ast()
   right = load_ast()
   return make_node(node_type, left, right)
        • main driver

input_file = sys.stdin if len(sys.argv) > 1:

   try:
       input_file = open(sys.argv[1], "r", 4096)
   except IOError as e:
       error(0, 0, "Can't open %s" % sys.argv[1])

n = load_ast() interp(n)</lang>

Output  —  prime numbers output from AST interpreter:

lex prime.t | parse | interp
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

RATFOR

Works with: ratfor77 version public domain 1.0
Works with: gfortran version 11.3.0
Works with: f2c version 20100827


<lang ratfor>######################################################################

  1. The Rosetta Code AST interpreter in Ratfor 77.
  2. In FORTRAN 77 and therefore in Ratfor 77, there is no way to specify
  3. that a value should be put on a call stack. Therefore there is no
  4. way to implement recursive algorithms in Ratfor 77 (although see the
  5. Ratfor for the "syntax analyzer" task, where a recursive language is
  6. implemented *in* Ratfor). Thus we cannot simply follow the
  7. recursive pseudocode, and instead use non-recursive algorithms.
  8. How to deal with FORTRAN 77 input is another problem. I use
  9. formatted input, treating each line as an array of type
  10. CHARACTER--regrettably of no more than some predetermined, finite
  11. length. It is a very simple method and presents no significant
  12. difficulties, aside from the restriction on line length of the
  13. input.
  14. Output is a bigger problem. If one uses gfortran, "advance='no'" is
  15. available, but not if one uses f2c. The method employed here is to
  16. construct the output in lines--regrettably, again, of fixed length.
  17. On a POSIX platform, the program can be compiled with f2c and run
  18. somewhat as follows:
  19. ratfor77 interp-in-ratfor.r > interp-in-ratfor.f
  20. f2c -C -Nc80 interp-in-ratfor.f
  21. cc interp-in-ratfor.c -lf2c
  22. ./a.out < compiler-tests/primes.ast
  23. With gfortran, a little differently:
  24. ratfor77 interp-in-ratfor.r > interp-in-ratfor.f
  25. gfortran -fcheck=all -std=legacy interp-in-ratfor.f
  26. ./a.out < compiler-tests/primes.ast
  27. I/O is strictly from default input and to default output, which, on
  28. POSIX systems, usually correspond respectively to standard input and
  29. standard output. (I did not wish to have to deal with unit numbers;
  30. these are now standardized in ISO_FORTRAN_ENV, but that is not
  31. available in FORTRAN 77.)
  32. ---------------------------------------------------------------------
  1. Some parameters you may wish to modify.

define(LINESZ, 256) # Size of an input line. define(OUTLSZ, 1024) # Size of an output line. define(STRNSZ, 4096) # Size of the string pool. define(NODSSZ, 4096) # Size of the nodes pool. define(STCKSZ, 4096) # Size of stacks. define(MAXVAR, 256) # Maximum number of variables.

  1. ---------------------------------------------------------------------

define(NEWLIN, 10) # The Unix newline character (ASCII LF). define(DQUOTE, 34) # The double quote character. define(BACKSL, 92) # The backslash character.

  1. ---------------------------------------------------------------------

define(NODESZ, 3) define(NNEXTF, 1) # Index for next-free. define(NTAG, 1) # Index for the tag.

                               # For an internal node --

define(NLEFT, 2) # Index for the left node. define(NRIGHT, 3) # Index for the right node.

                               # For a leaf node --

define(NITV, 2) # Index for the string pool index. define(NITN, 3) # Length of the value.

define(NIL, -1) # Nil node.

define(RGT, 10000) define(STAGE2, 20000)

  1. The following all must be less than RGT.

define(NDID, 0) define(NDSTR, 1) define(NDINT, 2) define(NDSEQ, 3) define(NDIF, 4) define(NDPRTC, 5) define(NDPRTS, 6) define(NDPRTI, 7) define(NDWHIL, 8) define(NDASGN, 9) define(NDNEG, 10) define(NDNOT, 11) define(NDMUL, 12) define(NDDIV, 13) define(NDMOD, 14) define(NDADD, 15) define(NDSUB, 16) define(NDLT, 17) define(NDLE, 18) define(NDGT, 19) define(NDGE, 20) define(NDEQ, 21) define(NDNE, 22) define(NDAND, 23) define(NDOR, 24)

  1. ---------------------------------------------------------------------

function issp (c)

 # Is a character a space character?
 implicit none
 character c
 logical issp
 integer ic
 ic = ichar (c)
 issp = (ic == 32 || (9 <= ic && ic <= 13))

end

function skipsp (str, i, imax)

 # Skip past spaces in a string.
 implicit none
 character str(*)
 integer i
 integer imax
 integer skipsp
 logical issp
 logical done
 skipsp = i
 done = .false.
 while (!done)
   {
     if (imax <= skipsp)
       done = .true.
     else if (!issp (str(skipsp)))
       done = .true.
     else
       skipsp = skipsp + 1
   }

end

function skipns (str, i, imax)

 # Skip past non-spaces in a string.
 implicit none
 character str(*)
 integer i
 integer imax
 integer skipns
 logical issp
 logical done
 skipns = i
 done = .false.
 while (!done)
   {
     if (imax <= skipns)
       done = .true.
     else if (issp (str(skipns)))
       done = .true.
     else
       skipns = skipns + 1
   }

end

function trimrt (str, n)

 # Find the length of a string, if one ignores trailing spaces.
 implicit none
 character str(*)
 integer n
 integer trimrt
 logical issp
 logical done
 trimrt = n
 done = .false.
 while (!done)
   {
     if (trimrt == 0)
       done = .true.
     else if (!issp (str(trimrt)))
       done = .true.
     else
       trimrt = trimrt - 1
   }

end

  1. ---------------------------------------------------------------------

subroutine addstq (strngs, istrng, src, i0, n0, i, n)

 # Add a quoted string to the string pool.
 implicit none
 character strngs(STRNSZ)      # String pool.
 integer istrng                # String pool's next slot.
 character src(*)              # Source string.
 integer i0, n0                # Index and length in source string.
 integer i, n                  # Index and length in string pool.
 integer j
 logical done

1000 format ('attempt to treat an unquoted string as a quoted string')

 if (src(i0) != char (DQUOTE) || src(i0 + n0 - 1) != char (DQUOTE))
   {
     write (*, 1000)
     stop
   }
 i = istrng
 n = 0
 j = i0 + 1
 done = .false.
 while (j != i0 + n0 - 1)
   if (i == STRNSZ)
     {
       write (*, '(string pool exhausted)')
       stop
     }
   else if (src(j) == char (BACKSL))
     {
       if (j == i0 + n0 - 1)
         {
           write (*, '(incorrectly formed quoted string)')
           stop
         }
       if (src(j + 1) == 'n')
         strngs(istrng) = char (NEWLIN)
       else if (src(j + 1) == char (BACKSL))
         strngs(istrng) = src(j + 1)
       else
         {
           write (*, '(unrecognized escape sequence)')
           stop
         }
       istrng = istrng + 1
       n = n + 1
       j = j + 2
     }
   else
     {
       strngs(istrng) = src(j)
       istrng = istrng + 1
       n = n + 1
       j = j + 1
     }

end

subroutine addstu (strngs, istrng, src, i0, n0, i, n)

 # Add an unquoted string to the string pool.
 implicit none
 character strngs(STRNSZ)      # String pool.
 integer istrng                # String pool's next slot.
 character src(*)              # Source string.
 integer i0, n0                # Index and length in source string.
 integer i, n                  # Index and length in string pool.
 integer j
 if (STRNSZ < istrng + (n0 - 1))
   {
     write (*, '(string pool exhausted)')
     stop
   }
 for (j = 0; j < n0; j = j + 1)
   strngs(istrng + j) = src(i0 + j)
 i = istrng
 n = n0
 istrng = istrng + n0

end

subroutine addstr (strngs, istrng, src, i0, n0, i, n)

 # Add a string (possibly given as a quoted string) to the string
 # pool.
 implicit none
 character strngs(STRNSZ)      # String pool.
 integer istrng                # String pool's next slot.
 character src(*)              # Source string.
 integer i0, n0                # Index and length in source string.
 integer i, n                  # Index and length in string pool.
 if (n0 == 0)
   {
     i = 0
     n = 0
   }
 else if (src(i0) == char (DQUOTE))
   call addstq (strngs, istrng, src, i0, n0, i, n)
 else
   call addstu (strngs, istrng, src, i0, n0, i, n)

end

  1. ---------------------------------------------------------------------

subroutine push (stack, sp, i)

 implicit none
 integer stack(STCKSZ)
 integer sp                    # Stack pointer.
 integer i                     # Value to push.
 if (sp == STCKSZ)
   {
     write (*, '(stack overflow in push)')
     stop
   }
 stack(sp) = i
 sp = sp + 1

end

function pop (stack, sp)

 implicit none
 integer stack(STCKSZ)
 integer sp                    # Stack pointer.
 integer pop
 if (sp == 1)
   {
     write (*, '(stack underflow in pop)')
     stop
   }
 sp = sp - 1
 pop = stack(sp)

end

function nstack (sp)

 implicit none
 integer sp                    # Stack pointer.
 integer nstack
 nstack = sp - 1               # Current cardinality of the stack.

end

  1. ---------------------------------------------------------------------

subroutine initnd (nodes, frelst)

 # Initialize the nodes pool.
 implicit none
 integer nodes (NODESZ, NODSSZ)
 integer frelst                # Head of the free list.
 integer i
 for (i = 1; i < NODSSZ; i = i + 1)
   nodes(NNEXTF, i) = i + 1
 nodes(NNEXTF, NODSSZ) = NIL
 frelst = 1

end

subroutine newnod (nodes, frelst, i)

 # Get the index for a new node taken from the free list.
 integer nodes (NODESZ, NODSSZ)
 integer frelst                # Head of the free list.
 integer i                     # Index of the new node.
 integer j
 if (frelst == NIL)
   {
     write (*, '(nodes pool exhausted)')
     stop
   }
 i = frelst
 frelst = nodes(NNEXTF, frelst)
 for (j = 1; j <= NODESZ; j = j + 1)
   nodes(j, i) = 0

end

subroutine frenod (nodes, frelst, i)

 # Return a node to the free list.
 integer nodes (NODESZ, NODSSZ)
 integer frelst                # Head of the free list.
 integer i                     # Index of the node to free.
 nodes(NNEXTF, i) = frelst
 frelst = i

end

function strtag (str, i, n)

 implicit none
 character str(*)
 integer i, n
 integer strtag
 character*16 s
 integer j
 for (j = 0; j < 16; j = j + 1)
   if (j < n)
     s(j + 1 : j + 1) = str(i + j)
   else
     s(j + 1 : j + 1) = ' '
 if (s == "Identifier      ")
   strtag = NDID
 else if (s == "String          ")
   strtag = NDSTR
 else if (s == "Integer         ")
   strtag = NDINT
 else if (s == "Sequence        ")
   strtag = NDSEQ
 else if (s == "If              ")
   strtag = NDIF
 else if (s == "Prtc            ")
   strtag = NDPRTC
 else if (s == "Prts            ")
   strtag = NDPRTS
 else if (s == "Prti            ")
   strtag = NDPRTI
 else if (s == "While           ")
   strtag = NDWHIL
 else if (s == "Assign          ")
   strtag = NDASGN
 else if (s == "Negate          ")
   strtag = NDNEG
 else if (s == "Not             ")
   strtag = NDNOT
 else if (s == "Multiply        ")
   strtag = NDMUL
 else if (s == "Divide          ")
   strtag = NDDIV
 else if (s == "Mod             ")
   strtag = NDMOD
 else if (s == "Add             ")
   strtag = NDADD
 else if (s == "Subtract        ")
   strtag = NDSUB
 else if (s == "Less            ")
   strtag = NDLT
 else if (s == "LessEqual       ")
   strtag = NDLE
 else if (s == "Greater         ")
   strtag = NDGT
 else if (s == "GreaterEqual    ")
   strtag = NDGE
 else if (s == "Equal           ")
   strtag = NDEQ
 else if (s == "NotEqual        ")
   strtag = NDNE
 else if (s == "And             ")
   strtag = NDAND
 else if (s == "Or              ")
   strtag = NDOR
 else if (s == ";               ")
   strtag = NIL
 else
   {
     write (*, '(unrecognized input line: , A16)') s
     stop
   }

end

subroutine readln (strngs, istrng, tag, iarg, narg)

 # Read a line of the AST input.
 implicit none
 character strngs(STRNSZ) # String pool.
 integer istrng           # String pool's next slot.
 integer tag              # The node tag or NIL.
 integer iarg             # Index of an argument in the string pool.
 integer narg             # Length of an argument in the string pool.
 integer trimrt
 integer strtag
 integer skipsp
 integer skipns
 character line(LINESZ)
 character*20 fmt
 integer i, j, n
 # Read a line of text as an array of characters.
 write (fmt, '((, I10, A))') LINESZ
 read (*, fmt) line
 n = trimrt (line, LINESZ)
 i = skipsp (line, 1, n + 1)
 j = skipns (line, i, n + 1)
 tag = strtag (line, i, j - i)
 i = skipsp (line, j, n + 1)
 call addstr (strngs, istrng, line, i, (n + 1) - i, iarg, narg)

end

function hasarg (tag)

 implicit none
 integer tag
 logical hasarg
 hasarg = (tag == NDID || tag == NDINT || tag == NDSTR)

end

subroutine rdast (strngs, istrng, nodes, frelst, iast)

 # Read in the AST. A non-recursive algorithm is used.
 implicit none
 character strngs(STRNSZ)       # String pool.
 integer istrng                 # String pool's next slot.
 integer nodes (NODESZ, NODSSZ) # Nodes pool.
 integer frelst                 # Head of the free list.
 integer iast                   # Index of root node of the AST.
 integer nstack
 integer pop
 logical hasarg
 integer stack(STCKSZ)
 integer sp                    # Stack pointer.
 integer tag, iarg, narg
 integer i, j, k
 sp = 1
 call readln (strngs, istrng, tag, iarg, narg)
 if (tag == NIL)
   iast = NIL
 else
   {
     call newnod (nodes, frelst, i)
     iast = i
     nodes(NTAG, i) = tag
     nodes(NITV, i) = 0
     nodes(NITN, i) = 0
     if (hasarg (tag))
       {
         nodes(NITV, i) = iarg
         nodes(NITN, i) = narg
       }
     else
       {
         call push (stack, sp, i + RGT)
         call push (stack, sp, i)
         while (nstack (sp) != 0)
           {
             j = pop (stack, sp)
             k = mod (j, RGT)
             call readln (strngs, istrng, tag, iarg, narg)
             if (tag == NIL)
               i = NIL
             else
               {
                 call newnod (nodes, frelst, i)
                 nodes(NTAG, i) = tag
                 if (hasarg (tag))
                   {
                     nodes(NITV, i) = iarg
                     nodes(NITN, i) = narg
                   }
                 else
                   {
                     call push (stack, sp, i + RGT)
                     call push (stack, sp, i)
                   }
               }
             if (j == k)
               nodes(NLEFT, k) = i
             else
               nodes(NRIGHT, k) = i
           }
       }
   }

end

  1. ---------------------------------------------------------------------

subroutine flushl (outbuf, noutbf)

 # Flush a line from the output buffer.
 implicit none
 character outbuf(OUTLSZ)      # Output line buffer.
 integer noutbf                # Number of characters in outbuf.
 character*20 fmt
 integer i
 if (noutbf == 0)
   write (*, '()')
 else
   {
     write (fmt, 1000) noutbf

1000 format ('(', I10, 'A)')

     write (*, fmt) (outbuf(i), i = 1, noutbf)
     noutbf = 0
   }

end

subroutine wrtchr (outbuf, noutbf, ch)

 # Write a character to output.
 implicit none
 character outbuf(OUTLSZ)      # Output line buffer.
 integer noutbf                # Number of characters in outbuf.
 character ch                  # The character to output.
 # This routine silently truncates anything that goes past the buffer
 # boundary.
 if (ch == char (NEWLIN))
   call flushl (outbuf, noutbf)
 else if (noutbf < OUTLSZ)
   {
     noutbf = noutbf + 1
     outbuf(noutbf) = ch
   }

end

subroutine wrtstr (outbuf, noutbf, str, i, n)

 # Write a substring to output.
 implicit none
 character outbuf(OUTLSZ)      # Output line buffer.
 integer noutbf                # Number of characters in outbuf.
 character str(*)              # The string from which to output.
 integer i, n                  # Index and length of the substring.
 integer j
 for (j = 0; j < n; j = j + 1)
   call wrtchr (outbuf, noutbf, str(i + j))

end

subroutine wrtint (outbuf, noutbf, ival)

 # Write a non-negative integer to output.
 implicit none
 character outbuf(OUTLSZ)      # Output line buffer.
 integer noutbf                # Number of characters in outbuf.
 integer ival                  # The non-negative integer to print.
 integer skipsp
 character*40 buf
 integer i
 # Using "write" probably is the slowest way one could think of to do
 # this, but people do formatted output all the time, anyway. :) The
 # reason, of course, is that output tends to be slow anyway.
 write (buf, '(I40)') ival
 for (i = skipsp (buf, 1, 41); i <= 40; i = i + 1)
   call wrtchr (outbuf, noutbf, buf(i:i))

end

  1. ---------------------------------------------------------------------

define(VARSZ, 3) define(VNAMEI, 1) # Variable name's index in the string pool. define(VNAMEN, 2) # Length of the name. define(VVALUE, 3) # Variable's value.

function fndvar (vars, numvar, strngs, istrng, i0, n0)

 implicit none
 integer vars(VARSZ, MAXVAR)   # Variables.
 integer numvar                # Number of variables.
 character strngs(STRNSZ)      # String pool.
 integer istrng                # String pool's next slot.
 integer i0, n0                # Index and length in the string pool.
 integer fndvar                # The location of the variable.
 integer j, k
 integer i, n
 logical done1
 logical done2
 j = 1
 done1 = .false.
 while (!done1)
   if (j == numvar + 1)
     done1 = .true.
   else if (n0 == vars(VNAMEN, j))
     {
       k = 0
       done2 = .false.
       while (!done2)
         if (n0 <= k)
           done2 = .true.
         else if (strngs(i0 + k) == strngs(vars(VNAMEI, j) + k))
           k = k + 1
         else
           done2 = .true.
       if (k < n0)
         j = j + 1
       else
         {
           done2 = .true.
           done1 = .true.
         }
     }
   else
     j = j + 1
 if (j == numvar + 1)
   {
     if (numvar == MAXVAR)
       {
         write (*, '(too many variables)')
         stop
       }
     numvar = numvar + 1
     call addstu (strngs, istrng, strngs, i0, n0, i, n)
     vars(VNAMEI, numvar) = i
     vars(VNAMEN, numvar) = n
     vars(VVALUE, numvar) = 0
     fndvar = numvar
   }
 else
   fndvar = j

end

function strint (strngs, i, n)

 # Convert a string to a non-negative integer.
 implicit none
 character strngs(STRNSZ)       # String pool.
 integer i, n
 integer strint
 integer j
 strint = 0
 for (j = 0; j < n; j = j + 1)
   strint = (10 * strint) + (ichar (strngs(i + j)) - ichar ('0'))

end

function logl2i (u)

 # Convert LOGICAL to INTEGER.
 implicit none
 logical u
 integer logl2i
 if (u)
   logl2i = 1
 else
   logl2i = 0

end

subroutine run (vars, numvar, _

               strngs, istrng, _
               nodes, frelst, _
               outbuf, noutbf, iast)
 # Run (interpret) the AST. The algorithm employed is non-recursive.
 implicit none
 integer vars(VARSZ, MAXVAR)    # Variables.
 integer numvar                 # Number of variables.
 character strngs(STRNSZ)       # String pool.
 integer istrng                 # String pool's next slot.
 integer nodes (NODESZ, NODSSZ) # Nodes pool.
 integer frelst                 # Head of the free list.
 character outbuf(OUTLSZ)       # Output line buffer.
 integer noutbf                 # Number of characters in outbuf.
 integer iast                   # Root node of the AST.
 integer fndvar
 integer logl2i
 integer nstack
 integer pop
 integer strint
 integer dstack(STCKSZ)        # Data stack.
 integer idstck                # Data stack pointer.
 integer xstack(STCKSZ)        # Execution stack.
 integer ixstck                # Execution stack pointer.
 integer i
 integer i0, n0
 integer tag
 integer ivar
 integer ival1, ival2
 integer inode1, inode2
 idstck = 1
 ixstck = 1
 call push (xstack, ixstck, iast)
 while (nstack (ixstck) != 0)
   {
     i = pop (xstack, ixstck)
     if (i == NIL)
       tag = NIL
     else
       tag = nodes(NTAG, i)
     if (tag == NIL)
       continue
     else if (tag == NDSEQ)
       {
         if (nodes(NRIGHT, i) != NIL)
           call push (xstack, ixstck, nodes(NRIGHT, i))
         if (nodes(NLEFT, i) != NIL)
           call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDID)
       {
         # Push the value of a variable.
         i0 = nodes(NITV, i)
         n0 = nodes(NITN, i)
         ivar = fndvar (vars, numvar, strngs, istrng, i0, n0)
         call push (dstack, idstck, vars(VVALUE, ivar))
       }
     else if (tag == NDINT)
       {
         # Push the value of an integer literal.
         i0 = nodes(NITV, i)
         n0 = nodes(NITN, i)
         call push (dstack, idstck, strint (strngs, i0, n0))
       }
     else if (tag == NDNEG)
       {
         # Evaluate the argument and prepare to negate it.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDNEG + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDNEG + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Negate the evaluated argument.
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, -ival1)
       }
     else if (tag == NDNOT)
       {
         # Evaluate the argument and prepare to NOT it.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDNOT + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDNOT + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # NOT the evaluated argument.
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, logl2i (ival1 == 0))
       }
     else if (tag == NDAND)
       {
         # Evaluate the arguments and prepare to AND them.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDAND + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDAND + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # AND the evaluated arguments.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, _
                    logl2i (ival1 != 0 && ival2 != 0))
       }
     else if (tag == NDOR)
       {
         # Evaluate the arguments and prepare to OR them.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDOR + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDOR + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # OR the evaluated arguments.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, _
                    logl2i (ival1 != 0 || ival2 != 0))
       }
     else if (tag == NDADD)
       {
         # Evaluate the arguments and prepare to add them.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDADD + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDADD + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Add the evaluated arguments.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, ival1 + ival2)
       }
     else if (tag == NDSUB)
       {
         # Evaluate the arguments and prepare to subtract them.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDSUB + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDSUB + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Subtract the evaluated arguments.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, ival1 - ival2)
       }
     else if (tag == NDMUL)
       {
         # Evaluate the arguments and prepare to multiply them.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDMUL + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDMUL + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Multiply the evaluated arguments.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, ival1 * ival2)
       }
     else if (tag == NDDIV)
       {
         # Evaluate the arguments and prepare to compute the quotient
         # after division.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDDIV + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDDIV + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Divide the evaluated arguments.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, ival1 / ival2)
       }
     else if (tag == NDMOD)
       {
         # Evaluate the arguments and prepare to compute the
         # remainder after division.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDMOD + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDMOD + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # MOD the evaluated arguments.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, mod (ival1, ival2))
       }
     else if (tag == NDEQ)
       {
         # Evaluate the arguments and prepare to test their equality.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDEQ + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDEQ + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Test for equality.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, logl2i (ival1 == ival2))
       }
     else if (tag == NDNE)
       {
         # Evaluate the arguments and prepare to test their
         # inequality.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDNE + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDNE + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Test for inequality.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, logl2i (ival1 != ival2))
       }
     else if (tag == NDLT)
       {
         # Evaluate the arguments and prepare to test their
         # order.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDLT + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDLT + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Do the test.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, logl2i (ival1 < ival2))
       }
     else if (tag == NDLE)
       {
         # Evaluate the arguments and prepare to test their
         # order.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDLE + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDLE + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Do the test.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, logl2i (ival1 <= ival2))
       }
     else if (tag == NDGT)
       {
         # Evaluate the arguments and prepare to test their
         # order.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDGT + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDGT + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Do the test.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, logl2i (ival1 > ival2))
       }
     else if (tag == NDGE)
       {
         # Evaluate the arguments and prepare to test their
         # order.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDGE + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NRIGHT, i))
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDGE + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Do the test.
         ival2 = pop (dstack, idstck)
         ival1 = pop (dstack, idstck)
         call push (dstack, idstck, logl2i (ival1 >= ival2))
       }
     else if (tag == NDASGN)
       {
         # Prepare a new node to do the actual assignment.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDASGN + STAGE2
         nodes(NITV, inode1) = nodes(NITV, nodes(NLEFT, i))
         nodes(NITN, inode1) = nodes(NITN, nodes(NLEFT, i))
         call push (xstack, ixstck, inode1)
         # Evaluate the expression.
         call push (xstack, ixstck, nodes(NRIGHT, i))
       }
     else if (tag == NDASGN + STAGE2)
       {
         # Do the actual assignment, and free the STAGE2 node.
         i0 = nodes(NITV, i)
         n0 = nodes(NITN, i)
         call frenod (nodes, frelst, i)
         ival1 = pop (dstack, idstck)
         ivar = fndvar (vars, numvar, strngs, istrng, i0, n0)
         vars(VVALUE, ivar) = ival1
       }
     else if (tag == NDIF)
       {
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDIF + STAGE2
         # The "then" and "else" clauses, respectively:
         nodes(NLEFT, inode1) = nodes(NLEFT, nodes(NRIGHT, i))
         nodes(NRIGHT, inode1) = nodes(NRIGHT, nodes(NRIGHT, i))
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDIF + STAGE2)
       {
         inode1 = nodes(NLEFT, i)  # "Then" clause.
         inode2 = nodes(NRIGHT, i) # "Else" clause.
         call frenod (nodes, frelst, i)
         ival1 = pop (dstack, idstck)
         if (ival1 != 0)
           call push (xstack, ixstck, inode1)
         else if (inode2 != NIL)
           call push (xstack, ixstck, inode2)
       }
     else if (tag == NDWHIL)
       {
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDWHIL + STAGE2
         nodes(NLEFT, inode1) = nodes(NRIGHT, i) # Loop body.
         nodes(NRIGHT, inode1) = i               # Top of loop.
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDWHIL + STAGE2)
       {
         inode1 = nodes(NLEFT, i)  # Loop body.
         inode2 = nodes(NRIGHT, i) # Top of loop.
         call frenod (nodes, frelst, i)
         ival1 = pop (dstack, idstck)
         if (ival1 != 0)
           {
             call push (xstack, ixstck, inode2) # Top of loop.
             call push (xstack, ixstck, inode1) # The body.
           }
       }
     else if (tag == NDPRTS)
       {
         # Print a string literal. (String literals occur only--and
         # always--within Prts nodes; therefore one need not devise a
         # way push strings to the stack.)
         i0 = nodes(NITV, nodes(NLEFT, i))
         n0 = nodes(NITN, nodes(NLEFT, i))
         call wrtstr (outbuf, noutbf, strngs, i0, n0)
       }
     else if (tag == NDPRTC)
       {
         # Evaluate the argument and prepare to print it.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDPRTC + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDPRTC + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Print the evaluated argument.
         ival1 = pop (dstack, idstck)
         call wrtchr (outbuf, noutbf, char (ival1))
       }
     else if (tag == NDPRTI)
       {
         # Evaluate the argument and prepare to print it.
         call newnod (nodes, frelst, inode1)
         nodes(NTAG, inode1) = NDPRTI + STAGE2
         call push (xstack, ixstck, inode1)
         call push (xstack, ixstck, nodes(NLEFT, i))
       }
     else if (tag == NDPRTI + STAGE2)
       {
         # Free the STAGE2 node.
         call frenod (nodes, frelst, i)
         # Print the evaluated argument.
         ival1 = pop (dstack, idstck)
         call wrtint (outbuf, noutbf, ival1)
       }
   }

end

  1. ---------------------------------------------------------------------

program interp

 implicit none
 integer vars(VARSZ, MAXVAR)    # Variables.
 integer numvar                 # Number of variables.
 character strngs(STRNSZ)       # String pool.
 integer istrng                 # String pool's next slot.
 integer nodes (NODESZ, NODSSZ) # Nodes pool.
 integer frelst                 # Head of the free list.
 character outbuf(OUTLSZ)       # Output line buffer.
 integer noutbf                 # Number of characters in outbuf.
 integer iast                   # Root node of the AST.
 numvar = 0
 istrng = 1
 noutbf = 0
 call initnd (nodes, frelst)
 call rdast (strngs, istrng, nodes, frelst, iast)
 call run (vars, numvar, _
           strngs, istrng, _
           nodes, frelst, _
           outbuf, noutbf, iast)
 if (noutbf != 0)
   call flushl (outbuf, noutbf)

end

                                                                                                                                            1. </lang>
Output:
$ ratfor77 interp-in-ratfor.r > interp-in-ratfor.f && gfortran -O2 -fcheck=all -std=legacy interp-in-ratfor.f && ./a.out < compiler-tests/primes.ast
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26


Scala

The complete implementation for the compiler tasks can be found in a GitHub repository at github.com/edadma/rosettacodeCompiler which includes full unit testing for the samples given in Compiler/Sample programs.

The following code implements an interpreter for the output of the parser.

<lang scala> package xyz.hyperreal.rosettacodeCompiler

import scala.collection.mutable import scala.io.Source

object ASTInterpreter {

 def fromStdin = fromSource(Source.stdin)
 def fromString(src: String) = fromSource(Source.fromString(src))
 def fromSource(s: Source) = {
   val lines = s.getLines
   def load: Node =
     if (!lines.hasNext)
       TerminalNode
     else
       lines.next.split(" +", 2) match {
         case Array(name, value) => LeafNode(name, value)
         case Array(";")         => TerminalNode
         case Array(name)        => BranchNode(name, load, load)
       }
   val vars = new mutable.HashMap[String, Any]
   def interpInt(n: Node) = interp(n).asInstanceOf[Int]
   def interpBoolean(n: Node) = interp(n).asInstanceOf[Boolean]
   def interp(n: Node): Any =
     n match {
       case TerminalNode => null
       case LeafNode("Identifier", name) =>
         vars get name match {
           case None =>
             vars(name) = 0
             0
           case Some(v) => v
         }
       case LeafNode("Integer", "'\\n'")                               => '\n'.toInt
       case LeafNode("Integer", "'\\\\'")                              => '\\'.toInt
       case LeafNode("Integer", value: String) if value startsWith "'" => value(1).toInt
       case LeafNode("Integer", value: String)                         => value.toInt
       case LeafNode("String", value: String)                          => unescape(value.substring(1, value.length - 1))
       case BranchNode("Assign", LeafNode(_, name), exp)               => vars(name) = interp(exp)
       case BranchNode("Sequence", l, r)                               => interp(l); interp(r)
       case BranchNode("Prts" | "Prti", a, _)                          => print(interp(a))
       case BranchNode("Prtc", a, _)                                   => print(interpInt(a).toChar)
       case BranchNode("Add", l, r)                                    => interpInt(l) + interpInt(r)
       case BranchNode("Subtract", l, r)                               => interpInt(l) - interpInt(r)
       case BranchNode("Multiply", l, r)                               => interpInt(l) * interpInt(r)
       case BranchNode("Divide", l, r)                                 => interpInt(l) / interpInt(r)
       case BranchNode("Mod", l, r)                                    => interpInt(l) % interpInt(r)
       case BranchNode("Negate", a, _)                                 => -interpInt(a)
       case BranchNode("Less", l, r)                                   => interpInt(l) < interpInt(r)
       case BranchNode("LessEqual", l, r)                              => interpInt(l) <= interpInt(r)
       case BranchNode("Greater", l, r)                                => interpInt(l) > interpInt(r)
       case BranchNode("GreaterEqual", l, r)                           => interpInt(l) >= interpInt(r)
       case BranchNode("Equal", l, r)                                  => interpInt(l) == interpInt(r)
       case BranchNode("NotEqual", l, r)                               => interpInt(l) != interpInt(r)
       case BranchNode("And", l, r)                                    => interpBoolean(l) && interpBoolean(r)
       case BranchNode("Or", l, r)                                     => interpBoolean(l) || interpBoolean(r)
       case BranchNode("Not", a, _)                                    => !interpBoolean(a)
       case BranchNode("While", l, r)                                  => while (interpBoolean(l)) interp(r)
       case BranchNode("If", cond, BranchNode("If", yes, no))          => if (interpBoolean(cond)) interp(yes) else interp(no)
     }
   interp(load)
 }
 abstract class Node
 case class BranchNode(name: String, left: Node, right: Node) extends Node
 case class LeafNode(name: String, value: String)             extends Node
 case object TerminalNode                                     extends Node

} </lang>

The above code depends on the function unescape() to perform string escape sequence translation. That function is defined in the following separate source file.

<lang scala> package xyz.hyperreal

import java.io.ByteArrayOutputStream

package object rosettacodeCompiler {

 val escapes = "\\\\b|\\\\f|\\\\t|\\\\r|\\\\n|\\\\\\\\|\\\\\"" r
 def unescape(s: String) =
   escapes.replaceAllIn(s, _.matched match {
     case "\\b"  => "\b"
     case "\\f"  => "\f"
     case "\\t"  => "\t"
     case "\\r"  => "\r"
     case "\\n"  => "\n"
     case "\\\\" => "\\"
     case "\\\"" => "\""
   })
 def capture(thunk: => Unit) = {
   val buf = new ByteArrayOutputStream
   Console.withOut(buf)(thunk)
   buf.toString
 }

} </lang>

Scheme

<lang scheme> (import (scheme base)

       (scheme file)
       (scheme process-context)
       (scheme write)
       (only (srfi 13) string-delete string-index string-trim))
Mappings from operation symbols to internal procedures.
We define operations appropriate to virtual machine
e.g. division must return an int, not a rational
boolean values are treated as numbers
0 is false, other is true

(define *unary-ops*

 (list (cons 'Negate (lambda (a) (- a)))
       (cons 'Not (lambda (a) (if (zero? a) 1 0)))))

(define *binary-ops*

 (let ((number-comp (lambda (op) (lambda (a b) (if (op a b) 1 0)))))
   (list (cons 'Add +)
         (cons 'Subtract -)
         (cons 'Multiply *)
         (cons 'Divide (lambda (a b) (truncate (/ a b)))) ; int division
         (cons 'Mod modulo)
         (cons 'Less (number-comp <))
         (cons 'Greater (number-comp >))
         (cons 'LessEqual (number-comp <=))
         (cons 'GreaterEqual (number-comp >=))
         (cons 'Equal (lambda (a b) (if (= a b) 1 0)))
         (cons 'NotEqual (lambda (a b) (if (= a b) 0 1)))
         (cons 'And (lambda (a b) ; make "and" work on numbers
                      (if (and (not (zero? a)) (not (zero? b))) 1 0)))
         (cons 'Or (lambda (a b) ; make "or" work on numbers
                     (if (or (not (zero? a)) (not (zero? b))) 1 0))))))
Read AST from given filename
- return as an s-expression

(define (read-code filename)

 (define (read-expr)
   (let ((line (string-trim (read-line))))
     (if (string=? line ";")
       '()
       (let ((space (string-index line #\space)))
         (if space
           (list (string->symbol (string-trim (substring line 0 space)))
                 (string-trim (substring line space (string-length line))))
           (list (string->symbol line) (read-expr) (read-expr)))))))
 ;
 (with-input-from-file
   filename
   (lambda ()
     (read-expr))))
interpret AST provided as an s-expression

(define run-program

 (let ((env '())) ; env is an association list for variable names
   (lambda (expr)
     (define (tidy-string str)   
       (string-delete ; remove any quote marks
         #\" ; " (to appease Rosetta code's syntax highlighter)
         (list->string 
           (let loop ((chars (string->list str))) ; replace newlines, obeying \\n
             (cond ((< (length chars) 2) ; finished list
                    chars)
                   ((and (>= (length chars) 3) ; preserve \\n
                         (char=? #\\ (car chars))
                         (char=? #\\ (cadr chars))
                         (char=? #\n (cadr (cdr chars))))
                    (cons (car chars)
                          (cons (cadr chars)
                                (cons (cadr (cdr chars))
                                      (loop (cdr (cdr (cdr chars))))))))
                   ((and (char=? #\\ (car chars)) ; replace \n with newline
                         (char=? #\n (cadr chars)))
                    (cons #\newline (loop (cdr (cdr chars)))))
                   (else ; keep char and look further
                     (cons (car chars) (loop (cdr chars)))))))))
     ; define some more meaningful names for fields
     (define left cadr)
     (define right (lambda (x) (cadr (cdr x))))
     ;
     (if (null? expr)
       '()
       (case (car expr) ; interpret AST from the head node
         ((Integer)
          (string->number (left expr)))
         ((Identifier)
          (let ((val (assq (string->symbol (left expr)) env)))
            (if val
              (cdr val)
              (error "Variable not in environment"))))
         ((String)
          (left expr))
         ((Assign)
          (set! env (cons (cons (string->symbol (left (left expr)))
                                (run-program (right expr)))
                          env)))
         ((Add Subtract Multiply Divide Mod 
               Less Greater LessEqual GreaterEqual Equal NotEqual
               And Or)
          (let ((binop (assq (car expr) *binary-ops*)))
            (if binop
              ((cdr binop) (run-program (left expr)) 
                           (run-program (right expr)))
              (error "Could not find binary operator"))))
         ((Negate Not) 
          (let ((unaryop (assq (car expr) *unary-ops*)))
            (if unaryop
              ((cdr unaryop) (run-program (left expr)))
              (error "Could not find unary operator"))))
         ((If)
          (if (not (zero? (run-program (left expr)))) ; 0 means false
            (run-program (left (right expr)))
            (run-program (right (right expr))))
          '())
         ((While)
          (let loop ()
            (unless (zero? (run-program (left expr)))
              (run-program (right expr))
              (loop)))
          '())
         ((Prtc)
          (display (integer->char (run-program (left expr))))
          '())
         ((Prti)
          (display (run-program (left expr)))
          '())
         ((Prts)
          (display (tidy-string (run-program (left expr))))
          '())
         ((Sequence)
          (run-program (left expr))
          (run-program (right expr))
          '())
         (else
           (error "Unknown node type")))))))
read AST from file and interpret, from filename passed on command line

(if (= 2 (length (command-line)))

 (run-program (read-code (cadr (command-line))))
 (display "Error: pass an ast filename\n"))

</lang>

Output:

Output for primes program from above. Also tested on programs in Compiler/Sample programs.

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Wren

Translation of: Go
Library: Wren-dynamic
Library: Wren-fmt
Library: Wren-ioutil

<lang ecmascript>import "/dynamic" for Enum, Struct, Tuple import "/fmt" for Conv import "/ioutil" for FileUtil

var nodes = [

   "Ident",
   "String",
   "Integer",
   "Sequence",
   "If",
   "Prtc",
   "Prts",
   "Prti",
   "While",
   "Assign",
   "Negate",
   "Not",
   "Mul",
   "Div",
   "Mod",
   "Add",
   "Sub",
   "Lss",
   "Leq",
   "Gtr",
   "Geq",
   "Eql",
   "Neq",
   "And",
   "Or"

]

var Node = Enum.create("Node", nodes)

var Tree = Struct.create("Tree", ["nodeType", "left", "right", "value"])

// dependency: Ordered by Node value, must remain in same order as Node enum var Atr = Tuple.create("Atr", ["enumText", "nodeType"])

var atrs = [

   Atr.new("Identifier", Node.Ident),
   Atr.new("String", Node.String),
   Atr.new("Integer", Node.Integer),
   Atr.new("Sequence", Node.Sequence),
   Atr.new("If", Node.If),
   Atr.new("Prtc", Node.Prtc),
   Atr.new("Prts", Node.Prts),
   Atr.new("Prti", Node.Prti),
   Atr.new("While", Node.While),
   Atr.new("Assign", Node.Assign),
   Atr.new("Negate", Node.Negate),
   Atr.new("Not", Node.Not),
   Atr.new("Multiply", Node.Mul),
   Atr.new("Divide", Node.Div),
   Atr.new("Mod", Node.Mod),
   Atr.new("Add", Node.Add),
   Atr.new("Subtract", Node.Sub),
   Atr.new("Less", Node.Lss),
   Atr.new("LessEqual", Node.Leq),
   Atr.new("Greater", Node.Gtr),
   Atr.new("GreaterEqual", Node.Geq),
   Atr.new("Equal", Node.Eql),
   Atr.new("NotEqual", Node.Neq),
   Atr.new("And", Node.And),
   Atr.new("Or", Node.Or),

]

var stringPool = [] var globalNames = [] var globalValues = {}

var reportError = Fn.new { |msg| Fiber.abort("error : %(msg)") }

var makeNode = Fn.new { |nodeType, left, right| Tree.new(nodeType, left, right, 0) }

var makeLeaf = Fn.new { |nodeType, value| Tree.new(nodeType, null, null, value) }

// interpret the parse tree var interp // recursive function interp = Fn.new { |x|

   if (!x) return 0
   var nt = x.nodeType
   if (nt == Node.Integer) return x.value
   if (nt == Node.Ident) return globalValues[x.value]
   if (nt == Node.String) return x.value
   if (nt == Node.Assign) {
       var n = interp.call(x.right)
       globalValues[x.left.value] = n
       return n
   }
   if (nt == Node.Add) return interp.call(x.left) +  interp.call(x.right)
   if (nt == Node.Sub) return interp.call(x.left) -  interp.call(x.right)
   if (nt == Node.Mul) return interp.call(x.left) *  interp.call(x.right)
   if (nt == Node.Div) return (interp.call(x.left) / interp.call(x.right)).truncate
   if (nt == Node.Mod) return interp.call(x.left) %  interp.call(x.right)
   if (nt == Node.Lss) return Conv.btoi(interp.call(x.left) <  interp.call(x.right))
   if (nt == Node.Gtr) return Conv.btoi(interp.call(x.left) >  interp.call(x.right))
   if (nt == Node.Leq) return Conv.btoi(interp.call(x.left) <= interp.call(x.right))
   if (nt == Node.Eql) return Conv.btoi(interp.call(x.left) == interp.call(x.right))
   if (nt == Node.Neq) return Conv.btoi(interp.call(x.left) != interp.call(x.right))
   if (nt == Node.And) return Conv.btoi(Conv.itob(interp.call(x.left)) && Conv.itob(interp.call(x.right)))
   if (nt == Node.Or)  return Conv.btoi(Conv.itob(interp.call(x.left)) || Conv.itob(interp.call(x.right)))
   if (nt == Node.Negate) return -interp.call(x.left)
   if (nt == Node.Not) return (interp.call(x.left) == 0) ? 1 : 0
   if (nt == Node.If) {
       if (interp.call(x.left) != 0) {
           interp.call(x.right.left)
       } else {
           interp.call(x.right.right)
       }
       return 0
   }
   if (nt == Node.While) {
       while (interp.call(x.left) != 0) interp.call(x.right)
       return 0
   }
   if (nt == Node.Prtc) {
       System.write(String.fromByte(interp.call(x.left)))
       return 0
   }
   if (nt == Node.Prti) {
       System.write(interp.call(x.left))
       return 0
   }
   if (nt == Node.Prts) {
       System.write(stringPool[interp.call(x.left)])
       return 0
   }
   if (nt == Node.Sequence) {
       interp.call(x.left)
       interp.call(x.right)
       return 0
   }
   reportError.call("interp: unknown tree type %(x.nodeType)")

}

var getEnumValue = Fn.new { |name|

   for (atr in atrs) {
       if (atr.enumText == name) return atr.nodeType
   }
   reportError.call("Unknown token %(name)")

}

var fetchStringOffset = Fn.new { |s|

   var d = ""
   s = s[1...-1]
   var i = 0
   while (i < s.count) {
       if (s[i] == "\\" && (i+1) < s.count) {
           if (s[i+1] == "n") {
               d = d + "\n"
               i = i + 1
           } else if (s[i+1] == "\\") {
               d = d + "\\"
               i = i + 1
           }
       } else {
           d = d + s[i]
       }
       i = i + 1
   }
   s = d
   for (i in 0...stringPool.count) {
       if (s == stringPool[i]) return i
   }
   stringPool.add(s)
   return stringPool.count - 1

}

var fetchVarOffset = Fn.new { |name|

   for (i in 0...globalNames.count) {
       if (globalNames[i] == name) return i
   }
   globalNames.add(name)
   return globalNames.count - 1

}

var lines = [] var lineCount = 0 var lineNum = 0

var loadAst // recursive function loadAst = Fn.new {

   var nodeType = 0
   var s = ""
   if (lineNum < lineCount) {
       var line = lines[lineNum].trimEnd(" \t")
       lineNum = lineNum + 1
       var tokens = line.split(" ").where { |s| s != "" }.toList
       var first = tokens[0]
       if (first[0] == ";") return null
       nodeType = getEnumValue.call(first)
       var le = tokens.count
       if (le == 2) {
           s = tokens[1]
       } else if (le > 2) {
           var idx = line.indexOf("\"")
           s = line[idx..-1]
       }
   }
   if (s != "") {
       var n
       if (nodeType == Node.Ident) {
           n = fetchVarOffset.call(s)
       } else if (nodeType == Node.Integer) {
           n = Num.fromString(s)
       } else if (nodeType == Node.String) {
           n = fetchStringOffset.call(s)
       } else {
           reportError.call("Unknown node type: %(s)")
       }
       return makeLeaf.call(nodeType, n)
   }
   var left  = loadAst.call()
   var right = loadAst.call()
   return makeNode.call(nodeType, left, right)

}

lines = FileUtil.readLines("ast.txt") lineCount = lines.count var x = loadAst.call() interp.call(x)</lang>

Output:
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Zig

<lang zig> const std = @import("std");

pub const ASTInterpreterError = error{OutOfMemory};

pub const ASTInterpreter = struct {

   output: std.ArrayList(u8),
   globals: std.StringHashMap(NodeValue),
   const Self = @This();
   pub fn init(allocator: std.mem.Allocator) Self {
       return ASTInterpreter{
           .output = std.ArrayList(u8).init(allocator),
           .globals = std.StringHashMap(NodeValue).init(allocator),
       };
   }
   // Returning `NodeValue` from this function looks suboptimal and this should
   // probably be a separate type.
   pub fn interp(self: *Self, tree: ?*Tree) ASTInterpreterError!?NodeValue {
       if (tree) |t| {
           switch (t.typ) {
               .sequence => {
                   _ = try self.interp(t.left);
                   _ = try self.interp(t.right);
               },
               .assign => try self.globals.put(
                   t.left.?.value.?.string,
                   (try self.interp(t.right)).?,
               ),
               .identifier => return self.globals.get(t.value.?.string).?,
               .kw_while => {
                   while ((try self.interp(t.left)).?.integer != 0) {
                       _ = try self.interp(t.right);
                   }
               },
               .kw_if => {
                   const condition = (try self.interp(t.left)).?.integer;
                   if (condition == 1) {
                       _ = try self.interp(t.right.?.left);
                   } else {
                       _ = try self.interp(t.right.?.right);
                   }
               },
               .less => return NodeValue{ .integer = try self.binOp(less, t.left, t.right) },
               .less_equal => return NodeValue{ .integer = try self.binOp(less_equal, t.left, t.right) },
               .greater => return NodeValue{ .integer = try self.binOp(greater, t.left, t.right) },
               .greater_equal => return NodeValue{ .integer = try self.binOp(greater_equal, t.left, t.right) },
               .add => return NodeValue{ .integer = try self.binOp(add, t.left, t.right) },
               .subtract => return NodeValue{ .integer = try self.binOp(sub, t.left, t.right) },
               .multiply => return NodeValue{ .integer = try self.binOp(mul, t.left, t.right) },
               .divide => return NodeValue{ .integer = try self.binOp(div, t.left, t.right) },
               .mod => return NodeValue{ .integer = try self.binOp(mod, t.left, t.right) },
               .equal => return NodeValue{ .integer = try self.binOp(equal, t.left, t.right) },
               .not_equal => return NodeValue{ .integer = try self.binOp(not_equal, t.left, t.right) },
               .bool_and => return NodeValue{ .integer = try self.binOp(@"and", t.left, t.right) },
               .bool_or => return NodeValue{ .integer = try self.binOp(@"or", t.left, t.right) },
               .negate => return NodeValue{ .integer = -(try self.interp(t.left)).?.integer },
               .not => {
                   const arg = (try self.interp(t.left)).?.integer;
                   const result: i32 = if (arg == 0) 1 else 0;
                   return NodeValue{ .integer = result };
               },
               .prts => _ = try self.out("{s}", .{(try self.interp(t.left)).?.string}),
               .prti => _ = try self.out("{d}", .{(try self.interp(t.left)).?.integer}),
               .prtc => _ = try self.out("{c}", .{@intCast(u8, (try self.interp(t.left)).?.integer)}),
               .string => return t.value,
               .integer => return t.value,
               .unknown => {
                   std.debug.print("\nINTERP: UNKNOWN {}\n", .{t});
                   std.os.exit(1);
               },
           }
       }
       return null;
   }
   pub fn out(self: *Self, comptime format: []const u8, args: anytype) ASTInterpreterError!void {
       try self.output.writer().print(format, args);
   }
   fn binOp(
       self: *Self,
       func: fn (a: i32, b: i32) i32,
       a: ?*Tree,
       b: ?*Tree,
   ) ASTInterpreterError!i32 {
       return func(
           (try self.interp(a)).?.integer,
           (try self.interp(b)).?.integer,
       );
   }
   fn less(a: i32, b: i32) i32 {
       return @boolToInt(a < b);
   }
   fn less_equal(a: i32, b: i32) i32 {
       return @boolToInt(a <= b);
   }
   fn greater(a: i32, b: i32) i32 {
       return @boolToInt(a > b);
   }
   fn greater_equal(a: i32, b: i32) i32 {
       return @boolToInt(a >= b);
   }
   fn equal(a: i32, b: i32) i32 {
       return @boolToInt(a == b);
   }
   fn not_equal(a: i32, b: i32) i32 {
       return @boolToInt(a != b);
   }
   fn add(a: i32, b: i32) i32 {
       return a + b;
   }
   fn sub(a: i32, b: i32) i32 {
       return a - b;
   }
   fn mul(a: i32, b: i32) i32 {
       return a * b;
   }
   fn div(a: i32, b: i32) i32 {
       return @divTrunc(a, b);
   }
   fn mod(a: i32, b: i32) i32 {
       return @mod(a, b);
   }
   fn @"or"(a: i32, b: i32) i32 {
       return @boolToInt((a != 0) or (b != 0));
   }
   fn @"and"(a: i32, b: i32) i32 {
       return @boolToInt((a != 0) and (b != 0));
   }

};

pub fn main() !void {

   var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
   defer arena.deinit();
   const allocator = arena.allocator();
   var arg_it = std.process.args();
   _ = try arg_it.next(allocator) orelse unreachable; // program name
   const file_name = arg_it.next(allocator);
   // We accept both files and standard input.
   var file_handle = blk: {
       if (file_name) |file_name_delimited| {
           const fname: []const u8 = try file_name_delimited;
           break :blk try std.fs.cwd().openFile(fname, .{});
       } else {
           break :blk std.io.getStdIn();
       }
   };
   defer file_handle.close();
   const input_content = try file_handle.readToEndAlloc(allocator, std.math.maxInt(usize));
   var string_pool = std.ArrayList([]const u8).init(allocator);
   const ast = try loadAST(allocator, input_content, &string_pool);
   var ast_interpreter = ASTInterpreter.init(allocator);
   _ = try ast_interpreter.interp(ast);
   const result: []const u8 = ast_interpreter.output.items;
   _ = try std.io.getStdOut().write(result);

}

pub const NodeType = enum {

   unknown,
   identifier,
   string,
   integer,
   sequence,
   kw_if,
   prtc,
   prts,
   prti,
   kw_while,
   assign,
   negate,
   not,
   multiply,
   divide,
   mod,
   add,
   subtract,
   less,
   less_equal,
   greater,
   greater_equal,
   equal,
   not_equal,
   bool_and,
   bool_or,
   const from_string_map = std.ComptimeStringMap(NodeType, .{
       .{ "UNKNOWN", .unknown },
       .{ "Identifier", .identifier },
       .{ "String", .string },
       .{ "Integer", .integer },
       .{ "Sequence", .sequence },
       .{ "If", .kw_if },
       .{ "Prtc", .prtc },
       .{ "Prts", .prts },
       .{ "Prti", .prti },
       .{ "While", .kw_while },
       .{ "Assign", .assign },
       .{ "Negate", .negate },
       .{ "Not", .not },
       .{ "Multiply", .multiply },
       .{ "Divide", .divide },
       .{ "Mod", .mod },
       .{ "Add", .add },
       .{ "Subtract", .subtract },
       .{ "Less", .less },
       .{ "LessEqual", .less_equal },
       .{ "Greater", .greater },
       .{ "GreaterEqual", .greater_equal },
       .{ "Equal", .equal },
       .{ "NotEqual", .not_equal },
       .{ "And", .bool_and },
       .{ "Or", .bool_or },
   });
   pub fn fromString(str: []const u8) NodeType {
       return from_string_map.get(str).?;
   }

};

pub const NodeValue = union(enum) {

   integer: i32,
   string: []const u8,

};

pub const Tree = struct {

   left: ?*Tree,
   right: ?*Tree,
   typ: NodeType = .unknown,
   value: ?NodeValue = null,
   fn makeNode(allocator: std.mem.Allocator, typ: NodeType, left: ?*Tree, right: ?*Tree) !*Tree {
       const result = try allocator.create(Tree);
       result.* = Tree{ .left = left, .right = right, .typ = typ };
       return result;
   }
   fn makeLeaf(allocator: std.mem.Allocator, typ: NodeType, value: ?NodeValue) !*Tree {
       const result = try allocator.create(Tree);
       result.* = Tree{ .left = null, .right = null, .typ = typ, .value = value };
       return result;
   }

};

const LoadASTError = error{OutOfMemory} || std.fmt.ParseIntError;

fn loadAST(

   allocator: std.mem.Allocator,
   str: []const u8,
   string_pool: *std.ArrayList([]const u8),

) LoadASTError!?*Tree {

   var line_it = std.mem.split(u8, str, "\n");
   return try loadASTHelper(allocator, &line_it, string_pool);

}

fn loadASTHelper(

   allocator: std.mem.Allocator,
   line_it: *std.mem.SplitIterator(u8),
   string_pool: *std.ArrayList([]const u8),

) LoadASTError!?*Tree {

   if (line_it.next()) |line| {
       var tok_it = std.mem.tokenize(u8, line, " ");
       const tok_str = tok_it.next().?;
       if (tok_str[0] == ';') return null;
       const node_type = NodeType.fromString(tok_str);
       const pre_iteration_index = tok_it.index;
       if (tok_it.next()) |leaf_value| {
           const node_value = blk: {
               switch (node_type) {
                   .integer => break :blk NodeValue{ .integer = try std.fmt.parseInt(i32, leaf_value, 10) },
                   .identifier => break :blk NodeValue{ .string = leaf_value },
                   .string => {
                       tok_it.index = pre_iteration_index;
                       const str = tok_it.rest();
                       var string_literal = try std.ArrayList(u8).initCapacity(allocator, str.len);
                       var escaped = false;
                       // Truncate double quotes
                       for (str[1 .. str.len - 1]) |ch| {
                           if (escaped) {
                               escaped = false;
                               switch (ch) {
                                   'n' => try string_literal.append('\n'),
                                   '\\' => try string_literal.append('\\'),
                                   else => unreachable,
                               }
                           } else {
                               switch (ch) {
                                   '\\' => escaped = true,
                                   else => try string_literal.append(ch),
                               }
                           }
                       }
                       try string_pool.append(string_literal.items);
                       break :blk NodeValue{ .string = string_literal.items };
                   },
                   else => unreachable,
               }
           };
           return try Tree.makeLeaf(allocator, node_type, node_value);
       }
       const left = try loadASTHelper(allocator, line_it, string_pool);
       const right = try loadASTHelper(allocator, line_it, string_pool);
       return try Tree.makeNode(allocator, node_type, left, right);
   } else {
       return null;
   }

} </lang>

zkl

<lang zkl>const{ var _n=-1; var[proxy]N=fcn{ _n+=1 }; } // enumerator const FETCH=N, STORE=N, PUSH=N, ADD=N, SUB=N, MUL=N, DIV=N, MOD=N,

     LT=N,    GT=N,    LE=N,   GE=N,   EQ=N,   NE=N, 
     AND=N,   OR=N,    NEG=N,  NOT=N,
     JMP=N,   JZ=N,    PRTC=N, PRTS=N, PRTI=N, HALT=N;

const nd_String=N, nd_Sequence=N, nd_If=N, nd_While=N; var [const]

  all_syms=Dictionary(
     "Identifier"  ,FETCH,       "String"      ,nd_String,
     "Integer"     ,PUSH,        "Sequence"    ,nd_Sequence,
     "If"          ,nd_If,       "Prtc"        ,PRTC,
     "Prts"        ,PRTS,        "Prti"        ,PRTI,
     "While"       ,nd_While,    "Assign"      ,STORE,
     "Negate"      ,NEG,         "Not"         ,NOT,
     "Multiply"    ,MUL,         "Divide"      ,DIV,
     "Mod"         ,MOD,         "Add"         ,ADD,
     "Subtract"    ,SUB,         "Less"        ,LT,
     "LessEqual"   ,LE,          "Greater"     ,GT,
     "GreaterEqual",GE,          "Equal"       ,EQ,
     "NotEqual"    ,NE,          "And"         ,AND,
     "Or"          ,OR,	  "halt"	,HALT),
  bops=Dictionary(ADD,'+, SUB,'-, MUL,'*, DIV,'/, MOD,'%, 

LT,'<, GT,'>, LE,'<=, GE,'>=, NE,'!=, EQ,'==, NE,'!=);

class Node{

  fcn init(_node_type, _value, _left=Void, _right=Void){
     var type=_node_type, left=_left, right=_right, value=_value;
  }

}

fcn runNode(node){

  var vars=Dictionary();  // fcn local static var
  if(Void==node) return();
  switch(node.type){
     case(PUSH,nd_String){ return(node.value) }
     case(FETCH){ return(vars[node.value]) }
     case(STORE){ vars[node.left.value]=runNode(node.right); return(Void); }
     case(nd_If){
        if(runNode(node.left)) runNode(node.right.left);

else runNode(node.right.right);

     }
     case(nd_While)
        { while(runNode(node.left)){ runNode(node.right) } return(Void) }
     case(nd_Sequence){ runNode(node.left); runNode(node.right); return(Void) }
     case(PRTC)       { print(runNode(node.left).toAsc()) }
     case(PRTI,PRTS)  { print(runNode(node.left)) }
     case(NEG)        { return(-runNode(node.left)) }
     case(NOT)        { return(not runNode(node.left)) }
     case(AND)        { return(runNode(node.left) and runNode(node.right)) }
     case(OR)         { return(runNode(node.left) or  runNode(node.right)) }
     else{

if(op:=bops.find(node.type)) return(op(runNode(node.left),runNode(node.right))); else throw(Exception.AssertionError( "Unknown node type: %d".fmt(node.type)))

     } 
  }
  Void

}</lang> <lang zkl>fcn load_ast(file){

  line:=file.readln().strip();		// one or two tokens
  if(line[0]==";") return(Void);
  parts,type,value := line.split(),parts[0],parts[1,*].concat(" ");
  type=all_syms[type];
  if(value){
     try{ value=value.toInt() }catch{}
     if(type==nd_String) value=value[1,-1].replace("\\n","\n");
     return(Node(type,value));
  } 
  left,right := load_ast(file),load_ast(file);
  Node(type,Void,left,right)

}</lang> <lang zkl>ast:=load_ast(File(vm.nthArg(0))); runNode(ast);</lang>

Output:
$ zkl runAST.zkl primeAST.txt 
3 is prime
5 is prime
7 is prime
11 is prime
...
89 is prime
97 is prime
101 is prime
Total primes found: 26