Pascal matrix generation

From Rosetta Code
Task
Pascal matrix generation
You are encouraged to solve this task according to the task description, using any language you may know.

A pascal matrix is a two-dimensional square matrix holding numbers from   Pascal's triangle,   also known as   binomial coefficients   and which can be shown as   nCr.

Shown below are truncated   5-by-5   matrices   M[i, j]   for   i,j   in range   0..4.

A Pascal upper-triangular matrix that is populated with   jCi:

[[1, 1, 1, 1, 1],
 [0, 1, 2, 3, 4],
 [0, 0, 1, 3, 6],
 [0, 0, 0, 1, 4],
 [0, 0, 0, 0, 1]]

A Pascal lower-triangular matrix that is populated with   iCj   (the transpose of the upper-triangular matrix):

[[1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0],
 [1, 2, 1, 0, 0],
 [1, 3, 3, 1, 0],
 [1, 4, 6, 4, 1]]

A Pascal symmetric matrix that is populated with   i+jCi:

[[1, 1, 1, 1, 1],
 [1, 2, 3, 4, 5],
 [1, 3, 6, 10, 15],
 [1, 4, 10, 20, 35],
 [1, 5, 15, 35, 70]]


Task

Write functions capable of generating each of the three forms of   n-by-n   matrices.

Use those functions to display upper, lower, and symmetric Pascal   5-by-5   matrices on this page.

The output should distinguish between different matrices and the rows of each matrix   (no showing a list of 25 numbers assuming the reader should split it into rows).


Note

The   Cholesky decomposition   of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size.


11l

Translation of: Python
F pascal_upp(n)
   V s = [[0] * n] * n
   s[0] = [1] * n
   L(i) 1 .< n
      L(j) i .< n
         s[i][j] = s[i - 1][j - 1] + s[i][j - 1]
   R s

F pascal_low(n)
   V upp = pascal_upp(n)
   V s = [[0] * n] * n
   L(x) 0 .< n
      L(y) 0 .< n
         s[y][x] = upp[x][y]
   R s

F pascal_sym(n)
   V s = [[1] * n] * n
   L(i) 1 .< n
      L(j) 1 .< n
         s[i][j] = s[i - 1][j] + s[i][j - 1]
   R s

F pp(mat)
   print(‘[’mat.map(String).join(",\n ")‘]’)

-V n = 5
print(‘Upper:’)
pp(pascal_upp(n))
print("\nLower:")
pp(pascal_low(n))
print("\nSymmetric:")
pp(pascal_sym(n))
Output:
Upper:
[[1, 1, 1, 1, 1],
 [0, 1, 2, 3, 4],
 [0, 0, 1, 3, 6],
 [0, 0, 0, 1, 4],
 [0, 0, 0, 0, 1]]

Lower:
[[1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0],
 [1, 2, 1, 0, 0],
 [1, 3, 3, 1, 0],
 [1, 4, 6, 4, 1]]

Symmetric:
[[1, 1, 1, 1, 1],
 [1, 2, 3, 4, 5],
 [1, 3, 6, 10, 15],
 [1, 4, 10, 20, 35],
 [1, 5, 15, 35, 70]]

360 Assembly

*        Pascal matrix generation - 10/06/2018
PASCMATR CSECT
         USING  PASCMATR,R13       base register
         B      72(R15)            skip savearea
         DC     17F'0'             savearea
         SAVE   (14,12)            save previous context
         ST     R13,4(R15)         link backward
         ST     R15,8(R13)         link forward
         LR     R13,R15            set addressability
         MVC    MAT,=F'1'          mat(1,1)=1
         LA     R6,1               i=1
       DO WHILE=(C,R6,LE,N)        do i=1 to n;
         LA     R7,1                 j=1
       DO WHILE=(C,R7,LE,N)          do j=1 to n;       
         LR     R2,R6                  i
         LA     R3,1(R7)               r3=j+1
         LR     R1,R6                  i
         BCTR   R1,0                   -1
         MH     R1,NN                  *nn
         AR     R1,R7                  ~(i,j)
         SLA    R1,2                   *4
         L      R4,MAT-4(R1)           r4=mat(i,j)
         LR     R5,R6                  i
         MH     R5,NN                  *nn
         AR     R5,R7                  ~(i+1,j)
         SLA    R5,2                   *4
         L      R5,MAT-4(R5)           r5=mat(i+1,j)
         AR     R4,R5                  r4=mat(i,j)+mat(i+1,j)
         MH     R2,NN                  *nn
         AR     R2,R3                  ~(i+1,j+1)
         SLA    R2,2                   *4
         ST     R4,MAT-4(R2)           mat(i+1,j+1)=mat(i,j)+mat(i+1,j)
         LA     R7,1(R7)               j++
       ENDDO    ,                    enddo j
         LA     R6,1(R6)             i++
       ENDDO    ,                  enddo i
         MVC    TITLE,=CL20'Upper:'
         BAL    R14,PRINTMAT       call printmat
         MVC    MAT,=F'1'          mat(1,1)=1
         LA     R6,1               i=1
       DO WHILE=(C,R6,LE,N)        do i=1 to n;
         LA     R7,1                 j=1
       DO WHILE=(C,R7,LE,N)          do j=1 to n;       
         LR     R2,R6                  i
         LA     R3,1(R7)               r3=j+1
         LR     R1,R6                  i
         BCTR   R1,0                   -1
         MH     R1,NN                  *nn
         LR     R0,R7                  j
         AR     R1,R0                  ~(i,j)
         SLA    R1,2                   *4
         L      R4,MAT-4(R1)           r4=mat(i,j)
         LA     R5,1(R7)               j+1
         LR     R1,R6                  i
         BCTR   R1,0                   -1
         MH     R1,NN                  *nn
         AR     R1,R5                  ~(i,j+1)
         SLA    R1,2                   *4
         L      R5,MAT-4(R1)           r5=mat(i,j+1)
         AR     R4,R5                  mat(i,j)+mat(i,j+1)
         MH     R2,NN                  *nn
         AR     R2,R3                  ~(i+1,j+1)
         SLA    R2,2                   *4
         ST     R4,MAT-4(R2)           mat(i+1,j+1)=mat(i,j)+mat(i,j+1)
         LA     R7,1(R7)               j++
       ENDDO    ,                    enddo j
         LA     R6,1(R6)             i++
       ENDDO    ,                  enddo i
         MVC    TITLE,=CL20'Lower:'
         BAL    R14,PRINTMAT       call printmat
         MVC    MAT+24,=F'1'       mat(2,1)=1
         LA     R6,1               i=1
       DO WHILE=(C,R6,LE,N)        do i=1 to n;
         LA     R7,1                 j=1
       DO WHILE=(C,R7,LE,N)          do j=1 to n;       
         LR     R2,R6                  i
         LA     R3,1(R7)               r3=j+1                 j
         LR     R1,R6                  i
         BCTR   R1,0                   -1
         MH     R1,NN                  *nn
         AR     R1,R3                  ~(i,j+1)
         SLA    R1,2                   *4
         L      R4,MAT-4(R1)           r4=mat(i,j+1)
         LR     R5,R6                  i
         MH     R5,NN                  *nn
         AR     R5,R7                  j
         SLA    R5,2                   *4
         L      R5,MAT-4(R5)           r5=mat(i+1,j)
         AR     R4,R5                  mat(i,j+1)+mat(i+1,j)
         MH     R2,NN                  *nn
         AR     R2,R3                  ~(i+1,j+1)
         SLA    R2,2                   *4
         ST     R4,MAT-4(R2)         mat(i+1,j+1)=mat(i,j+1)+mat(i+1,j)
         LA     R7,1(R7)               j++
       ENDDO    ,                    enddo j
         LA     R6,1(R6)             i++
       ENDDO    ,                  enddo i
         MVC    TITLE,=CL20'Symmetric:'
         BAL    R14,PRINTMAT       call printmat
         L      R13,4(0,R13)       restore previous savearea pointer
         RETURN (14,12),RC=0       restore registers from calling sav
PRINTMAT XPRNT  TITLE,L'TITLE      print title  -----------------------
         LA     R10,PG             pgi=0
         LA     R6,1               i=1
       DO WHILE=(C,R6,LE,N)        do i=1 to n;
         LA     R7,1                 j=1
       DO WHILE=(C,R7,LE,N)          do j=1 to n;       
         LR     R2,R6                  i
         LR     R3,R7                  j
         LA     R3,1(R3)               j+1
         MH     R2,NN                  *nn
         AR     R2,R3                  ~(i+1,j+1)
         SLA    R2,2                   *4
         L      R2,MAT-4(R2)           mat(i+1,j+1)
         XDECO  R2,XDEC                edit mat(i+1,j+1)
         MVC    0(5,R10),XDEC+7        output mat(i+1,j+1)
         LA     R10,5(R10)             pgi+=5
         LA     R7,1(R7)               j++
       ENDDO    ,                    enddo j
         XPRNT  PG,L'PG              print
         LA     R10,PG               pgi=0
         LA     R6,1(R6)             i++
       ENDDO    ,                  enddo i
         BR     R14                return to caller -------------------
X        EQU    5                  matrix size
N        DC     A(X)               n=x
NN       DC     AL2(X+1)           nn=x+1
MAT      DC     ((X+1)*(X+1))F'0'  mat(x+1,x+1)
TITLE    DC     CL20' '            title
PG       DC     CL80' '            buffer
PGI      DC     H'0'               buffer index
XDEC     DS     CL12               temp
         YREGS
         END    PASCMATR
Output:
Upper:
    1    1    1    1    1
    0    1    2    3    4
    0    0    1    3    6
    0    0    0    1    4
    0    0    0    0    1
Lower:
    1    0    0    0    0
    1    1    0    0    0
    1    2    1    0    0
    1    3    3    1    0
    1    4    6    4    1
Symmetric:
    1    1    1    1    1
    1    2    3    4    5
    1    3    6   10   15
    1    4   10   20   35
    1    5   15   35   70

Action!

BYTE FUNC Index(BYTE i,j,dim)
RETURN (i*dim+j)

PROC PascalUpper(BYTE ARRAY mat BYTE dim)
  BYTE i,j

  FOR i=0 TO dim-1
  DO
    FOR j=0 TO dim-1
    DO
      IF i>j THEN
        mat(Index(i,j,dim))=0
      ELSEIF i=j OR i=0 THEN
        mat(Index(i,j,dim))=1
      ELSE
        mat(Index(i,j,dim))=mat(Index(i-1,j-1,dim))+mat(Index(i,j-1,dim))
      FI
    OD
  OD
RETURN

PROC PascalLower(BYTE ARRAY mat BYTE dim)
  BYTE i,j

  FOR i=0 TO dim-1
  DO
    FOR j=0 TO dim-1
    DO
      IF i<j THEN
        mat(Index(i,j,dim))=0
      ELSEIF i=j OR j=0 THEN
        mat(Index(i,j,dim))=1
      ELSE
        mat(Index(i,j,dim))=mat(Index(i-1,j-1,dim))+mat(Index(i-1,j,dim))
      FI
    OD
  OD
RETURN

PROC PascalSymmetric(BYTE ARRAY mat BYTE dim)
  BYTE i,j

  FOR i=0 TO dim-1
  DO
    FOR j=0 TO dim-1
    DO
      IF i=0 OR j=0 THEN
        mat(Index(i,j,dim))=1
      ELSE
        mat(Index(i,j,dim))=mat(Index(i-1,j,dim))+mat(Index(i,j-1,dim))
      FI
    OD
  OD
RETURN

PROC PrintMatrix(BYTE ARRAY mat BYTE dim)
  BYTE i,j,v

  FOR i=0 TO dim-1
  DO
    FOR j=0 TO dim-1
    DO
      v=mat(Index(i,j,dim))
      IF v<10 THEN
        Print("   ")
      ELSEIF v<100 THEN
        Print("  ")
      FI
      PrintB(v)
    OD
    PutE()
  OD
RETURN

PROC Main()
  BYTE ARRAY mat(25)
  BYTE dim=[5]

  PrintE("Pascal upper matrix:")
  PascalUpper(mat,dim)
  PrintMatrix(mat,dim)
  PutE()

  PrintE("Pascal lower matrix:")
  PascalLower(mat,dim)
  PrintMatrix(mat,dim)
  PutE()

  PrintE("Pascal symmetric matrix:")
  PascalSymmetric(mat,dim)
  PrintMatrix(mat,dim)
RETURN
Output:

Screenshot from Atari 8-bit computer

Pascal upper matrix:
1   1   1   1   1
0   1   2   3   4
0   0   1   3   6
0   0   0   1   4
0   0   0   0   1

Pascal lower matrix:
1   0   0   0   0
1   1   0   0   0
1   2   1   0   0
1   3   3   1   0
1   4   6   4   1

Pascal symmetric matrix:
1   1   1   1   1
1   2   3   4   5
1   3   6  10  15
1   4  10  20  35
1   5  15  35  70

Ada

-- for I/O
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;

-- for estimating the maximum width of a column
with Ada.Numerics.Generic_Elementary_Functions;

procedure PascalMatrix is

  type Matrix is array (Positive range <>, Positive range <>) of Natural;

  -- instantiate Generic_Elementary_Functions for Float type
  package Math is new Ada.Numerics.Generic_Elementary_Functions(Float_Type => Float);
  use Math;
  
  procedure Print(m: in Matrix) is
    -- determine the maximum width of a column
    w: Float := Log(Float(m'Length(1)**(m'Length(1)/2)), 10.0);
    width: Positive := Natural(Float'Ceiling(w)) + 1;
    begin
      for i in m'First(1)..m'Last(1) loop
        Put("( ");
        for j in m'First(2)..m'Last(2) loop
          Put(m(i,j), width);
        end loop;
        Put(" )"); New_Line(1);
      end loop;
    end Print;
  
  function Upper_Triangular(n: in Positive) return Matrix is
    result: Matrix(1..n, 1..n) := (
                                    1 => ( others => 1 ),
                                    others => ( others => 0 )
                                  );
    begin
      for i in 2..n loop
        result(i,i) := 1;
        for j in i+1..n loop
          result(i,j) := result(i,j-1) + result(i-1,j-1);
        end loop;
      end loop;
      return result;
    end Upper_Triangular;
  
  function Lower_Triangular(n: in Positive) return Matrix is
    result: Matrix(1..n, 1..n) := (
                                    others => ( 1 => 1, others => 0 )
                                  );
    begin
      for i in 2..n loop
        result(i,i) := 1;
        for j in i+1..n loop
          result(j,i) := result(j-1,i) + result(j-1,i-1);
        end loop;
      end loop;
      return result;
    end Lower_Triangular;
  
  function Symmetric(n: in Positive) return Matrix is
    result: Matrix(1..n, 1..n) := (
                                   1 => ( others => 1 ),
                                   others => ( 1 => 1, others => 0 )
                                  );
    begin
      for i in 2..n loop
        for j in 2..n loop
          result(i,j) := result(i,j-1) + result(i-1,j);
        end loop;
      end loop;
      return result;
    end Symmetric;
  
  n: Positive;
  
  begin
    Put("What dimension Pascal matrix would you like? ");
    Get(n);
    Put("Upper triangular:"); New_Line(1);
    Print(Upper_Triangular(n));
    Put("Lower triangular:"); New_Line(1);
    Print(Lower_Triangular(n));
    Put("Symmetric:"); New_Line(1);
    Print(Symmetric(n));
  end PascalMatrix;
Output:
What dimension Pascal matrix would you like? 5
Upper triangular:
(   1  1  1  1  1 )
(   0  1  2  3  4 )
(   0  0  1  3  6 )
(   0  0  0  1  4 )
(   0  0  0  0  1 )
Lower triangular:
(   1  0  0  0  0 )
(   1  1  0  0  0 )
(   1  2  1  0  0 )
(   1  3  3  1  0 )
(   1  4  6  4  1 )
Symmetric:
(   1  1  1  1  1 )
(   1  2  3  4  5 )
(   1  3  6 10 15 )
(   1  4 10 20 35 )
(   1  5 15 35 70 )

ALGOL 68

BEGIN
    # returns an upper Pascal matrix of size n #
    PROC upper pascal matrix = ( INT n )[,]INT:
         BEGIN
            [ 1 : n, 1 : n ]INT result;
            FOR j        TO n DO result[ 1, j ] := 1 OD;
            FOR i FROM 2 TO n DO
                result[ i, 1 ] := 0;
                FOR j FROM 2 TO n DO
                    result[ i, j ] := result[ i - 1, j - 1 ] + result[ i, j - 1 ]
                OD
            OD;
            result
         END # upper pascal matrix # ;

    # returns a lower Pascal matrix of size n #
    PROC lower pascal matrix = ( INT n )[,]INT:
         BEGIN
            [ 1 : n, 1 : n ]INT result;
            FOR i        TO n DO result[ i, 1 ] := 1 OD;
            FOR j FROM 2 TO n DO
                result[ 1, j ] := 0;
                FOR i FROM 2 TO n DO
                    result[ i, j ] := result[ i - 1, j - 1 ] + result[ i - 1, j ]
                OD
            OD;
            result
         END # lower pascal matrix # ;

    # returns a symmetric Pascal matrix of size n #
    PROC symmetric pascal matrix = ( INT n )[,]INT:
         BEGIN
            [ 1 : n, 1 : n ]INT result;
            FOR i TO n DO
                result[ i, 1 ] := 1;
                result[ 1, i ] := 1
            OD;
            FOR j FROM 2 TO n DO
                FOR i FROM 2 TO n DO
                    result[ i, j ] := result[ i, j - 1 ] + result[ i - 1, j ]
                OD
            OD;
            result
         END # symmetric pascal matrix # ;

    # print the matrix m with the specified field width #
    PROC print matrix = ( [,]INT m, INT field width )VOID:
         BEGIN
             FOR i FROM 1 LWB m TO 1 UPB m DO
                 FOR j FROM 2 LWB m TO 2 UPB m DO
                     print( ( " ", whole( m[ i, j ], - field width ) ) )
                 OD;
                 print( ( newline ) )
             OD
         END # print matrix # ;

    print( ( "upper:",     newline ) ); print matrix( upper pascal matrix(     5 ), 2 );
    print( ( "lower:",     newline ) ); print matrix( lower pascal matrix(     5 ), 2 );
    print( ( "symmetric:", newline ) ); print matrix( symmetric pascal matrix( 5 ), 2 )

END
Output:
upper:
  1  1  1  1  1
  0  1  2  3  4
  0  0  1  3  6
  0  0  0  1  4
  0  0  0  0  1
lower:
  1  0  0  0  0
  1  1  0  0  0
  1  2  1  0  0
  1  3  3  1  0
  1  4  6  4  1
symmetric:
  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70

ALGOL W

Translation of: ALGOL_68
begin
    % initialises m to an upper Pascal matrix of size n %
    % the bounds of m must be at least 1 :: n, 1 :: n   %
    procedure upperPascalMatrix ( integer array m( *, * )
                                ; integer value n
                                ) ;
    begin
        for j := 1 until n do m( 1, j ) := 1;
        for i := 2 until n do begin
            m( i, 1 ) := 0;
            for j := 2 until n do m( i, j ) := m( i - 1, j - 1 ) + m( i, j - 1 )
        end for_i
    end upperPascalMatrix ;

    % initialises m to a lower Pascal matrix of size n  %
    % the bounds of m must be at least 1 :: n, 1 :: n   %
    procedure lowerPascalMatrix ( integer array m( *, * )
                               ; integer value n
                               ) ;
    begin
        for i := 1 until n do m( i, 1 ) := 1;
        for j := 2 until n do begin
            m( 1, j ) := 0;
            for i := 2 until n do m( i, j ) := m( i - 1, j - 1 ) + m( i - 1, j )
        end for_j
    end lowerPascalMatrix ;

    % initialises m to a symmetric Pascal matrix of size n %
    % the bounds of m must be at least 1 :: n, 1 :: n   %
    procedure symmetricPascalMatrix ( integer array m( *, * )
                                    ; integer value n
                                    ) ;
    begin
        for i := 1 until n do begin
            m( i, 1 ) := 1;
            m( 1, i ) := 1
        end for_i;
        for j := 2 until n do for i := 2 until n do m( i, j ) := m( i, j - 1 ) + m( i - 1, j )
    end symmetricPascalMatrix ;

    begin % test the pascal matrix procedures %

        % print the matrix m with the specified field width %
        % the bounds of m must be at least 1 :: n, 1 :: n   %
        procedure printMatrix ( integer array m( *, * )
                              ; integer value n
                              ; integer value fieldWidth
                              ) ;
        begin
            for i := 1 until n do begin
                write(                         i_w := fieldWidth, s_w := 0, " ", m( i, 1 ) );
                for j := 2 until n do writeon( i_w := fieldWidth, s_w := 0, " ", m( i, j ) )
            end for_i
        end printMatrix ;

        integer array m( 1 :: 10, 1 :: 10 );
        integer n, w;

        n := 5; w := 2;
        upperPascalMatrix(     m, n ); write( "upper:"     ); printMatrix( m, n, w );
        lowerPascalMatrix(     m, n ); write( "lower:"     ); printMatrix( m, n, w );
        symmetricPascalMatrix( m, n ); write( "symmetric:" ); printMatrix( m, n, w )

    end

end.
Output:
upper:
  1  1  1  1  1
  0  1  2  3  4
  0  0  1  3  6
  0  0  0  1  4
  0  0  0  0  1
lower:
  1  0  0  0  0
  1  1  0  0  0
  1  2  1  0  0
  1  3  3  1  0
  1  4  6  4  1
symmetric:
  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70

APL

Works with: Dyalog APL
upper  ∘.!¯1+⍳
lower  (∘.!¯1+⍳)
symmetric  (⊢![1]∘.+)¯1+⍳
Output:
      ((⊂upper),(⊂lower),(⊂symmetric)) 5
┌─────────┬─────────┬────────────┐
│1 1 1 1 1│1 0 0 0 0│1 1  1  1  1│
│0 1 2 3 4│1 1 0 0 0│1 2  3  4  5│
│0 0 1 3 6│1 2 1 0 0│1 3  6 10 15│
│0 0 0 1 4│1 3 3 1 0│1 4 10 20 35│
│0 0 0 0 1│1 4 6 4 1│1 5 15 35 70│
└─────────┴─────────┴────────────┘

AppleScript

By composition of generic functions:

-- PASCAL MATRIX -------------------------------------------------------------

-- pascalMatrix :: ((Int, Int) -> (Int, Int)) -> Int -> [[Int]]
on pascalMatrix(f, n)
    chunksOf(n, map(compose(my bc, f), range({{0, 0}, {n - 1, n - 1}})))
end pascalMatrix

-- Binomial coefficient
-- bc :: (Int, Int) -> Int
on bc(nk)
    set {n, k} to nk
    script bc_
        on |λ|(a, x)
            floor((a * (n - x + 1)) / x)
        end |λ|
    end script
    foldl(bc_, 1, enumFromTo(1, k))
end bc


-- TEST ----------------------------------------------------------------------
on run
    set matrixSize to 5
    
    script symm
        on |λ|(ab)
            set {a, b} to ab
            {a + b, a}
        end |λ|
    end script
    
    script format
        on |λ|(s, xs)
            unlines(concat({{s}, map(my show, xs), {""}}))
        end |λ|
    end script
    
    unlines(zipWith(format, ¬
        {"Lower", "Upper", "Symmetric"}, ¬
        |<*>|(map(curry(pascalMatrix), [|id|, swap, symm]), {matrixSize})))
end run


-- GENERIC FUNCTIONS ---------------------------------------------------------

-- A list of functions applied to a list of arguments
-- (<*> | ap) :: [(a -> b)] -> [a] -> [b]
on |<*>|(fs, xs)
    set {nf, nx} to {length of fs, length of xs}
    set acc to {}
    repeat with i from 1 to nf
        tell mReturn(item i of fs)
            repeat with j from 1 to nx
                set end of acc to |λ|(contents of (item j of xs))
            end repeat
        end tell
    end repeat
    return acc
end |<*>|

-- chunksOf :: Int -> [a] -> [[a]]
on chunksOf(k, xs)
    script
        on go(ys)
            set {a, b} to splitAt(k, ys)
            if isNull(a) then
                {}
            else
                {a} & go(b)
            end if
        end go
    end script
    result's go(xs)
end chunksOf

-- compose :: (b -> c) -> (a -> b) -> (a -> c)
on compose(f, g)
    script
        on |λ|(x)
            mReturn(f)'s |λ|(mReturn(g)'s |λ|(x))
        end |λ|
    end script
end compose

-- concat :: [[a]] -> [a] | [String] -> String
on concat(xs)
    if length of xs > 0 and class of (item 1 of xs) is string then
        set acc to ""
    else
        set acc to {}
    end if
    repeat with i from 1 to length of xs
        set acc to acc & item i of xs
    end repeat
    acc
end concat

-- cons :: a -> [a] -> [a]
on cons(x, xs)
    {x} & xs
end cons

-- curry :: (Script|Handler) -> Script
on curry(f)
    script
        on |λ|(a)
            script
                on |λ|(b)
                    |λ|(a, b) of mReturn(f)
                end |λ|
            end script
        end |λ|
    end script
end curry

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
    set lst to {}
    repeat with i from m to n
        set end of lst to i
    end repeat
    return lst
end enumFromTo

-- floor :: Num -> Int
on floor(x)
    if x < 0 and x mod 1 is not 0 then
        (x div 1) - 1
    else
        (x div 1)
    end if
end floor

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from 1 to lng
            set v to |λ|(v, item i of xs, i, xs)
        end repeat
        return v
    end tell
end foldl

-- foldr :: (b -> a -> a) -> a -> [b] -> a
on foldr(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from lng to 1 by -1
            set v to |λ|(item i of xs, v, i, xs)
        end repeat
        return v
    end tell
end foldr

-- id :: a -> a
on |id|(x)
    x
end |id|

-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
    set {dlm, my text item delimiters} to {my text item delimiters, strText}
    set strJoined to lstText as text
    set my text item delimiters to dlm
    return strJoined
end intercalate

-- isNull :: [a] -> Bool
on isNull(xs)
    if class of xs is string then
        xs = ""
    else
        xs = {}
    end if
end isNull

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map

-- min :: Ord a => a -> a -> a
on min(x, y)
    if y < x then
        y
    else
        x
    end if
end min

-- Lift 2nd class handler function into 1st class script wrapper 
-- mReturn :: Handler -> Script
on mReturn(f)
    if class of f is script then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn

-- quot :: Int -> Int -> Int
on quot(m, n)
    m div n
end quot

-- range :: Ix a => (a, a) -> [a]
on range({a, b})
    if class of a is list then
        set {xs, ys} to {a, b}
    else
        set {xs, ys} to {{a}, {b}}
    end if
    set lng to length of xs
    
    if lng = length of ys then
        if lng > 1 then
            script
                on |λ|(_, i)
                    enumFromTo(item i of xs, item i of ys)
                end |λ|
            end script
            sequence(map(result, xs))
        else
            enumFromTo(a, b)
        end if
    else
        {}
    end if
end range

-- sequence :: Monad m => [m a] -> m [a]
-- sequence :: [a] -> [[a]]
on sequence(xs)
    traverse(|id|, xs)
end sequence

-- show :: a -> String
on show(e)
    set c to class of e
    if c = list then
        script serialized
            on |λ|(v)
                show(v)
            end |λ|
        end script
        
        "[" & intercalate(", ", map(serialized, e)) & "]"
    else if c = record then
        script showField
            on |λ|(kv)
                set {k, ev} to kv
                "\"" & k & "\":" & show(ev)
            end |λ|
        end script
        
        "{" & intercalate(", ", ¬
            map(showField, zip(allKeys(e), allValues(e)))) & "}"
    else if c = date then
        "\"" & iso8601Z(e) & "\""
    else if c = text then
        "\"" & e & "\""
    else if (c = integer or c = real) then
        e as text
    else if c = class then
        "null"
    else
        try
            e as text
        on error
            ("«" & c as text) & "»"
        end try
    end if
end show

-- splitAt :: Int -> [a] -> ([a],[a])
on splitAt(n, xs)
    if n > 0 and n < length of xs then
        if class of xs is text then
            {items 1 thru n of xs as text, items (n + 1) thru -1 of xs as text}
        else
            {items 1 thru n of xs, items (n + 1) thru -1 of xs}
        end if
    else
        if n < 1 then
            {{}, xs}
        else
            {xs, {}}
        end if
    end if
end splitAt

-- swap :: (a, b) -> (b, a)
on swap(ab)
    set {a, b} to ab
    {b, a}
end swap

-- traverse :: (a -> [b]) -> [a] -> [[b]]
on traverse(f, xs)
    script
        property mf : mReturn(f)
        on |λ|(x, a)
            |<*>|(map(curry(cons), mf's |λ|(x)), a)
        end |λ|
    end script
    foldr(result, {{}}, xs)
end traverse

-- unlines :: [String] -> String
on unlines(xs)
    intercalate(linefeed, xs)
end unlines

-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
    set lng to min(length of xs, length of ys)
    set lst to {}
    tell mReturn(f)
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, item i of ys)
        end repeat
        return lst
    end tell
end zipWith
Output:
Lower
[1, 0, 0, 0, 0]
[1, 1, 0, 0, 0]
[1, 2, 1, 0, 0]
[1, 3, 3, 1, 0]
[1, 4, 6, 4, 1]

Upper
[1, 1, 1, 1, 1]
[0, 1, 2, 3, 4]
[0, 0, 1, 3, 6]
[0, 0, 0, 1, 4]
[0, 0, 0, 0, 1]

Symmetric
[1, 1, 1, 1, 1]
[1, 2, 3, 4, 5]
[1, 3, 6, 10, 15]
[1, 4, 10, 20, 35]
[1, 5, 15, 35, 70]

AutoHotkey

n := 5
MsgBox, 262144, ,% ""
. "Pascal upper-triangular :`n" show(Pascal_Upper(n))
. "`n`nPascal lower-triangular :`n" show(Pascal_Lower(n))
. "`n`nPascal symmetric:`n" show(Pascal_Symm(n))
return

show(obj){
	for i, o in obj{
		line := ""
		for j, v in o
			line .= v ", "
		res .= "[" Trim(line, ", ") "]`n,"
	}
	return "[" Trim(res, "`n,") "]"
}

Pascal_Upper(n){
	obj := fillObj(n)
	loop % n
		obj[1, A_Index] := 1
	loop % n-1
		obj[A_Index+1, 1] := 0
	for i, o in obj
		for j, v in o
			if !(i = 1 or j = 1)
				obj[i, j] := obj[i, j-1] + obj[i-1, j-1]
	return obj
}

Pascal_Lower(n){
	obj := fillObj(n)
	loop % n
		obj[A_Index, 1] := 1
	loop % n-1
		obj[1, A_Index+1] := 0
	for i, o in obj
		for j, v in o
			if !(i = 1 or j = 1)
				obj[i, j] := obj[i-1, j] + obj[i-1, j-1]
	return obj
}

Pascal_Symm(n){
	obj := fillObj(n)
	loop % n
		obj[A_Index, 1] := 1
	loop % n-1
		obj[1, A_Index+1] := 1
	for i, o in obj
		for j, v in o
			if !(i = 1 or j = 1)
				obj[i, j] := obj[i-1, j] + obj[i, j-1]
	return obj
}

fillObj(n){
	obj := []
	loop % n{
		i := A_Index
		loop % n
			obj[i, A_Index] := 0
	}
	return obj
}
Output:
Pascal upper-triangular :
[[1, 1, 1, 1, 1]
,[0, 1, 2, 3, 4]
,[0, 0, 1, 3, 6]
,[0, 0, 0, 1, 4]
,[0, 0, 0, 0, 1]]

Pascal lower-triangular :
[[1, 0, 0, 0, 0]
,[1, 1, 0, 0, 0]
,[1, 2, 1, 0, 0]
,[1, 3, 3, 1, 0]
,[1, 4, 6, 4, 1]]

Pascal symmetric:
[[1, 1, 1, 1, 1]
,[1, 2, 3, 4, 5]
,[1, 3, 6, 10, 15]
,[1, 4, 10, 20, 35]
,[1, 5, 15, 35, 70]]

BASIC

10 DEFINT A-Z: S=5: DIM M(S,S)
20 PRINT "Lower-triangular matrix:": GOSUB 200: GOSUB 100
30 PRINT "Upper-triangular matrix:": GOSUB 300: GOSUB 100
40 PRINT "Symmetric matrix:": GOSUB 400: GOSUB 100
50 END
100 REM *** Print the matrix M ***
110 FOR Y=1 TO S
120 FOR X=1 TO S
130 PRINT USING " ##";M(X,Y);
140 NEXT X
150 PRINT
160 NEXT Y
170 PRINT
180 RETURN
200 REM *** Generate the lower-triangular matrix ***
210 FOR X=1 TO S: FOR Y=1 TO S
220 ON -(X>Y)-2*(X=Y OR X=1) GOTO 240,250
230 M(X,Y)=M(X-1,Y-1)+M(X,Y-1): GOTO 260
240 M(X,Y)=0: GOTO 260
250 M(X,Y)=1: GOTO 260
260 NEXT Y,X
270 RETURN
300 REM *** Generate the upper-triangular matrix ***
310 FOR X=1 TO S: FOR Y=1 TO S
320 ON -(X<Y)-2*(X=Y OR Y=1) GOTO 340,350
330 M(X,Y)=M(X-1,Y-1)+M(X-1,Y): GOTO 360
340 M(X,Y)=0: GOTO 360
350 M(X,Y)=1: GOTO 360
360 NEXT Y,X
370 RETURN
400 REM *** Generate the symmetric matrix ***
410 FOR X=1 TO S: FOR Y=1 TO S
420 IF X=1 OR Y=1 THEN M(X,Y)=1 ELSE M(X,Y)=M(X-1,Y)+M(X,Y-1)
430 NEXT Y,X
440 RETURN
Output:
Lower-triangular matrix:
  1  0  0  0  0
  1  1  0  0  0
  1  2  1  0  0
  1  3  3  1  0
  1  4  6  4  1

Upper-triangular matrix:
  1  1  1  1  1
  0  1  2  3  4
  0  0  1  3  6
  0  0  0  1  4
  0  0  0  0  1

Symmetric matrix:
  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70

BCPL

get "libhdr"
manifest $( size = 5 $)

// Matrix index
let ix(mat, n, x, y) = mat+y*n+x

let lower(m, n) be
    for y=0 to n-1
        for x=0 to n-1 do
            !ix(m,n,x,y) :=
                x>y       -> 0,
                x=y | x=0 -> 1,
                !ix(m,n,x-1,y-1) + !ix(m,n,x,y-1) 
                
             
let upper(m, n) be
    for y=0 to n-1
        for x=0 to n-1 do
            !ix(m,n,x,y) :=
                x<y       -> 0,
                x=y | y=0 -> 1,
                !ix(m,n,x-1,y-1) + !ix(m,n,x-1,y)
       
let symmetric(m, n) be
    for y=0 to n-1
        for x=0 to n-1 do
            !ix(m,n,x,y) :=
                x=0 | y=0 -> 1,
                !ix(m,n,x-1,y) + !ix(m,n,x,y-1)

// Print matrix
let writemat(m, n, d) be
    for y=0 to n-1
    $(  for x=0 to n-1
        $(  writed(!ix(m,n,x,y), d)
            wrch(' ')
        $)
        wrch('*N')
    $)
    
// Generate and print 5-by-5 matrices
let start() be
$(  let mat = vec size * size
    
    writes("Upper-triangular matrix:*N")
    upper(mat, size) ; writemat(mat, size, 2)
    
    writes("*NLower-triangular matrix:*N")
    lower(mat, size) ; writemat(mat, size, 2)
    
    writes("*NSymmetric matrix:*N")
    symmetric(mat, size) ; writemat(mat, size, 2)
$)
Output:
Upper-triangular matrix:
 1  1  1  1  1
 0  1  2  3  4
 0  0  1  3  6
 0  0  0  1  4
 0  0  0  0  1

Lower-triangular matrix:
 1  0  0  0  0
 1  1  0  0  0
 1  2  1  0  0
 1  3  3  1  0
 1  4  6  4  1

Symmetric matrix:
 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

BQN

C is the combinations function, taken from BQNcrate. The rest of the problem is simple with table ().

C((×´)1+)
UprC˜⌜˜
LwrC⌜˜
Sym(+C⊣)⌜˜
  Upr 5
┌─           
 1 1 1 1 1  
  0 1 2 3 4  
  0 0 1 3 6  
  0 0 0 1 4  
  0 0 0 0 1  
            
  Lwr 5
┌─           
 1 0 0 0 0  
  1 1 0 0 0  
  1 2 1 0 0  
  1 3 3 1 0  
  1 4 6 4 1  
            
  
  Sym 5
┌─              
 1 1  1  1  1  
  1 2  3  4  5  
  1 3  6 10 15  
  1 4 10 20 35  
  1 5 15 35 70  
               

C

#include <stdio.h>
#include <stdlib.h>

void pascal_low(int **mat, int n) {
    int i, j;

    for (i = 0; i < n; ++i)
        for (j = 0; j < n; ++j)
            if (i < j)
                mat[i][j] = 0;
            else if (i == j || j == 0)
                mat[i][j] = 1;
            else
                mat[i][j] = mat[i - 1][j - 1] + mat[i - 1][j];
}

void pascal_upp(int **mat, int n) {
    int i, j;

    for (i = 0; i < n; ++i)
        for (j = 0; j < n; ++j)
            if (i > j)
                mat[i][j] = 0;
            else if (i == j || i == 0)
                mat[i][j] = 1;
            else
                mat[i][j] = mat[i - 1][j - 1] + mat[i][j - 1];
}

void pascal_sym(int **mat, int n) {
    int i, j;

    for (i = 0; i < n; ++i)
        for (j = 0; j < n; ++j)
            if (i == 0 || j == 0)
                mat[i][j] = 1;
            else
                mat[i][j] = mat[i - 1][j] + mat[i][j - 1];
}

int main(int argc, char * argv[]) {
    int **mat;
    int i, j, n;

    /* Input size of the matrix */
    n = 5;

    /* Matrix allocation */
    mat = calloc(n, sizeof(int *));
    for (i = 0; i < n; ++i)
        mat[i] = calloc(n, sizeof(int));

    /* Matrix computation */
    printf("=== Pascal upper matrix ===\n");
    pascal_upp(mat, n);
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            printf("%4d%c", mat[i][j], j < n - 1 ? ' ' : '\n');

    printf("=== Pascal lower matrix ===\n");
    pascal_low(mat, n);
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            printf("%4d%c", mat[i][j], j < n - 1 ? ' ' : '\n');

    printf("=== Pascal symmetric matrix ===\n");
    pascal_sym(mat, n);
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            printf("%4d%c", mat[i][j], j < n - 1 ? ' ' : '\n');

    return 0;
}
Output:
=== Pascal upper matrix ===
   1    1    1    1    1
   0    1    2    3    4
   0    0    1    3    6
   0    0    0    1    4
   0    0    0    0    1
=== Pascal lower matrix ===
   1    0    0    0    0
   1    1    0    0    0
   1    2    1    0    0
   1    3    3    1    0
   1    4    6    4    1
=== Pascal symmetric matrix ===
   1    1    1    1    1
   1    2    3    4    5
   1    3    6   10   15
   1    4   10   20   35
   1    5   15   35   70

C#

using System;

public static class PascalMatrixGeneration
{
    public static void Main() {
        Print(GenerateUpper(5));
        Console.WriteLine();
        Print(GenerateLower(5));
        Console.WriteLine();
        Print(GenerateSymmetric(5));
    }

    static int[,] GenerateUpper(int size) {
        int[,] m = new int[size, size];
        for (int c = 0; c < size; c++) m[0, c] = 1;
        for (int r = 1; r < size; r++) {
            for (int c = r; c < size; c++) {
                m[r, c] = m[r-1, c-1] + m[r, c-1];
            }
        }
        return m;
    }

    static int[,] GenerateLower(int size) {
        int[,] m = new int[size, size];
        for (int r = 0; r < size; r++) m[r, 0] = 1;
        for (int c = 1; c < size; c++) {
            for (int r = c; r < size; r++) {
                m[r, c] = m[r-1, c-1] + m[r-1, c];
            }
        }
        return m;
    }

    static int[,] GenerateSymmetric(int size) {
        int[,] m = new int[size, size];
        for (int i = 0; i < size; i++) m[0, i] = m[i, 0] = 1;
        for (int r = 1; r < size; r++) {
            for (int c = 1; c < size; c++) {
                m[r, c] = m[r-1, c] + m[r, c-1];
            }
        }
        return m;
    }

    static void Print(int[,] matrix) {
        string[,] m = ToString(matrix);
        int width = m.Cast<string>().Select(s => s.Length).Max();
        int rows = matrix.GetLength(0), columns = matrix.GetLength(1);
        for (int row = 0; row < rows; row++) {
            Console.WriteLine("|" + string.Join(" ", Range(0, columns).Select(column => m[row, column].PadLeft(width, ' '))) + "|");
        }
    }

    static string[,] ToString(int[,] matrix) {
        int rows = matrix.GetLength(0), columns = matrix.GetLength(1);
        string[,] m = new string[rows, columns];
        for (int r = 0; r < rows; r++) {
            for (int c = 0; c < columns; c++) {
                m[r, c] = matrix[r, c].ToString();
            }
        }
        return m;
    }
    
}
Output:
|1 1 1 1 1|
|0 1 2 3 4|
|0 0 1 3 6|
|0 0 0 1 4|
|0 0 0 0 1|

|1 0 0 0 0|
|1 1 0 0 0|
|1 2 1 0 0|
|1 3 3 1 0|
|1 4 6 4 1|

| 1  1  1  1  1|
| 1  2  3  4  5|
| 1  3  6 10 15|
| 1  4 10 20 35|
| 1  5 15 35 70|

C++

Works with: GCC version version 7.2.0 (Ubuntu 7.2.0-8ubuntu3.2)
#include <iostream>
#include <vector>

typedef std::vector<std::vector<int>> vv;

vv pascal_upper(int n) {
    vv matrix(n);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
                if (i > j) matrix[i].push_back(0);
                else if (i == j || i == 0) matrix[i].push_back(1);
                else matrix[i].push_back(matrix[i - 1][j - 1] + matrix[i][j - 1]);
            }
        }
        return matrix;
    }

vv pascal_lower(int n) {
    vv matrix(n);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            if (i < j) matrix[i].push_back(0);
            else if (i == j || j == 0) matrix[i].push_back(1);
            else matrix[i].push_back(matrix[i - 1][j - 1] + matrix[i - 1][j]);
        }
    }
    return matrix;
}

vv pascal_symmetric(int n) {
    vv matrix(n);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            if (i == 0 || j == 0) matrix[i].push_back(1);
            else matrix[i].push_back(matrix[i][j - 1] + matrix[i - 1][j]);
        }
    }
    return matrix;
}


void print_matrix(vv matrix) {
    for (std::vector<int> v: matrix) {
        for (int i: v) {
            std::cout << " " << i;
        }
        std::cout << std::endl;
    }
}

int main() {
    std::cout << "PASCAL UPPER MATRIX" << std::endl;
    print_matrix(pascal_upper(5));
    std::cout << "PASCAL LOWER MATRIX" << std::endl;
    print_matrix(pascal_lower(5));
    std::cout << "PASCAL SYMMETRIC MATRIX" << std::endl;
    print_matrix(pascal_symmetric(5));
}
Output:
PASCAL UPPER MATRIX
 1 1 1 1 1
 0 1 2 3 4
 0 0 1 3 6
 0 0 0 1 4
 0 0 0 0 1
PASCAL LOWER MATRIX
 1 0 0 0 0
 1 1 0 0 0
 1 2 1 0 0
 1 3 3 1 0
 1 4 6 4 1
PASCAL SYMMETRIC MATRIX
 1 1 1 1 1
 1 2 3 4 5
 1 3 6 10 15
 1 4 10 20 35
 1 5 15 35 70

Clojure

(defn binomial-coeff [n k]
  (reduce #(quot (* %1 (inc (- n %2))) %2)
          1
          (range 1 (inc k))))

(defn pascal-upper [n]
  (map
   (fn [i]
     (map (fn [j]
            (binomial-coeff j i))
          (range n)))
   (range n)))

(defn pascal-lower [n]
  (map
   (fn [i]
     (map (fn [j]
            (binomial-coeff i j))
          (range n)))
   (range n)))

(defn pascal-symmetric [n]
  (map
   (fn [i]
     (map (fn [j]
            (binomial-coeff (+ i j) i))
          (range n)))
   (range n)))

(defn pascal-matrix [n]
  (println "Upper:")
  (run! println (pascal-upper n))
  (println)
  (println "Lower:")
  (run! println (pascal-lower n))
  (println)
  (println "Symmetric:")
  (run! println (pascal-symmetric n)))
Output:
=> (pascal-matrix 5)
Upper:
(1 1 1 1 1)
(0 1 2 3 4)
(0 0 1 3 6)
(0 0 0 1 4)
(0 0 0 0 1)

Lower:
(1 0 0 0 0)
(1 1 0 0 0)
(1 2 1 0 0)
(1 3 3 1 0)
(1 4 6 4 1)

Symmetric:
(1 1 1 1 1)
(1 2 3 4 5)
(1 3 6 10 15)
(1 4 10 20 35)
(1 5 15 35 70)

CLU

matrix = array[array[int]]

make_matrix = proc (gen: proctype (int,int,matrix) returns (int),
                    size: int) returns (matrix)
    m: matrix := matrix$fill_copy(0, size, array[int]$fill(0, size, 0))
    for y: int in int$from_to(0, size-1) do
        for x: int in int$from_to(0, size-1) do
            m[y][x] := gen(x,y,m)
        end
    end
    return(m)
end make_matrix

lower = proc (x,y: int, m: matrix) returns (int)
    if x>y then return(0)
    elseif x=y | x=0 then return(1)
    else return( m[y-1][x-1] + m[y-1][x] )
    end
end lower

upper = proc (x,y: int, m: matrix) returns (int)
    if x<y then return(0)
    elseif x=y | y=0 then return(1)
    else return( m[y-1][x-1] + m[y][x-1] )
    end
end upper     

symmetric = proc (x,y: int, m: matrix) returns (int)
    if x=0 | y=0 then return(1)
    else return(m[y][x-1] + m[y-1][x])
    end
end symmetric

print_matrix = proc (s: stream, m: matrix, w: int)
    for line: array[int] in matrix$elements(m) do
        for item: int in array[int]$elements(line) do
            stream$putright(s, int$unparse(item), w)
            stream$putc(s, ' ')
        end
        stream$putl(s, "")
    end
end print_matrix

start_up = proc ()
    po: stream := stream$primary_output()
    
    stream$putl(po, "Upper-triangular matrix:")
    print_matrix(po, make_matrix(upper,5), 1)
    
    stream$putl(po, "\nLower-triangular matrix:")
    print_matrix(po, make_matrix(lower,5), 1)
    
    stream$putl(po, "\nSymmetric matrix:")
    print_matrix(po, make_matrix(symmetric,5), 2)
end start_up
Output:
Upper-triangular matrix:
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Lower-triangular matrix:
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

Symmetric matrix:
 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

Common Lisp

(defun pascal-lower (n &aux (a (make-array (list n n) :initial-element 0)))
    (dotimes (i n)
        (setf (aref a i 0) 1))
    (dotimes (i (1- n) a)
        (dotimes (j (1- n))
            (setf (aref a (1+ i) (1+ j))
                (+ (aref a i j)
                   (aref a i (1+ j)))))))
                   
(defun pascal-upper (n &aux (a (make-array (list n n) :initial-element 0)))
    (dotimes (i n)
        (setf (aref a 0 i) 1))
    (dotimes (i (1- n) a)
        (dotimes (j (1- n))
            (setf (aref a (1+ j) (1+ i))
                (+ (aref a j i)
                   (aref a (1+ j) i))))))

(defun pascal-symmetric (n &aux (a (make-array (list n n) :initial-element 0)))
    (dotimes (i n)
        (setf (aref a i 0) 1 (aref a 0 i) 1))
    (dotimes (i (1- n) a)
        (dotimes (j (1- n))
            (setf (aref a (1+ i) (1+ j))
                (+ (aref a (1+ i) j)
                   (aref a i (1+ j)))))))

? (pascal-lower 4)
#2A((1 0 0 0) (1 1 0 0) (1 2 1 0) (1 3 3 1))
? (pascal-upper 4)
#2A((1 1 1 1) (0 1 2 3) (0 0 1 3) (0 0 0 1))
? (pascal-symmetric 4)
#2A((1 1 1 1) (1 2 3 4) (1 3 6 10) (1 4 10 20))

;In case one really insists in printing the array row by row:

(defun print-matrix (a)
    (let ((p (array-dimension a 0))
          (q (array-dimension a 1)))
        (dotimes (i p)
            (dotimes (j q)
                (princ (aref a i j))
                (princ #\Space))
            (terpri))))

? (print-matrix (pascal-lower 5))
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

? (print-matrix (pascal-upper 5))
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

? (print-matrix (pascal-symmetric 5))
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

D

Translation of: Python
import std.stdio, std.bigint, std.range, std.algorithm;

auto binomialCoeff(in uint n, in uint k) pure nothrow {
    BigInt result = 1;
    foreach (immutable i; 1 .. k + 1)
        result = result * (n - i + 1) / i;
    return result;
}

auto pascalUpp(in uint n) pure nothrow {
    return n.iota.map!(i => n.iota.map!(j => binomialCoeff(j, i)));
}

auto pascalLow(in uint n) pure nothrow {
    return n.iota.map!(i => n.iota.map!(j => binomialCoeff(i, j)));
}

auto pascalSym(in uint n) pure nothrow {
    return n.iota.map!(i => n.iota.map!(j => binomialCoeff(i + j, i)));
}

void main() {
    enum n = 5;
    writefln("Upper:\n%(%(%2d %)\n%)", pascalUpp(n));
    writefln("\nLower:\n%(%(%2d %)\n%)", pascalLow(n));
    writefln("\nSymmetric:\n%(%(%2d %)\n%)", pascalSym(n));
}
Output:
Upper:
 1  1  1  1  1
 0  1  2  3  4
 0  0  1  3  6
 0  0  0  1  4
 0  0  0  0  1

Lower:
 1  0  0  0  0
 1  1  0  0  0
 1  2  1  0  0
 1  3  3  1  0
 1  4  6  4  1

Symmetric:
 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

Delphi

See Pascal.

Elixir

defmodule Pascal do
  defp ij(n), do: for i <- 1..n, j <- 1..n, do: {i,j}
  
  def upper_triangle(n) do
    Enum.reduce(ij(n), Map.new, fn {i,j},acc ->
      val = cond do
              i==1 -> 1
              j<i  -> 0
              true -> Map.get(acc, {i-1, j-1}) + Map.get(acc, {i, j-1})
            end
      Map.put(acc, {i,j}, val)
    end) |> print(1..n)
  end
  
  def lower_triangle(n) do
    Enum.reduce(ij(n), Map.new, fn {i,j},acc ->
      val = cond do
              j==1 -> 1
              i<j  -> 0
              true -> Map.get(acc, {i-1, j-1}) + Map.get(acc, {i-1, j})
            end
      Map.put(acc, {i,j}, val)
    end) |> print(1..n)
  end
  
  def symmetic_triangle(n) do
    Enum.reduce(ij(n), Map.new, fn {i,j},acc ->
      val = if i==1 or j==1, do: 1,
                           else: Map.get(acc, {i-1, j}) + Map.get(acc, {i, j-1})
      Map.put(acc, {i,j}, val)
    end) |> print(1..n)
  end
  
  def print(matrix, range) do
    Enum.each(range, fn i ->
      Enum.map(range, fn j -> Map.get(matrix, {i,j}) end) |> IO.inspect
    end)
  end
end

IO.puts "Pascal upper-triangular matrix:"
Pascal.upper_triangle(5)
IO.puts "Pascal lower-triangular matrix:"
Pascal.lower_triangle(5)
IO.puts "Pascal symmetric matrix:"
Pascal.symmetic_triangle(5)
Output:
Pascal upper-triangular matrix:
[1, 1, 1, 1, 1]
[0, 1, 2, 3, 4]
[0, 0, 1, 3, 6]
[0, 0, 0, 1, 4]
[0, 0, 0, 0, 1]
Pascal lower-triangular matrix:
[1, 0, 0, 0, 0]
[1, 1, 0, 0, 0]
[1, 2, 1, 0, 0]
[1, 3, 3, 1, 0]
[1, 4, 6, 4, 1]
Pascal symmetric matrix:
[1, 1, 1, 1, 1]
[1, 2, 3, 4, 5]
[1, 3, 6, 10, 15]
[1, 4, 10, 20, 35]
[1, 5, 15, 35, 70]

Excel

LAMBDA

Binding the names PASCALMATRIX, BINCOEFF and SYMMETRIC to the following lambda expressions in the Name Manager of the Excel WorkBook:

(See LAMBDA: The ultimate Excel worksheet function)

PASCALMATRIX
=LAMBDA(n,
    LAMBDA(f,
        LET(
            ixs, SEQUENCE(n, n, 0, 1),

            f(BINCOEFF)(
                QUOTIENT(ixs, n)
            )(
                MOD(ixs, n)
            )
        )
    )
)


BINCOEFF
=LAMBDA(n,
    LAMBDA(k,
        IF(n < k,
            0,
            QUOTIENT(FACT(n), FACT(k) * FACT(n - k))
        )
    )
)


SYMMETRIC
=LAMBDA(f,
    LAMBDA(a,
        LAMBDA(b,
            f(a + b)(b)
        )
    )
)

and also assuming the following generic bindings in the Name Manager for the WorkBook:

FLIP
=LAMBDA(f,
    LAMBDA(a,
        LAMBDA(b,
            f(b)(a)
        )
    )
)


ID
=LAMBDA(x, x)
Output:
fx =PASCALMATRIX(5)( ID )
A B C D E F G H
1 Lower
2 1 0 0 0 0
3 1 1 0 0 0
4 1 2 1 0 0
5 1 3 3 1 0
6 1 4 6 4 1
fx =PASCALMATRIX(5)( FLIP )
A B C D E F G H
1 Upper
2 1 1 1 1 1
3 0 1 2 3 4
4 0 0 1 3 6
5 0 0 0 1 4
6 0 0 0 0 1
fx =PASCALMATRIX(5)( SYMMETRIC )
A B C D E F G H
1 Symmetric
2 1 1 1 1 1
3 1 2 3 4 5
4 1 3 6 10 15
5 1 4 10 20 35
6 1 5 15 35 70

Factor

Works with: Factor version 0.99 2020-01-23
USING: arrays fry io kernel math math.combinatorics
math.matrices prettyprint sequences ;

: pascal ( n quot -- m )
    [ dup 2array <coordinate-matrix> ] dip
    '[ first2 @ nCk ] matrix-map ; inline

: lower ( n -- m ) [ ] pascal ;
: upper ( n -- m ) lower flip ;
: symmetric ( n -- m ) [ [ + ] keep ] pascal ;

5
[ lower "Lower:" ]
[ upper "Upper:" ]
[ symmetric "Symmetric:" ] tri
[ print simple-table. nl ] 2tri@
Output:
Lower:
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

Upper:
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Symmetric:
1 1 1  1  1
1 2 3  4  5
1 3 6  10 15
1 4 10 20 35
1 5 15 35 70

Fermat

&a;   {set mode to 0-indexed matrices}
Func Pasmat( n, t ) =
    ;{create a Pascal matrix of size n by n}
    ;{t=0 -> upper triangular, 1 -> lower triangular,2->symmetric}
    Array m[n, n];    {result is stored in array m}
    if t = 0 then
        [m]:=[<i=0,n-1><j=0,n-1> Bin(j,i) ];
    fi;
    if t = 1 then
        [m]:=[<i=0,n-1><j=0,n-1> Bin(i,j) ];
    fi;
    if t = 2 then
        [m]:=[<i=0,n-1><j=0,n-1> Bin(i+j,i) ];
    fi;
.;

Pasmat(5, 0);
!!([m);
!;
Pasmat(5, 1);
!!([m);
!;
Pasmat(5, 2);
!!([m);
Output:

1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 0, 0, 1, 3, 6, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1

1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70

Fortran

The following program uses features of Fortran 2003.

module pascal

implicit none

contains
    function pascal_lower(n) result(a)
        integer :: n, i, j
        integer, allocatable :: a(:, :)
        allocate(a(n, n))
        a = 0
        do i = 1, n
            a(i, 1) = 1
        end do
        do i = 2, n
            do j = 2, i
                a(i, j) = a(i - 1, j) + a(i - 1, j - 1)
            end do
        end do
    end function
    
    function pascal_upper(n) result(a)
        integer :: n, i, j
        integer, allocatable :: a(:, :)
        allocate(a(n, n))
        a = 0
        do i = 1, n
            a(1, i) = 1
        end do
        do i = 2, n
            do j = 2, i
                a(j, i) = a(j, i - 1) + a(j - 1, i - 1)
            end do
        end do
    end function

    function pascal_symmetric(n) result(a)
        integer :: n, i, j
        integer, allocatable :: a(:, :)
        allocate(a(n, n))
        a = 0
        do i = 1, n
            a(i, 1) = 1
            a(1, i) = 1
        end do
        do i = 2, n
            do j = 2, n
                a(i, j) = a(i - 1, j) + a(i, j - 1)
            end do
        end do
    end function

    subroutine print_matrix(a)
        integer :: a(:, :)
        integer :: n, i
        n = ubound(a, 1)
        do i = 1, n
            print *, a(i, :)
        end do
    end subroutine
end module

program ex_pascal
    use pascal
    implicit none
    integer :: n
    integer, allocatable :: a(:, :)
    print *, "Size?"
    read *, n
    print *, "Lower Pascal Matrix"
    a = pascal_lower(n)
    call print_matrix(a)
    print *, "Upper Pascal Matrix"
    a = pascal_upper(n)
    call print_matrix(a)
    print *, "Symmetric Pascal Matrix"
    a = pascal_symmetric(n)
    call print_matrix(a)
end program
 Size?
5
 Lower Pascal Matrix
           1           0           0           0           0
           1           1           0           0           0
           1           2           1           0           0
           1           3           3           1           0
           1           4           6           4           1
 Upper Pascal Matrix
           1           1           1           1           1
           0           1           2           3           4
           0           0           1           3           6
           0           0           0           1           4
           0           0           0           0           1
 Symmetric Pascal Matrix
           1           1           1           1           1
           1           2           3           4           5
           1           3           6          10          15
           1           4          10          20          35
           1           5          15          35          70

FreeBASIC

sub print_matrix( M() as integer )
    'displays a matrix
    for row as integer = 0 to ubound(M, 1)
        for col as integer = 0 to ubound(M, 2)
            print using "####  ";M(row, col);
        next col
        print
    next row
    return
end sub

function fact( n as uinteger ) as uinteger 
    'quick and dirty factorial
    if n<2 then return 1 else return n*fact(n-1)
end function

function nCp( n as uinteger, p as uinteger ) as uinteger
    'quick and dirty binomial
    if p>n then return 0 else return fact(n)/(fact(p)*fact(n-p))
end function

sub make_pascal( M() as integer, typ as const ubyte )
    'allocate the matrix first
    'typ 0 = jCi, 1=iCj, 2=(j+i)Ci
    for i as uinteger = 0 to ubound(M,1)
        for j as uinteger = 0 to ubound(M,2)
            select case typ
                case 0
                    M(i,j) = nCp(j, i)
                case 1
                    M(i,j) = nCp(i, j)
                case 2
                    M(i,j) = nCp(i + j, j)
                case else
                    M(i, j) = 0
            end select
        next j
    next i
    return
end sub

dim as integer M(0 to 4, 0 to 4)
print "Upper triangular"
make_pascal( M(), 0 )
print_matrix( M() )
print "Lower triangular"
make_pascal( M(), 1 )
print_matrix( M() )
print "Symmetric"
make_pascal( M(), 2 )
print_matrix( M() )
print "Technically the matrix needn't be square :)"
dim as integer Q(0 to 4, 0 to 9)
make_pascal( Q(), 2 )
print_matrix( Q() )
Output:

Upper triangular

  1     1     1     1     1  
  0     1     2     3     4  
  0     0     1     3     6  
  0     0     0     1     4  
  0     0     0     0     1  

Lower triangular

  1     0     0     0     0  
  1     1     0     0     0  
  1     2     1     0     0  
  1     3     3     1     0  
  1     4     6     4     1  

Symmetric

  1     1     1     1     1  
  1     2     3     4     5  
  1     3     6    10    15  
  1     4    10    20    35  
  1     5    15    35    70  

Technically the matrix needn't be square :)

  1     1     1     1     1     1     1     1     1     1  
  1     2     3     4     5     6     7     8     9    10  
  1     3     6    10    15    21    28    36    45    55  
  1     4    10    20    35    56    84   120   165   220  
  1     5    15    35    70   126   210   330   495   715

Frink

Frink has built-in functions for efficiently calculating arbitrary-sized binomial coefficients, initializing matrices based on a function, and formatting matrices using Unicode characters.

println[formatMatrix[new array[[5,5], {|r,c| binomial[c,r]}]]]
println[formatMatrix[new array[[5,5], {|r,c| binomial[r,c]}]]]
println[formatMatrix[new array[[5,5], {|r,c| binomial[r+c, c]}]]]
Output:
┌             ┐
│1  1  1  1  1│
│             │
│0  1  2  3  4│
│             │
│0  0  1  3  6│
│             │
│0  0  0  1  4│
│             │
│0  0  0  0  1│
└             ┘
┌             ┐
│1  0  0  0  0│
│             │
│1  1  0  0  0│
│             │
│1  2  1  0  0│
│             │
│1  3  3  1  0│
│             │
│1  4  6  4  1│
└             ┘
┌                ┐
│1  1   1   1   1│
│                │
│1  2   3   4   5│
│                │
│1  3   6  10  15│
│                │
│1  4  10  20  35│
│                │
│1  5  15  35  70│
└                ┘

Go

Translation of: Kotlin
package main

import (
    "fmt"
    "strings"
)

func binomial(n, k int) int {
    if n < k {
        return 0
    }
    if n == 0 || k == 0 {
        return 1
    }
    num := 1
    for i := k + 1; i <= n; i++ {
        num *= i
    }
    den := 1
    for i := 2; i <= n-k; i++ {
        den *= i
    }
    return num / den
}

func pascalUpperTriangular(n int) [][]int {
    m := make([][]int, n)
    for i := 0; i < n; i++ {
        m[i] = make([]int, n)
        for j := 0; j < n; j++ {
            m[i][j] = binomial(j, i)
        }
    }
    return m
}

func pascalLowerTriangular(n int) [][]int {
    m := make([][]int, n)
    for i := 0; i < n; i++ {
        m[i] = make([]int, n)
        for j := 0; j < n; j++ {
            m[i][j] = binomial(i, j)
        }
    }
    return m
}

func pascalSymmetric(n int) [][]int {
    m := make([][]int, n)
    for i := 0; i < n; i++ {
        m[i] = make([]int, n)
        for j := 0; j < n; j++ {
            m[i][j] = binomial(i+j, i)
        }
    }
    return m
}

func printMatrix(title string, m [][]int) {
    n := len(m)
    fmt.Println(title)
    fmt.Print("[")
    for i := 0; i < n; i++ {
        if i > 0 {
            fmt.Print(" ")
        }
        mi := strings.Replace(fmt.Sprint(m[i]), " ", ", ", -1)
        fmt.Print(mi)
        if i < n-1 {
            fmt.Println(",")
        } else {
            fmt.Println("]\n")
        }
    }
}

func main() {
    printMatrix("Pascal upper-triangular matrix", pascalUpperTriangular(5))
    printMatrix("Pascal lower-triangular matrix", pascalLowerTriangular(5))
    printMatrix("Pascal symmetric matrix", pascalSymmetric(5))
}
Output:
Pascal upper-triangular matrix
[[1, 1, 1, 1, 1],
 [0, 1, 2, 3, 4],
 [0, 0, 1, 3, 6],
 [0, 0, 0, 1, 4],
 [0, 0, 0, 0, 1]]

Pascal lower-triangular matrix
[[1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0],
 [1, 2, 1, 0, 0],
 [1, 3, 3, 1, 0],
 [1, 4, 6, 4, 1]]

Pascal symmetric matrix
[[1, 1, 1, 1, 1],
 [1, 2, 3, 4, 5],
 [1, 3, 6, 10, 15],
 [1, 4, 10, 20, 35],
 [1, 5, 15, 35, 70]]

Haskell

import Data.List (transpose)
import System.Environment (getArgs)
import Text.Printf (printf)

-- Pascal's triangle.
pascal :: [[Int]]
pascal = iterate (\row -> 1 : zipWith (+) row (tail row) ++ [1]) [1]

-- The n by n Pascal lower triangular matrix.
pascLow :: Int -> [[Int]]
pascLow n = zipWith (\row i -> row ++ replicate (n-i) 0) (take n pascal) [1..]

-- The n by n Pascal upper triangular matrix.
pascUp :: Int -> [[Int]]
pascUp = transpose . pascLow

-- The n by n Pascal symmetric matrix.
pascSym :: Int -> [[Int]]
pascSym n = take n . map (take n) . transpose $ pascal

-- Format and print a matrix.
printMat :: String -> [[Int]] -> IO ()
printMat title mat = do
  putStrLn $ title ++ "\n"
  mapM_ (putStrLn . concatMap (printf " %2d")) mat
  putStrLn "\n"

main :: IO ()
main = do
  ns <- fmap (map read) getArgs
  case ns of
    [n] -> do printMat "Lower triangular" $ pascLow n
              printMat "Upper triangular" $ pascUp  n
              printMat "Symmetric"        $ pascSym n
    _   -> error "Usage: pascmat <number>"
Output:
Lower triangular

  1  0  0  0  0
  1  1  0  0  0
  1  2  1  0  0
  1  3  3  1  0
  1  4  6  4  1


Upper triangular

  1  1  1  1  1
  0  1  2  3  4
  0  0  1  3  6
  0  0  0  1  4
  0  0  0  0  1


Symmetric

  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70


Or, in terms of binomial coefficients and coordinate transformations:

import Control.Monad (join)
import Data.Bifunctor (bimap)
import Data.Ix (range)
import Data.List.Split (chunksOf)
import Data.Tuple (swap)

---------------------- PASCAL MATRIX ---------------------

pascalMatrix :: ((Int, Int) -> (Int, Int)) -> Int -> [Int]
pascalMatrix f n =
  bc . f
    <$> range
      ((0, 0), join bimap pred (n, n))

-- Binomial coefficient
bc :: (Int, Int) -> Int
bc (n, k) =
  foldr
    (\x a -> quot (a * succ (n - x)) x)
    1
    [k, pred k .. 1]


--------------------------- TEST -------------------------
matrixSize = 5 :: Int

main :: IO ()
main =
  mapM_
    putStrLn
    ( unlines
        . ( \(s, xs) ->
              s :
              (show <$> chunksOf matrixSize xs)
          )
        <$> zip
          ["Lower", "Upper", "Symmetric"]
          ( pascalMatrix
              <$> [ id, -- Lower
                    swap, -- Upper
                    \(a, b) -> (a + b, b) -- Symmetric
                  ]
              <*> [matrixSize]
          )
    )
Output:
Lower
[1,0,0,0,0]
[1,1,0,0,0]
[1,2,1,0,0]
[1,3,3,1,0]
[1,4,6,4,1]

Upper
[1,1,1,1,1]
[0,1,2,3,4]
[0,0,1,3,6]
[0,0,0,1,4]
[0,0,0,0,1]

Symmetric
[1,1,1,1,1]
[1,2,3,4,5]
[1,3,6,10,15]
[1,4,10,20,35]
[1,5,15,35,70]

J

   !/~ i. 5
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1
   !~/~ i. 5
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1
   (["0/ ! +/)~ i. 5
1 1  1  1  1
1 2  3  4  5
1 3  6 10 15
1 4 10 20 35
1 5 15 35 70

Explanation:

x!y is the number of ways of picking x balls (unordered) from a bag of y balls and x!/y for list x and list y gives a table where rows correspond to the elements of x and the columns correspond to the elements of y. Meanwhile !/~y is equivalent to y!/y (and i.y just counts the first y non-negative integers).

Also, x!~y is y!x (and the second example otherwise follows the same pattern as the first example.

For the final example we use an unadorned ! but prepare tables for its x and y values. Its right argument is a sum table, and its left argument is a left identity table. They look like this:

   (+/)~ i. 5
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
   (["0/)~ i. 5
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

The parenthesis in these last two examples are redundant - they could have been omitted without changing the result, but were left in place for emphasis.

Java

Translation of Python via D

Works with: Java version 8
import static java.lang.System.out;
import java.util.List;
import java.util.function.Function;
import java.util.stream.*;
import static java.util.stream.Collectors.toList;
import static java.util.stream.IntStream.range;

public class PascalMatrix {
    static int binomialCoef(int n, int k) {
        int result = 1;
        for (int i = 1; i <= k; i++)
            result = result * (n - i + 1) / i;
        return result;
    }

    static List<IntStream> pascal(int n, Function<Integer, IntStream> f) {
        return range(0, n).mapToObj(i -> f.apply(i)).collect(toList());
    }

    static List<IntStream> pascalUpp(int n) {
        return pascal(n, i -> range(0, n).map(j -> binomialCoef(j, i)));
    }

    static List<IntStream> pascalLow(int n) {
        return pascal(n, i -> range(0, n).map(j -> binomialCoef(i, j)));
    }

    static List<IntStream> pascalSym(int n) {
        return pascal(n, i -> range(0, n).map(j -> binomialCoef(i + j, i)));
    }

    static void print(String label, List<IntStream> result) {
        out.println("\n" + label);
        for (IntStream row : result) {
            row.forEach(i -> out.printf("%2d ", i));
            System.out.println();
        }
    }

    public static void main(String[] a) {
        print("Upper: ", pascalUpp(5));
        print("Lower: ", pascalLow(5));
        print("Symmetric:", pascalSym(5));
    }
}
Upper: 
 1  1  1  1  1 
 0  1  2  3  4 
 0  0  1  3  6 
 0  0  0  1  4 
 0  0  0  0  1 

Lower: 
 1  0  0  0  0 
 1  1  0  0  0 
 1  2  1  0  0 
 1  3  3  1  0 
 1  4  6  4  1 

Symmetric:
 1  1  1  1  1 
 1  2  3  4  5 
 1  3  6 10 15 
 1  4 10 20 35 
 1  5 15 35 70 

JavaScript

In terms of a binomial coefficient, and a function on a coordinate pair.

Translation of: Haskell

ES6

(() => {
    'use strict';

    // -------------------PASCAL MATRIX--------------------

    // pascalMatrix :: ((Int, Int) -> (Int, Int)) ->
    // Int -> [Int]
    const pascalMatrix = f =>
        n => map(compose(binomialCoefficient, f))(
            range([0, 0], [n - 1, n - 1])
        );

    // binomialCoefficient :: (Int, Int) -> Int
    const binomialCoefficient = nk => {
        const [n, k] = Array.from(nk);
        return enumFromThenTo(k)(
            pred(k)
        )(1).reduceRight((a, x) => quot(
            a * succ(n - x)
        )(x), 1);
    };

    // ------------------------TEST------------------------
    // main :: IO ()
    const main = () => {
        const matrixSize = 5;
        console.log(intercalate('\n\n')(
            zipWith(
                k => xs => k + ':\n' + showMatrix(matrixSize)(xs)
            )(['Lower', 'Upper', 'Symmetric'])(
                apList(
                    map(pascalMatrix)([
                        identity, //              Lower
                        swap, //                  Upper
                        ([a, b]) => [a + b, b] // Symmetric
                    ])
                )([matrixSize])
            )
        ));
    };

    // ----------------------DISPLAY-----------------------

    // showMatrix :: Int -> [Int] -> String
    const showMatrix = n =>
        xs => {
            const
                ks = map(str)(xs),
                w = maximum(map(length)(ks));
            return unlines(
                map(unwords)(chunksOf(n)(
                    map(justifyRight(w)(' '))(ks)
                ))
            );
        };

    // -----------------GENERIC FUNCTIONS------------------

    // Tuple (,) :: a -> b -> (a, b)
    const Tuple = a =>
        b => ({
            type: 'Tuple',
            '0': a,
            '1': b,
            length: 2
        });

    // apList (<*>) :: [(a -> b)] -> [a] -> [b]
    const apList = fs =>
        // The sequential application of each of a list
        // of functions to each of a list of values.
        xs => fs.flatMap(
            f => xs.map(f)
        );

    // chunksOf :: Int -> [a] -> [[a]]
    const chunksOf = n =>
        xs => enumFromThenTo(0)(n)(
            xs.length - 1
        ).reduce(
            (a, i) => a.concat([xs.slice(i, (n + i))]),
            []
        );

    // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
    const compose = (...fs) =>
        x => fs.reduceRight((a, f) => f(a), x);

    // concat :: [[a]] -> [a]
    // concat :: [String] -> String
    const concat = xs =>
        0 < xs.length ? (
            xs.every(x => 'string' === typeof x) ? (
                ''
            ) : []
        ).concat(...xs) : xs;

    // cons :: a -> [a] -> [a]
    const cons = x =>
        xs => [x].concat(xs);

    // enumFromThenTo :: Int -> Int -> Int -> [Int]
    const enumFromThenTo = x1 =>
        x2 => y => {
            const d = x2 - x1;
            return Array.from({
                length: Math.floor(y - x2) / d + 2
            }, (_, i) => x1 + (d * i));
        };

    // enumFromTo :: Int -> Int -> [Int]
    const enumFromTo = m =>
        n => Array.from({
            length: 1 + n - m
        }, (_, i) => m + i);

    // fst :: (a, b) -> a
    const fst = tpl =>
        // First member of a pair.
        tpl[0];

    // identity :: a -> a
    const identity = x =>
        // The identity function. (`id`, in Haskell)
        x;

    // intercalate :: String -> [String] -> String
    const intercalate = s =>
        // The concatenation of xs
        // interspersed with copies of s.
        xs => xs.join(s);

    // justifyRight :: Int -> Char -> String -> String
    const justifyRight = n =>
        // The string s, preceded by enough padding (with
        // the character c) to reach the string length n.
        c => s => n > s.length ? (
            s.padStart(n, c)
        ) : s;

    // length :: [a] -> Int
    const length = xs =>
        // Returns Infinity over objects without finite
        // length. This enables zip and zipWith to choose
        // the shorter argument when one is non-finite,
        // like cycle, repeat etc
        (Array.isArray(xs) || 'string' === typeof xs) ? (
            xs.length
        ) : Infinity;


    // liftA2List :: (a -> b -> c) -> [a] -> [b] -> [c]
    const liftA2List = f => xs => ys =>
        // The binary operator f lifted to a function over two
        // lists. f applied to each pair of arguments in the
        // cartesian product of xs and ys.
        xs.flatMap(
            x => ys.map(f(x))
        );

    // map :: (a -> b) -> [a] -> [b]
    const map = f =>
        // The list obtained by applying f to each element of xs.
        // (The image of xs under f).
        xs => (Array.isArray(xs) ? (
            xs
        ) : xs.split('')).map(f);

    // maximum :: Ord a => [a] -> a
    const maximum = xs =>
        // The largest value in a non-empty list.
        0 < xs.length ? (
            xs.slice(1).reduce(
                (a, x) => x > a ? (
                    x
                ) : a, xs[0]
            )
        ) : undefined;

    // pred :: Enum a => a -> a
    const pred = x =>
        x - 1;

    // quot :: Int -> Int -> Int
    const quot = n => m => Math.floor(n / m);

    // The list of values in the subrange defined by a bounding pair.

    // range([0, 2]) -> [0,1,2]
    // range([[0,0], [2,2]])
    //  -> [[0,0],[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],[2,1],[2,2]]
    // range([[0,0,0],[1,1,1]])
    //  -> [[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]]

    // range :: Ix a => (a, a) -> [a]
    function range() {
        const
            args = Array.from(arguments),
            ab = 1 !== args.length ? (
                args
            ) : args[0],
            [as, bs] = [ab[0], ab[1]].map(
                x => Array.isArray(x) ? (
                    x
                ) : (undefined !== x.type) &&
                (x.type.startsWith('Tuple')) ? (
                    Array.from(x)
                ) : [x]
            ),
            an = as.length;
        return (an === bs.length) ? (
            1 < an ? (
                traverseList(x => x)(
                    as.map((_, i) => enumFromTo(as[i])(bs[i]))
                )
            ) : enumFromTo(as[0])(bs[0])
        ) : [];
    };

    // snd :: (a, b) -> b
    const snd = tpl => tpl[1];

    // str :: a -> String
    const str = x => x.toString();

    // succ :: Enum a => a -> a
    const succ = x =>
        1 + x;

    // swap :: (a, b) -> (b, a)
    const swap = ab =>
        // The pair ab with its order reversed.
        Tuple(ab[1])(
            ab[0]
        );

    // take :: Int -> [a] -> [a]
    // take :: Int -> String -> String
    const take = n =>
        // The first n elements of a list,
        // string of characters, or stream.
        xs => xs.slice(0, n);

    // traverseList :: (Applicative f) => (a -> f b) -> [a] -> f [b]
    const traverseList = f =>
        // Collected results of mapping each element
        // of a structure to an action, and evaluating
        // these actions from left to right.
        xs => 0 < xs.length ? (() => {
            const
                vLast = f(xs.slice(-1)[0]),
                t = vLast.type || 'List';
            return xs.slice(0, -1).reduceRight(
                (ys, x) => liftA2List(cons)(f(x))(ys),
                liftA2List(cons)(vLast)([
                    []
                ])
            );
        })() : [
            []
        ];

    // unlines :: [String] -> String
    const unlines = xs =>
        // A single string formed by the intercalation
        // of a list of strings with the newline character.
        xs.join('\n');

    // unwords :: [String] -> String
    const unwords = xs =>
        // A space-separated string derived
        // from a list of words.
        xs.join(' ');

    // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
    const zipWith = f =>
        // A list constructed by zipping with a
        // custom function, rather than with the
        // default tuple constructor.
        xs => ys => {
            const
                lng = Math.min(length(xs), length(ys)),
                vs = take(lng)(ys);
            return take(lng)(xs)
                .map((x, i) => f(x)(vs[i]));
        };

    // MAIN ---
    return main();
})();
Output:
Lower:
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

Upper:
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Symmetric:
 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

jq

Works with: jq version 1.4
# Generic functions

# Note: 'transpose' is defined in recent versions of jq 
def transpose:
  if (.[0] | length) == 0 then []
  else [map(.[0])] + (map(.[1:]) | transpose)
  end ;

# Create an m x n matrix with init as the initial value
def matrix(m; n; init):
  if m == 0 then []
  elif m == 1 then [range(0;n) | init]
  elif m > 0 then
    matrix(1;n;init) as $row
    | [range(0;m) | $row ]
  else error("matrix\(m);_;_) invalid")
  end ;

# A simple pretty-printer for a 2-d matrix
def pp:
  def pad(n): tostring | (n - length) * " " + .;
  def row: reduce .[] as $x (""; . + ($x|pad(4)));
  reduce .[] as $row (""; . + "\n\($row|row)");
# n is input
def pascal_upper:
    . as $n
    | matrix($n; $n; 0)
    | .[0] = [range(0; $n) | 1 ] 
    | reduce range(1; $n) as $i
        (.; reduce range($i; $n) as $j
              (.; .[$i][$j] = .[$i-1][$j-1] + .[$i][$j-1]) ) ;

def pascal_lower:
  pascal_upper | transpose ;

# n is input
def pascal_symmetric:
    . as $n
    | matrix($n; $n; 1)
    | reduce range(1; $n) as $i
        (.; reduce range(1; $n) as $j
              (.; .[$i][$j] = .[$i-1][$j] + .[$i][$j-1]) ) ;

Example:

5
| ("\nUpper:", (pascal_upper | pp),
   "\nLower:", (pascal_lower | pp),
   "\nSymmetric:", (pascal_symmetric | pp)
   )
Output:
$ jq -r -n -f Pascal_matrix_generation.jq

Upper:

   1   1   1   1   1
   0   1   2   3   4
   0   0   1   3   6
   0   0   0   1   4
   0   0   0   0   1

Lower:

   1   0   0   0   0
   1   1   0   0   0
   1   2   1   0   0
   1   3   3   1   0
   1   4   6   4   1

Symmetric:

   1   1   1   1   1
   1   2   3   4   5
   1   3   6  10  15
   1   4  10  20  35
   1   5  15  35  70

Julia

Julia has a built-in binomial function to compute the binomial coefficients, and we can construct the Pascal matrices with this function using list comprehensions:

julia> [binomial(j,i) for i in 0:4, j in 0:4]
5×5 Array{Int64,2}:
 1  1  1  1  1
 0  1  2  3  4
 0  0  1  3  6
 0  0  0  1  4
 0  0  0  0  1

julia> [binomial(i,j) for i in 0:4, j in 0:4]
5×5 Array{Int64,2}:
 1  0  0  0  0
 1  1  0  0  0
 1  2  1  0  0
 1  3  3  1  0
 1  4  6  4  1

julia> [binomial(j+i,i) for i in 0:4, j in 0:4]
5×5 Array{Int64,2}:
 1  1   1   1   1
 1  2   3   4   5
 1  3   6  10  15
 1  4  10  20  35
 1  5  15  35  70

Kotlin

// version 1.1.3

fun binomial(n: Int, k: Int): Int {
    if (n < k) return 0 
    if (n == 0 || k == 0) return 1
    val num = (k + 1..n).fold(1) { acc, i -> acc * i }
    val den = (2..n - k).fold(1) { acc, i -> acc * i }
    return num / den
}

fun pascalUpperTriangular(n: Int) = List(n) { i -> IntArray(n) { j -> binomial(j, i) } }

fun pascalLowerTriangular(n: Int) = List(n) { i -> IntArray(n) { j -> binomial(i, j) } }

fun pascalSymmetric(n: Int)       = List(n) { i -> IntArray(n) { j -> binomial(i + j, i) } }

fun printMatrix(title: String, m: List<IntArray>) {
    val n = m.size
    println(title)
    print("[")
    for (i in 0 until n) {
        if (i > 0) print(" ")
        print(m[i].contentToString())
        if (i < n - 1) println(",") else println("]\n")
    }
}

fun main(args: Array<String>) {
    printMatrix("Pascal upper-triangular matrix", pascalUpperTriangular(5))
    printMatrix("Pascal lower-triangular matrix", pascalLowerTriangular(5))
    printMatrix("Pascal symmetric matrix", pascalSymmetric(5))
}
Output:
Pascal upper-triangular matrix
[[1, 1, 1, 1, 1],
 [0, 1, 2, 3, 4],
 [0, 0, 1, 3, 6],
 [0, 0, 0, 1, 4],
 [0, 0, 0, 0, 1]]

Pascal lower-triangular matrix
[[1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0],
 [1, 2, 1, 0, 0],
 [1, 3, 3, 1, 0],
 [1, 4, 6, 4, 1]]

Pascal symmetric matrix
[[1, 1, 1, 1, 1],
 [1, 2, 3, 4, 5],
 [1, 3, 6, 10, 15],
 [1, 4, 10, 20, 35],
 [1, 5, 15, 35, 70]]

Lua

function factorial (n)
    local f = 1
    for i = 2, n do
        f = f * i
    end
    return f
end 

function binomial (n, k)
    if k > n then return 0 end
    return factorial(n) / (factorial(k) * factorial(n - k))
end

function pascalMatrix (form, size)
    local matrix = {}
    for row = 1, size do
        matrix[row] = {}
        for col = 1, size do
            if form == "upper" then
                matrix[row][col] = binomial(col - 1, row - 1)
            end
            if form == "lower" then
                matrix[row][col] = binomial(row - 1, col - 1)
            end
            if form == "symmetric" then
                matrix[row][col] = binomial(row + col - 2, col - 1)
            end
        end
    end
    matrix.form = form:sub(1, 1):upper() .. form:sub(2, -1)
    return matrix
end

function show (mat)
    print(mat.form .. ":")
    for i = 1, #mat do
        for j = 1, #mat[i] do
            io.write(mat[i][j] .. "\t")
        end
        print()
    end
    print()
end

for _, form in pairs({"upper", "lower", "symmetric"}) do
    show(pascalMatrix(form, 5))
end
Output:
Upper:
1       1       1       1       1
0       1       2       3       4
0       0       1       3       6
0       0       0       1       4
0       0       0       0       1

Lower:
1       0       0       0       0
1       1       0       0       0
1       2       1       0       0
1       3       3       1       0
1       4       6       4       1

Symmetric:
1       1       1       1       1
1       2       3       4       5
1       3       6       10      15
1       4       10      20      35
1       5       15      35      70

Maple

PascalUT := proc(n::integer)
 local M := Matrix(n,n):
 local i:
 local j:
 M[1,1..n] := 1:
 for j from 2 to n do
  for i from 2 to n do
   M[i,j] := M[i,j-1] + M[i-1,j-1]:
  end:
 end:
 return M:
end proc:

PascalUT(5);

PascalLT := proc(n::integer)
 local M := Matrix(n,n):
 local i:
 local j:
 M[1..n,1] := 1:
 for i from 2 to n do
  for j from 2 to n do
   M[i,j] := M[i-1,j] + M[i-1,j-1]:
  end:
 end:
 return M:
end proc:

PascalLT(5);

Pascal := proc(n::integer)
 local M := Matrix(n,n):
 local i:
 local j:
 M[1..n,1] := 1:
 M[1,2..n] := 1:
 for i from 2 to n do
  for j from 2 to n do
   M[i,j] := M[i,j-1] + M[i-1,j]:
  end:
 end:
 return M:
end proc:

Pascal(5);
Output:

                           [1    1    1    1    1]
                           [                     ]
                           [0    1    2    3    4]
                           [                     ]
                           [0    0    1    3    6]
                           [                     ]
                           [0    0    0    1    4]
                           [                     ]
                           [0    0    0    0    1]
                           [1    0    0    0    0]
                           [                     ]
                           [1    1    0    0    0]
                           [                     ]
                           [1    2    1    0    0]
                           [                     ]
                           [1    3    3    1    0]
                           [                     ]
                           [1    4    6    4    1]
                         [1    1     1     1     1]
                         [                        ]
                         [1    2     3     4     5]
                         [                        ]
                         [1    3     6    10    15]
                         [                        ]
                         [1    4    10    20    35]
                         [                        ]
                         [1    5    15    35    70]

Mathematica/Wolfram Language

One solution is to generate a symmetric Pascal matrix then use the built in method to compute the upper Pascal matrix. This would be done as follows:

symPascal[size_] := NestList[Accumulate, Table[1, {k, size}], size - 1]

upperPascal[size_] := CholeskyDecomposition[symPascal@size]

lowerPascal[size_] := Transpose@CholeskyDecomposition[symPascal@size]

Column[MapThread[
  Labeled[Grid[#1@5], #2, Top] &, {{upperPascal, lowerPascal, 
    symPascal}, {"Upper", "Lower", "Symmetric"}}]]
Output:
Upper
1	1	1	1	1
0	1	2	3	4
0	0	1	3	6
0	0	0	1	4
0	0	0	0	1

Lower
1	0	0	0	0
1	1	0	0	0
1	2	1	0	0
1	3	3	1	0
1	4	6	4	1

Symmetric
1	1	1	1	1
1	2	3	4	5
1	3	6	10	15
1	4	10	20	35
1	5	15	35	70

It is also possible to directly compute a lower Pascal matrix as follows:

lowerPascal[size_] := 
 MatrixExp[
  SparseArray[{Band[{2, 1}] -> Range[size - 1]}, {size, size}]]]

But since the builtin function MatrixExp works by first computing eigenvalues this is likely to be slower for large Pascal matrices

MATLAB

clear all;close all;clc;

size = 5; %  size of Pascal matrix

% Generate the symmetric Pascal matrix
symPascalMatrix = symPascal(size);

% Generate the upper triangular Pascal matrix
upperPascalMatrix = upperPascal(size);

% Generate the lower triangular Pascal matrix
lowerPascalMatrix = lowerPascal(size);

% Display the matrices
disp('Upper Pascal Matrix:');
disp(upperPascalMatrix);

disp('Lower Pascal Matrix:');
disp(lowerPascalMatrix);

disp('Symmetric Pascal Matrix:');
disp(symPascalMatrix);


function symPascal = symPascal(size)
    % Generates a symmetric Pascal matrix of given size
    row = ones(1, size);
    symPascal = row;
    for k = 2:size
        row = cumsum(row);
        symPascal = [symPascal; row];
    end
end

function upperPascal = upperPascal(size)
    % Generates an upper triangular Pascal matrix using Cholesky decomposition
    upperPascal = chol(symPascal(size));
end

function lowerPascal = lowerPascal(size)
    % Generates a lower triangular Pascal matrix using Cholesky decomposition
    lowerPascal = chol(symPascal(size))';
end
Output:
Upper Pascal Matrix:
     1     1     1     1     1
     0     1     2     3     4
     0     0     1     3     6
     0     0     0     1     4
     0     0     0     0     1

Lower Pascal Matrix:
     1     0     0     0     0
     1     1     0     0     0
     1     2     1     0     0
     1     3     3     1     0
     1     4     6     4     1

Symmetric Pascal Matrix:
     1     1     1     1     1
     1     2     3     4     5
     1     3     6    10    15
     1     4    10    20    35
     1     5    15    35    70


Maxima

Using built-in functions genmatrix and binomial

/* Function that returns a lower Pascal matrix */
lower_pascal(n):=genmatrix(lambda([i,j],binomial(i-1,j-1)),n,n)$

/* Function that returns an upper Pascal matrix */
upper_pascal(n):=genmatrix(lambda([i,j],binomial(j-1,i-1)),n,n)$

/* Function that returns a symmetric Pascal matrix (the matricial multiplication of a lower and an upper of the same size) */
symmetric_pascal(n):=lower_pascal(n).upper_pascal(n)$

/* Test cases */
lower_pascal(5);
upper_pascal(5);
symmetric_pascal(5);
Output:
matrix(
		[1,	0,	0,	0,	0],
		[1,	1,	0,	0,	0],
		[1,	2,	1,	0,	0],
		[1,	3,	3,	1,	0],
		[1,	4,	6,	4,	1]
	)

matrix(
		[1,	1,	1,	1,	1],
		[0,	1,	2,	3,	4],
		[0,	0,	1,	3,	6],
		[0,	0,	0,	1,	4],
		[0,	0,	0,	0,	1]
	)

matrix(
		[1,	1,	1,	1,	1],
		[1,	2,	3,	4,	5],
		[1,	3,	6,	10,	15],
		[1,	4,	10,	20,	35],
		[1,	5,	15,	35,	70]
	)

Nim

Using the function “binom” from module “math” of standard library.

import math, sequtils, strutils

type SquareMatrix = seq[seq[Natural]]

func newSquareMatrix(n: Positive): SquareMatrix =
  ## Create a square matrix.
  newSeqWith(n, newSeq[Natural](n))

func pascalUpperTriangular(n: Positive): SquareMatrix =
  ## Create an upper Pascal matrix.
  result = newSquareMatrix(n)
  for i in 0..<n:
    for j in i..<n:
      result[i][j] = binom(j, i)

func pascalLowerTriangular(n: Positive): SquareMatrix =
  ## Create a lower Pascal matrix.
  result = newSquareMatrix(n)
  for i in 0..<n:
    for j in i..<n:
      result[j][i] = binom(j, i)

func pascalSymmetric(n: Positive): SquareMatrix =
  ## Create a symmetric Pascal matrix.
  result = newSquareMatrix(n)
  for i in 0..<n:
    for j in 0..<n:
      result[i][j] = binom(i + j, i)

proc print(m: SquareMatrix) =
  ## Print a square matrix.
  let matMax = max(m.mapIt(max(it)))
  let length = ($matMax).len
  for i in 0..m.high:
    echo "| ", m[i].mapIt(($it).align(length)).join(" "), " |"

echo "Upper:"
print pascalUpperTriangular(5)
echo "\nLower:"
print pascalLowerTriangular(5)
echo "\nSymmetric:"
print pascalSymmetric(5)
Output:
Upper:
| 1 1 1 1 1 |
| 0 1 2 3 4 |
| 0 0 1 3 6 |
| 0 0 0 1 4 |
| 0 0 0 0 1 |

Lower:
| 1 0 0 0 0 |
| 1 1 0 0 0 |
| 1 2 1 0 0 |
| 1 3 3 1 0 |
| 1 4 6 4 1 |

Symmetric:
|  1  1  1  1  1 |
|  1  2  3  4  5 |
|  1  3  6 10 15 |
|  1  4 10 20 35 |
|  1  5 15 35 70 |

PARI/GP

Pl(n)={matpascal(n-1)}
printf("%d",Pl(5))
Output:
[1 0 0 0 0]

[1 1 0 0 0]

[1 2 1 0 0]

[1 3 3 1 0]

[1 4 6 4 1]
Pu(n)={Pl(n)~}
printf("%d",Pu(5))
Output:
[1 1 1 1 1]

[0 1 2 3 4]

[0 0 1 3 6]

[0 0 0 1 4]

[0 0 0 0 1]
Ps(n)={matrix(n,n,n,g,binomial(n+g-2,n-1))}
printf("%d",Ps(5))
Output:
[1 1  1  1  1]

[1 2  3  4  5]

[1 3  6 10 15]

[1 4 10 20 35]

[1 5 15 35 70]

Pascal

program Pascal_matrix(Output);

const N = 5;

type NxN_Matrix = array[0..N,0..N] of integer;

var PM,PX : NxN_Matrix;

function Pascal_sym(x : integer; p : NxN_Matrix) : NxN_Matrix;
var I,J : integer;
  begin
    for I := 1 to x do
    begin
      for J := 1 to x do p[I,J] := p[I-1,J]+p[I,J-1]
    end;
    Pascal_sym := p;
  end;

function Pascal_upp(x : integer; p : NxN_Matrix) : NxN_Matrix;
var I,J : integer;
  begin
    for I := 1 to x do
    begin
      for J := 1 to x do p[I,J] := p[I-1,J-1]+p[I,J-1]
    end;
    Pascal_upp := p
  end;

function Pascal_low(x : integer; p : NxN_Matrix) : NxN_Matrix;
var p1,p2 : NxN_Matrix;
  I,J : integer;
  begin
    p1 := Pascal_upp(x,p);
    p2 := p1;
    for I := 1 to x do
    begin
      for J := 1 to x do p1[J,I] := p2[I,J]
    end;
    Pascal_low := p1
  end;

procedure PrintMatrix(titel : ansistring; x : integer; p : NxN_Matrix);
var I,J : integer;
  begin
    writeln(titel);
    for I := 1 to x do
    begin
      for J := 1 to x do write(p[I,J]:5);
      writeln('');
    end;
  end;

begin
  PX[0,0] := 0;
  PM[0,0] := 1;
  PM := Pascal_upp(N, PM);
  PrintMatrix('Upper:', N, PM);
  writeln('');
  PM := PX;
  PM[0,0] := 1;
  PM := Pascal_low(N, PM);
  PrintMatrix('Lower:', N, PM);
  writeln('');
  PM := PX;
  PM[1,0] := 1;
  PM := Pascal_sym(N, PM);
  PrintMatrix('Symmetric', N, PM);
  writeln('');
  readln;
end.
Output:
Upper:
    1    1    1    1    1
    0    1    2    3    4
    0    0    1    3    6
    0    0    0    1    4
    0    0    0    0    1

Lower:
    1    0    0    0    0
    1    1    0    0    0
    1    2    1    0    0
    1    3    3    1    0
    1    4    6    4    1

Symmetric
    1    1    1    1    1
    1    2    3    4    5
    1    3    6   10   15
    1    4   10   20   35
    1    5   15   35   70

Perl

#!/usr/bin/perl
use warnings;
use strict;
use feature qw{ say };


sub upper {
    my ($i, $j) = @_;
    my @m;
    for my $x (0 .. $i - 1) {
        for my $y (0 .. $j - 1) {
            $m[$x][$y] = $x > $y          ? 0
                       : ! $x || $x == $y ? 1
                                          : $m[$x-1][$y-1] + $m[$x][$y-1];
        }
    }
    return \@m
}


sub lower {
    my ($i, $j) = @_;
    my @m;
    for my $x (0 .. $i - 1) {
        for my $y (0 .. $j - 1) {
            $m[$x][$y] = $x < $y          ? 0
                       : ! $x || $x == $y ? 1
                                          : $m[$x-1][$y-1] + $m[$x-1][$y];
        }
    }
    return \@m
}


sub symmetric {
    my ($i, $j) = @_;
    my @m;
    for my $x (0 .. $i - 1) {
        for my $y (0 .. $j - 1) {
            $m[$x][$y] = ! $x || ! $y ? 1
                                      : $m[$x-1][$y] + $m[$x][$y-1];
        }
    }
    return \@m
}


sub pretty {
    my $m = shift;
    for my $row (@$m) {
        say join ', ', @$row;
    }
}


pretty(upper(5, 5));
say '-' x 14;
pretty(lower(5, 5));
say '-' x 14;
pretty(symmetric(5, 5));
Output:
1, 1, 1, 1, 1
0, 1, 2, 3, 4
0, 0, 1, 3, 6
0, 0, 0, 1, 4
0, 0, 0, 0, 1
--------------
1, 0, 0, 0, 0
1, 1, 0, 0, 0
1, 2, 1, 0, 0
1, 3, 3, 1, 0
1, 4, 6, 4, 1
--------------
1, 1, 1, 1, 1
1, 2, 3, 4, 5
1, 3, 6, 10, 15
1, 4, 10, 20, 35
1, 5, 15, 35, 70

Phix

Translation of: Fortran
function pascal_upper(integer n)
    sequence res = repeat(repeat(0,n),n)
    res[1] = repeat(1,n)
    for i=2 to n do
        for j=2 to i do
            res[j,i] = res[j,i-1]+res[j-1,i-1]
        end for
    end for
    return res
end function
 
function pascal_lower(integer n)
    sequence res = repeat(repeat(0,n),n)
    for i=1 to n do
        res[i,1] = 1
    end for
    for i=2 to n do
        for j=2 to i do
            res[i,j] = res[i-1,j]+res[i-1,j-1]
        end for
    end for
    return res
end function
 
function pascal_symmetric(integer n)
    sequence res = repeat(repeat(0,n),n)
    for i=1 to n do
        res[i,1] = 1
        res[1,i] = 1
    end for
    for i=2 to n do
        for j = 2 to n do
            res[i,j] = res[i-1,j]+res[i,j-1]
        end for
    end for
    return res
end function
 
ppOpt({pp_Nest,1,pp_IntCh,false,pp_IntFmt,"%2d"})
puts(1,"=== Pascal upper matrix ===\n")
pp(pascal_upper(5))
puts(1,"=== Pascal lower matrix ===\n")
pp(pascal_lower(5))
puts(1,"=== Pascal symmetrical matrix ===\n")
pp(pascal_symmetric(5))
Output:
=== Pascal upper matrix ===
{{ 1, 1, 1, 1, 1},
 { 0, 1, 2, 3, 4},
 { 0, 0, 1, 3, 6},
 { 0, 0, 0, 1, 4},
 { 0, 0, 0, 0, 1}}
=== Pascal lower matrix ===
{{ 1, 0, 0, 0, 0},
 { 1, 1, 0, 0, 0},
 { 1, 2, 1, 0, 0},
 { 1, 3, 3, 1, 0},
 { 1, 4, 6, 4, 1}}
=== Pascal symmetrical matrix ===
{{ 1, 1, 1, 1, 1},
 { 1, 2, 3, 4, 5},
 { 1, 3, 6,10,15},
 { 1, 4,10,20,35},
 { 1, 5,15,35,70}}

PicoLisp

(setq
   Low '(A B)
   Upp '(B A)
   Sym '((+ A B) A) )

(de binomial (N K)
   (let f
      '((N)
         (if (=0 N) 1 (apply * (range 1 N))) )
      (if (> K N)
         0
         (/
            (f N)
            (* (f (- N K)) (f K)) ) ) ) )
(de pascal (N Z)
   (for Lst
      (mapcar
         '((A)
            (mapcar
               '((B) (apply binomial (mapcar eval Z)))
               (range 0 N) ) )
         (range 0 N) )
      (for L Lst
         (prin (align 2 L) " ") )
      (prinl) )
   (prinl) )

(pascal 4 Low)
(pascal 4 Upp)
(pascal 4 Sym)
Output:
 1  0  0  0  0
 1  1  0  0  0
 1  2  1  0  0
 1  3  3  1  0
 1  4  6  4  1

 1  1  1  1  1
 0  1  2  3  4
 0  0  1  3  6
 0  0  0  1  4
 0  0  0  0  1

 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

PL/I

Version I

PASCAL_MATRIX: PROCEDURE OPTIONS (MAIN); /* derived from Fortran version 18 Decenber 2021 */

    pascal_lower: procedure(a);
        declare a(*,*) fixed binary;
        declare (n, i, j) fixed binary;
        n = hbound(a,1);
        a = 0;
        a(*, 1) = 1;
        do i = 2 to n;
            do j = 2 to i;
                a(i, j) = a(i - 1, j) + a(i - 1, j - 1);
            end;
        end;
    end pascal_lower;
 
    pascal_upper: procedure(a);
        declare a(*,*) fixed binary;
        declare (n, i, j) fixed binary;
        n = hbound(a,1);
        a = 0;
        a(1, *) = 1;
        do i = 2 to n;
            do j = 2 to i;
                a(j, i) = a(j, i - 1) + a(j - 1, i - 1);
            end;
        end;
    end pascal_upper;
 
    pascal_symmetric: procedure(a);
        declare a(*,*) fixed binary;
        declare (n, i, j) fixed binary;
        n = hbound(a,1);
        a = 0;
        a(*, 1) = 1;
        a(1, *) = 1;
        do i = 2 to n;
            do j = 2 to n;
                a(i, j) = a(i - 1, j) + a(i, j - 1);
            end;
        end;
    end pascal_symmetric;
 
    declare n fixed binary;
    put ('Size of matrix?');
    get (n);
    begin;
       declare a(n, n) fixed binary;

       put skip list ('Lower Pascal Matrix');
       call pascal_lower(a);
       put edit (a) (skip, (n) f(3) );

       put skip list ('Upper Pascal Matrix');
       call pascal_upper(a);
       put edit (a) (skip, (n) f(3) );

       put skip list ('Symmetric Pascal Matrix');
       call pascal_symmetric(a);
       put edit (a) (skip, (n) f(3) );
    end;

end PASCAL_MATRIX;
Output:
Size of matrix? 

Lower Pascal Matrix 
  1  0  0  0  0
  1  1  0  0  0
  1  2  1  0  0
  1  3  3  1  0
  1  4  6  4  1
Upper Pascal Matrix 
  1  1  1  1  1
  0  1  2  3  4
  0  0  1  3  6
  0  0  0  1  4
  0  0  0  0  1
Symmetric Pascal Matrix 
  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70

Version II

PASCAL_MATRIX: PROCEDURE OPTIONS (MAIN); /* derived from Fortran version 18 Decenber 2021 */

   define structure 1 array, 2 b(5,5) fixed binary;
   declare A type (array);

    pascal_lower: procedure() returns (type(array));
        declare A type (array);
        declare (n, i, j) fixed binary;
        n = hbound(A.b,1);
        A.b = 0;
        A.b(*, 1) = 1;
        do i = 2 to n;
            do j = 2 to i;
                A.b(i, j) = A.b(i - 1, j) + A.b(i - 1, j - 1);
            end;
        end;
        return (A);
    end pascal_lower;
 
    pascal_upper: procedure() returns (type(array));
        declare A type (array);
        declare (n, i, j) fixed binary;
        n = hbound(A.b,1);
        A.b = 0;
        A.b(1, *) = 1;
        do i = 2 to n;
            do j = 2 to i;
                A.b(j, i) = A.b(j, i - 1) + A.b(j - 1, i - 1);
            end;
        end;
        return (A);
    end pascal_upper;
 
    pascal_symmetric: procedure() returns (type(array));
        declare A type (array);
        declare (n, i, j) fixed binary;
        n = hbound(A.b,1);
        A.b = 0;
        A.b(*, 1) = 1;
        A.b(1, *) = 1;
        do i = 2 to n;
            do j = 2 to n;
                A.b(i, j) = A.b(i - 1, j) + A.b(i, j - 1);
            end;
        end;
        return (A);
    end pascal_symmetric;
 
       declare C type (array);
       declare n fixed binary initial ((hbound(C.b,1)));

       put skip list ('Lower Pascal Matrix');
       C = pascal_lower();
       put edit (C.b) (skip, (n) f(3) );

       put skip list ('Upper Pascal Matrix');
       C = pascal_upper();
       put edit (C.b) (skip, (n) f(3) );

       put skip list ('Symmetric Pascal Matrix');
       C = pascal_symmetric();
       put edit (C.b) (skip, (n) f(3) );

end PASCAL_MATRIX;
Translation of: Rexx
*process source attributes xref or(!);
 pat: Proc Options(main);
 Dcl (HBOUND,MAX,RIGHT) Builtin;
 Dcl SYSPRINT Print;
 Dcl N Bin Fixed(31) Init(5);
 Dcl pd Char(500) Var;
 Dcl fact(0:10) Bin Fixed(31);
 Dcl pt(0:500) Bin Fixed(31);
 Call mk_fact(fact);

 Call Pascal(n,'U',pt); Call show('Pascal upper triangular matrix');
 Call Pascal(n,'L',pt); Call show('Pascal lower triangular matrix');
 Call Pascal(n,'S',pt); Call show('Pascal symmetric matrix'       );

 Pascal: proc(n,which,dd);
 Dcl n Bin Fixed(31);
 Dcl which Char(1);
 Dcl (i,j,k) Bin Fixed(31);
 Dcl dd(0:500) Bin Fixed(31);
 k=0;
 dd(0)=0;
 do i=0 To n-1;
   Do j=0 To n-1;
     k+=1;
     Select(which);
       When('U') dd(k)=comb((j),  (i));
       When('L') dd(k)=comb((i),  (j));
       When('S') dd(k)=comb((i+j),(i));
       Otherwise;
       End;
     dd(0)=max(dd(0),dd(k));
     End;
   End;
 End;

 mk_fact: Proc(f);
 Dcl f(0:*) Bin Fixed(31);
 Dcl i Bin Fixed(31);
 f(0)=1;
 Do i=1 To hbound(f);
  f(i)=f(i-1)*i;
  End;
 End;

 comb: proc(x,y) Returns(pic'z9');
 Dcl (x,y) Bin Fixed(31);
 Dcl (j,z) Bin Fixed(31);
 Dcl res Pic'Z9';
 Select;
   When(x=y) res=1;
   When(y>x) res=0;
   Otherwise Do;
     If x-y<y then
       y=x-y;
     z=1;
     do j=x-y+1 to x;
       z=z*j;
       End;
     res=z/fact(y);
     End;
   End;
 Return(res);
 End;

 show: Proc(head);
 Dcl head Char(*);
 Dcl (n,r,c,pl) Bin Fixed(31) Init(0);
 Dcl row Char(50) Var;
 Dcl p Pic'z9';
 If pt(0)<10 Then pl=1;
             Else pl=2;
 Dcl sep(5) Char(1) Init((4)(1)',',']');
 Put Edit(' ',head)(Skip,a);
 do r=1 To 5;
   if r=1 then row='[[';
          else row=' [';
   do c=1 To 5;
     n+=1;
     p=pt(n);
     row=row!!right(p,pl)!!sep(c);
     End;
   Put Edit(row)(Skip,a);
   End;
 Put Edit(']')(A);
 End;

 End;
Output:
Pascal upper triangular matrix
[[1,1,1,1,1]
 [0,1,2,3,4]
 [0,0,1,3,6]
 [0,0,0,1,4]
 [0,0,0,0,1]]

Pascal lower triangular matrix
[[1,0,0,0,0]
 [1,1,0,0,0]
 [1,2,1,0,0]
 [1,3,3,1,0]
 [1,4,6,4,1]]

Pascal symmetric matrix
[[ 1, 1, 1, 1, 1]
 [ 1, 2, 3, 4, 5]
 [ 1, 3, 6,10,15]
 [ 1, 4,10,20,35]
 [ 1, 5,15,35,70]]

PureBasic

EnableExplicit
Define.i x=5, I, J

Macro Print_Pascal_matrix(typ)
  PrintN(typ)
  For I=1 To x
    For J=1 To x : Print(RSet(Str(p(I,J)),3," ")+Space(3)) : Next  
    PrintN("")
  Next
  Print(~"\n\n")  
EndMacro

Procedure Pascal_sym(n.i,Array p.i(2))  
  Define.i I,J  
  p(1,0)=1
  For I=1 To n
    For J=1 To n : p(I,J)=p(I-1,J)+p(I,J-1) : Next
  Next
EndProcedure

Procedure Pascal_upp(n.i,Array p.i(2))  
  Define.i I,J  
  p(0,0)=1
  For I=1 To n
    For J=1 To n : p(I,J)=p(I-1,J-1)+p(I,J-1) : Next
  Next  
EndProcedure

Procedure Pascal_low(n.i,Array p.i(2))
  Define.i I,J
  Pascal_upp(n,p())
  Dim p2.i(n,n)
  CopyArray(p(),p2())  
  For I=1 To n
    For J=1 To n : Swap p(J,I),p2(I,J) : Next
  Next  
EndProcedure

OpenConsole()

Dim p.i(x,x)
Pascal_upp(x,p())
Print_Pascal_matrix("Upper:")

Dim p.i(x,x)
Pascal_low(x,p())
Print_Pascal_matrix("Lower:")

Dim p.i(x,x)
Pascal_sym(x,p())
Print_Pascal_matrix("Symmetric:")

Input()
End
Output:
Upper:
  1     1     1     1     1
  0     1     2     3     4
  0     0     1     3     6
  0     0     0     1     4
  0     0     0     0     1


Lower:
  1     0     0     0     0
  1     1     0     0     0
  1     2     1     0     0
  1     3     3     1     0
  1     4     6     4     1


Symmetric:
  1     1     1     1     1
  1     2     3     4     5
  1     3     6    10    15
  1     4    10    20    35
  1     5    15    35    70

Python

Python: Procedural

Summing adjacent values:

from pprint import pprint as pp

def pascal_upp(n):
    s = [[0] * n for _ in range(n)]
    s[0] = [1] * n
    for i in range(1, n):
        for j in range(i, n):
            s[i][j] = s[i-1][j-1] + s[i][j-1]
    return s

def pascal_low(n):
    # transpose of pascal_upp(n)
    return [list(x) for x in zip(*pascal_upp(n))]

def pascal_sym(n):
    s = [[1] * n for _ in range(n)]
    for i in range(1, n):
        for j in range(1, n):
            s[i][j] = s[i-1][j] + s[i][j-1]
    return s
    

if __name__ == "__main__":
    n = 5
    print("\nUpper:")
    pp(pascal_upp(n))
    print("\nLower:")
    pp(pascal_low(n))
    print("\nSymmetric:")
    pp(pascal_sym(n))
Output:
Upper:
[[1, 1, 1, 1, 1],
 [0, 1, 2, 3, 4],
 [0, 0, 1, 3, 6],
 [0, 0, 0, 1, 4],
 [0, 0, 0, 0, 1]]

Lower:
[[1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0],
 [1, 2, 1, 0, 0],
 [1, 3, 3, 1, 0],
 [1, 4, 6, 4, 1]]

Symmetric:
[[1, 1, 1, 1, 1],
 [1, 2, 3, 4, 5],
 [1, 3, 6, 10, 15],
 [1, 4, 10, 20, 35],
 [1, 5, 15, 35, 70]]


Using a binomial coefficient generator function:

def binomialCoeff(n, k):
    result = 1
    for i in range(1, k+1):
        result = result * (n-i+1) // i
    return result

def pascal_upp(n):
    return [[binomialCoeff(j, i) for j in range(n)] for i in range(n)]

def pascal_low(n):
    return [[binomialCoeff(i, j) for j in range(n)] for i in range(n)]

def pascal_sym(n):
    return [[binomialCoeff(i+j, i) for j in range(n)] for i in range(n)]
Output:

(As above)

Python: Functional

Defining binomial coefficients in terms of reduce:

'''Pascal matrix generation'''

from functools import reduce
from itertools import chain
from operator import add


# pascalMatrix :: Int -> ((Int, Int) -> (Int, Int)) -> [[Int]]
def pascalMatrix(n):
    '''Pascal S-, L-, or U- matrix of order n.
    '''
    return lambda f: chunksOf(n)(list(map(
        compose(binomialCoefficent, f),
        tupleRange((0, 0), (n, n))
    )))


# binomialCoefficent :: (Int, Int) -> Int
def binomialCoefficent(nk):
    '''The binomial coefficient of the tuple (n, k).
    '''
    n, k = nk

    def go(a, x):
        return a * (n - x + 1) // x
    return reduce(go, enumFromTo(1)(k), 1)


# --------------------------TEST---------------------------
# main :: IO ()
def main():
    '''Pascal S-, L-, and U- matrices of order 5.
    '''
    order = 5
    for k, f in [
            ('Symmetric', lambda ab: (add(*ab), ab[1])),
            ('Lower', identity),
            ('Upper', swap)
    ]:
        print(k + ':')
        print(showMatrix(
            pascalMatrix(order)(f)
        ))
        print()


# --------------------REUSABLE GENERICS--------------------

# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
    '''A series of lists of length n, subdividing the
       contents of xs. Where the length of xs is not evenly
       divible, the final list will be shorter than n.
    '''
    return lambda xs: reduce(
        lambda a, i: a + [xs[i:n + i]],
        range(0, len(xs), n), []
    ) if 0 < n else []


# compose :: ((a -> a), ...) -> (a -> a)
def compose(*fs):
    '''Composition, from right to left,
       of a series of functions.
    '''
    return lambda x: reduce(
        lambda a, f: f(a),
        fs[::-1], x
    )


# enumFromTo :: Int -> Int -> [Int]
def enumFromTo(m):
    '''Enumeration of integer values [m..n]'''
    return lambda n: range(m, 1 + n)


# identity :: a -> a
def identity(x):
    '''The identity function.'''
    return x


# showMatrix :: [[Int]] -> String
def showMatrix(xs):
    '''String representation of xs
       as a matrix.
    '''
    def go():
        rows = [[str(x) for x in row] for row in xs]
        w = max(map(len, chain.from_iterable(rows)))
        return unlines(
            unwords(k.rjust(w, ' ') for k in row)
            for row in rows
        )
    return go() if xs else ''


# swap :: (a, b) -> (b, a)
def swap(tpl):
    '''The swapped components of a pair.'''
    return tpl[1], tpl[0]


# tupleRange :: (Int, Int) -> (Int, Int) -> [(Int, Int)]
def tupleRange(lowerTuple, upperTuple):
    '''Range of (Int, Int) tuples from
       lowerTuple to upperTuple.
    '''
    l1, l2 = lowerTuple
    u1, u2 = upperTuple
    return [
        (i1, i2) for i1 in range(l1, u1)
        for i2 in range(l2, u2)
    ]


# unlines :: [String] -> String
def unlines(xs):
    '''A single string formed by the intercalation
       of a list of strings with the newline character.
    '''
    return '\n'.join(xs)


# unwords :: [String] -> String
def unwords(xs):
    '''A space-separated string derived
       from a list of words.
    '''
    return ' '.join(xs)


# MAIN ---
if __name__ == '__main__':
    main()
Output:
Symmetric:
 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

Lower:
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

Upper:
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

R

lower.pascal <- function(n) {
  a <- matrix(0, n, n)
  a[, 1] <- 1
  if (n > 1) {
    for (i in 2:n) {
      j <- 2:i
      a[i, j] <- a[i - 1, j - 1] + a[i - 1, j]
    }
  }
  a
}

# Alternate version
lower.pascal.alt <- function(n) {
  a <- matrix(0, n, n)
  a[, 1] <- 1
  if (n > 1) {
    for (j in 2:n) {
      i <- j:n
      a[i, j] <- cumsum(a[i - 1, j - 1])
    }
  }
  a
}

# While it's possible to modify lower.pascal to get the upper matrix,
# here we simply transpose the lower one.
upper.pascal <- function(n) t(lower.pascal(n))

symm.pascal <- function(n) {
  a <- matrix(0, n, n)
  a[, 1] <- 1
  for (i in 2:n) {
    a[, i] <- cumsum(a[, i - 1])
  }
  a
}

The results follow

> lower.pascal(5)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    0    0    0    0
[2,]    1    1    0    0    0
[3,]    1    2    1    0    0
[4,]    1    3    3    1    0
[5,]    1    4    6    4    1
> lower.pascal.alt(5)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    0    0    0    0
[2,]    1    1    0    0    0
[3,]    1    2    1    0    0
[4,]    1    3    3    1    0
[5,]    1    4    6    4    1
> upper.pascal(5)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    1    1    1    1
[2,]    0    1    2    3    4
[3,]    0    0    1    3    6
[4,]    0    0    0    1    4
[5,]    0    0    0    0    1
> symm.pascal(5)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    1    1    1    1
[2,]    1    2    3    4    5
[3,]    1    3    6   10   15
[4,]    1    4   10   20   35
[5,]    1    5   15   35   70

Racket

#lang racket
(require math/number-theory)

(define (pascal-upper-matrix n)
  (for/list ((i n)) (for/list ((j n)) (j . binomial . i))))

(define (pascal-lower-matrix n)
  (for/list ((i n)) (for/list ((j n)) (i . binomial . j))))

(define (pascal-symmetric-matrix n)
  (for/list ((i n)) (for/list ((j n)) ((+ i j) . binomial . j))))

(define (matrix->string m)
  (define col-width
    (for*/fold ((rv 1)) ((r m) (c r))
      (if (zero? c) rv (max rv (+ 1 (order-of-magnitude c))))))
  (string-append
   (string-join
   (for/list ((r m))
     (string-join (map (λ (c) (~a #:width col-width #:align 'right c)) r) " ")) "\n")
   "\n"))

(printf "Upper:~%~a~%" (matrix->string (pascal-upper-matrix 5)))
(printf "Lower:~%~a~%" (matrix->string (pascal-lower-matrix 5)))
(printf "Symmetric:~%~a~%" (matrix->string (pascal-symmetric-matrix 5)))
Output:
Upper:
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Lower:
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

Symmetric:
 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

Raku

(formerly Perl 6)

Works with: rakudo version 2016-12

Here is a rather more general solution than required. The grow-matrix function will grow any N by N matrix into an N+1 x N+1 matrix, using any function of the three leftward/upward neighbors, here labelled "West", "North", and "Northwest". We then define three iterator functions that can grow Pascal matrices, and use those iterators to define three constants, each of which is an infinite sequence of ever-larger Pascal matrices. Normal subscripting then pulls out the ones of the specified size.

# Extend a matrix in 2 dimensions based on 3 neighbors.
sub grow-matrix(@matrix, &func) {
    my $n = @matrix.shape eq '*' ?? 1 !! @matrix.shape[0];
    my @m[$n+1;$n+1];
    for ^$n X ^$n -> ($i, $j) {
       @m[$i;$j] = @matrix[$i;$j];
    }
#                     West         North        NorthWest
    @m[$n; 0] = func( 0,           @m[$n-1;0],  0            );
    @m[ 0;$n] = func( @m[0;$n-1],  0,           0            );
    @m[$_;$n] = func( @m[$_;$n-1], @m[$_-1;$n], @m[$_-1;$n-1]) for 1 ..^ $n;
    @m[$n;$_] = func( @m[$n;$_-1], @m[$n-1;$_], @m[$n-1;$_-1]) for 1 ..  $n;
    @m;
}

# I am but mad north-northwest...
sub madd-n-nw(@m) { grow-matrix @m, -> $w, $n, $nw {  $n + $nw } }
sub madd-w-nw(@m) { grow-matrix @m, -> $w, $n, $nw {  $w + $nw } }
sub madd-w-n (@m) { grow-matrix @m, -> $w, $n, $nw {  $w + $n  } }

# Define 3 infinite sequences of Pascal matrices.
constant upper-tri = [1], &madd-w-nw ... *;
constant lower-tri = [1], &madd-n-nw ... *;
constant symmetric = [1], &madd-w-n  ... *;

show_m upper-tri[4];
show_m lower-tri[4];
show_m symmetric[4];

sub show_m (@m) {
my \n = @m.shape[0];
for ^n X ^n -> (\i, \j) {
    print @m[i;j].fmt("%{1+max(@m).chars}d"); 
    print "\n" if j+1 eq n;
}
say '';
}
Output:
 1 1 1 1 1
 0 1 2 3 4
 0 0 1 3 6
 0 0 0 1 4
 0 0 0 0 1

 1 0 0 0 0
 1 1 0 0 0
 1 2 1 0 0
 1 3 3 1 0
 1 4 6 4 1

  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70

REXX

separate generation

Commentary:   1/3   of the REXX program deals with the displaying of the matrix.

/*REXX program  generates and displays  three forms of an   NxN   Pascal matrix.        */
numeric digits 50                                /*be able to calculate huge factorials.*/
parse arg N .                                    /*obtain the optional matrix size  (N).*/
if N==''  | N==","  then N= 5                    /*Not specified?  Then use the default.*/
                               call show  N,  upp(N),  'Pascal upper triangular matrix'
                               call show  N,  low(N),  'Pascal lower triangular matrix'
                               call show  N,  sym(N),  'Pascal symmetric matrix'
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
upp:  procedure; parse arg N;  $=                /*gen Pascal upper triangular matrix.  */
            do i=0  for N;  do j=0  for N; $=$ comb(j,   i);   end; end;   return $
/*──────────────────────────────────────────────────────────────────────────────────────*/
low:  procedure; parse arg N;  $=                /*gen Pascal lower triangular matrix.  */
            do i=0  for N;  do j=0  for N; $=$ comb(i,   j);   end; end;   return $
/*──────────────────────────────────────────────────────────────────────────────────────*/
sym:  procedure; parse arg N;  $=                /*generate  Pascal symmetric  matrix.  */
            do i=0  for N;  do j=0  for N; $=$ comb(i+j, i);   end; end;   return $
/*──────────────────────────────────────────────────────────────────────────────────────*/
!:    procedure; parse arg x;  !=1;    do j=2  to x;  != !*j;  end;        return !
/*──────────────────────────────────────────────────────────────────────────────────────*/
comb: procedure; parse arg x,y;        if x=y  then return 1                /* {=} case.*/
                                       if y>x  then return 0                /* {>} case.*/
      if x-y<y  then y= x-y;  _= 1;    do j=x-y+1  to x;  _= _*j;  end;    return _ / !(y)
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: procedure; parse arg s,@;   w=0;    #=0                               /*get args. */
                       do x=1  for s**2;  w= max(w, 1 + length( word(@,x) ) );    end
      say;   say center( arg(3), 50, '─')                                   /*show title*/
                       do    r=1  for s;  if r==1  then $= '[['             /*row  1    */
                                                   else $= ' ['             /*rows 2   N*/
                          do c=1  for s;  #= #+1;   e= (c==s)               /*e ≡ "end".*/
                          $=$ || right( word(@, #), w) || left(',', \e) || left("]", e)
                          end   /*c*/                                       /* [↑]  row.*/
                       say $ || left(',', r\==s)left("]", r==s)             /*show row. */
                       end     /*r*/
      return
output   when using the default input:
──────────Pascal upper triangular matrix──────────
[[ 1, 1, 1, 1, 1],
 [ 0, 1, 2, 3, 4],
 [ 0, 0, 1, 3, 6],
 [ 0, 0, 0, 1, 4],
 [ 0, 0, 0, 0, 1]]

──────────Pascal lower triangular matrix──────────
[[ 1, 0, 0, 0, 0],
 [ 1, 1, 0, 0, 0],
 [ 1, 2, 1, 0, 0],
 [ 1, 3, 3, 1, 0],
 [ 1, 4, 6, 4, 1]]

─────────────Pascal symmetric matrix──────────────
[[  1,  1,  1,  1,  1],
 [  1,  2,  3,  4,  5],
 [  1,  3,  6, 10, 15],
 [  1,  4, 10, 20, 35],
 [  1,  5, 15, 35, 70]]

consolidated generation

This REXX version uses a consolidated generation subroutine, even though this Rosetta Code implies to use   functions   (instead of a single function).

/*REXX program  generates and displays  three forms  of an   NxN   Pascal matrix.       */
numeric digits 50                                /*be able to calculate huge factorials.*/
parse arg N .                                    /*obtain the optional matrix  size (N).*/
if N==''  | N==","  then N= 5                    /*Not specified?  Then use the default.*/
                           call show N, Pmat(N, 'upper'), 'Pascal upper triangular matrix'
                           call show N, Pmat(N, 'lower'), 'Pascal lower triangular matrix'
                           call show N, Pmat(N, 'sym')  , 'Pascal symmetric matrix'
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
Pmat: procedure; parse arg N;    $=              /*generate a format of a Pascal matrix.*/
      arg , ?                                    /*get uppercase version of the 2nd arg.*/
              do i=0  for N; do j=0  for N       /*pick a format to use  [↓]            */
                             if abbrev('UPPER'      , ?, 1)  then $= $ comb(j  , i)
                             if abbrev('LOWER'      , ?, 1)  then $= $ comb(i  , j)
                             if abbrev('SYMMETRICAL', ?, 1)  then $= $ comb(i+j, j)
                             end  /*j*/         /*       ↑                              */
              end   /*i*/                       /*       │                              */
      return $                                  /*       └──min. abbreviation is 1 char.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
!:    procedure; parse arg x;  !=1;    do j=2  to x;    != ! * j;    end;      return !
/*──────────────────────────────────────────────────────────────────────────────────────*/
comb: procedure; parse arg x,y;        if x=y  then return 1                /* {=} case.*/
                                       if y>x  then return 0                /* {>} case.*/
      if x-y<y  then y=x-y; _= 1;      do j=x-y+1  to x;  _= _ * j;  end;  return _ / !(y)
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: procedure; parse arg s,@;   w=0;    #=0                               /*get args. */
                       do x=1  for s**2;  w=max(w,1+length(word(@,x)));  end
      say;   say center( arg(3), 50, '─')                                   /*show title*/
                       do   r=1  for s;   if r==1  then $= '[['             /*row  1    */
                                                   else $= ' ['             /*rows 2   N*/
                          do c=1  for s;  #= # + 1;     e= (c==s)           /*e ≡ "end".*/
                          $=$ || right( word(@, #), w) || left(', ',\e) || left("]", e)
                          end   /*c*/                                       /* [↑]  row.*/
                       say $ || left(',', r\==s)left(']', r==s)             /*show row. */
                       end     /*r*/
      return
output   is identical to the 1st REXX version.


Ring

# Project : Pascal matrix generation

load "stdlib.ring"
res = newlist(5,5)

see "=== Pascal upper matrix ===" + nl
result = pascalupper(5)
showarray(result)

see nl + "=== Pascal lower matrix ===" + nl
result = pascallower(5)
showarray(result)

see nl + "=== Pascal symmetrical matrix ===" + nl
result = pascalsymmetric(5)
showarray(result)

func pascalupper(n)
    for m=1 to n
          for p=1 to n
               res[m][p] = 0
          next
    next 
    for p=1 to n
         res[1][p] = 1
    next    
    for i=2 to n 
        for j=2 to i 
            res[j][i] = res[j][i-1]+res[j-1][i-1]
        end 
    end 
    return res
 
func pascallower(n)
        for m=1 to n
              for p=1 to n
                   res[m][p] = 0
              next
        next
       for p=1 to n  
             res[p][1] = 1
       next
       for i=2 to n 
            for j=2 to i 
                 res[i][j] = res[i-1][j]+res[i-1][j-1]
            next
        next
        return res
 
func pascalsymmetric(n)
        for m=1 to n
              for p=1 to n
                   res[m][p] = 0
              next
        next
        for p=1 to n 
              res[p][1] = 1
              res[1][p] = 1
        next
        for i=2 to n 
             for j = 2 to n 
                  res[i][j] = res[i-1][j]+res[i][j-1]
             next
        next
        return res

func showarray(result)
        for n=1 to 5
              for m=1 to 5
                   see "" + result[n][m] + " "
              next
             see nl
        next

Output:

=== Pascal upper matrix ===
1 1 1 1 1 
0 1 2 3 4 
0 0 1 3 6 
0 0 0 1 4 
0 0 0 0 1 

=== Pascal lower matrix ===
1 0 0 0 0 
1 1 0 0 0 
1 2 1 0 0 
1 3 3 1 0 
1 4 6 4 1 

=== Pascal symmetrical matrix ===
1 1 1 1 1 
1 2 3 4 5 
1 3 6 10 15 
1 4 10 20 35 
1 5 15 35 70 

RPL

≪ → n 
   ≪ { } n + n + 0 CON 
      1 n FOR h 1 n FOR j
        IF h j ≥ THEN { } j + h + h 1 - j 1 - COMB PUT END
      NEXT NEXT
≫ ≫ ‘PASUT’ STO

≪ PASUT TRN ≫ ‘PASLT’ STO

≪ → n 
   ≪ { } n + n + 0 CON 
      1 n FOR h 1 n FOR j
        { } j + h + h j + 2 - j 1 - COMB PUT 
     NEXT NEXT
≫ ≫ ‘PASYM’ STO
5 PASUT 5 PASLT 5 PASYM
Output:
3:     [[ 1 1 1 1 1 ]  
        [ 0 1 2 3 4 ]   
        [ 0 0 1 3 6 ]
        [ 0 0 0 1 4 ]   
       [ 0 0 0 0 1 ]]
2:     [[ 1 0 0 0 0 ]  
        [ 1 1 0 0 0 ]   
        [ 1 2 1 0 0 ]
        [ 1 3 3 1 0 ]
       [ 1 4 6 4 1 ]]
1:     [[ 1 1 1 1 1 ] 
        [ 1 2 3 4 5 ]   
      [ 1 3 6 10 15 ]   
     [ 1 4 10 20 35 ] 
    [ 1 5 15 35 70 ]]

Ruby

Summing adjacent values:

#Upper, lower, and symetric Pascal Matrix - Nigel Galloway: May 3rd., 21015
require 'pp'

ng = (g = 0..4).collect{[]}
g.each{|i| g.each{|j| ng[i][j] = i==0 ? 1 : j<i ? 0 : ng[i-1][j-1]+ng[i][j-1]}}
pp ng; puts
g.each{|i| g.each{|j| ng[i][j] = j==0 ? 1 : i<j ? 0 : ng[i-1][j-1]+ng[i-1][j]}}
pp ng; puts
g.each{|i| g.each{|j| ng[i][j] = (i==0 or j==0) ? 1 : ng[i-1][j  ]+ng[i][j-1]}}
pp ng
Output:
[[1, 1, 1, 1, 1],
 [0, 1, 2, 3, 4],
 [0, 0, 1, 3, 6],
 [0, 0, 0, 1, 4],
 [0, 0, 0, 0, 1]]

[[1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0],
 [1, 2, 1, 0, 0],
 [1, 3, 3, 1, 0],
 [1, 4, 6, 4, 1]]

[[1, 1, 1, 1, 1],
 [1, 2, 3, 4, 5],
 [1, 3, 6, 10, 15],
 [1, 4, 10, 20, 35],
 [1, 5, 15, 35, 70]]

Binomial coefficient:

require 'pp'

def binomial_coeff(n,k) (1..k).inject(1){|res,i| res * (n-i+1) / i}             end

def pascal_upper(n)     (0...n).map{|i| (0...n).map{|j| binomial_coeff(j,i)}}   end
def pascal_lower(n)     (0...n).map{|i| (0...n).map{|j| binomial_coeff(i,j)}}   end
def pascal_symmetric(n) (0...n).map{|i| (0...n).map{|j| binomial_coeff(i+j,j)}} end

puts "Pascal upper-triangular matrix:"
pp pascal_upper(5)

puts "\nPascal lower-triangular matrix:"
pp pascal_lower(5)

puts "\nPascal symmetric matrix:"
pp pascal_symmetric(5)
Output:
Pascal upper-triangular matrix:
[[1, 1, 1, 1, 1],
 [0, 1, 2, 3, 4],
 [0, 0, 1, 3, 6],
 [0, 0, 0, 1, 4],
 [0, 0, 0, 0, 1]]

Pascal lower-triangular matrix:
[[1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0],
 [1, 2, 1, 0, 0],
 [1, 3, 3, 1, 0],
 [1, 4, 6, 4, 1]]

Pascal symmetric matrix:
[[1, 1, 1, 1, 1],
 [1, 2, 3, 4, 5],
 [1, 3, 6, 10, 15],
 [1, 4, 10, 20, 35],
 [1, 5, 15, 35, 70]]

Scala

//Pascal Matrix Generator

object pascal{
	def main( args:Array[String] ){
		
		println("Enter the order of matrix")
		val n = scala.io.StdIn.readInt()
		
		var F = new Factorial()
		
		var mx = Array.ofDim[Int](n,n)
		
		for( i <- 0 to (n-1); j <- 0 to (n-1) ){
			
			if( i>=j ){			//iCj
				mx(i)(j) = F.fact(i) / ( ( F.fact(j) )*( F.fact(i-j) ) )
			}
		}
		
		println("iCj:")
		for( i <- 0 to (n-1) ){		//iCj print
			for( j <- 0 to (n-1) ){
				print( mx(i)(j)+" " )
			}
			println("")
		}
		
		println("jCi:")
		for( i <- 0 to (n-1) ){		//jCi print
			for( j <- 0 to (n-1) ){
				print( mx(j)(i)+" " )
			}
			println("")
		}
		
		//(i+j)C j
		for( i <- 0 to (n-1); j <- 0 to (n-1) ){
			
			mx(i)(j) = F.fact(i+j) / ( ( F.fact(j) )*( F.fact(i) ) )
		}
		//print (i+j)Cj
		println("(i+j)Cj:")
		for( i <- 0 to (n-1) ){
			for( j <- 0 to (n-1) ){
				print( mx(i)(j)+" " )
			}
			println("")
		}
		
	}
}

class Factorial(){
	
	def fact( a:Int ): Int = {
		
		var b:Int = 1
		
		for( i <- 2 to a ){
			b = b*i
		}
		return b
	}
}

Scheme

Using SRFI-25:

(import (srfi 25))

(define-syntax dotimes 
  (syntax-rules ()
    ((_ (i n) body ...)
     (do ((i 0 (+ i 1)))
         ((>= i n))
       body ...))))

  
(define (pascal-upper n)
  (let ((p (make-array (shape 0 n 0 n) 0)))
    (dotimes (i n)
      (array-set! p 0 i 1))
     (dotimes (i (- n 1))
       (dotimes (j (- n 1))
         (array-set! p (+ 1 i) (+ 1 j)
                     (+ (array-ref p i j)
                        (array-ref p (+ 1 i) j)))))
     p))

(define (pascal-lower n)
  (let ((p (make-array (shape 0 n 0 n) 0)))
    (dotimes (i n)
      (array-set! p i 0 1))
     (dotimes (i (- n 1))
       (dotimes (j (- n 1))
         (array-set! p (+ 1 i) (+ 1 j)
                     (+ (array-ref p i j)
                        (array-ref p i (+ 1 j))))))
     p))
(define (pascal-symmetric n)
  (let ((p (make-array (shape 0 n 0 n) 0)))
    (dotimes (i n)
      (array-set! p i 0 1)
      (array-set! p 0 i 1))
     (dotimes (i (- n 1))
       (dotimes (j (- n 1))
         (array-set! p (+ 1 i) (+ 1 j)
                     (+ (array-ref p (+ 1 i) j)
                        (array-ref p i (+ 1 j))))))
     p))


(define (print-array a)
  (let ((r (array-end a 0))
        (c (array-end a 1)))
    (dotimes (row (- r 1))
      (dotimes (col (- c 1))
        (display (array-ref a row col))
        (display #\space))
      (newline))))
(print-array (pascal-upper 6))
Output:
1 1 1 1 1 
0 1 2 3 4 
0 0 1 3 6 
0 0 0 1 4 
0 0 0 0 1 
(print-array (pascal-lower 6))
Output:
1 0 0 0 0 
1 1 0 0 0 
1 2 1 0 0 
1 3 3 1 0 
1 4 6 4 1 
(print-array (pascal-symmetric 6))
Output:
1 1 1 1 1 
1 2 3 4 5 
1 3 6 10 15 
1 4 10 20 35 
1 5 15 35 70 

Sidef

Translation of: Raku
func grow_matrix(matrix, callback) {
    var m = matrix
    var s = m.len
    m[s][0] = callback(0, m[s-1][0], 0)
    m[0][s] = callback(m[0][s-1], 0, 0)
    {|i| m[i+1][s] = callback(m[i+1][s-1], m[i][s], m[i][s-1])} * (s-1)
    {|i| m[s][i+1] = callback(m[s][i], m[s-1][i+1], m[s-1][i])} * (s)
    return m
}

func transpose(matrix) {
    matrix[0].range.map{|i| matrix.map{_[i]} }
}

func madd_n_nw(m) { grow_matrix(m, ->(_, n, nw) { n + nw }) }
func madd_w_nw(m) { grow_matrix(m, ->(w, _, nw) { w + nw }) }
func madd_w_n(m)  { grow_matrix(m, ->(w, n, _)  { w + n  }) }

var functions = [madd_n_nw, madd_w_nw, madd_w_n].map { |f|
    func(n) {
        var r = [[1]]
        { f(r) } * n
        transpose(r)
    }
}

functions.map { |f|
    f(4).map { .map{ '%2s' % _ }.join(' ') }.join("\n")
}.join("\n\n").say
Output:
 1  1  1  1  1
 0  1  2  3  4
 0  0  1  3  6
 0  0  0  1  4
 0  0  0  0  1

 1  0  0  0  0
 1  1  0  0  0
 1  2  1  0  0
 1  3  3  1  0
 1  4  6  4  1

 1  1  1  1  1
 1  2  3  4  5
 1  3  6 10 15
 1  4 10 20 35
 1  5 15 35 70

Stata

Here are variants for the lower matrix.

mata
function pascal1(n) {
	return(comb(J(1,n,0::n-1),J(n,1,0..n-1)))
}

function pascal2(n) {
	a = I(n)
	a[.,1] = J(n,1,1)
	for (i=3; i<=n; i++) {
		a[i,2..i-1] = a[i-1,2..i-1]+a[i-1,1..i-2]
	}
	return(a)
}

function pascal3(n) {
	a = J(n,n,0)
	for (i=1; i<n; i++) {
		a[i+1,i] = i
	}
	s = p = I(n)
	k = 1
	for (i=0; i<n; i++) {
		p = p*a/k++
		s = s+p
	}
	return(s)
}
end

One could trivially write functions for the upper matrix (same operations with transposed matrices). The symmetric matrix can be generated using loops. However, when the lower matrix is known the other two are immediately deduced:

: a = pascal3(5)
: a
       1   2   3   4   5
    +---------------------+
  1 |  1   0   0   0   0  |
  2 |  1   1   0   0   0  |
  3 |  1   2   1   0   0  |
  4 |  1   3   3   1   0  |
  5 |  1   4   6   4   1  |
    +---------------------+

: a'
       1   2   3   4   5
    +---------------------+
  1 |  1   1   1   1   1  |
  2 |  0   1   2   3   4  |
  3 |  0   0   1   3   6  |
  4 |  0   0   0   1   4  |
  5 |  0   0   0   0   1  |
    +---------------------+

: a*a'
[symmetric]
        1    2    3    4    5
    +--------------------------+
  1 |   1                      |
  2 |   1    2                 |
  3 |   1    3    6            |
  4 |   1    4   10   20       |
  5 |   1    5   15   35   70  |
    +--------------------------+

The last is a symmetric matrix, but Stata only shows the lower triangular part of symmetric matrices.

Tcl

package require math

namespace eval pascal {
    proc upper {n} {
        for {set i 0} {$i < $n} {incr i} {
            for {set j 0} {$j < $n} {incr j} {
                puts -nonewline \t[::math::choose $j $i]
            }
            puts ""
        }
    }
    proc lower {n} {
        for {set i 0} {$i < $n} {incr i} {
            for {set j 0} {$j < $n} {incr j} {
                puts -nonewline \t[::math::choose $i $j]
            }
            puts ""
        }
    }
    proc symmetric {n} {
        for {set i 0} {$i < $n} {incr i} {
            for {set j 0} {$j < $n} {incr j} {
                puts -nonewline \t[::math::choose [expr {$i+$j}] $i]
            }
            puts ""
        }
    }
}

foreach type {upper lower symmetric} {
    puts "\n* $type"
    pascal::$type 5
}
Output:
* upper 
        1       1       1       1       1
        0       1       2       3       4
        0       0       1       3       6
        0       0       0       1       4
        0       0       0       0       1

* lower 
        1       0       0       0       0
        1       1       0       0       0
        1       2       1       0       0
        1       3       3       1       0
        1       4       6       4       1

* symmetric
        1       1       1       1       1
        1       2       3       4       5
        1       3       6       10      15
        1       4       10      20      35
        1       5       15      35      70

VBA

Translation of: Phix
Option Base 1
Private Function pascal_upper(n As Integer)
    Dim res As Variant: ReDim res(n, n)
    For j = 1 To n
        res(1, j) = 1
    Next j
    For i = 2 To n
        res(i, 1) = 0
        For j = 2 To i
            res(j, i) = res(j, i - 1) + res(j - 1, i - 1)
        Next j
        For j = i + 1 To n
            res(j, i) = 0
        Next j
    Next i
    pascal_upper = res
End Function
 
Private Function pascal_symmetric(n As Integer)
    Dim res As Variant: ReDim res(n, n)
    For i = 1 To n
        res(i, 1) = 1
        res(1, i) = 1
    Next i
    For i = 2 To n
        For j = 2 To n
            res(i, j) = res(i - 1, j) + res(i, j - 1)
        Next j
    Next i
    pascal_symmetric = res
End Function

Private Sub pp(m As Variant)
    For i = 1 To UBound(m)
        For j = 1 To UBound(m, 2)
            Debug.Print Format(m(i, j), "@@@");
        Next j
        Debug.Print
    Next i
End Sub

Public Sub main()
    Debug.Print "=== Pascal upper matrix ==="
    pp pascal_upper(5)
    Debug.Print "=== Pascal lower matrix ==="
    pp WorksheetFunction.Transpose(pascal_upper(5))
    Debug.Print "=== Pascal symmetrical matrix ==="
    pp pascal_symmetric(5)
End Sub
Output:
=== Pascal upper matrix ===
  1  1  1  1  1
  0  1  2  3  4
  0  0  1  3  6
  0  0  0  1  4
  0  0  0  0  1
=== Pascal lower matrix ===
  1  0  0  0  0
  1  1  0  0  0
  1  2  1  0  0
  1  3  3  1  0
  1  4  6  4  1
=== Pascal symmetrical matrix ===
  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70

VBScript

Function pascal_upper(i,j)
	WScript.StdOut.Write "Pascal Upper"
	WScript.StdOut.WriteLine
	For l = i To j
		For m = i To j
			If l <= m Then
				WScript.StdOut.Write binomial(m,l) & vbTab
			Else
				WScript.StdOut.Write 0 & vbTab
			End If
		Next
		WScript.StdOut.WriteLine
	Next
	WScript.StdOut.WriteLine
End Function

Function pascal_lower(i,j)
	WScript.StdOut.Write "Pascal Lower"
	WScript.StdOut.WriteLine
	For l = i To j
		For m = i To j
			If l >= m Then
				WScript.StdOut.Write binomial(l,m) & vbTab
			Else
				WScript.StdOut.Write 0 & vbTab
			End If
		Next
		WScript.StdOut.WriteLine
	Next
	WScript.StdOut.WriteLine	
End Function

Function pascal_symmetric(i,j)
	WScript.StdOut.Write "Pascal Symmetric"
	WScript.StdOut.WriteLine
	For l = i To j 
		For m = i To j
			WScript.StdOut.Write binomial(l+m,m) & vbTab
		Next
		WScript.StdOut.WriteLine
	Next
End Function

Function binomial(n,k)
	binomial = factorial(n)/(factorial(n-k)*factorial(k))
End Function

Function factorial(n)
	If n = 0 Then
		factorial = 1
	Else
		For i = n To 1 Step -1
			If i = n Then
				factorial = n
			Else
				factorial = factorial * i
			End If
		Next
	End If
End Function

'Test driving
Call pascal_upper(0,4)
Call pascal_lower(0,4)
Call pascal_symmetric(0,4)
Output:
Pascal Upper
1	1	1	1	1	
0	1	2	3	4	
0	0	1	3	6	
0	0	0	1	4	
0	0	0	0	1	

Pascal Lower
1	0	0	0	0	
1	1	0	0	0	
1	2	1	0	0	
1	3	3	1	0	
1	4	6	4	1	

Pascal Symmetric
1	1	1	1	1	
1	2	3	4	5	
1	3	6	10	15	
1	4	10	20	35	
1	5	15	35	70	

Wren

Library: Wren-fmt
Library: Wren-math
Library: Wren-matrix
import "./fmt" for Fmt
import "./math" for Int
import "./matrix" for Matrix

var binomial = Fn.new { |n, k|
    if (n == k) return 1
    var prod = 1
    var i = n - k + 1
    while (i <= n) {
        prod = prod * i
        i = i + 1
    }
    return prod / Int.factorial(k)
}

var pascalUpperTriangular = Fn.new { |n|
    var m = List.filled(n, null)
    for (i in 0...n) {
        m[i] = List.filled(n, 0)
        for (j in 0...n) m[i][j] = binomial.call(j, i)
    }
    return Matrix.new(m)
}

var pascalSymmetric = Fn.new { |n|
    var m = List.filled(n, null)
    for (i in 0...n) {
        m[i] = List.filled(n, 0)
        for (j in 0...n) m[i][j] = binomial.call(i+j, i)
    }
    return Matrix.new(m)
}

var pascalLowerTriangular = Fn.new { |n| pascalSymmetric.call(n).cholesky() }

var n = 5
System.print("Pascal upper-triangular matrix:")
Fmt.mprint(pascalUpperTriangular.call(n), 2, 0)
System.print("\nPascal lower-triangular matrix:")
Fmt.mprint(pascalLowerTriangular.call(n), 2, 0)
System.print("\nPascal symmetric matrix:")
Fmt.mprint(pascalSymmetric.call(n), 2, 0)
Output:
Pascal upper-triangular matrix:
| 1  1  1  1  1|
| 0  1  2  3  4|
| 0  0  1  3  6|
| 0  0  0  1  4|
| 0  0  0  0  1|

Pascal lower-triangular matrix:
| 1  0  0  0  0|
| 1  1  0  0  0|
| 1  2  1  0  0|
| 1  3  3  1  0|
| 1  4  6  4  1|

Pascal symmetric matrix:
| 1  1  1  1  1|
| 1  2  3  4  5|
| 1  3  6 10 15|
| 1  4 10 20 35|
| 1  5 15 35 70|

XPL0

Translation of: ALGOL W
    \Initialises M to an upper Pascal matrix of size N
    \The bounds of M must be at least 1 :: N, 1 :: N
    procedure UpperPascalMatrix ( M, N );
    integer M, N, J, I;
    begin
        for J := 1 to N do M( 1, J ) := 1;
        for I := 2 to N do begin
            M( I, 1 ) := 0;
            for J := 2 to N do M( I, J ) := M( I - 1, J - 1 ) + M( I, J - 1 )
        end \for_I
    end; \UpperPascalMatrix

    \Initialises M to a lower Pascal matrix of size N
    \The bounds of M must be at least 1 :: N, 1 :: N
    procedure LowerPascalMatrix ( M, N );
    integer   M, N, I, J;
    begin
        for I := 1 to N do M( I, 1 ) := 1;
        for J := 2 to N do begin
            M( 1, J ) := 0;
            for I := 2 to N do M( I, J ) := M( I - 1, J - 1 ) + M( I - 1, J )
        end \for_J
    end; \LowerPascalMatrix

    \Initialises M to a symmetric Pascal matrix of size N
    \The bounds of M must be at least 1 :: N, 1 :: N
    procedure SymmetricPascalMatrix ( M, N );
    integer   M, N, I, J;
    begin
        for I := 1 to N do begin
            M( I, 1 ) := 1;
            M( 1, I ) := 1
        end; \for_I
        for J := 2 to N do for I := 2 to N do M( I, J ) := M( I, J - 1 ) + M( I - 1, J )
    end; \SymmetricPascalMatrix

    \Test the Pascal matrix procedures
    \Print the matrix M with the specified field width
    \The bounds of M must be at least 1 :: N, 1 :: N
    procedure PrintMatrix ( M, N, FieldWidth );
    integer   M, N, I, J;
    begin
        Format(3, 0);
        for I := 1 to N do begin
              for J := 1 to N do RlOut(0, float( M( I, J ) ) );
              CrLf(0)
        end; \for_I
    end; \PrintMatrix

    integer M( 1+10, 1+10 );
    integer N, W;
    begin
        N := 5;  W := 2;
        UpperPascalMatrix(     M, N );
        Text(0,  "upper:^m^j"     );  PrintMatrix( M, N, W );
        LowerPascalMatrix(     M, N );
        Text(0,  "lower:^m^j"     );  PrintMatrix( M, N, W );
        SymmetricPascalMatrix( M, N );
        Text(0,  "symmetric:^m^j" );  PrintMatrix( M, N, W )
    end
Output:
upper:
  1  1  1  1  1
  0  1  2  3  4
  0  0  1  3  6
  0  0  0  1  4
  0  0  0  0  1
lower:
  1  0  0  0  0
  1  1  0  0  0
  1  2  1  0  0
  1  3  3  1  0
  1  4  6  4  1
symmetric:
  1  1  1  1  1
  1  2  3  4  5
  1  3  6 10 15
  1  4 10 20 35
  1  5 15 35 70

zkl

Translation of: Python
fcn binomial(n,k){ (1).reduce(k,fcn(p,i,n){ p*(n-i+1)/i },1,n) }
fcn pascal_upp(n){ [[(i,j); n; n; '{ binomial(j,i) }]]:toMatrix(_) } // [[..]] is list comprehension
fcn pascal_low(n){ [[(i,j); n; n; binomial]]:toMatrix(_) }
fcn pascal_sym(n){ [[(i,j); n; n; '{ binomial(i+j,i) }]]:toMatrix(_) }
fcn toMatrix(ns){ // turn a string of numbers into a square matrix (list of lists)
   cols:=ns.len().toFloat().sqrt().toInt();
   ns.pump(List,T(Void.Read,cols-1),List.create)
}
fcn prettyPrint(m){ // m is a list of lists
   fmt:=("%3d "*m.len() + "\n").fmt;
   m.pump(String,'wrap(col){ fmt(col.xplode()) });
}
const N=5;
println("Upper:\n",    pascal_upp(N):prettyPrint(_));
println("Lower:\n",    pascal_low(N):prettyPrint(_));
println("Symmetric:\n",pascal_sym(N):prettyPrint(_));
Output:
Upper:
  1   1   1   1   1 
  0   1   2   3   4 
  0   0   1   3   6 
  0   0   0   1   4 
  0   0   0   0   1 

Lower:
  1   0   0   0   0 
  1   1   0   0   0 
  1   2   1   0   0 
  1   3   3   1   0 
  1   4   6   4   1 

Symmetric:
  1   1   1   1   1 
  1   2   3   4   5 
  1   3   6  10  15 
  1   4  10  20  35 
  1   5  15  35  70