# Return multiple values

Return multiple values
You are encouraged to solve this task according to the task description, using any language you may know.

Show how to return more than one value from a function.

## ACL2

`;; To return multiple values:(defun multiple-values (a b)   (mv a b)) ;; To extract the values:(mv-let (x y)        (multiple-values 1 2)   (+ x y))`

Ada functions can only return one type. That type could be an array or record holding multiple values, but the usual method for returning several values is using a procedure with 'out' parameters. By default, all parameters are 'in', but can also be 'out', 'in out' and 'access'. Writing to an 'out' parameter simply changes the value of the variable passed to the procedure.

` with Ada.Text_IO; use Ada.Text_IO;procedure MultiReturn is   procedure SumAndDiff (x, y : Integer; sum, diff : out Integer) is begin      sum := x + y;      diff := x - y;   end SumAndDiff;   inta : Integer := 5;   intb : Integer := 3;   thesum, thediff : Integer;begin   SumAndDiff (inta, intb, thesum, thediff);   Put_Line ("Sum:" & Integer'Image (thesum));   Put_Line ("Diff:" & Integer'Image (thediff));end MultiReturn; `
Output:
```Sum: 8
Diff: 2
```

## Agena

Agena allows functions to return multiple values.
Tested with Agena 2.9.5 Win32

`# define a function returning three valuesmv := proc() is    return 1, 2, "three"end ; # mv scope # test the mv() proc    local a, b, c := mv();    print( c, b, a )epocs`

## ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.6.win32

Procedures in Algol 68 can only return one value, so to return multiple values, a structure (or array if all the values have the same mode) can be used.

`# example mode for returning multiple values from a procedure #MODE PAIR = STRUCT( STRING name, INT value ); # procedure returning multiple values via a structure #PROC get pair = ( INT a )PAIR:    CASE a    IN #1#    ( "H",  0 )    ,  #2#    ( "He", 1 )    ,  #3#    ( "Li", 3 )    OUT       ( "?",  a )    ESAC; main: (    # use the result as a whole #    print( ( get pair( 3 ), newline ) );    # access the components separately #    print( ( name OF get pair( 1 ), value OF get pair( 2 ), newline ) ))`
Output:
```Li         +3
H         +1
```

## ALGOL W

Algol W procedures can't return arrays but records can be used to return multiple values.

`begin    % example using a record type to return multiple values from a procedure %    record Element ( string(2) symbol; integer atomicNumber );    reference(Element) procedure getElement( integer value n ) ;    begin        Element( if      n < 1 then   "?<"                 else if n > 3 then   "?>"                 else case n of ( %1% "H"                                , %2% "He"                                , %3% "Li"                                )               , n               )    end getElement ;    % test the procedure %    begin        reference(Element) elementData;        for n := 0 until 4 do begin            elementData := getElement(n);            write( s_w := 0, i_w := 1                 , atomicNumber(elementData)                 , " "                 , symbol(elementData)                 );        end    end end.`

## ANSI Standard BASIC

The most straightforward way of returning multiple values is to specify them as parameters.

`100 DECLARE EXTERNAL SUB sumdiff110 !120 CALL sumdiff(5, 3, sum, diff)130 PRINT "Sum is "; sum140 PRINT "Difference is "; diff150 END160 !170 EXTERNAL SUB sumdiff(a, b, c, d)180 LET c = a + b190 LET d = a - b200 END SUB`

## ATS

Every function returns one value. The conventional way to return multiple values is to return a tuple.

`//#include"share/atspre_staload.hats"//(* ****** ****** *) fun addsub(  x: int, y: int) : (int, int) = (x+y, x-y) (* ****** ****** *) implementmain0 () = let  val (sum, diff) = addsub (33, 12)in  println! ("33 + 12 = ", sum);  println! ("33 - 12 = ", diff);end (* end of [main0] *)`

## AutoHotkey

Works with: AutoHotkey_L

Functions may return one value. The conventional way to return multiple values is to bundle them into an Array.

`addsub(x, y) {  return [x + y, x - y]}`

## AutoIt

Return an array.

` Func _AddSub(\$iX, \$iY)Local \$aReturn\$aReturn = \$iX + \$iY\$aReturn = \$iX - \$iYReturn \$aReturnEndFunc `

## BASIC

### BaCon

BaCon can return homogeneous dynamic arrays, or RECORD data holding heterogeneous types.

`' Return multiple valuesRECORD multi    LOCAL num    LOCAL s\$END RECORD FUNCTION f(n) TYPE multi_type    LOCAL r = { 0 } TYPE multi_type    r.num = n    r.s\$ = "Hitchhiker's Guide"    r.s\$ = "Douglas Adams"    RETURN rEND FUNCTION DECLARE rec TYPE multi_typerec = f(42)PRINT rec.numPRINT rec.s\$PRINT rec.s\$`
Output:
```prompt\$ ./return-multiple
42
Hitchhiker's Guide

### BBC BASIC

The most straightforward way of returning multiple values is to specify them as RETURNed parameters.

`      PROCsumdiff(5, 3, sum, diff)      PRINT "Sum is " ; sum      PRINT "Difference is " ; diff      END       DEF PROCsumdiff(a, b, RETURN c, RETURN d)      c = a + b      d = a - b      ENDPROC`

### IS-BASIC

`100 NUMERIC SUM,DIFF110 CALL SUMDIFF(5,3,SUM,DIFF)120 PRINT "Sum is";SUM:PRINT "Difference is";DIFF130 END 140 DEF SUMDIFF(A,B,REF C,REF D)150   LET C=A+B:LET D=A-B160 END DEF`

## Bracmat

Every function returns one value. The conventional way to return multiple values is to return a tuple.

`(addsub=x y.!arg:(?x.?y)&(!x+!y.!x+-1*!y));`

You can use pattern matching to extract the components:

`( addsub\$(33.12):(?sum.?difference)& out\$("33 + 12 = " !sum)& out\$("33 - 12 = " !difference));`
Output:
```33 + 12 =  45
33 - 12 =  21```

## C

C has structures which can hold multiple data elements of varying types.

`#include<stdio.h> typedef struct{	int integer;	float decimal;	char letter;	char string;	double bigDecimal;}Composite; Composite example(){	Composite C = {1, 2.3, 'a', "Hello World", 45.678};	return C;}  int main(){	Composite C = example(); 	printf("Values from a function returning a structure : { %d, %f, %c, %s, %f}\n", C.integer, C.decimal, C.letter, C.string, C.bigDecimal); 	return 0;}`
Output:
```Values from a function returning a structure : { 1, 2.300000, a, Hello World, 45.678000}
```

C99 and above also allow structure literals to refer to the name, rather than position, of the element to be initialized:

`#include <stdio.h> typedef struct {    char *first, *last;} Name; Name whatsMyName() {    return (Name) {        .first = "James",        .last = "Bond",    };} int main() {    Name me = whatsMyName();    printf("The name's %s. %s %s.\n", me.last, me.first, me.last);    return 0;}`
Output:
```The name's Bond. James Bond.
```

## C++

Since C++11, the C++-standard-library includes tuples, as well as an easy way to destructure them.

`#include <algorithm>#include <array>#include <cstdint>#include <iostream>#include <tuple> std::tuple<int, int> minmax(const int * numbers, const std::size_t num) {   const auto maximum = std::max_element(numbers, numbers + num);   const auto minimum = std::min_element(numbers, numbers + num);   return std::make_tuple(*minimum, *maximum) ;} int main( ) {   const auto numbers = std::array<int, 8>{{17, 88, 9, 33, 4, 987, -10, 2}};   int min{};   int max{};   std::tie(min, max) = minmax(numbers.data(), numbers.size());   std::cout << "The smallest number is " << min << ", the biggest " << max << "!\n" ;}`
Output:
`The smallest number is -10, the biggest 987!`

## C#

The preferred way to return multiple values in C# is to use "out" paremeters on the method. This can be in addition to the value returned by the method.

`using System;using System.Collections.Generic;using System.Linq; class ReturnMultipleValues{    static void Main()    {        var values = new[] { 4, 51, 1, -3, 3, 6, 8, 26, 2, 4 };        int max, min;        MinMaxNum(values, out max, out min);         Console.WriteLine("Min: {0}\nMax: {1}", min, max);    }     static void MinMaxNum(IEnumerable<int> nums, out int max, out int min)    {        var sortedNums = nums.OrderBy(num => num).ToArray();        max = sortedNums.Last();        min = sortedNums.First();    }}`
Output:
```Min: -3
Max: 51```

## Clipper

Every function returns one value. The conventional way to return multiple values is to bundle them into an array.

`Function Addsub( x, y )Return { x+y, x-y }`

## Clojure

Multiple values can be returned by packaging them in a vector. At receiving side, these arguments can be obtained individually by using destructuring.

`(defn quot-rem [m n] [(quot m n) (rem m n)]) ; The following prints 3 2.(let [[q r] (quot-rem 11 3)]  (println q)  (println r))`

In complex cases, it would make more sense to return a map, which can be destructed in a similar manner.

`(defn quot-rem [m n]  {:q (quot m n)   :r (rem m n)}) ; The following prints 3 2.(let [{:keys [q r]} (quot-rem 11 3)]  (println q)  (println r))`

## CMake

`# Returns the first and last characters of string.function(firstlast string first last)  # f = first character.  string(SUBSTRING "\${string}" 0 1 f)   # g = last character.  string(LENGTH "\${string}" length)  math(EXPR index "\${length} - 1")  string(SUBSTRING "\${string}" \${index} 1 g)   # Return both characters.  set("\${first}" "\${f}" PARENT_SCOPE)  set("\${last}" "\${g}" PARENT_SCOPE)endfunction(firstlast) firstlast("Rosetta Code" begin end)message(STATUS "begins with \${begin}, ends with \${end}")`

## COBOL

COBOL normally passes data `BY REFERENCE`, which is the default mode, effectively making the arguments modifiable.

User Defined Functions return a single argument, but that argument can be a group item.

Most large scale COBOL programs will attempt to keep from repeating itself, in terms of data layouts, using external copy books and the COBOL COPY statement. This example uses in source REPLACE to avoid copy books.

Works with: GnuCOBOL
`        identification division.       program-id. multiple-values.        environment division.       configuration section.       repository.           function multiples           function all intrinsic.        REPLACE ==:linked-items:== BY ==       01 a usage binary-long.       01 b pic x(10).       01 c usage float-short.       ==       ==:record-item:== BY ==       01 master.          05 ma usage binary-long.          05 mb pic x(10).          05 mc usage float-short.       ==.        data division.       working-storage section.       :linked-items:        :record-item:        procedure division.       sample-main.        move 41 to a       move "aaaaabbbbb" to b       move function e to c        display "Original: " a ", " b ", " c       call "subprogram" using a b c       display "Modified: " a ", " b ", " c        move multiples() to master       display "Multiple: " ma ", " mb ", " mc        goback.       end program multiple-values.       *> subprogram       identification division.       program-id. subprogram.        data division.       linkage section.       :linked-items:        procedure division using a b c.       add 1 to a       inspect b converting "a" to "b"       divide 2 into c       goback.       end program subprogram.       *> multiples function       identification division.       function-id. multiples.        data division.       linkage section.       :record-item:        procedure division returning master.       move 84 to ma       move "multiple" to mb       move function pi to mc       goback.       end function multiples. `
Output:
```prompt\$ cobc -xj multiple-values.cob
Original: +0000000041, aaaaabbbbb, 2.7182817
Modified: +0000000042, bbbbbbbbbb, 1.3591409
Multiple: +0000000084, multiple  , 3.1415927
```

## Common Lisp

Besides the obvious method of passing around a list, Common Lisp also allows a function to return multiple values. When citing the return values, if no interest is shown for multiple values, only the first (the primary return value) is used. Multiple values are not a data structure such as a tuple, list or array. They are a true mechanism for returning multiple values.

Returning a single value is accomplished by evaluating an expression (which itself yields a single value) at the end of a body of forms.

`(defun return-three ()  3)`

The next possibility is that of returning no values at all. For this, the `values` function is used, with no arguments:

`(defun return-nothing ()  (values))`

To combine the values of multiple expressions into a multi-value return, `values` is used with arguments. The following is from an interactive CLISP session. CLISP's listener shows multiple values separated by a semicolon:

`> (defun add-sub (x y) (values-list (list (+ x y) (- x y))))ADD-SUB> (add-sub 4 2)    ; 6 (primary) and 26 ;2> (add-sub 3 1)    ; 4 (primary) and 24 ;2> (+ (add-sub 4 2) (add-sub 3 1))  ; 6 + 410> (multiple-value-call #'+ (add-sub 4 2) (add-sub 3 1)) ; 6+2+4+214`

What happens if something tries to use the value of a form which returned `(values)`? In this case the behavior defaults to taking the value `nil`:

`(car (values)) ;; no error: same as (car nil)`

What if the `values` function is applied to some expressions which also yield multiple values, or which do not yield any values? The answer is that only the primary value is taken from each expression, or the value `nil` for any expression which did not yield a value:

`(values (values 1 2 3) (values) 'a)`

yields three values:

`-> 1; NIL; A`

This also means that `values` can be used to reduce a multiple value to a single value:

`;; return exactly one value, no matter how many expr returns,;; nil if expr returns no values(values expr)`

Multiple values are extracted in several ways.

1. Binding to variables:

`(multiple-value-bind (dividend remainder) (truncate 16 3)  ;; in this scope dividend is 5; remainder is 1  )`

2. Conversion to a list:

`(multiple-value-list (truncate 16 3)) ;; yields (5 1)`

3. Reification of multiple values as arguments to another function:

`;; pass arguments 5 1 to +, resulting in 6:(multiple-value-call #'+ (truncate 16 3))`

4. Assignment to variables:

`;; assign 5 to dividend, 1 to remainder:(multiple-value-setq (dividend remainder) (truncate 16 1))`

`(values ...)` syntax is treated as a multiple value place by `setf` and other operators, allowing the above to be expressed this way:

`(setf (values dividend remainder) (truncate 16 1))`

## D

`import std.stdio, std.typecons, std.algorithm;  mixin template ret(string z) {    mixin({        string res;         auto r = z.split(" = ");        auto m = r.split(", ");        auto s = m.join("_");         res ~= "auto " ~ s ~ " = " ~ r ~ ";";        foreach(i, n; m){            res ~= "auto " ~ n ~ " = " ~ s ~ "[" ~ i.to!string ~ "];\n";        }        return res;    }());} auto addSub(T)(T x, T y) {    return tuple(x + y, x - y);} void main() {    mixin ret!q{ a, b = addSub(33, 12) };     writefln("33 + 12 = %d\n33 - 12 = %d", a, b);}`
Output:
```33 + 12 = 45
33 - 12 = 21```

## Dc

Define a divmod macro `~` which takes `a b` on the stack and returns `a/b a%b`.

`[ S1 S2 l2 l1 / L2 L1 % ] s~1337 42 l~ x f`
Output:
```35
31```

## Déjà Vu

`function-returning-multiple-values:     10 20 !print !print function-returning-multiple-values `
Output:
```10
20```

## Delphi/Pascal

Delphi functions return a single value, but var parameters of a function or procedure can be modified and act as return values.

`program ReturnMultipleValues; {\$APPTYPE CONSOLE} procedure GetTwoValues(var aParam1, aParam2: Integer);begin  aParam1 := 100;  aParam2 := 200;end; var  x, y: Integer;begin  GetTwoValues(x, y);  Writeln(x);  Writeln(y);end.`

## Dyalect

A typical way to return multiple values in Dyalect is to use tuples:

`func divRem(x, y) {    (x / y, x % y)}`

## EchoLisp

One can return the result of the values function, or a list.

` (define (plus-minus x y)    (values (+ x y) (- x y)))(plus-minus 3 4)    → 7     -1 (define (plus-minus x y)    (list (+ x y) (- x y)))(plus-minus 3 4)    → (7 -1) `

## ECL

`MyFunc(INTEGER i1,INTEGER i2) := FUNCTION  RetMod := MODULE    EXPORT INTEGER Add  := i1 + i2;    EXPORT INTEGER Prod := i1 * i2;  END;  RETURN RetMod;END; //Reference each return value separately:MyFunc(3,4).Add;MyFunc(3,4).Prod; `

## Eiffel

Every function returns one value. Multiple values can be returned in a tuple.

`some_feature: TUPLE	do		Result := [1, 'j', "r"]	end`

Greater control over the type of return values can also be enforced by explicitly declaring the type of the generic parameters.

`some_feature: TUPLE[INTEGER_32, CHARACTER_8, STRING_8]	do		--Result := [ ]			-- compile error			--Result := [1, "r", 'j']	-- also compile error			Result := [1, 'j', "r"]		-- okay		Result := [1, 'j', "r", 1.23]	-- also okay	end`

## Elena

ELENA 4.1 :

`import system'routines;import extensions; extension op{    MinMax(ref int minVal, ref int maxVal)    {        var ordered := self.ascendant();         minVal := ordered.FirstMember;        maxVal := ordered.LastMember    }} public program(){    var values := new int[]::(4, 51, 1, -3, 3, 6, 8, 26, 2, 4);     values.MinMax(ref int min, ref int max);     console.printLine("Min: ",min," Max: ",max)}`
Output:
```Min: -3 Max: 51
```

## Elixir

Elixir returns in the tuple form when returning more than one value.

`defmodule RC do  def addsub(a, b) do    {a+b, a-b}  endend {add, sub} = RC.addsub(7, 4)IO.puts "Add: #{add},\tSub: #{sub}"`
Output:
```Add: 11,        Sub: 3
```

## Erlang

`% Put this code in return_multi.erl and run it as "escript return_multi.erl" -module(return_multi). main(_) ->        {C, D, E} = multiply(3, 4),        io:format("~p ~p ~p~n", [C, D, E]). multiply(A, B) ->        {A * B, A + B, A - B}. `
Output:
```12 7 -1
```

## ERRE

FUNCTIONs in ERRE language return always a single value, but PROCEDUREs can return multiple values defining a parameter output list in procedure declaration using '->' separator.

` PROGRAM RETURN_VALUES PROCEDURE SUM_DIFF(A,B->C,D)   C=A+B   D=A-BEND PROCEDURE BEGIN   SUM_DIFF(5,3->SUM,DIFF)   PRINT("Sum is";SUM)   PRINT("Difference is";DIFF)END PROGRAM `

## Euphoria

Any Euphoria object can be returned. A sequence of objects can be returned, made from multiple data types as in this example.

`include std\console.e --only for any_key, to help make running this program easy on windows GUI integer aWholeNumber = 1atom aFloat = 1.999999sequence aSequence = {3, 4}sequence result = {} --empty initialized sequence function addmultret(integer first, atom second, sequence third)--takes three kinds of input, adds them all into one element of the..     return (first + second + third) + third & (first * second * third) * third --..output sequence and multiplies them into..end function --..the second element result = addmultret(aWholeNumber, aFloat, aSequence) --call function, assign what it gets into result - {9.999999, 23.999988}? resultany_key()`
Output:
```{9.999999,23.999988}
Press Any Key to continue...```

## F#

A function always returns exactly one value. To return multiple results, they are typically packed into a tuple:

`let addSub x y = x + y, x - y let sum, diff = addSub 33 12printfn "33 + 12 = %d" sumprintfn "33 - 12 = %d" diff`

Output parameters from .NET APIs are automatically converted to tuples by the compiler. It is also possible to use output parameters explicitly with the `byref` keyword, but this is rarely necessary.

## Factor

With stack-oriented languages like Factor, a function returns multiple values by pushing them on the data stack. For example, this word */ pushes both x*y and x/y.

`USING: io kernel math prettyprint ;IN: script : */ ( x y -- x*y x/y )    [ * ] [ / ] 2bi ; 15 3 */ [ "15 * 3 = " write . ][ "15 / 3 = " write . ] bi*`

Its stack effect declares that */ always returns 2 values. To return a variable number of values, a word must bundle those values into a sequence (perhaps an array or vector). For example, factors (defined in math.primes.factors and demonstrated at Prime decomposition#Factor) returns a sequence of prime factors.

## FALSE

`[\[email protected][email protected]*@@/]f: { in: a b, out: a*b a/b }6 2f;! .` ,.   { 3 12 }`

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

## Forth

It is natural to return multiple values on the parameter stack. Many built-in operators and functions do so as well (/mod, open-file, etc.).

`: muldiv ( a b -- a*b a/b )  2dup / >r * r> ;`

## Fortran

`module multiple_valuesimplicit nonetype res  integer :: p, mend type contains function addsub(x,y) result(r)  integer :: x, y  type(res) :: r   r%p = x+y  r%m = x-yend functionend module program main  use multiple_values   print *, addsub(33, 22)end program  `

## FreeBASIC

`' FB 1.05.0 Win64 ' One way to return multiple values is to use ByRef parameters for the additional one(s)Function tryOpenFile (fileName As String, ByRef fileNumber As Integer) As Boolean   Dim result As Integer    fileNumber = FreeFile   result = Open(fileName For Input As # fileNumber)   If result <> 0 Then     fileNumber = 0     Return False   Else     Return True   End IfEnd Function Dim fn As IntegerVar b = tryOpenFile("xxx.zyz", fn) '' this file doesn't existPrint b, fnb = tryOpenFile("input.txt", fn) '' this file does existPrint b, fnClose # fn ' Another way is to use a user defined type Type FileOpenInfo  opened As Boolean  fn As IntegerEnd Type Function tryOpenFile2(fileName As String) As FileOpenInfo   Dim foi As FileOpenInfo    foi.fn = FreeFile   Dim result As Integer   result = Open(fileName For Input As # foi.fn)      If  result <> 0 Then     foi.fn = 0     foi.opened = False   Else     foi.Opened = True   End If   Return foiEnd Function PrintVar foi = tryOpenFile2("xxx.zyz") Print foi.opened, foi.fnfoi = tryOpenFile2("input.txt")Print foi.opened, foi.fnClose # foi.fn PrintPrint "Press any key to quit"Sleep`
Output:
```false          0
true           1

false          0
true           1
```

## Frink

The most common way of returning multiple values from a function is to return them as an array, which can be disassembled and set into individual variables on return.

` divMod[a, b] := [a div b, a mod b] [num, remainder] = divMod[10, 3] `

## FunL

Translation of: Scala
`def addsub( x, y ) = (x + y, x - y) val (sum, difference) = addsub( 33, 12 ) println( sum, difference, addsub(33, 12) )`
Output:
```45, 21, (45, 21)
```

## FutureBasic

FutureBasic offers several ways to return multiple values from a function: by passing pointers to multiple values in and out of functions; global records (structures); global containers (imagine a global bit bucket that can hold up to 2GBs of data); and global arrays of either the standard kind, or of FB's dynamic arrays.

Here is an example of returning multiple values using pointers:

` include "ConsoleWindow" local fn ReturnMultipleValues( strIn as Str255, strOut as ^Str255, letterCount as ^long )dim as Str255 s // Test if incoming string is empty, and exit function if it isif strIn == 0 then exit fn // Prepend this string to incoming string and return its = "Here is your original string: "strOut.nil\$ = s + strIn // Get length of combined string and return it// Note: In FutureBasic string is interchangeable with Len(string)letterCount.nil& = strIn + send fn dim as Str255 outStrdim as long   outCount fn ReturnMultipleValues( "Hello, World!", @outStr, @outCount )print outStr; ". The combined strings have"; outCount; " letters in them." `

Output:

```Here is your original string: Hello, World!. The combined strings have 43 letters in them.
```

Another way to pass multiple values from a function is with records (AKA structures):

` include "ConsoleWindow" // Elements in global array_maxDim = 3 begin record Addressesdim as Str63 namedim as Str15 phonedim as long zipend record begin globalsdim as Addresses  gAddressData(_maxDim) end globals local fn FillRecord( array(_maxDim) as Addresses )array.name(0) = "John Doe"array.name(1) = "Mary Jones"array.name(2) = "Bill Smith array.phone(0) = "555-359-4411"array.phone(1) = "555-111-2211"array.phone(2) = "555-769-8071" array.zip(0) = 12543array.zip(1) = 67891array.zip(2) = 54321end fn // Pass address of global array to fill itfn FillRecord( gAddressData(0) ) dim as short i for i = 0 to 2   print gAddressData.name(i); ", ";   print gAddressData.phone(i); ", Zip:";   print gAddressData.zip(i)next `

Output:

```John Doe, 555-359-4411, Zip: 12543
Mary Jones, 555-111-2211, Zip: 67891
Bill Smith, 555-769-8071, Zip: 54321
```

You can also use global arrays to return multiple values from a function as in this example:

` include "ConsoleWindow" // Elements in global array_maxDim = 3 begin globalsdim as Str31  gAddressArray(_maxDim, _maxDim) end globals local fn FillRecord( array(_maxDim, _maxDim) as Str31 )array( 0, 0 ) = "John Doe"array( 1, 0 ) = "Mary Jones"array( 2, 0 ) = "Bill Smith array( 0, 1 ) = "555-359-4411"array( 1, 1 ) = "555-111-2211"array( 2, 1 ) = "555-769-8071" array( 0, 2 ) = "12543"array( 1, 2 ) = "67891"array( 2, 2 ) = "54321"end fn // Pass address of global array to fill itfn FillRecord( gAddressArray( 0, 0 ) ) dim as short i, j for i = 0 to 2   j = 0   print gAddressArray(i, j    ); ", ";   print gAddressArray(i, j + 1); ", Zip: ";   print gAddressArray(i, j + 1)next `

Output:

```John Doe, 555-359-4411, Zip: 555-359-4411
Mary Jones, 555-111-2211, Zip: 555-111-2211
Bill Smith, 555-769-8071, Zip: 555-769-8071
```

Here is another example using FB's containers -- bit buckets that can hold up to 2GB of data contingent on system memory.

` include "ConsoleWindow" begin globals// An FB container can hold up to 2GB of data, contingent on system memorydim as container gC1, gC2end globals local fn ReturnMultipleValuesInContainers// Fill container with strings from inside functiongC1  = "Twas brillig, and the slithy toves" + chr\$(13)gC1 += "Did gyre and gimble in the wabe;"   + chr\$(13)gC1 += "All mimsy were the borogoves,"      + chr\$(13)gC1 += "And the mome raths outgrabe."       + chr\$(13)gC1 += "'Beware the Jabberwock, my son!"    + chr\$(13)gC1 += "The jaws that bite, the claws that catch!" + chr\$(13)gC1 += "Beware the Jubjub bird, and shun"   + chr\$(13)gC1 += "The frumious Bandersnatch!'"        + chr\$(13) // Fill another container with numbersgC2  = "10254"+ chr\$(13)gC2 += "37"   + chr\$(13)gC2 += "64"   + chr\$(13)end fn local fn ReturnNewMultipleValuesInContainersgC1  = "Jabberwocky is gone, but here is some new text." + chr\$(13)gC2  = "1000000"end fn // Test to see containers are empty:print gC1 : print gC2 // Fill the containers using a functionfn ReturnMultipleValuesInContainers // Check resultsprint gC1 : print : print gC2 // Empty the containersgC1 = "" : gC2 = "" // Fill with another functionfn ReturnNewMultipleValuesInContainers // Check the new resultsprint gC1 : print gC2 `

Output:

```Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.
'Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!'

10254
37
64

Jabberwocky is gone, but here is some new text.

1000000
```

## Go

Functions can return multiple values in Go:

`func addsub(x, y int) (int, int) {  return x + y, x - y}`

Or equivalently using named return style:

`func addsub(x, y int) (sum, difference int) {  sum = x + y  difference = x - y  return}`

When a function returns multiple values, you must assign to a comma-separated list of targets:

`sum, difference := addsub(33, 12)fmt.Printf("33 + 12 = %d\n", sum)fmt.Printf("33 - 12 = %d\n", difference)`

## Groovy

In Groovy functions return one value. One way to return multiple ones is to use anonymous maps as a sort of tuple.

`def addSub(x,y) { [  sum: x+y,  difference: x-y ]}`

Result:

`addSub(10,12)  ["sum":22, "difference":-2]`

And although Groovy functions only return one value, Groovy assignments of Iterable objects (lists, arrays, sets, etc.) can be distributed across multiple variables, like this:

`def addSub2(x,y) {  [ x+y , x-y ]} def (sum, diff) = addSub2(50, 5)assert sum == 55assert diff == 45`

If there are fewer elements than variables, the leftover variables are assigned null. If there are more elements than variables, the last variable is assigned the collected remainder of the elements.

## Harbour

Every function returns one value. The conventional way to return multiple values is to bundle them into an array.

`FUNCTION Addsub( x, y )   RETURN { x + y, x - y }`

Every function returns one value. The conventional way to return multiple values is to return a tuple.

`  addsub x y = (x + y, x - y)`

You can use pattern matching to extract the components:

`main = do  let (sum, difference) = addsub 33 12  putStrLn ("33 + 12 = " ++ show sum)  putStrLn ("33 - 12 = " ++ show difference)`

## Icon and Unicon

Icon and Unicon values range from simple atomic values like integers and strings to structures like lists, tables, sets, records. The contents of structures are heterogeneous and any of them could be used to return multiple values all at once. Additionally, generators are supported that return multiple results one at a time as needed.

The following examples return 1, 2, 3 in different ways:

`procedure retList() # returns as ordered listreturn [1,2,3]end procedure retSet()             # returns as un-ordered listinsert(S := set(),3,1,2)  return Send procedure retLazy()            # return as a generatorsuspend 1|2|3end procedure retTable()           # return as a tableT := table()T["A"] := 1T["B"] := 2 T["C"] := 3return Tend record retdata(a,b,c) procedure retRecord()          # return as a record, least general methodreturn retdata(1,2,3)end`

## J

To return multiple values in J, you return an array which contains multiple values. Since the only data type in J is array (this is an oversimplification, from some perspectives - but those issues are out of scope for this task), this is sort of like asking how to return only one value in another language.

`   1 2+3 44 6`

## Java

Translation of: NetRexx
`import java.util.List;import java.util.ArrayList;import java.util.Map;import java.util.HashMap; // =============================================================================public class RReturnMultipleVals {  public static final String K_lipsum = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.";  public static final Long   K_1024   = 1024L;  public static final String L        = "L";  public static final String R        = "R";   // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  public static void main(String[] args) throws NumberFormatException{    Long nv_;    String sv_;    switch (args.length) {      case 0:        nv_ = K_1024;        sv_ = K_lipsum;        break;      case 1:        nv_ = Long.parseLong(args);        sv_ = K_lipsum;        break;      case 2:        nv_ = Long.parseLong(args);        sv_ = args;        break;      default:        nv_ = Long.parseLong(args);        sv_ = args;        for (int ix = 2; ix < args.length; ++ix) {          sv_ = sv_ + " " + args[ix];        }        break;    }     RReturnMultipleVals lcl = new RReturnMultipleVals();     Pair<Long, String> rvp = lcl.getPairFromPair(nv_, sv_); // values returned in a bespoke object    System.out.println("Results extracted from a composite object:");    System.out.printf("%s, %s%n%n", rvp.getLeftVal(), rvp.getRightVal());     List<Object> rvl = lcl.getPairFromList(nv_, sv_); // values returned in a Java Collection object    System.out.println("Results extracted from a Java Colections \"List\" object:");    System.out.printf("%s, %s%n%n", rvl.get(0), rvl.get(1));     Map<String, Object> rvm = lcl.getPairFromMap(nv_, sv_); // values returned in a Java Collection object    System.out.println("Results extracted from a Java Colections \"Map\" object:");    System.out.printf("%s, %s%n%n", rvm.get(L), rvm.get(R));  }  // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  // Return a bespoke object.  // Permits any number and type of value to be returned  public <T, U> Pair<T, U> getPairFromPair(T vl_, U vr_) {    return new Pair<T, U>(vl_, vr_);  }  // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  // Exploit Java Collections classes to assemble a collection of results.  // This example uses java.util.List  public List<Object> getPairFromList(Object nv_, Object sv_) {    List<Object> rset = new ArrayList<Object>();    rset.add(nv_);    rset.add(sv_);    return rset;  }  // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  // Exploit Java Collections classes to assemble a collection of results.  // This example uses java.util.Map  public Map<String, Object> getPairFromMap(Object nv_, Object sv_) {    Map<String, Object> rset = new HashMap<String, Object>();    rset.put(L, nv_);    rset.put(R, sv_);    return rset;  }   // ===========================================================================  private static class Pair<L, R> {    private L leftVal;    private R rightVal;     public Pair(L nv_, R sv_) {      setLeftVal(nv_);      setRightVal(sv_);    }    public void setLeftVal(L nv_) {      leftVal = nv_;    }    public L getLeftVal() {      return leftVal;    }    public void setRightVal(R sv_) {      rightVal = sv_;    }    public R getRightVal() {      return rightVal;    }  }}`

Otherwise

`public class Values {	private final Object[] objects;	public Values(Object ... objects) {		this.objects = objects;	}	public <T> T get(int i) {		return (T) objects[i];	}	public Object[] get() {		return objects;	} 	// to test	public static void main(String[] args) {		Values v = getValues();		int i = v.get(0);		System.out.println(i);		printValues(i, v.get(1));		printValues(v.get());	}	private static Values getValues() {		return new Values(1, 3.8, "text");	}	private static void printValues(int i, double d) {		System.out.println(i + ", " + d);	}	private static void printValues(Object ... objects) {		for (int i=0; i<objects.length; i+=1) System.out.print((i==0 ? "": ", ") + objects[i]);		System.out.println();	}}`
Output:
```1
1, 3.8
1, 3.8, text
```

## JavaScript

Javascript does not support multi-value bind until ECMAScript 6 is released (still a draft as of May 2015). The multi-value return is actually a destructured binding. Support may not be present yet in most implementations.

`//returns array with three valuesvar arrBind = function () {  return [1, 2, 3]; //return array of three items to assign}; //returns object with three named valuesvar objBind = function () {  return {foo: "abc", bar: "123", baz: "zzz"};}; //keep all three valuesvar [a, b, c] = arrBind();//assigns a => 1, b => 2, c => 3//skip a valuevar [a, , c] = arrBind();//assigns a => 1, c => 3//keep final values together as arrayvar [a, ...rest] = arrBind();//assigns a => 1, rest => [2, 3]  //same return namevar {foo, bar, baz} = objBind();//assigns foo => "abc", bar => "123", baz => "zzz"//different return name (ignoring baz)var {baz: foo, buz: bar} = objBind();//assigns baz => "abc", buz => "123"//keep rest of values together as objectvar {foo, ...rest} = objBind();//assigns foo => "abc, rest => {bar: "123", baz: "zzz"}`

## jq

jq supports streams of JSON values, so there are two main ways in which a function can return multiple values: as a stream, or as an array. Using the same example given for the Julia entry:
`# To produce a stream:def addsub(x; y): (x + y), (x - y); # To produce an array:def add_subtract(x; y): [ x+y, x-y ]; `
The builtin filter .[] streams its input if the input is an array, e.g. the expression `[1,2] | .[]` produces the stream:
` 12`

## Julia

`function addsub(x, y)  return x + y, x - yend`
```julia> addsub(10,4)
(14,6)```

## Kotlin

Although Kotlin doesn't support tuples as such, it does have generic Pair and Triple types which can be used to return 2 or 3 values from a function. To return more values, a data class can be used. All of these types can be automatically destructured to separate named variables.

`// version 1.0.6 /* implicitly returns a Pair<Int, Int>*/fun minmax(ia: IntArray) = ia.min() to ia.max() fun main(args: Array<String>) {    val ia = intArrayOf(17, 88, 9, 33, 4, 987, -10, 2)    val(min, max) = minmax(ia) // destructuring declaration    println("The smallest number is \$min")    println("The largest  number is \$max")}`
Output:
```The smallest number is -10
The largest  number is 987
```

## Lasso

`define multi_value() => {	return (:'hello word',date)}// shows that single method call will return multiple values// the two values returned are assigned in order to the vars x and ylocal(x,y) = multi_value 'x: '+#x'\ry: '+#y`
Output:
```x: hello word
y: 2013-11-06 01:03:47
```

## Liberty BASIC

Using a space-delimited string to hold the array. LB functions return only one numeric or string value, so the function returns a string from which can be separated the two desired values.

`data\$ ="5 6 7 22 9 3 4 8 7 6 3 -5 2 1 8 9" a\$ =minMax\$( data\$)print " Minimum was "; word\$( a\$, 1, " "); " & maximum was "; word\$( a\$, 2, " ") end function minMax\$( i\$)min = 1E6max =-1E6i =1do    t\$    =word\$( i\$, i, " ")    if t\$ ="" then exit do    v     =val( t\$)    min   =min( min, v)    max   =max( max, v)    i =i +1loop until 0minMax\$ =str\$( min) +" " +str\$( max)end function`
``` Minimum was -5 & maximum was 22
```

## Lily

No support for returning multiple values, but (similar to Scala), a Tuple can be returned.

`define combine(a: Integer, b: String): Tuple[Integer, String]{  return <[a, b]>}`

The current version (0.17) has no support for destructuring Tuple assigns.

## Lua

`function addsub( a, b )    return a+b, a-bend s, d = addsub( 7, 5 )print( s, d )`

## Maple

`> sumprod := ( a, b ) -> (a + b, a * b):> sumprod( x, y );                               x + y, x y > sumprod( 2, 3 );                                  5, 6`

The parentheses are needed here only because of the use of arrow ("->") notation to define the procedure. One could do, instead:

`sumprod := proc( a, b ) a + b, a * b end:`

## Mathematica

`addsub [x_,y_]:= List [x+y,x-y]addsub[4,2]`
Output:
`{6,2}`

## MATLAB / Octave

`  function [a,b,c]=foo(d)    a = 1-d;     b = 2+d;     c = a+b;  end;    [x,y,z] = foo(5) `
Output:
`  > [x,y,z] = foo(5)   x = -4  y =  7  z =  3 `

## Maxima

`f(a, b) := [a * b, a + b]\$ [u, v]: f(5, 6);[30, 11]`

## Mercury

Mercury is a logic language. Its unification semantics permit any number of output parameters (the closest equivalent to return values). The sample code provided here centres on the `addsub/4` predicate. The `mode` statement identifies the first two parameters as input parameters and the last two as output parameters, thus, in effect, returning two results. In this case the first output parameter returns the sum of the two inputs and the second output returns the difference of the two inputs.

`:- module addsub. :- interface.:- import_module io.:- pred main(io::di, io::uo) is det. :- implementation.:- import_module int, list, string. main(!IO) :-    command_line_arguments(Args, !IO),    filter_map(to_int, Args, CleanArgs),    (length(CleanArgs, 2) ->        X = det_index1(CleanArgs,1),        Y = det_index1(CleanArgs,2),        addsub(X, Y, S, D),        format("%d + %d = %d\n%d - %d = %d\n",                [i(X), i(Y), i(S), i(X), i(Y), i(D)], !IO)    ;        write_string("Please pass two integers on the command line.\n", !IO)    ). :- pred addsub(int::in, int::in, int::out, int::out) is det.addsub(X, Y, S, D) :-    S = X + Y,    D = X - Y. :- end_module addsub.`

### Use and output

```\$ mmc addsub.m -E && ./addsub 100 999
100 + 999 = 1099
100 - 999 = -899```

### Functions and tuples

Mercury is also a functional language, thus a function-based implementation is also possible. Functions in Mercury can only return a single value, but Mercury allows the use of arbitrary tuples containing multiple heterogeneous ad-hoc values which is, for all practical purposes, the same thing. The above code can be modified so that the definition of `addsub/4` is now instead this function `addsub/2`:

`:- func addsub(int, int) = {int, int}.addsub(X, Y) = { X + Y, X - Y }.`

Instead, now, of a predicate with two input and two output parameters of type `int`, addsub is a function that takes two `int` parameters and returns a tuple containing two `int` values. The call to `addsub/4` in the above code is now replaced by this:

`        {S, D} = addsub(X, Y),`

All other code remains exactly the same as does the use and output of it.

### Functions and type constructors

It should be noted that tuples as a construct are generally frowned upon in Mercury, relying as they do on structural type equivalence instead of nominative. The preferred approach is either to have multiple explicit output parameters on predicates or to have an explicit named type that covers the multi-return needs.

An example of this follows:

`:- module addsub. :- interface.:- import_module io.:- pred main(io::di, io::uo) is det. :- implementation.:- import_module int, list, string. :- type my_result ---> twin(int, int). main(!IO) :-    command_line_arguments(Args, !IO),    filter_map(to_int, Args, CleanArgs),    (length(CleanArgs, 2) ->        X = det_index1(CleanArgs,1),        Y = det_index1(CleanArgs,2),        twin(S, D) = addsub(X, Y),        format("%d + %d = %d\n%d - %d = %d\n",               [i(X), i(Y), i(S), i(X), i(Y), i(D)], !IO)    ;        write_string("Please pass two integers on the command line.\n", !IO)    ). :- func addsub(int, int) = my_result.addsub(X, Y) = twin(X + Y, X - Y). :- end_module addsub.`

Here the type `my_result` has been provided with a `twin/2` constructor that accepts two `int` values. Use and output of the code is, again, exactly the same.

`addsub/2` explicitly constructs a `my_result` value with the paired calculations and this is deconstructed in the call in the main predicate through unification. While the resulting code is slightly more verbose than the tuple-based version it is more strongly protected against type errors and is more explicit in its intent at the same time.

## Nemerle

To return multiple values in Nemerle, package them into a tuple.

`using System;using System.Console;using Nemerle.Assertions; module MultReturn{    MinMax[T] (ls : list[T]) : T * T      where T : IComparable      requires ls.Length > 0 otherwise throw ArgumentException("An empty list has no extreme values.")    {        def greaterOf(a, b) { if (a.CompareTo(b) > 0) a else b }        def lesserOf(a, b)  { if (a.CompareTo(b) < 0) a else b }         (ls.FoldLeft(ls.Head, lesserOf), ls.FoldLeft(ls.Head, greaterOf)) // packing tuple    }     Main() : void    {        def nums = [1, 34, 12, -5, 4, 0];        def (min, max) = MinMax(nums);                                   // unpacking tuple        WriteLine(\$"Min of nums = \$min; max of nums = \$max");    }}`

## NetRexx

While a NetRexx method can only return a single "thing" to it's caller that "thing" can be an object which may contain a great deal of information. Typical return objects can be composite objects, Java Collection Class objects, NetRexx indexed strings etc.

Another common idiom inherited from REXX is the ability to collect the return data into a simple NetRexx string. Caller can then use the PARSE instruction to deconstruct the return value and assign the parts to separate variables.

`/* NetRexx */options replace format comments java crossref symbols nobinary -- =============================================================================class RReturnMultipleVals public  properties constant    L = 'L'    R = 'R'    K_lipsum = 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.'    K_1024 = 1024   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  method RReturnMultipleVals() public    return   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  method main(args = String[]) public static    arg = Rexx(args)    parse arg nv_ sv_ .    if \nv_.datatype('n') then nv_ = K_1024    if sv_ = '' then sv_ = K_lipsum     lcl = RReturnMultipleVals()     rvr = lcl.getPair(nv_, sv_) -- multiple values returned as a string.  Use PARSE to extract values    parse rvr val1 val2    say 'Results extracted from a NetRexx string:'    say val1',' val2    say     rvr = lcl.getPairFromRexx(nv_, sv_) -- values returned in a NetRexx indexed string    say 'Results extracted from a NetRexx "indexed string":'    say rvr[L]',' rvr[R]    say     rvp = lcl.getPairFromPair(nv_, sv_) -- values returned in a bespoke object    say 'Results extracted from a composite object:'    say rvp.getLeftVal',' rvp.getRightVal    say     rvl = lcl.getPairFromList(nv_, sv_) -- values returned in a Java Collection "List" object    say 'Results extracted from a Java Colections "List" object:'    say rvl.get(0)',' rvl.get(1)    say     rvm = lcl.getPairFromMap(nv_, sv_) -- values returned in a Java Collection "Map" object    say 'Results extracted from a Java Colections "Map" object:'    say rvm.get(L)',' rvm.get(R)    say     return   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -- returns the values in a NetRexx string.  --  Caller can the power of PARSE to extract the results  method getPair(nv_, sv_) public returns Rexx    return nv_ sv_   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -- Return the values as members of a NetRexx indexed string  method getPairFromRexx(nv_, sv_) public returns Rexx    rval = ''    rval[L] = nv_    rval[R] = sv_    return rval   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -- Return a bespoke object.  -- Permits any number and type of value to be returned  method getPairFromPair(nv_, sv_) public returns RReturnMultipleVals.Pair    rset = RReturnMultipleVals.Pair(nv_, sv_)    return rset   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -- Exploit Java Collections classes to assemble a collection of results.  -- This example uses java.util.List  method getPairFromList(nv_, sv_) public returns java.util.List    rset = ArrayList()    rset.add(nv_)    rset.add(sv_)    return rset   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -- This example uses java.util.Map  method getPairFromMap(nv_, sv_) public returns java.util.Map    rset = HashMap()    rset.put(L, nv_)    rset.put(R, sv_)    return rset -- =============================================================================class RReturnMultipleVals.Pair dependent   properties indirect    leftVal    rightVal   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  method Pair(nv_ = parent.K_1024, sv_ = parent.K_lipsum) public    setLeftVal(nv_)    setRightVal(sv_)    return `

## Nim

Every function returns one value. We can return a tuple instead:

`proc addsub(x, y): auto =  (x + y, x - y) var (a,b) = addsub(12, 15)`

Or manipulate the parameters directly:

`proc addsub(x, y: int, a, b: var int) =  a = x + y  b = x - y var a, b: intaddsub(12, 15, a, b)`

## Objeck

Easiest way to return multiple values is to use in/out objects. The language also supports returning collections.

`class Program {  function : Main(args : String[]) ~ Nil {    a := IntHolder->New(3); b := IntHolder->New(7);    Addon(a,b);    a->Get()->PrintLine(); b->Get()->PrintLine();  }   function : Addon(a : IntHolder, b : IntHolder) ~ Nil {    a->Set(a->Get() + 2); b->Set(b->Get() + 13);  }}`

## OCaml

Every function returns one value. The conventional way to return multiple values is to return a tuple.

`let addsub x y =  x + y, x - y`

(Note that parentheses are not necessary for a tuple literal in OCaml.)

You can use pattern matching to extract the components:

`let sum, difference = addsub 33 12 in  Printf.printf "33 + 12 = %d\n" sum;  Printf.printf "33 - 12 = %d\n" difference`

## Oforth

Oforth uses a data stack. A function return is everything left on the stack when the function ends, so a function can return as many objects as needed :

`import: date : returnFourValues 12 13 14 15 ;: returnOneObject  [ 12, 13, 14, 15, [16, 17 ], Date now, 1.2, "abcd" ] ; "Showing four values returned on the parameter stack:" printlnreturnFourValues .s clr "\nShowing one object containing four values returned on the parameter stack:" printlnreturnOneObject .s clr`

Output:

```Showing four values returned on the parameter stack:
 (Integer) 15
 (Integer) 14
 (Integer) 13
 (Integer) 12

Showing one object containing four values returned on the parameter stack:
 (List) [12, 13, 14, 15, [16, 17], 2016-02-05 20:55:15,778, 1.2, abcd]
```

## ooRexx

Functions and methods in ooRexx can only have a single return value, but that return value can be some sort of collection or other object that contains multiple values. For example, an array:

` r = addsub(3, 4)say r r ::routine addsub  use arg x, y  return .array~of(x + y, x - y) `

Output:

```7 -1
```

## OxygenBasic

Demonstrated with vectors, using OOP and a pseudo-assign trick:

`  '============class vector4'============ float w,x,y,z method values(float fw,fx,fy,fz)this <= fw, fx, fy, fzend method method values(vector4 *v)this <= v.w, v.x, v.y, v.zend method method values() as vector4return thisend method method ScaledValues(float fw,fx,fy,fz) as vector4static vector4 vv <= w*fw, x*fx, y*fy, z*fzreturn vend method method ShowValues() as stringstring cm=","return w cm x cm y cm zend method end class vector4 aa,bb bb.values = 1,2,3,4 aa.values = bb.Values() print aa.ShowValues() 'result 1,2,3,4 aa.values = bb.ScaledValues(100,100,-100,100) print aa.ShowValues() 'result 100,200,-300,400   `

## PARI/GP

The usual way to return multiple values is to put them in a vector:

`foo(x)={  [x^2, x^3]};`

## Perl

Functions may return lists of values:

`sub foo {    my (\$a, \$b) = @_;    return \$a + \$b, \$a * \$b;}`

## Perl 6

Each function officially returns one value, but by returning a List or Seq you can transparently return a list of arbitrary (even infinite) size. The calling scope can destructure the list using assignment, if it so chooses:

`sub addmul(\$a, \$b) {    \$a + \$b, \$a * \$b} my (\$add, \$mul) = addmul 3, 7;`

In this example, the variable \$add now holds the number 10, and \$mul the number 21.

## Phix

Every function returns one value. You can return any number of items as elements of a sequence, and unpack them on receipt or not.

`function stuff()    return {"PI",'=',3.1415926535}end functionstring whatinteger opobject val    {what,op,val} = stuff() `

## PHP

Every function returns one value. The conventional way to return multiple values is to bundle them into an array.

`function addsub(\$x, \$y) {  return array(\$x + \$y, \$x - \$y);}`

You can use the `list()` construct to assign to multiple variables:

`list(\$sum, \$difference) = addsub(33, 12);echo "33 + 12 = \$sum\n";echo "33 - 12 = \$difference\n";`

Additionally, if you specify a parameter as being a pointer, you do have the capacity to change that value. A built-in PHP example of this is `preg_match()` which returns a boolean value (to determine if a match was found or not), but which modifies the `\$matches` parameter supplied to hold all the capture groups.

You can achieve this simply by adding the `&` before the desired parameter:

`function multiples(\$param1, &\$param2) {	if (\$param1 == 'bob') {		\$param2 = 'is your grandmother';		return true;	} 	return false;} echo 'First run: ' . multiples('joe', \$y) . "\r\n";echo "Param 2 from first run: '\${y}'\r\n"; echo 'Second run: ' . multiples('bob', \$y) . "\r\n";echo "Param 2 from second run: '\${y}'\r\n";`

The above will yield the following output:

```First run:
Param 2 from first run: ''
Second run: 1
Param 2 from second run: 'is your grandmother'```

## PicoLisp

A PicoLisp function returns a single value. For multiple return values, a cons pair or a list may be used.

`(de addsub (X Y)   (list (+ X Y) (- X Y)) )`

Test:

`: (addsub 4 2)-> (6 2): (addsub 3 1)-> (4 2): (+ (car (addsub 4 2)) (car (addsub 3 1)))-> 10: (sum + (addsub 4 2) (addsub 3 1))-> 14`

## Pike

Multiple values are returned through an array. An array can be assigned to separate variables.

`array(int) addsub(int x, int y){    return ({ x+y, x-y });} [int z, int w] = addsub(5,4);`

## PL/I

Example 1 illustrates a function that returns an array:

`   define structure 1 h,                      2 a (10) float;   declare i fixed binary; sub: procedure (a, b) returns (type(h));   declare (a, b) float;   declare p type (h);   do i = 1 to 10;      p.a(i) = i;   end;   return (p);end sub;`

Example 2 illustrates a function that returns a general data structure:

`   define structure 1 customer,                      2 name,                        3 surname character (20),                        3 given_name character (10),                      2 address,                        3 street character (20),                        3 suburb character (20),                        3 zip fixed decimal (7); sub2: procedure() returns (type(customer));   declare c type (customer);   get edit (c.surname, c.given_name) (L);   get edit (c.street, c.suburb, c.zip) (L);   return (c);end sub2;`

Example 3 illustrates the return of two values as a complex value:

`comp: procedure(a, b) returns (complex);   declare (a, b) float;    return (complex(a, b) );end comp;`

## PowerShell

` function multiple-value (\$a, \$b) {    [pscustomobject]@{        a = \$a        b = \$b    }}\$m =  multiple-value "value" 1\$m.a\$m.b `

Output:

```value
1
```

## PureBasic

PureBasic's procedures return only a single value. The value needs to be a standard numeric type or string.

An array, map, or list can be used as a parameter to a procedure and in the process contain values to be returned as well. A pointer to memory or a structured variable may also be returned to reference multiple return values (requiring the memory to be manually freed afterwards).

`;An array, map, or list can be used as a parameter to a procedure and in the;process contain values to be returned as well.Procedure example_1(x, y, Array r(1))  ;array r() will contain the return values  Dim r(2) ;clear and resize the array  r(0) = x + y  ;return these values in the array  r(1) = x - y  r(2) = x * y EndProcedure ;A pointer to memory or a structured variable may also be returned to reference;multiple return values (requiring the memory to be manually freed afterwards).Procedure example_2(x, y)  Protected *result.POINT = AllocateMemory(SizeOf(POINT))  *result\x = x  *result\y = y   ProcedureReturn *result ;*result points to a 'POINT' structure containing x and yEndProcedure If OpenConsole()  Dim a(5)  example_1(6, 5, a()) ;a() now contains {11, 1, 30}  PrintN("Array returned with {" + Str(a(0)) + ", " + Str(a(1)) + ", " + Str(a(2)) + "}")   Define *aPoint.POINT  *aPoint = example_2(6, 5) ;*aPoint references structured memory containing {6, 5}   PrintN("structured memory holds: (" + Str(*aPoint\x) + ", " + Str(*aPoint\y) + ")")   FreeMemory(*aPoint) ;freememory   Print(#CRLF\$ + #CRLF\$ + "Press ENTER to exit"): Input()  CloseConsole()EndIf`

## Python

Every function returns one value. The conventional way to return multiple values is to bundle them into a tuple.

`def addsub(x, y):  return x + y, x - y`

(Note that parentheses are not necessary for a tuple literal in Python.)

You can assign to a comma-separated list of targets:

`sum, difference = addsub(33, 12)print "33 + 12 = %s" % sumprint "33 - 12 = %s" % difference`

There is no discernible difference between "returning multiple values" and returning a single tuple of multiple values. It is just a more pedantic/accurate statement of the mechanism employed.

## R

The conventional way to return multiple values is to bundle them into a list.

`addsub <- function(x, y) list(add=(x + y), sub=(x - y))`

## Racket

Racket has a defined function "values" that returns multiple values using continuations, a way it can be implemented is shown in "my-values"

`#lang racket(values 4 5) (define (my-values . return-list)  (call/cc   (lambda (return)     (apply return return-list))))`

## Raven

`define multiReturn use \$v   \$v each  3 multiReturn`
Output:
```2
1
0```

## Retro

Functions take and return values via a stack. This makes returning multiple values easy.

`: addSubtract ( xy-nm )  2over - [ + ] dip ;`

## REXX

Strictly speaking, REXX only returns one value (or no values), but the value (a string) can comprise of
multiple "values" or substrings.

If the multiple values are separated by blanks   [or some other unique character(s) such as a comma,
semicolon, backslash, ...],   it's a very simple matter to parse the multiple-value string into the desired
substrings   (or values, if you will)   with REXX's handy-dandy   parse   statement.

`/*REXX program shows and displays examples of multiple  RETURN  values  from a function.*/numeric digits 70                                /*the default is:    NUMERIC DIGITS 9  */parse arg a b .                                  /*obtain two numbers from command line.*/if a=='' | a==","  then a= 82                    /*Not specified?  Then use the default.*/if b=='' | b==","  then b= 20                    /* "      "         "   "   "     "    */say '     a ='  a                                /*display the first number to the term.*/say '     b ='  b                                /*   "     "  second   "    "  "    "  */say copies('═', 50)                              /*display a separator line  "  "    "  */z= arithmetics(a, b)                             /*call the function:   arithmetics     */parse var z  abut sum diff rem div Idiv prod pow /*obtain the function's returned values*/say '    || ='  abut                             /*display   abutment   to the terminal.*/say '     + ='  sum                              /*   "        sum       "  "     "     */say '     - ='  diff                             /*   "     difference   "  "     "     */say '    // ='  rem                              /*   "     remainder    "  "     "     */say '     / ='  div                              /*   "      quotient    "  "     "     */say '     % ='  Idiv                             /*   "   int. quotient  "  "     "     */say '     * ='  prod                             /*   "       product    "  "     "     */say '    ** ='  pow                              /*   "        power     "  "     "     */exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/arithmetics: procedure;  parse arg x,y;  return  x||y  x+y  x-y  x//y  x/y  x%y  x*y  x**y`
output   when using the default inputs:
```     a = 82
b = 20
══════════════════════════════════════════════════
|| = 8220
+ = 102
- = 62
// = 2
/ = 4.1
% = 4
* = 1640
** = 188919613181312032574569023867244773376
```

## Ring

` Func AddSub x,y      Return [ x+y, x-y ] `

## Ruby

Every function returns one value. The conventional way to return multiple values is to bundle them into an Array.

Use an array literal:

`def addsub(x, y)  [x + y, x - y]end`

Or use `return` with 2 or more values:

`def addsub(x, y)  return x + y, x - yend`

(With at least 2 values, `return` makes a new Array. With 1 value, `return` passes the value, without making any Array. With 0 values, `return` passes `nil`.)

Assignment can split the Array into separate variables.

`sum, difference = addsub(33, 12)puts "33 + 12 = #{sum}"puts "33 - 12 = #{difference}"`

## Run BASIC

Courtesy http://dkokenge.com/rbp
Gets the UTC time from the web

`a\$ = timeInfo\$()print " UTC:";word\$(a\$,1,"|")print "Date:";word\$(a\$,2,"|")print "Time:";word\$(a\$,3,"|")waitfunction timeInfo\$()utc\$ = word\$(word\$(httpget\$("http://tycho.usno.navy.mil/cgi-bin/timer.pl"),1,"UTC"),2,"<BR>") ' Universal timed\$   = date\$()t\$  = time\$()timeInfo\$ = utc\$;"|";d\$;"|";t\$end function`

## Rust

Rust supports ADT, thus function can return tuple.

`fn multi_hello() -> (&'static str, i32) {    ("Hello",42)} fn main() {    let (str,num)=multi_hello();    println!("{},{}",str,num);} `
Output:
```Hello,42
```

## Scala

Every function returns one value. The conventional way to return multiple values is to return a tuple.

`def addSubMult(x: Int, y: Int) = (x + y, x - y, x * y)`

A more detailed declaration would be:

` def addSubMult(x: Int, y:Int) : (Int, Int, Int) = {  ...  (x + y, x - y, x * y)} `

You can use pattern matching to extract the components:

`val (sum, difference) = addsub(33, 12)`

Scala borrows this idea from ML, and generalizes it into extractors.

## Scheme

Scheme can return multiple values using the `values` function, which uses continuations:

`(define (addsub x y)  (values (+ x y) (- x y)))`

You can use the multiple values using the `call-with-values` function:

`(call-with-values  (lambda () (addsub 33 12))  (lambda (sum difference)    (display "33 + 12 = ") (display sum) (newline)    (display "33 - 12 = ") (display difference) (newline)))`

The syntax is kinda awkward. SRFI 8 introduces a `receive` construct to make this simpler:

`(receive (sum difference) (addsub 33 12)  ; in this scope you can use sum and difference  (display "33 + 12 = ") (display sum) (newline)  (display "33 - 12 = ") (display difference) (newline))`

SRFI 11 introduces a `let-values` construct to make this simpler:

`(let-values (((sum difference) (addsub 33 12)))  ; in this scope you can use sum and difference  (display "33 + 12 = ") (display sum) (newline)  (display "33 - 12 = ") (display difference) (newline))`

## Seed7

Seed7 functions can only return one value. That value could be an array or record holding multiple values, but the usual method for returning several values is using a procedure with inout parameters:

`\$ include "seed7_05.s7i"; const proc: sumAndDiff (in integer: x, in integer: y, inout integer: sum, inout integer: diff) is func  begin    sum := x + y;    diff := x - y; end func; const proc: main is func  local    var integer: sum is 0;    var integer: diff is 0;  begin    sumAndDiff(5, 3, sum, diff);    writeln("Sum: " <& sum);    writeln("Diff: " <& diff);  end func;`
Output:
```Sum: 8
Diff: 2
```

## Sidef

`func foo(a,b) {    return (a+b, a*b);}`

Catching the returned arguments:

`var (x, y) = foo(4, 5);say x;   #=> 9say y;   #=> 20`

## Smalltalk

Smalltalk returns a single value from methods, so this task is usually implemented the scheme-way, by passing a lambda-closure which is invoked with the values to return and either operates on the values itself or sets them as the caller's locals (i.e. simular to call-with-values ... values):

`foo multipleValuesInto:[:a :b |    Transcript show:a; cr.   Transcript show:b; cr.]`

or:

`|val1 val2|foo multipleValuesInto:[:a :b |    val1 := a.   val2 := b.].... do something with val1 and val2... `

The called method in foo looks like:

` multipleValuesInto: aTwoArgBlock   ...   aTwoArgBlock value:<value1> value:<value2> `

i.e. it invokes the passed-in lambda closure with the two (return-)values.

## Standard ML

Every function returns one value. The conventional way to return multiple values is to return a tuple.

`fun addsub (x, y) =  (x + y, x - y)`

You can use pattern matching to extract the components:

`let  val (sum, difference) = addsub (33, 12)in  print ("33 + 12 = " ^ Int.toString sum ^ "\n");  print ("33 - 12 = " ^ Int.toString difference ^ "\n")end`

## Swift

Every function returns one value. The conventional way to return multiple values is to bundle them into a tuple.

`func addsub(x: Int, y: Int) -> (Int, Int) {  return (x + y, x - y)}`

You can use pattern matching to extract the components:

`let (sum, difference) = addsub(33, 12)println("33 + 12 = \(sum)")println("33 - 12 = \(difference)")`

## Tcl

Tcl commands all return a single value, but this value can be a compound value such as a list or dictionary. The result value of a procedure is either the value given to the `return` command or the result of the final command in the body in the procedure. (Commands that return “no” value actually return the empty string.)

`proc addsub {x y} {    list [expr {\$x+\$y}] [expr {\$x-\$y}]}`

This can be then assigned to a single variable with `set` or to multiple variables with `lassign`.

`lassign [addsub 33 12] sum differenceputs "33 + 12 = \$sum, 33 - 12 = \$difference"`

## TXR

TXR functions return material by binding unbound variables.

The following function potentially returns three values, which will happen if called with three arguments, each of which is an unbound variable:

`@(define func (x y z))@  (bind w "discarded")@  (bind (x y z) ("a" "b" "c"))@(end)`

The binding `w`, if created, is discarded because `w` is not in the list of formal parameters. However, `w` can cause the function to fail because there can already exist a variable `w` with a value which doesn't match `"discarded"`.

Call:

`@(func t r s)`

If `t`, `r` and `s` are unbound variables, they get bound to `"a"`, `"b"` and `"c"`, respectively via a renaming mechanism. This may look like C++ reference parameters or Pascal "var" parameters, and can be used that way, but isn't really the same at all.

Failed call ("1" doesn't match "a"):

`@(func "1" r s)`

Successful call binding only one new variable:

`@(func "a" "b" s)`

## UNIX Shell

Shell scripts don't directly support returning values from a function, it can be simulated through some clunky code.

` #!/bin/shfunct1() {  a=\$1  b=`expr \$a + 1`  echo \$a \$b} values=`funct1 5` set \$valuesx=\$1y=\$2echo "x=\$x"echo "y=\$y" `
Output:
```x=5
y=6
```

## Ursa

The most straightforward way to return multiple values from a function in Ursa is to return a stream.

This example gets a specified amount of strings from the user, then returns a stream containing them.

`def getstrs (int n)        decl string<> input         while (> n 0)                out ": " console                append (in string console) input                dec n        end while         return inputend getstrs decl int amountout "how many strings do you want to enter? " consoleset amount (in int console) decl string<> retset ret (getstrs amount) out endl ret endl console`
Output:
```how many strings do you want to enter? 5
: these
: are
: some
: test
: strings

class java.lang.String<these, are, some, test, strings>```

## VBA

Firt way : User Defined Type

` Type Contact    Name As String    firstname As String    Age As ByteEnd Type Function SetContact(N As String, Fn As String, A As Byte) As Contact    SetContact.Name = N    SetContact.firstname = Fn    SetContact.Age = AEnd Function 'For use :Sub Test_SetContact()Dim Cont As Contact     Cont = SetContact("SMITH", "John", 23)    Debug.Print Cont.Name & " " & Cont.firstname & ", " & Cont.Age & " years old."End Sub `
Output:
`SMITH John, 23 years old.`

Second way : ByRef argument : (Note : the ByRef Arg could be an array)

` Function Divide(Dividend As Integer, Divisor As Integer, ByRef Result As Double) As Boolean    Divide = True    On Error Resume Next    Result = Dividend / Divisor    If Err <> 0 Then        Divide = False        On Error GoTo 0    End IfEnd Function 'For use :Sub test_Divide()Dim R As Double, Ddd As Integer, Dvs As Integer, B As Boolean     Ddd = 10: Dvs = 3    B = Divide(Ddd, Dvs, R)    Debug.Print "Divide return : " & B & " Result = " & R    Ddd = 10: Dvs = 0    B = Divide(Ddd, Dvs, R)    Debug.Print "Divide return : " & B & " Result = " & REnd Sub `
Output:
```Divide return : True Result = 3,33333333333333
Divide return : False Result = 1,#INF```

Third way : ParramArray

` Function Multiple_Divide(Dividend As Integer, Divisor As Integer, ParamArray numbers() As Variant) As LongDim i As Integer     On Error GoTo ErrorHandler    numbers(LBound(numbers)) = Dividend / Divisor    For i = LBound(numbers) + 1 To UBound(numbers)        numbers(i) = numbers(i - 1) / Divisor    Next i    Multiple_Divide = 1: Exit FunctionErrorHandler:    Multiple_Divide = 0End Function 'For use :Sub test_Multiple_Divide()Dim Arr(3) As Variant, Ddd As Integer, Dvs As Integer, L As Long, i As Integer     Ddd = 10: Dvs = 3    L = Multiple_Divide(Ddd, Dvs, Arr(0), Arr(1), Arr(2), Arr(3))    Debug.Print "The function return : " & L    Debug.Print "The values in return are : "    For i = LBound(Arr) To UBound(Arr)        Debug.Print Arr(i)    Next i    Erase Arr    Debug.Print "--------------------------------------"    Ddd = 10: Dvs = 0    L = Multiple_Divide(Ddd, Dvs, Arr(0), Arr(1), Arr(2), Arr(3))    Debug.Print "The function return : " & L    Debug.Print "The values in return are : "    For i = LBound(Arr) To UBound(Arr)        Debug.Print IIf(Arr(i) = "", "vbNullString", "Null")    Next iEnd Sub `
Output:
```The function return : 1
The values in return are :
3,33333333333333
1,11111111111111
0,37037037037037
0,123456790123457
--------------------------------------
The function return : 0
The values in return are :
vbNullString
vbNullString
vbNullString
vbNullString```

Fourth way : the variant() function

` Function List() As String()Dim i&, Temp(9) As String     For i = 0 To 9        Temp(i) = "Liste " & i + 1    Next    List = TempEnd Function 'For use :Sub test_List()Dim myArr() As String, i As Integer'Note : you don't need to Dim your array !    myArr = List()    For i = LBound(myArr) To UBound(myArr)        Debug.Print myArr(i)    NextEnd Sub `
Output:
```Liste 1
Liste 2
Liste 3
Liste 4
Liste 5
Liste 6
Liste 7
Liste 8
Liste 9
Liste 10```

## Visual FoxPro

` *!* Return multiple values from a function*!* The simplest way is to pass the parameters by reference*!* either by SET UDFPARMS TO REFERENCE, or prefix the variables with @.LOCAL a, ba = 5b = 6? "Sum =", AddUp(@a, @b)    && Displays 11? "a =", a, "b =", b        && Displays 4, 5? "Sum =", AddUp(@a, @b)    && Displays 9 FUNCTION AddUp(n1, n2)LOCAL n n = n1 + n2n1 = n1 - 1n2 = n2 - 1 RETURN nENDFUNC `

## XPL0

`include c:\cxpl\codes;          \intrinsic 'code' declarations proc Rect2Polar(X,Y,A,D);       \Return two polar coordinate valuesreal X,Y,A,D;[A(0):= ATan2(Y,X); D(0):= Sqrt(X*X+Y*Y);]; \Rect2Polar real Ang, Dist;[Rect2Polar(4.0, 3.0, @Ang, @Dist);  \("@" is a new feature similar to 'addr')RlOut(0, Ang); RlOut(0, Dist); CrLf(0);]`
Output:
```    0.64350    5.00000
`fcn f{return(1,2,"three")}a,b,c:=f()  // a==1, b==2, c=="three"`