Abundant, deficient and perfect number classifications

From Rosetta Code
Revision as of 22:07, 7 April 2015 by rosettacode>Gerard Schildberger (→‎version 1: align whitespace in a comment.)
Task
Abundant, deficient and perfect number classifications
You are encouraged to solve this task according to the task description, using any language you may know.

These define three classifications of positive integers based on their proper divisors.

Let P(n) be the sum of the proper divisors of n, where the proper divisors of n are all positive divisors of n other than n itself.

Example: 6 has proper divisors 1, 2, and 3. 1 + 2 + 3 = 6 so 6 is classed as a perfect number.

Task

Calculate how many of the integers 1 to 20,000 inclusive are in each of the three classes and show the result here.

Cf.

AutoHotkey

<lang autohotkey>Loop {

   m := A_index
   ; getting factors=====================
   loop % floor(sqrt(m))
   {
       if ( mod(m, A_index) == "0" )
       {
           if ( A_index ** 2 == m )
           {
               list .= A_index . ":"
               sum := sum + A_index
               continue
           }
           if ( A_index != 1 )
           {
               list .= A_index . ":" . m//A_index . ":"
               sum := sum + A_index + m//A_index
           }
           if ( A_index == "1" )
           {
               list .= A_index . ":"
               sum := sum + A_index
           }
       }
   }
   ; Factors obtained above===============
   if ( sum == m ) && ( sum != 1 )
   {
       result := "perfect"
       perfect++
   }
   if ( sum > m )
   {
       result := "Abundant"
       Abundant++
   }
   if ( sum < m ) or ( m == "1" )
   {
       result := "Deficient"
       Deficient++
   }
   if ( m == 20000 )	
   {
       MsgBox % "number: " . m . "`nFactors:`n" . list . "`nSum of Factors: " . Sum . "`nResult: " . result . "`n_______________________`nTotals up to: " . m . "`nPerfect: " . perfect . "`nAbundant: " . Abundant . "`nDeficient: " . Deficient 
       ExitApp
   }
   list := ""
   sum := 0

}

esc::ExitApp </lang>

Output:
number: 20000
Factors:
1:2:10000:4:5000:5:4000:8:2500:10:2000:16:1250:20:1000:25:800:32:625:40:500:50:400:80:250:100:200:125:160:
Sum of Factors: 29203
Result: Abundant
_______________________
Totals up to: 20000
Perfect: 4
Abundant: 4953
Deficient: 15043

Bracmat

Two solutions are given. The first solution first decomposes the current number into a multiset of prime factors and then constructs the proper divisors. The second solution finds proper divisors by checking all candidates from 1 up to the square root of the given number. The first solution is a few times faster, because establishing the prime factors of a small enough number (less than 2^32 or less than 2^64, depending on the bitness of Bracmat) is fast. <lang bracmat>( clk$:?t0 & ( multiples

 =   prime multiplicity
   .     !arg:(?prime.?multiplicity)
       & !multiplicity:0
       & 1
     |   !prime^!multiplicity*(.!multiplicity)
       + multiples$(!prime.-1+!multiplicity)
 )

& ( P

 =   primeFactors prime exp poly S
   .   !arg^1/67:?primeFactors
     & ( !primeFactors:?^1/67&0
       |   1:?poly
         &   whl
           ' ( !primeFactors:%?prime^?exp*?primeFactors
             & !poly*multiples$(!prime.67*!exp):?poly
             )
         & -1+!poly+1:?poly
         & 1:?S
         & (   !poly
             :   ?
               + (#%@?s*?&!S+!s:?S&~)
               + ?
           | 1/2*!S
           )
       )
 )

& 0:?deficient:?perfect:?abundant & 0:?n & whl

 ' ( 1+!n:~>20000:?n
   &   P$!n
     : ( <!n&1+!deficient:?deficient
       | !n&1+!perfect:?perfect
       | >!n&1+!abundant:?abundant
       )
   )

& out$(deficient !deficient perfect !perfect abundant !abundant) & clk$:?t1 & out$(flt$(!t1+-1*!t0,2) sec) & clk$:?t2 & ( P

 =   f h S
   .   0:?f
     & 0:?S
     &   whl
       ' ( 1+!f:?f
         & !f^2:~>!n
         & (   !arg*!f^-1:~/:?g
             & !S+!f:?S
             & ( !g:~!f&!S+!g:?S
               | 
               )
           | 
           )
         )
     & 1/2*!S
 )

& 0:?deficient:?perfect:?abundant & 0:?n & whl

 ' ( 1+!n:~>20000:?n
   &   P$!n
     : ( <!n&1+!deficient:?deficient
       | !n&1+!perfect:?perfect
       | >!n&1+!abundant:?abundant
       )
   )

& out$(deficient !deficient perfect !perfect abundant !abundant) & clk$:?t3 & out$(flt$(!t3+-1*!t2,2) sec) );</lang> Output:

deficient 15043 perfect 4 abundant 4953
4,27*10E0 sec
deficient 15043 perfect 4 abundant 4953
1,63*10E1 sec

C

<lang c>

  1. include<stdio.h>
  2. define d 0
  3. define p 1
  4. define a 2

int main(){ int sum_pd=0,i,j; int try_max=0; //1 is deficient by default and can add it deficient list int count_list[3]={1,0,0}; for(i=2;i<=20000;i++){ //Set maximum to check for proper division try_max=i/2; //1 is in all proper division number sum_pd=1; for(j=2;j<try_max;j++){ //Check for proper division if (i%j) continue; //Pass if not proper division //Set new maximum for divisibility check try_max=i/j; //Add j to sum sum_pd+=j; if (j!=try_max) sum_pd+=try_max; } //Categorize summation if (sum_pd<i){ count_list[d]++; continue; } else if (sum_pd>i){ count_list[a]++; continue; } count_list[p]++; } printf("\nThere are %d deficient,",count_list[d]); printf(" %d perfect,",count_list[p]); printf(" %d abundant numbers between 1 and 20000.\n",count_list[a]); return 0; } </lang>

Output:
There are 15043 deficient, 4 perfect, 4953 abundant numbers between 1 and 20000.

Common Lisp

<lang lisp>(defun number-class (n)

 (let ((divisor-sum (sum-divisors n)))
   (cond ((< divisor-sum n) :deficient)
         ((= divisor-sum n) :perfect)
         ((> divisor-sum n) :abundant))))

(defun sum-divisors (n)

 (loop :for i :from 1 :to (/ n 2)
       :when (zerop (mod n i))
       :sum i))

(defun classification ()

 (loop :for n :from 1 :to 20000
       :for class := (number-class n)
       :count (eq class :deficient) :into deficient
       :count (eq class :perfect) :into perfect
       :count (eq class :abundant) :into abundant
       :finally (return (values deficient perfect abundant))))</lang>

Output:

CL-USER> (classification)
15043
4
4953

D

<lang d>void main() /*@safe*/ {

   import std.stdio, std.algorithm, std.range;
   static immutable properDivs = (in uint n) pure nothrow @safe /*@nogc*/ =>
       iota(1, (n + 1) / 2 + 1).filter!(x => n % x == 0 && n != x);
   enum Class { deficient, perfect, abundant }
   static Class classify(in uint n) pure nothrow @safe /*@nogc*/ {
       immutable p = properDivs(n).sum;
       with (Class)
           return (p < n) ? deficient : ((p == n) ? perfect : abundant);
   }
   enum rangeMax = 20_000;
   //iota(1, 1 + rangeMax).map!classify.hashGroup.writeln;
   iota(1, 1 + rangeMax).map!classify.array.sort().group.writeln;

}</lang>

Output:
[Tuple!(Class, uint)(deficient, 15043), Tuple!(Class, uint)(perfect, 4), Tuple!(Class, uint)(abundant, 4953)]

Haskell

<lang Haskell>divisors :: (Integral a) => a -> [a] divisors n = filter ((0 ==) . (n `mod`)) [1 .. (n `div` 2)]

classOf :: (Integral a) => a -> Ordering classOf n = compare (sum $ divisors n) n

main :: IO () main = do

 let classes = map classOf [1 .. 20000 :: Int]
     printRes w c = putStrLn $ w ++ (show . length $ filter (== c) classes)
 printRes "deficient: " LT
 printRes "perfect:   " EQ
 printRes "abundant:  " GT</lang>
Output:
deficient: 15043
perfect:   4
abundant:  4953

J

Supporting implementation:

<lang J>factors=: [: /:~@, */&>@{@((^ i.@>:)&.>/)@q:~&__ properDivisors=: factors -. ]</lang>

We can subtract the sum of a number's proper divisors from itself to classify the number:

<lang J> (- +/@properDivisors&>) 1+i.10 1 1 2 1 4 0 6 1 5 2</lang>

Except, we are only concerned with the sign of this difference:

<lang J> *(- +/@properDivisors&>) 1+i.30 1 1 1 1 1 0 1 1 1 1 1 _1 1 1 1 1 1 _1 1 _1 1 1 1 _1 1 1 1 0 1 _1</lang>

Also, we do not care about the individual classification but only about how many numbers fall in each category:

<lang J> #/.~ *(- +/@properDivisors&>) 1+i.20000 15043 4 4953</lang>

So: 15043 deficient, 4 perfect and 4953 abundant numbers in this range.

How do we know which is which? We look at the unique values (which are arranged by their first appearance, scanning the list left to right):

<lang J> ~. *(- +/@properDivisors&>) 1+i.20000 1 0 _1</lang>

The sign of the difference is negative for the abundant case - where the sum is greater than the number. And we rely on order being preserved in sequences (this happens to be a fundamental property of computer memory, also).

Julia

This post was created with Julia version 0.3.6. The code uses no exotic features and should work for a wide range of Julia versions.

The Math

A natural number can be written as a product of powers of its prime factors, . Handily Julia has the factor function, which provides these parameters. The sum of n's divisors (n inclusive) is .

Functions

divisorsum calculates the sum of aliquot divisors. It uses pcontrib to calculate the contribution of each prime factor.

<lang Julia> function pcontrib(p::Int64, a::Int64)

   n = one(p)
   pcon = one(p)
   for i in 1:a
       n *= p
       pcon += n
   end
   return pcon

end

function divisorsum(n::Int64)

   dsum = one(n)
   for (p, a) in factor(n)
       dsum *= pcontrib(p, a)
   end
   dsum -= n

end </lang> Perhaps pcontrib could be made more efficient by caching results to avoid repeated calculations.

Main

Use a three element array, iclass, rather than three separate variables to tally the classifications. Take advantage of the fact that the sign of divisorsum(n) - n depends upon its class to increment iclass. 1 is a difficult case, it is deficient by convention, so I manually add its contribution and start the accumulation with 2. All primes are deficient, so I test for those and tally accordingly, bypassing divisorsum.

<lang Julia> const L = 2*10^4 iclasslabel = ["Deficient", "Perfect", "Abundant"] iclass = zeros(Int64, 3) iclass[1] = one(Int64) #by convention 1 is deficient

for n in 2:L

   if isprime(n)
       iclass[1] += 1
   else
       iclass[sign(divisorsum(n)-n)+2] += 1
   end

end

println("Classification of integers from 1 to ", L) for i in 1:3

   println("   ", iclasslabel[i], ", ", iclass[i])

end </lang>

Output:

  Classification of integers from 1 to 20000
     Deficient, 15043
     Perfect, 4
     Abundant, 4953

jq

Works with: jq version 1.4

The definition of proper_divisors is taken from Proper_divisors#jq: <lang jq># unordered def proper_divisors:

 . as $n
 | if $n > 1 then 1,
     ( range(2; 1 + (sqrt|floor)) as $i
       | if ($n % $i) == 0 then $i,
           (($n / $i) | if . == $i then empty else . end)

else empty end)

   else empty
   end;</lang>

The task: <lang jq>def sum(stream): reduce stream as $i (0; . + $i);

def classify:

 . as $n
 | sum(proper_divisors)
 | if . < $n then "deficient" elif . == $n then "perfect" else "abundant" end;

reduce (range(1; 20001) | classify) as $c ({}; .[$c] += 1 )</lang>

Output:

<lang sh>$ jq -n -c -f AbundantDeficientPerfect.jq {"deficient":15043,"perfect":4,"abundant":4953}</lang>

Mathematica / Wolfram Language

<lang Mathematica>classify[n_Integer] := Sign[Total[Most@Divisors@n] - n]

StringJoin[

Flatten[Tally[
    Table[classify[n], {n, 20000}]] /. {-1 -> "deficient: ", 
    0 -> "  perfect: ", 1 -> "  abundant: "}] /. 
 n_Integer :> ToString[n]]</lang>
Output:
deficient: 15043  perfect: 4  abundant: 4953

ML

mLite

<lang ocaml>fun proper (number, count, limit, remainder, results) where (count > limit) = rev results | (number, count, limit, remainder, results) = proper (number, count + 1, limit, number rem (count+1), if remainder = 0 then count :: results else results) | number = (proper (number, 1, number div 2, 0, []))

fun is_abundant number = number < (fold (op +, 0) ` proper number); fun is_deficient number = number > (fold (op +, 0) ` proper number); fun is_perfect number = number = (fold (op +, 0) ` proper number);

val one_to_20000 = iota 20000;

print "Abundant numbers between 1 and 20000: "; println ` fold (op +, 0) ` map ((fn n = if n then 1 else 0) o is_abundant) one_to_20000;

print "Deficient numbers between 1 and 20000: "; println ` fold (op +, 0) ` map ((fn n = if n then 1 else 0) o is_deficient) one_to_20000;

print "Perfect numbers between 1 and 20000: "; println ` fold (op +, 0) ` map ((fn n = if n then 1 else 0) o is_perfect) one_to_20000; </lang> Output

Abundant numbers between 1 and 20000: 4953
Deficient numbers between 1 and 20000: 15043
Perfect numbers between 1 and 20000: 4

Oforth

<lang Oforth>Integer method: properDivs { seq(self 2 / ) filter(#[ self swap rem 0 == ]) }

func: numberClasses { | i deficient perfect s |

  0 0 ->deficient ->perfect 
  0 20000 loop: i [
     i properDivs sum ->s
     s i <  ifTrue: [ deficient 1 + ->deficient continue ]
     s i == ifTrue: [ perfect 1 + ->perfect continue ]
     1 +
     ]
  "Deficients : " print deficient println
  "Perfects   : " print perfect   println
  "Abundant   : " print println

}</lang>

Output:
numberClasses
Deficients : 15043
Perfects   : 4
Abundant   : 4953

Pascal

This example is incomplete. Best to include all the code if you cannot include a module or use some other language defined way of using the exact code of the Amicable pairs example Please ensure that it meets all task requirements and remove this message.

using the http://rosettacode.org/wiki/Amicable_pairs#Alternative. the program there is now extended by an array and a line to count. <lang pascal> type

 tdpa   = array[0..2] of LongWord; // 0 = deficient,1= perfect,2 = abundant

var

..
 DpaCnt       : tdpa;

.. in function Check

   // SumOfProperDivs
   s := DivSumField[i]-i;
   //in Pascal boolean true == 1/false == 0 
   inc(DpaCnt[Ord(s>=i)-Ord(s<=i)+1]);

</lang> output

Max= 20000
     15043 deficient
         4 perfect
      4953 abundant
  0.3292561324 ratio abundant/deficient

MAX = 499*1000*1000
 375440837 deficient
         5 perfect
 123559158 abundant
  0.3291042045 ratio abundant/deficient

Perl

Using a module

Library: ntheory

We can use the <=> operator to return a comparison of -1, 0, or 1, which classifies the results. Let's look at the values from 1 to 30: <lang perl>use ntheory qw/divisor_sum/; say join " ", map { divisor_sum($_)-$_ <=> $_ } 1..30;</lang>

Output:
-1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 0 -1 1

We can see 6 is the first perfect number, 12 is the first abundant number, and 1 is classified as a deficient number.

Showing the totals for the first 20k numbers: <lang perl>use ntheory qw/divisor_sum/; my %h; $h{divisor_sum($_)-$_ <=> $_}++ for 1..20000; say "Perfect: $h{0} Deficient: $h{-1} Abundant: $h{1}";</lang>

Output:
Perfect: 4    Deficient: 15043    Abundant: 4953

Perl 6

<lang perl6>sub propdivsum (\x) {

   [+] (1 if x > 1), gather for 2 .. x.sqrt.floor -> \d {
       my \y = x div d;
       if y * d == x { take d; take y unless y == d }
   }

}

say bag map { propdivsum($_) <=> $_ }, 1..20000</lang>

Output:
bag(Less(15043), Same(4), More(4953))

PL/I

<lang pli>*process source xref;

apd: Proc Options(main);
p9a=time();
Dcl (p9a,p9b) Pic'(9)9';
Dcl cnt(3) Bin Fixed(31) Init((3)0);
Dcl x Bin Fixed(31);
Dcl pd(300) Bin Fixed(31);
Dcl sumpd   Bin Fixed(31);
Dcl npd     Bin Fixed(31);
Do x=1 To 20000;
  Call proper_divisors(x,pd,npd);
  sumpd=sum(pd,npd);
  Select;
    When(x<sumpd) cnt(1)+=1; /* abundant  */
    When(x=sumpd) cnt(2)+=1; /* perfect   */
    Otherwise     cnt(3)+=1; /* deficient */
    End;
  End;
Put Edit('In the range 1 - 20000')(Skip,a);
Put Edit(cnt(1),' numbers are abundant ')(Skip,f(5),a);
Put Edit(cnt(2),' numbers are perfect  ')(Skip,f(5),a);
Put Edit(cnt(3),' numbers are deficient')(Skip,f(5),a);
p9b=time();
Put Edit((p9b-p9a)/1000,' seconds elapsed')(Skip,f(6,3),a);
Return;
proper_divisors: Proc(n,pd,npd);
Dcl (n,pd(300),npd) Bin Fixed(31);
Dcl (d,delta)       Bin Fixed(31);
npd=0;
If n>1 Then Do;
  If mod(n,2)=1 Then  /* odd number  */
    delta=2;
  Else                /* even number */
    delta=1;
  Do d=1 To n/2 By delta;
    If mod(n,d)=0 Then Do;
      npd+=1;
      pd(npd)=d;
      End;
    End;
  End;
End;
sum: Proc(pd,npd) Returns(Bin Fixed(31));
Dcl (pd(300),npd) Bin Fixed(31);
Dcl sum Bin Fixed(31) Init(0);
Dcl i   Bin Fixed(31);
Do i=1 To npd;
  sum+=pd(i);
  End;
Return(sum);
End;
End;</lang>
Output:
In the range 1 - 20000
 4953 numbers are abundant
    4 numbers are perfect
15043 numbers are deficient
 0.560 seconds elapsed


Python

Importing Proper divisors from prime factors: <lang python>>>> from proper_divisors import proper_divs >>> from collections import Counter >>> >>> rangemax = 20000 >>> >>> def pdsum(n): ... return sum(proper_divs(n)) ... >>> def classify(n, p): ... return 'perfect' if n == p else 'abundant' if p > n else 'deficient' ... >>> classes = Counter(classify(n, pdsum(n)) for n in range(1, 1 + rangemax)) >>> classes.most_common() [('deficient', 15043), ('abundant', 4953), ('perfect', 4)] >>> </lang>

Output:
Between 1 and 20000:
  4953 abundant numbers
  15043 deficient numbers
  4 perfect numbers

Racket

<lang racket>#lang racket (require math) (define (proper-divisors n) (drop-right (divisors n) 1)) (define classes '(deficient perfect abundant)) (define (classify n)

 (list-ref classes (add1 (sgn (- (apply + (proper-divisors n)) n)))))

(let ([N 20000])

 (define t (make-hasheq))
 (for ([i (in-range 1 (add1 N))])
   (define c (classify i))
   (hash-set! t c (add1 (hash-ref t c 0))))
 (printf "The range between 1 and ~a has:\n" N)
 (for ([c classes]) (printf "  ~a ~a numbers\n" (hash-ref t c 0) c)))</lang>
Output:
The range between 1 and 20000 has:
  15043 deficient numbers
  4 perfect numbers
  4953 abundant numbers

REXX

version 1

<lang rexx>/*REXX pgm counts the # of abundant/deficient/perfect numbers in a range*/ parse arg low high . /*get optional arguments*/ high=word(high low 20000,1); low=word(low 1,1) /*get the LOW and HIGH. */ say center('integers from ' low " to " high, 45, "═") a=0; d=0; p=0 /*set all types of sums to bupkis*/

    do j=low  to high;   $=sigma(j)   /*find the sigma for an int range*/
    if $<j  then               d=d+1  /*it's a   deficient  number.    */
            else if $>j  then  a=a+1  /*  "  "   abundant      "       */
                         else  p=p+1  /*  "  "   perfect       "       */
    end  /*j*/

say ' the number of perfect numbers: ' right(p, length(high)) say ' the number of abundant numbers: ' right(a, length(high)) say ' the number of deficient numbers: ' right(d, length(high)) exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────SIGMA subroutine────────────────────*/ sigma: procedure; parse arg x; if x<2 then return 0; odd=x//2 s=1 /* [↓] use only EVEN|ODD integers*/

   do j=2+odd  by 1+odd  while j*j<x  /*divide by all integers up to √x*/
   if x//j==0  then  s=s+j+ x%j       /*add the two divisors to the sum*/
   end   /*j*/                        /* [↑]  %  is REXX integer divide*/
                                      /* [↓]  adjust for square.     _ */

if j*j==x then s=s+j /*Was X a square? If so, add √x.*/ return s /*return the sum of the divisors.*/</lang> output   when using the default inputs:

═════════integers from  1  to  20000═════════
   the number of perfect   numbers:      4
   the number of abundant  numbers:   4953
   the number of deficient numbers:  15043

version 2

<lang rexx>Call time 'R' cnt.=0 Do x=1 To 20000

 pd=proper_divisors(x)
 sumpd=sum(pd)
 Select
   When x<sumpd Then cnt.abundant =cnt.abundant +1
   When x=sumpd Then cnt.perfect  =cnt.perfect  +1
   Otherwise         cnt.deficient=cnt.deficient+1
   End
 Select
   When npd>hi Then Do
     list.npd=x
     hi=npd
     End
   When npd=hi Then
     list.hi=list.hi x
   Otherwise
     Nop
   End
 End

Say 'In the range 1 - 20000' Say format(cnt.abundant ,5) 'numbers are abundant ' Say format(cnt.perfect ,5) 'numbers are perfect ' Say format(cnt.deficient,5) 'numbers are deficient ' Say time('E') 'seconds elapsed' Exit

proper_divisors: Procedure Parse Arg n Pd= If n=1 Then Return If n//2=1 Then /* odd number */

 delta=2

Else /* even number */

 delta=1

Do d=1 To n%2 By delta

 If n//d=0 Then
   pd=pd d
 End

Return space(pd)

sum: Procedure Parse Arg list sum=0 Do i=1 To words(list)

 sum=sum+word(list,i)
 End

Return sum</lang>

Output:
In the range 1 - 20000
 4953 numbers are abundant
    4 numbers are perfect
15043 numbers are deficient
28.392000 seconds elapsed

Ruby

With proper_divisors#Ruby in place: <lang ruby>res = Hash.new(0) (1 .. 20_000).each{|n| res[n.proper_divisors.inject(0, :+) <=> n] += 1} puts "Deficient: #{res[-1]} Perfect: #{res[0]} Abundant: #{res[1]}" </lang>

Output:

Deficient: 15043 Perfect: 4 Abundant: 4953

Scala

<lang Scala>def properDivisors(n: Int) = (1 to n/2).filter(i => n % i == 0) def classifier(i: Int) = properDivisors(i).sum compare i val groups = (1 to 20000).groupBy( classifier ) println("Deficient: " + groups(-1).length) println("Abundant: " + groups(1).length) println("Perfect: " + groups(0).length + " (" + groups(0).mkString(",") + ")")</lang>

Output:
Deficient: 15043
Abundant: 4953
Perfect: 4 (6,28,496,8128)


Scheme

<lang scheme> (define (classify n)

(define (sum_of_factors x)
 (cond ((= x 1) 1)
       ((= (remainder n x) 0) (+ x (sum_of_factors (- x 1))))
       (else (sum_of_factors (- x 1)))))
(cond ((or (= n 1) (< (sum_of_factors (floor (/ n 2))) n)) -1)
      ((= (sum_of_factors (floor (/ n 2))) n) 0)
      (else 1)))

(define n_perfect 0) (define n_abundant 0) (define n_deficient 0) (define (count n)

(cond ((= n 1) (begin (display "perfect ")
                      (display n_perfect)
                      (newline)
                      (display "abundant")
                      (display n_abundant)
                      (newline)
                      (display "deficinet")
                      (display n_perfect)
                      (newline)))
      ((equal? (classify n) 0) (begin (set! n_perfect (+ 1 n_perfect)) (display n) (newline) (count (- n 1))))
      ((equal? (classify n) 1) (begin (set! n_abundant (+ 1 n_abundant)) (count (- n 1))))
      ((equal? (classify n) -1) (begin (set! n_deficient (+ 1 n_deficient)) (count (- n 1))))))

</lang>


Swift

Translation of: C

<lang swift>var deficients = 0 // sumPd < n var perfects = 0 // sumPd = n var abundants = 0 // sumPd > n

// 1 is deficient (no proper divisor) deficients++


for i in 2...20000 {

   var sumPd = 1 // 1 is a proper divisor of all integer above 1
   
   var maxPdToTest = i/2 // the max divisor to test
   for var j = 2; j < maxPdToTest; j++ {
       
       if (i%j) == 0 {
           // j is a proper divisor
           sumPd += j
           
           // New maximum for divisibility check
           maxPdToTest = i / j
           
           // To add to sum of proper divisors unless already done
           if maxPdToTest != j {
               sumPd += maxPdToTest
           }
       }
   }
   
   // Select type according to sum of Proper divisors
   if sumPd < i {
       deficients++
   } else if sumPd > i {
       abundants++
   } else {
       perfects++
   }

}

println("There are \(deficients) deficient, \(perfects) perfect and \(abundants) abundant integers from 1 to 20000.")</lang>

Output:
There are 15043 deficient, 4 perfect and 4953 abundant integers from 1 to 20000.

VBScript

<lang VBScript>Deficient = 0 Perfect = 0 Abundant = 0 For i = 1 To 20000 sum = 0 For n = 1 To 20000 If n < i Then If i Mod n = 0 Then sum = sum + n End If End If Next If sum < i Then Deficient = Deficient + 1 ElseIf sum = i Then Perfect = Perfect + 1 ElseIf sum > i Then Abundant = Abundant + 1 End If Next WScript.Echo "Deficient = " & Deficient & vbCrLf &_ "Perfect = " & Perfect & vbCrLf &_ "Abundant = " & Abundant</lang>

Output:
Deficient = 15043
Perfect = 4
Abundant = 4953

zkl

Translation of: D

<lang zkl>fcn properDivs(n){ [1.. (n + 1)/2 + 1].filter('wrap(x){ n%x==0 and n!=x }) }

fcn classify(n){

  p:=properDivs(n).sum();
  return(if(p<n) -1 else if(p==n) 0 else 1);

}

const rangeMax=20_000; classified:=[1..rangeMax].apply(classify); perfect  :=classified.filter('==(0)).len(); abundant  :=classified.filter('==(1)).len(); println("Deficient=%d, perfect=%d, abundant=%d".fmt(

  classified.len()-perfect-abundant, perfect, abundant));</lang>
Output:
Deficient=15043, perfect=4, abundant=4953