I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

SHA-256

From Rosetta Code
Task
SHA-256
You are encouraged to solve this task according to the task description, using any language you may know.

SHA-256 is the recommended stronger alternative to SHA-1. See FIPS PUB 180-4 for implementation details.

Either by using a dedicated library or implementing the algorithm in your language, show that the SHA-256 digest of the string "Rosetta code" is: 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

AArch64 Assembly[edit]

Works with: as version Raspberry Pi 3B version Buster 64 bits
 
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program sha256_64.s */
 
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
 
.equ LGHASH, 32 // result length
 
/*******************************************/
/* Structures */
/********************************************/
/* example structure variables */
.struct 0
var_a: // a
.struct var_a + 4
var_b: // b
.struct var_b + 4
var_c: // c
.struct var_c + 4
var_d: // d
.struct var_d + 4
var_e: // e
.struct var_e + 4
var_f: // f
.struct var_f + 4
var_g: // g
.struct var_g + 4
var_h: // h
.struct var_h + 4
 
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessRosetta: .asciz "Rosetta code"
szMessTest1: .asciz "abc"
szMessSup64: .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
.ascii "abcdefghijklmnopqrstuvwxyz"
.asciz "1234567890AZERTYUIOP"
szMessTest2: .asciz "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
szMessFinPgm: .asciz "Program End ok.\n"
szMessResult: .asciz "Rosetta code => "
szCarriageReturn: .asciz "\n"
 
/* array constantes Hi */
tbConstHi: .int 0x6A09E667 // H0
.int 0xBB67AE85 // H1
.int 0x3C6EF372 // H2
.int 0xA54FF53A // H3
.int 0x510E527F // H4
.int 0x9B05688C // H5
.int 0x1F83D9AB // H6
.int 0x5BE0CD19 // H7
/* array 64 constantes Kt */
tbConstKt:
.int 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5
.int 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
.int 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da
.int 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967
.int 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85
.int 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070
.int 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
.int 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
 
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
.align 4
qNbBlocs: .skip 8
sZoneConv: .skip 24
sZoneTrav: .skip 1000
.align 8
tbH: .skip 4 * 8 // 8 variables H
tbabcdefgh: .skip 4 * 8
tbW: .skip 4 * 64 // 64 words W
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
 
ldr x0,qAdrszMessRosetta
//ldr x0,qAdrszMessTest1
//ldr x0,qAdrszMessTest2
//ldr x0,qAdrszMessSup64
bl computeSHA256 // call routine SHA1
 
ldr x0,qAdrszMessResult
bl affichageMess // display message
 
ldr x0, qAdrtbH
bl displaySHA1
 
ldr x0,qAdrszMessFinPgm
bl affichageMess // display message
 
 
100: // standard end of the program
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
 
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrszMessResult: .quad szMessResult
qAdrszMessRosetta: .quad szMessRosetta
qAdrszMessTest1: .quad szMessTest1
qAdrszMessTest2: .quad szMessTest2
qAdrsZoneTrav: .quad sZoneTrav
qAdrsZoneConv: .quad sZoneConv
qAdrszMessFinPgm: .quad szMessFinPgm
qAdrszMessSup64: .quad szMessSup64
/******************************************************************/
/* compute SHA1 */
/******************************************************************/
/* x0 contains the address of the message */
computeSHA256:
stp x1,lr,[sp,-16]! // save registers
ldr x1,qAdrsZoneTrav
mov x2,#0 // counter length
debCopy: // copy string in work area
ldrb w3,[x0,x2]
strb w3,[x1,x2]
cmp x3,#0
add x4,x2,1
csel x2,x4,x2,ne
bne debCopy
lsl x6,x2,#3 // initial message length in bits
mov x3,#0b10000000 // add bit 1 at end of string
strb w3,[x1,x2]
add x2,x2,#1 // length in bytes
lsl x4,x2,#3 // length in bits
mov x3,#0
addZeroes:
lsr x5,x2,#6
lsl x5,x5,#6
sub x5,x2,x5
cmp x5,#56
beq storeLength // yes -> end add
strb w3,[x1,x2] // add zero at message end
add x2,x2,#1 // increment lenght bytes
add x4,x4,#8 // increment length in bits
b addZeroes
storeLength:
add x2,x2,#4 // add four bytes
rev w6,w6 // inversion bits initials message length
str w6,[x1,x2] // and store at end
 
ldr x7,qAdrtbConstHi // constantes H address
ldr x4,qAdrtbH // start area H
mov x5,#0
loopConst: // init array H with start constantes
ldr w6,[x7,x5,lsl #2] // load constante
str w6,[x4,x5,lsl #2] // and store
add x5,x5,#1
cmp x5,#8
blt loopConst
// split into block of 64 bytes
add x2,x2,#4 //
lsr x4,x2,#6 // blocks number
ldr x0,qAdrqNbBlocs
str x4,[x0] // save block maxi
mov x7,#0 // n° de block et x1 contient l adresse zone de travail
loopBlock: // begin loop of each block of 64 bytes
mov x0,x7
bl inversion // inversion each word because little indian
ldr x3,qAdrtbW // working area W address
mov x6,#0 // indice t
/* x2 address begin each block */
ldr x1,qAdrsZoneTrav
add x2,x1,x7,lsl #6 // compute block begin indice * 4 * 16
//vidregtit avantloop
//mov x0,x2
//vidmemtit verifBloc x0 10
loopPrep: // loop for expand 80 words
cmp x6,#15 //
bgt expand1
ldr w0,[x2,x6,lsl #2] // load word message
str w0,[x3,x6,lsl #2] // store in first 16 block
b expandEnd
 
expand1:
sub x8,x6,#2
ldr w9,[x3,x8,lsl #2]
ror w10,w9,#17 // fonction e1 (256)
ror w11,w9,#19
eor w10,w10,w11
lsr w11,w9,#10
eor w10,w10,w11
sub x8,x6,#7
ldr w9,[x3,x8,lsl #2]
add w9,w9,w10 // + w - 7
sub x8,x6,#15
ldr w10,[x3,x8,lsl #2]
ror w11,w10,#7 // fonction e0 (256)
ror w12,w10,#18
eor w11,w11,w12
lsr w12,w10,#3
eor w10,w11,w12
add w9,w9,w10
sub x8,x6,#16
ldr w11,[x3,x8,lsl #2]
add w9,w9,w11
 
str w9,[x3,x6,lsl #2]
expandEnd:
add x6,x6,#1
cmp x6,#64 // 64 words ?
blt loopPrep // and loop
 
 
/* COMPUTING THE MESSAGE DIGEST */
/* x1 area H constantes address */
/* x3 working area W address */
/* x5 address constantes K */
/* x6 counter t */
/* x7 block counter */
/* x8 addresse variables a b c d e f g h */
//ldr x0,qAdrtbW
//vidmemtit verifW80 x0 20
// init variable a b c d e f g h
ldr x0,qAdrtbH
ldr x8,qAdrtbabcdefgh
mov x1,#0
loopInita:
ldr w9,[x0,x1,lsl #2]
str w9,[x8,x1,lsl #2]
add x1,x1,#1
cmp x1,#8
blt loopInita
 
 
ldr x1,qAdrtbConstHi
ldr x5,qAdrtbConstKt
mov x6,#0
loop64T: // begin loop 64 t
ldr w9,[x8,#var_h]
ldr w10,[x8,#var_e] // calcul T1
ror w11,w10,#6 // fonction sigma 1
ror w12,w10,#11
eor w11,w11,w12
ror w12,w10,#25
eor w11,w11,w12
add w9,w9,w11 // h + sigma1 (e)
ldr w0,[x8,#var_f] // fonction ch x and y xor (non x and z)
ldr w4,[x8,#var_g]
and w11,w10,w0
mvn w12,w10
and w12,w12,w4
eor w11,w11,w12
add w9,w9,w11 // h + sigma1 (e) + ch (e,f,g)
ldr w0,[x5,x6,lsl #2] // load constantes k0
add w9,w9,w0
ldr w0,[x3,x6,lsl #2] // Wt
add w9,w9,w0
// calcul T2
ldr w10,[x8,#var_a] // fonction sigma 0
ror w11,w10,#2
ror w12,w10,#13
eor w11,w11,w12
ror w12,w10,#22
eor w11,w11,w12
ldr w2,[x8,#var_b]
ldr w4,[x8,#var_c]
// fonction maj x and y xor x and z xor y and z
and w12,w10,w2
and w0,w10,w4
eor w12,w12,w0
and w0,w2,w4
eor w12,w12,w0 //
add w12,w12,w11 // T2
// compute variables
ldr w4,[x8,#var_g]
str w4,[x8,#var_h]
ldr w4,[x8,#var_f]
str w4,[x8,#var_g]
ldr w4,[x8,#var_e]
str w4,[x8,#var_f]
ldr w4,[x8,#var_d]
add w4,w4,w9 // add T1
str w4,[x8,#var_e]
ldr w4,[x8,#var_c]
str w4,[x8,#var_d]
ldr w4,[x8,#var_b]
str w4,[x8,#var_c]
ldr w4,[x8,#var_a]
str w4,[x8,#var_b]
add w4,w9,w12 // add T1 T2
str w4,[x8,#var_a]
 
add x6,x6,#1 // increment t
cmp x6,#64
blt loop64T
// End block
ldr x0,qAdrtbH // start area H
mov x10,#0
loopStoreH:
ldr w9,[x8,x10,lsl #2]
ldr w3,[x0,x10,lsl #2]
add w3,w3,w9
str w3,[x0,x10,lsl #2] // store variables in H0
add x10,x10,#1
cmp x10,#8
blt loopStoreH
// other bloc
add x7,x7,#1 // increment block
ldr x0,qAdrqNbBlocs
ldr x4,[x0] // restaur maxi block
cmp x7,x4 // maxi ?
 
blt loopBlock // loop other block
 
mov x0,#0 // routine OK
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
qAdrtbConstHi: .quad tbConstHi
qAdrtbConstKt: .quad tbConstKt
qAdrtbH: .quad tbH
qAdrtbW: .quad tbW
qAdrtbabcdefgh: .quad tbabcdefgh
qAdrqNbBlocs: .quad qNbBlocs
/******************************************************************/
/* inversion des mots de 32 bits d un bloc */
/******************************************************************/
/* x0 contains N° block */
inversion:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
ldr x1,qAdrsZoneTrav
add x1,x1,x0,lsl #6 // debut du bloc
mov x2,#0
1: // start loop
ldr w3,[x1,x2,lsl #2]
rev w3,w3
str w3,[x1,x2,lsl #2]
add x2,x2,#1
cmp x2,#16
blt 1b
100:
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* display hash SHA1 */
/******************************************************************/
/* x0 contains the address of hash */
displaySHA1:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
mov x3,x0
mov x2,#0
1:
ldr w0,[x3,x2,lsl #2] // load 4 bytes
//rev x0,x0 // reverse bytes
ldr x1,qAdrsZoneConv
bl conversion16_4W // conversion hexa
ldr x0,qAdrsZoneConv
bl affichageMess
add x2,x2,#1
cmp x2,#LGHASH / 4
blt 1b // and loop
ldr x0,qAdrszCarriageReturn
bl affichageMess // display message
100:
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* conversion hexadecimal register 32 bits */
/******************************************************************/
/* x0 contains value and x1 address zone receptrice */
conversion16_4W:
stp x0,lr,[sp,-48]! // save registres
stp x1,x2,[sp,32] // save registres
stp x3,x4,[sp,16] // save registres
mov x2,#28 // start bit position
mov x4,#0xF0000000 // mask
mov x3,x0 // save entry value
1: // start loop
and x0,x3,x4 // value register and mask
lsr x0,x0,x2 // right shift
cmp x0,#10 // >= 10 ?
bge 2f // yes
add x0,x0,#48 // no is digit
b 3f
2:
add x0,x0,#55 // else is a letter A-F
3:
strb w0,[x1],#1 // load result and + 1 in address
lsr x4,x4,#4 // shift mask 4 bits left
subs x2,x2,#4 // decrement counter 4 bits <= zero  ?
bge 1b // no -> loop
 
100: // fin standard de la fonction
ldp x3,x4,[sp,16] // restaur des 2 registres
ldp x1,x2,[sp,32] // restaur des 2 registres
ldp x0,lr,[sp],48 // restaur des 2 registres
ret
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
 
 
Output:
[email protected]:~/asm64/rosetta/asm5 $ sha256_64
Rosetta code => 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF
Program End ok.

Ada[edit]

Library: CryptAda
with Ada.Text_IO;
 
with CryptAda.Pragmatics;
with CryptAda.Digests.Message_Digests.SHA_256;
with CryptAda.Digests.Hashes;
with CryptAda.Utils.Format;
 
procedure RC_SHA_256 is
use CryptAda.Pragmatics;
use CryptAda.Digests.Message_Digests;
use CryptAda.Digests;
 
function To_Byte_Array (Item : String) return Byte_Array is
Result : Byte_Array (Item'Range);
begin
for I in Result'Range loop
Result (I) := Byte (Character'Pos (Item (I)));
end loop;
return Result;
end To_Byte_Array;
 
Text  : constant String  := "Rosetta code";
Bytes  : constant Byte_Array  := To_Byte_Array (Text);
Handle  : constant Message_Digest_Handle := SHA_256.Get_Message_Digest_Handle;
Pointer : constant Message_Digest_Ptr  := Get_Message_Digest_Ptr (Handle);
Hash  : Hashes.Hash;
begin
Digest_Start (Pointer);
Digest_Update (Pointer, Bytes);
Digest_End (Pointer, Hash);
 
Ada.Text_IO.Put_Line
("""" & Text & """: " & CryptAda.Utils.Format.To_Hex_String (Hashes.Get_Bytes (Hash)));
end RC_SHA_256;
Output:
"Rosetta code": 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

ARM Assembly[edit]

Works with: as version Raspberry Pi
 
/* ARM assembly Raspberry PI */
/* program sha256.s */
 
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
 
.equ LGHASH, 32 // result length
 
/*******************************************/
/* Structures */
/********************************************/
/* example structure variables */
.struct 0
var_a: // a
.struct var_a + 4
var_b: // b
.struct var_b + 4
var_c: // c
.struct var_c + 4
var_d: // d
.struct var_d + 4
var_e: // e
.struct var_e + 4
var_f: // f
.struct var_f + 4
var_g: // g
.struct var_g + 4
var_h: // h
.struct var_h + 4
 
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessRosetta: .asciz "Rosetta code"
szMessTest1: .asciz "abc"
szMessSup64: .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
.ascii "abcdefghijklmnopqrstuvwxyz"
.asciz "1234567890AZERTYUIOP"
szMessTest2: .asciz "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
szMessFinPgm: .asciz "Program End ok.\n"
szMessResult: .asciz "Rosetta code => "
szCarriageReturn: .asciz "\n"
 
/* array constantes Hi */
tbConstHi: .int 0x6A09E667 @ H0
.int 0xBB67AE85 @ H1
.int 0x3C6EF372 @ H2
.int 0xA54FF53A @ H3
.int 0x510E527F @ H4
.int 0x9B05688C @ H5
.int 0x1F83D9AB @ H6
.int 0x5BE0CD19 @ H7
/* array 64 constantes Kt */
tbConstKt:
.int 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5
.int 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
.int 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da
.int 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967
.int 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85
.int 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070
.int 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
.int 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
 
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
.align 4
iNbBlocs: .skip 4
sZoneConv: .skip 24
sZoneTrav: .skip 1000
.align 8
tbH: .skip 4 * 8 @ 8 variables H
tbabcdefgh: .skip 4 * 8
tbW: .skip 4 * 64 @ 64 words W
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
 
ldr r0,iAdrszMessRosetta
//ldr r0,iAdrszMessTest1
//ldr r0,iAdrszMessTest2
//ldr r0,iAdrszMessSup64
bl computeSHA256 @ call routine SHA1
 
ldr r0,iAdrszMessResult
bl affichageMess @ display message
 
ldr r0, iAdrtbH
bl displaySHA1
 
ldr r0,iAdrszMessFinPgm
bl affichageMess @ display message
 
 
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
 
iAdrszCarriageReturn: .int szCarriageReturn
iAdrszMessResult: .int szMessResult
iAdrszMessRosetta: .int szMessRosetta
iAdrszMessTest1: .int szMessTest1
iAdrszMessTest2: .int szMessTest2
iAdrsZoneTrav: .int sZoneTrav
iAdrsZoneConv: .int sZoneConv
iAdrszMessFinPgm: .int szMessFinPgm
iAdrszMessSup64: .int szMessSup64
/******************************************************************/
/* compute SHA1 */
/******************************************************************/
/* r0 contains the address of the message */
computeSHA256:
push {r1-r12,lr} @ save registres
ldr r1,iAdrsZoneTrav
mov r2,#0 @ counter length
debCopy: @ copy string in work area
ldrb r3,[r0,r2]
strb r3,[r1,r2]
cmp r3,#0
addne r2,r2,#1
bne debCopy
lsl r6,r2,#3 @ initial message length in bits
mov r3,#0b10000000 @ add bit 1 at end of string
strb r3,[r1,r2]
add r2,r2,#1 @ length in bytes
lsl r4,r2,#3 @ length in bits
mov r3,#0
addZeroes:
lsr r5,r2,#6
lsl r5,r5,#6
sub r5,r2,r5
cmp r5,#56
beq storeLength @ yes -> end add
strb r3,[r1,r2] @ add zero at message end
add r2,#1 @ increment lenght bytes
add r4,#8 @ increment length in bits
b addZeroes
storeLength:
add r2,#4 @ add four bytes
rev r6,r6 @ inversion bits initials message length
str r6,[r1,r2] @ and store at end
 
ldr r7,iAdrtbConstHi @ constantes H address
ldr r4,iAdrtbH @ start area H
mov r5,#0
loopConst: @ init array H with start constantes
ldr r6,[r7,r5,lsl #2] @ load constante
str r6,[r4,r5,lsl #2] @ and store
add r5,r5,#1
cmp r5,#8
blt loopConst
@ split into block of 64 bytes
add r2,#4 @ TODO : à revoir
lsr r4,r2,#6 @ blocks number
ldr r0,iAdriNbBlocs
str r4,[r0] @ save block maxi
mov r7,#0 @ n° de block et r1 contient l adresse zone de travail
loopBlock: @ begin loop of each block of 64 bytes
mov r0,r7
bl inversion @ inversion each word because little indian
ldr r3,iAdrtbW @ working area W address
mov r6,#0 @ indice t
/* r2 address begin each block */
ldr r1,iAdrsZoneTrav
add r2,r1,r7,lsl #6 @ compute block begin indice * 4 * 16
//vidregtit avantloop
//mov r0,r2
//vidmemtit verifBloc r0 10
loopPrep: @ loop for expand 80 words
cmp r6,#15 @
bgt expand1
ldr r0,[r2,r6,lsl #2] @ load byte message
str r0,[r3,r6,lsl #2] @ store in first 16 block
b expandEnd
 
expand1:
sub r8,r6,#2
ldr r9,[r3,r8,lsl #2]
ror r10,r9,#17 @ fonction e1 (256)
ror r11,r9,#19
eor r10,r10,r11
lsr r11,r9,#10
eor r10,r10,r11
sub r8,r6,#7
ldr r9,[r3,r8,lsl #2]
add r9,r9,r10 @ + w - 7
sub r8,r6,#15
ldr r10,[r3,r8,lsl #2]
ror r11,r10,#7 @ fonction e0 (256)
ror r12,r10,#18
eor r11,r12
lsr r12,r10,#3
eor r10,r11,r12
add r9,r9,r10
sub r8,r6,#16
ldr r11,[r3,r8,lsl #2]
add r9,r9,r11
 
str r9,[r3,r6,lsl #2]
expandEnd:
add r6,r6,#1
cmp r6,#64 @ 64 words ?
blt loopPrep @ and loop
 
 
/* COMPUTING THE MESSAGE DIGEST */
/* r1 area H constantes address */
/* r3 working area W address */
/* r5 address constantes K */
/* r6 counter t */
/* r7 block counter */
/* r8 addresse variables a b c d e f g h */
//ldr r0,iAdrtbW
//vidmemtit verifW80 r0 20
@ init variable a b c d e f g h
ldr r0,iAdrtbH
ldr r8,iAdrtbabcdefgh
mov r1,#0
loopInita:
ldr r9,[r0,r1,lsl #2]
str r9,[r8,r1,lsl #2]
add r1,r1,#1
cmp r1,#8
blt loopInita
 
 
ldr r1,iAdrtbConstHi
ldr r5,iAdrtbConstKt
mov r6,#0
loop64T: @ begin loop 64 t
ldr r9,[r8,#var_h]
ldr r10,[r8,#var_e] @ calcul T1
ror r11,r10,#6 @ fonction sigma 1
ror r12,r10,#11
eor r11,r12
ror r12,r10,#25
eor r11,r12
add r9,r9,r11 @ h + sigma1 (e)
ldr r0,[r8,#var_f] @ fonction ch x and y xor (non x and z)
ldr r4,[r8,#var_g]
and r11,r10,r0
mvn r12,r10
and r12,r12,r4
eor r11,r12
add r9,r9,r11 @ h + sigma1 (e) + ch (e,f,g)
ldr r0,[r5,r6,lsl #2] @ load constantes k0
add r9,r9,r0
ldr r0,[r3,r6,lsl #2] @ Wt
add r9,r9,r0
@ calcul T2
ldr r10,[r8,#var_a] @ fonction sigma 0
ror r11,r10,#2
ror r12,r10,#13
eor r11,r11,r12
ror r12,r10,#22
eor r11,r11,r12
ldr r2,[r8,#var_b]
ldr r4,[r8,#var_c]
@ fonction maj x and y xor x and z xor y and z
and r12,r10,r2
and r0,r10,r4
eor r12,r12,r0
and r0,r2,r4
eor r12,r12,r0 @
add r12,r12,r11 @ T2
@ compute variables
ldr r4,[r8,#var_g]
str r4,[r8,#var_h]
ldr r4,[r8,#var_f]
str r4,[r8,#var_g]
ldr r4,[r8,#var_e]
str r4,[r8,#var_f]
ldr r4,[r8,#var_d]
add r4,r4,r9 @ add T1
str r4,[r8,#var_e]
ldr r4,[r8,#var_c]
str r4,[r8,#var_d]
ldr r4,[r8,#var_b]
str r4,[r8,#var_c]
ldr r4,[r8,#var_a]
str r4,[r8,#var_b]
add r4,r9,r12 @ add T1 T2
str r4,[r8,#var_a]
mov r0,r8
 
add r6,r6,#1 @ increment t
cmp r6,#64
blt loop64T
@ End block
ldr r0,iAdrtbH @ start area H
mov r10,#0
loopStoreH:
ldr r9,[r8,r10,lsl #2]
ldr r3,[r0,r10,lsl #2]
add r3,r9
str r3,[r0,r10,lsl #2] @ store variables in H0
add r10,r10,#1
cmp r10,#8
blt loopStoreH
@ other bloc
add r7,#1 @ increment block
ldr r0,iAdriNbBlocs
ldr r4,[r0] @ restaur maxi block
cmp r7,r4 @ maxi ?
 
blt loopBlock @ loop other block
 
mov r0,#0 @ routine OK
100:
pop {r1-r12,lr} @ restaur registers
bx lr @ return
iAdrtbConstHi: .int tbConstHi
iAdrtbConstKt: .int tbConstKt
iAdrtbH: .int tbH
iAdrtbW: .int tbW
iAdrtbabcdefgh: .int tbabcdefgh
iAdriNbBlocs: .int iNbBlocs
/******************************************************************/
/* inversion des mots de 32 bits d un bloc */
/******************************************************************/
/* r0 contains N° block */
inversion:
push {r1-r3,lr} @ save registers
ldr r1,iAdrsZoneTrav
add r1,r0,lsl #6 @ debut du bloc
mov r2,#0
1: @ start loop
ldr r3,[r1,r2,lsl #2]
rev r3,r3
str r3,[r1,r2,lsl #2]
add r2,r2,#1
cmp r2,#16
blt 1b
100:
pop {r1-r3,lr} @ restaur registres
bx lr @return
/******************************************************************/
/* display hash SHA1 */
/******************************************************************/
/* r0 contains the address of hash */
displaySHA1:
push {r1-r3,lr} @ save registres
mov r3,r0
mov r2,#0
1:
ldr r0,[r3,r2,lsl #2] @ load 4 bytes
//rev r0,r0 @ reverse bytes
ldr r1,iAdrsZoneConv
bl conversion16 @ conversion hexa
ldr r0,iAdrsZoneConv
bl affichageMess
add r2,r2,#1
cmp r2,#LGHASH / 4
blt 1b @ and loop
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display message
100:
pop {r1-r3,lr} @ restaur registers
bx lr @ return
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
 
Output:
Rosetta code => 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF
Program End ok.

AutoHotkey[edit]

Source: SHA-256 @github by jNizM

str := "Rosetta code"
MsgBox, % "File:`n" (file) "`n`nSHA-256:`n" FileSHA256(file)
 
; SHA256 ============================================================================
SHA256(string, encoding = "utf-8")
{
return CalcStringHash(string, 0x800c, encoding)
}
 
; CalcAddrHash ======================================================================
CalcAddrHash(addr, length, algid, byref hash = 0, byref hashlength = 0)
{
static h := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "A", "B", "C", "D", "E", "F"]
static b := h.minIndex()
o := ""
if (DllCall("advapi32\CryptAcquireContext", "Ptr*", hProv, "Ptr", 0, "Ptr", 0, "UInt", 24, "UInt", 0xF0000000))
{
if (DllCall("advapi32\CryptCreateHash", "Ptr", hProv, "UInt", algid, "UInt", 0, "UInt", 0, "Ptr*", hHash))
{
if (DllCall("advapi32\CryptHashData", "Ptr", hHash, "Ptr", addr, "UInt", length, "UInt", 0))
{
if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", 0, "UInt*", hashlength, "UInt", 0))
{
VarSetCapacity(hash, hashlength, 0)
if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", &hash, "UInt*", hashlength, "UInt", 0))
{
loop, % hashlength
{
v := NumGet(hash, A_Index - 1, "UChar")
o .= h[(v >> 4) + b] h[(v & 0xf) + b]
}
}
}
}
DllCall("advapi32\CryptDestroyHash", "Ptr", hHash)
}
DllCall("advapi32\CryPtreleaseContext", "Ptr", hProv, "UInt", 0)
}
return o
}
 
; CalcStringHash ====================================================================
CalcStringHash(string, algid, encoding = "utf-8", byref hash = 0, byref hashlength = 0)
{
chrlength := (encoding = "cp1200" || encoding = "utf-16") ? 2 : 1
length := (StrPut(string, encoding) - 1) * chrlength
VarSetCapacity(data, length, 0)
StrPut(string, &data, floor(length / chrlength), encoding)
return CalcAddrHash(&data, length, algid, hash, hashlength)
}
Output:
String:    Rosetta code
SHA-256:   764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

AWK[edit]

Using the system function as a 'library'.

{
("echo -n " $0 " | sha256sum") | getline sha;
gsub(/[^0-9a-zA-Z]/, "", sha);
print sha;
}
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

BaCon[edit]

PRAGMA INCLUDE <openssl/sha.h>
PRAGMA LDFLAGS -lcrypto
 
OPTION MEMTYPE unsigned char
 
DECLARE result TYPE unsigned char*
 
result = SHA256("Rosetta code", 12, 0)
 
FOR i = 0 TO SHA256_DIGEST_LENGTH-1
PRINT PEEK(result+i) FORMAT "%02x"
NEXT
 
PRINT
Output:
[email protected] $ bacon sha256
Converting 'sha256.bac'... done, 14 lines were processed in 0.002 seconds.
Compiling 'sha256.bac'... cc  -c sha256.bac.c
cc -o sha256 sha256.bac.o -lbacon -lm  -lcrypto
Done, program 'sha256' ready.
[email protected] $ ./sha256 
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

BBC BASIC[edit]

Library[edit]

      PRINT FNsha256("Rosetta code")
END
 
DEF FNsha256(message$)
LOCAL buflen%, buffer%, hcont%, hprov%, hhash%, hash$, i%
CALG_SHA_256 = &800C
HP_HASHVAL = 2
CRYPT_NEWKEYSET = 8
PROV_RSA_AES = 24
buflen% = 128
DIM buffer% LOCAL buflen%-1
SYS "CryptAcquireContext", ^hcont%, 0, \
\ "Microsoft Enhanced RSA and AES Cryptographic Provider", \
\ PROV_RSA_AES, CRYPT_NEWKEYSET
SYS "CryptAcquireContext", ^hprov%, 0, 0, PROV_RSA_AES, 0
SYS "CryptCreateHash", hprov%, CALG_SHA_256, 0, 0, ^hhash%
SYS "CryptHashData", hhash%, message$, LEN(message$), 0
SYS "CryptGetHashParam", hhash%, HP_HASHVAL, buffer%, ^buflen%, 0
SYS "CryptDestroyHash", hhash%
SYS "CryptReleaseContext", hprov%
SYS "CryptReleaseContext", hcont%
FOR i% = 0 TO buflen%-1
hash$ += RIGHT$("0" + STR$~buffer%?i%, 2)
NEXT
= hash$

Output:

764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

Native[edit]

      REM SHA-256 calculation by Richard Russell in BBC BASIC for Windows
 
REM Must run in FLOAT64 mode:
*FLOAT64
 
REM Test message for validation:
message$ = "Rosetta code"
 
REM Initialize variables:
h0% = &6A09E667
h1% = &BB67AE85
h2% = &3C6EF372
h3% = &A54FF53A
h4% = &510E527F
h5% = &9B05688C
h6% = &1F83D9AB
h7% = &5BE0CD19
 
REM Create table of constants:
DIM k%(63) : k%() = \
\ &428A2F98, &71374491, &B5C0FBCF, &E9B5DBA5, &3956C25B, &59F111F1, &923F82A4, &AB1C5ED5, \
\ &D807AA98, &12835B01, &243185BE, &550C7DC3, &72BE5D74, &80DEB1FE, &9BDC06A7, &C19BF174, \
\ &E49B69C1, &EFBE4786, &0FC19DC6, &240CA1CC, &2DE92C6F, &4A7484AA, &5CB0A9DC, &76F988DA, \
\ &983E5152, &A831C66D, &B00327C8, &BF597FC7, &C6E00BF3, &D5A79147, &06CA6351, &14292967, \
\ &27B70A85, &2E1B2138, &4D2C6DFC, &53380D13, &650A7354, &766A0ABB, &81C2C92E, &92722C85, \
\ &A2BFE8A1, &A81A664B, &C24B8B70, &C76C51A3, &D192E819, &D6990624, &F40E3585, &106AA070, \
\ &19A4C116, &1E376C08, &2748774C, &34B0BCB5, &391C0CB3, &4ED8AA4A, &5B9CCA4F, &682E6FF3, \
\ &748F82EE, &78A5636F, &84C87814, &8CC70208, &90BEFFFA, &A4506CEB, &BEF9A3F7, &C67178F2
 
Length% = LEN(message$)*8
 
REM Pre-processing:
REM append the bit '1' to the message:
message$ += CHR$&80
 
REM append k bits '0', where k is the minimum number >= 0 such that
REM the resulting message length (in bits) is congruent to 448 (mod 512)
WHILE (LEN(message$) MOD 64) <> 56
message$ += CHR$0
ENDWHILE
 
REM append length of message (before pre-processing), in bits, as
REM 64-bit big-endian integer:
FOR I% = 56 TO 0 STEP -8
message$ += CHR$(Length% >>> I%)
NEXT
 
REM Process the message in successive 512-bit chunks:
REM break message into 512-bit chunks, for each chunk
REM break chunk into sixteen 32-bit big-endian words w[i], 0 <= i <= 15
 
DIM w%(63)
FOR chunk% = 0 TO LEN(message$) DIV 64 - 1
 
FOR i% = 0 TO 15
w%(i%) = !(!^message$ + 64*chunk% + 4*i%)
SWAP ?(^w%(i%)+0),?(^w%(i%)+3)
SWAP ?(^w%(i%)+1),?(^w%(i%)+2)
NEXT i%
 
REM Extend the sixteen 32-bit words into sixty-four 32-bit words:
FOR i% = 16 TO 63
s0% = FNrr(w%(i%-15),7) EOR FNrr(w%(i%-15),18) EOR (w%(i%-15) >>> 3)
s1% = FNrr(w%(i%-2),17) EOR FNrr(w%(i%-2),19) EOR (w%(i%-2) >>> 10)
w%(i%) = FN32(w%(i%-16) + s0% + w%(i%-7) + s1%)
NEXT i%
 
REM Initialize hash value for this chunk:
a% = h0%
b% = h1%
c% = h2%
d% = h3%
e% = h4%
f% = h5%
g% = h6%
h% = h7%
 
REM Main loop:
FOR i% = 0 TO 63
s0% = FNrr(a%,2) EOR FNrr(a%,13) EOR FNrr(a%,22)
maj% = (a% AND b%) EOR (a% AND c%) EOR (b% AND c%)
t2% = FN32(s0% + maj%)
s1% = FNrr(e%,6) EOR FNrr(e%,11) EOR FNrr(e%,25)
ch% = (e% AND f%) EOR ((NOT e%) AND g%)
t1% = FN32(h% + s1% + ch% + k%(i%) + w%(i%))
 
h% = g%
g% = f%
f% = e%
e% = FN32(d% + t1%)
d% = c%
c% = b%
b% = a%
a% = FN32(t1% + t2%)
 
NEXT i%
 
REM Add this chunk's hash to result so far:
h0% = FN32(h0% + a%)
h1% = FN32(h1% + b%)
h2% = FN32(h2% + c%)
h3% = FN32(h3% + d%)
h4% = FN32(h4% + e%)
h5% = FN32(h5% + f%)
h6% = FN32(h6% + g%)
h7% = FN32(h7% + h%)
 
NEXT chunk%
 
REM Produce the final hash value (big-endian):
hash$ = FNhex(h0%) + " " + FNhex(h1%) + " " + FNhex(h2%) + " " + FNhex(h3%) + \
\ " " + FNhex(h4%) + " " + FNhex(h5%) + " " + FNhex(h6%) + " " + FNhex(h7%)
 
PRINT hash$
END
 
DEF FNrr(A%,I%) = (A% >>> I%) OR (A% << (32-I%))
 
DEF FNhex(A%) = RIGHT$("0000000"+STR$~A%,8)
 
DEF FN32(n#)
WHILE n# > &7FFFFFFF : n# -= 2^32 : ENDWHILE
WHILE n# < &80000000 : n# += 2^32 : ENDWHILE
= n#

Output:

764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF

C[edit]

Requires OpenSSL, compile flag: -lssl -lcrypto

#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>
 
int main (void) {
const char *s = "Rosetta code";
unsigned char *d = SHA256(s, strlen(s), 0);
 
int i;
for (i = 0; i < SHA256_DIGEST_LENGTH; i++)
printf("%02x", d[i]);
putchar('\n');
 
return 0;
}

C#[edit]

using System;
using System.Security.Cryptography;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;
 
namespace RosettaCode.SHA256
{
[TestClass]
public class SHA256ManagedTest
{
[TestMethod]
public void TestComputeHash()
{
var buffer = Encoding.UTF8.GetBytes("Rosetta code");
var hashAlgorithm = new SHA256Managed();
var hash = hashAlgorithm.ComputeHash(buffer);
Assert.AreEqual(
"76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF",
BitConverter.ToString(hash));
}
}
}

C++[edit]

Uses crypto++. Compile it with -lcryptopp

#include <iostream>
#include <cryptopp/filters.h>
#include <cryptopp/hex.h>
#include <cryptopp/sha.h>
 
int main(int argc, char **argv){
CryptoPP::SHA256 hash;
std::string digest;
std::string message = "Rosetta code";
 
CryptoPP::StringSource s(message, true,
new CryptoPP::HashFilter(hash,
new CryptoPP::HexEncoder(
new CryptoPP::StringSink(digest))));
 
std::cout << digest << std::endl;
 
return 0;
}
 

Caché ObjectScript[edit]

USER>set hash=$System.Encryption.SHAHash(256, "Rosetta code")
USER>zzdump hash
0000: 76 4F AF 5C 61 AC 31 5F 14 97 F9 DF A5 42 71 39
0010: 65 B7 85 E5 CC 2F 70 7D 64 68 D7 D1 12 4C DF CF

Clojure[edit]

Library: pandect
(use 'pandect.core)
(sha256 "Rosetta code")
Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Common Lisp[edit]

Library: Ironclad
(ql:quickload 'ironclad)
(defun sha-256 (str)
(ironclad:byte-array-to-hex-string
(ironclad:digest-sequence :sha256
(ironclad:ascii-string-to-byte-array str))))
 
(sha-256 "Rosetta code")
Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Crystal[edit]

require "openssl"
puts OpenSSL::Digest.new("SHA256").update("Rosetta code")
 

Output:

764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

D[edit]

Standard Version[edit]

void main() {
import std.stdio, std.digest.sha;
 
writefln("%-(%02x%)", "Rosetta code".sha256Of);
}
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Simple Implementation[edit]

// Copyright (C) 2005, 2006 Free Software Foundation, Inc. GNU License.
// Translated to D language. Only lightly tested, not for serious use.
 
import core.stdc.string: memcpy;
import core.bitop: bswap;
 
struct SHA256 {
enum uint BLOCK_SIZE = 4096;
static assert(BLOCK_SIZE % 64 == 0, "Invalid BLOCK_SIZE.");
 
uint[8] state;
uint[2] total;
uint bufLen;
union {
uint[32] buffer;
ubyte[buffer.sizeof] bufferB;
}
 
alias TResult = ubyte[256 / 8];
 
version(WORDS_BIGENDIAN) {
static uint bswap(in uint n) pure nothrow @safe @nogc { return n; }
}
 
// Bytes used to pad the buffer to the next 64-byte boundary.
static immutable ubyte[64] fillBuf = [0x80, 0 /* , 0, 0, ... */];
 
 
/** Initialize structure containing state of computation.
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
intializes it to the start constants of the SHA256 algorithm. This
must be called before using hash in the call to sha256_hash. */

void init() pure nothrow @safe @nogc {
state = [0x6a09e667U, 0xbb67ae85U, 0x3c6ef372U, 0xa54ff53aU,
0x510e527fU, 0x9b05688cU, 0x1f83d9abU, 0x5be0cd19U];
total[] = 0;
bufLen = 0;
}
 
 
/** Starting with the result of former calls of this function (or
the initialization function) update the context for the next LEN
bytes starting at BUFFER.
It is not required that LEN is a multiple of 64. */

void processBytes(in ubyte[] inBuffer) pure nothrow @nogc {
// When we already have some bits in our internal
// buffer concatenate both inputs first.
const(ubyte)* inBufferPtr = inBuffer.ptr;
auto len = inBuffer.length;
 
if (bufLen != 0) {
immutable size_t left_over = bufLen;
immutable size_t add = (128 - left_over > len) ?
len :
128 - left_over;
 
memcpy(&bufferB[left_over], inBufferPtr, add);
bufLen += add;
 
if (bufLen > 64) {
processBlock(bufferB[0 .. bufLen & ~63]);
 
bufLen &= 63;
// The regions in the following copy operation cannot overlap.
memcpy(bufferB.ptr, &bufferB[(left_over + add) & ~63], bufLen);
}
 
inBufferPtr += add;
len -= add;
}
 
// Process available complete blocks.
if (len >= 64) {
processBlock(inBufferPtr[0 .. len & ~63]);
inBufferPtr += (len & ~63);
len &= 63;
}
 
// Move remaining bytes in internal buffer.
if (len > 0) {
size_t left_over = bufLen;
 
memcpy(&bufferB[left_over], inBufferPtr, len);
left_over += len;
if (left_over >= 64) {
processBlock(bufferB[0 .. 64]);
left_over -= 64;
memcpy(bufferB.ptr, &bufferB[64], left_over);
}
bufLen = left_over;
}
}
 
 
/** Starting with the result of former calls of this function
(or the initialization function) update the context ctx for
the next len bytes starting at buffer.
It is necessary that len is a multiple of 64. */

void processBlock(in ubyte[] inBuffer)
pure nothrow @nogc in {
assert(inBuffer.length % 64 == 0);
} body {
// Round functions.
static uint F1(in uint e, in uint f, in uint g) pure nothrow @safe @nogc {
return g ^ (e & (f ^ g));
}
 
static uint F2(in uint a, in uint b, in uint c) pure nothrow @safe @nogc {
return (a & b) | (c & (a | b));
}
 
immutable len = inBuffer.length;
auto words = cast(uint*)inBuffer.ptr;
immutable size_t nWords = len / uint.sizeof;
const uint* endp = words + nWords;
uint[16] x = void;
auto a = state[0];
auto b = state[1];
auto c = state[2];
auto d = state[3];
auto e = state[4];
auto f = state[5];
auto g = state[6];
auto h = state[7];
 
// First increment the byte count. FIPS PUB 180-2 specifies the
// possible length of the file up to 2^64 bits. Here we only
// compute the number of bytes. Do a double word increment.
total[0] += len;
if (total[0] < len)
total[1]++;
 
static uint rol(in uint x, in uint n) pure nothrow @safe @nogc {
return (x << n) | (x >> (32 - n)); }
static uint S0(in uint x) pure nothrow @safe @nogc {
return rol(x, 25) ^ rol(x, 14) ^ (x >> 3); }
static uint S1(in uint x) pure nothrow @safe @nogc {
return rol(x, 15) ^ rol(x, 13) ^ (x >> 10); }
static uint SS0(in uint x) pure nothrow @safe @nogc {
return rol(x, 30) ^ rol(x,19) ^ rol(x, 10); }
static uint SS1(in uint x) pure nothrow @safe @nogc {
return rol(x, 26) ^ rol(x, 21) ^ rol(x, 7); }
 
uint M(in uint I) pure nothrow @safe @nogc {
immutable uint tm = S1(x[(I - 2) & 0x0f]) +
x[(I - 7) & 0x0f] +
S0(x[(I - 15) & 0x0f]) +
x[I & 0x0f];
x[I & 0x0f] = tm;
return tm;
}
 
static void R(in uint a, in uint b, in uint c, ref uint d,
in uint e, in uint f, in uint g, ref uint h,
in uint k, in uint m) pure nothrow @safe @nogc {
immutable t0 = SS0(a) + F2(a, b, c);
immutable t1 = h + SS1(e) + F1(e, f, g) + k + m;
d += t1;
h = t0 + t1;
}
 
// SHA256 round constants.
static immutable uint[64] K = [
0x428a2f98U, 0x71374491U, 0xb5c0fbcfU, 0xe9b5dba5U,
0x3956c25bU, 0x59f111f1U, 0x923f82a4U, 0xab1c5ed5U,
0xd807aa98U, 0x12835b01U, 0x243185beU, 0x550c7dc3U,
0x72be5d74U, 0x80deb1feU, 0x9bdc06a7U, 0xc19bf174U,
0xe49b69c1U, 0xefbe4786U, 0x0fc19dc6U, 0x240ca1ccU,
0x2de92c6fU, 0x4a7484aaU, 0x5cb0a9dcU, 0x76f988daU,
0x983e5152U, 0xa831c66dU, 0xb00327c8U, 0xbf597fc7U,
0xc6e00bf3U, 0xd5a79147U, 0x06ca6351U, 0x14292967U,
0x27b70a85U, 0x2e1b2138U, 0x4d2c6dfcU, 0x53380d13U,
0x650a7354U, 0x766a0abbU, 0x81c2c92eU, 0x92722c85U,
0xa2bfe8a1U, 0xa81a664bU, 0xc24b8b70U, 0xc76c51a3U,
0xd192e819U, 0xd6990624U, 0xf40e3585U, 0x106aa070U,
0x19a4c116U, 0x1e376c08U, 0x2748774cU, 0x34b0bcb5U,
0x391c0cb3U, 0x4ed8aa4aU, 0x5b9cca4fU, 0x682e6ff3U,
0x748f82eeU, 0x78a5636fU, 0x84c87814U, 0x8cc70208U,
0x90befffaU, 0xa4506cebU, 0xbef9a3f7U, 0xc67178f2U];
 
while (words < endp) {
foreach (ref xi; x) {
xi = bswap(*words);
words++;
}
 
R(a, b, c, d, e, f, g, h, K[ 0], x[ 0]);
R(h, a, b, c, d, e, f, g, K[ 1], x[ 1]);
R(g, h, a, b, c, d, e, f, K[ 2], x[ 2]);
R(f, g, h, a, b, c, d, e, K[ 3], x[ 3]);
R(e, f, g, h, a, b, c, d, K[ 4], x[ 4]);
R(d, e, f, g, h, a, b, c, K[ 5], x[ 5]);
R(c, d, e, f, g, h, a, b, K[ 6], x[ 6]);
R(b, c, d, e, f, g, h, a, K[ 7], x[ 7]);
R(a, b, c, d, e, f, g, h, K[ 8], x[ 8]);
R(h, a, b, c, d, e, f, g, K[ 9], x[ 9]);
R(g, h, a, b, c, d, e, f, K[10], x[10]);
R(f, g, h, a, b, c, d, e, K[11], x[11]);
R(e, f, g, h, a, b, c, d, K[12], x[12]);
R(d, e, f, g, h, a, b, c, K[13], x[13]);
R(c, d, e, f, g, h, a, b, K[14], x[14]);
R(b, c, d, e, f, g, h, a, K[15], x[15]);
R(a, b, c, d, e, f, g, h, K[16], M(16));
R(h, a, b, c, d, e, f, g, K[17], M(17));
R(g, h, a, b, c, d, e, f, K[18], M(18));
R(f, g, h, a, b, c, d, e, K[19], M(19));
R(e, f, g, h, a, b, c, d, K[20], M(20));
R(d, e, f, g, h, a, b, c, K[21], M(21));
R(c, d, e, f, g, h, a, b, K[22], M(22));
R(b, c, d, e, f, g, h, a, K[23], M(23));
R(a, b, c, d, e, f, g, h, K[24], M(24));
R(h, a, b, c, d, e, f, g, K[25], M(25));
R(g, h, a, b, c, d, e, f, K[26], M(26));
R(f, g, h, a, b, c, d, e, K[27], M(27));
R(e, f, g, h, a, b, c, d, K[28], M(28));
R(d, e, f, g, h, a, b, c, K[29], M(29));
R(c, d, e, f, g, h, a, b, K[30], M(30));
R(b, c, d, e, f, g, h, a, K[31], M(31));
R(a, b, c, d, e, f, g, h, K[32], M(32));
R(h, a, b, c, d, e, f, g, K[33], M(33));
R(g, h, a, b, c, d, e, f, K[34], M(34));
R(f, g, h, a, b, c, d, e, K[35], M(35));
R(e, f, g, h, a, b, c, d, K[36], M(36));
R(d, e, f, g, h, a, b, c, K[37], M(37));
R(c, d, e, f, g, h, a, b, K[38], M(38));
R(b, c, d, e, f, g, h, a, K[39], M(39));
R(a, b, c, d, e, f, g, h, K[40], M(40));
R(h, a, b, c, d, e, f, g, K[41], M(41));
R(g, h, a, b, c, d, e, f, K[42], M(42));
R(f, g, h, a, b, c, d, e, K[43], M(43));
R(e, f, g, h, a, b, c, d, K[44], M(44));
R(d, e, f, g, h, a, b, c, K[45], M(45));
R(c, d, e, f, g, h, a, b, K[46], M(46));
R(b, c, d, e, f, g, h, a, K[47], M(47));
R(a, b, c, d, e, f, g, h, K[48], M(48));
R(h, a, b, c, d, e, f, g, K[49], M(49));
R(g, h, a, b, c, d, e, f, K[50], M(50));
R(f, g, h, a, b, c, d, e, K[51], M(51));
R(e, f, g, h, a, b, c, d, K[52], M(52));
R(d, e, f, g, h, a, b, c, K[53], M(53));
R(c, d, e, f, g, h, a, b, K[54], M(54));
R(b, c, d, e, f, g, h, a, K[55], M(55));
R(a, b, c, d, e, f, g, h, K[56], M(56));
R(h, a, b, c, d, e, f, g, K[57], M(57));
R(g, h, a, b, c, d, e, f, K[58], M(58));
R(f, g, h, a, b, c, d, e, K[59], M(59));
R(e, f, g, h, a, b, c, d, K[60], M(60));
R(d, e, f, g, h, a, b, c, K[61], M(61));
R(c, d, e, f, g, h, a, b, K[62], M(62));
R(b, c, d, e, f, g, h, a, K[63], M(63));
 
a = state[0] += a;
b = state[1] += b;
c = state[2] += c;
d = state[3] += d;
e = state[4] += e;
f = state[5] += f;
g = state[6] += g;
h = state[7] += h;
}
}
 
 
/** Process the remaining bytes in the internal buffer and the
usual prolog according to the standard and write the result to
resBuf.
Important: On some systems it is required that resBuf is correctly
aligned for a 32-bit value. */

void conclude() pure nothrow @nogc {
// Take yet unprocessed bytes into account.
immutable bytes = bufLen;
immutable size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
 
// Now count remaining bytes.
total[0] += bytes;
if (total[0] < bytes)
total[1]++;
 
// Put the 64-bit file length in *bits* at the end of
// the buffer.
buffer[size - 2] = bswap((total[1] << 3) | (total[0] >> 29));
buffer[size - 1] = bswap(total[0] << 3);
 
memcpy(&bufferB[bytes], fillBuf.ptr, (size - 2) * 4 - bytes);
 
// Process last bytes.
processBlock(bufferB[0 .. size * 4]);
}
 
 
/** Put result from this in first 32 bytes following resBuf. The
result must be in little endian byte order.
Important: On some systems it is required that resBuf is correctly
aligned for a 32-bit value. */

ref TResult read(return ref TResult resBuf) pure nothrow @nogc {
foreach (immutable i, immutable s; state)
(cast(uint*)resBuf.ptr)[i] = bswap(s);
return resBuf;
}
 
 
/** Process the remaining bytes in the buffer and put result from
CTX in first 32 (28) bytes following resBuf. The result is always
in little endian byte order, so that a byte-wise output yields to
the wanted ASCII representation of the message digest.
Important: On some systems it is required that resBuf be correctly
aligned for a 32 bits value. */

ref TResult finish(return ref TResult resBuf) pure nothrow @nogc {
conclude;
return read(resBuf);
}
 
 
/** Compute SHA512 message digest for LEN bytes beginning at
buffer. The result is always in little endian byte order, so that
a byte-wise output yields to the wanted ASCII representation of
the message digest. */

static ref TResult digest(in ubyte[] inBuffer, return ref TResult resBuf)
pure nothrow @nogc {
SHA256 sha = void;
 
// Initialize the computation context.
sha.init;
 
// Process whole buffer but last len % 64 bytes.
sha.processBytes(inBuffer);
 
// Put result in desired memory area.
return sha.finish(resBuf);
}
 
 
/// ditto
static TResult digest(in ubyte[] inBuffer) pure nothrow @nogc {
align(4) TResult resBuf = void;
return digest(inBuffer, resBuf);
}
}
 
 
version (sha_256_main) {
void main() {
import std.stdio, std.string;
 
immutable data = "Rosetta code".representation;
writefln("%(%02x%)", SHA256.digest(data));
}
}

Compile with -version=sha_256_main to run the main function.

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

This is a moderately efficient implementation, about 100 MB/s on a 4096 bytes input buffer on a 32 bit system, using the ldc2 compiler. On a more modern CPU (Intel Ivy Bridge) using HyperThreading, handwritten assembly by Intel is about twice faster.

Delphi[edit]

Library: DCPsha256
Part of DCPcrypt Cryptographic Component Library v2.1[1] by David Barton.
 
program SHA_256;
 
{$APPTYPE CONSOLE}
 
uses
System.SysUtils,
DCPsha256;
 
function SHA256(const Str: string): string;
var
HashDigest: array of byte;
d: Byte;
begin
Result := '';
with TDCP_sha256.Create(nil) do
begin
Init;
UpdateStr(Str);
SetLength(HashDigest, GetHashSize div 8);
final(HashDigest[0]);
for d in HashDigest do
Result := Result + d.ToHexString(2);
Free;
end;
end;
 
begin
Writeln(SHA256('Rosetta code'));
readln;
 
end.
 
 
Output:
764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

DWScript[edit]

PrintLn( HashSHA256.HashData('Rosetta code') );

Emacs Lisp[edit]

(secure-hash 'sha256 "Rosetta code")  ;; as string of hex digits

Erlang[edit]

More code to get the correct display format than doing the calculation.

Output:
10> Binary =  crypto:hash( sha256, "Rosetta code" ).
11> lists:append( [erlang:integer_to_list(X, 16) || <<X:8/integer>> <= Binary] ).
"764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF"

F#[edit]

open System.Security.Cryptography
open System.Text
 
"Rosetta code"
|> Encoding.ASCII.GetBytes
|> (new SHA256Managed()).ComputeHash
|> System.BitConverter.ToString
|> printfn "%s"
 
Output:
76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF

Factor[edit]

Works with: Factor version 0.98
USING: checksums checksums.sha io math.parser ;
 
"Rosetta code" sha-256 checksum-bytes bytes>hex-string print
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Fortran[edit]

Intel Fortran on Windows[edit]

Using Windows API. See CryptAcquireContext, CryptCreateHash, CryptHashData and CryptGetHashParam on MSDN.

With the file rc.txt containing the string "Rosetta Code":

sha256 rc.txt
764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF rc.txt (12 bytes)
module sha256_mod
use kernel32
use advapi32
implicit none
integer, parameter :: SHA256LEN = 32
contains
subroutine sha256hash(name, hash, dwStatus, filesize)
implicit none
character(*) :: name
integer, parameter :: BUFLEN = 32768
integer(HANDLE) :: hFile, hProv, hHash
integer(DWORD) :: dwStatus, nRead
integer(BOOL) :: status
integer(BYTE) :: buffer(BUFLEN)
integer(BYTE) :: hash(SHA256LEN)
integer(UINT64) :: filesize
 
dwStatus = 0
filesize = 0
hFile = CreateFile(trim(name) // char(0), GENERIC_READ, FILE_SHARE_READ, NULL, &
OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL)
 
if (hFile == INVALID_HANDLE_VALUE) then
dwStatus = GetLastError()
print *, "CreateFile failed."
return
end if
 
if (CryptAcquireContext(hProv, NULL, MS_ENH_RSA_AES_PROV, PROV_RSA_AES, &
CRYPT_VERIFYCONTEXT) == FALSE) then
 
dwStatus = GetLastError()
print *, "CryptAcquireContext failed.", dwStatus
goto 3
end if
 
if (CryptCreateHash(hProv, CALG_SHA_256, 0_ULONG_PTR, 0_DWORD, hHash) == FALSE) then
 
dwStatus = GetLastError()
print *, "CryptCreateHash failed."
go to 2
end if
 
do
status = ReadFile(hFile, loc(buffer), BUFLEN, nRead, NULL)
if (status == FALSE .or. nRead == 0) exit
filesize = filesize + nRead
if (CryptHashData(hHash, buffer, nRead, 0) == FALSE) then
dwStatus = GetLastError()
print *, "CryptHashData failed."
go to 1
end if
end do
 
if (status == FALSE) then
dwStatus = GetLastError()
print *, "ReadFile failed."
go to 1
end if
 
nRead = SHA256LEN
if (CryptGetHashParam(hHash, HP_HASHVAL, hash, nRead, 0) == FALSE) then
dwStatus = GetLastError()
print *, "CryptGetHashParam failed."
end if
 
1 status = CryptDestroyHash(hHash)
2 status = CryptReleaseContext(hProv, 0)
3 status = CloseHandle(hFile)
end subroutine
end module
 
program sha256
use sha256_mod
implicit none
integer :: n, m, i, j
character(:), allocatable :: name
integer(DWORD) :: dwStatus
integer(BYTE) :: hash(SHA256LEN)
integer(UINT64) :: filesize
 
n = command_argument_count()
do i = 1, n
call get_command_argument(i, length=m)
allocate(character(m) :: name)
call get_command_argument(i, name)
call sha256hash(name, hash, dwStatus, filesize)
if (dwStatus == 0) then
do j = 1, SHA256LEN
write(*, "(Z2.2)", advance="NO") hash(j)
end do
write(*, "(' ',A,' (',G0,' bytes)')") name, filesize
end if
deallocate(name)
end do
end program

Free Pascal[edit]

program rosettaCodeSHA256;
 
uses
SysUtils, DCPsha256;
 
var
ros: String;
sha256 : TDCP_sha256;
digest : array[0..63] of byte;
i: Integer;
output: String;
begin
ros := 'Rosetta code';
 
sha256 := TDCP_sha256.Create(nil);
sha256.init;
sha256.UpdateStr(ros);
sha256.Final(digest);
 
output := '';
 
for i := 0 to 31 do begin
output := output + intToHex(digest[i], 2);
end;
 
writeln(lowerCase(output));
 
end.
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

FreeBASIC[edit]

' version 20-10-2016
' FIPS PUB 180-4
' compile with: fbc -s console
 
Function SHA_256(test_str As String) As String
 
#Macro Ch (x, y, z)
(((x) And (y)) Xor ((Not (x)) And z))
#EndMacro
 
#Macro Maj (x, y, z)
(((x) And (y)) Xor ((x) And (z)) Xor ((y) And (z)))
#EndMacro
 
#Macro sigma0 (x)
(((x) Shr 2 Or (x) Shl 30) Xor ((x) Shr 13 Or (x) Shl 19) Xor ((x) Shr 22 Or (x) Shl 10))
#EndMacro
 
#Macro sigma1 (x)
(((x) Shr 6 Or (x) Shl 26) Xor ((x) Shr 11 Or (x) Shl 21) Xor ((x) Shr 25 Or (x) Shl 7))
#EndMacro
 
#Macro sigma2 (x)
(((x) Shr 7 Or (x) Shl 25) Xor ((x) Shr 18 Or (x) Shl 14) Xor ((x) Shr 3))
#EndMacro
 
#Macro sigma3 (x)
(((x) Shr 17 Or (x) Shl 15) Xor ((x) Shr 19 Or (x) Shl 13) Xor ((x) Shr 10))
#EndMacro
 
Dim As String message = test_str ' strings are passed as ByRef's
 
Dim As Long i, j
Dim As UByte Ptr ww1
Dim As UInteger<32> Ptr ww4
 
Dim As ULongInt l = Len(message)
' set the first bit after the message to 1
message = message + Chr(1 Shl 7)
' add one char to the length
Dim As ULong padding = 64 - ((l +1) Mod (512 \ 8)) ' 512 \ 8 = 64 char.
 
' check if we have enough room for inserting the length
If padding < 8 Then padding = padding + 64
 
message = message + String(padding, Chr(0)) ' adjust length
Dim As ULong l1 = Len(message) ' new length
 
l = l * 8 ' orignal length in bits
' create ubyte ptr to point to l ( = length in bits)
Dim As UByte Ptr ub_ptr = Cast(UByte Ptr, @l)
 
For i = 0 To 7 'copy length of message to the last 8 bytes
message[l1 -1 - i] = ub_ptr[i]
Next
 
'table of constants
Dim As UInteger<32> K(0 To ...) = _
{ &H428a2f98, &H71374491, &Hb5c0fbcf, &He9b5dba5, &H3956c25b, &H59f111f1, _
&H923f82a4, &Hab1c5ed5, &Hd807aa98, &H12835b01, &H243185be, &H550c7dc3, _
&H72be5d74, &H80deb1fe, &H9bdc06a7, &Hc19bf174, &He49b69c1, &Hefbe4786, _
&H0fc19dc6, &H240ca1cc, &H2de92c6f, &H4a7484aa, &H5cb0a9dc, &H76f988da, _
&H983e5152, &Ha831c66d, &Hb00327c8, &Hbf597fc7, &Hc6e00bf3, &Hd5a79147, _
&H06ca6351, &H14292967, &H27b70a85, &H2e1b2138, &H4d2c6dfc, &H53380d13, _
&H650a7354, &H766a0abb, &H81c2c92e, &H92722c85, &Ha2bfe8a1, &Ha81a664b, _
&Hc24b8b70, &Hc76c51a3, &Hd192e819, &Hd6990624, &Hf40e3585, &H106aa070, _
&H19a4c116, &H1e376c08, &H2748774c, &H34b0bcb5, &H391c0cb3, &H4ed8aa4a, _
&H5b9cca4f, &H682e6ff3, &H748f82ee, &H78a5636f, &H84c87814, &H8cc70208, _
&H90befffa, &Ha4506ceb, &Hbef9a3f7, &Hc67178f2 }
 
Dim As UInteger<32> h0 = &H6a09e667
Dim As UInteger<32> h1 = &Hbb67ae85
Dim As UInteger<32> h2 = &H3c6ef372
Dim As UInteger<32> h3 = &Ha54ff53a
Dim As UInteger<32> h4 = &H510e527f
Dim As UInteger<32> h5 = &H9b05688c
Dim As UInteger<32> h6 = &H1f83d9ab
Dim As UInteger<32> h7 = &H5be0cd19
Dim As UInteger<32> a, b, c, d, e, f, g, h
Dim As UInteger<32> t1, t2, w(0 To 63)
 
 
For j = 0 To (l1 -1) \ 64 ' split into block of 64 bytes
ww1 = Cast(UByte Ptr, @message[j * 64])
ww4 = Cast(UInteger<32> Ptr, @message[j * 64])
 
For i = 0 To 60 Step 4 'little endian -> big endian
Swap ww1[i ], ww1[i +3]
Swap ww1[i +1], ww1[i +2]
Next
 
For i = 0 To 15 ' copy the 16 32bit block into the array
W(i) = ww4[i]
Next
 
For i = 16 To 63 ' fill the rest of the array
w(i) = sigma3(W(i -2)) + W(i -7) + sigma2(W(i -15)) + W(i -16)
Next
 
a = h0 : b = h1 : c = h2 : d = h3 : e = h4 : f = h5 : g = h6 : h = h7
 
For i = 0 To 63
t1 = h + sigma1(e) + Ch(e, f, g) + K(i) + W(i)
t2 = sigma0(a) + Maj(a, b, c)
h = g : g = f : f = e
e = d + t1
d = c : c = b : b = a
a = t1 + t2
Next
 
h0 += a : h1 += b : h2 += c : h3 += d
h4 += e : h5 += f : h6 += g : h7 += h
 
Next j
 
Dim As String answer = Hex(h0, 8) + Hex(h1, 8) + Hex(h2, 8) + Hex(h3, 8)
answer += Hex(h4, 8) + Hex(h5, 8) + Hex(h6, 8) + Hex(h7, 8)
 
Return LCase(answer)
 
End Function
 
' ------=< MAIN >=------
 
Dim As String test = "Rosetta code"
Print test; " => "; SHA_256(test)
 
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
Output:
Rosetta code => 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Frink[edit]

Frink has convenience methods to use any message hashing algorithm provided by your Java Virtual Machine. The result can be returned as a hexadecimal string, an integer, or an array of bytes.

println[messageDigest["Rosetta code", "SHA-256"]]
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

FunL[edit]

A SHA-256 function can be defined using the Java support library.

native java.security.MessageDigest
 
def sha256Java( message ) = map( a -> format('%02x', a), list(MessageDigest.getInstance('SHA-256').digest(message.getBytes('UTF-8'))) ).mkString()

Here is a definition implemented as a direct translation of the pseudocode at SHA-256.

def sha256( message ) =
//Initialize hash values
h0 = 0x6a09e667
h1 = 0xbb67ae85
h2 = 0x3c6ef372
h3 = 0xa54ff53a
h4 = 0x510e527f
h5 = 0x9b05688c
h6 = 0x1f83d9ab
h7 = 0x5be0cd19
 
// Initialize array of round constants
k(0..63) = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]
 
// Pre-processing
bits = BitArray( message.getBytes('UTF-8') )
len = bits.length()
bits.append( 1 )
r = bits.length()%512
bits.appendAll( 0 | _ <- 1..(if r > 448 then 512 - r + 448 else 448 - r) )
bits.appendInt( 0 )
bits.appendInt( len )
 
words = bits.toIntVector()
 
// Process the message in successive 512-bit chunks
for chunk <- 0:words.length():16
w(0..15) = words(chunk..chunk+15)
 
// Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array
for i <- 16..63
s0 = (w(i-15) rotateright 7) xor (w(i-15) rotateright 18) xor (w(i-15) >>> 3)
s1 = (w(i-2) rotateright 17) xor (w(i-2) rotateright 19) xor (w(i-2) >>> 10)
w(i) = w(i-16) + s0 + w(i-7) + s1
 
// Initialize working variables to current hash value
a = h0
b = h1
c = h2
d = h3
e = h4
f = h5
g = h6
h = h7
 
// Compression function main loop
for i <- 0..63
S1 = (e rotateright 6) xor (e rotateright 11) xor (e rotateright 25)
ch = (e and f) xor ((not e) and g)
temp1 = h + S1 + ch + k(i) + w(i)
S0 = (a rotateright 2) xor (a rotateright 13) xor (a rotateright 22)
maj = (a and b) xor (a and c) xor (b and c)
temp2 = S0 + maj
 
h = g
g = f
f = e
e = d + temp1
d = c
c = b
b = a
a = temp1 + temp2
 
// Add the compressed chunk to the current hash value
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
h5 = h5 + f
h6 = h6 + g
h7 = h7 + h
 
// Produce the final hash value (big-endian)
map( a -> format('%08x', a.intValue()), [h0, h1, h2, h3, h4, h5, h6, h7] ).mkString()

Here is a test comparing the two and also verifying the hash values of the empty message string.

message = 'Rosetta code'
 
println( 'FunL: "' + message + '" ~> ' + sha256(message) )
println( 'Java: "' + message + '" ~> ' + sha256Java(message) )
 
message = ''
 
println( 'FunL: "' + message + '" ~> ' + sha256(message) )
println( 'Java: "' + message + '" ~> ' + sha256Java(message) )
Output:
FunL: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Java: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
FunL: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Java: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Genie[edit]

[indent=4]
/*
SHA-256 in Genie
 
valac SHA-256.gs
./SHA-256
*/

 
init
var msg = "Rosetta code"
var digest = Checksum.compute_for_string(ChecksumType.SHA256, msg, -1)
print msg
print digest
 
assert(digest == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")
Output:
prompt$ valac SHA-256.gs
prompt$ ./SHA-256
Rosetta code
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Go[edit]

package main
 
import (
"crypto/sha256"
"fmt"
"log"
)
 
func main() {
h := sha256.New()
if _, err := h.Write([]byte("Rosetta code")); err != nil {
log.Fatal(err)
}
fmt.Printf("%x\n", h.Sum(nil))
}
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Groovy[edit]

def sha256Hash = { text ->
java.security.MessageDigest.getInstance("SHA-256").digest(text.bytes)
.collect { String.format("%02x", it) }.join('')
}

Testing

assert sha256Hash('Rosetta code') == '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf'

Halon[edit]

$var = "Rosetta code";
echo sha2($var, 256);
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Haskell[edit]

import Data.Char (ord)
import Crypto.Hash.SHA256 (hash)
import Data.ByteString (unpack, pack)
import Text.Printf (printf)
 
main = putStrLn $ -- output to terminal
concatMap (printf "%02x") $ -- to hex string
unpack $ -- to array of Word8
hash $ -- SHA-256 hash to ByteString
pack $ -- to ByteString
map (fromIntegral.ord) -- to array of Word8
"Rosetta code"
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Haxe[edit]

import haxe.crypto.Sha256;
 
class Main {
static function main() {
var sha256 = Sha256.encode("Rosetta code");
Sys.println(sha256);
}
}
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

J[edit]

Solution: From J8 the ide/qt addon provides bindings to Qt libraries that include support for various hashing algorithms including SHA-256.

require '~addons/ide/qt/qt.ijs'
getsha256=: 'sha256'&gethash_jqtide_

Example Usage:

   getsha256 'Rosetta code'
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Note that the older version Qt4 libraries currently shipped by default on many Linux distributions don't support SHA-256. On Windows and Mac, J8 includes the later Qt5 libraries that include support for SHA-256.

Starting in J8.06, the sha family of hashes have built-in support.

sha256=: 3&(128!:6)
   sha256 'Rosetta code'
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Java[edit]

The solution to this task would be a small modification to MD5 (replacing "MD5" with "SHA-256" as noted here).

JavaScript[edit]

 
const crypto = require('crypto');
 
const msg = 'Rosetta code';
const hash = crypto.createHash('sha256').update(msg).digest('hex');
 
console.log(hash);
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Jsish[edit]

/* SHA-256 hash in Jsish */
var str = 'Rosetta code';
puts(Util.hash(str, {type:'sha256'}));
 
/*
=!EXPECTSTART!=
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
=!EXPECTEND!=
*/
Output:
prompt$ jsish sha-256.jsi
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
prompt$ jsish -u sha-256.jsi
[PASS] sha-256.jsi

Julia[edit]

Works with: Julia version 0.6
msg = "Rosetta code"
 
using Nettle
digest = hexdigest("sha256", msg)
 
# native
using SHA
digest1 = join(num2hex.(sha256(msg)))
 
@assert digest == digest1

Kotlin[edit]

// version 1.0.6
 
import java.security.MessageDigest
 
fun main(args: Array<String>) {
val text = "Rosetta code"
val bytes = text.toByteArray()
val md = MessageDigest.getInstance("SHA-256")
val digest = md.digest(bytes)
for (byte in digest) print("%02x".format(byte))
println()
}
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Lasso[edit]

Lasso supports the ciphers as supplied by the operating system.

SHA-256 is not supplied by all operating systems by default.

Use the cipher_list method to view these algorithms.

// The following will return a list of all the cipher 
// algorithms supported by the installation of Lasso
cipher_list
 
// With a -digest parameter the method will limit the returned list
// to all of the digest algorithms supported by the installation of Lasso
cipher_list(-digest)
 
// return the SHA-256 digest. Dependant on SHA-256 being an available digest method
cipher_digest('Rosetta Code', -digest='SHA-256',-hex=true)
 

Lua[edit]

Works with: Lua 5.1.4
Library: sha2
(luarocks install sha2)
#!/usr/bin/lua
 
require "sha2"
 
print(sha2.sha256hex("Rosetta code"))
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Mathematica[edit]

Hash["Rosetta code","SHA256","HexString"]
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

min[edit]

Works with: min version 0.19.6
"Rosetta code" sha256 puts!
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

NetRexx[edit]

This solution is basically the same as that for MD5, substituting "SHA-256" for "MD5" as the algorithm to use in the MessageDigest instance.

/* NetRexx */
options replace format comments java crossref savelog symbols binary
 
import java.security.MessageDigest
 
SHA256('Rosetta code', '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf')
 
return
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method SHA256(messageText, verifyCheck) public static
 
algorithm = 'SHA-256'
digestSum = getDigest(messageText, algorithm)
 
say '<Message>'messageText'</Message>'
say Rexx('<'algorithm'>').right(12) || digestSum'</'algorithm'>'
say Rexx('<Verify>').right(12) || verifyCheck'</Verify>'
if digestSum == verifyCheck then say algorithm 'Confirmed'
else say algorithm 'Failed'
 
return
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method getDigest(messageText = Rexx, algorithm = Rexx 'MD5', encoding = Rexx 'UTF-8', lowercase = boolean 1) public static returns Rexx
 
algorithm = algorithm.upper
encoding = encoding.upper
 
message = String(messageText)
messageBytes = byte[]
digestBytes = byte[]
digestSum = Rexx ''
 
do
messageBytes = message.getBytes(encoding)
md = MessageDigest.getInstance(algorithm)
md.update(messageBytes)
digestBytes = md.digest
 
loop b_ = 0 to digestBytes.length - 1
bb = Rexx(digestBytes[b_]).d2x(2)
if lowercase then digestSum = digestSum || bb.lower
else digestSum = digestSum || bb.upper
end b_
catch ex = Exception
ex.printStackTrace
end
 
return digestSum
 

Output:

<Message>Rosetta code</Message>
   <SHA-256>764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</SHA-256>
    <Verify>764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</Verify>
SHA-256 Confirmed

NewLISP[edit]

;; using the crypto module from http://www.newlisp.org/code/modules/crypto.lsp.html
;; (import native functions from the crypto library, provided by OpenSSL)
(module "crypto.lsp")
(crypto:sha256 "Rosetta Code")

Nim[edit]

Library: OpenSSL

Compile with nim -d:ssl c sha256.nim:

import strutils
 
const SHA256Len = 32
 
proc SHA256(d: cstring, n: culong, md: cstring = nil): cstring {.cdecl, dynlib: "libssl.so", importc.}
 
proc SHA256(s: string): string =
result = ""
let s = SHA256(s.cstring, s.len.culong)
for i in 0 .. < SHA256Len:
result.add s[i].BiggestInt.toHex(2).toLower
 
echo SHA256("Rosetta code")
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Oberon-2[edit]

Works with: oo2c
Library: crypto
 
MODULE SHA256;
IMPORT
Crypto:SHA256,
Crypto:Utils,
Strings,
Out;
VAR
h: SHA256.Hash;
str: ARRAY 128 OF CHAR;
 
BEGIN
h := SHA256.NewHash();
h.Initialize;
str := "Rosetta code";
h.Update(str,0,Strings.Length(str));
h.GetHash(str,0);
Out.String("SHA256: ");Utils.PrintHex(str,0,h.size);Out.Ln
END SHA256.
 
Output:
SHA256: 
   764FAF5C   61AC315F   1497F9DF   A5427139   65B785E5   CC2F707D
   6468D7D1   124CDFCF

Objeck[edit]

 
class ShaHash {
function : Main(args : String[]) ~ Nil {
hash:= Encryption.Hash->SHA256("Rosetta code"->ToByteArray());
str := hash->ToHexString()->ToLower();
str->PrintLine();
str->Equals("764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")->PrintLine();
}
}
 
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
true

Objective-C[edit]

Build with something like

clang -o rosetta_sha256 rosetta_sha256.m /System/Library/Frameworks/Cocoa.framework/Cocoa

or in XCode.

#import <Cocoa/Cocoa.h>
#import <CommonCrypto/CommonDigest.h>
 
 
int main(int argc, char ** argv) {
NSString * msg = @"Rosetta code";
unsigned char buf[CC_SHA256_DIGEST_LENGTH];
const char * rc = [msg cStringUsingEncoding:NSASCIIStringEncoding];
if (! CC_SHA256(rc, strlen(rc), buf)) {
NSLog(@"Failure...");
return -1;
}
NSMutableString * res = [NSMutableString stringWithCapacity:(CC_SHA256_DIGEST_LENGTH * 2)];
for (int i = 0; i < CC_SHA256_DIGEST_LENGTH; ++i) {
[res appendFormat:@"%02x", buf[i]];
}
NSLog(@"Output: %@", res);
return 0;
}
 

OCaml[edit]

Library: caml-sha
let () =
let s = "Rosetta code" in
let digest = Sha256.string s in
print_endline (Sha256.to_hex digest)

Running this script in interpreted mode:

$ ocaml -I +sha sha256.cma sha.ml
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

OS X sha256sum[edit]

Apple OS X command line with echo and sha256sum.

echo -n 'Rosetta code' | sha256sum

Using the -n flag for echo is required as echo normally outputs a newline.

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf  -

PARI/GP[edit]

It works on Linux systems.

sha256(s)=extern("echo \"Str(`echo -n '"Str(s)"'|sha256sum|cut -d' ' -f1`)\"")

The code above creates a new function sha256(s) which returns SHA-256 hash of item s.

Output:
sha256("Rosetta code") = "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Perl[edit]

The preferred way to do a task like this is to use an already written module, for example:

#!/usr/bin/perl 
use strict ;
use warnings ;
use Digest::SHA qw( sha256_hex ) ;
 
my $digest = sha256_hex my $phrase = "Rosetta code" ;
print "SHA-256('$phrase'): $digest\n" ;
 
Output:
SHA-256('Rosetta code'): 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

On the other hand, one of perl's mottos is There Is More Than One Way To Do It, so of course you could write your own implementation if you wanted to.

 
package Digest::SHA256::PP;
 
use strict;
use warnings;
 
use constant WORD => 2**32;
use constant MASK => WORD - 1;
 
my @h;
my @k;
 
for my $p ( 2 .. 311 ) {
# Horrible primality test, but sufficient for this task.
next if ("1" x $p) =~ /^(11+?)\1+$/;
# The choice to generate h and k instead of hard coding
# them is inspired by the Raku implementation.
my $c = $p ** ( 1/3 );
push @k, int( ($c - int $c) * WORD );
next if @h == 8;
my $s = $p ** ( 1/2 );
push @h, int( ($s - int $s) * WORD );
}
 
sub new {
my %self = ( state => [@h], str => "", len => 0 );
bless \%self, shift;
}
 
my $rightrotate = sub {
my $lo = $_[0] >> $_[1];
my $hi = $_[0] << (32 - $_[1]);
($hi | $lo);
};
 
# This is adapted from the wikipedia entry on SHA2.
my $compress = sub {
my ($state, $bytes) = @_;
my @w = unpack 'N*', $bytes;
@w == 16 or die 'internal error';
my ($a, $b, $c, $d, $e, $f, $g, $h) = @$state;
until( @w == 64 ) {
my $s0 = $w[-15] >> 3;
my $s1 = $w[-2] >> 10;
$s0 ^= $rightrotate->($w[-15], $_) for 7, 18;
$s1 ^= $rightrotate->($w[-2], $_) for 17, 19;
push @w, ($w[-16] + $s0 + $w[-7] + $s1) & MASK;
}
my $i = 0;
for my $w (@w) {
my $ch = ($e & $f) ^ ((~$e) & $g);
my $maj = ($a & $b) ^ ($a & $c) ^ ($b & $c);
my ($S0, $S1) = (0, 0);
$S1 ^= $rightrotate->( $e, $_ ) for 6, 11, 25;
$S0 ^= $rightrotate->( $a, $_ ) for 2, 13, 22;
my $temp1 = $h + $S1 + $ch + $k[$i++] + $w;
my $temp2 = $S0 + $maj;
($h, $g, $f, $e, $d, $c, $b, $a) =
($g, $f, $e, ($d+$temp1)&MASK, $c, $b, $a, ($temp1+$temp2)&MASK);
}
my $j = 0;
$state->[$j++] += $_ for $a, $b, $c, $d, $e, $f, $g, $h;
};
 
use constant can_Q => eval { length pack 'Q>', 0 };
 
sub add {
my ($self, $bytes) = @_;
$self->{len} += 8 * length $bytes;
if( !can_Q and $self->{len} >= WORD ) {
my $hi = int( $self->{len} / WORD );
$self->{big} += $hi;
$self->{len} -= $hi * WORD;
}
my $len = length $self->{str};
if( ($len + length $bytes) < 64 ) {
$self->{str} .= $bytes;
return $self;
}
my $off = 64 - $len;
$compress->( $self->{state}, $self->{str} . substr( $bytes, 0, $off ) );
$len = length $_[0];
while( $off+64 <= $len ) {
$compress->( $self->{state}, substr( $bytes, $off, 64 ) );
$off += 64;
}
$self->{str} = substr( $bytes, $off );
$self;
}
 
sub addfile {
my ($self, $fh) = @_;
my $s = "";
while( read( $fh, $s, 2**13 ) ) {
$self->add( $s );
}
$self;
}
 
 
sub digest {
my $self = shift;
my $final = $self->{str};
$final .= chr 0x80;
while( ( 8+length $final ) % 64 ) {
$final .= chr 0;
}
if( can_Q ) {
$final .= pack 'Q>', $self->{len};
} else {
$self->{big} ||= 0;
$final .= pack 'NN', $self->{big}, $self->{len};
}
$compress->( $self->{state}, substr $final, 0, 64, "" ) while length $final;
if( wantarray ) {
map pack('N', $_), @{ $self->{state} };
} else {
pack 'N*', @{ $self->{state} };
}
}
 
sub hexdigest {
if( wantarray ) {
map unpack( 'H*', $_), &digest;
} else {
unpack 'H*', &digest;
}
}
 
unless( caller ) {
my @testwith = (@ARGV ? @ARGV : 'Rosetta code');
for my $str (@testwith) {
my $digester = __PACKAGE__->new;
$digester->add($str);
print "'$str':\n";
print join(" ", $digester->hexdigest), "\n";
}
}
 
1;
 
Output:
'Rosetta code':
764faf5c 61ac315f 1497f9df a5427139 65b785e5 cc2f707d 6468d7d1 124cdfcf

Phix[edit]

include builtins\sha256.e
 
function asHex(string s)
string res = ""
for i=1 to length(s) do
res &= sprintf("%02X",s[i])
end for
return res
end function
 
?asHex(sha256("Rosetta code"))
Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

The standard include file sha256.e is now mainly optimised inline assembly, but the following is, I feel, more in the spirit of this site

--
-- demo\rosetta\sha-256.exw
-- ========================
--
-- fairly faithful rendition of https://en.wikipedia.org/wiki/SHA-2
-- with slightly improved names (eg s0 -> sigma0) from elsewhere.
-- See also sha-256asm.exw for a faster inline asm version, and
-- sha-256dll.exw is much shorter as it uses a pre-built dll.
 
--Initial array of round constants
--(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
constant k = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}
 
function pad64(integer v)
-- round v up to multiple of 64
return floor((v+63)/64)*64
end function
 
constant m4 = allocate(4) -- scratch area, for uint32
 
function uint32(atom v)
--
-- (note: I have experimented to call this as few times as possible.
-- It wouldn't hurt to perform this on every maths op, but a
-- few leading bits in a few work fields don't matter much.)
--
poke4(m4,v)
return peek4u(m4)
end function
 
function sq_uint32(sequence s)
-- apply unit32 to all elements of s
for i=1 to length(s) do
s[i] = uint32(s[i])
end for
return s
end function
 
function dword(string msg, integer i)
-- get dword as big-endian
return msg[i]*#1000000+msg[i+1]*#10000+msg[i+2]*#100+msg[i+3]
end function
 
function shr(atom v, integer bits)
return floor(v/power(2,bits))
end function
 
function ror(atom v, integer bits)
return or_bits(shr(v,bits),v*power(2,32-bits))
end function
 
function sha256(string msg)
-- main function
atom s0,s1,a,b,c,d,e,f,g,h,ch,temp1,maj,temp2,x
sequence w = repeat(0,64)
sequence res
integer len = length(msg)+1
--Initial hash values
--(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19)
atom h0 = 0x6a09e667,
h1 = 0xbb67ae85,
h2 = 0x3c6ef372,
h3 = 0xa54ff53a,
h4 = 0x510e527f,
h5 = 0x9b05688c,
h6 = 0x1f83d9ab,
h7 = 0x5be0cd19
 
-- add the '1' bit and space for size in bits, padded to multiple of 64
msg &= #80&repeat('\0',pad64(len+8)-len)
len = (len-1)*8
for i=length(msg) to 1 by -1 do
msg[i] = and_bits(len,#FF)
len = floor(len/#100)
if len=0 then exit end if
end for
 
-- Process the message in successive 512-bit (64 byte) chunks
for chunk=1 to length(msg) by 64 do
for i=1 to 16 do
w[i] = dword(msg,chunk+(i-1)*4)
end for
-- Extend the first 16 words into the remaining 48 words w[17..64] of the message schedule array
for i=17 to 64 do
x = w[i-15]; s0 = xor_bits(xor_bits(ror(x, 7),ror(x,18)),shr(x, 3))
x = w[i-2]; s1 = xor_bits(xor_bits(ror(x,17),ror(x,19)),shr(x,10))
w[i] = uint32(w[i-16]+s0+w[i-7]+s1)
end for
-- Initialize working variables to current hash value
{a,b,c,d,e,f,g,h} = {h0,h1,h2,h3,h4,h5,h6,h7}
 
-- Compression function main loop
for i=1 to 64 do
s1 = xor_bits(xor_bits(ror(e,6),ror(e,11)),ror(e,25))
ch = xor_bits(and_bits(e,f),and_bits(not_bits(e),g))
temp1 = h+s1+ch+k[i]+w[i]
s0 = xor_bits(xor_bits(ror(a,2),ror(a,13)),ror(a,22))
maj = xor_bits(xor_bits(and_bits(a,b),and_bits(a,c)),and_bits(b,c))
temp2 = s0+maj
 
{h,g,f,e,d,c,b,a} = sq_uint32({g,f,e,d+temp1,c,b,a,temp1+temp2})
 
end for
 
-- Add the compressed chunk to the current hash value
{h0,h1,h2,h3,h4,h5,h6,h7} = sq_add({h0,h1,h2,h3,h4,h5,h6,h7},{a,b,c,d,e,f,g,h})
end for
 
-- Produce the final hash value (big-endian)
res = sq_uint32({h0, h1, h2, h3, h4, h5, h6, h7}) -- (or do sq_unit32 on the sq_add above)
for i=1 to length(res) do
res[i] = sprintf("%08x",res[i])
end for
return join(res)
end function
 
?sha256("Rosetta code")
Output:
"764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF"

PHP[edit]

<?php
echo hash('sha256', 'Rosetta code');
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

PicoLisp[edit]

Library and implementation.

(setq *Sha256-K 
(mapcar hex
'("428A2F98" "71374491" "B5C0FBCF" "E9B5DBA5" "3956C25B"
"59F111F1" "923F82A4" "AB1C5ED5" "D807AA98" "12835B01"
"243185BE" "550C7DC3" "72BE5D74" "80DEB1FE" "9BDC06A7"
"C19BF174" "E49B69C1" "EFBE4786" "0FC19DC6" "240CA1CC"
"2DE92C6F" "4A7484AA" "5CB0A9DC" "76F988DA" "983E5152"
"A831C66D" "B00327C8" "BF597FC7" "C6E00BF3" "D5A79147"
"06CA6351" "14292967" "27B70A85" "2E1B2138" "4D2C6DFC"
"53380D13" "650A7354" "766A0ABB" "81C2C92E" "92722C85"
"A2BFE8A1" "A81A664B" "C24B8B70" "C76C51A3" "D192E819"
"D6990624" "F40E3585" "106AA070" "19A4C116" "1E376C08"
"2748774C" "34B0BCB5" "391C0CB3" "4ED8AA4A" "5B9CCA4F"
"682E6FF3" "748F82EE" "78A5636F" "84C87814" "8CC70208"
"90BEFFFA" "A4506CEB" "BEF9A3F7" "C67178F2") ) )
 
(de rightRotate (X C)
(| (mod32 (>> C X)) (mod32 (>> (- C 32) X))) )
 
(de mod32 (N)
(& N `(hex "FFFFFFFF")) )
 
(de not32 (N)
(x| N `(hex "FFFFFFFF")) )
 
(de add32 @
(mod32 (pass +)) )
 
(de sha256 (Str)
(let Len (length Str)
(setq Str
(conc
(need
(-
8
(* 64 (/ (+ Len 1 8 63) 64)) )
(conc (mapcar char (chop Str)) (cons `(hex "80")))
0 )
(flip
(make
(setq Len (* 8 Len))
(do 8
(link (& Len 255))
(setq Len (>> 8 Len )) ) ) ) ) ) )
(let
(H0 `(hex "6A09E667")
H1 `(hex "BB67AE85")
H2 `(hex "3C6EF372")
H3 `(hex "A54FF53A")
H4 `(hex "510E527F")
H5 `(hex "9B05688C")
H6 `(hex "1F83D9AB")
H7 `(hex "5BE0CD19") )
(while Str
(let
(A H0
B H1
C H2
D H3
E H4
F H5
G H6
H H7
W
(conc
(make
(do 16
(link
(apply
|
(mapcar >> (-24 -16 -8 0) (cut 4 'Str)) ) ) ) )
(need 48 0) ) )
(for (I 17 (>= 64 I) (inc I))
(let
(Wi15 (get W (- I 15))
Wi2 (get W (- I 2))
S0
(x|
(rightRotate Wi15 7)
(rightRotate Wi15 18)
(>> 3 Wi15) )
S1
(x|
(rightRotate Wi2 17)
(rightRotate Wi2 19)
(>> 10 Wi2) ) )
(set (nth W I)
(add32
(get W (- I 16))
S0
(get W (- I 7))
S1 ) ) ) )
(use (Tmp1 Tmp2)
(for I 64
(setq
Tmp1
(add32
H
(x|
(rightRotate E 6)
(rightRotate E 11)
(rightRotate E 25) )
(x| (& E F) (& (not32 E) G))
(get *Sha256-K I)
(get W I) )
Tmp2
(add32
(x|
(rightRotate A 2)
(rightRotate A 13)
(rightRotate A 22) )
(x|
(& A B)
(& A C)
(& B C) ) )
H G
G F
F E
E (add32 D Tmp1)
D C
C B
B A
A (add32 Tmp1 Tmp2) ) ) )
(setq
H0 (add32 H0 A)
H1 (add32 H1 B)
H2 (add32 H2 C)
H3 (add32 H3 D)
H4 (add32 H4 E)
H5 (add32 H5 F)
H6 (add32 H6 G)
H7 (add32 H7 H) ) ) )
(mapcan
'((N)
(flip
(make
(do 4
(link (& 255 N))
(setq N (>> 8 N)) ) ) ) )
(list H0 H1 H2 H3 H4 H5 H6 H7) ) ) )
 
(let Str "Rosetta code"
(println
(pack
(mapcar
'((B) (pad 2 (hex B)))
(sha256 Str) ) ) )
(println
(pack
(mapcar
'((B) (pad 2 (hex B)))
(native
"libcrypto.so"
"SHA256"
'(B . 32)
Str
(length Str)
'(NIL (32)) ) ) ) ) )
 
(bye)

Pike[edit]

 
string input = "Rosetta code";
string out = Crypto.SHA256.hash(input);
write( String.string2hex(out) +"\n");
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

PowerShell[edit]

Works with: PowerShell 5.0
 
Set-Content -Value "Rosetta code" -Path C:\Colors\blue.txt -NoNewline -Force
Get-FileHash -Path C:\Colors\blue.txt -Algorithm SHA256
 
Output:
Algorithm       Hash                                                                   Path
---------       ----                                                                   ----
SHA256          764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF       C:\Colors\blue.txt

PureBasic[edit]

PB Version 5.40

a$="Rosetta code"
bit.i= 256
 
UseSHA2Fingerprint() : b$=StringFingerprint(a$, #PB_Cipher_SHA2, bit)
 
OpenConsole()
Print("[SHA2 "+Str(bit)+" bit] Text: "+a$+" ==> "+b$)
Input()
Output:
[SHA2 256 bit] Text: Rosetta code ==> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Python[edit]

Python has a standard module for this:

>>> import hashlib
>>> hashlib.sha256( "Rosetta code".encode() ).hexdigest()
'764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf'
>>>

R[edit]

 
library(digest)
 
input <- "Rosetta code"
cat(digest(input, algo = "sha256", serialize = FALSE), "\n")
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Racket[edit]

 
#lang racket/base
 
;; define a quick SH256 FFI interface, similar to the Racket's default
;; SHA1 interface
(require ffi/unsafe ffi/unsafe/define openssl/libcrypto
(only-in openssl/sha1 bytes->hex-string))
(define-ffi-definer defcrypto libcrypto)
(defcrypto SHA256_Init (_fun _pointer -> _int))
(defcrypto SHA256_Update (_fun _pointer _pointer _long -> _int))
(defcrypto SHA256_Final (_fun _pointer _pointer -> _int))
(define (sha256 bytes)
(define ctx (malloc 128))
(define result (make-bytes 32))
(SHA256_Init ctx)
(SHA256_Update ctx bytes (bytes-length bytes))
(SHA256_Final result ctx)
(bytes->hex-string result))
 
;; use the defined wrapper to solve the task
(displayln (sha256 #"Rosetta code"))
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Raku[edit]

(formerly Perl 6)

Pure Raku[edit]

The following implementation takes all data as input. Ideally, input should be given lazily or something.

say sha256 "Rosetta code";
 
sub init(&f) {
map { my $f = $^p.&f; (($f - $f.Int)*2**32).Int },
state @ = grep *.is-prime, 2 .. *;
}
 
sub infix:<m+> { ($^a + $^b) % 2**32 }
sub rotr($n, $b) { $n +> $b +| $n +< (32 - $b) }
 
proto sha256($) returns Blob {*}
multi sha256(Str $str where all($str.ords) < 128) {
sha256 $str.encode: 'ascii'
}
multi sha256(Blob $data) {
constant K = init(* **(1/3))[^64];
my @b = flat $data.list, 0x80;
push @b, 0 until (8 * @b - 448) %% 512;
push @b, slip reverse (8 * $data).polymod(256 xx 7);
my @word = :256[@b.shift xx 4] xx @b/4;
 
my @H = init(&sqrt)[^8];
my @w;
loop (my $i = 0; $i < @word; $i += 16) {
my @h = @H;
for ^64 -> $j {
@w[$j] = $j < 16 ?? @word[$j + $i] // 0 !!
[m+]
rotr(@w[$j-15], 7) +^ rotr(@w[$j-15], 18) +^ @w[$j-15] +> 3,
@w[$j-7],
rotr(@w[$j-2], 17) +^ rotr(@w[$j-2], 19) +^ @w[$j-2] +> 10,
@w[$j-16];
my $ch = @h[4] +& @h[5] +^ +^@h[4] % 2**32 +& @h[6];
my $maj = @h[0] +& @h[2] +^ @h[0] +& @h[1] +^ @h[1] +& @h[2];
my0 = [+^] map { rotr @h[0], $_ }, 2, 13, 22;
my1 = [+^] map { rotr @h[4], $_ }, 6, 11, 25;
my $t1 = [m+] @h[7],1, $ch, K[$j], @w[$j];
my $t2 =0 m+ $maj;
@h = flat $t1 m+ $t2, @h[^3], @h[3] m+ $t1, @h[4..6];
}
@H [Z[m+]]= @h;
}
return Blob.new: map { |reverse .polymod(256 xx 3) }, @H;
}
Output:
Buf:0x<76 4f af 5c 61 ac 31 5f 14 97 f9 df a5 42 71 39 65 b7 85 e5 cc 2f 70 7d 64 68 d7 d1 12 4c df cf>

Library implementation[edit]

use Digest::SHA256::Native;
 
# If you want a string
say sha256-hex 'Rosetta code';
 
# If you want a binary Blob
say sha256 'Rosetta code';
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Blob:0x<76 4F AF 5C 61 AC 31 5F 14 97 F9 DF A5 42 71 39 65 B7 85 E5 CC 2F 70 7D 64 68 D7 D1 12 4C DF CF>

Ring[edit]

 
# Project: SHA-256
 
load "stdlib.ring"
str = "Rosetta code"
see "String: " + str + nl
see "SHA-256: "
see sha256(str) + nl
 

Output:

String: Rosetta code
SHA-256: 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Ruby[edit]

require 'digest/sha2'
puts Digest::SHA256.hexdigest('Rosetta code')

Rust[edit]

use sha2::{Digest, Sha256};
 
fn hex_string(input: &[u8]) -> String {
input.as_ref().iter().map(|b| format!("{:x}", b)).collect()
}
 
fn main() {
// create a Sha256 object
let mut hasher = Sha256::new();
 
// write input message
hasher.input(b"Rosetta code");
 
// read hash digest and consume hasher
let result = hasher.result();
 
let hex = hex_string(&result);
 
assert_eq!(
hex,
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"
);
 
println!("{}", hex)
}
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Scala[edit]

Library: Scala
object RosettaSHA256 extends App {
 
def MD5(s: String): String = {
// Besides "MD5", "SHA-256", and other hashes are available
val m = java.security.MessageDigest.getInstance("SHA-256").digest(s.getBytes("UTF-8"))
m.map("%02x".format(_)).mkString
}
 
assert(MD5("Rosetta code") == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")
println("Successfully completed without errors.")
}

Seed7[edit]

$ include "seed7_05.s7i";
include "msgdigest.s7i";
 
const proc: main is func
begin
writeln(hex(sha256("Rosetta code")));
end func;
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Sidef[edit]

var sha = frequire('Digest::SHA');
say sha.sha256_hex('Rosetta code');
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Smalltalk[edit]

Use the Cryptography library:

 
(SHA256 new hashStream: 'Rosetta code' readStream) hex.
 

Tcl[edit]

package require sha256
 
puts [sha2::sha256 -hex "Rosetta code"]
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

zkl[edit]

Uses shared library zklMsgHash.so

var MsgHash=Import("zklMsgHash");
MsgHash.SHA256("Rosetta code")=="764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"
Output:
True