# State name puzzle

State name puzzle
You are encouraged to solve this task according to the task description, using any language you may know.

Background

This task is inspired by Mark Nelson's DDJ Column "Wordplay" and one of the weekly puzzle challenges from Will Shortz on NPR Weekend Edition [1] and originally attributed to David Edelheit.

The challenge was to take the names of two U.S. States, mix them all together, then rearrange the letters to form the names of two different U.S. States (so that all four state names differ from one another).

What states are these?

The problem was reissued on the Unicon Discussion Web which includes several solutions with analysis. Several techniques may be helpful and you may wish to refer to Gödel numbering, equivalence relations, and equivalence classes. The basic merits of these were discussed in the Unicon Discussion Web.

A second challenge in the form of a set of fictitious new states was also presented.

Write a program to solve the challenge using both the original list of states and the fictitious list.

Caveats:

• case and spacing aren't significant - just letters (harmonize case)
• don't expect the names to be in any order - such as being sorted
• don't rely on names to be unique (eliminate duplicates - meaning if Iowa appears twice you can only use it once)

Comma separated list of state names used in the original puzzle:

```    "Alabama", "Alaska", "Arizona", "Arkansas",
"Delaware",
"Florida", "Georgia", "Hawaii",
"Idaho", "Illinois", "Indiana", "Iowa",
"Kansas", "Kentucky", "Louisiana",
"Maine", "Maryland", "Massachusetts", "Michigan",
"Minnesota", "Mississippi", "Missouri", "Montana",
"New Mexico", "New York", "North Carolina", "North Dakota",
"Ohio", "Oklahoma", "Oregon",
"Pennsylvania", "Rhode Island",
"South Carolina", "South Dakota", "Tennessee", "Texas",
"Utah", "Vermont", "Virginia",
"Washington", "West Virginia", "Wisconsin", "Wyoming"
```

Comma separated list of additional fictitious state names to be added to the original (Includes a duplicate):

```"New Kory", "Wen Kory", "York New", "Kory New", "New Kory"
```

## Bracmat

`(     Alabama      Alaska      Arizona      Arkansas      California      Colorado      Connecticut      Delaware      Florida      Georgia      Hawaii      Idaho      Illinois      Indiana      Iowa      Kansas      Kentucky      Louisiana      Maine      Maryland      Massachusetts      Michigan      Minnesota      Mississippi      Missouri      Montana      Nebraska      Nevada      "New Hampshire"      "New Jersey"      "New Mexico"      "New York"      "North Carolina"      "North Dakota"      Ohio      Oklahoma      Oregon      Pennsylvania      "Rhode Island"      "South Carolina"      "South Dakota"      Tennessee      Texas      Utah      Vermont      Virginia      Washington      "West Virginia"      Wisconsin      Wyoming  : ?states& "New Kory" "Wen Kory" "York New" "Kory New" "New Kory":?extrastates& ( "State name puzzle"  =     allStates State state statechars char      , A Z S1 S2 S3 S4 L1 L2 L3 L4 L12    .   0:?allStates      &   whl        ' ( !arg:%?State ?arg          & low\$!State:?state          & 0:?statechars          &   whl            ' ( @(!state:? (%@:~" ":?char) ?state)              & !char+!statechars:?statechars              )          & (!State.!statechars)+!allStates:?allStates          )      & (   !allStates          :   ?            + ?*(?S1.?L1)            + ?A            + ?*(?S2.?L2)            + ( ?Z              & !L1+!L2:?L12              &   !A+!Z                :   ?                  + ?*(?S3.?L3&!L12+-1*!L3:?L4)                  + ?                  +   ?                    * ( ?S4                      .   !L4                        & out\$(!S1 "+" !S2 "=" !S3 "+" !S4)                        & ~                      )                  + ?              )        | out\$"No more solutions"        )  )& "State name puzzle"\$!states& "State name puzzle"\$(!states !extrastates));`

Output:

```North Carolina + South Dakota = North Dakota + South Carolina
No more solutions
Kory New + New Kory = New York + Wen Kory
Kory New + New Kory = New York + York New
Kory New + New Kory = Wen Kory + York New
Kory New + New York = New Kory + Wen Kory
Kory New + New York = New Kory + York New
Kory New + New York = Wen Kory + York New
Kory New + Wen Kory = New Kory + New York
Kory New + Wen Kory = New Kory + York New
Kory New + Wen Kory = New York + York New
Kory New + York New = New Kory + New York
Kory New + York New = New Kory + Wen Kory
Kory New + York New = New York + Wen Kory
New Kory + New York = Wen Kory + York New
New Kory + Wen Kory = New York + York New
New Kory + York New = New York + Wen Kory
North Carolina + South Dakota = North Dakota + South Carolina
No more solutions```

## C

Sort by letter occurence and deal with dupes.

`#include <stdio.h>#include <stdlib.h>#include <string.h> #define USE_FAKES 1 const char *states[] = {#if USE_FAKES	"New Kory", "Wen Kory", "York New", "Kory New", "New Kory",#endif	"Alabama", "Alaska", "Arizona", "Arkansas",	"California", "Colorado", "Connecticut",	"Delaware",    	"Florida", "Georgia", "Hawaii",	"Idaho", "Illinois", "Indiana", "Iowa",	"Kansas", "Kentucky", "Louisiana",	"Maine", "Maryland", "Massachusetts", "Michigan",	"Minnesota", "Mississippi", "Missouri", "Montana",	"Nebraska", "Nevada", "New Hampshire", "New Jersey",	"New Mexico", "New York", "North Carolina", "North Dakota",	"Ohio", "Oklahoma", "Oregon",	"Pennsylvania", "Rhode Island",	"South Carolina", "South Dakota", "Tennessee", "Texas",	"Utah", "Vermont", "Virginia",	"Washington", "West Virginia", "Wisconsin", "Wyoming"}; int n_states = sizeof(states)/sizeof(*states);typedef struct { unsigned char c[26]; const char *name[2]; } letters; void count_letters(letters *l, const char *s){	int c;	if (!l->name[0]) l->name[0] = s;	else l->name[1] = s; 	while ((c = *s++)) {		if (c >= 'a' && c <= 'z') l->c[c - 'a']++;		if (c >= 'A' && c <= 'Z') l->c[c - 'A']++;	}} int lcmp(const void *aa, const void *bb){	int i;	const letters *a = aa, *b = bb;	for (i = 0; i < 26; i++)		if      (a->c[i] > b->c[i]) return  1;		else if (a->c[i] < b->c[i]) return -1;	return 0;} int scmp(const void *a, const void *b){	return strcmp(*(const char *const *)a, *(const char *const *)b);} void no_dup(){	int i, j; 	qsort(states, n_states, sizeof(const char*), scmp); 	for (i = j = 0; i < n_states;) {		while (++i < n_states && !strcmp(states[i], states[j]));		if (i < n_states) states[++j] = states[i];	} 	n_states = j + 1;} void find_mix(){	int i, j, n;	letters *l, *p; 	no_dup();	n = n_states * (n_states - 1) / 2;	p = l = calloc(n, sizeof(letters)); 	for (i = 0; i < n_states; i++)		for (j = i + 1; j < n_states; j++, p++) {			count_letters(p, states[i]);			count_letters(p, states[j]);		} 	qsort(l, n, sizeof(letters), lcmp); 	for (j = 0; j < n; j++) {		for (i = j + 1; i < n && !lcmp(l + j, l + i); i++) {			if (l[j].name[0] == l[i].name[0]				|| l[j].name[1] == l[i].name[0]				|| l[j].name[1] == l[i].name[1])				continue;			printf("%s + %s => %s + %s\n",				l[j].name[0], l[j].name[1], l[i].name[0], l[i].name[1]);		}	}	free(l);} int main(void){	find_mix();	return 0;}`

## C++

Ported from C solution.

`#include <algorithm>#include <iostream>#include <string>#include <array>#include <vector> template<typename T>T unique(T&& src){    T retval(std::move(src));    std::sort(retval.begin(), retval.end(), std::less<typename T::value_type>());    retval.erase(std::unique(retval.begin(), retval.end()), retval.end());    return retval;} #define USE_FAKES 1 auto states = unique(std::vector<std::string>({#if USE_FAKES    "Slender Dragon", "Abalamara",#endif    "Alabama", "Alaska", "Arizona", "Arkansas",    "California", "Colorado", "Connecticut",    "Delaware",    "Florida", "Georgia", "Hawaii",    "Idaho", "Illinois", "Indiana", "Iowa",    "Kansas", "Kentucky", "Louisiana",    "Maine", "Maryland", "Massachusetts", "Michigan",    "Minnesota", "Mississippi", "Missouri", "Montana",    "Nebraska", "Nevada", "New Hampshire", "New Jersey",    "New Mexico", "New York", "North Carolina", "North Dakota",    "Ohio", "Oklahoma", "Oregon",    "Pennsylvania", "Rhode Island",    "South Carolina", "South Dakota", "Tennessee", "Texas",    "Utah", "Vermont", "Virginia",    "Washington", "West Virginia", "Wisconsin", "Wyoming"})); struct counted_pair{    std::string name;    std::array<int, 26> count{};     void count_characters(const std::string& s)    {        for (auto&& c : s) {            if (c >= 'a' && c <= 'z') count[c - 'a']++;            if (c >= 'A' && c <= 'Z') count[c - 'A']++;        }    }     counted_pair(const std::string& s1, const std::string& s2)        : name(s1 + " + " + s2)    {        count_characters(s1);        count_characters(s2);    }}; bool operator<(const counted_pair& lhs, const counted_pair& rhs){    auto lhs_size = lhs.name.size();    auto rhs_size = rhs.name.size();    return lhs_size == rhs_size            ? std::lexicographical_compare(lhs.count.begin(),                                           lhs.count.end(),                                           rhs.count.begin(),                                           rhs.count.end())            : lhs_size < rhs_size;} bool operator==(const counted_pair& lhs, const counted_pair& rhs){    return lhs.name.size() == rhs.name.size() && lhs.count == rhs.count;} int main(){    const int n_states = states.size();     std::vector<counted_pair> pairs;    for (int i = 0; i < n_states; i++) {        for (int j = 0; j < i; j++) {            pairs.emplace_back(counted_pair(states[i], states[j]));        }    }    std::sort(pairs.begin(), pairs.end());     auto start = pairs.begin();    while (true) {        auto match = std::adjacent_find(start, pairs.end());        if (match == pairs.end()) {            break;        }        auto next = match + 1;        std::cout << match->name << " => " << next->name << "\n";        start = next;    }}`

## D

`import std.stdio, std.algorithm, std.string, std.exception; auto states = ["Alabama", "Alaska", "Arizona", "Arkansas","California", "Colorado", "Connecticut", "Delaware", "Florida","Georgia", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa", "Kansas","Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts","Michigan", "Minnesota", "Mississippi", "Missouri", "Montana","Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico","New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma","Oregon", "Pennsylvania", "Rhode Island", "South Carolina","South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia","Washington", "West Virginia", "Wisconsin", "Wyoming",// Uncomment the next line for the fake states.// "New Kory", "Wen Kory", "York New", "Kory New", "New Kory"]; void main() {  states.length -= states.sort().uniq.copy(states).length;   string[][const ubyte[]] smap;  foreach (immutable i, s1; states[0 .. \$ - 1])    foreach (s2; states[i + 1 .. \$])      smap[(s1 ~ s2).dup.representation.sort().release.assumeUnique]        ~= s1 ~ " + " ~ s2;   writefln("%-(%-(%s = %)\n%)",           smap.values.sort().filter!q{ a.length > 1 });}`
Output:
`North Carolina + South Dakota = North Dakota + South Carolina`

## Go

`package main import (    "fmt"    "unicode") var states = []string{"Alabama", "Alaska", "Arizona", "Arkansas",    "California", "Colorado", "Connecticut",    "Delaware",    "Florida", "Georgia", "Hawaii",    "Idaho", "Illinois", "Indiana", "Iowa",    "Kansas", "Kentucky", "Louisiana",    "Maine", "Maryland", "Massachusetts", "Michigan",    "Minnesota", "Mississippi", "Missouri", "Montana",    "Nebraska", "Nevada", "New Hampshire", "New Jersey",    "New Mexico", "New York", "North Carolina", "North Dakota",    "Ohio", "Oklahoma", "Oregon",    "Pennsylvania", "Rhode Island",    "South Carolina", "South Dakota", "Tennessee", "Texas",    "Utah", "Vermont", "Virginia",    "Washington", "West Virginia", "Wisconsin", "Wyoming"} func main() {    play(states)    play(append(states,        "New Kory", "Wen Kory", "York New", "Kory New", "New Kory"))} func play(states []string) {    fmt.Println(len(states), "states:")    // get list of unique state names    set := make(map[string]bool, len(states))    for _, s := range states {        set[s] = true    }    // make parallel arrays for unique state names and letter histograms    s := make([]string, len(set))    h := make([][26]byte, len(set))    var i int    for us := range set {        s[i] = us        for _, c := range us {            if u := uint(unicode.ToLower(c)) - 'a'; u < 26 {                h[i][u]++            }        }        i++    }    // use map to find matches.  map key is sum of histograms of    // two different states.  map value is indexes of the two states.    type pair struct {        i1, i2 int    }    m := make(map[string][]pair)    b := make([]byte, 26) // buffer for summing histograms    for i1, h1 := range h {        for i2 := i1 + 1; i2 < len(h); i2++ {            // sum histograms            for i := range b {                b[i] = h1[i] + h[i2][i]            }            k := string(b) // make key from buffer.            // now loop over any existing pairs with the same key,            // printing any where both states of this pair are different            // than the states of the existing pair            for _, x := range m[k] {                if i1 != x.i1 && i1 != x.i2 && i2 != x.i1 && i2 != x.i2 {                    fmt.Printf("%s, %s = %s, %s\n", s[i1], s[i2],                        s[x.i1], s[x.i2])                }            }            // store this pair in the map whether printed or not.            m[k] = append(m[k], pair{i1, i2})        }    }}`

Output:

```50 states:
North Dakota, South Carolina = North Carolina, South Dakota
55 states:
South Dakota, North Carolina = North Dakota, South Carolina
New Kory, Kory New = Wen Kory, York New
New Kory, Kory New = Wen Kory, New York
New Kory, York New = Wen Kory, Kory New
New Kory, York New = Wen Kory, New York
New Kory, New York = Wen Kory, Kory New
New Kory, New York = Wen Kory, York New
Kory New, York New = Wen Kory, New Kory
Kory New, York New = Wen Kory, New York
Kory New, York New = New Kory, New York
Kory New, New York = Wen Kory, New Kory
Kory New, New York = Wen Kory, York New
Kory New, New York = New Kory, York New
York New, New York = Wen Kory, New Kory
York New, New York = Wen Kory, Kory New
York New, New York = New Kory, Kory New
```

`{-# LANGUAGE TupleSections #-} import Data.Char (toLower, isLetter)import Data.List (sort, sortBy, nub, groupBy)import Data.Function (on) stateNames :: [String]stateNames=     ["Alabama",     "Alaska",      "Arizona",      "Arkansas",      "California",      "Colorado",      "Connecticut",      "Delaware",         "Florida",      "Georgia",      "Hawaii",      "Idaho",      "Illinois",      "Indiana",      "Iowa",      "Kansas",      "Kentucky",      "Louisiana",      "Maine",      "Maryland",      "Massachusetts",      "Michigan",      "Minnesota",      "Mississippi",      "Missouri",      "Montana",      "Nebraska",      "Nevada",      "New Hampshire",      "New Jersey",      "New Mexico",      "New York",      "North Carolina",      "North Dakota",      "Ohio",      "Oklahoma",      "Oregon",      "Pennsylvania",      "Rhode Island",      "South Carolina",      "South Dakota",      "Tennessee",      "Texas",      "Utah",      "Vermont",      "Virginia",      "Washington",      "West Virginia",      "Wisconsin",      "Wyoming"]  fakeStateNames :: [String]fakeStateNames =     ["New Kory",      "Wen Kory",      "York New",      "Kory New",      "New Kory"] pairs :: [a] -> [(a,a)]pairs [] = []pairs (y:ys) = map (y,) ys ++ pairs ys puzzle :: [String] -> [((String,String), (String, String))]puzzle states =     concatMap (filter isValid.pairs) \$     map (map snd) \$     filter ((>1) . length ) \$     groupBy ((==) `on` fst) \$      sortBy (compare `on` fst) [(pkey (a++b), (a,b)) | (a,b) <- pairs (nub \$ sort states)] where        pkey = sort . filter isLetter . map toLower        isValid ((a0, a1),(b0, b1)) = (a0 /= b0) && (a0 /= b1) && (a1 /= b0) && (a1 /= b1) main :: IO ()main = do    putStrLn \$ "Matching pairs generated from "                ++ show (length stateNames) ++ " state names and "                ++ show (length fakeStateNames) ++ " fake state names:"    mapM_ print \$ puzzle \$ stateNames ++ fakeStateNames`
Output:
```Matching pairs generated from 50 state names and 5 fake state names:
(("North Carolina","South Dakota"),("North Dakota","South Carolina"))
(("Kory New","New Kory"),("New York","Wen Kory"))
(("Kory New","New Kory"),("New York","York New"))
(("Kory New","New Kory"),("Wen Kory","York New"))
(("Kory New","New York"),("New Kory","Wen Kory"))
(("Kory New","New York"),("New Kory","York New"))
(("Kory New","New York"),("Wen Kory","York New"))
(("Kory New","Wen Kory"),("New Kory","New York"))
(("Kory New","Wen Kory"),("New Kory","York New"))
(("Kory New","Wen Kory"),("New York","York New"))
(("Kory New","York New"),("New Kory","New York"))
(("Kory New","York New"),("New Kory","Wen Kory"))
(("Kory New","York New"),("New York","Wen Kory"))
(("New Kory","New York"),("Wen Kory","York New"))
(("New Kory","Wen Kory"),("New York","York New"))
(("New Kory","York New"),("New York","Wen Kory"))
```

## Icon and Unicon

### Equivalence Class Solution

`link strings                 # for csort and deletec procedure main(arglist)    ECsolve(S1 := getStates())     # original state names puzzle    ECsolve(S2 := getStates2())    # modified fictious names puzzle     GNsolve(S1)    GNsolve(S2)end procedure ECsolve(S)         # Solve challenge using equivalence classes    local T,x,y,z,i,t,s,l,m    st := &time              # mark runtime    /S := getStates()        # default    every insert(states := set(),deletec(map(!S),' \t'))  # ignore case & space     # Build a table containing sets of state name pairs     # keyed off of canonical form of the pair    # Use csort(s) rather than cset(s) to preserve the numbers of each letter    # Since we care not of X&Y .vs. Y&X keep only X&Y     T := table()    every (x := !states ) & ( y := !states ) do    if z := csort(x || (x << y)) then {        /T[z] := []        put(T[z],set(x,y))    }     # For each unique key (canonical pair) find intersection of all pairs    # Output is <current key matched> <key> <pairs>     i := m := 0       # keys (i) and pairs (m) matched    every z := key(T) do {        s := &null        every l := !T[z] do {            /s :=  l            s **:= l        }        if *s = 0 then {            i +:= 1            m +:= *T[z]            every x := !T[z] do {                #writes(i," ",z)  # uncomment for equiv class and match count                every writes(!x," ")                write()            }        }    }    write("... runtime ",(&time - st)/1000.,"\n",m," matches found.")end`
The following are common routines:
`procedure getStates()   # return list of state namesreturn ["Alabama", "Alaska", "Arizona", "Arkansas",       "California", "Colorado", "Connecticut",       "Delaware",           "Florida", "Georgia", "Hawaii",       "Idaho", "Illinois", "Indiana", "Iowa",       "Kansas", "Kentucky", "Louisiana",       "Maine", "Maryland", "Massachusetts", "Michigan",       "Minnesota", "Mississippi", "Missouri", "Montana",       "Nebraska", "Nevada", "New Hampshire", "New Jersey",       "New Mexico", "New York", "North Carolina", "North Dakota",       "Ohio", "Oklahoma", "Oregon",       "Pennsylvania", "Rhode Island",       "South Carolina", "South Dakota", "Tennessee", "Texas",       "Utah", "Vermont", "Virginia",       "Washington", "West Virginia", "Wisconsin", "Wyoming"]end procedure getStates2() # return list of state names + fictious statesreturn getStates() ||| ["New Kory", "Wen Kory", "York New", "Kory New", "New Kory"]end`

### Godel Number Solution

`link factors procedure GNsolve(S)    local min, max    st := &time    equivClasses := table()    statePairs := table()    /S := getStates()    every put(states := [], map(!S)) # Make case insignificant    min := proc("min",0)             # Link "factors" loses max/min functions    max := proc("max",0)             # ... these statements get them back     # Build a table of equivalence classes (all state pairs in the    #   same equivalence class have the same characters in them)    #   Output new pair couples *before* adding each state pair to class.     every (state1 := |get(states)) & (state2 := !states) do {        if state1 ~== state2 then {            statePair := min(state1, state2)||":"||max(state1,state2)            if /statePairs[statePair] := set(state1, state2) then {                signature := getClassSignature(state1, state2)                /equivClasses[signature] := set()                every *(statePairs[statePair] **   # require 4 distinct states                statePairs[pair := !equivClasses[signature]]) == 0 do {                    write(statePair, " and ", pair)                }                insert(equivClasses[signature], statePair)            }        }    }     write(&errout, "Time: ", (&time-st)/1000.0)end # Build a (Godel) signature identifying the equivalence class for state pair s. procedure getClassSignature(s1, s2)    static G    initial G := table()    /G[s1] := gn(s1)    /G[s2] := gn(s2)    return G[s1]*G[s2]end procedure gn(s)  # Compute the Godel number for a string (letters only)    static xlate    local p, i, z    initial {        xlate := table(1)        p := create prime()        every i := 1 to 26 do {            xlate[&lcase[i]] := xlate[&ucase[i]] := @p        }    }    z := 1    every z *:= xlate[!s]    return zend`
Sample Output (ECsolve):
```northcarolina southdakota
northdakota southcarolina
... runtime 0.019
2 matches found.
wenkory yorknew
wenkory newyork
newyork yorknew
wenkory korynew
newyork korynew
newkory korynew
korynew yorknew
wenkory newkory
newkory newyork
newkory yorknew
northcarolina southdakota
northdakota southcarolina
... runtime 0.026
12 matches found.```
Sample Output (GNsolve):
```north dakota:south carolina and north carolina:south dakota
Time: 0.008999999999999999
north dakota:south carolina and north carolina:south dakota
new kory:wen kory and new york:york new
new kory:wen kory and kory new:new york
new kory:york new and new york:wen kory
new kory:york new and kory new:new york
kory new:new kory and new york:wen kory
kory new:new kory and new york:york new
wen kory:york new and kory new:new york
wen kory:york new and kory new:new kory
wen kory:york new and new kory:new york
kory new:wen kory and new york:york new
kory new:wen kory and new kory:york new
kory new:wen kory and new kory:new york
kory new:york new and new york:wen kory
kory new:york new and new kory:wen kory
kory new:york new and new kory:new york
Time: 0.018```

## J

Implementation:

`require'strings stats' states=:<;._2]0 :0-.LF Alabama,Alaska,Arizona,Arkansas,California,Colorado,Connecticut,Delaware,Florida,Georgia,Hawaii,Idaho,Illinois,Indiana,Iowa,Kansas,Kentucky,Louisiana,Maine,Maryland,Massachusetts,Michigan,Minnesota,Mississippi,Missouri,Montana,Nebraska,Nevada,New Hampshire,New Jersey,New Mexico,New York,North Carolina,North Dakota,Ohio,Oklahoma,Oregon,Pennsylvania,Rhode Island,South Carolina,South Dakota,Tennessee,Texas,Utah,Vermont,Virginia,Washington,West Virginia,Wisconsin,Wyoming,Maine,Maine,Maine,Maine,Maine,Maine,Maine,Maine, ) pairUp=: (#~ matchUp)@({~ 2 comb #)@~.matchUp=: (i.~ ~: i:~)@:(<@[email protected];"1)normalize=: /:[email protected]@-.&' '`

In action:

`   pairUp states┌──────────────┬──────────────┐│North Carolina│South Dakota  │├──────────────┼──────────────┤│North Dakota  │South Carolina│└──────────────┴──────────────┘`

Note: this approach is sufficient to solve the original problem, but does not properly deal with the addition of fictitious states. So:

`isolatePairs=: [email protected]@(#~ *./@matchUp"2)@({~ 2 comb #)matchUp2=: /:~"2@:(/:~"1)@(#~ 4=#@[email protected],"2)`

In action:

`   isolatePairs pairUp 'New Kory';'Wen Kory';'York New';'Kory New';'New Kory';states┌──────────────┬──────────────┐│Kory New      │York New      │├──────────────┼──────────────┤│New Kory      │Wen Kory      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│New Kory      │Wen Kory      │├──────────────┼──────────────┤│New York      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │New York      │├──────────────┼──────────────┤│New Kory      │Wen Kory      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │Wen Kory      │├──────────────┼──────────────┤│New Kory      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│New Kory      │York New      │├──────────────┼──────────────┤│New York      │Wen Kory      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │New York      │├──────────────┼──────────────┤│New Kory      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │New Kory      │├──────────────┼──────────────┤│Wen Kory      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │New Kory      │├──────────────┼──────────────┤│New York      │Wen Kory      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │New Kory      │├──────────────┼──────────────┤│New York      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│New Kory      │New York      │├──────────────┼──────────────┤│Wen Kory      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │Wen Kory      │├──────────────┼──────────────┤│New Kory      │New York      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │York New      │├──────────────┼──────────────┤│New Kory      │New York      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │New York      │├──────────────┼──────────────┤│Wen Kory      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │Wen Kory      │├──────────────┼──────────────┤│New York      │York New      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│Kory New      │York New      │├──────────────┼──────────────┤│New York      │Wen Kory      │└──────────────┴──────────────┘ ┌──────────────┬──────────────┐│North Carolina│South Dakota  │├──────────────┼──────────────┤│North Dakota  │South Carolina│└──────────────┴──────────────┘`

## Java

Works with: Java version 8
`import java.util.*;import java.util.stream.*; public class StateNamePuzzle {     static String[] states = {"Alabama", "Alaska", "Arizona", "Arkansas",        "California", "Colorado", "Connecticut", "Delaware", "Florida",        "Georgia", "hawaii", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa",        "Kansas", "Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts",        "Michigan", "Minnesota", "Mississippi", "Missouri", "Montana",        "Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico",        "New York", "North Carolina ", "North Dakota", "Ohio", "Oklahoma",        "Oregon", "Pennsylvania", "Rhode Island", "South Carolina",        "South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia",        "Washington", "West Virginia", "Wisconsin", "Wyoming",        "New Kory", "Wen Kory", "York New", "Kory New", "New Kory",};     public static void main(String[] args) {        solve(Arrays.asList(states));    }     static void solve(List<String> input) {        Map<String, String> orig = input.stream().collect(Collectors.toMap(                s -> s.replaceAll("\\s", "").toLowerCase(), s -> s, (s, a) -> s));         input = new ArrayList<>(orig.keySet());         Map<String, List<String[]>> map = new HashMap<>();        for (int i = 0; i < input.size() - 1; i++) {            String pair0 = input.get(i);            for (int j = i + 1; j < input.size(); j++) {                 String[] pair = {pair0, input.get(j)};                String s = pair0 + pair[1];                String key = Arrays.toString(s.chars().sorted().toArray());                 List<String[]> val = map.getOrDefault(key, new ArrayList<>());                val.add(pair);                map.put(key, val);            }        }         map.forEach((key, list) -> {            for (int i = 0; i < list.size() - 1; i++) {                String[] a = list.get(i);                for (int j = i + 1; j < list.size(); j++) {                    String[] b = list.get(j);                     if (Stream.of(a[0], a[1], b[0], b[1]).distinct().count() < 4)                        continue;                     System.out.printf("%s + %s = %s + %s %n", orig.get(a[0]),                            orig.get(a[1]), orig.get(b[0]), orig.get(b[1]));                }            }        });    }}`

Output:

```Wen Kory + Kory New = York New + New Kory
Wen Kory + Kory New = York New + New York
Wen Kory + Kory New = New Kory + New York
Wen Kory + York New = Kory New + New Kory
Wen Kory + York New = Kory New + New York
Wen Kory + York New = New Kory + New York
Wen Kory + New Kory = Kory New + York New
Wen Kory + New Kory = Kory New + New York
Wen Kory + New Kory = York New + New York
Wen Kory + New York = Kory New + York New
Wen Kory + New York = Kory New + New Kory
Wen Kory + New York = York New + New Kory
Kory New + York New = New Kory + New York
Kory New + New Kory = York New + New York
Kory New + New York = York New + New Kory
South Dakota + North Carolina  = North Dakota + South Carolina ```

## jq

Works with: jq version 1.4
`# Input: a string# Output: an array, being the exploded form of the normalized inputdef normalize:  explode  | map(if . >= 97 then (. - 97) elif . >= 65 then (. - 65) else empty end); # Input: an array of strings# Output: a dictionary with key:value pairs: normalizedString:stringdef dictionary:  reduce .[] as \$s ( {}; . + { (\$s|normalize|implode): \$s }); # Input: an array of strings (e.g. state names)# Output: a stream of solutionsdef solve:   # Given a pair of normalized state names as lists of integers:  def nletters: map(length) | add;   # input [[s1,s2], [t2,t2]]  def solved:    ( .[0] | add | sort) ==  (.[1] | add | sort);   unique  | length as \$l  | dictionary as \$dictionary  | (\$dictionary | keys | map(explode)) as \$states  | reduce ( range(0; \$l) as \$s1                 | range(\$s1+1; \$l) as \$s2                 | range(\$s1+1; \$l) as \$t1	         | select(\$s2 != \$t1)	         | range(\$t1+1; \$l) as \$t2     	         | select(\$s2 != \$t2)	         | [[\$states[\$s1], \$states[\$s2]], [\$states[\$t1], \$states[\$t2]]] ) as \$quad       ([];        if (\$quad[0] | nletters) == (\$quad[1] | nletters)	   and (\$quad | solved)	then . + [\$quad | map( map(  \$dictionary[ implode ] ))]	else .	end)  | .[];`

`def States: [    "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado",    "Connecticut", "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",    "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine",    "Maryland", "Massachusetts", "Michigan", "Minnesota", "Mississippi",    "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey",    "New Mexico", "New York", "North Carolina", "North Dakota", "Ohio",    "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island", "South Carolina",    "South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia",    "Washington", "West Virginia", "Wisconsin", "Wyoming"]; def task:  "Real state names:",  (States | solve),  "",  "States together with fictional state names:",  (States + ["New Kory", "Wen Kory", "York New", "Kory New", "New Kory"] | solve)   ; task`
Output:
`\$ jq -c -n -r -f State_name_puzzle.jqReal state names:[["North Carolina","South Dakota"],["North Dakota","South Carolina"]] States together with fictional state names:[["Kory New","New Kory"],["New York","Wen Kory"]][["Kory New","New Kory"],["New York","York New"]][["Kory New","New Kory"],["Wen Kory","York New"]][["Kory New","New York"],["New Kory","Wen Kory"]][["Kory New","New York"],["New Kory","York New"]][["Kory New","New York"],["Wen Kory","York New"]][["Kory New","Wen Kory"],["New Kory","New York"]][["Kory New","Wen Kory"],["New Kory","York New"]][["Kory New","Wen Kory"],["New York","York New"]][["Kory New","York New"],["New Kory","New York"]][["Kory New","York New"],["New Kory","Wen Kory"]][["Kory New","York New"],["New York","Wen Kory"]][["New Kory","New York"],["Wen Kory","York New"]][["New Kory","Wen Kory"],["New York","York New"]][["New Kory","York New"],["New York","Wen Kory"]][["North Carolina","South Dakota"],["North Dakota","South Carolina"]]`

## Julia

Works with: Julia version 0.6
Translation of: Kotlin

Module:

`module StateNamePuzzle const realnames = ["Alabama", "Alaska", "Arizona", "Arkansas", "California","Colorado", "Connecticut", "Delaware", "Florida", "Georgia", "Hawaii", "Idaho","Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine","Maryland", "Massachusetts", "Michigan", "Minnesota", "Mississippi", "Missouri","Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico","New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma", "Oregon","Pennsylvania", "Rhode Island", "South Carolina", "South Dakota", "Tennessee","Texas", "Utah", "Vermont", "Virginia", "Washington", "West Virginia","Wisconsin", "Wyoming"] const fictitious = ["New Kory", "Wen Kory", "York New", "Kory New", "New Kory"] function combine(a::AbstractString, b::AbstractString)    chars = vcat(collect(Char, a), collect(Char, b))    sort!(chars)    return join(chars)end function solve(input::Vector{<:AbstractString})    dict = Dict{String,String}()    for state in input        key = replace(state, " ", "") |> lowercase        if !haskey(dict, key)            dict[key] = state        end    end    keyset = collect(keys(dict))    solutions = String[]    duplicates = String[]    for i in eachindex(keyset), j in (i+1):endof(keyset)        len1 = length(keyset[i]) + length(keyset[j])        combined1 = combine(keyset[i], keyset[j])        for k in eachindex(keyset), l in k+1:endof(keyset)            k ∈ (i, j) && continue            l ∈ (i, j) && continue            len2 = length(keyset[k]) + length(keyset[l])            len1 != len2 && continue            combined2 = combine(keyset[k], keyset[l])            if combined1 == combined2                f1 = dict[keyset[i]] * " + " * dict[keyset[j]]                f2 = dict[keyset[k]] * " + " * dict[keyset[l]]                f3 = f1 * " = " * f2                f3 ∈ duplicates && continue                push!(solutions, f3)                f4 = f2 * " = " * f1                push!(duplicates, f4)            end        end    end    return sort!(solutions)end end  # module StateNamePuzzle`

Main:

`println("Real states:")foreach(println, StateNamePuzzle.solve(StateNamePuzzle.realnames)) println("\nReal + fictitious state:")foreach(println, StateNamePuzzle.solve(vcat(StateNamePuzzle.realnames,    StateNamePuzzle.fictitious)))`
Output:
```Real states:
South Dakota + North Carolina = South Carolina + North Dakota

Real + fictitious state:
Kory New + New Kory = New York + York New
Kory New + New Kory = Wen Kory + New York
Kory New + New Kory = Wen Kory + York New
Kory New + New York = New Kory + Wen Kory
Kory New + New York = New Kory + York New
Kory New + New York = Wen Kory + York New
Kory New + Wen Kory = New Kory + New York
Kory New + Wen Kory = New Kory + York New
Kory New + Wen Kory = New York + York New
Kory New + York New = New Kory + New York
Kory New + York New = New Kory + Wen Kory
Kory New + York New = Wen Kory + New York
New Kory + New York = Wen Kory + York New
New Kory + Wen Kory = New York + York New
New Kory + York New = Wen Kory + New York
South Dakota + North Carolina = South Carolina + North Dakota```

## Kotlin

`// version 1.2.10 fun solve(states: List<String>) {    val dict = mutableMapOf<String, String>()    for (state in states) {        val key = state.toLowerCase().replace(" ", "")        if (dict[key] == null) dict.put(key, state)    }    val keys = dict.keys.toList()    val solutions = mutableListOf<String>()    val duplicates = mutableListOf<String>()    for (i in 0 until keys.size) {        for (j in i + 1 until keys.size) {            val len = keys[i].length + keys[j].length            val chars = (keys[i] + keys[j]).toCharArray()            chars.sort()            val combined = String(chars)            for (k in 0 until keys.size) {                for (l in k + 1 until keys.size) {                    if (k == i || k == j || l == i || l == j) continue                    val len2 = keys[k].length + keys[l].length                    if (len2 != len) continue                    val chars2 = (keys[k] + keys[l]).toCharArray()                    chars2.sort()                    val combined2 = String(chars2)                    if (combined == combined2) {                        val f1 = "\${dict[keys[i]]} + \${dict[keys[j]]}"                        val f2 = "\${dict[keys[k]]} + \${dict[keys[l]]}"                        val f3 = "\$f1 = \$f2"                                      if (f3 in duplicates) continue                        solutions.add(f3)                        val f4 = "\$f2 = \$f1"                        duplicates.add(f4)                    }                }            }        }    }    solutions.sort()    for ((i, sol) in solutions.withIndex()) {        println("%2d  %s".format(i + 1, sol))    }} fun main(args: Array<String>) {    val states = listOf(        "Alabama", "Alaska", "Arizona", "Arkansas",        "California", "Colorado", "Connecticut",        "Delaware",        "Florida", "Georgia", "Hawaii",        "Idaho", "Illinois", "Indiana", "Iowa",        "Kansas", "Kentucky", "Louisiana",        "Maine", "Maryland", "Massachusetts", "Michigan",        "Minnesota", "Mississippi", "Missouri", "Montana",        "Nebraska", "Nevada", "New Hampshire", "New Jersey",        "New Mexico", "New York", "North Carolina", "North Dakota",        "Ohio", "Oklahoma", "Oregon",        "Pennsylvania", "Rhode Island",        "South Carolina", "South Dakota", "Tennessee", "Texas",        "Utah", "Vermont", "Virginia",        "Washington", "West Virginia", "Wisconsin", "Wyoming"    )    println("Real states only:")    solve(states)    println()    val fictitious = listOf(        "New Kory", "Wen Kory", "York New", "Kory New", "New Kory"    )    println("Real and fictitious states:")    solve(states + fictitious)}`
Output:
```Real states only:
1  North Carolina + South Dakota = North Dakota + South Carolina

Real and fictitious states:
1  New Kory + Kory New = Wen Kory + York New
2  New Kory + Wen Kory = York New + Kory New
3  New Kory + York New = Wen Kory + Kory New
4  New York + Kory New = New Kory + Wen Kory
5  New York + Kory New = New Kory + York New
6  New York + Kory New = Wen Kory + York New
7  New York + New Kory = Wen Kory + Kory New
8  New York + New Kory = Wen Kory + York New
9  New York + New Kory = York New + Kory New
10  New York + Wen Kory = New Kory + Kory New
11  New York + Wen Kory = New Kory + York New
12  New York + Wen Kory = York New + Kory New
13  New York + York New = New Kory + Kory New
14  New York + York New = New Kory + Wen Kory
15  New York + York New = Wen Kory + Kory New
16  North Carolina + South Dakota = North Dakota + South Carolina
```

## LiveCode

This is going to be O(N^2).

`function pairwiseAnagrams X   if the optionkey is down then breakpoint   put the long seconds into T   put empty into itemsSoFar   repeat for each item W in X      put word 1 to -1 of W into W      if D[W] = 1 then next repeat      put 1 into D[W]      repeat for each item W2 in itemsSoFar         put W,W2 & cr after WPairs[sortChars(W & W2,true)]      end repeat      put W & comma after itemsSoFar   end repeat   repeat for each key K in WPairs      put empty into pairsSoFar      repeat for each line L in WPairs[K]         repeat for each line L2 in pairsSoFar            if item 1 of L is among the items of L2 or item 2 of L is among the items of L2 then next repeat            put L && "and" && L2 & cr after R         end repeat         put L & cr after pairsSoFar      end repeat   end repeat   put the long seconds - T   return char 1 to -2 of Rend pairwiseAnagrams function sortChars X,lettersOnly   get charsToItems(X,lettersOnly)   sort items of it   return itemsToChars(it)end sortChars function charsToItems X,lettersOnly   repeat for each char C in X      if lettersOnly and C is not in "abcdefghijklmnopqrstuvwxyz" then next repeat      put C & comma after R   end repeat   return char 1 to -2 of Rend charsToItems function itemsToChars X   replace comma with empty in X   return Xend itemsToChars`

## Mathematica

`letters[words_,n_] := Sort[Flatten[Characters /@ Take[words,n]]];groupSameQ[g1_, g2_] := Sort /@ Partition[g1, 2] === Sort /@ Partition[g2, 2];permutations[{a_, b_, c_, d_}] = Union[Permutations[{a, b, c, d}], SameTest -> groupSameQ]; Select[Flatten[  permutations /@    Subsets[Union[ToLowerCase/@{"Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado", "Connecticut", "Delaware", "Florida",       "Georgia", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine", "Maryland",       "Massachusetts", "Michigan", "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire",       "New Jersey", "New Mexico", "New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma", "Oregon", "Pennsylvania",       "Rhode Island", "South Carolina", "South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia", "Washington",       "West Virginia", "Wisconsin", "Wyoming"}], {4}], 1],  letters[#, 2] === letters[#, -2] &]`

## Perl

`#!/usr/bin/perluse warnings;use strict;use feature qw{ say };  sub uniq {    my %uniq;    undef @uniq{ @_ };    return keys %uniq}  sub puzzle {    my @states = uniq(@_);     my %pairs;    for my \$state1 (@states) {        for my \$state2 (@states) {            next if \$state1 le \$state2;            my \$both = join q(),                       grep ' ' ne \$_,                       sort split //,                       lc "\$state1\$state2";            push @{ \$pairs{\$both} }, [ \$state1, \$state2 ];        }    }     for my \$pair (keys %pairs) {        next if 2 > @{ \$pairs{\$pair} };         for my \$pair1 (@{ \$pairs{\$pair} }) {            for my \$pair2 (@{ \$pairs{\$pair} }) {                next if 4 > uniq(@\$pair1, @\$pair2)                     or \$pair1->[0] lt \$pair2->[0];                 say join ' = ', map { join ' + ', @\$_ } \$pair1, \$pair2;            }        }    }} my @states = ( 'Alabama', 'Alaska', 'Arizona', 'Arkansas',               'California', 'Colorado', 'Connecticut', 'Delaware',               'Florida', 'Georgia', 'Hawaii',               'Idaho', 'Illinois', 'Indiana', 'Iowa',               'Kansas', 'Kentucky', 'Louisiana',               'Maine', 'Maryland', 'Massachusetts', 'Michigan',               'Minnesota', 'Mississippi', 'Missouri', 'Montana',               'Nebraska', 'Nevada', 'New Hampshire', 'New Jersey',               'New Mexico', 'New York', 'North Carolina', 'North Dakota',               'Ohio', 'Oklahoma', 'Oregon',               'Pennsylvania', 'Rhode Island',               'South Carolina', 'South Dakota', 'Tennessee', 'Texas',               'Utah', 'Vermont', 'Virginia',               'Washington', 'West Virginia', 'Wisconsin', 'Wyoming',             ); my @fictious = ( 'New Kory', 'Wen Kory', 'York New', 'Kory New', 'New Kory' ); say scalar @states, ' states:';puzzle(@states); say @states + @fictious, ' states:';puzzle(@states, @fictious);`

## Perl 6

Works with: rakudo version 2018.03
`my @states = <    Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware    Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky    Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi    Missouri Montana Nebraska Nevada New_Hampshire New_Jersey New_Mexico    New_York North_Carolina North_Dakota Ohio Oklahoma Oregon Pennsylvania    Rhode_Island South_Carolina South_Dakota Tennessee Texas Utah Vermont    Virginia Washington West_Virginia Wisconsin Wyoming>; say "50 states:";.say for anastates @states; say "\n54 states:";.say for sort anastates @states, < New_Kory Wen_Kory York_New Kory_New New_Kory >; sub anastates (*@states) {    my @s = @states.unique».subst('_', ' ');     my @pairs = gather for ^@s -> \$i {	for \$i ^..^ @s -> \$j {	    take [ @s[\$i], @s[\$j] ];	}    }     my \$equivs = hash @pairs.classify: *.lc.comb.sort.join;     gather for \$equivs.values -> @c {	for ^@c -> \$i {	    for \$i ^..^ @c -> \$j {		my \$set = set @c[\$i].list, @c[\$j].list;		take @c[\$i].list.join(', ') ~ ' = ' ~ @c[\$j].list.join(', ') if \$set == 4;	    }	}    }}`

Output:

```50 states:
North Carolina, South Dakota = North Dakota, South Carolina

54 states:
New Kory, Kory New = Wen Kory, York New
New Kory, Wen Kory = York New, Kory New
New Kory, York New = Wen Kory, Kory New
New York, Kory New = New Kory, Wen Kory
New York, Kory New = New Kory, York New
New York, Kory New = Wen Kory, York New
New York, New Kory = Wen Kory, Kory New
New York, New Kory = Wen Kory, York New
New York, New Kory = York New, Kory New
New York, Wen Kory = New Kory, Kory New
New York, Wen Kory = New Kory, York New
New York, Wen Kory = York New, Kory New
New York, York New = New Kory, Kory New
New York, York New = New Kory, Wen Kory
New York, York New = Wen Kory, Kory New
North Carolina, South Dakota = North Dakota, South Carolina```

## Phix

`constant states = {"Alabama", "Alaska", "Arizona", "Arkansas",                    "California", "Colorado", "Connecticut", "Delaware",                    "Florida", "Georgia", "Hawaii", "Idaho", "Illinois",                    "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana",                   "Maine", "Maryland", "Massachusetts", "Michigan",                    "Minnesota", "Mississippi", "Missouri", "Montana",                    "Nebraska", "Nevada", "New Hampshire", "New Jersey",                    "New Mexico", "New York", "North Carolina", "North Dakota",                    "Ohio", "Oklahoma", "Oregon", "Pennsylvania",                    "Rhode Island", "South Carolina", "South Dakota",                    "Tennessee", "Texas", "Utah", "Vermont", "Virginia",                   "Washington", "West Virginia", "Wisconsin", "Wyoming"},--       extras = {"New Kory", "Wen Kory", "York New", "Kory New", "New Kory"}         extras = {"Slender Dragon", "Abalamara"} function no_dup(sequence s)    s = sort(s)    for i=length(s) to 2 by -1 do        if s[i]=s[i-1] then            s[i] = s[\$]            s = s[1..\$-1]        end if    end for    return send function procedure play(sequence s)    s = no_dup(s)    destroy_dict(1) -- empty dict    for i=1 to length(s)-1 do        for j=i+1 to length(s) do            string key = trim(sort(lower(s[i]&s[j])))            object data = getd(key)            if data=0 then                putd(key,{{i,j}})            else                for k=1 to length(data) do                    integer {m,n} = data[k]                    if m!=i and m!=j and n!=i and n!=j then                        ?{s[i],s[j],"<==>",s[m],s[n]}                    end if                end for                putd(key,append(data,{i,j}))            end if        end for    end forend procedureplay(states)?"==="play(states&extras)`
Output:
```{"North Dakota","South Carolina","<==>","North Carolina","South Dakota"}
"==="
{"Alabama","Arkansas","<==>","Abalamara","Kansas"}
{"North Dakota","South Carolina","<==>","North Carolina","South Dakota"}
{"Oregon","Rhode Island","<==>","Ohio","Slender Dragon"}
```

## PicoLisp

`(setq *States   (group      (mapcar '((Name) (cons (clip (sort (chop (lowc Name)))) Name))         (quote            "Alabama" "Alaska" "Arizona" "Arkansas"            "California" "Colorado" "Connecticut"            "Delaware"            "Florida" "Georgia" "Hawaii"            "Idaho" "Illinois" "Indiana" "Iowa"            "Kansas" "Kentucky" "Louisiana"            "Maine" "Maryland" "Massachusetts" "Michigan"            "Minnesota" "Mississippi" "Missouri" "Montana"            "Nebraska" "Nevada" "New Hampshire" "New Jersey"            "New Mexico" "New York" "North Carolina" "North Dakota"            "Ohio" "Oklahoma" "Oregon"            "Pennsylvania" "Rhode Island"            "South Carolina" "South Dakota" "Tennessee" "Texas"            "Utah" "Vermont" "Virginia"            "Washington" "West Virginia" "Wisconsin" "Wyoming"            "New Kory" "Wen Kory" "York New" "Kory New" "New Kory" ) ) ) ) (extract   '((P)      (when (cddr P)         (mapcar            '((X)               (cons                  (cadr (assoc (car X) *States))                  (cadr (assoc (cdr X) *States)) ) )            (cdr P) ) ) )   (group      (mapcon         '((X)            (extract               '((Y)                  (cons                     (sort (conc (copy (caar X)) (copy (car Y))))                     (caar X)                     (car Y) ) )               (cdr X) ) )         *States ) ) )`

Output:

`-> ((("North Carolina" . "South Dakota") ("North Dakota" . "South Carolina")))`

## Prolog

Works with SWI-Prolog. Use of Goedel numbers.

`state_name_puzzle :-	L = ["Alabama", "Alaska", "Arizona", "Arkansas",	     "California", "Colorado", "Connecticut",	     "Delaware",	     "Florida", "Georgia", "Hawaii",	     "Idaho", "Illinois", "Indiana", "Iowa",	     "Kansas", "Kentucky", "Louisiana",	     "Maine", "Maryland", "Massachusetts", "Michigan",	     "Minnesota", "Mississippi", "Missouri", "Montana",	     "Nebraska", "Nevada", "New Hampshire", "New Jersey",	     "New Mexico", "New York", "North Carolina", "North Dakota",	     "Ohio", "Oklahoma", "Oregon",	     "Pennsylvania", "Rhode Island",	     "South Carolina", "South Dakota", "Tennessee", "Texas",	     "Utah", "Vermont", "Virginia",	     "Washington", "West Virginia", "Wisconsin", "Wyoming",	     "New Kory", "Wen Kory", "York New", "Kory New", "New Kory"], 	maplist(goedel, L, R), 	% sort remove duplicates	sort(R, RS), 	study(RS). study([]). study([V-Word|T]) :-	study_1_Word(V-Word, T, T),	study(T).  study_1_Word(_, [], _).study_1_Word(V1-W1, [V2-W2 | T1], T) :-	TT is V1+V2,	study_2_Word(W1, W2, TT, T),	study_1_Word(V1-W1, T1, T). study_2_Word(_W1, _W2, _TT, []). study_2_Word(W1, W2, TT, [V3-W3 | T]) :-	(   W2 \= W3 -> study_3_Word(W1, W2, TT, V3-W3, T); true),	study_2_Word(W1, W2, TT, T). study_3_Word(_W1, _W2, _TT, _V3-_W3, []). study_3_Word(W1, W2, TT, V3-W3, [V4-W4|T]) :-	TT1 is V3 + V4,	(   TT1 < TT -> study_3_Word(W1, W2, TT, V3-W3, T)	;   (TT1 = TT -> ( W4 \= W2 -> format('~w & ~w  with ~w & ~w~n', [W1, W2, W3, W4])	                               ; true),           	         study_3_Word(W1, W2, TT, V3-W3, T))	;   true). % Compute a Goedel number for the wordgoedel(Word, Goedel-A) :-	name(A, Word),	downcase_atom(A, Amin),	atom_codes(Amin, LA),	compute_Goedel(LA, 0, Goedel). compute_Goedel([], G, G). compute_Goedel([32|T], GC, GF) :-	compute_Goedel(T, GC, GF). compute_Goedel([H|T], GC, GF) :-	Ind is H - 97,	GC1 is GC + 26 ** Ind,	compute_Goedel(T, GC1, GF). `

Output :

```  ?- time(state_name_puzzle).
North Carolina & South Dakota  with North Dakota & South Carolina
Kory New & New Kory  with New York & Wen Kory
Kory New & New Kory  with New York & York New
Kory New & New Kory  with Wen Kory & York New
Kory New & New York  with New Kory & Wen Kory
Kory New & New York  with New Kory & York New
Kory New & New York  with Wen Kory & York New
Kory New & Wen Kory  with New Kory & New York
Kory New & Wen Kory  with New Kory & York New
Kory New & Wen Kory  with New York & York New
Kory New & York New  with New Kory & New York
Kory New & York New  with New Kory & Wen Kory
Kory New & York New  with New York & Wen Kory
New Kory & New York  with Wen Kory & York New
New Kory & Wen Kory  with New York & York New
New Kory & York New  with New York & Wen Kory
% 1,076,511 inferences, 1.078 CPU in 1.141 seconds (94% CPU, 998503 Lips)
true .
```

## Python

Translation of: D
`from collections import defaultdict states = ["Alabama", "Alaska", "Arizona", "Arkansas","California", "Colorado", "Connecticut", "Delaware", "Florida","Georgia", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa", "Kansas","Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts","Michigan", "Minnesota", "Mississippi", "Missouri", "Montana","Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico","New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma","Oregon", "Pennsylvania", "Rhode Island", "South Carolina","South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia","Washington", "West Virginia", "Wisconsin", "Wyoming",# Uncomment the next line for the fake states.# "New Kory", "Wen Kory", "York New", "Kory New", "New Kory"] states = sorted(set(states)) smap = defaultdict(list)for i, s1 in enumerate(states[:-1]):    for s2 in states[i + 1:]:        smap["".join(sorted(s1 + s2))].append(s1 + " + " + s2) for pairs in sorted(smap.itervalues()):    if len(pairs) > 1:        print " = ".join(pairs)`

## Racket

` #lang racket(define states  (list->set   (map string-downcase        '("Alabama" "Alaska" "Arizona" "Arkansas"                    "California" "Colorado" "Connecticut"          "Delaware"              "Florida" "Georgia" "Hawaii"          "Idaho" "Illinois" "Indiana" "Iowa"          "Kansas" "Kentucky" "Louisiana"          "Maine" "Maryland" "Massachusetts" "Michigan"          "Minnesota" "Mississippi" "Missouri" "Montana"          "Nebraska""Nevada" "New Hampshire" "New Jersey"          "New Mexico" "New York" "North Carolina" "North Dakota"          "Ohio" "Oklahoma" "Oregon"          "Pennsylvania" "Rhode Island"          "South Carolina" "South Dakota" "Tennessee" "Texas"          "Utah" "Vermont" "Virginia"          "Washington" "West Virginia" "Wisconsin" "Wyoming"          ; "New Kory" "Wen Kory" "York New" "Kory New" "New Kory"          )))) (define (canon s t)   (sort (append (string->list s) (string->list t)) char<? )) (define seen (make-hash))(for* ([s1 states] [s2 states] #:when (string<? s1 s2))    (define c (canon s1 s2))  (cond [(hash-ref seen c (λ() (hash-set! seen c (list s1 s2)) #f))         => (λ(states) (displayln (~v states (list s1 s2))))])) `

Output:

` '("north dakota" "south carolina") '("north carolina" "south dakota") `

## REXX

Code was added to the REXX program to remove dead-end words (state names) that can't possibly be part of
a solution, in particular, words that contain a unique letter (among all the state names).

`/*REXX program  (state name puzzle)  rearranges two state's names ──► two new states.   */!='Alabama,  Alaska, Arizona,  Arkansas, California,    Colorado, Connecticut,       Delaware, Florida, Georgia,',  'Hawaii,   Idaho,  Illinois, Indiana,  Iowa, Kansas,  Kentucky, Louisiana,  Maine, Maryland, Massachusetts,   ',  'Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico,',  'New York, North Carolina,  North Dakota,  Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina,',  'South Dakota,  Tennessee,  Texas,  Utah,  Vermont,   Virginia, Washington, West Virginia, Wisconsin,  Wyoming'parse arg xtra;    !=! ',' xtra                     /*add optional  (fictitious)  names.*/@abcU= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';     !=space(!) /*!: the state list, no extra blanks*/deads=0;    dups=0;    L.=0;     !orig=!;      @@.= /*initialize some REXX variables.   */z=0                                                 /* [↑]  elide  dend─end (DE) states.*/    do de=0  for 2;              !=!orig            /*use original state list for each. */    @.=        do states=0  by 0  until !==''              /*parse until the cows come home.   */        parse var !  x  ','  !;       x=space(x)    /*remove all blanks from state name.*/        if @.x\==''  then do                        /*was state was already specified?  */                          if de  then iterate       /*don't tell error if doing 2nd pass*/                          dups=dups + 1             /*bump the duplicate counter.       */                          say 'ignoring the 2nd naming of the state: '    x;      iterate                          end        @.x=x                                       /*indicate this state name exists.  */        y=space(x,0);    upper y;    yLen=length(y) /*get upper name with no spaces; Len*/        if de  then do                              /*Is the firstt pass?  Then process.*/                         do j=1  for yLen           /*see if it's a dead─end state name.*/                         _=substr(y, j, 1)          /* _:  is some state name character.*/                         if L._ \== 1  then iterate /*Count ¬ 1?  Then state name is OK.*/                         say 'removing dead─end state  [which has the letter '   _"]: "  x                         deads=deads + 1            /*bump number of dead─ends states.  */                         iterate states             /*go and process another state name.*/                         end   /*j*/                    z=z+1                           /*bump counter of the state names.  */                    #.z=y;  ##.z=x                  /*assign state name;  also original.*/                    end               else do k=1  for yLen                /*inventorize letters of state name.*/                    _=substr(y,k,1);   L._=L._ + 1  /*count each letter in state name.  */                    end   /*k*/        end   /*states*/                            /*the index STATES isn't incremented*/    end       /*de*/call list                                           /*list state names in order given.  */                   say z     'state name's(z)                "are useable."if dups \==0  then say dups  'duplicate of a state's(dups)   'ignored.'if deads\==0  then say deads 'dead─end state's(deads)        'deleted.'sols=0                                              /*number of solutions found (so far)*/say                                                 /*[↑]  look for mix and match states*/     do j=1  for z     /* ◄──────────────────────────────────────────────────────────┐  */       do k=j+1  to z                               /* ◄─── state K,  state J  ►─────┘  */       if #.j<<#.k  then JK=#.j || #.k              /*is the state in the proper order? */                    else JK=#.k || #.j              /*No,  then use the new state name. */         do m=1  for z; if m==j | m==k then iterate /*no state  overlaps  are allowed.  */         if verify(#.m, jk) \== 0      then iterate /*is this state name even possible? */         nJK=elider(JK, #.m)                        /*a new JK, after eliding #.m chars.*/           do n=m+1  to z; if n==j | n==k then iterate      /*no overlaps are allowed.  */           if verify(#.n, nJK) \== 0      then iterate      /*is it possible?           */           if elider(nJK, #.n) \== ''     then iterate      /*any leftovers letters?    */           if #.m<<#.n  then MN=#.m || #.n                  /*is it in the proper order?*/                        else MN=#.n || #.m                  /*we found a new state name.*/           if @@.JK.MN\=='' | @@.MN.JK\==""  then iterate   /*was it done before?       */           say 'found: '      ##.j','     ##.k       "  ───►  "        ##.m','      ##.n           @@.JK.MN=1                            /*indicate this solution as being found*/           sols=sols+1                           /*bump the number of solutions found.  */           end   /*n*/         end     /*m*/       end       /*k*/     end         /*j*/say                                              /*show a blank line for easier reading.*/if sols==0  then sols= 'No'                      /*use mucher gooder (sic) Englishings. */say sols  'solution's(sols)    "found."          /*display the number of solutions found*/exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/elider: parse arg hay,pins                       /*remove letters (pins) from haystack. */                            do e=1  for length(pins);    p=pos( substr( pins, e, 1),  hay)                            if p==0  then iterate   ;    hay=overlay(' ', hay, p)                            end   /*e*/          /* [↑]  remove a letter from haystack. */        return space(hay, 0)                     /*remove blanks from the haystack.     *//*──────────────────────────────────────────────────────────────────────────────────────*/list:   say;   do i=1  for z;   say right(i, 9)   ##.i;   end;            say;      returns:      if arg(1)==1  then return arg(3);    return word(arg(2) 's', 1)    /*pluralizer.*/`
output   when using the default input:
```removing dead─end state  [which has the letter  Z]:  Arizona
removing dead─end state  [which has the letter  J]:  New Jersey

1 Alabama
3 Arkansas
4 California
6 Connecticut
7 Delaware
8 Florida
9 Georgia
10 Hawaii
11 Idaho
12 Illinois
13 Indiana
14 Iowa
15 Kansas
16 Kentucky
17 Louisiana
18 Maine
19 Maryland
20 Massachusetts
21 Michigan
22 Minnesota
23 Mississippi
24 Missouri
25 Montana
28 New Hampshire
29 New Mexico
30 New York
31 North Carolina
32 North Dakota
33 Ohio
34 Oklahoma
35 Oregon
36 Pennsylvania
37 Rhode Island
38 South Carolina
39 South Dakota
40 Tennessee
41 Texas
42 Utah
43 Vermont
44 Virginia
45 Washington
46 West Virginia
47 Wisconsin
48 Wyoming

48 state names are useable.
2 dead─end states deleted.

found:  North Carolina, South Dakota   ───►   North Dakota, South Carolina

1 solution found.
```

output when using the input of:   New Kory, Wen Kory, York New, Kory New, New Kory

```ignoring the 2nd naming of the state:  New Kory
removing dead─end state  [which has the letter  Z]:  Arizona
removing dead─end state  [which has the letter  J]:  New Jersey

1 Alabama
3 Arkansas
4 California
6 Connecticut
7 Delaware
8 Florida
9 Georgia
10 Hawaii
11 Idaho
12 Illinois
13 Indiana
14 Iowa
15 Kansas
16 Kentucky
17 Louisiana
18 Maine
19 Maryland
20 Massachusetts
21 Michigan
22 Minnesota
23 Mississippi
24 Missouri
25 Montana
28 New Hampshire
29 New Mexico
30 New York
31 North Carolina
32 North Dakota
33 Ohio
34 Oklahoma
35 Oregon
36 Pennsylvania
37 Rhode Island
38 South Carolina
39 South Dakota
40 Tennessee
41 Texas
42 Utah
43 Vermont
44 Virginia
45 Washington
46 West Virginia
47 Wisconsin
48 Wyoming
49 New Kory
50 Wen Kory
51 York New
52 Kory New

52 state names are useable.
1 duplicate of a state ignored.
2 dead─end states deleted.

found:  New York, New Kory   ───►   Wen Kory, York New
found:  New York, New Kory   ───►   Wen Kory, Kory New
found:  New York, New Kory   ───►   York New, Kory New
found:  New York, Wen Kory   ───►   New Kory, York New
found:  New York, Wen Kory   ───►   New Kory, Kory New
found:  New York, Wen Kory   ───►   York New, Kory New
found:  New York, York New   ───►   New Kory, Wen Kory
found:  New York, York New   ───►   New Kory, Kory New
found:  New York, York New   ───►   Wen Kory, Kory New
found:  New York, Kory New   ───►   New Kory, Wen Kory
found:  New York, Kory New   ───►   New Kory, York New
found:  New York, Kory New   ───►   Wen Kory, York New
found:  North Carolina, South Dakota   ───►   North Dakota, South Carolina
found:  New Kory, Wen Kory   ───►   York New, Kory New
found:  New Kory, York New   ───►   Wen Kory, Kory New
found:  New Kory, Kory New   ───►   Wen Kory, York New

16 solutions found.
```

## Ruby

Translation of: Tcl
`require 'set' # 26 prime numbersPrimes = [ 2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37, 41,           43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]States = [    "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado",    "Connecticut", "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",    "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine",    "Maryland", "Massachusetts", "Michigan", "Minnesota", "Mississippi",    "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey",    "New Mexico", "New York", "North Carolina", "North Dakota", "Ohio",    "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island", "South Carolina",    "South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia",    "Washington", "West Virginia", "Wisconsin", "Wyoming"] def print_answer(states)  # find goedel numbers for all pairs of states  goedel = lambda {|str| str.chars.map {|c| Primes[c.ord - 65]}.reduce(:*)}  pairs = Hash.new {|h,k| h[k] = Array.new}  map = states.uniq.map {|state| [state, goedel[state.upcase.delete("^A-Z")]]}  map.combination(2) {|(s1,g1), (s2,g2)| pairs[g1 * g2] << [s1, s2]}   # find pairs without duplicates  result = []  pairs.values.select {|val| val.length > 1}.each do |list_of_pairs|    list_of_pairs.combination(2) do |pair1, pair2|      if Set[*pair1, *pair2].length == 4        result << [pair1, pair2]      end    end  end   # output the results  result.each_with_index do |(pair1, pair2), i|     puts "%d\t%s\t%s" % [i+1, pair1.join(', '), pair2.join(', ')]  endend puts "real states only"print_answer(States)puts ""puts "with fictional states"print_answer(States + ["New Kory", "Wen Kory", "York New", "Kory New", "New Kory"])`

outputs

```real states only
1       North Carolina, South Dakota    North Dakota, South Carolina

with fictional states
1       New York, New Kory      Wen Kory, York New
2       New York, New Kory      Wen Kory, Kory New
3       New York, New Kory      York New, Kory New
4       New York, Wen Kory      New Kory, York New
5       New York, Wen Kory      New Kory, Kory New
6       New York, Wen Kory      York New, Kory New
7       New York, York New      New Kory, Wen Kory
8       New York, York New      New Kory, Kory New
9       New York, York New      Wen Kory, Kory New
10      New York, Kory New      New Kory, Wen Kory
11      New York, Kory New      New Kory, York New
12      New York, Kory New      Wen Kory, York New
13      New Kory, Wen Kory      York New, Kory New
14      New Kory, York New      Wen Kory, Kory New
15      New Kory, Kory New      Wen Kory, York New
16      North Carolina, South Dakota    North Dakota, South Carolina```

## Scala

`object StateNamePuzzle extends App {  // Logic:  def disjointPairs(pairs: Seq[Set[String]]) =    for (a <- pairs; b <- pairs; if a.intersect(b).isEmpty) yield Set(a,b)   def anagramPairs(words: Seq[String]) =    (for (a <- words; b <- words; if a != b) yield Set(a, b)) // all pairs    .groupBy(_.mkString.toLowerCase.replaceAll("[^a-z]", "").sorted) // grouped anagram pairs    .values.map(disjointPairs).flatMap(_.distinct) // unique non-overlapping anagram pairs   // Test:  val states = List(    "New Kory", "Wen Kory", "York New", "Kory New", "New Kory",    "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado",    "Connecticut", "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",    "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine",    "Maryland", "Massachusetts", "Michigan", "Minnesota", "Mississippi",    "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey",    "New Mexico", "New York", "North Carolina", "North Dakota", "Ohio",    "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island", "South Carolina",    "South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia",    "Washington", "West Virginia", "Wisconsin", "Wyoming"  )   println(anagramPairs(states).map(_.map(_ mkString " + ") mkString " = ") mkString "\n")}`
Output:
```New Kory + Wen Kory = York New + Kory New
New Kory + Wen Kory = York New + New York
New Kory + Wen Kory = Kory New + New York
New Kory + York New = Wen Kory + Kory New
New Kory + York New = Wen Kory + New York
New Kory + York New = Kory New + New York
New Kory + Kory New = Wen Kory + York New
New Kory + Kory New = Wen Kory + New York
New Kory + Kory New = York New + New York
New Kory + New York = Wen Kory + York New
New Kory + New York = Wen Kory + Kory New
New Kory + New York = York New + Kory New
Wen Kory + York New = Kory New + New York
Wen Kory + Kory New = York New + New York
Wen Kory + New York = York New + Kory New
North Carolina + South Dakota = North Dakota + South Carolina```

## Tcl

`package require Tcl 8.5# Gödel number generatorproc goedel s {    set primes {	2 3 5 7 11 13 17 19 23 29 31 37 41	43 47 53 59 61 67 71 73 79 83 89 97 101    }    set n 1    foreach c [split [string toupper \$s] ""] {	if {![string is alpha \$c]} continue	set n [expr {\$n * [lindex \$primes [expr {[scan \$c %c] - 65}]]}]    }    return \$n}# Calculates the pairs of statesproc groupStates {stateList} {    set stateList [lsort -unique \$stateList]    foreach state1 \$stateList {	foreach state2 \$stateList {	    if {\$state1 >= \$state2} continue	    dict lappend group [goedel \$state1\$state2] [list \$state1 \$state2]	}    }    foreach g [dict values \$group] {	if {[llength \$g] > 1} {	    foreach p1 \$g {		foreach p2 \$g {		    if {\$p1 < \$p2 && [unshared \$p1 \$p2]} {			lappend result [list \$p1 \$p2]		    }		}	    }	}    }    return \$result}proc unshared args {    foreach p \$args {	foreach a \$p {incr s(\$a)}    }    expr {[array size s] == [llength \$args]*2}}# Pretty printer for state name pair listsproc printPairs {title groups} {    foreach group \$groups {	puts "\$title Group #[incr count]"	foreach statePair \$group {	    puts "\t[join \$statePair {, }]"	}    }} set realStates {    "Alabama" "Alaska" "Arizona" "Arkansas" "California" "Colorado"    "Connecticut" "Delaware" "Florida" "Georgia" "Hawaii" "Idaho" "Illinois"    "Indiana" "Iowa" "Kansas" "Kentucky" "Louisiana" "Maine" "Maryland"    "Massachusetts" "Michigan" "Minnesota" "Mississippi" "Missouri" "Montana"    "Nebraska" "Nevada" "New Hampshire" "New Jersey" "New Mexico" "New York"    "North Carolina" "North Dakota" "Ohio" "Oklahoma" "Oregon" "Pennsylvania"    "Rhode Island" "South Carolina" "South Dakota" "Tennessee" "Texas" "Utah"    "Vermont" "Virginia" "Washington" "West Virginia" "Wisconsin" "Wyoming"}printPairs "Real States" [groupStates \$realStates]set falseStates {    "New Kory" "Wen Kory" "York New" "Kory New" "New Kory"}printPairs "Real and False States" [groupStates [concat \$realStates \$falseStates]]`

Output:

```Real States Group #1
North Carolina, South Dakota
North Dakota, South Carolina
Real and False States Group #1
Kory New, New Kory
New York, Wen Kory
Real and False States Group #2
Kory New, New Kory
New York, York New
Real and False States Group #3
Kory New, New Kory
Wen Kory, York New
Real and False States Group #4
Kory New, New York
New Kory, Wen Kory
Real and False States Group #5
Kory New, New York
New Kory, York New
Real and False States Group #6
Kory New, New York
Wen Kory, York New
Real and False States Group #7
Kory New, Wen Kory
New Kory, New York
Real and False States Group #8
Kory New, Wen Kory
New Kory, York New
Real and False States Group #9
Kory New, Wen Kory
New York, York New
Real and False States Group #10
Kory New, York New
New Kory, New York
Real and False States Group #11
Kory New, York New
New Kory, Wen Kory
Real and False States Group #12
Kory New, York New
New York, Wen Kory
Real and False States Group #13
New Kory, New York
Wen Kory, York New
Real and False States Group #14
New Kory, Wen Kory
New York, York New
Real and False States Group #15
New Kory, York New
New York, Wen Kory
Real and False States Group #16
North Carolina, South Dakota
North Dakota, South Carolina
```

## zkl

Translation of: Python
`#<<<  // here docstates:=("Alabama, Alaska, Arizona, Arkansas,   California, Colorado, Connecticut, Delaware, Florida,   Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas,   Kentucky, Louisiana, Maine, Maryland, Massachusetts,   Michigan, Minnesota, Mississippi, Missouri, Montana,   Nebraska, Nevada, New Hampshire, New Jersey, New Mexico,   New York, North Carolina, North Dakota, Ohio, Oklahoma,   Oregon, Pennsylvania, Rhode Island, South Carolina,   South Dakota, Tennessee, Texas, Utah, Vermont, Virginia,   Washington, West Virginia, Wisconsin, Wyoming"   /* Uncomment the next line for the fake states. */   # ",New Kory, Wen Kory, York New, Kory New, New Kory"#<<<).split(",").apply("strip"); smap:=Dictionary();Utils.Helpers.pickNFrom(2,states).apply2('wrap(ss){ // 1225 combinations   key:=(ss.concat()).toLower().sort()-" ";   smap[key]=smap.find(key,List()).append(ss.concat(" + "));}); foreach pairs in (smap.values){ // 1224 keys//    pairs=Utils.Helpers.listUnique(pairs);  // eliminate dups    if(pairs.len()>1)        println(pairs.concat(" = ")) }`
Output:
```North Carolina + South Dakota = North Dakota + South Carolina
```