Summarize and say sequence: Difference between revisions

m
(Updated notes to the third D entry)
 
(91 intermediate revisions by 29 users not shown)
Line 1:
{{task}}
There are several ways to generate a self-referential sequence. One very common one (the [[Look-and-say sequence]]) is to start with a positive integer, then generate the next term by concatenating enumerated groups of adjacent alike digits:
0, 10, 1110, 3110, 132110, 1113122110, 311311222110 ...
 
0, 10, 1110, 3110, 132110, 1113122110, 311311222110 ...
 
The terms generated grow in length geometrically and never converge.
 
Line 9 ⟶ 7:
 
Count how many of each alike digit there is, then concatenate the sum and digit for each of the sorted enumerated digits. Note that the first five terms are the same as for the previous sequence.
0, 10, 1110, 3110, 132110, 13123110, 23124110 ...
 
0, 10, 1110, 3110, 132110, 13123110, 23124110 ... see [[oeis:A036058|The On-Line Encyclopedia of Integer Sequences]]
 
Sort the digits largest to smallest. Do not include counts of digits that do not appear in the previous term.
 
Depending on the seed value, series generated this way always either converge to a stable value or to a short cyclical pattern. (For our purposes, I'll use converge to mean an element matches a previously seen element.) The sequence shown, with a seed value of 0, converges to a stable value of 1433223110 after 11 iterations. The seed value that converges most quickly is 22. It goes stable after the first element. (The next element is 22, which has been seen before.)
 
<b>Task:</b>
 
;Task:
Find all the positive integer seed values under 1000000, for the above convergent self-referential sequence, that takes the largest number of iterations before converging. Then print out the number of iterations and the sequence they return. Note that different permutations of the digits of the seed will yield the same sequence. For this task, assume leading zeros are not permitted.
 
Line 47 ⟶ 43:
19182716152413228110
</pre>
 
See also: [[Self-describing numbers]] and [[Look-and-say sequence]]
;Related tasks:
* &nbsp; [[Fours is the number of letters in the ...]]
* &nbsp; [[Look-and-say sequence]]
* &nbsp; [[Number names]]
* &nbsp; [[Self-describing numbers]]
* &nbsp; [[Spelling of ordinal numbers]]
 
 
 
{{Template:Strings}}
 
 
;Also see:
* &nbsp; [[oeis:A036058|The On-Line Encyclopedia of Integer Sequences]].
<br><br>
 
=={{header|11l}}==
{{trans|C++}}
 
<syntaxhighlight lang="11l">[String] result
V longest = 0
 
F make_sequence(n) -> Void
DefaultDict[Char, Int] map
L(c) n
map[c]++
 
V z = ‘’
L(k) sorted(map.keys(), reverse' 1B)
z ‘’= Char(code' map[k] + ‘0’.code)
z ‘’= k
 
I :longest <= z.len
:longest = z.len
I z !C :result
:result [+]= z
make_sequence(z)
 
L(test) [‘9900’, ‘9090’, ‘9009’]
result.clear()
longest = 0
make_sequence(test)
print(‘[#.] Iterations: #.’.format(test, result.len + 1))
print(result.join("\n"))
print("\n")</syntaxhighlight>
 
{{out}}
<pre>
[9900] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
 
[9090] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
 
[9009] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
</pre>
 
=={{header|Ada}}==
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO; use Ada.Text_IO;
with Ada.Containers.Vectors;
procedure SelfRef is
Line 111 ⟶ 224:
IO.Put (mseed, Width => 1); New_Line;
len := Iterate (mseed, True);
end SelfRef;</langsyntaxhighlight>
{{out}}
<pre>21 Iterations:
Line 138 ⟶ 251:
=={{header|Aime}}==
{{trans|C}}
<langsyntaxhighlight lang="aime">text
next(text s, integer show)
{
integer c, e, l;
recordindex v;
data d;
text u;
 
l = length(~s);
while (l) {
integerv[-s[l e-= 1]] += 1;
 
l -= 1;
e = 0;
u = insert("", 0, character(s, l));
r_g_integer(e, v, u);
r_f_integer(v, u, e + 1);
}
 
iffor (r_last(vc, u)e in v) {
dob_form(d, {"%d%c", e, -c);
b_paste(d, -1, itoa(r_q_integer(v, u)));
b_paste(d, -1, u);
} while (r_less(v, u, u));
}
 
ifreturn (show) {d;
o_text(b_string(d));
o_newline();
}
 
return b_string(d);
}
 
Line 178 ⟶ 276:
 
d = 0;
r_g_integerr_j_integer(d, r, s);
if (d <= 0) {
i += 1;
ifd += (d) {? i : -i;
r[s] = d += i;
}i else= {depth(next(s), i, r);
d = -ir[s];
}
r_f_integer(r, s, d);
i = depth(next(s, 0), i, r);
d = r_q_integer(r, s);
if (d <= 0) {
r[s] = d = i + 1;
r_r_integer(r, s, d);
}
}
Line 219 ⟶ 312:
}
 
o_text(cat3o_("longest length is ", itoa(d), "\n"));
while (l_lengthl_o_integer(i, l, 0)) {
text s;
 
o_newlineo_("\n", i, "\n");
r_clear(r);
lf_e_integer(i, l);
o_integer(i);
o_newline();
e = d - 1;
s = itoa(i);
while (e) {
o_(s = next(s), 1"\n");
e -= 1;
}
Line 237 ⟶ 326:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>longest length is 21
Line 310 ⟶ 399:
=={{header|AutoHotkey}}==
Not optimized in the slightest.
<syntaxhighlight lang="autohotkey">
<lang AutoHotkey>
; The following directives and commands speed up execution:
#NoEnv
Line 344 ⟶ 433:
return errorlevel
}
</syntaxhighlight>
</lang>
Output:
<pre>Seeds: 9009 9090 9900
Line 371 ⟶ 460:
19281716151413427110
19182716152413228110</pre>
 
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> *FLOAT64
DIM list$(30)
maxiter% = 0
Line 413 ⟶ 503:
IF d%(I%) o$ += STR$d%(I%) + STR$I%
NEXT
= o$</langsyntaxhighlight>
'''Output:'''
<pre>
Line 445 ⟶ 535:
 
=={{header|Bracmat}}==
<langsyntaxhighlight lang="bracmat">( ( self-referential
= seq N next
. ( next
Line 516 ⟶ 606:
)
& out$("Iterations:" !max !seqs)
);</langsyntaxhighlight>
Output:
<pre> Iterations:
Line 547 ⟶ 637:
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <string.h>
Line 669 ⟶ 759:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>longest length: 21
Line 745 ⟶ 835:
</pre>
 
=={{header|CoffeeScriptC++}}==
<syntaxhighlight lang="cpp">
This takes less than a second to run, even though the only real optimization is to exclude integers that don't have their digits descending.
#include <iostream>
#include <string>
#include <map>
#include <vector>
#include <algorithm>
 
std::map<char, int> _map;
<lang coffeescript>
std::vector<std::string> _result;
sequence = (n) ->
size_t cntslongest = {}0;
for c in n.toString()
d = parseInt(c)
incr cnts, d
 
void make_sequence( std::string n ) {
seq = []
_map.clear();
while true
for( std::string::iterator i = n.begin(); i != n.end(); i++ )
s = ''
_map.insert( std::make_pair( *i, _map[*i]++ ) );
for i in [9..0]
s += "#{cnts[i]}#{i}" if cnts[i]
if s in seq
break
seq.push s
new_cnts = {}
for digit, cnt of cnts
incr new_cnts, cnt
incr new_cnts, digit
cnts = new_cnts
seq
 
std::string z;
incr = (h, k) ->
for( std::map<char, int>::reverse_iterator i = _map.rbegin(); i != _map.rend(); i++ ) {
h[k] ?= 0
char c = ( *i ).second + 48;
h[k] += 1
z.append( 1, c );
z.append( 1, i->first );
descending = (n) ->
}
return true if n < 10
tens = n / 10
return false if n % 10 > tens % 10
descending(tens)
max_len = 0
for i in [1..1000000]
if descending(i)
seq = sequence(i)
if seq.length > max_len
max_len = seq.length
max_seq = seq
max_i = i
 
if( longest <= z.length() ) {
console.log max_i, max_seq
longest = z.length();
if( std::find( _result.begin(), _result.end(), z ) == _result.end() ) {
_result.push_back( z );
make_sequence( z );
}
}
}
int main( int argc, char* argv[] ) {
std::vector<std::string> tests;
tests.push_back( "9900" ); tests.push_back( "9090" ); tests.push_back( "9009" );
for( std::vector<std::string>::iterator i = tests.begin(); i != tests.end(); i++ ) {
make_sequence( *i );
std::cout << "[" << *i << "] Iterations: " << _result.size() + 1 << "\n";
for( std::vector<std::string>::iterator j = _result.begin(); j != _result.end(); j++ ) {
std::cout << *j << "\n";
}
std::cout << "\n\n";
}
return 0;
}
</syntaxhighlight>
{{out}}
<pre>
[9900] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
[9090] Iterations: 21
</lang>
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
[9009] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
 
</pre>
 
=={{header|Clojure}}==
<langsyntaxhighlight lang="clojure">(defmacro reduce-with
"simplifies form of reduce calls"
[bindings & body]
Line 840 ⟶ 998:
(zero? cmp) (conj max-seqs new-seq)))))
 
(def results (find-longest 1000000))</langsyntaxhighlight>
 
The above code saves a lot of time by only calculating summary step sequences for one
Line 850 ⟶ 1,008:
but the one here will serve.
 
<langsyntaxhighlight lang="clojure">(defn perms
"produce all the permutations of a finite sequence"
[ds]
Line 868 ⟶ 1,026:
(println "Sequence:")
(doseq [ds result]
(println (apply str ds))))</langsyntaxhighlight>
 
=={{header|CLU}}==
<syntaxhighlight lang="clu">summarize = proc (s: string) returns (string) signals (bad_format)
digit_count: array[int] := array[int]$fill(0,10,0)
for c: char in string$chars(s) do
d: int := int$parse(string$c2s(c)) resignal bad_format
digit_count[d] := digit_count[d] + 1
end
out: stream := stream$create_output()
for d: int in int$from_to_by(9,0,-1) do
if digit_count[d]>0 then
stream$puts(out, int$unparse(digit_count[d]))
stream$puts(out, int$unparse(d))
end
end
return(stream$get_contents(out))
end summarize
 
converge = proc (s: string) returns (int) signals (bad_format)
seen: array[string] := array[string]$[]
steps: int := 0
while true do
for str: string in array[string]$elements(seen) do
if str = s then return(steps) end
end
array[string]$addh(seen, s)
s := summarize(s)
steps := steps + 1
end
end converge
 
start_up = proc ()
po: stream := stream$primary_output()
seeds: array[int]
max: int := 0
for i: int in int$from_to(1, 999999) do
steps: int := converge(int$unparse(i))
if steps > max then
max := steps
seeds := array[int]$[i]
elseif steps = max then
array[int]$addh(seeds,i)
end
end
stream$puts(po, "Seed values: ")
for i: int in array[int]$elements(seeds) do
stream$puts(po, int$unparse(i) || " ")
end
stream$putl(po, "\nIterations: " || int$unparse(max))
stream$putl(po, "\nSequence: ")
s: string := int$unparse(array[int]$bottom(seeds))
for i: int in int$from_to(1, max) do
stream$putl(po, s)
s := summarize(s)
end
end start_up</syntaxhighlight>
{{out}}
<pre>Seed values: 9009 9090 9900
Iterations: 21
 
Sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|CoffeeScript}}==
{{incomplete|CoffeeScript|This code only produces one of the seeds, not all of them.}}
This takes less than a second to run, even though the only real optimization is to exclude integers that don't have their digits descending.
 
<syntaxhighlight lang="coffeescript">
sequence = (n) ->
cnts = {}
for c in n.toString()
d = parseInt(c)
incr cnts, d
 
seq = []
while true
s = ''
for i in [9..0]
s += "#{cnts[i]}#{i}" if cnts[i]
if s in seq
break
seq.push s
new_cnts = {}
for digit, cnt of cnts
incr new_cnts, cnt
incr new_cnts, digit
cnts = new_cnts
seq
 
incr = (h, k) ->
h[k] ?= 0
h[k] += 1
descending = (n) ->
return true if n < 10
tens = n / 10
return false if n % 10 > tens % 10
descending(tens)
max_len = 0
for i in [1..1000000]
if descending(i)
seq = sequence(i)
if seq.length > max_len
max_len = seq.length
max_seq = seq
max_i = i
 
console.log max_i, max_seq
 
</syntaxhighlight>
 
<pre> 9900 ["2920", "192210", "19222110", "19323110", "1923123110", "1923224110", "191413323110",
"191433125110", "19151423125110", "19251413226110", "1916151413325110", "1916251423127110", "1
91716151413326110", "191726151423128110", "19181716151413327110", "19182716151423129110",
"29181716151413328110", "19281716151423228110", "19281716151413427110", "19182716152413228110"]</pre>
 
=={{header|Common Lisp}}==
Doesn't do cache, and takes forever.
<langsyntaxhighlight lang="lisp">(defun count-and-say (str)
(let* ((s (sort (map 'list #'identity str) #'char>))
(out (list (first s) 0)))
Line 900 ⟶ 1,201:
(let ((r (find-longest 1000000)))
(format t "Longest: ~a~%" r)
(ref-seq-len (first (first r)) t))</langsyntaxhighlight>output<syntaxhighlight lang="text">Longest: ((9900 9090 9009) 21)
9900
2920
Line 921 ⟶ 1,222:
19281716151423228110
19281716151413427110
19182716152413228110</langsyntaxhighlight>
 
=={{header|D}}==
===Slow High-level Version===
{{trans|Ruby}}
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.conv;
 
string[] selfReferentialSeq(string n, string[] seen=[]) nothrow {
__gshared static string[][string] cache;
if (n in cache) return cache[n];
if (canFind(seen, n)) return cache[n];
if (seen.canFind(n))
return [];
 
int[10] digit_count;
foreach (immutable d; n)
digit_count[d - '0']++;
string term;
foreach_reverse (immutable d; 0 .. 10)
if (digit_count[d] > 0)
term ~= text(digit_count[d], d);
Line 948 ⟶ 1,251:
int[] max_vals;
 
foreach (immutable n; 1 .. limit) {
const seq = n.text().selfReferentialSeq();
if (seq.length > max_len) {
Line 960 ⟶ 1,263:
writeln("iterations: ", max_len);
writeln("sequence:");
foreach (const idx, const val; max_vals[0].text().selfReferentialSeq())
writefln("%2d %s", idx + 1, val);
}</langsyntaxhighlight>
{{out}}
Output:
<pre>values: [9009, 9090, 9900]
iterations: 21
Line 990 ⟶ 1,293:
===More Efficient Version===
{{trans|Python}}
<langsyntaxhighlight lang="d">import std.range, std.algorithm;
 
struct Permutations(bool doCopy=true, T) {
Line 1,000 ⟶ 1,303:
T[] result;
 
this(T)(T[] items, int r=-1) /*pure nothrow*/ @safe {
this.items = items;
immutable int n = items.length;
Line 1,011 ⟶ 1,314:
} else {
this.stopped = false;
this.indices = n.iota.array; // Not pure nothrow.
//this.cycles = iota(n, n_minus_r, -1).array; // Not nothrow.
this.cycles = iota(n_minus_r + 1, n + 1).retro.array;
}
 
Line 1,019 ⟶ 1,323:
}
 
@property bool empty() const pure nothrow @safe @nogc {
return this.stopped;
}
 
static if (doCopy) {
@property T[] front() const pure nothrow @safe {
assert(!this.stopped);
auto result = new T[r];
Line 1,032 ⟶ 1,336:
}
} else {
@property T[] front() pure nothrow @safe @nogc {
assert(!this.stopped);
foreach (immutable i, ref re; this.result)
Line 1,040 ⟶ 1,344:
}
 
void popFront() pure nothrow /*nothrow@safe*/ @nogc {
assert(!this.stopped);
int i = r - 1;
Line 1,047 ⟶ 1,351:
if (j > 0) {
cycles[i] = j;
swap(indices[i], .swap(indices[$ - j]);
return;
}
Line 1,055 ⟶ 1,359:
immutable int num = indices[i];
 
// copy isn't nothrow@safe.
indices[i + 1 .. n1 + 1].copy(indices[i .. n1]);
indices[n1] = num;
Line 1,067 ⟶ 1,371:
Permutations!(doCopy, T) permutations(bool doCopy=true, T)
(T[] items, int r=-1)
/*pure nothrow*/ @safe {
return Permutations!(doCopy, T)(items, r);
}
Line 1,078 ⟶ 1,382:
enum maxIters = 1_000_000;
 
string A036058(in string ns) pure nothrow @safe {
return ns.representation.group.map!(t => t[1].text ~ cast(char)(t[0])).join;
}
 
Line 1,091 ⟶ 1,395:
writefln(" %2d %s", iterations, numberString);
 
numberString = cast(string)(numberString
.dup
.representation
.sort()
.release
.assumeUnique)assumeUTF;
 
if (lastThree[].canFind(numberString))
Line 1,116 ⟶ 1,420:
 
foreach (n; startRange) {
immutable string sns = cast(string)(n
.to!(char[])
.representation
.sort()
.release
.assumeUnique)assumeUTF;
 
if (sns !in alreadyDone) {
Line 1,167 ⟶ 1,471:
A036058_length!true(n.text);
}
}</langsyntaxhighlight>
The output is similar to the Python entry.
 
Line 1,173 ⟶ 1,477:
{{trans|C}}
From the C version, with a memory pool for a faster tree allocation.
<langsyntaxhighlight lang="d">import core.stdc.stdio, core.stdc.stdlib;
 
struct MemoryPool(T, int MAX_BLOCK_BYTES = 1 << 17) {
static assert(!is(T == class),
"MemoryPool is designed for native data.");
static assert(MAX_BLOCK_BYTES >= 1,
"MemoryPool: MAX_BLOCK_BYTES must be >= 1 bytes.");
static assert(MAX_BLOCK_BYTES >= T.sizeof,
"MemoryPool: MAX_BLOCK_BYTES must be" ~
" bigger than a T.");
static if (T.sizeof * 5 > MAX_BLOCK_BYTES)
pragma(msg, "MemoryPool: Block is very small.");
 
alias Block = T[MAX_BLOCK_BYTES / T.sizeof];
static struct Block {
static assert(MAX_BLOCK_BYTES__gshared >=Block*[] T.sizeof,blocks;
static __gshared T* nextFree, lastFree;
"MemoryPool: MAX_BLOCK_BYTES must be" ~
" bigger than a T.");
static if ((T.sizeof * 5) > MAX_BLOCK_BYTES)
pragma(msg, "MemoryPool: Block is very small.");
 
T[(MAX_BLOCK_BYTES / T.sizeof)] items;
}
 
__gshared static Block*[] blocks;
 
__gshared static T* nextFree, lastFree;
 
static T* newItem() nothrow {
Line 1,200 ⟶ 1,499:
if (blocks[$ - 1] == null)
exit(1);
nextFree = blocks[$ - 1].items.ptr;
lastFree = nextFree + Block.items.length;
}
 
Line 1,207 ⟶ 1,506:
}
 
// static void freeAll() nothrow {
// foreach (block_ptrblockPtr; blocks)
// free(block_ptrblockPtr);
// blocks.length = 0;
// nextFree = null;
// lastFree = null;
// }
}
 
Line 1,238 ⟶ 1,537:
if (!next) {
nNodes++;
next = recPool.newItem();
root.p[c] = next;
}
Line 1,246 ⟶ 1,545:
}
 
void nextNum(char* s) nothrow @nogc {
int[10] cnt;
for (int i = 0; s[i]; i++)
Line 1,285 ⟶ 1,584:
rec_root = recPool.newItem();
 
foreach (immutable i; 0 .. MAXN) {
sprintf(buf.ptr, "%d", i);
int l = getLen(buf.ptr, 0);
Line 1,299 ⟶ 1,598:
 
printf("seq leng: %d\n\n", ml);
foreach (immutable i; 0 .. nLongest) {
sprintf(buf.ptr, "%d", longest[i]);
// print len+1 so we know repeating starts from when
foreach (immutable l; 0 .. ml + 1) {
printf("%2d: %s\n", getLen(buf.ptr, 0), buf.ptr);
nextNum(buf.ptr);
Line 1,310 ⟶ 1,609:
 
printf("Allocated %d Rec tree nodes.\n", nNodes);
//recPool.freeAll();
}</langsyntaxhighlight>
Faster than the C entry, run-time is about 1.2216 seconds using the dmd compiler (about 1.5 without memory pool). Same output as the C entry.
 
=={{header|EchoLisp}}==
Extra credit: searching up to 1e+10 does not find a longer sequence.
 
<syntaxhighlight lang="scheme">
(lib 'hash)
(lib 'list) ;; permutations
 
(define H (make-hash))
 
;; G R A P H
;; generate 'normalized' starter vectors D[i] = number of digits 'i' (0 <=i < 10)
;; reduce graph size : 9009, 9900 .. will be generated once : vector #(2 0 0 0 0 0 0 0 0 2)
 
(define (generate D dstart ndigits (sd 0))
(when (> ndigits 0)
(set! sd (vector-ref D dstart)) ;; save before recurse
(for ((i (in-range 0 (1+ ndigits))))
#:continue (and ( = i 0) (> dstart 0))
(vector-set! D dstart i)
(sequence D) ;; sequence length from D
(for ((j (in-range (1+ dstart) 10)))
(generate D j (- ndigits i))))
(vector-set! D dstart sd))) ;; restore
 
;; compute follower of D (at most 99 same digits)
(define (dnext D (dd 0))
(define N (make-vector 10))
(for ((d D) (i 10))
#:continue (zero? d)
(vector-set! N i (1+ (vector-ref N i)))
(if (< d 10)
(vector-set! N d (1+ (vector-ref N d))) ;; d < 9
(begin
(set! dd (modulo d 10))
(vector-set! N dd (1+ (vector-ref N dd)))
(set! dd (quotient d 10))
(vector-set! N dd (1+ (vector-ref N dd))))))
N)
;; update all nodes in same sequence
;; seq-length (next D) = 1 - seq-length(D)
(define (sequence D)
(define (dists D d)
(unless (hash-ref H D)
(hash-set H D d)
(dists (dnext D ) (1- d))))
(unless (hash-ref H D)
(dists D (sequence-length D))))
;; sequence length from D
;; stops on loop found (node N)
(define (sequence-length D )
(define (looper N looplg depth) ;; looper 2 : a b a
(when ( > depth 0)
(hash-set H N looplg)
(looper (dnext N) looplg (1- depth))))
(define followers (make-hash))
(define N (dnext D))
(define seqlg 0)
(define looplg 0)
(hash-set followers D 0)
(set! seqlg
(for ((lg (in-naturals 1 )))
#:break (hash-ref H N) => (+ lg (hash-ref H N)) ;; already known
#:break (hash-ref followers N) => lg ;; loop found
(hash-set followers N lg)
(set! N (dnext N))))
;; update nodes in loop : same seq-length
(when (hash-ref followers N) ;; loop found
(set! looplg ( - seqlg (hash-ref followers N)))
(looper N looplg looplg))
seqlg )
;; O U T P U T
;; backwards from D - normalized vector - to numbers (as strings)
(define (starters D)
(define (not-leading-zero list) (!zero? (first list)))
(map list->string
(filter not-leading-zero (make-set (permutations (for/fold (acc null) ((d D) (i 10))
#:continue (zero? d)
(append acc (for/list ((j d)) i))))))))
;; printing one node
(define (D-print D)
(set! D (reverse (vector->list D)))
(for/string ( (d D) (i (in-range 9 -1 -1)))
#:continue (zero? d)
(string-append d i)))
;; print graph contents
(define (print-sequence D)
(writeln 1 (starters D))
(writeln 2 (D-print D ))
(for ((i (in-range 1 (hash-ref H D))))
(writeln (+ i 2) (D-print (setv! D (dnext D))))))
 
;; TA S K
(define (task (n 6) (verbose #t))
(generate (make-vector 10) 0 n)
(define seqmax (apply max (hash-values H)))
(when verbose (for ((kv H))
#:continue (!= (rest kv ) seqmax)
(print-sequence (first kv))))
 
(writeln (expt 10 n) '--> 'max-sequence= (1+ seqmax) 'nodes= (length (hash-values H))))
</syntaxhighlight>
{{out}}
<syntaxhighlight lang="scheme">
(task 6)
1 (9009 9090 9900)
2 2920
3 192210
4 19222110
5 19323110
6 1923123110
7 1923224110
8 191413323110
9 191433125110
10 19151423125110
11 19251413226110
12 1916151413325110
13 1916251423127110
14 191716151413326110
15 191726151423128110
16 19181716151413327110
17 19182716151423129110
18 29181716151413328110
19 19281716151423228110
20 19281716151413427110
21 19182716152413228110
1000000 --> max-sequence= 21 nodes= 10926
 
(task 7 #f)
10000000 --> max-sequence= 21 nodes= 23432
(task 8 #f)
100000000 --> max-sequence= 21 nodes= 47359
(task 9 #f)
1000000000 --> max-sequence= 21 nodes= 97455
(task 10 #f)
10000000000 --> max-sequence= 21 nodes= 188493
 
</syntaxhighlight>
 
=={{header|Eiffel}}==
Only checks numbers where digits are in ascending order. Digits with trailing zeros have to be treated as ascending numbers (special case). Calculates all the permutations in the end.
<syntaxhighlight lang="eiffel">
class
SELF_REFERENTIAL_SEQUENCE
 
create
make
 
feature
 
make
local
i: INTEGER
length, max: INTEGER_64
do
create seed_value.make
create sequence.make (25)
create permuted_values.make
from
i := 1
until
i > 1000000
loop
length := check_length (i.out)
if length > max then
max := length
seed_value.wipe_out
seed_value.extend (i)
elseif length = max then
seed_value.extend (i)
end
sequence.wipe_out
i := next_ascending (i).to_integer
end
io.put_string ("Maximal length: " + max.out)
io.put_string ("%NSeed Value: %N")
across
seed_value as s
loop
permute (s.item.out, 1)
end
across
permuted_values as p
loop
io.put_string (p.item + "%N")
end
io.put_string ("Sequence:%N")
max := check_length (seed_value [1].out)
across
sequence as s
loop
io.put_string (s.item)
io.new_line
end
end
 
next_ascending (n: INTEGER_64): STRING
-- Next number with ascending digits after 'n'.
-- Numbers with trailing zeros are treated as ascending numbers.
local
st: STRING
first, should_be, zero: STRING
i: INTEGER
do
create Result.make_empty
create zero.make_empty
st := (n + 1).out
from
until
st.count < 2
loop
first := st.at (1).out
if st [2] ~ '0' then
from
i := 3
until
i > st.count
loop
zero.append ("0")
i := i + 1
end
Result.append (first + first + zero)
st := ""
else
should_be := st.at (2).out
if first > should_be then
should_be := first
end
st.remove_head (2)
st.prepend (should_be)
Result.append (first)
end
end
if st.count > 0 then
Result.append (st [st.count].out)
end
end
 
feature {NONE}
 
seed_value: SORTED_TWO_WAY_LIST [INTEGER]
 
permuted_values: SORTED_TWO_WAY_LIST [STRING]
 
sequence: ARRAYED_LIST [STRING]
 
permute (a: STRING; k: INTEGER)
-- All permutations of 'a'.
require
count_positive: a.count > 0
k_valid_index: k > 0
local
t: CHARACTER
b: STRING
found: BOOLEAN
do
across
permuted_values as p
loop
if p.item ~ a then
found := True
end
end
if k = a.count and a [1] /= '0' and not found then
create b.make_empty
b.deep_copy (a)
permuted_values.extend (b)
else
across
k |..| a.count as c
loop
t := a [k]
a [k] := a [c.item]
a [c.item] := t
permute (a, k + 1)
t := a [k]
a [k] := a [c.item]
a [c.item] := t
end
end
end
 
check_length (i: STRING): INTEGER_64
-- Length of the self referential sequence starting with 'i'.
local
found: BOOLEAN
j: INTEGER
s: STRING
do
create s.make_from_string (i)
from
until
found
loop
sequence.extend (s)
s := next (s)
from
j := sequence.count - 1
until
j < 1
loop
if sequence [j] ~ s then
found := True
end
j := j - 1
end
end
Result := sequence.count
end
 
next (n: STRING): STRING
-- Next item after 'n' in a self referential sequence.
local
i, count: INTEGER
counter: ARRAY [INTEGER]
do
create counter.make_filled (0, 0, 9)
create Result.make_empty
from
i := 1
until
i > n.count
loop
count := n [i].out.to_integer
counter [count] := counter [count] + 1
i := i + 1
end
from
i := 9
until
i < 0
loop
if counter [i] > 0 then
Result.append (counter [i].out + i.out)
end
i := i - 1
end
end
 
end
</syntaxhighlight>
{{out}}
<pre>
Maximal length: 21
Seed Value:
9009
9090
9900
Sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
</pre>
 
=={{header|F_Sharp|F#}}==
Takes ~0.4 sec. to filter numbers less than 1 million with digits in descending order, so don't know why all the emphasis on optimization. Doesn't use any strings which maybe is good.
<syntaxhighlight lang="fsharp">
// Summarize and say sequence . Nigel Galloway: April 23rd., 2021
let rec fN g=let n=let n,g=List.head g|>List.countBy id|>List.unzip in n@(g|>List.collect(fun g->if g<10 then [g] else [g/10;g%10]))
if List.contains n g then g.Tail|>List.rev else fN(n::g)
let rec fG n g=seq{yield! n; if g>1 then yield! fG(n|>Seq.collect(fun n->[for g in 0..List.head n->g::n]))(g-1)}
let n,g=seq{yield [0]; yield! fG(Seq.init 9 (fun n->[n+1])) 6}
|>Seq.fold(fun(n,l) g->let g=fN [g] in match g.Length with e when e<n->(n,l) |e when e>n->(e,[[g]]) |e->(n,[g]::l))(0,[])
printfn "maximum number of iterations is %d" (n+1)
for n in g do for n in n do
printf "Permutations of "; n.Head|>List.rev|>List.iter(printf "%d"); printfn " produce:"
for n in n do (for n,g in List.countBy id n|>List.sort|>List.rev do printf "%d%d" g n); printfn ""
</syntaxhighlight>
{{out}}
<pre>
maximum number of iterations is 21
Permutations of 9900 produce:
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
</pre>
=={{header|Factor}}==
Like the Eiffel example, this program saves time by considering only seed numbers whose digits are in increasing order (zeros are exempt). This ensures that extra permutations of a number are not searched, as they produce equivalent sequences (aside from the first element). For instance, &nbsp; <tt>21</tt> &nbsp; is the first number to be skipped because it's a permutation of &nbsp; <tt>12</tt>.
<syntaxhighlight lang="factor">USING: assocs grouping io kernel math math.combinatorics
math.functions math.ranges math.statistics math.text.utils
prettyprint sequences sets ;
IN: rosetta-code.self-referential-sequence
 
: next-term ( seq -- seq ) histogram >alist concat ;
 
! Output the self-referential sequence, given a seed value.
: srs ( seq -- seq n )
V{ } clone [ 2dup member? ] [ 2dup push [ next-term ] dip ]
until nip dup length ;
 
: digit-before? ( m n -- ? ) dup zero? [ 2drop t ] [ <= ] if ;
 
! The numbers from 1 rto n sans permutations.
: candidates ( n -- seq )
[1,b] [ 1 digit-groups reverse ] map
[ [ digit-before? ] monotonic? ] filter ;
 
: max-seed ( n -- seq ) candidates [ srs nip ] supremum-by ;
 
: max-seeds ( n -- seq )
max-seed <permutations> members [ first zero? ] reject ;
 
: digits>number ( seq -- n ) [ 10^ * ] map-index sum ;
 
: >numbers ( seq -- seq ) [ digits>number ] map ;
 
: main ( -- )
"Seed value(s): " write
1,000,000 max-seeds
[ [ reverse ] map >numbers . ]
[ first srs ] bi
"Iterations: " write .
"Sequence:" print >numbers . ;
 
MAIN: main</syntaxhighlight>
{{out}}
<pre>
Seed value(s): V{ 9009 9090 9900 }
Iterations: 21
Sequence:
V{
9009
2920
221910
22192110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
}
</pre>
 
=={{header|Go}}==
Brute force
<langsyntaxhighlight lang="go">package main
 
import (
Line 1,390 ⟶ 2,184:
}
return r
}</langsyntaxhighlight>
Output:
<pre>
Line 1,428 ⟶ 2,222:
19182716152413228110
</pre>
 
=={{header|Groovy}}==
Solution:
<syntaxhighlight lang="groovy">Number.metaClass.getSelfReferentialSequence = {
def number = delegate as String; def sequence = []
 
while (!sequence.contains(number)) {
sequence << number
def encoded = new StringBuilder()
((number as List).sort().join('').reverse() =~ /(([0-9])\2*)/).each { matcher, text, digit ->
encoded.append(text.size()).append(digit)
}
number = encoded.toString()
}
sequence
}
 
def maxSeqSize = { List values ->
values.inject([seqSize: 0, seeds: []]) { max, n ->
if (n % 100000 == 99999) println 'HT'
else if (n % 10000 == 9999) print '.'
def seqSize = n.selfReferentialSequence.size()
switch (seqSize) {
case max.seqSize: max.seeds << n
case { it < max.seqSize }: return max
default: return [seqSize: seqSize, seeds: [n]]
}
}
}</syntaxhighlight>
Test:
<syntaxhighlight lang="groovy">def max = maxSeqSize(0..<1000000)
 
println "\nLargest sequence size among seeds < 1,000,000\n"
println "Seeds: ${max.seeds}\n"
println "Size: ${max.seqSize}\n"
println "Sample sequence:"
max.seeds[0].selfReferentialSequence.each { println it }</syntaxhighlight>
Output:
<pre>Largest sequence size among seeds < 1,000,000
 
Seeds: [9009, 9090, 9900]
 
Size: 21
 
Sample sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|Haskell}}==
Brute force and quite slow:
<langsyntaxhighlight lang="haskell">import Data.Set (Set, member, insert, empty)
import Data.List (group, sort)
 
Line 1,455 ⟶ 2,316:
map show -- turn the numbers into digits
[1..1000000] -- The input seeds
</syntaxhighlight>
</lang>
 
=={{header|Icon}} and {{header|Unicon}}==
<langsyntaxhighlight Iconlang="icon">link printf
 
procedure main()
Line 1,495 ⟶ 2,356:
every (n := "") ||:= (0 < Counts[i := 9 to 0 by -1]) || i # assemble counts
return integer(n)
end</langsyntaxhighlight>
 
{{libheader|Icon Programming Library}}
Line 1,535 ⟶ 2,396:
exists at the maximum sequence length. As with the first example, it works
in both Icon and Unicon.
<langsyntaxhighlight Uniconlang="unicon"> link strings # to get csort()
 
procedure main(A)
Line 1,564 ⟶ 2,425:
every s := !seqTab do (write() & every write(!(!s\1)[2]))
end
</syntaxhighlight>
</lang>
Output with <tt>limit = 1000000</tt>:
<pre>
Line 1,596 ⟶ 2,457:
=={{header|J}}==
Given:
<langsyntaxhighlight lang="j">require'stats'
digits=: 10&#.inv"0 :. ([: ".@; (<'x'),~":&.>)
summar=: (#/.~ ,@,. ~.)@\:~&.digits
sequen=: ~.@(, summar@{:)^:_
values=: ~. \:~&.digits i.1e6
allvar=: [:(#~(=&<.&(10&^.) >./))@~.({~ perm@#)&.(digits"1) </langsyntaxhighlight>
 
The values with the longest sequence are:
 
<langsyntaxhighlight lang="j"> ;allvar&.> values #~ (= >./) #@sequen"0 values
9900 9090 9009
# sequen 9900
Line 1,630 ⟶ 2,491:
19281716151423228110
19281716151413427110
19182716152413228110</langsyntaxhighlight>
 
Notes:
Line 1,636 ⟶ 2,497:
<code>digits</code> is an invertible function that maps from a number to a sequence of digits and back where the inverse transform converts numbers to strings, concatenates them, and then back to a number.
 
<langsyntaxhighlight lang="j"> digits 321
3 2 1
digits inv 34 5
345</langsyntaxhighlight>
 
<code>summar</code> computes the summary successor.
 
<langsyntaxhighlight lang="j"> summar 0 1 2
10 11 12</langsyntaxhighlight>
 
<code>sequen</code> computes the complete non-repeating sequence of summary successors
Line 1,652 ⟶ 2,513:
Finally, <code>allvar</code> finds all variations of a number which would have the same summary sequence based on the permutations of that number's digits.
 
=={{header|MathematicaJava}}==
{{works with|Java|8}}
<lang Mathematica>selfRefSequence[ x_ ] := FromDigits@Flatten@Reverse@Cases[Transpose@{RotateRight[DigitCount@x,1], Range[0,9]},Except[{0,_}]]
<syntaxhighlight lang="java">import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.stream.IntStream;
 
public class SelfReferentialSequence {
 
static Map<String, Integer> cache = new ConcurrentHashMap<>(10_000);
 
public static void main(String[] args) {
Seeds res = IntStream.range(0, 1000_000)
.parallel()
.mapToObj(n -> summarize(n, false))
.collect(Seeds::new, Seeds::accept, Seeds::combine);
 
System.out.println("Seeds:");
res.seeds.forEach(e -> System.out.println(Arrays.toString(e)));
 
System.out.println("\nSequence:");
summarize(res.seeds.get(0)[0], true);
}
 
static int[] summarize(int seed, boolean display) {
String n = String.valueOf(seed);
 
String k = Arrays.toString(n.chars().sorted().toArray());
if (!display && cache.get(k) != null)
return new int[]{seed, cache.get(k)};
 
Set<String> seen = new HashSet<>();
StringBuilder sb = new StringBuilder();
 
int[] freq = new int[10];
 
while (!seen.contains(n)) {
seen.add(n);
 
int len = n.length();
for (int i = 0; i < len; i++)
freq[n.charAt(i) - '0']++;
 
sb.setLength(0);
for (int i = 9; i >= 0; i--) {
if (freq[i] != 0) {
sb.append(freq[i]).append(i);
freq[i] = 0;
}
}
if (display)
System.out.println(n);
n = sb.toString();
}
 
cache.put(k, seen.size());
 
return new int[]{seed, seen.size()};
}
 
static class Seeds {
int largest = Integer.MIN_VALUE;
List<int[]> seeds = new ArrayList<>();
 
void accept(int[] s) {
int size = s[1];
if (size >= largest) {
if (size > largest) {
largest = size;
seeds.clear();
}
seeds.add(s);
}
}
 
void combine(Seeds acc) {
acc.seeds.forEach(this::accept);
}
}
}</syntaxhighlight>
 
<pre>Seeds:
[9009, 21]
[9090, 21]
[9900, 21]
 
Sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|Javascript}}==
<syntaxhighlight lang="javascript">
function selfReferential(n) {
n = n.toString();
let res = [n];
const makeNext = (n) => {
let matchs = {
'9':0,'8':0,'7':0,'6':0,'5':0,'4':0,'3':0,'2':0,'1':0,'0':0}, res = [];
for(let index=0;index<n.length;index++)
matchs[n[index].toString()]++;
for(let index=9;index>=0;index--)
if(matchs[index]>0)
res.push(matchs[index],index);
return res.join("").toString();
}
for(let i=0;i<10;i++)
res.push(makeNext(res[res.length-1]));
return [...new Set(res)];
}
</syntaxhighlight>
 
=={{header|jq}}==
<syntaxhighlight lang="jq"># Given any array, produce an array of [item, count] pairs for each run.
def runs:
reduce .[] as $item
( [];
if . == [] then [ [ $item, 1] ]
else .[length-1] as $last
| if $last[0] == $item
then (.[0:length-1] + [ [$item, $last[1] + 1] ] )
else . + [[$item, 1]]
end
end ) ;
 
# string to string
def next_self_referential:
def runs2integer: # input is an array as produced by runs,
# i.e. an array of [count, n] pairs, where count is an int,
# and n is an "exploded" digit
reduce .[] as $pair
(""; . + ($pair[1] | tostring) + ([$pair[0]]|implode) ) ;
explode | sort | reverse | runs | runs2integer;
 
# Given an integer as a string,
# compute the entire sequence (of strings) to convergence:
def sequence_of_self_referentials:
def seq:
. as $ary
| (.[length-1] | next_self_referential) as $next
| if ($ary|index($next)) then $ary
else $ary + [$next] | seq
end;
[.] | seq;
 
def maximals(n):
def interesting:
tostring | (. == (explode | sort | reverse | implode));
reduce range(0;n) as $i
([[], 0]; # maximalseeds, length
if ($i | interesting) then
($i|tostring|sequence_of_self_referentials|length) as $length
| if .[1] == $length then [ .[0] + [$i], $length]
elif .[1] < $length then [ [$i], $length]
else .
end
else .
end );
 
def task(n):
maximals(n) as $answer
| "The maximal length to convergence for seeds up to \(n) is \($answer[1]).",
"The corresponding seeds are the allowed permutations",
"of the representative number(s): \($answer[0][])",
"For each representative seed, the self-referential sequence is as follows:",
($answer[0][] | tostring
| ("Representative: \(.)",
"Self-referential sequence:",
(sequence_of_self_referentials | map(tonumber))))
;
 
task(1000000)</syntaxhighlight>
{{out}}
<div style="overflow:scroll; height:400px;">
<syntaxhighlight lang="sh">$ jq -n -r -f Self_referential_sequence.jq
The maximal length to convergence for seeds up to 1000000 is 21.
The corresponding seeds are the allowed permutations
of the representative number(s): 9900
For each representative seed, the self-referential sequence is as follows:
Representative: 9900
Self-referential sequence:
[
9900,
2920,
192210,
19222110,
19323110,
1923123110,
1923224110,
191413323110,
191433125110,
19151423125110,
19251413226110,
1916151413325110,
1916251423127110,
191716151413326100,
191726151423128100,
19181716151413326000,
19182716151423128000,
29181716151413330000,
19281716151423230000,
19281716151413430000,
19182716152413230000
]</syntaxhighlight></div>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">const seen = Dict{Vector{Char}, Vector{Char}}()
 
function findnextterm(prevterm)
counts = Dict{Char, Int}()
reversed = Vector{Char}()
for c in prevterm
if !haskey(counts, c)
counts[c] = 0
end
counts[c] += 1
end
for c in sort(collect(keys(counts)))
if counts[c] > 0
push!(reversed, c)
if counts[c] == 10
push!(reversed, '0'); push!(reversed, '1')
else
push!(reversed, Char(UInt8(counts[c]) + UInt8('0')))
end
end
end
reverse(reversed)
end
function findsequence(seedterm)
term = seedterm
sequence = Vector{Vector{Char}}()
while !(term in sequence)
push!(sequence, term)
if !haskey(seen, term)
nextterm = findnextterm(term)
seen[term] = nextterm
end
term = seen[term]
end
return sequence
end
 
function selfseq(maxseed)
maxseqlen = -1
maxsequences = Vector{Pair{Int, Vector{Char}}}()
for i in 1:maxseed
seq = findsequence([s[1] for s in split(string(i), "")])
seqlen = length(seq)
if seqlen > maxseqlen
maxsequences = [Pair(i, seq)]
maxseqlen = seqlen
elseif seqlen == maxseqlen
push!(maxsequences, Pair(i, seq))
end
end
println("The longest sequence length is $maxseqlen.")
for p in maxsequences
println("\n Seed: $(p[1])")
for seq in p[2]
println(" ", join(seq, ""))
end
end
end
 
selfseq(1000000)
</syntaxhighlight> {{output}} <pre>
The longest sequence length is 21.
 
Seed: 9009
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
Seed: 9090
9090
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
Seed: 9900
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.1.2
 
const val LIMIT = 1_000_000
 
val sb = StringBuilder()
 
fun selfRefSeq(s: String): String {
sb.setLength(0) // faster than using a local StringBuilder object
for (d in '9' downTo '0') {
if (d !in s) continue
val count = s.count { it == d }
sb.append("$count$d")
}
return sb.toString()
}
 
fun permute(input: List<Char>): List<List<Char>> {
if (input.size == 1) return listOf(input)
val perms = mutableListOf<List<Char>>()
val toInsert = input[0]
for (perm in permute(input.drop(1))) {
for (i in 0..perm.size) {
val newPerm = perm.toMutableList()
newPerm.add(i, toInsert)
perms.add(newPerm)
}
}
return perms
}
 
fun main(args: Array<String>) {
val sieve = IntArray(LIMIT) // all zero by default
val elements = mutableListOf<String>()
for (n in 1 until LIMIT) {
if (sieve[n] > 0) continue
elements.clear()
var next = n.toString()
elements.add(next)
while (true) {
next = selfRefSeq(next)
if (next in elements) {
val size = elements.size
sieve[n] = size
if (n > 9) {
val perms = permute(n.toString().toList()).distinct()
for (perm in perms) {
if (perm[0] == '0') continue
val k = perm.joinToString("").toInt()
sieve[k] = size
}
}
break
}
elements.add(next)
}
}
val maxIterations = sieve.max()!!
for (n in 1 until LIMIT) {
if (sieve[n] < maxIterations) continue
println("$n -> Iterations = $maxIterations")
var next = n.toString()
for (i in 1..maxIterations) {
println(next)
next = selfRefSeq(next)
}
println()
}
}</syntaxhighlight>
 
{{out}}
<pre>
9009 -> Iterations = 21
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
9090 -> Iterations = 21
9090
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
9900 -> Iterations = 21
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
</pre>
 
=={{header|Lua}}==
Runs in about nine seconds under LuaJIT. Uses memoisation via the global table 'nextTerm'.
<syntaxhighlight lang="lua">-- Return the next term in the self-referential sequence
function findNext (nStr)
local nTab, outStr, pos, count = {}, "", 1, 1
for i = 1, #nStr do nTab[i] = nStr:sub(i, i) end
table.sort(nTab, function (a, b) return a > b end)
while pos <= #nTab do
if nTab[pos] == nTab[pos + 1] then
count = count + 1
else
outStr = outStr .. count .. nTab[pos]
count = 1
end
pos = pos + 1
end
return outStr
end
 
-- Return boolean indicating whether table t contains string s
function contains (t, s)
for k, v in pairs(t) do
if v == s then return true end
end
return false
end
 
-- Return the sequence generated by the given seed term
function buildSeq (term)
local sequence = {}
repeat
table.insert(sequence, term)
if not nextTerm[term] then nextTerm[term] = findNext(term) end
term = nextTerm[term]
until contains(sequence, term)
return sequence
end
 
-- Main procedure
nextTerm = {}
local highest, seq, hiSeq = 0
for i = 1, 10^6 do
seq = buildSeq(tostring(i))
if #seq > highest then
highest = #seq
hiSeq = {seq}
elseif #seq == highest then
table.insert(hiSeq, seq)
end
end
io.write("Seed values: ")
for _, v in pairs(hiSeq) do io.write(v[1] .. " ") end
print("\n\nIterations: " .. highest)
print("\nSample sequence:")
for _, v in pairs(hiSeq[1]) do print(v) end</syntaxhighlight>
{{out}}
<pre>Seed values: 9009 9090 9900
 
Iterations: 21
 
Sample sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">selfRefSequence[ x_ ] := FromDigits@Flatten@Reverse@Cases[Transpose@{RotateRight[DigitCount@x,1], Range[0,9]},Except[{0,_}]]
DisplaySequence[ x_ ] := NestWhileList[selfRefSequence,x,UnsameQ[##]&,4]
data= {#, Length@DisplaySequence[#]}&/@Range[1000000];
Print["Values: ", Select[data ,#[[2]] == Max@data[[;;,2]]&][[1,;;]]]
Print["Iterations: ", Length@DisplaySequence[#]&/@Select[data ,#[[2]] == Max@data[[;;,2]]&][[1,;;]]]
DisplaySequence@Select[data, #[[2]] == Max@data[[;;,2]]&][[1]]//Column</langsyntaxhighlight>
 
<pre>Values: {9009, 9090, 9900}
Line 1,685 ⟶ 3,130:
19281716151413427110</pre>
 
=={{header|Nim}}==
A version which uses a cache to store the number of iterations and thus avoids to compute the sequence for each permutation. The version without cache runs in more than 9 seconds. This version runs in less than 300 ms.
 
<syntaxhighlight lang="nim">import algorithm, sequtils, sets, strutils, tables
 
var cache: Table[seq[char], int] # Maps key -> number of iterations.
 
 
iterator sequence(seed: string): string =
## Yield the successive strings of a sequence.
 
var history: HashSet[string]
history.incl seed
var current = seed
yield current
 
while true:
var counts = current.toCountTable()
var next: string
for ch in sorted(toSeq(counts.keys), Descending):
next.add $counts[ch] & ch
if next in history: break
current = move(next)
history.incl current
yield current
 
 
proc seqLength(seed: string): int =
## Return the number of iterations for the given seed.
let key = sorted(seed, Descending)
if key in cache: return cache[key]
result = toSeq(sequence(seed)).len
cache[key] = result
 
 
var seeds: seq[int]
var itermax = 0
for seed in 0..<1_000_000:
let itercount = seqLength($seed)
if itercount > itermax:
itermax = itercount
seeds = @[seed]
elif itercount == itermax:
seeds.add seed
 
echo "Maximum iterations: ", itermax
echo "Seed values: ", seeds.join(", ")
echo "Sequence for $#:".format(seeds[0])
for s in sequence($seeds[0]): echo s</syntaxhighlight>
 
{{out}}
<pre>Maximum iterations: 21
Seed values: 9009, 9090, 9900
Sequence for 9009:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">sub next_num {
my @a;
$a[$_]++ for split '', shift;
Line 1,720 ⟶ 3,239:
my $l = seq($_);
next if $l < $mlen;
 
if ($l > $mlen) { $mlen = $l; @mlist = (); }
push @mlist, $_;
Line 1,726 ⟶ 3,244:
 
print "longest ($mlen): @mlist\n";
print join("\n", seq($_)), "\n\n" for @mlist;</langsyntaxhighlight>
{{out}}
--[[User:Bbsingapore|Bbsingapore]] 10:49, 3 February 2012 (UTC)
<pre>longest (21): 9009 9090 9900
 
=={{header|Perl 6}}==
<lang perl6>my @list;
my $longest = 0;
my %seen;
 
for 1 .. 1000000 -> $m {
next unless $m ~~ /0/; # seed must have a zero
my $j = join '', $m.comb.sort;
next if %seen.exists($j); # already tested a permutation
%seen{$j} = '';
my @seq := converging($m);
my %elems;
my $count;
for @seq[] -> $value { last if ++%elems{$value} == 2; $count++; };
if $longest == $count {
@list.push($m);
say "\b" x 20, "$count, $m"; # monitor progress
}
elsif $longest < $count {
$longest = $count;
@list = $m;
say "\b" x 20, "$count, $m"; # monitor progress
}
};
 
for @list -> $m {
say "Seed Value(s): ", ~permutations($m).uniq.grep( { .substr(0,1) != 0 } );
my @seq := converging($m);
my %elems;
my $count;
for @seq[] -> $value { last if ++%elems{$value} == 2; $count++; };
say "\nIterations: ", $count;
say "\nSequence: (Only one shown per permutation group.)";
.say for @seq[^$count], "\n";
}
 
sub converging ($seed) { return $seed, -> $l { join '', map { $_.value.elems~$_.key }, $l.comb.classify({$^b}).sort: {-$^c.key} } ... * }
 
sub permutations ($string, $sofar? = '' ) {
return $sofar unless $string.chars;
my @perms;
for ^$string.chars -> $idx {
my $this = $string.substr(0,$idx)~$string.substr($idx+1);
my $char = substr($string, $idx,1);
@perms.push( permutations( $this, join '', $sofar, $char ) ) ;
}
return @perms;
}</lang>
 
Output:
<pre>
Seed Value(s): 9009 9090 9900
 
Iterations: 21
 
Sequence: (Only one shown per permutation group.)
9009
2920
Line 1,805 ⟶ 3,267:
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|Phix}}==
Optimisation idea taken from CoffeeScript, completes in under a second.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"000000"</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">incn</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">to</span> <span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]=</span><span style="color: #008000;">'9'</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #004600;">false</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">n</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]=</span><span style="color: #008000;">'0'</span>
<span style="color: #008080;">else</span>
<span style="color: #000000;">n</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">exit</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">true</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{},</span> <span style="color: #000000;">bestseen</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">maxcycle</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">srs</span><span style="color: #0000FF;">()</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">curr</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">n</span>
<span style="color: #008080;">while</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">curr</span><span style="color: #0000FF;">)></span><span style="color: #000000;">1</span> <span style="color: #008080;">and</span> <span style="color: #000000;">curr</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]=</span><span style="color: #008000;">'0'</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">curr</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">curr</span><span style="color: #0000FF;">[</span><span style="color: #000000;">2</span><span style="color: #0000FF;">..$]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">ch</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">curr</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">2</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">curr</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">curr</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]></span><span style="color: #000000;">ch</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">ch</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">curr</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">seen</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">curr</span><span style="color: #0000FF;">}</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">cycle</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">while</span> <span style="color: #004600;">true</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">digits</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">curr</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">idx</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">curr</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]-</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span>
<span style="color: #000000;">digits</span><span style="color: #0000FF;">[</span><span style="color: #000000;">idx</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">next</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">""</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">digits</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">to</span> <span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">digits</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">next</span> <span style="color: #0000FF;">&=</span> <span style="color: #7060A8;">sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">digits</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])</span>
<span style="color: #000000;">next</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">next</span><span style="color: #0000FF;">,</span><span style="color: #000000;">seen</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">seen</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">seen</span><span style="color: #0000FF;">,</span><span style="color: #000000;">next</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">curr</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">next</span>
<span style="color: #000000;">cycle</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">cycle</span><span style="color: #0000FF;">></span><span style="color: #000000;">maxcycle</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">seen</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]}</span>
<span style="color: #000000;">maxcycle</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">cycle</span>
<span style="color: #000000;">bestseen</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">seen</span>
<span style="color: #008080;">elsif</span> <span style="color: #000000;">cycle</span><span style="color: #0000FF;">=</span><span style="color: #000000;">maxcycle</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">seen</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">])</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #008080;">while</span> <span style="color: #004600;">true</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">srs</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #000000;">incn</span><span style="color: #0000FF;">()</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #000080;font-style:italic;">-- add non-leading-0 perms:</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">to</span> <span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">ri</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">p</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">factorial</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">))</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">pri</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">permute</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">,</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">pri</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]!=</span><span style="color: #008000;">'0'</span> <span style="color: #008080;">and</span> <span style="color: #008080;">not</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pri</span><span style="color: #0000FF;">,</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pri</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">res</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"cycle length is "</span><span style="color: #0000FF;">)</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">maxcycle</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">bestseen</span><span style="color: #0000FF;">,{</span><span style="color: #004600;">pp_Nest</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">})</span>
<!--</syntaxhighlight>-->
<pre>
{"9900","9009","9090"}
cycle length is 21
{"9900",
"2920",
"192210",
"19222110",
"19323110",
"1923123110",
"1923224110",
"191413323110",
"191433125110",
"19151423125110",
"19251413226110",
"1916151413325110",
"1916251423127110",
"191716151413326110",
"191726151423128110",
"19181716151413327110",
"19182716151423129110",
"29181716151413328110",
"19281716151423228110",
"19281716151413427110",
"19182716152413228110"}
</pre>
 
=={{header|PicoLisp}}==
Using 'las' from [[Look-and-say sequence#PicoLisp]]:
<langsyntaxhighlight PicoLisplang="picolisp">(de selfRefSequence (Seed)
(let L (mapcar format (chop Seed))
(make
Line 1,825 ⟶ 3,392:
(println 'Values: (cdr Res))
(println 'Iterations: (car Res))
(mapc prinl (selfRefSequence (cadr Res))) )</langsyntaxhighlight>
Output:
<pre>Values: (9009 9090 9900)
Line 1,854 ⟶ 3,421:
The number generation function follows that of Look-and-say with a sort. only the first of any set of numbers with the same digits has the length of its sequence calculated in function max_A036058_length, although no timings were taken to check if the optimisation was of value.
 
<langsyntaxhighlight lang="python">from itertools import groupby, permutations
 
def A036058(number):
Line 1,918 ⟶ 3,485:
for n in starts:
print()
A036058_length(str(n), printit=True)</langsyntaxhighlight>
 
;Output:
Line 1,950 ⟶ 3,517:
20 19281716151413427110
21 19182716152413228110</pre>
 
=={{header|q}}==
<syntaxhighlight lang="q">ls:{raze(string 1_ deltas d,count x),'x d:where differ x} / look & say
sumsay:ls desc@ / summarize & say
 
seeds:group desc each string til 1000000 / seeds for million integers
seq:(key seeds)!30 sumsay\'key seeds / sequences for unique seeds
top:max its:(count distinct@)each seq / count iterations
 
/ report results
rpt:{1 x,": ",y,"\n\n";}
rpt["Seeds"]" "sv string raze seeds where its=top / all forms of top seed/s
rpt["Iterations"]string top
rpt["Sequence"]"\n\n","\n"sv raze seq where its=top</syntaxhighlight>
{{out}}
<pre>
Seeds: 9009 9090 9900
 
Iterations: 21
 
Sequence:
 
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
</pre>
* [https://code.kx.com/q/ref/ Language Reference]
* [https://code.kx.com/q/learn/pb/sum-say/ The Q Playbook: Summarize and Say – analysis]
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket
 
Line 1,989 ⟶ 3,602:
(printf "Numbers: ~a\nLength: ~a\n" (string-join nums ", ") len)
(for ([n seq]) (printf " ~a\n" n))
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 2,015 ⟶ 3,628:
19281716151413427110
19182716152413228110
</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
{{Works with|rakudo|2018.03}}
 
<syntaxhighlight lang="raku" line>my @list;
my $longest = 0;
my %seen;
 
for 1 .. 1000000 -> $m {
next unless $m ~~ /0/; # seed must have a zero
my $j = join '', $m.comb.sort;
next if %seen{$j}:exists; # already tested a permutation
%seen{$j} = '';
my @seq = converging($m);
my %elems;
my $count;
for @seq[] -> $value { last if ++%elems{$value} == 2; $count++; };
if $longest == $count {
@list.push($m);
}
elsif $longest < $count {
$longest = $count;
@list = $m;
print "\b" x 20, "$count, $m"; # monitor progress
}
};
 
for @list -> $m {
say "\nSeed Value(s): ", my $seeds = ~permutations($m).unique.grep( { .substr(0,1) != 0 } );
my @seq = converging($m);
my %elems;
my $count;
for @seq[] -> $value { last if ++%elems{$value} == 2; $count++; };
say "\nIterations: ", $count;
say "\nSequence: (Only one shown per permutation group.)";
.say for |@seq[^$count], "\n";
}
 
sub converging ($seed) { return $seed, -> $l { join '', map { $_.value.elems~$_.key }, $l.comb.classify({$^b}).sort: {-$^c.key} } ... * }
 
sub permutations ($string, $sofar? = '' ) {
return $sofar unless $string.chars;
my @perms;
for ^$string.chars -> $idx {
my $this = $string.substr(0,$idx)~$string.substr($idx+1);
my $char = substr($string, $idx,1);
@perms.push( |permutations( $this, join '', $sofar, $char ) );
}
return @perms;
}</syntaxhighlight>
 
{{out}}
<pre>
Seed Value(s): 9009 9090 9900
 
Iterations: 21
 
Sequence: (Only one shown per permutation group.)
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
</pre>
 
=={{header|REXX}}==
The REXX language supports <tt>&nbsp; '''sparse''' </tt>&nbsp; (stemmed) arrays, so this program utilizes REXX's hashing of
<br>array elements to speed up the checking to see if a sequence has been generated before.
<langsyntaxhighlight lang="rexx">/*REXX programpgm to generategenerates a self-referentialself─referential sequence and listdisplays sequences with themax maxslength.*/
parse arg lowLO highHI .; maxL=0; seeds=; max$$= /*obtain optional arguments from the CL*/
if lowLO=='' | thenLO=="," lowthen LO=1 1 /*noNot lowspecified? Then use the default.*/
if highHI=='' | HI=="," then highHI=1000000 - 1 /*no high?" " " " " " */
max$=; seeds=; maxL=0 /*inialize some defaults and counters. */
/*══════════════════════════════════════════════════traipse through #'s.*/
do seed=low to high; n=seed; $.=0; $$=n; $.n=1
 
do #=LO to HI; do j=1 until xn==n#; @.=0; @.#=1 /*generateloop interationthru sequence.seed; define some defaults.*/
x$=n; n=
do c=1 until x==n; x=n do k=9 to 0 by -1 /*gengenerate a newself─referential sequence.*/
n=; do k=9 by -1 for 10 _=countstr(k,x); if _\==0/*generate thena n=nnew ||sequence _(downwards). || k*/
_=countstr(k, x) end /*kobtain the number of sequence counts.*/
if $.n then leave if _\==0 then n=n || _ || k /*sequenceis beencount generated> beforezero? Then append it to N*/
$$=$$'-'n; $.n=1 end /*add number to sequence & rosterk*/
if @.n then leave /*has sequence been generated before ? */
end /*j*/
$=$'-'n; @.n=1 /*add the number to sequence and roster*/
end /*c*/
 
if jc==maxL then do; seeds=seeds # /*is the /*sequence equal to max so far ? */
seeds=seeds seed; maxnums=maxnums n; max$$=max$ $ /*append this self─referential # to $$ */
end
else if jc>maxL then do; seeds=# /*haveuse found athe new bestnumber sequenceas the new seed. */
seeds=seed; maxL=j; maxnums=nc; max$$=$$ /*also, set the new maximum L; max seq.*/
end /* [↑] have we found a new best seq ? */
end /*seed#*/
 
/*═══════════════════════════════════════════════════display the output.*/
say ' seeds that had the most iterations: =' seeds
say 'the maximum self─referential length: ' maxL
hdr=copies('─',30); say 'maximum sequence length =' maxL
 
do j=1 for words(max$) ; say
say copies('─',30) "iteration sequence for: " word(seeds,j) ' ('maxL "iterations)"
q=translate( word( max$, j), ,'-')
do k=1 for words(q); say word(q, k)
end /*k*/
end /*j*/ /*stick a fork in it, we're all done. */</syntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<br>(Shown at five-sixths size.)
 
<pre style="font-size:84%;height:85ex">
do j=1 for words(max$$); say
seeds that had the most iterations: 9009 9090 9900
say hdr "iteration sequence for: " word(seeds,j) ' ('maxL "iterations)"
the maximum self─referential length: 21
q=translate(word(max$$,j),,'-')
do k=1 for words(q)
say word(q,k)
end /*k*/
end /*j*/
/*stick a fork in it, we're done.*/</lang>
'''output''' when using the default input of: <tt> 1 1000000 </tt>
<pre style="height:30ex;overflow:scroll">
seeds that had the most iterations = 9009 9090 9900
maximum sequence length = 21
 
────────────────────────────── iteration sequence for: 9009 (21 iterations)
Line 2,132 ⟶ 3,827:
=={{header|Ruby}}==
Cached for performance
<langsyntaxhighlight lang="ruby">$cache = {}
def selfReferentialSequence_cached(n, seen = [])
return $cache[n] if $cache.include? n
Line 2,168 ⟶ 3,863:
selfReferentialSequence_cached(max_vals[0]).each_with_index do |val, idx|
puts "%2d %d" % [idx + 1, val]
end</langsyntaxhighlight>
output
<pre>values: [9009, 9090, 9900]
Line 2,194 ⟶ 3,889:
20 19281716151413427110
21 19182716152413228110</pre>
 
=={{header|Scala}}==
 
This example creates a ParVector, which is a collection type that inherently uses parallel processing, of all seeds within the range, maps each seed to a tuple containing the seed, the sequence, and the number of iterations, sorts the collection by decreasing sequence length, then shows the relevant information for the maximal sequences at the head of the collection.
 
<syntaxhighlight lang="scala">import spire.math.SafeLong
 
import scala.annotation.tailrec
import scala.collection.parallel.immutable.ParVector
 
object SelfReferentialSequence {
def main(args: Array[String]): Unit = {
val nums = ParVector.range(1, 1000001).map(SafeLong(_))
val seqs = nums.map{ n => val seq = genSeq(n); (n, seq, seq.length) }.toVector.sortWith((a, b) => a._3 > b._3)
val maxes = seqs.takeWhile(t => t._3 == seqs.head._3)
println(s"Seeds: ${maxes.map(_._1).mkString(", ")}\nIterations: ${maxes.head._3}")
for(e <- maxes.distinctBy(a => nextTerm(a._1.toString))){
println(s"\nSeed: ${e._1}\n${e._2.mkString("\n")}")
}
}
def genSeq(seed: SafeLong): Vector[String] = {
@tailrec
def gTrec(seq: Vector[String], n: String): Vector[String] = {
if(seq.contains(n)) seq
else gTrec(seq :+ n, nextTerm(n))
}
gTrec(Vector[String](), seed.toString)
}
def nextTerm(num: String): String = {
@tailrec
def dTrec(digits: Vector[(Int, Int)], src: String): String = src.headOption match{
case Some(n) => dTrec(digits :+ ((n.asDigit, src.count(_ == n))), src.filter(_ != n))
case None => digits.sortWith((a, b) => a._1 > b._1).map(p => p._2.toString + p._1.toString).mkString
}
dTrec(Vector[(Int, Int)](), num)
}
}</syntaxhighlight>
 
{{out}}
 
<pre>Seeds: 9009, 9090, 9900
Iterations: 21
 
Seed: 9009
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|Tcl}}==
<!-- The first version of this code had a neat trick with sorting the strings characters and using a counting regexp, but it was very slow -->
<langsyntaxhighlight lang="tcl">proc nextterm n {
foreach c [split $n ""] {incr t($c)}
foreach c {9 8 7 6 5 4 3 2 1 0} {
Line 2,245 ⟶ 4,008:
puts "\t$seed"
}
}} 1000000</langsyntaxhighlight>
Output:
<pre>
Line 2,274 ⟶ 4,037:
19281716151413427110
19182716152413228110
</pre>
 
=={{header|TXR}}==
 
==={{trans|Clojure}}===
 
This is a close, almost expression-by-expression transliteration of the Clojure version.
 
<syntaxhighlight lang="txrlisp">;; Syntactic sugar for calling reduce-left
(defmacro reduce-with ((acc init item sequence) . body)
^(reduce-left (lambda (,acc ,item) ,*body) ,sequence ,init))
 
;; Macro similar to clojure's ->> and ->
(defmacro opchain (val . ops)
^[[chain ,*[mapcar [iffi consp (op cons 'op)] ops]] ,val])
 
;; Reduce integer to a list of integers representing its decimal digits.
(defun digits (n)
(if (< n 10)
(list n)
(opchain n tostring list-str (mapcar (op - @1 #\0)))))
 
(defun dcount (ds)
(digits (length ds)))
 
;; Perform a look-say step like (1 2 2) --"one 1, two 2's"-> (1 1 2 2).
(defun summarize-prev (ds)
(opchain ds copy (sort @1 >) (partition-by identity)
(mapcar [juxt dcount first]) flatten))
 
;; Take a starting digit string and iterate the look-say steps,
;; to generate the whole sequence, which ends when convergence is reached.
(defun convergent-sequence (ds)
(reduce-with (cur-seq nil ds [giterate true summarize-prev ds])
(if (member ds cur-seq)
(return-from convergent-sequence cur-seq)
(nconc cur-seq (list ds)))))
 
;; A candidate sequence is one which begins with montonically
;; decreasing digits. We don't bother with (9 0 9 0) or (9 0 0 9);
;; which yield identical sequences to (9 9 0 0).
(defun candidate-seq (n)
(let ((ds (digits n)))
(if [apply >= ds]
(convergent-sequence ds))))
 
;; Discover the set of longest sequences.
(defun find-longest (limit)
(reduce-with (max-seqs nil new-seq [mapcar candidate-seq (range 1 limit)])
(let ((cmp (- (opchain max-seqs first length) (length new-seq))))
(cond ((> cmp 0) max-seqs)
((< cmp 0) (list new-seq))
(t (nconc max-seqs (list new-seq)))))))
 
(defvar *results* (find-longest 1000000))
 
(each ((result *results*))
(flet ((strfy (list) ;; (strfy '((1 2 3 4) (5 6 7 8))) -> ("1234" "5678")
(mapcar [chain (op mapcar tostring) cat-str] list)))
(let* ((seed (first result))
(seeds (opchain seed perm uniq (remove-if zerop @1 first))))
(put-line `Seed value(s): @(strfy seeds)`)
(put-line)
(put-line `Iterations: @(length result)`)
(put-line)
(put-line `Sequence: @(strfy result)`))))</syntaxhighlight>
 
{{out}}
<pre>$ txr self-ref-seq.tl
 
Seed value(s): 9900 9090 9009
 
Iterations: 21
 
Sequence: 9900 2920 192210 19222110 19323110 1923123110 1923224110 191413323110 191433125110 19151423125110 19251413226110 1916151413325110 1916251423127110 191716151413326110 191726151423128110 19181716151413327110 19182716151423129110 29181716151413328110 19281716151423228110 19281716151413427110 19182716152413228110</pre>
 
==={{trans|Common Lisp}}===
 
Mostly the same logic. The <code>count-and-say</code> function is based on the same steps, but stays in the string domain instead of converting the input to a list, and then the output back to a string. It also avoids building the output backwards and reversing it, so <code>out</code> must be accessed on the right side inside the loop. This is easy due to Python-inspired array indexing semantics: -1 means last element, -2 second last
and so on.
 
Like in Common Lisp, TXR's <code>sort</code> is destructive, so we take care to use <code>copy-str</code>.
 
<syntaxhighlight lang="txrlisp">(defun count-and-say (str)
(let* ((s [sort (copy-str str) <])
(out `@[s 0]0`))
(each ((x s))
(if (eql x [out -1])
(inc [out -2])
(set out `@{out}1@x`)))
out))
 
(defun ref-seq-len (n : doprint)
(let ((s (tostring n)) hist)
(while t
(push s hist)
(if doprint (pprinl s))
(set s (count-and-say s))
(each ((item hist)
(i (range 0 2)))
(when (equal s item)
(return-from ref-seq-len (length hist)))))))
 
(defun find-longest (top)
(let (nums (len 0))
(each ((x (range 0 top)))
(let ((l (ref-seq-len x)))
(when (> l len) (set len l) (set nums nil))
(when (= l len) (push x nums))))
(list nums len)))</syntaxhighlight>
 
{{out}}
 
<pre>Longest: ((9900 9090 9009 99) 21)
9900
2029
102219
10212219
10313219
1031122319
1041222319
103132131419
105112331419
10511223141519
10612213142519
1051321314151619
1071122314251619
106132131415161719
108112231415261719
10713213141516171819
10911223141516271819
10813213141516171829
10812223141516172819
10714213141516172819
10812213241516271819</pre>
 
==={{trans|Racket}}===
 
<syntaxhighlight lang="txrlisp">;; Macro very similar to Racket's for/fold
(defmacro for-accum (accum-var-inits each-vars . body)
(let ((accum-vars [mapcar first accum-var-inits])
(block-sym (gensym))
(next-args [mapcar (ret (progn @rest (gensym))) accum-var-inits])
(nvars (length accum-var-inits)))
^(let ,accum-var-inits
(flet ((iter (,*next-args)
,*[mapcar (ret ^(set ,@1 ,@2)) accum-vars next-args]))
(each ,each-vars
,*body)
(list ,*accum-vars)))))
 
(defun next (s)
(let ((v (vector 10 0)))
(each ((c s))
(inc [v (- #\9 c)]))
(cat-str
(collect-each ((x v)
(i (range 9 0 -1)))
(when (> x 0)
`@x@i`)))))
 
(defun seq-of (s)
(for* ((ns ()))
((not (member s ns)) (reverse ns))
((push s ns) (set s (next s)))))
 
(defun sort-string (s)
[sort (copy s) >])
 
(tree-bind (len nums seq)
(for-accum ((*len nil) (*nums nil) (*seq nil))
((n (range 1000000 0 -1))) ;; start at the high end
(let* ((s (tostring n))
(sorted (sort-string s)))
(if (equal s sorted)
(let* ((seq (seq-of s))
(len (length seq)))
(cond ((or (not *len) (> len *len)) (iter len (list s) seq))
((= len *len) (iter len (cons s *nums) seq))))
(iter *len
(if (and *nums (member sorted *nums)) (cons s *nums) *nums)
*seq))))
(put-line `Numbers: @{nums ", "}\nLength: @len`)
(each ((n seq)) (put-line ` @n`)))</syntaxhighlight>
 
{{out}}
 
<pre>Numbers: 9009, 9090, 9900
Length: 21
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110</pre>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-seq}}
{{libheader|Wren-math}}
<syntaxhighlight lang="wren">import "./seq" for Lst
import "./math" for Nums
 
var limit = 1e6
 
var selfRefSeq = Fn.new { |s|
var sb = ""
for (d in "9876543210") {
if (s.contains(d)) {
var count = s.count { |c| c == d }
sb = sb + "%(count)%(d)"
}
}
return sb
}
 
var permute // recursive
permute = Fn.new { |input|
if (input.count == 1) return [input]
var perms = []
var toInsert = input[0]
for (perm in permute.call(input[1..-1])) {
for (i in 0..perm.count) {
var newPerm = perm.toList
newPerm.insert(i, toInsert)
perms.add(newPerm)
}
}
return perms
}
 
var sieve = List.filled(limit, 0)
var elements = []
for (n in 1...limit) {
if (sieve[n] == 0) {
elements.clear()
var next = n.toString
elements.add(next)
while (true) {
next = selfRefSeq.call(next)
if (elements.contains(next)) {
var size = elements.count
sieve[n] = size
if (n > 9) {
var perms = permute.call(n.toString.toList).map { |p| p.join("") }.toList
perms = Lst.distinct(perms)
for (perm in perms) {
if (perm[0] != "0") {
var k = Num.fromString(perm.join(""))
sieve[k] = size
}
}
}
break
}
elements.add(next)
}
}
}
var maxIterations = Nums.max(sieve)
for (n in 1...limit) {
if (sieve[n] >= maxIterations) {
System.print("%(n) -> Iterations = %(maxIterations)")
var next = n.toString
for (i in 1..maxIterations) {
System.print(next)
next = selfRefSeq.call(next)
}
System.print()
}
}</syntaxhighlight>
 
{{out}}
<pre>
9009 -> Iterations = 21
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
9090 -> Iterations = 21
9090
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
 
9900 -> Iterations = 21
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
</pre>
 
=={{header|zkl}}==
<syntaxhighlight lang="zkl">N:=0d1_000_001;
 
fcn lookAndJustSaying(seed){ // numeric String --> numeric String
"9876543210".pump(String,'wrap(n){
(s:=seed.inCommon(n)) and String(s.len(),n) or ""
});
}
fcn sequence(seed){ // numeric string --> sequence until it repeats
seq:=L();
while(not seq.holds(seed)){ seq.append(seed); seed=lookAndJustSaying(seed); }
seq
}
fcn decending(str) //--> True if digits are in descending (or equal) order
{ (not str.walker().zipWith('<,str[1,*]).filter1()) }
 
szs:=List.createLong(25); max:=0;
foreach seed in (N){
z:=seed.toString();
if(decending(z)){ // 321 generates same sequence as 312,132,123,213
len:=sequence(z).len();
if(len>max) szs.clear();
if(len>=max){ szs.append(seed.toString()); max=len; }
}
}
 
// List permutations of longest seeds
// ("9900"-->(((9,0,0,9),...))-->((9,0,0,9),...)-->("9009"...)
// -->remove numbers w/leading zeros-->remove dups
zs:=szs.apply(Utils.Helpers.permute).flatten().apply("concat")
.filter(fcn(s){ s[0]!="0" }) : Utils.Helpers.listUnique(_);
println(max," iterations for ",zs.concat(", "));
zs.pump(Console.println,sequence,T("concat",", "));</syntaxhighlight>
Ignoring permutations cut run time from 4 min to 9 sec.
{{out}}
<pre>
21 iterations for 9900, 9090, 9009
9900, 2920, 192210, 19222110, 19323110, 1923123110, 1923224110, 191413323110, 191433125110, 19151423125110, 19251413226110, 1916151413325110, 1916251423127110, 191716151413326110, 191726151423128110, 19181716151413327110, 19182716151423129110, 29181716151413328110, 19281716151423228110, 19281716151413427110, 19182716152413228110
9090, 2920, 192210, 19222110, 19323110, 1923123110, 1923224110, 191413323110, 191433125110, 19151423125110, 19251413226110, 1916151413325110, 1916251423127110, 191716151413326110, 191726151423128110, 19181716151413327110, 19182716151423129110, 29181716151413328110, 19281716151423228110, 19281716151413427110, 19182716152413228110
9009, 2920, 192210, 19222110, 19323110, 1923123110, 1923224110, 191413323110, 191433125110, 19151423125110, 19251413226110, 1916151413325110, 1916251423127110, 191716151413326110, 191726151423128110, 19181716151413327110, 19182716151423129110, 29181716151413328110, 19281716151423228110, 19281716151413427110, 19182716152413228110
</pre>
1,481

edits