Shoelace formula for polygonal area: Difference between revisions

m
→‎{{header|Wren}}: Changed to Wren S/H
(New draft task and Python example.)
 
m (→‎{{header|Wren}}: Changed to Wren S/H)
 
(134 intermediate revisions by 53 users not shown)
Line 1:
{{draft task}}
Given the <code>n + 1</code> vertices <code>x[0], y[0] .. x[N], y[N]</code> of a simple polygon described in a clockwise direction, then the polygon's area can be calculated by:
<pre>
abs( (sum(x[0]*y[1] + ... x[n-1]*y[n]) + x[N]*y[0]) -
(sum(x[1]*y[0] + ... x[n]*y[n-1]) + x[0]*y[N])
) / 2</pre>
(Where <code>abs</code> returns the absolute value)
 
;Task:
Write a function/method/routine to use the the [[wp:Shoelace formula|Shoelace formula]] to calculate the area of the polygon described by the ordered points:
<big> (3,4), (5,11), (12,8), (9,5), and (5,6) </big>
 
Write a function/method/routine to use the the [[wp:Shoelace formula]] to calculate the area of the polygon described by the ordered points:
(3,4), (5,11), (12,8), (9,5), and (5,6)
 
Show the answer here, on this page.
<br><br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F area_by_shoelace(x, y)
=={{Python}}==
R abs(sum(zip(x, y[1..] [+] y[0.<1]).map((i, j) -> i * j))
<lang python>>>> def area_by_shoelace(x, y):
-sum(zip(x[1..] [+] x[0.<1], y).map((i, j) -> i * j))) / 2
 
V points = [(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)]
V x = points.map(p -> p[0])
V y = points.map(p -> p[1])
 
print(area_by_shoelace(x, y))</syntaxhighlight>
 
{{out}}
<pre>
30
</pre>
 
=={{header|360 Assembly}}==
<syntaxhighlight lang="360asm">* SHOELACE 25/02/2019
SHOELACE CSECT
USING SHOELACE,R15 base register
MVC SUPS(8),POINTS x(nt+1)=x(1); y(nt+1)=y(1)
LA R9,0 area=0
LA R7,POINTS @x(1)
LA R6,NT do i=1 to nt
LOOP L R3,0(R7) x(i)
M R2,12(R7) *y(i+1)
L R5,8(R7) x(i+1)
M R4,4(R7) *y(i)
SR R3,R5 x(i)*y(i+1)-x(i+1)*y(i)
AR R9,R3 area=area+x(i)*y(i+1)-x(i+1)*y(i)
LA R7,8(R7) @x(i++)
BCT R6,LOOP enddo
LPR R9,R9 area=abs(area)
SRA R9,1 area=area/2
XDECO R9,PG edit area
XPRNT PG,L'PG print area
BR R14 return to caller
NT EQU (SUPS-POINTS)/8 nt number of points
POINTS DC F'3',F'4',F'5',F'11',F'12',F'8',F'9',F'5',F'5',F'6'
SUPS DS 2F x(nt+1),y(nt+1)
PG DC CL12' ' buffer
REGEQU
END SHOELACE</syntaxhighlight>
{{out}}
<pre>
30
</pre>
 
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
{{libheader|Action! Real Math}}
<syntaxhighlight lang="action!">INCLUDE "H6:REALMATH.ACT"
 
PROC Area(INT ARRAY xs,ys BYTE count REAL POINTER res)
BYTE i,next
REAL x1,y1,x2,y2,tmp1,tmp2
 
IntToReal(0,res)
IntToReal(xs(0),x1) IntToReal(ys(0),y1)
FOR i=0 TO count-1
DO
next=i+1
IF next=count THEN
next=0
FI
IntToReal(xs(next),x2) IntToReal(ys(next),y2)
 
RealMult(x1,y2,tmp1)
RealAdd(res,tmp1,tmp2)
RealMult(x2,y1,tmp1)
RealSub(tmp2,tmp1,res)
 
RealAssign(x2,x1) RealAssign(y2,y1)
OD
RealAbs(res,tmp1)
IntToReal(2,tmp2)
RealDiv(tmp1,tmp2,res)
RETURN
 
PROC PrintPolygon(INT ARRAY xs,ys BYTE count)
BYTE i
 
FOR i=0 TO count-1
DO
PrintF("(%I,%I)",xs(i),ys(i))
IF i<count-1 THEN
Print(", ")
ELSE
PutE()
FI
OD
RETURN
 
PROC Test(INT ARRAY xs,ys BYTE count)
REAL res
 
Area(xs,ys,count,res)
Print("Polygon: ")
PrintPolygon(xs,ys,count)
 
Print("Area: ")
PrintRE(res) PutE()
RETURN
 
PROC Main()
INT ARRAY
xs(5)=[3 5 12 9 5],
ys(5)=[4 11 8 5 6]
 
Put(125) PutE() ;clear screen
 
Test(xs,ys,5)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Shoelace_formula_for_polygonal_area.png Screenshot from Atari 8-bit computer]
<pre>
Polygon: (3,4), (5,11), (12,8), (9,5), (5,6)
Area: 30
</pre>
 
=={{header|Ada}}==
{{works with|Ada|Ada|83}}
 
<syntaxhighlight lang="ada">with Ada.Text_IO;
 
procedure Shoelace_Formula_For_Polygonal_Area
is
type Point is record
x, y : Float;
end record;
type Polygon is array (Positive range <>) of Point;
function Shoelace(input : in Polygon) return Float
is
sum_1 : Float := 0.0;
sum_2 : Float := 0.0;
tmp : constant Polygon := input & input(input'First);
begin
for I in tmp'First .. tmp'Last - 1 loop
sum_1 := sum_1 + tmp(I).x * tmp(I+1).y;
sum_2 := sum_2 + tmp(I+1).x * tmp(I).y;
end loop;
return abs(sum_1 - sum_2) / 2.0;
end Shoelace;
my_polygon : constant Polygon :=
((3.0, 4.0),
(5.0, 11.0),
(12.0, 8.0),
(9.0, 5.0),
(5.0, 6.0));
begin
Ada.Text_IO.Put_Line(Shoelace(my_polygon)'Img);
end Shoelace_Formula_For_Polygonal_Area;</syntaxhighlight>
{{out}}
<pre> 3.00000E+01
</pre>
 
=={{header|ALGOL 60}}==
Optimized version:
'''begin'''
'''comment''' Shoelace formula for polygonal area - Algol 60;
'''real''' '''array''' x[1:33],y[1:33];
'''integer''' i,n;
'''real''' a;
ininteger(0,n);
'''for''' i:=1 '''step''' 1 '''until''' n '''do'''
'''begin'''
inreal(0,x[i]);
inreal(0,y[i])
'''end''';
x[i]:=x[1];
y[i]:=y[1];
a:=0;
'''for''' i:=1 '''step''' 1 '''until''' n '''do'''
a:=a+x[i]*y[i+1]-x[i+1]*y[i];
a:=abs(a/2.);
outreal(1,a)
'''end'''
{{out}}
<pre>
30.00
</pre>
Non-optimized version:
'''begin'''
'''comment''' Shoelace formula for polygonal area - Algol 60;
'''real''' '''array''' x[1:32],y[1:32];
'''integer''' i,j,n;
'''real''' a;
ininteger(0,n);
'''for''' i:=1 '''step''' 1 '''until''' n '''do'''
'''begin'''
inreal(0,x[i]); inreal(0,y[i])
'''end''';
a:=0;
'''for''' i:=1 '''step''' 1 '''until''' n '''do'''
'''begin'''
j:='''if''' i=n '''then''' 1 '''else''' i+1;
a:=a+x[i]*y[j]-x[j]*y[i]
'''end''';
a:=abs(a/2.);
outreal(1,a)
'''end'''
{{out}}
<pre>
30.00
</pre>
 
=={{header|ALGOL 68}}==
<syntaxhighlight lang="algol68">BEGIN
# returns the area of the polygon defined by the points p using the Shoelace formula #
OP AREA = ( [,]REAL p )REAL:
BEGIN
[,]REAL points = p[ AT 1, AT 1 ]; # normalise array bounds to start at 1 #
IF 2 UPB points /= 2 THEN
# the points do not have 2 coordinates #
-1
ELSE
REAL result := 0;
INT n = 1 UPB points;
IF n > 1 THEN
# there at least two points #
[]REAL x = points[ :, 1 ];
[]REAL y = points[ :, 2 ];
FOR i TO 1 UPB points - 1 DO
result +:= x[ i ] * y[ i + 1 ];
result -:= x[ i + 1 ] * y[ i ]
OD;
result +:= x[ n ] * y[ 1 ];
result -:= x[ 1 ] * y[ n ]
FI;
( ABS result ) / 2
FI
END # AREA # ;
 
# test case as per the task #
print( ( fixed( AREA [,]REAL( ( 3.0, 4.0 ), ( 5.0, 11.0 ), ( 12.0, 8.0 ), ( 9.0, 5.0 ), ( 5.0, 6.0 ) ), -6, 2 ), newline ) )
END
</syntaxhighlight>
{{out}}
<pre>
30.00
</pre>
 
=={{header|APL}}==
{{works with|Dyalog APL}}
<syntaxhighlight lang="apl">shoelace ← 2÷⍨|∘(((1⊃¨⊢)+.×1⌽2⊃¨⊢)-(1⌽1⊃¨⊢)+.×2⊃¨⊢)</syntaxhighlight>
{{out}}
<pre> shoelace (3 4) (5 11) (12 8) (9 5) (5 6)
30</pre>
 
=={{header|Arturo}}==
<syntaxhighlight lang="arturo">define :point [x,y][]
 
shoelace: function [pts][
[leftSum, rightSum]: 0
 
loop 0..dec size pts 'i [
j: (i + 1) % size pts
'leftSum + pts\[i]\x * pts\[j]\y
'rightSum + pts\[j]\x * pts\[i]\y
]
return 0.5 * abs leftSum - rightSum
]
 
points: @[
to :point [3.0, 4.0]
to :point [5.0, 11.0]
to :point [12.0, 8.0]
to :point [9.0, 5.0]
to :point [5.0, 6.0]
]
 
print shoelace points</syntaxhighlight>
 
{{out}}
 
<pre>30.0</pre>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">V := [[3, 4], [5, 11], [12, 8], [9, 5], [5, 6]]
 
n := V.Count()
for i, O in V
Sum += V[i, 1] * V[i+1, 2] - V[i+1, 1] * V[i, 2]
MsgBox % result := Abs(Sum += V[n, 1] * V[1, 2] - V[1, 1] * V[n, 2]) / 2</syntaxhighlight>
{{out}}
<pre>30.000000</pre>
 
=={{header|BASIC256}}==
<syntaxhighlight lang="basic256">arraybase 1
dim array = {{3,4}, {5,11}, {12,8}, {9,5}, {5,6}}
 
print "The area of the polygon = "; Shoelace(array)
end
 
function Shoelace(p)
sum = 0
for i = 1 to p[?][] -1
sum += p[i][1] * p[i +1][2]
sum -= p[i +1][1] * p[i][2]
next i
sum += p[i][1] * p[1][2]
sum -= p[1][1] * p[i][2]
return abs(sum) \ 2
end function</syntaxhighlight>
 
=={{header|C}}==
Reads the points from a file whose name is supplied via the command line, prints out usage if invoked incorrectly.
<syntaxhighlight lang="c">
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
 
typedef struct{
double x,y;
}point;
 
double shoelace(char* inputFile){
int i,numPoints;
double leftSum = 0,rightSum = 0;
point* pointSet;
FILE* fp = fopen(inputFile,"r");
fscanf(fp,"%d",&numPoints);
pointSet = (point*)malloc((numPoints + 1)*sizeof(point));
for(i=0;i<numPoints;i++){
fscanf(fp,"%lf %lf",&pointSet[i].x,&pointSet[i].y);
}
fclose(fp);
pointSet[numPoints] = pointSet[0];
for(i=0;i<numPoints;i++){
leftSum += pointSet[i].x*pointSet[i+1].y;
rightSum += pointSet[i+1].x*pointSet[i].y;
}
free(pointSet);
return 0.5*fabs(leftSum - rightSum);
}
 
int main(int argC,char* argV[])
{
if(argC==1)
printf("\nUsage : %s <full path of polygon vertices file>",argV[0]);
else
printf("The polygon area is %lf square units.",shoelace(argV[1]));
return 0;
}
</syntaxhighlight>
Input file, first line specifies number of points followed by the ordered vertices set with one vertex on each line.
<pre>
5
3 4
5 11
12 8
9 5
5 6
</pre>
Invocation and output :
<pre>
C:\rosettaCode>shoelace.exe polyData.txt
The polygon area is 30.000000 square units.
</pre>
 
=={{header|C sharp|C#}}==
{{trans|Java}}
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
 
namespace ShoelaceFormula {
using Point = Tuple<double, double>;
 
class Program {
static double ShoelaceArea(List<Point> v) {
int n = v.Count;
double a = 0.0;
for (int i = 0; i < n - 1; i++) {
a += v[i].Item1 * v[i + 1].Item2 - v[i + 1].Item1 * v[i].Item2;
}
return Math.Abs(a + v[n - 1].Item1 * v[0].Item2 - v[0].Item1 * v[n - 1].Item2) / 2.0;
}
 
static void Main(string[] args) {
List<Point> v = new List<Point>() {
new Point(3,4),
new Point(5,11),
new Point(12,8),
new Point(9,5),
new Point(5,6),
};
double area = ShoelaceArea(v);
Console.WriteLine("Given a polygon with vertices [{0}],", string.Join(", ", v));
Console.WriteLine("its area is {0}.", area);
}
}
}</syntaxhighlight>
{{out}}
<pre>Given a polygon with vertices [(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)],
its area is 30.</pre>
 
=={{header|C++}}==
{{trans|D}}
<syntaxhighlight lang="cpp">#include <iostream>
#include <tuple>
#include <vector>
 
using namespace std;
 
double shoelace(vector<pair<double, double>> points) {
double leftSum = 0.0;
double rightSum = 0.0;
 
for (int i = 0; i < points.size(); ++i) {
int j = (i + 1) % points.size();
leftSum += points[i].first * points[j].second;
rightSum += points[j].first * points[i].second;
}
 
return 0.5 * abs(leftSum - rightSum);
}
 
void main() {
vector<pair<double, double>> points = {
make_pair( 3, 4),
make_pair( 5, 11),
make_pair(12, 8),
make_pair( 9, 5),
make_pair( 5, 6),
};
 
auto ans = shoelace(points);
cout << ans << endl;
}</syntaxhighlight>
{{out}}
<pre>30</pre>
 
=={{header|Cowgol}}==
<syntaxhighlight lang="cowgol">include "cowgol.coh";
 
typedef Coord is uint16; # floating point types are not supported
 
record Point is
x: Coord;
y: Coord;
end record;
 
sub shoelace(p: [Point], length: intptr): (area: Coord) is
var left: Coord := 0;
var right: Coord := 0;
var y0 := p.y;
var x0 := p.x;
while length > 1 loop
var xp := p.x;
var yp := p.y;
p := @next p;
left := left + xp * p.y;
right := right + yp * p.x;
length := length - 1;
end loop;
left := left + y0 * p.x;
right := right + x0 * p.y;
if left < right then
area := right - left;
else
area := left - right;
end if;
area := area / 2;
end sub;
 
var polygon: Point[] := {{3,4},{5,11},{12,8},{9,5},{5,6}};
print_i16(shoelace(&polygon[0], @sizeof polygon));
print_nl();</syntaxhighlight>
{{out}}
<pre>30</pre>
=={{header|D}}==
<syntaxhighlight lang="d">import std.stdio;
 
Point[] pnts = [{3,4}, {5,11}, {12,8}, {9,5}, {5,6}];
 
void main() {
auto ans = shoelace(pnts);
writeln(ans);
}
 
struct Point {
real x, y;
}
 
real shoelace(Point[] pnts) {
real leftSum = 0, rightSum = 0;
 
for (int i=0; i<pnts.length; ++i) {
int j = (i+1) % pnts.length;
leftSum += pnts[i].x * pnts[j].y;
rightSum += pnts[j].x * pnts[i].y;
}
 
import std.math : abs;
return 0.5 * abs(leftSum - rightSum);
}
 
unittest {
auto ans = shoelace(pnts);
assert(ans == 30);
}</syntaxhighlight>
{{out}}
<pre>30</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}
In keeping with the principles of modularity and reusability, the problem has been broken down into subroutines that can process any polygon. In other words, the subroutines don't just solve the area of one polygon; they can find the area of any polygon.
 
<syntaxhighlight lang="Delphi">
{Create a 2D vector type}
 
type T2DVector = record
X, Y: double;
end;
 
{Test polygon}
 
var Polygon: array [0..4] of T2DVector =
((X:3; Y:4), (X:5; Y:11), (X:12; Y:8), (X:9; Y:5), (X:5; Y:6));
 
 
function GetPolygonArea(Polygon: array of T2DVector): double;
{Return the area of the polygon }
{K = [(x1y2 + x2y3 + x3y4 + ... + xny1) - (x2y1 + x3y2 + x4y3 + ... + x1yn)]/2}
var I,Inx: integer;
var P1,P2: T2DVector;
var Sum1,Sum2: double;
begin
Result:=0;
Sum1:=0; Sum2:=0;
for I:=0 to Length(Polygon)-1 do
begin
{Vector back to the beginning}
if I=(Length(Polygon)-1) then Inx:=0
else Inx:=I+1;
P1:=Polygon[I];
P2:=Polygon[Inx];
Sum1:=Sum1 + P1.X * P2.Y;
Sum2:=Sum2 + P2.X * P1.Y;
end;
Result:=abs((Sum1 - Sum2)/2);
end;
 
procedure ShowPolygon(Poly: array of T2DVector; Memo: TMemo);
var I: integer;
var S: string;
begin
S:='';
for I:=0 to High(Poly) do
S:=S+Format('(%2.1F, %2.1F) ',[Poly[I].X, Poly[I].Y]);
Memo.Lines.Add(S);
end;
 
 
procedure ShowPolygonArea(Memo: TMemo);
var Area: double;
begin
ShowPolygon(Polygon,Memo);
Area:=GetPolygonArea(Polygon);
Memo.Lines.Add('Area: '+FloatToStrF(Area,ffFixed,18,2));
end;
 
 
</syntaxhighlight>
{{out}}
<pre>
(3.0, 4.0) (5.0, 11.0) (12.0, 8.0) (9.0, 5.0) (5.0, 6.0)
Area: 30.00
Elapsed Time: 3.356 ms.
</pre>
 
 
=={{header|EasyLang}}==
<syntaxhighlight lang="easylang">
proc shoelace . p[][] res .
sum = 0
for i = 1 to len p[][] - 1
sum += p[i][1] * p[i + 1][2]
sum -= p[i + 1][1] * p[i][2]
.
sum += p[i][1] * p[1][2]
sum -= p[1][1] * p[i][2]
res = abs sum / 2
.
data[][] = [ [ 3 4 ] [ 5 11 ] [ 12 8 ] [ 9 5 ] [ 5 6 ] ]
shoelace data[][] res
print res
</syntaxhighlight>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">
def shoelace(points) do
points
|> Enum.reduce({0, List.last(points)}, fn {x1, y1}, {sum, {x0, y0}} ->
{sum + (y0 * x1 - x0 * y1), {x1, y1}}
end)
|> elem(0)
|> div(2)
end
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
<syntaxhighlight lang="fsharp">
// Shoelace formula for area of polygon. Nigel Galloway: April 11th., 2018
let fN(n::g) = abs(List.pairwise(n::g@[n])|>List.fold(fun n ((nα,gα),(nβ,gβ))->n+(nα*gβ)-(gα*nβ)) 0.0)/2.0
printfn "%f" (fN [(3.0,4.0); (5.0,11.0); (12.0,8.0); (9.0,5.0); (5.0,6.0)])</syntaxhighlight>
{{out}}
<pre>
30.000000
</pre>
 
=={{header|Factor}}==
By constructing a <code>circular</code> from a sequence, we can index elements beyond the length of the sequence, wrapping around to the beginning. We can also change the beginning of the sequence to an arbitrary index. This allows us to use <code>2map</code> to cleanly obtain a sum.
<syntaxhighlight lang="factor">USING: circular kernel math prettyprint sequences ;
IN: rosetta-code.shoelace
 
CONSTANT: input { { 3 4 } { 5 11 } { 12 8 } { 9 5 } { 5 6 } }
 
: align-pairs ( pairs-seq -- seq1 seq2 )
<circular> dup clone [ 1 ] dip
[ change-circular-start ] keep ;
 
: shoelace-sum ( seq1 seq2 -- n )
[ [ first ] [ second ] bi* * ] 2map sum ;
 
: shoelace-area ( pairs-seq -- area )
[ align-pairs ] [ align-pairs swap ] bi
[ shoelace-sum ] 2bi@ - abs 2 / ;
 
input shoelace-area .</syntaxhighlight>
{{out}}
<pre>
30
</pre>
 
=={{header|Fortran}}==
===Fortran 90===
Except for the use of "END FUNCTION ''name'' instead of just END, and the convenient function SUM with array span expressions (so SUM(P) rather than a DO-loop to sum the elements of array P), both standardised with F90, this would be acceptable to F66, which introduced complex number arithmetic. Otherwise, separate X and Y arrays would be needed, but complex numbers seemed convenient seeing as (x,y) pairs are involved. But because the MODULE facility of F90 has not been used, routines invoking functions must declare the type of the function names, especially if the default types are unsuitable, as here. In function AREA, the x and y parts are dealt with together, but in AREASL they might be better as separate arrays, thus avoiding the DIMAG and DBLE functions to extract the x and y parts. Incidentally, the x and y parts can be interchanged and the calculation still works. Comparing the two resulting areas might give some indication of their accuracy.
 
If the MODULE protocol were used, the size of an array parameter is passed as a secret additional parameter accessible via the special function UBOUND, but otherwise it must be passed as an explicit parameter. A quirk of the compiler requires that N be declared before it appears in <code>DOUBLE COMPLEX P(N)</code> so as it is my practice to declare parameters in the order specified, here N comes before P. However, it is not clear whether specifying P(N) does much good (as in array index checking) as an alternative is to specify P(*) meaning merely that the array has one dimension, or even P(12345) to the same effect, with no attention to the actual numerical value. See for example [[Array_length#Fortran]] <syntaxhighlight lang="fortran"> DOUBLE PRECISION FUNCTION AREA(N,P) !Calculates the area enclosed by the polygon P.
C Uses the mid-point rule for integration. Consider the line joining (x1,y1) to (x2,y2)
C The area under that line (down to the x-axis) is the y-span midpoint (y1 + y2)/2 times the width (x2 - x1)
C This is the trapezoidal rule for a single interval, and follows from simple geometry.
C Now consider a sequence of such points heading in the +x direction: each successive interval's area is positive.
C Follow with a sequence of points heading in the -x direction, back to the first point: their areas are all negative.
C The resulting sum is the area below the +x sequence and above the -x sequence: the area of the polygon.
C The point sequence can wobble as it wishes and can meet the other side, but it must not cross itself
c as would be done in a figure 8 drawn with a crossover instead of a meeting.
C A clockwise traversal (as for an island) gives a positive area; use anti-clockwise for a lake.
INTEGER N !The number of points.
DOUBLE COMPLEX P(N) !The points.
DOUBLE COMPLEX PP,PC !Point Previous and Point Current.
DOUBLE COMPLEX W !Polygon centre. Map coordinates usually have large offsets.
DOUBLE PRECISION A !The area accumulator.
INTEGER I !A stepper.
IF (N.LT.3) STOP "Area: at least three points are needed!" !Good grief.
W = (P(1) + P(N/3) + P(2*N/3))/3 !An initial working average.
W = SUM(P(1:N) - W)/N + W !A good working average is the average itself.
A = 0 !The area enclosed by the point sequence.
PC = P(N) - W !The last point is implicitly joined to the first.
DO I = 1,N !Step through the positions.
PP = PC !Previous position.
PC = P(I) - W !Current position.
A = (DIMAG(PC) + DIMAG(PP))*(DBLE(PC) - DBLE(PP)) + A !Area integral component.
END DO !On to the next position.
AREA = A/2 !Divide by two once.
END FUNCTION AREA !The units are those of the points.
 
DOUBLE PRECISION FUNCTION AREASL(N,P) !Area enclosed by polygon P, by the "shoelace" method.
INTEGER N !The number of points.
DOUBLE COMPLEX P(N) !The points.
DOUBLE PRECISION A !A scratchpad.
A = SUM(DBLE(P(1:N - 1)*DIMAG(P(2:N)))) + DBLE(P(N))*DIMAG(P(1))
1 - SUM(DBLE(P(2:N)*DIMAG(P(1:N - 1)))) - DBLE(P(1))*DIMAG(P(N))
AREASL = A/2 !The midpoint formula requires a halving.
END FUNCTION AREASL !Negative for clockwise, positive for anti-clockwise.
 
INTEGER ENUFF
DOUBLE PRECISION AREA,AREASL !The default types are not correct.
DOUBLE PRECISION A1,A2 !Scratchpads, in case of a debugging WRITE within the functions.
PARAMETER (ENUFF = 5) !The specification.
DOUBLE COMPLEX POINT(ENUFF) !Could use X and Y arrays instead.
DATA POINT/(3D0,4D0),(5D0,11D0),(12D0,8D0),(9D0,5D0),(5D0,6D0)/ !"D" for double precision.
 
WRITE (6,*) POINT
A1 = AREA(5,POINT)
A2 = AREASL(5,POINT)
WRITE (6,*) "A=",A1,A2
END</syntaxhighlight>
 
Output: WRITE (6,*) means write to output unit six (standard output) with free-format (the *). Note the different sign convention.
<pre>
(3.00000000000000,4.00000000000000) (5.00000000000000,11.0000000000000)
(12.0000000000000,8.00000000000000) (9.00000000000000,5.00000000000000)
(5.00000000000000,6.00000000000000)
A= 30.0000000000000 -30.0000000000000
</pre>
 
The "shoelace" method came as a surprise to me, as I've always used what I had thought the "obvious" method. Note that function AREA makes one pass through the point data not two, and because map coordinate values often have large offsets a working average is used to reduce the loss of precision. This requires faith that <code>SUM(P(1:N) - W)</code> will be evaluated as written, not as <code>SUM(P(1:N)) - N*W</code> with even greater optimisation opportunity awaiting in cancelling further components of the expression. For example, the New Zealand metric grid has (2510000,6023150) as (Easting,Northing) or (x,y) at its central point of 41°S 173°E rather than (0,0) so seven digits of precision are used up. If anyone wants a copy of a set of point sequences for NZ (30,000 positions, 570KB) with lots of islands and lakes, even a pond in an island in a lake in the North Island...
 
===Fortran I===
In orginal FORTRAN 1957:
<syntaxhighlight lang="fortran">
C SHOELACE FORMULA FOR POLYGONAL AREA
DIMENSION X(33),Y(33)
READ 101,N
DO 1 I=1,N
1 READ 102,X(I),Y(I)
X(I)=X(1)
Y(I)=Y(1)
A=0
DO 2 I=1,N
2 A=A+X(I)*Y(I+1)-X(I+1)*Y(I)
A=ABSF(A/2.)
PRINT 303,A
STOP
101 FORMAT(I2)
102 FORMAT(2F6.2)
303 FORMAT(F10.2)
 
</syntaxhighlight>
{{in}}
<pre>
5
3.00 4.00
5.00 11.00
12.00 8.00
9.00 5.00
5.00 6.00
</pre>
{{out}}
<pre>
30.00
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' version 18-08-2017
' compile with: fbc -s console
 
Type _point_
As Double x, y
End Type
 
Function shoelace_formula(p() As _point_ ) As Double
 
Dim As UInteger i
Dim As Double sum
 
For i = 1 To UBound(p) -1
sum += p(i ).x * p(i +1).y
sum -= p(i +1).x * p(i ).y
Next
sum += p(i).x * p(1).y
sum -= p(1).x * p(i).y
 
Return Abs(sum) / 2
End Function
 
' ------=< MAIN >=------
 
Dim As _point_ p_array(1 To ...) = {(3,4), (5,11), (12,8), (9,5), (5,6)}
 
Print "The area of the polygon ="; shoelace_formula(p_array())
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre>The area of the polygon = 30</pre>
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Shoelace_formula_for_polygonal_area}}
 
'''Solution'''
 
[[File:Fōrmulæ - Shoelace formula 01.png]]
 
'''Test case'''
 
[[File:Fōrmulæ - Shoelace formula 02.png]]
 
[[File:Fōrmulæ - Shoelace formula 03.png]]
 
=={{header|Go}}==
<syntaxhighlight lang="go">package main
 
import "fmt"
 
type point struct{ x, y float64 }
 
func shoelace(pts []point) float64 {
sum := 0.
p0 := pts[len(pts)-1]
for _, p1 := range pts {
sum += p0.y*p1.x - p0.x*p1.y
p0 = p1
}
return sum / 2
}
 
func main() {
fmt.Println(shoelace([]point{{3, 4}, {5, 11}, {12, 8}, {9, 5}, {5, 6}}))
}</syntaxhighlight>
{{out}}
<pre>
30
</pre>
 
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">import Data.Bifunctor (bimap)
 
----------- SHOELACE FORMULA FOR POLYGONAL AREA ----------
 
-- The area of a polygon formed by
-- the list of (x, y) coordinates.
 
shoelace :: [(Double, Double)] -> Double
shoelace =
let calcSums ((x, y), (a, b)) = bimap (x * b +) (a * y +)
in (/ 2)
. abs
. uncurry (-)
. foldr calcSums (0, 0)
. (<*>) zip (tail . cycle)
 
--------------------------- TEST -------------------------
main :: IO ()
main =
print $
shoelace [(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)]</syntaxhighlight>
{{out}}
<pre>30.0</pre>
 
=={{header|J}}==
 
Implementation:
 
<syntaxhighlight lang="j">shoelace=:verb define
0.5*|+/((* 1&|.)/ - (* _1&|.)/)|:y
)</syntaxhighlight>
 
Task example:
 
<syntaxhighlight lang="j"> shoelace 3 4,5 11,12 8,9 5,:5 6
30</syntaxhighlight>
 
Exposition:
 
We start with our list of coordinate pairs
 
<syntaxhighlight lang="j"> 3 4,5 11,12 8,9 5,:5 6
3 4
5 11
12 8
9 5
5 6</syntaxhighlight>
 
But the first thing we do is transpose them so that x coordinates and y coordinates are the two items we are working with:
 
<syntaxhighlight lang="j"> |:3 4,5 11,12 8,9 5,:5 6
3 5 12 9 5
4 11 8 5 6</syntaxhighlight>
 
We want to rotate the y list by one (in each direction) and multiply the x list items by the corresponding y list items. Something like this, for example:
 
<syntaxhighlight lang="j"> 3 5 12 9 5* 1|.4 11 8 5 6
33 40 60 54 20</syntaxhighlight>
 
Or, rephrased:
 
<syntaxhighlight lang="j"> (* 1&|.)/|:3 4,5 11,12 8,9 5,:5 6
33 40 60 54 20</syntaxhighlight>
 
We'll be subtracting what we get when we rotate in the other direction, which looks like this:
 
<syntaxhighlight lang="j"> ((* 1&|.)/ - (* _1&|.)/)|:3 4,5 11,12 8,9 5,:5 6
15 20 _72 _18 _5</syntaxhighlight>
 
Finally, we add up that list, take the absolute value (there are contexts where signed area is interesting - for example, some graphics application - but that was not a part of this task) and divide that by 2.
 
=={{header|Java}}==
{{trans|Kotlin}}
{{works with|Java|9}}
<syntaxhighlight lang="java">import java.util.List;
 
public class ShoelaceFormula {
private static class Point {
int x, y;
 
Point(int x, int y) {
this.x = x;
this.y = y;
}
 
@Override
public String toString() {
return String.format("(%d, %d)", x, y);
}
}
 
private static double shoelaceArea(List<Point> v) {
int n = v.size();
double a = 0.0;
for (int i = 0; i < n - 1; i++) {
a += v.get(i).x * v.get(i + 1).y - v.get(i + 1).x * v.get(i).y;
}
return Math.abs(a + v.get(n - 1).x * v.get(0).y - v.get(0).x * v.get(n - 1).y) / 2.0;
}
 
public static void main(String[] args) {
List<Point> v = List.of(
new Point(3, 4),
new Point(5, 11),
new Point(12, 8),
new Point(9, 5),
new Point(5, 6)
);
double area = shoelaceArea(v);
System.out.printf("Given a polygon with vertices %s,%n", v);
System.out.printf("its area is %f,%n", area);
}
}</syntaxhighlight>
{{out}}
<pre>Given a polygon with vertices [(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)],
its area is 30.000000,</pre>
 
=={{header|JavaScript}}==
<syntaxhighlight lang="javascript">(() => {
"use strict";
 
// ------- SHOELACE FORMULA FOR POLYGONAL AREA -------
 
// shoelaceArea :: [(Float, Float)] -> Float
const shoeLaceArea = vertices => abs(
uncurry(subtract)(
ap(zip)(compose(tail, cycle))(
vertices
)
.reduce(
(a, x) => [0, 1].map(b => {
const n = Number(b);
 
return a[n] + (
x[0][n] * x[1][Number(!b)]
);
}),
[0, 0]
)
)
) / 2;
 
 
// ----------------------- TEST -----------------------
const main = () => {
const ps = [
[3, 4],
[5, 11],
[12, 8],
[9, 5],
[5, 6]
];
 
return [
"Polygonal area by shoelace formula:",
`${JSON.stringify(ps)} -> ${shoeLaceArea(ps)}`
]
.join("\n");
};
 
 
// ---------------- GENERIC FUNCTIONS -----------------
 
// abs :: Num -> Num
const abs = x =>
// Absolute value of a given number
// without the sign.
0 > x ? -x : x;
 
 
// ap :: (a -> b -> c) -> (a -> b) -> (a -> c)
const ap = f =>
// Applicative instance for functions.
// f(x) applied to g(x).
g => x => f(x)(
g(x)
);
 
 
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);
 
 
// cycle :: [a] -> Generator [a]
const cycle = function* (xs) {
// An infinite repetition of xs,
// from which an arbitrary prefix
// may be taken.
const lng = xs.length;
let i = 0;
 
while (true) {
yield xs[i];
i = (1 + i) % lng;
}
};
 
 
// length :: [a] -> Int
const length = xs =>
// Returns Infinity over objects without finite
// length. This enables zip and zipWith to choose
// the shorter argument when one is non-finite,
// like cycle, repeat etc
"GeneratorFunction" !== xs.constructor
.constructor.name ? (
xs.length
) : Infinity;
 
 
// subtract :: Num -> Num -> Num
const subtract = x =>
y => y - x;
 
 
// tail :: [a] -> [a]
const tail = xs =>
// A new list consisting of all
// items of xs except the first.
"GeneratorFunction" !== xs.constructor
.constructor.name ? (
Boolean(xs.length) ? (
xs.slice(1)
) : undefined
) : (take(1)(xs), xs);
 
 
// take :: Int -> [a] -> [a]
// take :: Int -> String -> String
const take = n =>
// The first n elements of a list,
// string of characters, or stream.
xs => "GeneratorFunction" !== xs
.constructor.constructor.name ? (
xs.slice(0, n)
) : Array.from({
length: n
}, () => {
const x = xs.next();
 
return x.done ? [] : [x.value];
}).flat();
 
 
// uncurry :: (a -> b -> c) -> ((a, b) -> c)
const uncurry = f =>
// A function over a pair, derived
// from a curried function.
(...args) => {
const [x, y] = Boolean(args.length % 2) ? (
args[0]
) : args;
 
return f(x)(y);
};
 
 
// zip :: [a] -> [b] -> [(a, b)]
const zip = xs => ys => {
const
n = Math.min(length(xs), length(ys)),
vs = take(n)(ys);
 
return take(n)(xs)
.map((x, i) => [x, vs[i]]);
};
 
 
// MAIN ---
return main();
})();</syntaxhighlight>
{{Out}}
<pre>Polygonal area by shoelace formula:
[[3,4],[5,11],[12,8],[9,5],[5,6]] -> 30</pre>
 
=={{header|jq}}==
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''
 
===={{trans|Wren}}====
<syntaxhighlight lang="jq"># jq's length applied to a number is its absolute value.
def shoelace:
. as $a
| reduce range(0; length-1) as $i (0;
. + $a[$i][0]*$a[$i+1][1] - $a[$i+1][0]*$a[$i][1] )
| (. + $a[-1][0]*$a[0][1] - $a[0][0]*$a[-1][1])|length / 2;
 
[ [3, 4], [5, 11], [12, 8], [9, 5], [5, 6] ]
| "The polygon with vertices at \(.) has an area of \(shoelace)."</syntaxhighlight>
{{out}}
<pre>
The polygon with vertices at [[3,4],[5,11],[12,8],[9,5],[5,6]] has an area of 30.
</pre>
===={{trans|Julia}}====
<syntaxhighlight lang="jq">def zip_shoelace:
def sumprod: reduce .[] as [$x,$y] (0; . + ($x * $y));
. as {$x, $y}
| [$x, ($y[1:] + [$y[0]])] | transpose | sumprod as $a
| [($x[1:] + [$x[0]]), $y] | transpose | sumprod as $b
| ($a - $b) | length / 2;
 
{x: [3, 5, 12, 9, 5], y: [4, 11, 8, 5, 6] }
| zip_shoelace</syntaxhighlight>
{{out}}
As above.
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
{{trans|Python}}
 
<syntaxhighlight lang="julia">"""
Assumes x,y points go around the polygon in one direction.
"""
shoelacearea(x, y) =
abs(sum(i * j for (i, j) in zip(x, append!(y[2:end], y[1]))) -
sum(i * j for (i, j) in zip(append!(x[2:end], x[1]), y))) / 2
 
x, y = [3, 5, 12, 9, 5], [4, 11, 8, 5, 6]
@show x y shoelacearea(x, y)</syntaxhighlight>
 
{{out}}
<pre>x = [3, 5, 12, 9, 5]
y = [4, 11, 8, 5, 6]
shoelacearea(x, y) = 30.0</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.1.3
 
class Point(val x: Int, val y: Int) {
override fun toString() = "($x, $y)"
}
fun shoelaceArea(v: List<Point>): Double {
val n = v.size
var a = 0.0
for (i in 0 until n - 1) {
a += v[i].x * v[i + 1].y - v[i + 1].x * v[i].y
}
return Math.abs(a + v[n - 1].x * v[0].y - v[0].x * v[n -1].y) / 2.0
}
 
fun main(args: Array<String>) {
val v = listOf(
Point(3, 4), Point(5, 11), Point(12, 8), Point(9, 5), Point(5, 6)
)
val area = shoelaceArea(v)
println("Given a polygon with vertices at $v,")
println("its area is $area")
}</syntaxhighlight>
 
{{out}}
<pre>
Given a polygon with vertices at [(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)],
its area is 30.0
</pre>
 
=={{header|Lambdatalk}}==
<syntaxhighlight lang="scheme">
{def shoelace
{lambda {:pol}
{abs
{/
{-
{+ {S.map {{lambda {:pol :i} {* {car {A.get :i :pol}}
{cdr {A.get {+ :i 1} :pol}}}} :pol}
{S.serie 0 {- {A.length :pol} 2}}}
{* {car {A.get {- {A.length :pol} 1} :pol}}
{cdr {A.get 0 :pol}}}}
{+ {S.map {{lambda {:pol :i} {* {car {A.get {+ :i 1} :pol}}
{cdr {A.get :i :pol}}}} :pol}
{S.serie 0 {- {A.length :pol} 2}}}
{* {car {A.get 0 :pol}}
{cdr {A.get {- {A.length :pol} 1} :pol}}}}} 2}}}}
-> shoelace
 
{def pol
{A.new {cons 3 4}
{cons 5 11}
{cons 12 8}
{cons 9 5}
{cons 5 6}}}
-> pol = [(3 4),(5 11),(12 8),(9 5),(5 6)]
 
{shoelace {pol}}
-> 30
</syntaxhighlight>
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">function shoeArea(ps)
local function det2(i,j)
return ps[i][1]*ps[j][2]-ps[j][1]*ps[i][2]
end
local sum = #ps>2 and det2(#ps,1) or 0
for i=1,#ps-1 do sum = sum + det2(i,i+1)end
return math.abs(0.5 * sum)
end</syntaxhighlight>
Using an accumulator helper inner function
<syntaxhighlight lang="lua">function shoeArea(ps)
local function ssum(acc, p1, p2, ...)
if not p2 or not p1 then
return math.abs(0.5 * acc)
else
return ssum(acc + p1[1]*p2[2]-p1[2]*p2[1], p2, ...)
end
end
return ssum(0, ps[#ps], table.unpack(ps))
end
 
local p = {{3,4}, {5,11}, {12,8}, {9,5}, {5,6}}
print(shoeArea(p))-- 30 </syntaxhighlight>
both version handle special cases of less than 3 point as 0 area result.
 
=={{header|Maple}}==
 
<syntaxhighlight lang="maple">
with(ArrayTools):
 
module Point()
option object;
local x := 0;
local y := 0;
 
export getX::static := proc(self::Point, $)
return self:-x;
end proc;
 
export getY::static := proc(self::Point, $)
return self:-y
end proc;
 
export ModuleApply::static := proc()
Object(Point, _passed);
end proc;
 
export ModuleCopy::static := proc(new::Point, proto::Point, X, Y, $)
new:-x := X;
new:-y := Y;
end proc;
 
export ModulePrint::static := proc(self::Point)
return cat("(", self:-x, ",", self:-y, ")");
end proc;
end module:
 
module Polygon()
option object;
local vertices := Array([Point(0,0)]);
 
export getVertices::static := proc(self::Polygon)
return self:-vertices;
end proc;
 
export area::static := proc(self::Polygon)
local i, N := ArrayNumElems(self:-vertices);
local total := getX(self:-vertices[N]) * getY(self:-vertices[1]) - getX(self:-vertices[1]) * getY(self:-vertices[N]);
total += map(`+`, seq(getX(self:-vertices[i]) * getY(self:-vertices[i+1]), i = 1..(N-1))) - map(`+`, seq(getX(self:-vertices[i+1]) * getY(self:-vertices[i]), i = 1..(N-1)));
return abs(total / 2);
end proc;
 
export ModuleApply::static := proc()
Object(Polygon, _passed);
end proc;
 
export ModuleCopy::Static := proc(new::Polygon, proto::Polygon, Ps, $)
new:-vertices := Ps;
end proc;
 
export ModulePrint::static := proc(self::Polygon)
return self:-vertices;
end proc;
end module:
 
P1 := Polygon(Array([Point(3,4), Point(5,11), Point(12,8), Point(9,5), Point(5,6)])):
area(P1);
</syntaxhighlight>
 
{{out}}<pre>
30
</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
Geometry objects built-in in the Wolfram Language
<syntaxhighlight lang="mathematica">Area[Polygon[{{3, 4}, {5, 11}, {12, 8}, {9, 5}, {5, 6}}]]</syntaxhighlight>
{{out}}
<pre>30</pre>
 
=={{header|min}}==
{{works with|min|0.19.3}}
<syntaxhighlight lang="min">((((first) map) ((last) map)) cleave) :dezip
(((first) (rest)) cleave append) :rotate
((0 <) (-1 *) when) :abs
 
(
=b =a a size :n 0 :i () =list
(i n <) (
a i get b i get ' prepend list append #list
i succ @i
) while list
) :rezip
 
(rezip (-> *) map sum) :cross-sum
 
(
((dezip rotate) (dezip swap rotate)) cleave
((id) (cross-sum) (id) (cross-sum)) spread
- abs 2 /
) :shoelace
 
((3 4) (5 11) (12 8) (9 5) (5 6)) shoelace print</syntaxhighlight>
{{out}}
<pre>
30.0
</pre>
 
=={{header|MiniScript}}==
<syntaxhighlight lang="miniscript">shoelace = function(vertices)
sum = 0
points = vertices.len
for i in range(0,points-2)
sum = sum + vertices[i][0]*vertices[i+1][1]
end for
sum = sum + vertices[points-1][0]*vertices[0][1]
for i in range(points-1,1)
sum = sum - vertices[i][0]*vertices[i-1][1]
end for
sum = sum - vertices[0][0]*vertices[points-1][1]
return abs(sum)/2
end function
 
verts = [[3,4],[5,11],[12,8],[9,5],[5,6]]
 
print "The polygon area is " + shoelace(verts)
</syntaxhighlight>
{{out}}
<pre>
The polygon area is 30
</pre>
 
=={{header|Modula-2}}==
<syntaxhighlight lang="modula2">MODULE ShoelaceFormula;
FROM RealStr IMPORT RealToStr;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
 
TYPE
Point = RECORD
x,y : INTEGER;
END;
 
PROCEDURE PointToString(self : Point; VAR buf : ARRAY OF CHAR);
BEGIN
FormatString("(%i, %i)", buf, self.x, self.y);
END PointToString;
 
PROCEDURE ShoelaceArea(v : ARRAY OF Point) : REAL;
VAR
a : REAL;
i,n : INTEGER;
BEGIN
n := HIGH(v);
a := 0.0;
FOR i:=0 TO n-1 DO
a := a + FLOAT(v[i].x * v[i+1].y - v[i+1].x * v[i].y);
END;
RETURN ABS(a + FLOAT(v[n].x * v[0].y - v[0].x * v[n].y)) / 2.0;
END ShoelaceArea;
 
VAR
v : ARRAY[0..4] OF Point;
buf : ARRAY[0..63] OF CHAR;
area : REAL;
i : INTEGER;
BEGIN
v[0] := Point{3,4};
v[1] := Point{5,11};
v[2] := Point{12,8};
v[3] := Point{9,5};
v[4] := Point{5,6};
area := ShoelaceArea(v);
 
WriteString("Given a polygon with verticies ");
FOR i:=0 TO HIGH(v) DO
PointToString(v[i], buf);
WriteString(buf);
WriteString(" ");
END;
WriteLn;
 
RealToStr(area, buf);
WriteString("its area is ");
WriteString(buf);
WriteLn;
 
ReadChar;
END ShoelaceFormula.</syntaxhighlight>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">type
Point = tuple
x: float
y: float
 
func shoelace(points: openArray[Point]): float =
var leftSum, rightSum = 0.0
for i in 0..<len(points):
var j = (i + 1) mod len(points)
leftSum += points[i].x * points[j].y
rightSum += points[j].x * points[i].y
0.5 * abs(leftSum - rightSum)
 
var points = [(3.0, 4.0), (5.0, 11.0), (12.0, 8.0), (9.0, 5.0), (5.0, 6.0)]
 
echo shoelace(points)</syntaxhighlight>
 
{{out}}
 
<pre>30.0</pre>
 
=={{header|Perl}}==
<syntaxhighlight lang="perl">use strict;
use warnings;
use feature 'say';
 
sub area_by_shoelace {
my $area;
our @p;
$#_ > 0 ? @p = @_ : (local *p = shift);
$area += $p[$_][0] * $p[($_+1)%@p][1] for 0 .. @p-1;
$area -= $p[$_][1] * $p[($_+1)%@p][0] for 0 .. @p-1;
return abs $area/2;
}
 
my @poly = ( [3,4], [5,11], [12,8], [9,5], [5,6] );
 
say area_by_shoelace( [3,4], [5,11], [12,8], [9,5], [5,6] );
say area_by_shoelace( [ [3,4], [5,11], [12,8], [9,5], [5,6] ] );
say area_by_shoelace( @poly );
say area_by_shoelace( \@poly );</syntaxhighlight>
{{out}}
<pre>30
30
30
30</pre>
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">enum</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">Y</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">shoelace</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)></span><span style="color: #000000;">2</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">deep_copy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">),</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">])</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">t</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">][</span><span style="color: #000000;">X</span><span style="color: #0000FF;">]*</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">][</span><span style="color: #000000;">Y</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">-</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">][</span><span style="color: #000000;">X</span><span style="color: #0000FF;">]*</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">][</span><span style="color: #000000;">Y</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #7060A8;">abs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">test</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">3</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">11</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">12</span><span style="color: #0000FF;">,</span><span style="color: #000000;">8</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">9</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">6</span><span style="color: #0000FF;">}}</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">shoelace</span><span style="color: #0000FF;">(</span><span style="color: #000000;">test</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
30
</pre>
An alternative solution, which does not need the X,Y enum, and gives the same output:
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">shoelace</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">j</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">sequence</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">columnize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">j</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">t</span> <span style="color: #0000FF;">+=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">y</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">y</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])</span> <span style="color: #0000FF;">*</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">-</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])</span>
<span style="color: #000000;">j</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">i</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #7060A8;">abs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">test</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">3</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">11</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">12</span><span style="color: #0000FF;">,</span><span style="color: #000000;">8</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">9</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">6</span><span style="color: #0000FF;">}}</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">shoelace</span><span style="color: #0000FF;">(</span><span style="color: #000000;">test</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
 
=={{header|PowerBASIC}}==
{{Trans|Visual Basic}}
<syntaxhighlight lang="powerbasic">#COMPILE EXE
#DIM ALL
#COMPILER PBCC 6
 
FUNCTION ShoelaceArea(x() AS DOUBLE, y() AS DOUBLE) AS DOUBLE
LOCAL i, j AS LONG
LOCAL Area AS DOUBLE
 
j = UBOUND(x())
FOR i = LBOUND(x()) TO UBOUND(x())
Area += (y(j) + y(i)) * (x(j) - x(i))
j = i
NEXT i
FUNCTION = ABS(Area) / 2
END FUNCTION
 
FUNCTION PBMAIN () AS LONG
REDIM x(0 TO 4) AS DOUBLE, y(0 TO 4) AS DOUBLE
ARRAY ASSIGN x() = 3, 5, 12, 9, 5
ARRAY ASSIGN y() = 4, 11, 8, 5, 6
CON.PRINT STR$(ShoelaceArea(x(), y()))
CON.WAITKEY$
END FUNCTION</syntaxhighlight>
{{out}}
<pre>30</pre>
 
=={{header|Python}}==
===Python: Explicit===
<syntaxhighlight lang="python">>>> def area_by_shoelace(x, y):
"Assumes x,y points go around the polygon in one direction"
return abs( sum(i * j for i, j in zip(x, y[1:] + y[:1]))
Line 17 ⟶ 1,583:
>>> area_by_shoelace(x, y)
30.0
>>> </lang>
</syntaxhighlight>
 
===Python: numpy===
<syntaxhighlight lang="python">
# Even simpler:
# In python we can take an advantage of that x[-1] refers to the last element in an array, same as x[N-1].
# Introducing the index i=[0,1,2,...,N-1]; i-1=[-1,0,...,N-2]; N is the number of vertices of a polygon.
# Thus x[i] is a sequence of the x-coordinate of the polygon vertices, x[i-1] is the sequence shifted by 1 index.
# Note that the shift must be negative. The positive shift x[i+1] results in an error: x[N] index out of bound.
 
import numpy as np
# x,y are arrays containing coordinates of the polygon vertices
x=np.array([3,5,12,9,5])
y=np.array([4,11,8,5,6])
i=np.arange(len(x))
#Area=np.sum(x[i-1]*y[i]-x[i]*y[i-1])*0.5 # signed area, positive if the vertex sequence is counterclockwise
Area=np.abs(np.sum(x[i-1]*y[i]-x[i]*y[i-1])*0.5) # one line of code for the shoelace formula
 
# Remember that applying the Shoelace formula
# will result in a loss of precision if x,y have big offsets.
# Remove the offsets first, e.g.
# x=x-np.mean(x);y=y-np.mean(y)
# or
# x=x-x[0];y=y-y[0]
# before applying the Shoelace formula.
 
</syntaxhighlight>
 
===Python: Defined in terms of reduce and cycle===
{{Trans|Haskell}}
{{Works with|Python|3.7}}
<syntaxhighlight lang="python">'''Polygonal area by shoelace formula'''
 
from itertools import cycle, islice
from functools import reduce
from operator import sub
 
# --------- SHOELACE FORMULA FOR POLYGONAL AREA ----------
 
# shoelaceArea :: [(Float, Float)] -> Float
def shoelaceArea(xys):
'''Area of polygon with vertices
at (x, y) points in xys.
'''
def go(a, tpl):
l, r = a
(x, y), (dx, dy) = tpl
return l + x * dy, r + y * dx
 
return abs(sub(*reduce(
go,
zip(
xys,
islice(cycle(xys), 1, None)
),
(0, 0)
))) / 2
 
 
# ------------------------- TEST -------------------------
# main :: IO()
def main():
'''Sample calculation'''
 
ps = [(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)]
print(__doc__ + ':')
print(repr(ps) + ' -> ' + str(shoelaceArea(ps)))
 
 
if __name__ == '__main__':
main()</syntaxhighlight>
{{Out}}
<pre>Polygonal area by shoelace formula:
[(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)] -> 30.0</pre>
 
===Python: Alternate===
This adopts the ''indexing'' used in the numpy example above, but does not require the numpy library.
<syntaxhighlight lang="python">>>> def area_by_shoelace2(x, y):
return abs(sum(x[i-1]*y[i]-x[i]*y[i-1] for i in range(len(x)))) / 2.
 
>>> points = [(3,4), (5,11), (12,8), (9,5), (5,6)]
>>> x, y = zip(*points)
>>> area_by_shoelace2(x, y)
30.0
>>> </syntaxhighlight>
 
=={{header|Racket}}==
<syntaxhighlight lang="racket">#lang racket/base
 
(struct P (x y))
 
(define (area . Ps)
(define (A P-a P-b)
(+ (for/sum ((p_i Ps)
(p_i+1 (in-sequences (cdr Ps)
(in-value (car Ps)))))
(* (P-a p_i) (P-b p_i+1)))))
(/ (abs (- (A P-x P-y) (A P-y P-x))) 2))
 
(module+ main
(area (P 3 4) (P 5 11) (P 12 8) (P 9 5) (P 5 6)))</syntaxhighlight>
 
{{out}}
<pre>30</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
===Index and mod offset===
{{works with|Rakudo|2017.07}}
 
<syntaxhighlight lang="raku" line>sub area-by-shoelace(@p) {
(^@p).map({@p[$_;0] * @p[($_+1)%@p;1] - @p[$_;1] * @p[($_+1)%@p;0]}).sum.abs / 2
}
 
say area-by-shoelace( [ (3,4), (5,11), (12,8), (9,5), (5,6) ] );</syntaxhighlight>
{{out}}
<pre>30</pre>
 
===Slice and rotation===
{{works with|Rakudo|2017.07}}
<syntaxhighlight lang="raku" line>sub area-by-shoelace ( @p ) {
my @x := @p».[0];
my @y := @p».[1];
 
my $s := ( @x Z* @y.rotate( 1) ).sum
- ( @x Z* @y.rotate(-1) ).sum;
 
return $s.abs / 2;
}
 
say area-by-shoelace( [ (3,4), (5,11), (12,8), (9,5), (5,6) ] );
</syntaxhighlight>
{{out}}
<pre>30</pre>
 
=={{header|REXX}}==
<!--
===endpoints as exceptions===
<syntaxhighlight lang="rexx">/*REXX program uses a Shoelace formula to calculate the area of an N-sided polygon. */
parse arg pts; $polygon = 'polygon area of ' /*get optional args from the CL.*/
if pts='' then pts= '(3,4),(5,11),(12,8),(9,5),(5,6)' /*Not specified? Use default. */
@= pts /*elide extra blanks; save pts.*/
do #=1 until @='' /*perform destructive parse on @*/
parse var @ '(' x.# "," y.# ')' "," @ /*obtain X and Y coördinates*/
end /*#*/
A= 0 /*initialize the area to zero.*/
do j=1 for #; jp=j+1; if jp># then jp=1 /*adjust for J for overflow. */
jm=j-1; if jm==0 then jm=# /* " " " " underflow. */
A=A + x.j * (y.jp - y.jm) /*compute a part of the area. */
end /*j*/
say $polygon # " points: " pts ' is ───► ' abs(A/2) /*stick a fork in it, we're done*/</syntaxhighlight>
{{out|output|text=&nbsp; when using the default input:}}
<pre>
polygon area of 5 points: (3,4),(5,11),(12,8),(9,5),(5,6) is ───► 30
</pre>
!-->
 
=== wrap-around endpoints ===
<syntaxhighlight lang="rexx">/*REXX program uses a Shoelace formula to calculate the area of an N─sided polygon.*/
parse arg $; if $='' then $= "(3,4),(5,11),(12,8),(9,5),(5,6)" /*Use the default?*/
A= 0; @= space($, 0) /*init A; elide blanks from pts.*/
do #=1 until @==''; parse var @ '(' x.# "," y.# ')' "," @
end /*#*/ /* [↨] get X and Y coördinates.*/
z= #+1; y.0= y.#; y.z= y.1 /*define low & high Y end points*/
do j=1 for #; jm= j-1; jp= j+1; A= A + x.j*(y.jm - y.jp) /*portion of area*/
end /*j*/ /*stick a fork in it, we're done*/
say 'polygon area of ' # " points: " $ ' is ───► ' abs(A/2)</syntaxhighlight>
{{out|output|text=&nbsp; when using the default input:}}
<pre>
polygon area of 5 points: (3,4),(5,11),(12,8),(9,5),(5,6) is ───► 30
</pre>
 
===somewhat simplified===
reformatted and suitable for ooRexx. (x.0 etc. not needed)
<syntaxhighlight lang="text">/*REXX program uses a Shoelace formula to calculate the area of an N-sided polygon. */
parse arg pts /*obtain optional arguments from the CL*/
if pts='' then pts= '(3,4),(5,11),(12,8),(9,5),(5,6)' /*Not specified? Use default. */
pts=space(pts,0); z=pts /*elide extra blanks; save pts.*/
do n=1 until z='' /*perform destructive parse on z*/
parse var z '(' x.n ',' y.n ')' ',' z /*obtain X and Y coördinates */
end
z=n+1; y.z=y.1 /* take care of end points */
y.0=y.n
A=0 /*initialize the area to zero.*/
do j=1 for n;
jp=j+1;
jm=j-1;
A=A+x.j*(y.jp-y.jm) /*compute a part of the area. */
end
A=abs(A/2) /*obtain half of the ¦ A ¦ sum*/
say 'polygon area of' n 'points:' pts 'is --->' A</syntaxhighlight>
{{out}}
<pre>polygon area of 5 points: (3,4),(5,11),(12,8),(9,5),(5,6) is ---> 30</pre>
 
===even simpler===
Using the published algorithm
<syntaxhighlight lang="text">/*REXX program uses a Shoelace formula to calculate the area of an N-sided polygon. */
parse arg pts /*obtain optional arguments from the CL*/
if pts='' then pts= '(3,4),(5,11),(12,8),(9,5),(5,6)' /*Not specified? Use default. */
pts=space(pts,0); z=pts /*elide extra blanks; save pts.*/
do n=1 until z='' /*perform destructive parse on z*/
parse var z '(' x.n ',' y.n ')' ',' z /*obtain X and Y coördinates */
end
a=0
Do i=1 To n-1
j=i+1
a=a+x.i*y.j-x.j*y.i
End
a=a+x.n*y.1-x.1*y.n
a=abs(a)/2
say 'polygon area of' n 'points:' pts 'is --->' a</syntaxhighlight>
{{out}}
<pre>polygon area of 5 points: (3,4),(5,11),(12,8),(9,5),(5,6) is ---> 30</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Shoelace formula for polygonal area
 
p = [[3,4], [5,11], [12,8], [9,5], [5,6]]
see "The area of the polygon = " + shoelace(p)
 
func shoelace(p)
sum = 0
for i = 1 to len(p) -1
sum = sum + p[i][1] * p[i +1][2]
sum = sum - p[i +1][1] * p[i][2]
next
sum = sum + p[i][1] * p[1][2]
sum = sum - p[1][1] * p[i][2]
return fabs(sum) / 2
</syntaxhighlight>
Output:
<pre>
The area of the polygon = 30
</pre>
 
=={{header|RPL}}==
{| class="wikitable"
! RPL code
! Comment
|-
|
DUP 1 GET +
0 2 3 PICK SIZE '''FOR''' j
OVER j GET LAST 1 - GET
OVER RE OVER IM * SWAP RE ROT IM * - +
'''NEXT'''
ABS 2 / SWAP DROP
≫ <span style="color:blue">''''SHOEL''''</span> STO
|
<span style="color:blue">'''SHOEL'''</span> ''( { (vertices) } → area ) ''
append 1st vertice at the end
sum = 0 ; loop
get 2 vertices
sum += determinant
end loop
finalize calculation, clean stack
return area
|}
{(3,4) (5,11) (12,8) (9,5) (5,6)} <span style="color:blue">'''SHOEL'''</span>
{{out}}
<pre>
1: 30
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">
Point = Struct.new(:x,:y) do
 
def shoelace(other)
x * other.y - y * other.x
end
 
end
 
class Polygon
 
def initialize(*coords)
@points = coords.map{|c| Point.new(*c) }
end
 
def area
points = @points + [@points.first]
points.each_cons(2).sum{|p1,p2| p1.shoelace(p2) }.abs.fdiv(2)
end
 
end
 
puts Polygon.new([3,4], [5,11], [12,8], [9,5], [5,6]).area # => 30.0
</syntaxhighlight>
 
=={{header|Scala}}==
<syntaxhighlight lang="scala">case class Point( x:Int,y:Int ) { override def toString = "(" + x + "," + y + ")" }
 
case class Polygon( pp:List[Point] ) {
require( pp.size > 2, "A Polygon must consist of more than two points" )
 
override def toString = "Polygon(" + pp.mkString(" ", ", ", " ") + ")"
def area = {
// Calculate using the Shoelace Formula
val xx = pp.map( p => p.x )
val yy = pp.map( p => p.y )
val overlace = xx zip yy.drop(1)++yy.take(1)
val underlace = yy zip xx.drop(1)++xx.take(1)
(overlace.map( t => t._1 * t._2 ).sum - underlace.map( t => t._1 * t._2 ).sum).abs / 2.0
}
}
 
// A little test...
{
val p = Polygon( List( Point(3,4), Point(5,11), Point(12,8), Point(9,5), Point(5,6) ) )
 
assert( p.area == 30.0 )
 
println( "Area of " + p + " = " + p.area )
}
</syntaxhighlight>
{{out}}
<pre>Area of Polygon( (3,4), (5,11), (12,8), (9,5), (5,6) ) = 30.0</pre>
 
=={{header|Sidef}}==
{{trans|Raku}}
<syntaxhighlight lang="ruby">func area_by_shoelace (*p) {
var x = p.map{_[0]}
var y = p.map{_[1]}
 
var s = (
(x ~Z* y.rotate(+1)).sum -
(x ~Z* y.rotate(-1)).sum
)
 
s.abs / 2
}
 
say area_by_shoelace([3,4], [5,11], [12,8], [9,5], [5,6])</syntaxhighlight>
{{out}}
<pre>
30
</pre>
 
=={{header|Swift}}==
 
{{trans|Scala}}
 
<syntaxhighlight lang="swift">import Foundation
 
struct Point {
var x: Double
var y: Double
}
 
extension Point: CustomStringConvertible {
var description: String {
return "Point(x: \(x), y: \(y))"
}
}
 
struct Polygon {
var points: [Point]
 
var area: Double {
let xx = points.map({ $0.x })
let yy = points.map({ $0.y })
let overlace = zip(xx, yy.dropFirst() + yy.prefix(1)).map({ $0.0 * $0.1 }).reduce(0, +)
let underlace = zip(yy, xx.dropFirst() + xx.prefix(1)).map({ $0.0 * $0.1 }).reduce(0, +)
 
return abs(overlace - underlace) / 2
}
 
init(points: [Point]) {
self.points = points
}
 
init(points: [(Double, Double)]) {
self.init(points: points.map({ Point(x: $0.0, y: $0.1) }))
}
}
 
let poly = Polygon(points: [
(3,4),
(5,11),
(12,8),
(9,5),
(5,6)
])
 
print("\(poly) area = \(poly.area)")</syntaxhighlight>
 
{{out}}
 
<pre>Polygon(points: [Point(x: 3.0, y: 4.0), Point(x: 5.0, y: 11.0), Point(x: 12.0, y: 8.0), Point(x: 9.0, y: 5.0), Point(x: 5.0, y: 6.0)]) area = 30.0</pre>
 
=={{header|TI-83 BASIC}}==
{{works with|TI-83 BASIC|TI-84Plus 2.55MP}}
<syntaxhighlight lang="ti83b">[[3,4][5,11][12,8][9,5][5,6]]->[A]
Dim([A])->N:0->A
For(I,1,N)
I+1->J:If J>N:Then:1->J:End
A+[A](I,1)*[A](J,2)-[A](J,1)*[A](I,2)->A
End
Abs(A)/2->A</syntaxhighlight>
{{out}}
<pre>
30
</pre>
 
=={{header|VBA}}==
{{trans|Phix}}<syntaxhighlight lang="vb">Option Base 1
Public Enum axes
u = 1
v
End Enum
Private Function shoelace(s As Collection) As Double
Dim t As Double
If s.Count > 2 Then
s.Add s(1)
For i = 1 To s.Count - 1
t = t + s(i)(u) * s(i + 1)(v) - s(i + 1)(u) * s(i)(v)
Next i
End If
shoelace = Abs(t) / 2
End Function
Public Sub polygonal_area()
Dim task() As Variant
task = [{3,4;5,11;12,8;9,5;5,6}]
Dim tcol As New Collection
For i = 1 To UBound(task)
tcol.Add Array(task(i, u), task(i, v))
Next i
Debug.Print shoelace(tcol)
End Sub</syntaxhighlight>{{out}}
<pre>30</pre>
 
=={{header|VBScript}}==
<syntaxhighlight lang="vb">' Shoelace formula for polygonal area - VBScript
Dim points, x(),y()
points = Array(3,4, 5,11, 12,8, 9,5, 5,6)
n=(UBound(points)+1)\2
Redim x(n+1),y(n+1)
j=0
For i = 1 To n
x(i)=points(j)
y(i)=points(j+1)
j=j+2
Next 'i
x(i)=points(0)
y(i)=points(1)
For i = 1 To n
area = area + x(i)*y(i+1) - x(i+1)*y(i)
Next 'i
area = Abs(area)/2
msgbox area,,"Shoelace formula" </syntaxhighlight>
{{out}}
<pre>
30
</pre>
 
=={{header|Visual Basic}}==
{{works with|Visual Basic|5}}
{{works with|Visual Basic|6}}
{{works with|VBA|Access 97}}
{{works with|VBA|6.5}}
{{works with|VBA|7.1}}
<syntaxhighlight lang="vb">Option Explicit
 
Public Function ShoelaceArea(x() As Double, y() As Double) As Double
Dim i As Long, j As Long
Dim Area As Double
j = UBound(x())
For i = LBound(x()) To UBound(x())
Area = Area + (y(j) + y(i)) * (x(j) - x(i))
j = i
Next i
ShoelaceArea = Abs(Area) / 2
End Function
 
Sub Main()
Dim v As Variant
Dim n As Long, i As Long, j As Long
v = Array(3, 4, 5, 11, 12, 8, 9, 5, 5, 6)
n = (UBound(v) - LBound(v) + 1) \ 2 - 1
ReDim x(0 To n) As Double, y(0 To n) As Double
j = 0
For i = 0 To n
x(i) = v(j)
y(i) = v(j + 1)
j = j + 2
Next i
Debug.Print ShoelaceArea(x(), y())
End Sub</syntaxhighlight>
{{out}}
<pre>30</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<syntaxhighlight lang="vbnet">Option Strict On
 
Imports Point = System.Tuple(Of Double, Double)
 
Module Module1
 
Function ShoelaceArea(v As List(Of Point)) As Double
Dim n = v.Count
Dim a = 0.0
For i = 0 To n - 2
a += v(i).Item1 * v(i + 1).Item2 - v(i + 1).Item1 * v(i).Item2
Next
Return Math.Abs(a + v(n - 1).Item1 * v(0).Item2 - v(0).Item1 * v(n - 1).Item2) / 2.0
End Function
 
Sub Main()
Dim v As New List(Of Point) From {
New Point(3, 4),
New Point(5, 11),
New Point(12, 8),
New Point(9, 5),
New Point(5, 6)
}
Dim area = ShoelaceArea(v)
Console.WriteLine("Given a polygon with vertices [{0}],", String.Join(", ", v))
Console.WriteLine("its area is {0}.", area)
End Sub
 
End Module</syntaxhighlight>
{{out}}
<pre>Given a polygon with vertices [(3, 4), (5, 11), (12, 8), (9, 5), (5, 6)],
its area is 30.</pre>
 
=={{header|Wren}}==
<syntaxhighlight lang="wren">var shoelace = Fn.new { |pts|
var area = 0
for (i in 0...pts.count-1) {
area = area + pts[i][0]*pts[i+1][1] - pts[i+1][0]*pts[i][1]
}
return (area + pts[-1][0]*pts[0][1] - pts[0][0]*pts[-1][1]).abs / 2
}
 
var pts = [ [3, 4], [5, 11], [12, 8], [9, 5], [5, 6] ]
System.print("The polygon with vertices at %(pts) has an area of %(shoelace.call(pts)).")</syntaxhighlight>
 
{{out}}
<pre>
The polygon with vertices at [[3, 4], [5, 11], [12, 8], [9, 5], [5, 6]] has an area of 30.
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">proc real Shoelace(N, X, Y);
int N, X, Y;
int S, I;
[S:= 0;
for I:= 0 to N-2 do
S:= S + X(I)*Y(I+1) - X(I+1)*Y(I);
S:= S + X(I)*Y(0) - X(0)*Y(I);
return float(abs(S)) / 2.0;
];
 
RlOut(0, Shoelace(5, [3, 5, 12, 9, 5], [4, 11, 8, 5, 6]))</syntaxhighlight>
 
{{out}}
<pre>
30.00000
</pre>
 
=={{header|zkl}}==
By the "book":
<syntaxhighlight lang="zkl">fcn areaByShoelace(points){ // ( (x,y),(x,y)...)
xs,ys:=Utils.Helpers.listUnzip(points); // (x,x,...), (y,y,,,)
( xs.zipWith('*,ys[1,*]).sum(0) + xs[-1]*ys[0] -
xs[1,*].zipWith('*,ys).sum(0) - xs[0]*ys[-1] )
.abs().toFloat()/2;
}</syntaxhighlight>
or an iterative solution:
<syntaxhighlight lang="zkl">fcn areaByShoelace2(points){ // ( (x,y),(x,y)...)
xs,ys:=Utils.Helpers.listUnzip(points); // (x,x,...), (y,y,,,)
N:=points.len();
N.reduce('wrap(s,n){ s + xs[n]*ys[(n+1)%N] - xs[(n+1)%N]*ys[n] },0)
.abs().toFloat()/2;
}</syntaxhighlight>
<syntaxhighlight lang="zkl">points:=T(T(3,4), T(5,11), T(12,8), T(9,5), T(5,6));
areaByShoelace(points).println();
areaByShoelace2(points).println();</syntaxhighlight>
{{out}}
<pre>
30
30
</pre>
9,482

edits