I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Sum and product of an array

(Redirected from Sum and product of array)
Sum and product of an array
You are encouraged to solve this task according to the task description, using any language you may know.

Compute the sum and product of an array of integers.

## 11l

`V arr = [1, 2, 3, 4]print(sum(arr))print(product(arr))`
Output:
```10
24
```

## 360 Assembly

`*        Sum and product of an array  20/04/2017SUMPROD  CSECT         USING  SUMPROD,R15        base register         SR     R3,R3              su=0         LA     R5,1               pr=1         LA     R6,1               i=1       DO WHILE=(CH,R6,LE,=AL2((PG-A)/4))  do i=1 to hbound(a)                  LR     R1,R6                i         SLA    R1,2                 *4         A      R3,A-4(R1)           su=su+a(i)         M      R4,A-4(R1)           pr=pr*a(i)         LA     R6,1(R6)             i++       ENDDO    ,                  enddo i         XDECO  R3,PG              su         XDECO  R5,PG+12           pr         XPRNT  PG,L'PG            print         BR     R14                exitA        DC     F'1',F'2',F'3',F'4',F'5',F'6',F'7',F'8',F'9',F'10'PG       DS     CL24               buffer         YREGS         END    SUMPROD`
Output:
```          55     3628800
```

## 4D

`ARRAY INTEGER(\$list;0)For (\$i;1;5)       APPEND TO ARRAY(\$list;\$i)End for \$sum:=0\$product:=1For (\$i;1;Size of array(\$list))   \$sum:=\$var+\$list{\$i}   \$product:=\$product*\$list{\$i}End for // since 4D v13 \$sum:=sum(\$list) `

## ACL2

`(defun sum (xs)   (if (endp xs)       0       (+ (first xs)          (sum (rest xs))))) (defun prod (xs)   (if (endp xs)       1       (* (first xs)          (prod (rest xs)))))`

## Action!

`DEFINE LAST="6" PROC Main()  INT ARRAY data=[1 2 3 4 5 6 7]  BYTE i  INT a,res   res=0  FOR i=0 TO LAST  DO    a=data(i)    PrintI(a)    IF i=LAST THEN      Put('=)    ELSE      Put('+)    FI    res==+a  OD  PrintIE(res)   res=1  FOR i=0 TO LAST  DO    a=data(i)    PrintI(a)    IF i=LAST THEN      Put('=)    ELSE      Put('*)    FI    res=res*a  OD  PrintIE(res)RETURN`
Output:
```1+2+3+4+5+6+7=28
1*2*3*4*5*6*7=5040
```

## ActionScript

`package {	import flash.display.Sprite; 	public class SumAndProduct extends Sprite	{		public function SumAndProduct()		{			var arr:Array = [1, 2, 3, 4, 5];			var sum:int = 0;			var prod:int = 1; 			for (var i:int = 0; i < arr.length; i++)			{				sum += arr[i];				prod *= arr[i];			} 			trace("Sum: " + sum); // 15			trace("Product: " + prod); // 120		}	}}`

`type Int_Array is array(Integer range <>) of Integer; array : Int_Array := (1,2,3,4,5,6,7,8,9,10);Sum : Integer := 0;for I in array'range loop   Sum := Sum + array(I);end loop;`

Define the product function

`function Product(Item : Int_Array) return Integer is  Prod : Integer := 1;begin  for I in Item'range loop     Prod := Prod * Item(I);  end loop;  return Prod;end Product;`

This function will raise the predefined exception Constraint_Error if the product overflows the values represented by type Integer

## Aime

`voidcompute(integer &s, integer &p, list l){    integer v;     s = 0;    p = 1;    for (, v in l) {        s += v;        p *= v;    }} integermain(void){    integer sum, product;     compute(sum, product, list(2, 3, 5, 7, 11, 13, 17, 19));     o_form("~\n~\n", sum, product);     return 0;}`
Output:
```77
9699690```

## ALGOL 68

`main:(  INT default upb := 3;  MODE INTARRAY = [default upb]INT;   INTARRAY array = (1,2,3,4,5,6,7,8,9,10);  INT sum := 0;  FOR i FROM LWB array TO UPB array DO     sum +:= array[i]  OD;   # Define the product function #  PROC int product = (INTARRAY item)INT:  (    INT prod :=1;    FOR i FROM LWB item TO UPB item DO       prod *:= item[i]    OD;    prod  ) # int product # ;  printf((\$" Sum: "g(0)\$,sum,\$", Product:"g(0)";"l\$,int product(array))))`
Output:
``` Sum: 55, Product:3628800;
```

## ALGOL W

`begin     % computes the sum and product of intArray                               %    % the results are returned in sum and product                            %    % the bounds of the array must be specified in lb and ub                 %    procedure sumAndProduct( integer array  intArray ( * )                           ; integer value  lb, ub                           ; integer result sum, product                           ) ;    begin         sum     := 0;        product := 1;         for i := lb until ub        do begin            sum     :=     sum + intArray( i );            product := product * intArray( i );        end for_i ;     end sumAndProduct ;     % test the sumAndProduct procedure                                       %    begin         integer array v   ( 1 :: 10 );        integer sum, product;         for i := 1 until 10 do v( i ) := i;         sumAndProduct( v, 1, 10, sum, product );        write( sum, product );    endend.`
Output:
```            55         3628800
```

## APL

Works with: APL2
`      sum  ←  +/      prod ←  ×/       list ←  1 2 3 4 5        sum  list15       prod list120`

## AppleScript

`set array to {1, 2, 3, 4, 5}set sum to 0set product to 1repeat with i in array    set sum to sum + i    set product to product * iend repeat`

Condensed version of above, which also prints the results :

` set {array, sum, product} to {{1, 2, 3, 4, 5}, 0, 1}repeat with i in array	set {sum, product} to {sum + i, product * i}end repeatreturn sum & " , " & product as string `
Output:
```"15 , 120"
```

Or, using an AppleScript implementation of fold/reduce:

`on summed(a, b)    a + bend summed on product(a, b)    a * bend product -- TEST -----------------------------------------------------------------------on run     set xs to enumFromTo(1, 10)     {xs, ¬        {sum:foldl(summed, 0, xs)}, ¬        {product:foldl(product, 1, xs)}}     --> {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {sum:55}, {product:3628800}} end run -- GENERIC FUNCTIONS ---------------------------------------------------------- -- enumFromTo :: Int -> Int -> [Int]on enumFromTo(m, n)    if n < m then        set d to -1    else        set d to 1    end if    set lst to {}    repeat with i from m to n by d        set end of lst to i    end repeat    return lstend enumFromTo -- foldl :: (a -> b -> a) -> a -> [b] -> aon foldl(f, startValue, xs)    tell mReturn(f)        set v to startValue        set lng to length of xs        repeat with i from 1 to lng            set v to |λ|(v, item i of xs, i, xs)        end repeat        return v    end tellend foldl -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Scripton mReturn(f)    if class of f is script then        f    else        script            property |λ| : f        end script    end ifend mReturn`
Output:
`{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {sum:55}, {product:3628800}}`

## Arturo

`arr: 1..10 print ["Sum =" sum arr]print ["Product =" product arr]`
Output:
```Sum = 55
Product = 3628800```

## Asymptote

`int[] matriz = {1,2,3,4,5};int suma = 0, prod = 1; for (int p : matriz) {  suma += p;  prod *= p;}write("Sum = ", suma);write("Product = ", prod);`
Output:
```Sum = 15
Product = 120```

## AutoHotkey

`numbers = 1,2,3,4,5product := 1loop, parse, numbers, `,{sum += A_LoopFieldproduct *= A_LoopField}msgbox, sum = %sum%`nproduct = %product%`

## AWK

For array input, it is easiest to "deserialize" it from a string with the split() function.

`\$ awk 'func sum(s){split(s,a);r=0;for(i in a)r+=a[i];return r}{print sum(\$0)}'1 2 3 4 5 6 7 8 9 1055 \$ awk 'func prod(s){split(s,a);r=1;for(i in a)r*=a[i];return r}{print prod(\$0)}'1 2 3 4 5 6 7 8 9 103628800`

## Babel

`main: { [2 3 5 7 11 13] sp } sum!    : { <- 0 -> { + } eachar }product!: { <- 1 -> { * } eachar } sp!:     { dup     sum %d cr <<    product %d cr << } Result:4130030`

Perhaps better Babel:

`main:     { [2 3 5 7 11 13]     ar2ls dup cp    <- sum_stack ->    prod_stack    %d cr <<     %d cr << } sum_stack:     { { give          { + }        { depth 1 > }    do_while } nest } prod_stack:     { { give          { * }        { depth 1 > }    do_while } nest }`

The nest operator creates a kind of argument-passing context - it saves whatever is on Top-of-Stack (TOS), saves the old stack, clears the stack and places the saved TOS on the new, cleared stack. This permits a section to monopolize the stack. At the end of the nest context, whatever is on TOS will be "passed back" to the original stack which will be restored.

The depth operator returns the current depth of the stack.

## BASIC

Works with: FreeBASIC
`dim array(5) as integer = { 1, 2, 3, 4, 5 } dim sum as integer = 0dim prod as integer = 1for index as integer = lbound(array) to ubound(array)  sum += array(index)  prod *= array(index)next`

### Applesoft BASIC

` 10 N = 5 20 S = 0:P = 1: DATA 1,2,3,4,5 30 N = N - 1: DIM A(N) 40  FOR I = 0 TO N 50  READ A(I): NEXT 60  FOR I = 0 TO N 70 S = S + A(I):P = P * A(I) 80  NEXT 90  PRINT "SUM="S,"PRODUCT="P`

### BaCon

` '--- set some values into the arrayDECLARE a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } TYPE int sum = 0product = 1i = 1    	WHILE a[i] <= 10		sum = sum + a[i]		product = product * a[i]		INCR i	WEND  PRINT "The sum is ",sumPRINT "The product is ",product `

### BBC BASIC

`      DIM array%(5)      array%() = 1, 2, 3, 4, 5, 6       PRINT "Sum of array elements = " ; SUM(array%())       product% = 1      FOR I% = 0 TO DIM(array%(),1)        product% *= array%(I%)      NEXT      PRINT "Product of array elements = " ; product%`

### IS-BASIC

`100 RANDOMIZE 110 LET N=5120 NUMERIC A(1 TO N)130 LET SUM=0:LET PROD=1140 FOR I=1 TO N150   LET A(I)=RND(9)+1160   PRINT A(I);170 NEXT 180 PRINT 190 FOR I=1 TO N200   LET SUM=SUM+A(I):LET PROD=PROD*A(I)210 NEXT 220 PRINT "Sum =";SUM,"Product =";PROD`

## BASIC256

Translation of: Yabasic
`arraybase 1dim array(5)array = 1array = 2array = 3array = 4array = 5 sum = 0prod = 1for index = 1 to array[?]	sum += array[index]	prod *= array[index]next indexprint "The sum is "; sum            #15print "and the product is "; prod   #120end`

## bc

`a = 3.0a = 1a = 4.0a = 1.0a = 5a = 9.00n = 6p = 1for (i = 0; i < n; i++) {    s += a[i]    p *= a[i]}"Sum: "; s"Product: "; p`

## Befunge

Works with: befungee

The program first reads the number of elements in the array, then the elements themselves (each number on a separate line) and calculates their sum.

`0 &>: #v_ \$. @       >1- \ & + \v   ^              <`

## BQN

Getting the sum and product as a two element array fits nicely within a tacit fork pattern.

• Sum `+´`
• Paired with `⋈`
• Product `×´`
`    SumProd ← +´⋈×´+´⋈×´   SumProd 1‿2‿3‿4‿5⟨ 15 120 ⟩`

## Bracmat

`( ( sumprod  =   sum prod num    .   0:?sum      & 1:?prod      & (   !arg          :   ?              ( #%?num ?              & !num+!sum:?sum              & !num*!prod:?prod              & ~              )        | (!sum.!prod)        )  )& out\$sumprod\$(2 3 5 7 11 13 17 19));`
Output:
`77.9699690`

## C

`/* using pointer arithmetic (because we can, I guess) */int arg[] = { 1,2,3,4,5 };int arg_length = sizeof(arg)/sizeof(arg);int *end = arg+arg_length;int sum = 0, prod = 1;int *p; for (p = arg; p!=end; ++p) {   sum += *p;   prod *= *p;}`

## C#

`int sum = 0, prod = 1;int[] arg = { 1, 2, 3, 4, 5 };foreach (int value in arg) {  sum += value;  prod *= value;}`

### Alternative using Linq (C# 3)

Works with: C# version 3
`int[] arg = { 1, 2, 3, 4, 5 };int sum = arg.Sum();int prod = arg.Aggregate((runningProduct, nextFactor) => runningProduct * nextFactor);`

## C++

Library: STL
`#include <numeric>#include <functional> int arg[] = { 1, 2, 3, 4, 5 };int sum  = std::accumulate(arg, arg+5, 0, std::plus<int>());// or just// std::accumulate(arg, arg + 5, 0);// since plus() is the default functor for accumulateint prod = std::accumulate(arg, arg+5, 1, std::multiplies<int>());`

Template alternative:

`// this would be more elegant using STL collectionstemplate <typename T> T sum (const T *array, const unsigned n){    T accum = 0;    for (unsigned i=0; i<n; i++)        accum += array[i];    return accum;}template <typename T> T prod (const T *array, const unsigned n){    T accum = 1;    for (unsigned i=0; i<n; i++)        accum *= array[i];    return accum;} #include <iostream>using std::cout;using std::endl; int main (){    int aint[] = {1, 2, 3};    cout << sum(aint,3) << " " << prod(aint, 3) << endl;    float aflo[] = {1.1, 2.02, 3.003, 4.0004};    cout << sum(aflo,4) << " " << prod(aflo,4) << endl;    return 0;}`

## Chef

`Sum and Product of Numbers as a Piece of Cake. This recipe sums N given numbers. Ingredients.1 N0 sum1 product1 number Method.Put sum into 1st mixing bowl.Put product into 2nd mixing bowl.Take N from refrigerator.Chop N.Take number from refrigerator.Add number into 1st mixing bowl.Combine number into 2nd mixing bowl.Chop N until choped.Pour contents of 2nd mixing bowl into the baking dish.Pour contents of 1st mixing bowl into the baking dish. Serves 1.`

## Clean

`array = {1, 2, 3, 4, 5}Sum = sum [x \\ x <-: array]Prod = foldl (*) 1 [x \\ x <-: array]`

## Clojure

`(defn sum [vals] (reduce + vals)) (defn product [vals] (reduce * vals))`

## CLU

`sum_and_product = proc (a: array[int]) returns (int,int) signals (overflow)    sum: int := 0    prod: int := 1    for i: int in array[int]\$elements(a) do        sum := sum + i        prod := prod * i    end resignal overflow    return(sum, prod)end sum_and_product start_up = proc ()    arr: array[int] := array[int]\$[1,2,3,4,5,6,7,8,9,10]    sum, prod: int := sum_and_product(arr)     po: stream := stream\$primary_output()    stream\$putl(po, "Sum = " || int\$unparse(sum))    stream\$putl(po, "Product = " || int\$unparse(prod))end start_up`
Output:
```Sum = 55
Product = 3628800```

## COBOL

`       IDENTIFICATION DIVISION.       PROGRAM-ID. array-sum-and-product.        DATA DIVISION.       WORKING-STORAGE SECTION.       78  Array-Size              VALUE 10.       01  array-area              VALUE "01020304050607080910".           03  array               PIC 99 OCCURS Array-Size TIMES.        01  array-sum               PIC 9(8).       01  array-product           PIC 9(10) VALUE 1.        01  i                       PIC 99.        PROCEDURE DIVISION.           PERFORM VARYING i FROM 1 BY 1 UNTIL Array-Size < i               ADD array (i) TO array-sum               MULTIPLY array (i) BY array-product           END-PERFORM            DISPLAY "Sum:     " array-sum           DISPLAY "Product: " array-product            GOBACK           .`

## CoffeeScript

` sum = (array) ->  array.reduce (x, y) -> x + y product = (array) ->  array.reduce (x, y) -> x * y `

## ColdFusion

Sum of an Array,

`<cfset Variables.myArray = [1,2,3,4,5,6,7,8,9,10]><cfoutput>#ArraySum(Variables.myArray)#</cfoutput>`

Product of an Array,

`<cfset Variables.myArray = [1,2,3,4,5,6,7,8,9,10]><cfset Variables.Product = 1><cfloop array="#Variables.myArray#" index="i"> <cfset Variables.Product *= i></cfloop><cfoutput>#Variables.Product#</cfoutput>`

## Common Lisp

`(let ((data #(1 2 3 4 5)))     ; the array  (values (reduce #'+ data)       ; sum          (reduce #'* data)))     ; product`

The loop macro also has support for sums.

`(loop for i in '(1 2 3 4 5) sum i)`

## Crystal

### Declarative

` def sum_product(a)    { a.sum(), a.product() }end `

### Imperative

` def sum_product_imperative(a)    sum, product = 0, 1    a.each do |e|        sum += e        product *= e    end     {sum, product}end `
` require "benchmark"Benchmark.ips do |x|    x.report("declarative") { sum_product [1, 2, 3, 4, 5] }    x.report("imperative") { sum_product_imperative [1, 2, 3, 4, 5] }end `
```declarative    8.1M (123.45ns) (± 2.99%)  65 B/op   1.30× slower
imperative  10.57M ( 94.61ns) (± 2.96%)  65 B/op        fastest```

## D

`import std.stdio; void main() {    immutable array = [1, 2, 3, 4, 5];     int sum = 0;    int prod = 1;     foreach (x; array) {        sum += x;        prod *= x;    }     writeln("Sum: ", sum);    writeln("Product: ", prod);}`
Output:
```Sum: 15
Product: 120```

Compute sum and product of array in one pass (same output):

`import std.stdio, std.algorithm, std.typecons; void main() {    immutable array = [1, 2, 3, 4, 5];     // Results are stored in a 2-tuple    immutable r = reduce!(q{a + b}, q{a * b})(tuple(0, 1), array);     writeln("Sum: ", r);    writeln("Product: ", r);}`

## dc

`1 3 5 7 9 11 13 0ss1sp[dls+sslp*spz0!=a]dsax[Sum: ]Plsp[Product: ]PlppSum: 49Product: 135135`

## Delphi

`program SumAndProductOfArray; {\$APPTYPE CONSOLE} var  i: integer;  lIntArray: array [1 .. 5] of integer = (1, 2, 3, 4, 5);  lSum: integer = 0;  lProduct: integer = 1;begin  for i := 1 to length(lIntArray) do  begin    Inc(lSum, lIntArray[i]);    lProduct := lProduct * lIntArray[i]  end;   Write('Sum: ');  Writeln(lSum);  Write('Product: ');  Writeln(lProduct);end.`

## E

`pragma.enable("accumulator")accum 0 for x in [1,2,3,4,5] { _ + x }accum 1 for x in [1,2,3,4,5] { _ * x }`

## Eiffel

` class	APPLICATION create	make feature {NONE} 	make		local			test: ARRAY [INTEGER]		do			create test.make_empty			test := <<5, 1, 9, 7>>			io.put_string ("Sum: " + sum (test).out)			io.new_line			io.put_string ("Product: " + product (test).out)		end 	sum (ar: ARRAY [INTEGER]): INTEGER			-- Sum of the items of the array 'ar'.		do			across				ar.lower |..| ar.upper as c			loop				Result := Result + ar [c.item]			end		end 	product (ar: ARRAY [INTEGER]): INTEGER			-- Product of the items of the array 'ar'.		do			Result := 1			across				ar.lower |..| ar.upper as c			loop				Result := Result * ar [c.item]			end		end end `
Output:
```Sum of the elements of the array: 30
Product of the elements of the array: 3840```

## Elena

ELENA 5.0:

`import system'routines;import extensions; public program(){    var list := new int[]{1, 2, 3, 4, 5 };     var sum := list.summarize(new Integer());    var product := list.accumulate(new Integer(1), (var,val => var * val));}`

## Elixir

When an accumulator is omitted, the first element of the collection is used as the initial value of acc.

`iex(26)> Enum.reduce([1,2,3,4,5], 0, fn x,acc -> x+acc end)15iex(27)> Enum.reduce([1,2,3,4,5], 1, fn x,acc -> x*acc end)120iex(28)> Enum.reduce([1,2,3,4,5], fn x,acc -> x+acc end)15iex(29)> Enum.reduce([1,2,3,4,5], fn x,acc -> x*acc end)120iex(30)> Enum.reduce([], 0, fn x,acc -> x+acc end)0iex(31)> Enum.reduce([], 1, fn x,acc -> x*acc end)1iex(32)> Enum.reduce([], fn x,acc -> x+acc end)** (Enum.EmptyError) empty error    (elixir) lib/enum.ex:1287: Enum.reduce/2iex(32)> Enum.reduce([], fn x,acc -> x*acc end)** (Enum.EmptyError) empty error    (elixir) lib/enum.ex:1287: Enum.reduce/2`

The function with sum

`Enum.sum([1,2,3,4,5])           #=> 15`

## Emacs Lisp

`(let ((array [1 2 3 4 5]))  (apply #'+ (append array nil))  (apply #'* (append array nil)))`
Library: cl-lib
`(require 'cl-lib) (let ((array [1 2 3 4 5]))  (cl-reduce #'+ array)  (cl-reduce #'* array))`
Library: seq.el
`(require 'seq) (let ((array [1 2 3 4 5]))  (seq-reduce #'+ array 0)  (seq-reduce #'* array 1))`

## Erlang

Using the standard libraries:

`% create the list:L = lists:seq(1, 10). % and compute its sum:S = lists:sum(L).P = lists:foldl(fun (X, P) -> X * P end, 1, L).`

To compute sum and products in one pass:

` {Prod,Sum} = lists:foldl(fun (X, {P,S}) -> {P*X,S+X} end, {1,0}, lists:seq(1,10)).`

Or defining our own versions:

`-module(list_sum).-export([sum_rec/1, sum_tail/1]). % recursive definition:sum_rec([]) ->    0;sum_rec([Head|Tail]) ->    Head + sum_rec(Tail). % tail-recursive definition:sum_tail(L) ->    sum_tail(L, 0).sum_tail([], Acc) ->    Acc;sum_tail([Head|Tail], Acc) ->    sum_tail(Tail, Head + Acc).`

## Euphoria

`sequence arrayinteger sum,prod array = { 1, 2, 3, 4, 5 } sum = 0prod = 1for i = 1 to length(array) do  sum += array[i]  prod *= array[i]end for printf(1,"sum is %d\n",sum)printf(1,"prod is %d\n",prod)`
Output:
``` sum is 15
prod is 120
```

## F#

` let numbers = [| 1..10 |]let sum = numbers |> Array.sumlet product = numbers |> Array.reduce (*) `

## Factor

`1 5 1 <range> [ sum . ] [ product . ] bi    15 120{ 1 2 3 4 } [ sum ] [ product ] bi    10 24`

sum and product are defined in the sequences vocabulary:

`: sum ( seq -- n ) 0 [ + ] reduce ;: product ( seq -- n ) 1 [ * ] reduce ;`

## FALSE

Strictly speaking, there are no arrays in FALSE. However, a number of elements on the stack could be considered an array. The implementation below assumes the length of the array on top of the stack, and the actual items below it. Note that this implementation does remove the "array" from the stack, so in case the original values need to be retained, a copy should be provided before executing this logic.

`1 2 3 4 5 {input "array"}5         {length of input}0s:       {sum}1p:       {product} [\$0=~][1-\\$s;+s:p;*p:]#% "Sum: "s;."Product: "p;.`
Output:
```Sum: 15
Product: 120```

## Fantom

` class Main{  public static Void main ()  {    Int[] array := (1..20).toList     // you can use a loop    Int sum := 0    array.each |Int n| { sum += n }    echo ("Sum of array is : \$sum")     Int product := 1    array.each |Int n| { product *= n }    echo ("Product of array is : \$product")     // or use 'reduce'    // 'reduce' takes a function,     //       the first argument is the accumulated value    //       and the second is the next item in the list    sum = array.reduce(0) |Obj r, Int v -> Obj|     {       return (Int)r + v     }    echo ("Sum of array : \$sum")     product = array.reduce(1) |Obj r, Int v -> Obj|     {       return (Int)r * v     }    echo ("Product of array : \$product")  }} `

## Fermat

` [a]:=[(1,1,2,3,5,8,13)];!!Sigma<i=1,7>[a[i]];!!Prod<i=1,7>[a[i]]; `
Output:
```33
3120
```

## Forth

`: third ( a b c -- a b c a ) 2 pick ;: reduce ( xt n addr cnt -- n' ) \ where xt ( a b -- n )  cells bounds do i @ third execute  cell +loop nip ; create a 1 , 2 , 3 , 4 , 5 , ' + 0 a 5 reduce .    \ 15' * 1 a 5 reduce .    \ 120`

## Fortran

In ISO Fortran 90 and later, use SUM and PRODUCT intrinsics:

`integer, dimension(10) :: a = (/ (i, i=1, 10) /)integer :: sresult, presult sresult = sum(a)presult = product(a)`

## FreeBASIC

`' FB 1.05.0 Win64 Dim a(1 To 4) As Integer = {1, 4, 6, 3}Dim As Integer i, sum = 0, prod = 1For i = 1 To 4  sum  += a(i)  prod *= a(i)NextPrint "Sum     ="; sumPrint "Product ="; prodPrintPrint "Press any key to quit"Sleep`
Output:
```Sum     = 14
Product = 72
```

## Frink

` a = [1,2,3,5,7]sum[a]product[a] `

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

## Gambas

`Public Sub Main()Dim iList As Integer[] = [1, 2, 3, 4, 5]Dim iSum, iCount As IntegerDim iPrd As Integer = 1 For iCount = 0 To iList.Max  iSum += iList[iCount]  iPrd *= iList[iCount]Next Print "The Sum =\t" & iSumPrint "The Product =\t" & iPrd End`

Output:

```The Sum =       15
The Product =   120
```

## GAP

`v := [1 .. 8]; Sum(v);# 36 Product(v);# 40320 # You can sum or multiply the result of a function Sum(v, n -> n^2);# 204 Product(v, n -> 1/n);# 1/40320`

## GFA Basic

` DIM a%(10)' put some values into the arrayFOR i%=1 TO 10  a%(i%)=i%NEXT i%'sum%=0product%=1FOR i%=1 TO 10  sum%=sum%+a%(i%)  product%=product%*a%(i%)NEXT i%'PRINT "Sum is ";sum%PRINT "Product is ";product% `

## Go

Implementation
`package main import "fmt" func main() {    sum, prod := 0, 1    for _, x := range []int{1,2,5} {        sum += x        prod *= x    }    fmt.Println(sum, prod)}`
Output:
```8 10
```
Library
`package main import (    "fmt"     "github.com/gonum/floats") var a = []float64{1, 2, 5} func main() {    fmt.Println("Sum:    ", floats.Sum(a))    fmt.Println("Product:", floats.Prod(a))}`
Output:
```Sum:     8
Product: 10
```

## Groovy

Groovy adds a "sum()" method for collections, but not a "product()" method:

`[1,2,3,4,5].sum()`

However, for general purpose "reduction" or "folding" operations, Groovy does provide an "inject()" method for collections similar to "inject" in Ruby.

`[1,2,3,4,5].inject(0) { sum, val -> sum + val }[1,2,3,4,5].inject(1) { prod, val -> prod * val }`

You can also combine these operations:

`println ([1,2,3,4,5].inject([sum: 0, product: 1]) { result, value ->    [sum: result.sum + value, product: result.product * value]})`

## GW-BASIC

Works with: GW-BASIC
Works with: QBasic
`10 REM Create an array with some test DATA in it20 DIM A(5)30 FOR I = 1 TO 5: READ A(I): NEXT I40 DATA 1, 2, 3, 4, 550 REM Find the sum of elements in the array60 S = 065 P = 170 FOR I = 1 TO 572 S = SUM + A(I)75 P = P * A(I)77 NEXT I80 PRINT "The sum is "; S;90 PRINT " and the product is "; P`

For lists, sum and product are already defined in the Prelude:

`values = [1..10] s = sum values           -- the easy wayp = product values s1 = foldl (+) 0 values  -- the hard wayp1 = foldl (*) 1 values`

To do the same for an array, just convert it lazily to a list:

`import Data.Array values = listArray (1,10) [1..10] s = sum . elems \$ valuesp = product . elems \$ values`

Or perhaps:

`import Data.Array (listArray, elems) main :: IO ()main = mapM_ print \$ [sum, product] <*> [elems \$ listArray (1, 10) [11 .. 20]]`
Output:
```155
670442572800```

## HicEst

`array = \$ ! 1, 2, ..., LEN(array) sum = SUM(array) product = 1 ! no built-in product function in HicEstDO i = 1, LEN(array)  product = product * array(i)ENDDO WRITE(ClipBoard, Name) n, sum, product ! n=100; sum=5050; product=9.33262154E157;`

## Icon and Unicon

The program below prints the sum and product of the arguments to the program.

`procedure main(arglist)every ( sum := 0 ) +:= !arglistevery ( prod := 1 ) *:= !arglistwrite("sum := ", sum,", prod := ",prod)end`

## IDL

`array = [3,6,8]print,total(array)print,product(array)`

## Inform 7

`Sum And Product is a room. To decide which number is the sum of (N - number) and (M - number) (this is summing):	decide on N + M. To decide which number is the product of (N - number) and (M - number) (this is production):	decide on N * M. When play begins:	let L be {1, 2, 3, 4, 5};	say "List: [L in brace notation], sum = [summing reduction of L], product = [production reduction of L].";	end the story.`

## J

`sum     =: +/product =: */`

For example:

`   sum 1 3 5 7 9 11 1349   product 1 3 5 7 9 11 13135135    a=: 3 10 [email protected]\$ 100  NB. random array   a90 47 58 29 22 32 55  5 55 7358 50 40  5 69 46 34 40 46 8429  8 75 97 24 40 21 82 77  9    NB. on a table, each row is an item to be summed:   sum a177 105 173 131 115 118 110 127 178 166   product a151380 18800 174000 14065 36432 58880 39270 16400 194810 55188    NB. but we can tell J to sum everything within each row, instead:   sum"1 a466 472 462   product"1 a5.53041e15 9.67411e15 1.93356e15`

## Java

Works with: Java version 1.5+
`public class SumProd{ public static void main(final String[] args) {  int sum = 0;  int prod = 1;  int[] arg = {1,2,3,4,5};  for (int i : arg)  {   sum += i;   prod *= i;  } }}`
Works with: Java version 1.8+
`import java.util.Arrays; public class SumProd{ public static void main(final String[] args) {  int[] arg = {1,2,3,4,5};  System.out.printf("sum = %d\n", Arrays.stream(arg).sum());  System.out.printf("sum = %d\n", Arrays.stream(arg).reduce(0, (a, b) -> a + b));  System.out.printf("product = %d\n", Arrays.stream(arg).reduce(1, (a, b) -> a * b)); }}`
Output:
```sum = 15
sum = 15
product = 120
```

## JavaScript

### ES5

`var array = [1, 2, 3, 4, 5],    sum = 0,    prod = 1,    i;for (i = 0; i < array.length; i += 1) {    sum += array[i];    prod *= array[i];}alert(sum + ' ' + prod);`

Works with: Javascript version 1.8

Where supported, the reduce method can also be used:

`var array = [1, 2, 3, 4, 5],    sum = array.reduce(function (a, b) {        return a + b;    }, 0),    prod = array.reduce(function (a, b) {        return a * b;    }, 1);alert(sum + ' ' + prod);`

### ES6

`(() => {    'use strict';     // sum :: (Num a) => [a] -> a    const sum = xs => xs.reduce((a, x) => a + x, 0);     // product :: (Num a) => [a] -> a    const product = xs => xs.reduce((a, x) => a * x, 1);      // TEST    // show :: a -> String    const show = x => JSON.stringify(x, null, 2);     return show(        [sum, product]        .map(f => f([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))    );})();`
Output:
```[
55,
3628800
]```

## jq

The builtin filter, add/0, computes the sum of an array:

`[4,6,8] | add# => 18`
`[range(2;5) * 2] | add# => 18`

An efficient companion filter for computing the product of the items in an array can be defined as follows:

`def prod: reduce .[] as \$i (1; . * \$i);`

Examples:

`[4,6,8] | prod # => 192`

10!

`[range(1;11)] | prod# =>3628800`

## Julia

`julia> sum([4,6,8])18 julia> +((1:10)...)55 julia +([1,2,3]...)6 julia> prod([4,6,8])192`

## K

`  sum: {+/}x  product: {*/}x  a: 1 3 5 7 9 11 13  sum a49  product a135135`

It is easy to see the relationship of K to J here.

## Kotlin

`// version 1.1.2 fun main(args: Array<String>) {    val a = intArrayOf(1, 5, 8, 11, 15)    println("Array contains : \${a.contentToString()}")    val sum = a.sum()    println("Sum is \$sum")    val product = a.fold(1) { acc, i -> acc * i }    println("Product is \$product")}`
Output:
```Array contains : [1, 5, 8, 11, 15]
Sum is 40
Product is 6600
```

## Lambdatalk

` {A.serie start end [step]} creates a sequence from start to end with optional step {A.new words}              creates an array from a sequence of words{A.toS array}              creates a sequence from the items of an array {long_add x y}             returns the sum of two integers of any size{long_mult x y}            returns the product of two integers of any size {def A {A.new {S.serie 1 10}}} -> [1,2,3,4,5,6,7,8,9,10]{+ {A.toS {A}}} -> 55{* {A.toS {A}}} -> 3628800 {def B {A.new {S.serie 1 100}}} -> [1,2,3,4,5,6,7,8,9,10,...,95,96,97,98,99,100]{S.reduce long_add {A.toS {B}}} -> 5050{S.reduce long_mult {A.toS {B}}} -> 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000 `

## Lang5

`4 iota 1 + dup '+ reduce'* reduce`

## langur

`val .arr = series 19writeln "  array: ", .arrwriteln "    sum: ", fold f .x + .y, .arrwriteln "product: ", fold f .x x .y, .arr`
Works with: langur version 0.6.6
`val .arr = series 19writeln "  array: ", .arrwriteln "    sum: ", fold f{+}, .arrwriteln "product: ", fold f{x}, .arr`
Output:
```  array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sum: 190
product: 121645100408832000```

## Lasso

`local(x = array(1,2,3,4,5,6,7,8,9,10))// sum of array elements'Sum: 'with n in #xsum #n'\r'// product of arrray elements'Product: 'local(product = 1)with n in #x do => { #product *= #n }#product`
Output:
```Sum: 55
Product: 3628800```

## Liberty BASIC

`Dim array(19) For i = 0 To 19    array(i) = Int(Rnd(1) * 20)Next i 'product must first equal one or you will get 0 as the productproduct = 1For i = 0 To 19    sum = (sum + array(i))    product = (product * array(i))next i Print "Sum is " + str\$(sum)Print "Product is " + str\$(product)`

## Lingo

`on sum (intList)  res = 0  repeat with v in intList    res = res + v  end repeat  return resend on product (intList)  res = 1  repeat with v in intList    res = res * v  end repeat  return resend`

## LiveCode

`//sumput "1,2,3,4" into numssplit nums using commaanswer sum(nums) // productlocal prodNumsrepeat for each element n in nums    if prodNums is empty then         put n into prodNums    else        multiply prodnums by n    end ifend repeat answer prodnums`

## Logo

`print apply "sum arraytolist {1 2 3 4 5}print apply "product arraytolist {1 2 3 4 5}`

## Lua

` function sumf(a, ...) return a and a + sumf(...) or 0 endfunction sumt(t) return sumf(unpack(t)) endfunction prodf(a, ...) return a and a * prodf(...) or 1 endfunction prodt(t) return prodf(unpack(t)) end print(sumt{1, 2, 3, 4, 5})print(prodt{1, 2, 3, 4, 5})`
` function table.sum(arr, length)       --same as if <> then <> else <>      return length == 1 and arr or arr[length] + table.sum(arr, length -1)end function table.product(arr, length)      return length == 1 and arr or arr[length] * table.product(arr, length -1)end t = {1,2,3}print(table.sum(t,#t))print(table.product(t,3)) `

## Lucid

prints a running sum and product of sequence 1,2,3...

`[%sum,product%] where    x = 1 fby x + 1;    sum = 0 fby sum + x;    product = 1 fby product * x end`

## M2000 Interpreter

` Module Checkit {      a = (1,2,3,4,5,6,7,8,9,10)      print a#sum() = 55      sum = lambda->{push number+number}      product = lambda->{Push number*number}      print a#fold(lambda->{Push number*number}, 1), a#fold(lambda->{push number+number},0)      dim a(2,2) = 5      Print a()#sum() = 20}checkit `

## Maple

`a := Array([1, 2, 3, 4, 5, 6]);	add(a);	mul(a);`

## Mathematica/Wolfram Language

Mathematica provides many ways of doing the sum of an array (any kind of numbers or symbols):

`a = {1, 2, 3, 4, 5}Plus @@ aApply[Plus, a]Total[a][email protected]a // TotalSum[a[[i]], {i, 1, Length[a]}]Sum[i, {i, a}]`

all give 15. For product we also have a couple of choices:

`a = {1, 2, 3, 4, 5}Times @@ aApply[Times, a]Product[a[[i]], {i, 1, Length[a]}]Product[i, {i, a}]`

all give 120.

## MATLAB

These two function are built into MATLAB as the "sum(array)" and "prod(array)" functions.

Sample Usage:

`>> array = [1 2 3;4 5 6;7 8 9] array =      1     2     3     4     5     6     7     8     9 >> sum(array,1) ans =     12    15    18 >> sum(array,2) ans =      6    15    24 >> prod(array,1) ans =     28    80   162 >> prod(array,2) ans =      6   120   504`

## Maxima

`lreduce("+", [1, 2, 3, 4, 5, 6, 7, 8]);36 lreduce("*", [1, 2, 3, 4, 5, 6, 7, 8]);40320`

## MAXScript

`arr = #(1, 2, 3, 4, 5)sum = 0for i in arr do sum += iproduct = 1for i in arr do product *= i`

## min

Works with: min version 0.19.3
`(1 2 3 4 5) ((sum) (1 '* reduce)) cleave"Sum: \$1\nProduct: \$2" get-stack % puts`
Output:
```Sum: 15
Product: 120
```

## МК-61/52

`^	1	ПE	+	П0	КИП0	x#0	18	^	ИПD+	ПD	<->	ИПE	*	ПE	БП	05	С/П`

Instruction: РX - array length, Р1:РC - array, РD and РE - sum and product of an array.

## Modula-3

`MODULE Sumprod EXPORTS Main; FROM IO IMPORT Put;FROM Fmt IMPORT Int; VAR a := ARRAY [1..5] OF INTEGER {1, 2, 3, 4, 5};VAR sum: INTEGER := 0;VAR prod: INTEGER := 1; BEGIN  FOR i := FIRST(a) TO LAST(a) DO    INC(sum, a[i]);    prod := prod * a[i];  END;  Put("Sum of array: " & Int(sum) & "\n");  Put("Product of array: " & Int(prod) & "\n");END Sumprod.`
Output:
```Sum of array: 15
Product of array: 120```

## MUMPS

` SUMPROD(A) ;Compute the sum and product of the numbers in the array A NEW SUM,PROD,POS ;SUM is the running sum,  ;PROD is the running product, ;POS is the position within the array A SET SUM=0,PROD=1,POS="" FOR  SET POS=\$ORDER(A(POS)) Q:POS=""  SET SUM=SUM+A(POS),PROD=PROD*A(POS) WRITE !,"The sum of the array is "_SUM WRITE !,"The product of the array is "_PROD KILL SUM,PROD,POS QUIT`
Example:
```USER>SET C(-1)=2,C("A")=3,C(42)=1,C(0)=7

USER>D SUMPROD^ROSETTA(.C)

The sum of the array is 13
The product of the array is 42
```

Note - the string "A" converts to 0 when doing mathematical operations.

```USER>SET C(-1)=2,C("A")="3H",C(42)=.1,C(0)=7.0,C("B")="A"

USER>D SUMPROD^ROSETTA(.C)

The sum of the array is 12.1
The product of the array is 0
```

## Nemerle

As mentioned for some of the other functional languages, it seems more natural to work with lists in Nemerle, but as the task specifies working on an array, this solution will work on either.

`using System;using System.Console;using System.Collections.Generic;using Nemerle.Collections; module SumProd{    Sum[T] (nums : T) : int      where T : IEnumerable[int]    {        nums.FoldLeft(0, _+_)    }     Product[T] (nums : T) : int      where T : IEnumerable[int]    {        nums.FoldLeft(1, _*_)    }     Main() : void    {        def arr = array[1, 2, 3, 4, 5];        def lis = [1, 2, 3, 4, 5];         def suml = Sum(lis);        def proda = Product(arr);         WriteLine("Sum is: {0}\tProduct is: {1}", suml, proda);    }}`

## NetRexx

`/* NetRexx */ options replace format comments java crossref savelog symbols binary harry = [long 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sum = long 0product = long 1entries = Rexx '' loop n_ = int 0 to harry.length - 1  nxt = harry[n_]  entries = entries nxt  sum = sum + nxt  product = product * nxt   end n_ entries = entries.strip say 'Sum and product of' entries.changestr(' ', ',')':'say '     Sum:' sumsay ' Product:' product return `
Output:
``` Sum and product of 1,2,3,4,5,6,7,8,9,10:
Sum: 55
Product: 3628800
```

## NewLISP

`(setq a '(1 2 3 4 5))(apply + a)(apply * a)`

## Nial

Nial being an array language, what applies to individual elements are extended to cover array operations by default strand notation

`+ 1 2 3= 6* 1 2 3= 6`

array notation

`+ [1,2,3]`

grouped notation

`(* 1 2 3)= 6* (1 2 3)= 6`

(All these notations are equivalent)

## Nim

`var xs = [1, 2, 3, 4, 5, 6] var sum, product: int product = 1 for x in xs:  sum += x  product *= x`

Or functionally:

`import sequtils let  xs = [1, 2, 3, 4, 5, 6]  sum = xs.foldl(a + b)  product = xs.foldl(a * b)`

Or using a math function:

`import math let numbers = [1, 5, 4]let total = sum(numbers) var product = 1for n in numbers:  product *= n`

## Objeck

` sum := 0;prod := 1;arg := [1, 2, 3, 4, 5];each(i : arg) {  sum += arg[i];  prod *= arg[i];}; `

## Objective-C

Works with: GCC version 4.0.1 (apple)

Sum:

`- (float) sum:(NSMutableArray *)array{ 	int i, sum, value;	sum = 0;	value = 0; 	for (i = 0; i < [array count]; i++) {		value = [[array objectAtIndex: i] intValue];		sum += value;	} 	return suml;}`

Product:

`- (float) prod:(NSMutableArray *)array{ 	int i, prod, value;	prod = 0;	value = 0; 	for (i = 0; i < [array count]; i++) {		value = [[array objectAtIndex: i] intValue];		prod *= value;	} 	return suml;}`

## OCaml

### Arrays

`(* ints *)let a = [| 1; 2; 3; 4; 5 |];;Array.fold_left (+) 0 a;;Array.fold_left ( * ) 1 a;;(* floats *)let a = [| 1.0; 2.0; 3.0; 4.0; 5.0 |];;Array.fold_left (+.) 0.0 a;;Array.fold_left ( *.) 1.0 a;;`

### Lists

`(* ints *)let x = [1; 2; 3; 4; 5];;List.fold_left (+) 0 x;;List.fold_left ( * ) 1 x;;(* floats *)let x = [1.0; 2.0; 3.0; 4.0; 5.0];;List.fold_left (+.) 0.0 x;;List.fold_left ( *.) 1.0 x;;`

## Octave

`a = [ 1, 2, 3, 4, 5, 6 ];b = [ 10, 20, 30, 40, 50, 60 ];vsum = a + b;vprod = a .* b;`

## Oforth

`[1, 2, 3, 4, 5 ] sum println[1, 3, 5, 7, 9 ] prod println`
Output:
```15
945
```

## Ol

` (print (fold + 0 '(1 2 3 4 5)))(print (fold * 1 '(1 2 3 4 5))) `

## ooRexx

Translation of: REXX
`a=.my_array~new(20)do i=1 To 20  a[i]=i  Ends=a~makestring((LINE),',')Say sSay '    sum='a~sumSay 'product='a~prod::class my_array subclass array::method sumsum=0Do i=1 To self~dimension(1)  sum+=self[i]  EndReturn sum::method prodNumeric Digits 30prod=1Do i=1 To self~dimension(1)  prod*=self[i]  EndReturn prod`
Output:
```1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
sum=210
product=2432902008176640000```

## Oz

Calculations like this are typically done on lists, not on arrays:

`declare  Xs = [1 2 3 4 5]  Sum = {FoldL Xs Number.'+' 0}  Product = {FoldL Xs Number.'*' 1}in  {Show Sum}  {Show Product}`

If you are actually working with arrays, a more imperative approach seems natural:

`declare  Arr = {Array.new 1 3 0}  Sum = {NewCell 0}in  Arr.1 := 1  Arr.2 := 2  Arr.3 := 3   for I in {Array.low Arr}..{Array.high Arr} do     Sum := @Sum + Arr.I  end  {Show @Sum}`

## PARI/GP

These are built in to GP: `vecsum` and `factorback` (the latter can also take factorization matrices, thus the name). They could be coded like so:

`vecsum1(v)={  sum(i=1,#v,v[i])};vecprod(v)={  prod(i=1,#v,v[i])};`
Works with: PARI/GP version 2.10.0+

In 2.10.0 the function `vecprod` was introduced as well. Like `factorback` it gives the product of the elements of an array but unlike `factorback` it doesn't handle factorization matrices.

See Delphi

## Perl

`my @list = ( 1, 2, 3 ); my ( \$sum, \$prod ) = ( 0, 1 );\$sum  += \$_ foreach @list;\$prod *= \$_ foreach @list;`

Or using the List::Util module:

`use List::Util qw/sum0 product/;my @list = (1..9); say "Sum: ", sum0(@list);    # sum0 returns 0 for an empty listsay "Product: ", product(@list);`
Output:
```Sum: 45
Product: 362880```

## Phix

Library: Phix/basics
```sequence s = {1,2,3,4,5}
printf(1,"sum is %d\n",sum(s))
printf(1,"prod is %d\n",product(s))
```
Output:
```sum is 15
prod is 120
```

## Phixmonti

`include ..\Utilitys.pmt ( 1 2 3 4 5 ) dup sum "sum is " print print nl 1 swaplen for    get rot * swapendfordrop "mult is " print print nl`

## PHP

`\$array = array(1,2,3,4,5,6,7,8,9);echo array_sum(\$array);echo array_product(\$array);`

## Picat

`go =>  L = 1..10,  println(sum=sum(L)),    println(prod=prod(L)),    nl,  println(sum_reduce=reduce(+,L)),    println(prod_reduce=reduce(*,L)),    println(sum_reduce=reduce(+,L,0)),    println(prod_reduce=reduce(*,L,1)),    nl,  println(sum_fold=fold(+,0,L)),    println(prod_fold=fold(*,1,L)),    nl,  println(sum_rec=sum_rec(L)),    println(prod_rec=prod_rec(L)),   nl. % recursive variantssum_rec(List) = Sum =>  sum_rec(List,0,Sum).sum_rec([],Sum0,Sum) =>   Sum=Sum0.sum_rec([H|T], Sum0,Sum) =>  sum_rec(T, H+Sum0,Sum). prod_rec(List) = Prod =>  prod_rec(List,1,Prod).prod_rec([],Prod0,Prod) =>   Prod=Prod0.prod_rec([H|T], Prod0,Prod) =>  prod_rec(T, H*Prod0,Prod).`
Output:
```sum = 55
prod = 3628800

sum_reduce = 55
prod_reduce = 3628800
sum_reduce = 55
prod_reduce = 3628800

sum_fold = 55
prod_fold = 3628800

sum_rec = 55
prod_rec = 3628800```

## PicoLisp

`(let Data (1 2 3 4 5)   (cons      (apply + Data)      (apply * Data) ) )`
Output:
`(15 . 120)`

## PL/I

`declare A(10) fixed binary static initial   (1, 2, 3, 4, 5, 6, 7, 8, 9, 10); put skip list (sum(A));put skip list (prod(A));`

## Plain English

`An element is a thing with a number. To find a sum and a product of some elements:Put 0 into the sum.Put 1 into the product.Get an element from the elements.Loop.If the element is nil, exit.Add the element's number to the sum.Multiply the product by the element's number.Put the element's next into the element.Repeat. To make some example elements:If a counter is past 10, exit.Allocate memory for an element.Put the counter into the element's number.Append the element to the example.Repeat. A product is a number. To run:Start up.Make some example elements.Find a sum and a product of the example elements.Destroy the example elements.Write "Sum: " then the sum on the console.Write "Product: " then the product on the console.Wait for the escape key.Shut down. A sum is a number.`
Output:
```Sum: 55
Product: 3628800
```

## Pop11

Simple loop:

`lvars i, sum = 0, prod = 1, ar = {1 2 3 4 5 6 7 8 9};for i from 1 to length(ar) do    ar(i) + sum -> sum;    ar(i) * prod -> prod;endfor;`

One can alternatively use second order iterator:

`lvars sum = 0, prod = 1, ar = {1 2 3 4 5 6 7 8 9};appdata(ar, procedure(x); x + sum -> sum; endprocedure);appdata(ar, procedure(x); x * prod -> prod; endprocedure);`

## PostScript

` /sumandproduct{/x exch def/sum 0 def/prod 0 def/i 0 defx length 0 eq{}{/prod prod 1 add defx length{/sum sum x i get add def/prod prod x i get mul def/i i 1 add def}repeat}ifelsesum ==prod ==}def `
Library: initlib
` % sum[1 1 1 1 1] 0 {add} fold% product[1 1 1 1 1] 1 {mul} fold  `

## PowerShell

The `Measure-Object` cmdlet already knows how to compute a sum:

`function Get-Sum (\$a) {    return (\$a | Measure-Object -Sum).Sum}`

But not how to compute a product:

`function Get-Product (\$a) {    if (\$a.Length -eq 0) {        return 0    } else {        \$p = 1        foreach (\$x in \$a) {            \$p *= \$x        }        return \$p    }}`

One could also let PowerShell do all the work by simply creating an expression to evaluate:

Works with: PowerShell version 2
`function Get-Product (\$a) {    if (\$a.Length -eq 0) {        return 0    }    \$s = \$a -join '*'    return (Invoke-Expression \$s)}`

Even nicer, however, is a function which computes both at once and returns a custom object with appropriate properties:

`function Get-SumAndProduct (\$a) {    \$sum = 0    if (\$a.Length -eq 0) {        \$prod = 0    } else {        \$prod = 1        foreach (\$x in \$a) {            \$sum += \$x            \$prod *= \$x        }    }    \$ret = New-Object PSObject    \$ret | Add-Member NoteProperty Sum \$sum    \$ret | Add-Member NoteProperty Product \$prod    return \$ret}`
Output:
```PS> Get-SumAndProduct 5,9,7,2,3,8,4

Sum Product
--- -------
38   60480```

## Prolog

`sum([],0).sum([H|T],X) :- sum(T,Y), X is H + Y.product([],1).product([H|T],X) :- product(T,Y), X is H * X.`

test

```:- sum([1,2,3,4,5,6,7,8,9],X).
X =45;
:- product([1,2,3,4,5],X).
X = 120;
```

Using fold

` add(A,B,R):-    R is A + B. mul(A,B,R):-    R is A * B. % define fold now.fold([], Act, Init, Init). fold(Lst, Act, Init, Res):-    head(Lst,Hd),    tail(Lst,Tl),    apply(Act,[Init, Hd, Ra]),    fold(Tl, Act, Ra, Res). sumproduct(Lst, Sum, Prod):-    fold(Lst,mul,1, Prod),    fold(Lst,add,0, Sum). ?- sumproduct([1,2,3,4],Sum,Prod).Sum = 10,Prod = 24 .  `

## PureBasic

`Dim MyArray(9)Define a, sum=0, prod=1 For a = 0 To ArraySize(MyArray())     ; Create a list of some random numbers  MyArray(a) = 1 + Random(9)          ; Insert a number [1...10] in current elementNext For a = 0 To ArraySize(MyArray())     ; Calculate Sum and Product of this Array  sum  + MyArray(a)  prod * MyArray(a)Next Debug "The sum is " + Str(sum)        ; Present the resultsDebug "Product is " + Str(prod)`

## Python

Works with: Python version 2.5
`numbers = [1, 2, 3]total = sum(numbers) product = 1for i in numbers:    product *= i`

Or functionally (faster but perhaps less clear):

Works with: Python version 2.5
`from operator import mul, addsum = reduce(add, numbers) # note: this version doesn't work with empty listssum = reduce(add, numbers, 0)product = reduce(mul, numbers) # note: this version doesn't work with empty listsproduct = reduce(mul, numbers, 1)`
Library: NumPy
`from numpy import r_numbers = r_[1:4]total = numbers.sum()product = numbers.prod()`

If you are summing floats in Python 2.6+, you should use math.fsum() to avoid loss of precision:

Works with: Python version 2.6, 3.x
`import mathtotal = math.fsum(floats)`

## QBasic

Works with: QBasic
Works with: QuickBasic
Works with: True BASIC
`DIM array(1 TO 5)DATA 1, 2, 3, 4, 5FOR index = LBOUND(array) TO UBOUND(array)    READ array(index)NEXT index LET sum = 0LET prod = 1FOR index = LBOUND(array) TO UBOUND(array)    LET sum = sum + array(index)    LET prod = prod * array(index)NEXT indexPRINT "The sum is "; sumPRINT "and the product is "; prodEND`

## Quackery

`[ 0 swap witheach + ] is sum ( [ --> n ) [ 1 swap witheach * ] is product ( [ --> n )`

In the shell (i.e. Quackery REPL):

` /O> ' [ 1 2 3 4 5 ] sum echo cr... ' [ 1 2 3 4 5 ] product echo... 15120Stack empty.`

## R

`total <- sum(1:5)product <- prod(1:5)`

## Racket

`#lang racket (for/sum ([x #(3 1 4 1 5 9)]) x)(for/product ([x #(3 1 4 1 5 9)]) x)`

## Raku

(formerly Perl 6)

`my @ary = 1, 5, 10, 100;say 'Sum: ',     [+] @ary;say 'Product: ', [*] @ary;`

## Raven

`0 [ 1 2 3 ] each +1 [ 1 2 3 ] each *`

## REBOL

`rebol [    Title: "Sum and Product"    URL: http://rosettacode.org/wiki/Sum_and_product_of_array] ; Simple: sum: func [a [block!] /local x] [x: 0  forall a [x: x + a/1]  x] product: func [a [block!] /local x] [x: 1  forall a [x: x * a/1]  x] ; Way too fancy: redux: func [	"Applies an operation across an array to produce a reduced value."	a [block!] "Array to operate on."	op [word!] "Operation to perform."	/init x    "Initial value (default 0)."][if not init [x: 0]  forall a [x: do compose [x (op) (a/1)]]  x] rsum: func [a [block!]][redux a '+] rproduct: func [a [block!]][redux/init a '* 1] ; Tests: assert: func [code][print [either do code ["  ok"]["FAIL"]  mold code]] print "Simple dedicated functions:"assert [55      = sum [1 2 3 4 5 6 7 8 9 10]]assert [3628800 = product [1 2 3 4 5 6 7 8 9 10]] print [crlf "Fancy reducing function:"]assert [55      = rsum [1 2 3 4 5 6 7 8 9 10]]assert [3628800 = rproduct [1 2 3 4 5 6 7 8 9 10]]`
Output:
```Simple dedicated functions:
ok [55 = sum [1 2 3 4 5 6 7 8 9 10]]
ok [3628800 = product [1 2 3 4 5 6 7 8 9 10]]

Fancy reducing function:
ok [55 = rsum [1 2 3 4 5 6 7 8 9 10]]
ok [3628800 = rproduct [1 2 3 4 5 6 7 8 9 10]]```

## Red

`Red [    red-version: 0.6.4    description: "Find the sum and product of an array of numbers."] product: function [    "Returns the product of all values in a block."    values [any-list! vector!]][    result: 1    foreach value values [result: result * value]    result] a: [1 2 3 4 5 6 7 8 9 10]print aprint ["Sum:" sum a]print ["Product:" product a]`
Output:
```1 2 3 4 5 6 7 8 9 10
Sum: 55
Product: 3628800
```

## REXX

`/*REXX program adds and multiplies   N   elements of a (populated)  array  @. */numeric digits 200                     /*200 decimal digit #s  (default is 9).*/parse arg N .;  if N==''  then N=20    /*Not specified?  Then use the default.*/           do j=1  for N                /*build array of  N  elements (or 20?).*/          @.j=j                        /*set 1st to 1, 3rd to 3, 8th to 8 ··· */          end   /*j*/sum=0                                  /*initialize  SUM  (variable) to zero. */prod=1                                 /*initialize  PROD (variable) to unity.*/          do k=1  for N          sum  = sum  + @.k            /*add the element to the running total.*/          prod = prod * @.k            /*multiply element to running product. */          end   /*k*/                  /* [↑]  this pgm:  same as N factorial.*/ say '     sum of '     m     " elements for the  @  array is: "     sumsay ' product of '     m     " elements for the  @  array is: "     prod                                       /*stick a fork in it,  we're all done. */`

output using the default input of:   20

```     sum of  M  elements for the  @  array is:  210
product of  M  elements for the  @  array is:  2432902008176640000
```

## Ring

` aList = 1:10   nSum=0  nProduct=0for x in aList nSum += x nProduct *= x nextSee "Sum = " + nSum + nlSee "Product = " + nProduct + nl `

## Ruby

`arr = [1,2,3,4,5]     # or ary = *1..5, or ary = (1..5).to_ap sum = arr.inject(0) { |sum, item| sum + item }# => 15p product = arr.inject(1) { |prod, element| prod * element }# => 120`
Works with: Ruby version 1.8.7
`arr = [1,2,3,4,5]p sum = arr.inject(0, :+)         #=> 15p product = arr.inject(1, :*)     #=> 120 # If you do not explicitly specify an initial value for memo,# then the first element of collection is used as the initial value of memo.p sum = arr.inject(:+)            #=> 15p product = arr.inject(:*)        #=> 120`

Note: When the Array is empty, the initial value returns. However, nil returns if not giving an initial value.

`arr = []p arr.inject(0, :+)               #=> 0p arr.inject(1, :*)               #=> 1p arr.inject(:+)                  #=> nilp arr.inject(:*)                  #=> nil`

Enumerable#reduce is the alias of Enumerable#inject.

Works with: Ruby version 1.9.3
`arr = [1,2,3,4,5]p sum = arr.sum                   #=> 15p [].sum                          #=> 0`

## Run BASIC

`dim array(100)for i = 1 To 100    array(i) = rnd(0) * 100next i product = 1for i = 0 To 19    sum     = (sum + array(i))    product = (product * array(i))next i Print "    Sum is ";sumPrint "Product is ";product`

## Rust

`  fn main() {    let arr = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];     // using fold    let sum = arr.iter().fold(0i32, |a, &b| a + b);    let product = arr.iter().fold(1i32, |a, &b| a * b);    println!("the sum is {} and the product is {}", sum, product);     // or using sum and product    let sum = arr.iter().sum::<i32>();    let product = arr.iter().product::<i32>();    println!("the sum is {} and the product is {}", sum, product);} `

## S-lang

`variable a = [5, -2, 3, 4, 666, 7];`

The sum of array elements is handled by an intrinsic. [note: print is slsh-specific; if not available, use printf().]

`print(sum(a));`

The product is slightly more involved; I'll use this as a chance to show the alternate stack-based use of 'foreach':

`variable prod = a; % Skipping the loop variable causes the val to be placed on the stack.% Also note that the double-brackets ARE required. The inner one creates% a "range array" based on the length of a.foreach (a[[1:]])  % () pops it off.  prod *= (); print(prod);`

## SAS

`data _null_;   array a{*} a1-a100;   do i=1 to 100;      a{i}=i*i;   end;   b=sum(of a{*});   put b c;run;`

## Sather

`class MAIN is  main is    a :ARRAY{INT} := |10, 5, 5, 20, 60, 100|;    sum, prod :INT;    loop sum := sum + a.elt!; end;    prod := 1;    loop prod := prod * a.elt!; end;    #OUT + sum + " " + prod + "\n";  end;end;`

## Scala

`val seq = Seq(1, 2, 3, 4, 5)val sum = seq.foldLeft(0)(_ + _)val product = seq.foldLeft(1)(_ * _)`

Or even shorter:

`val sum = seq.sumval product = seq.product`

Works with all data types for which a Numeric implicit is available.

## Scheme

`(apply + '(1 2 3 4 5))(apply * '(1 2 3 4 5))`

A tail-recursive solution, without the n-ary operator "trick". Because Scheme supports tail call optimization, this is as space-efficient as an imperative loop.

`(define (reduce f i l)  (if (null? l)    i    (reduce f (f i (car l)) (cdr l)))) (reduce + 0 '(1 2 3 4 5)) ;; 0 is unit for +(reduce * 1 '(1 2 3 4 5)) ;; 1 is unit for *`

## Seed7

`const func integer: sumArray (in array integer: valueArray) is func  result    var integer: sum is 0;  local    var integer: value is 0;  begin    for value range valueArray do      sum +:= value;    end for;  end func; const func integer: prodArray (in array integer: valueArray) is func  result    var integer: prod is 1;  local    var integer: value is 0;  begin    for value range valueArray do      prod *:= value;    end for;  end func;`

Call these functions with:

```writeln(sumArray([](1, 2, 3, 4, 5)));
writeln(prodArray([](1, 2, 3, 4, 5)));
```

## SETL

`numbers := [1 2 3 4 5 6 7 8 9];print(+/ numbers, */ numbers);`

=> `45 362880`

## Sidef

Using built-in methods:

`var ary = [1, 2, 3, 4, 5];say ary.sum;                 # => 15say ary.prod;                # => 120`

Alternatively, using hyper-operators:

`var ary = [1, 2, 3, 4, 5];say ary«+»;                  # => 15say ary«*»;                  # => 120`

## Slate

`#(1 2 3 4 5) reduce: [:sum :number | sum + number]#(1 2 3 4 5) reduce: [:product :number | product * number]`

Shorthand for the above with a macro:

`#(1 2 3 4 5) reduce: #+ `er#(1 2 3 4 5) reduce: #* `er`

## Smalltalk

`#(1 2 3 4 5) inject: 0 into: [:sum :number | sum + number]#(1 2 3 4 5) inject: 1 into: [:product :number | product * number]`

Some implementation also provide a fold: message:

`#(1 2 3 4 5) fold: [:sum :number | sum + number]#(1 2 3 4 5) fold: [:product :number | product * number]`

## SNOBOL4

`          t = table()* read the integer from the std. inputinit_tab  t<x = x + 1> = trim(input)    :s(init_tab)          product = 1          sum = 0 * counting backwards to 1loop      i = t< x = ?gt(x,1) x - 1>	:f(out)          sum = sum + i          product = product * i         :(loop)out       output = "Sum:  " sum          output = "Prod: " productend`

Input

```1
2
3
4
5
```
Output:
``` Sum:  15
Prod: 120
```

## Sparkling

`spn:1> reduce({ 1, 2, 3, 4, 5 }, 0, function(x, y) { return x + y; })= 15spn:2> reduce({ 1, 2, 3, 4, 5 }, 1, function(x, y) { return x * y; })= 120`

## Standard ML

### Arrays

`(* ints *)val a = Array.fromList [1, 2, 3, 4, 5];Array.foldl op+ 0 a;Array.foldl op* 1 a;(* reals *)val a = Array.fromList [1.0, 2.0, 3.0, 4.0, 5.0];Array.foldl op+ 0.0 a;Array.foldl op* 1.0 a;`

### Lists

`(* ints *)val x = [1, 2, 3, 4, 5];foldl op+ 0 x;foldl op* 1 x;(* reals *)val x = [1.0, 2.0, 3.0, 4.0, 5.0];foldl op+ 0.0 x;foldl op* 1.0 x;`

## Stata

Mata does not have a builtin product function, but one can do the following, which will compute the product of nonzero elements of the array:

`a = 1,-2,-3,-4,5sum(a)  -3(-1)^mod(sum(a:<0),2)*exp(sum(log(abs(a))))  -120`

## Swift

`let a = [1, 2, 3, 4, 5]println(a.reduce(0, +)) // prints 15println(a.reduce(1, *)) // prints 120 println(reduce(a, 0, +)) // prints 15println(reduce(a, 1, *)) // prints 120`

## Tcl

`set arr [list 3 6 8]set sum [expr [join \$arr +]]set prod [expr [join \$arr *]]`
Works with: Tcl version 8.5
`set arr [list 3 6 8]set sum [tcl::mathop::+ {*}\$arr]set prod [tcl::mathop::* {*}\$arr]`

## TI-83 BASIC

Use the built-in functions `sum()` and `prod()`.

`seq(X,X,1,10,1)→L₁{1 2 3 4 5 6 7 8 9 10}sum(L₁)55prod(L₁)3628800`

## Toka

`4 cells is-array foo 212 1 foo array.put51 2 foo array.put12 3 foo array.put91 4 foo array.put [ ( array size -- sum )  >r 0 r> 0 [ over i swap array.get + ] countedLoop nip ] is sum-array  ( product )reset 1 4 0 [ i foo array.get * ] countedLoop .`

## Trith

`[1 2 3 4 5] 0 [+] foldl`
`[1 2 3 4 5] 1 [*] foldl`

## True BASIC

Works with: QBasic
`DIM array(1 TO 5)DATA 1, 2, 3, 4, 5FOR index = LBOUND(array) TO UBOUND(array)    READ array(index)NEXT index LET sum = 0LET prod = 1FOR index = LBOUND(array) TO UBOUND(array)    LET sum = sum + array(index)    LET prod = prod * array(index)NEXT indexPRINT "The sum is "; sumPRINT "and the product is "; prodEND`

## TUSCRIPT

` \$\$ MODE TUSCRIPTlist="1'2'3'4'5"sum=SUM(list)PRINT "    sum: ",sum product=1LOOP l=listproduct=product*lENDLOOPPRINT "product: ",product `
Output:
```    sum: 15
product: 120
```

## UNIX Shell

Works with: NetBSD version 3.0

From an internal variable, \$IFS delimited:

`sum=0prod=1list="1 2 3"for n in \$listdo sum="\$((\$sum + \$n))"; prod="\$((\$prod * \$n))"doneecho \$sum \$prod`

From the argument list (ARGV):

`sum=0prod=1for ndo sum="\$((\$sum + \$n))"; prod="\$((\$prod * \$n))"doneecho \$sum \$prod`

From STDIN, one integer per line:

`sum=0prod=1while read ndo sum="\$((\$sum + \$n))"; prod="\$((\$prod * \$n))"doneecho \$sum \$prod`
Works with: GNU bash version 3.2.0(1)-release (i386-unknown-freebsd6.1)

From variable:

`LIST='20 20 2';SUM=0; PROD=1;for i in \$LIST; do  SUM=\$[\$SUM + \$i]; PROD=\$[\$PROD * \$i];done;echo \$SUM \$PROD`

## UnixPipes

Uses ksh93-style process substitution.

Works with: bash
`prod() {   (read B; res=\$1; test -n "\$B" && expr \$res \* \$B || echo \$res)} sum() {   (read B; res=\$1; test -n "\$B" && expr \$res + \$B || echo \$res)} fold() {   (func=\$1; while read a ; do fold \$func | \$func \$a ; done)}  (echo 3; echo 1; echo 4;echo 1;echo 5;echo 9) |  tee >(fold sum) >(fold prod) > /dev/null`

There is a race between `fold sum` and `fold prod`, which run in parallel. The program might print sum before product, or print product before sum.

## Ursa

Ursa doesn't have arrays in the traditional sense. Its equivalent is the stream. All math operators take streams as arguments, so sums and products of streams can be found like this.

`declare int<> streamappend 34 76 233 8 2 734 56 stream # outputs 1143out (+ stream) endl console # outputs 3.95961079808E11out (* stream) endl console`

## Ursala

The reduction operator, :-, takes an associative binary function and a constant for the empty case. Natural numbers are unsigned and of unlimited size.

`#import nat#cast %nW sp = ^(sum:-0,product:-1) <62,43,46,40,29,55,51,82,59,92,48,73,93,35,42,25>`
Output:
`(875,2126997171723931187788800000)`

## V

`[sp dup 0 [+] fold 'product=' put puts 1 [*] fold 'sum=' put puts].`
Using it:
`[1 2 3 4 5] sp=product=15sum=120`

## Vala

`void main() {   int sum = 0, prod = 1;  int[] data = { 1, 2, 3, 4 };  foreach (int val in data) {    sum  += val;    prod *= val;  }   print(@"sum: \$(sum)\nproduct: \$(prod)");}`
Output:
```sum: 10
product: 24```

## VBA

Assumes Excel is used.

`Sub Demo()Dim arr    arr = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)    Debug.Print "sum : " & Application.WorksheetFunction.Sum(arr)    Debug.Print "product : " & Application.WorksheetFunction.Product(arr)End Sub`
Output:
```sum : 55
product : 3628800```

## VBScript

`Function sum_and_product(arr)	sum = 0	product = 1	For i = 0 To UBound(arr)		sum = sum + arr(i)		product = product * arr(i)	Next	WScript.StdOut.Write "Sum: " & sum	WScript.StdOut.WriteLine	WScript.StdOut.Write "Product: " & product	WScript.StdOut.WriteLineEnd Function myarray = Array(1,2,3,4,5,6)sum_and_product(myarray) `
Output:
```Sum: 21
Product: 720
```

## Visual Basic .NET

Translation of: C#
`Module Program    Sub Main()        Dim arg As Integer() = {1, 2, 3, 4, 5}        Dim sum = arg.Sum()        Dim prod = arg.Aggregate(Function(runningProduct, nextFactor) runningProduct * nextFactor)    End SubEnd Module`

## Wart

`def (sum_prod nums)  (list (+ @nums) (* @nums))`

## WDTE

`let a => import 'arrays';let s => import 'stream'; let sum array => a.stream array -> s.reduce 0 +;let prod array => a.stream prod -> s.reduce 1 *;`

## Wortel

`@sum [1 2 3 4] ; returns 10@prod [1 2 3 4] ; returns 24`

## Wren

Library: Wren-math
`import "/math" for Numsvar a = [7, 10, 2, 4, 6, 1, 8, 3, 9, 5]System.print("Array   : %(a)")System.print("Sum     : %(Nums.sum(a))")System.print("Product : %(Nums.prod(a))")`
Output:
```Array   : [7, 10, 2, 4, 6, 1, 8, 3, 9, 5]
Sum     : 55
Product : 3628800
```

## XPL0

`code CrLf=9, IntOut=11; func SumProd(A, L);int  A, L;int  S, P, I;[S:= 0;  P:= 1;for I:= 0 to L-1 do [S:= S+A(I);  P:= P*A(I)];IntOut(0, S);  CrLf(0);IntOut(0, P);  CrLf(0);]; \SumSq SumProd([1,2,3,4,5,6,7,8,9,10], 10)`
Output:
```55
3628800
```

## XSLT

XSLT (or XPath rather) has a few built-in functions for reducing from a collection, but product is not among them. Because of referential transparency, one must resort to recursive solutions for general iterative operations upon collections. The following code represents the array by numeric values in <price> elements in the source document.

`<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">  <xsl:output method="text" />   <xsl:template name="sum-prod">    <xsl:param name="values" />    <xsl:param name="sum"  select="0" />    <xsl:param name="prod" select="1" />    <xsl:choose>      <xsl:when test="not(\$values)">        <xsl:text>Sum: </xsl:text>        <xsl:value-of select="\$sum" />        <xsl:text>Product: </xsl:text>        <xsl:value-of select="\$prod" />      </xsl:when>      <xsl:otherwise>        <xsl:call-template name="sum-prod">          <xsl:with-param name="values" select="\$values[position() > 1]" />          <xsl:with-param name="sum"  select="\$sum  + \$values" />          <xsl:with-param name="prod" select="\$prod * \$values" />        </xsl:call-template>      </xsl:otherwise>    </xsl:choose>  </xsl:template>   <xsl:template match="/">     <xsl:text>Sum (built-in): </xsl:text>    <xsl:value-of select="sum(//price)" />     <xsl:call-template name="sum-prod">      <xsl:with-param name="values" select="//price" />    </xsl:call-template>  </xsl:template></xsl:stylesheet>`

## Yabasic

Translation of: QBasic
`dim array(5)data 1, 2, 3, 4, 5for index = 1 to arraysize(array(), 1)    read array(index)next index sum = 0prod = 1for index = 1 to arraysize(array(), 1)    sum = sum + array(index)    prod = prod * array(index)next indexprint "The sum is ", sum            //15print "and the product is ", prod   //120end`

## zkl

Translation of: Clojure
`fcn sum(vals){vals.reduce('+,0)}fcn product(vals){vals.reduce('*,1)}`
```sum(T(1,2,3,4))     //-->10
product(T(1,2,3,4)) //-->24
```

## Zoea

` program: sum_and_product  case: 1    input: [3,5]    output: [8,15]  case: 2    input: [2,3,4]    output: [9,24] `