Parametric polymorphism: Difference between revisions

Added Prolog
(Added Prolog)
 
(30 intermediate revisions by 16 users not shown)
Line 15:
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">generic
type Element_Type is private;
package Container is
Line 28:
Right : Node_Access := null;
end record;
end Container;</langsyntaxhighlight>
<langsyntaxhighlight lang="ada">package body Container is
procedure Replace_All(The_Tree : in out Tree; New_Value : Element_Type) is
begin
Line 40:
end if;
end Replace_All;
end Container;</langsyntaxhighlight>
 
=={{header|C}}==
If the goal is to separate algorithms from types at compile typetime, C may do it by macros. Here's sample code implementing binary tree with node creation and insertion:<syntaxhighlight lang C="c">#include <stdio.h>
#include <stdlib.h>
 
Line 89:
 
return 0;
}</langsyntaxhighlight>
Comments: It's ugly looking, but it gets the job done. It has the drawback that all methods need to be re-created for each tree data type used, but hey, C++ template does that, too.
 
Arguably more interesting is run time polymorphism, which can't be trivially done; if you are confident in your coding skill, you could keep track of data types and method dispatch at run time yourself -- but then, you are probably too confident to not realize you might be better off using some higher level languages.
 
=={{header|C++ sharp|C#}}==
<syntaxhighlight lang="csharp">using System;
 
class BinaryTree<T>
<lang cpp>template<class T>
class tree
{
public T value;
public BinaryTree<T> left;
public BinaryTree<T> right;
 
public BinaryTree(T value)
{
this.value = value;
}
 
public BinaryTree<U> Map<U>(Func<T, U> f)
{
BinaryTree<U> tree = new BinaryTree<U>(f(this.value));
if (this.left != null)
{
tree.left = this.left.Map(f);
}
if (this.right != null)
{
tree.right = this.right.Map(f);
}
return tree;
}
}</syntaxhighlight>
 
Creating a tree of integers and using Map to generate a tree of doubles with every node half the value of the first:
 
<syntaxhighlight lang="csharp">class Program
{
static void Main(string[] args)
{
BinaryTree<int> b = new BinaryTree<int>(6);
b.left = new BinaryTree<int>(5);
b.right = new BinaryTree<int>(7);
 
BinaryTree<double> b2 = b.Map(x => x * 0.5);
}
}</syntaxhighlight>
 
{{anchor|C# modern version}}A version using more modern language constructs:
<syntaxhighlight lang="csharp">using System;
 
class BinaryTree<T>
{
public BinaryTree<T> Left { get; }
public BinaryTree<T> Right { get; }
public T Value { get; }
 
public BinaryTree(T value, BinaryTree<T> left = null, BinaryTree<T> right = null)
{
this.Value = value;
this.Left = left;
this.Right = right;
}
 
public BinaryTree<U> Map<U>(Func<T, U> f)
{
return new BinaryTree<U>(f(this.Value), this.Left?.Map(f), this.Right?.Map(f));
}
 
public override string ToString()
{
var sb = new System.Text.StringBuilder();
this.ToString(sb, 0);
return sb.ToString();
}
 
private void ToString(System.Text.StringBuilder sb, int depth)
{
sb.Append(new string('\t', depth));
sb.AppendLine(this.Value?.ToString());
this.Left?.ToString(sb, depth + 1);
this.Right?.ToString(sb, depth + 1);
}
}
 
static class Program
{
static void Main()
{
var b = new BinaryTree<int>(6, new BinaryTree<int>(5), new BinaryTree<int>(7));
 
BinaryTree<double> b2 = b.Map(x => x * 0.5);
 
Console.WriteLine(b);
Console.WriteLine(b2);
}
}
</syntaxhighlight>
 
{{out}}
<pre>6
5
7
 
3
2.5
3.5</pre>
 
=={{header|C++}}==
 
<syntaxhighlight lang="cpp">template<typename T>
class tree {
T value;
tree *left;
Line 104 ⟶ 206:
public:
void replace_all (T new_value);
};</langsyntaxhighlight>
 
For simplicity, we replace all values in the tree with a new value:
 
<langsyntaxhighlight lang="cpp">template<class T>
void tree<T>::replace_all (T new_value) {
{
value = new_value;
if (left != NULLnullptr)
left->replace_all (new_value);
if (right != NULLnullptr)
right->replace_all (new_value);
}</langsyntaxhighlight>
 
=={{header|C sharp|C#C3}}==
<syntaxhighlight lang="c3">module tree(<Type>);
<lang csharp>namespace RosettaCode {
class BinaryTree<T> {
public T value;
public BinaryTree<T> left;
public BinaryTree<T> right;
public BinaryTree(T value) {
this.value = value;
}
public BinaryTree<U> Map<U>(Func<T,U> f) {
BinaryTree<U> Tree = new BinaryTree<U>(f(this.value));
if (left != null) {
Tree.left = left.Map(f);
}
if (right != null) {
Tree.right = right.Map(f);
}
return Tree;
}
}
}</lang>
 
struct Tree
Sample that creates a tree to hold int values:
{
Type value;
Tree* left;
Tree* right;
}
 
fn void Tree.replace_all(&self, Type new_value)
<lang csharp>namespace RosettaCode {
{
class Program {
self.value = new_value;
static void Main(string[] args) {
if (self.left) self.left.replace_all(new_value);
BinaryTree<int> b = new BinaryTree<int>(6);
if (self.right) self.right.replace_all(new_value);
b.left = new BinaryTree<int>(5);
}
b.right = new BinaryTree<int>(7);
</syntaxhighlight>
BinaryTree<double> b2 = b.Map(x => x * 10.0);
 
}
Usage:
}
<syntaxhighlight lang="c3">import tree;
}</lang>
 
fn void test()
{
Tree(<int>) inttree;
inttree.replace_all(3);
}</syntaxhighlight>
 
=={{header|Ceylon}}==
 
<langsyntaxhighlight lang="ceylon">class BinaryTree<Data>(shared Data data, shared BinaryTree<Data>? left = null, shared BinaryTree<Data>? right = null) {
shared BinaryTree<NewData> myMap<NewData>(NewData f(Data d)) =>
Line 187 ⟶ 278:
value tree2 = tree1.myMap((x) => x * 333.33);
tree2.myMap(print);
}</langsyntaxhighlight>
 
=={{header|Clean}}==
 
<langsyntaxhighlight lang="clean">::Tree a = Empty | Node a (Tree a) (Tree a)
 
mapTree :: (a -> b) (Tree a) -> (Tree b)
mapTree f Empty = Empty
mapTree f (Node x l r) = Node (f x) (mapTree f l) (mapTree f r)</langsyntaxhighlight>
 
<blockquote><small>
Line 202 ⟶ 293:
Note that for the most usefulness in practical programming, a map operation like this should not be defined with a separate name but rather as <code>fmap</code> in an ''instance'' of the <code>Functor</code> ''type class'':
 
<langsyntaxhighlight lang="clean">instance Functor Tree where
fmap f Empty = Empty
fmap f (Node x l r) = Node (f x) (fmap f l) (fmap f r)</langsyntaxhighlight>
 
<code>fmap</code> can then be used exactly where <code>mapTree</code> can, but doing this also allows the use of <code>Tree</code>s with other components which are parametric over ''any type which is a Functor''. For example, this function will add 1 to any collection of any kind of number:
 
<langsyntaxhighlight lang="clean">add1Everywhere :: (f a) -> (f a) | Functor f & Num a
add1Everywhere nums = fmap (\x = x + 1) nums</langsyntaxhighlight>
 
If we have a tree of integers, i.e. <var>f</var> is <code>Tree</code> and <var>a</var> is <code>Integer</code>, then the type of <code>add1Everywhere</code> is <code>Tree Integer -> Tree Integer</code>.
Line 220 ⟶ 311:
Common Lisp is not statically typed, but types can be defined which are parameterized over other types. In the following piece of code, a type <code>pair</code> is defined which accepts two (optional) type specifiers. An object is of type <code>(pair :car car-type :cdr cdr-type)</code> if an only if it is a cons whose car is of type <code>car-type</code> and whose cdr is of type <code>cdr-type</code>.
 
<langsyntaxhighlight lang="lisp">(deftype pair (&key (car 't) (cdr 't))
`(cons ,car ,cdr))</langsyntaxhighlight>
 
Example
Line 232 ⟶ 323:
 
=={{header|D}}==
<langsyntaxhighlight lang="d">class ArrayTree(T, uint N) {
T[N] data;
typeof(this) left, right;
Line 277 ⟶ 368:
//root.tmap(x => writefln("%(%.2f %)", x));
root.tmap((ref x) => writefln("%(%.2f %)", x));
}</langsyntaxhighlight>
{{out}}
<pre>1.00 1.00 1.00
Line 296 ⟶ 387:
 
=={{header|Dart}}==
<langsyntaxhighlight lang="dart">class TreeNode<T> {
T value;
Line 337 ⟶ 428:
print('second tree');
newRoot.forEach(print);
}</langsyntaxhighlight>
{{out}}
<pre>first tree
Line 358 ⟶ 449:
(Note: The guard definition is arguably messy boilerplate; future versions of E may provide a scheme where the <code>interface</code> expression can itself be used to describe parametricity, and message signatures using the type parameter, but this has not been implemented or fully designed yet. Currently, this example is more of “you can do it if you need to” than something worth doing for every data structure in your program.)
 
<langsyntaxhighlight lang="e">interface TreeAny guards TreeStamp {}
def Tree {
to get(Value) {
Line 388 ⟶ 479:
}
return tree
}</langsyntaxhighlight>
 
<langsyntaxhighlight lang="e">? def t := makeTree(int, 0, null, null)
# value: <tree>
 
Line 400 ⟶ 491:
 
? t :Tree[int]
# value: <tree></langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
{{trans|Visual Basic .NET}}
FreeBASIC does not support object-oriented programming, so we will use a more procedural approach.
<syntaxhighlight lang="vbnet">Type BinaryTree
valor As Integer
izda As BinaryTree Ptr
dcha As BinaryTree Ptr
End Type
 
Sub PrintTree(t As BinaryTree Ptr, depth As Integer)
=={{header|F_Sharp|F#}}==
If t = 0 Then Exit Sub
Print String(depth, Chr(9)); t->valor
PrintTree(t->izda, depth + 1)
PrintTree(t->dcha, depth + 1)
End Sub
 
Dim As BinaryTree b = Type(6)
<lang fsharp>
Dim As BinaryTree bLeft = Type(5)
Dim As BinaryTree bRight = Type(7)
b.izda = @bLeft
b.dcha = @bRight
 
PrintTree(@b, 0)</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
<syntaxhighlight lang="fsharp">
namespace RosettaCode
 
Line 415 ⟶ 528:
| Element(x) -> Element(f x)
| Tree(x,left,right) -> Tree((f x), left.Map(f), right.Map(f))
</syntaxhighlight>
</lang>
 
We can test this binary tree like so:
<langsyntaxhighlight lang="fsharp">
let t1 = Tree(2, Element(1), Tree(4,Element(3),Element(5)) )
let t2 = t1.Map(fun x -> x * 10)
</syntaxhighlight>
</lang>
 
 
=={{header|Fortran}}==
Fortran does not offer polymorphism by parameter type, which is to say, enables the same source code to be declared applicable for parameters of different types, so that a contained statement such as <code>X = A + B*C</code> would work for any combination of integer or floating-point or complex variables as actual parameters, since exactly that (source) code would be workable in every case. Further, there is no standardised pre-processor protocol whereby one could replicate such code to produce a separate subroutine or function specific to every combination.
 
However, with F90 came the MODULE protocol with facilities suitable for defining "generic" subroutines or functions, or so it appears: <langsyntaxhighlight Fortranlang="fortran"> MODULE SORTSEARCH !Genuflect towards Prof. D. Knuth.
 
INTERFACE FIND !Binary chop search, not indexed.
Line 461 ⟶ 573:
END FUNCTION FINDI4 !On success, THIS = NUMB(FINDI4); no fancy index here...
 
END MODULE SORTSEARCH </langsyntaxhighlight>
 
There would be a function (with a unique name) for each of the contemplated variations in parameter types, and when the compiler reached an invocation of FIND(...) it would select by matching amongst the combinations that had been defined in the routines named in the INTERFACE statement. The various actual functions could have different code, and in this case, only the <code>INTEGER*4 THIS,NUMB(1:*)</code> need be changed, say to <code>REAL*4 THIS,NUMB(1:*)</code> for FINDF4, which is why both variables are named in the one statement. However, for searching CHARACTER arrays, because the character comparison operations differ from those for numbers (and, no three-way IF-test either), additional changes are required. Thus, function FIND would appear to be a polymorphic function that accepts and returns a variety of types, but it is not, and indeed, there is actually no function called FIND anywhere in the compiled code.
Line 473 ⟶ 585:
But sometimes it is not so troublesome, as in [[Pathological_floating_point_problems#The_Chaotic_Bank_Society]] whereby the special EPSILON(x) function that reports on the precision of a nominated variable of type ''x'' is used to determine the point beyond which further calculation (in that precision, for that formula) will make no difference.
 
Having flexible facilities available my lead one astray. Consider the following data aggregate, as became available with F90: <langsyntaxhighlight Fortranlang="fortran"> TYPE STUFF
INTEGER CODE !A key number.
CHARACTER*6 NAME !Associated data.
INTEGER THIS !etc.
END TYPE STUFF
TYPE(STUFF) TABLE(600) !An array of such entries. </langsyntaxhighlight>
Suppose the array was in sorted order by each entry's value of CODE so that TABLE(1).CODE <= TABLE(2).CODE, etc. and one wished to find the index of an entry with a specific value, ''x'', of CODE. It is pleasing to be able to write <code>FIND(x,TABLE.CODE,N)</code> and have it accepted by the compiler. Rather less pleasing is that it runs very slowly.
 
Line 494 ⟶ 606:
 
Implementation of binaryTree and bTree is dummied, but you can see that implementation of average of binaryTree contains code specific to its representation (left, right) and that implementation of bTree contains code specific to its representation (buckets.)
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 546 ⟶ 658:
visit(9)
}
}</langsyntaxhighlight>
Output:
<pre>
Line 552 ⟶ 664:
b-tree average: 5
</pre>
 
Alternatively, if generics are introduced into Go based on the current design, this is how the C++ example might look if translated to Go:
<syntaxhighlight lang="go">package rosettacode
 
type Tree(type T) struct {
val T
left *Tree(T)
right *Tree(T)
}
 
func (t *Tree(T)) ReplaceAll(rep T) {
t.val = rep
if t.left != nil { t.left.ReplaceAll(rep) }
if t.right != nil { t.right.ReplaceAll(rep) }
}</syntaxhighlight>
 
=={{header|Groovy}}==
{{trans|Java}} (more or less)
Solution:
<langsyntaxhighlight lang="groovy">class Tree<T> {
T value
Tree<T> left
Line 572 ⟶ 699:
right?.replaceAll(value)
}
}</langsyntaxhighlight>
 
=={{header|Haskell}}==
 
<langsyntaxhighlight lang="haskell">data Tree a = Empty | Node a (Tree a) (Tree a)
 
mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Empty = Empty
mapTree f (Node x l r) = Node (f x) (mapTree f l) (mapTree f r)</langsyntaxhighlight>
 
<blockquote><small>
Line 587 ⟶ 714:
Note that for the most usefulness in practical programming, a map operation like this should not be defined with a separate name but rather as <code>fmap</code> in an ''instance'' of the <code>Functor</code> ''type class'':
 
<langsyntaxhighlight lang="haskell">instance Functor Tree where
fmap f Empty = Empty
fmap f (Node x l r) = Node (f x) (fmap f l) (fmap f r)</langsyntaxhighlight>
 
<code>fmap</code> can then be used exactly where <code>mapTree</code> can, but doing this also allows the use of <code>Tree</code>s with other components which are parametric over ''any type which is a Functor''. For example, this function will add 1 to any collection of any kind of number:
 
<langsyntaxhighlight lang="haskell">add1Everywhere :: (Functor f, Num a) => f a -> f a
add1Everywhere nums = fmap (\x -> x + 1) nums</langsyntaxhighlight>
 
If we have a tree of integers, i.e. <var>f</var> is <code>Tree</code> and <var>a</var> is <code>Integer</code>, then the type of <code>add1Everywhere</code> is <code>Tree Integer -> Tree Integer</code>.
</small></blockquote>
 
=={{header|Icon}} and {{header|Unicon}}==
 
Like PicoLisp, Icon and Unicon are dynamically typed and hence inherently polymorphic.
Here's an example that can apply a function to the nodes in an <i>n</i>-tree regardless of
the type of each node. It is up to the function to decide what to do with a given type
of node. Note that the nodes do no even have to be of the same type.
 
<syntaxhighlight lang="unicon">procedure main()
bTree := [1, [2, [4, [7]], [5]], [3, [6, [8], [9]]]]
mapTree(bTree, write)
bTree := [1, ["two", ["four", [7]], [5]], [3, ["six", ["eight"], [9]]]]
mapTree(bTree, write)
end
 
procedure mapTree(tree, f)
every f(\tree[1]) | mapTree(!tree[2:0], f)
end</syntaxhighlight>
 
=={{header|Inform 7}}==
Phrases (the equivalent of global functions) can be defined with type parameters:
<langsyntaxhighlight lang="inform7">Polymorphism is a room.
 
To find (V - K) in (L - list of values of kind K):
Line 613 ⟶ 758:
find "needle" in {"parrot", "needle", "rutabaga"};
find 6 in {2, 3, 4};
end the story.</langsyntaxhighlight>
 
Inform 7 does not allow user-defined parametric types. Some built-in types can be parameterized, though:
<langsyntaxhighlight lang="inform7">list of numbers
relation of texts to rooms
object based rulebook producing a number
Line 623 ⟶ 768:
number valued property
text valued table column
phrase (text, text) -> number</langsyntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
 
Like PicoLisp, Icon and Unicon are dynamically typed and hence inherently polymorphic.
Here's an example that can apply a function to the nodes in an <i>n</i>-tree regardless of
the type of each node. It is up to the function to decide what to do with a given type
of node. Note that the nodes do no even have to be of the same type.
 
<lang unicon>procedure main()
bTree := [1, [2, [4, [7]], [5]], [3, [6, [8], [9]]]]
mapTree(bTree, write)
bTree := [1, ["two", ["four", [7]], [5]], [3, ["six", ["eight"], [9]]]]
mapTree(bTree, write)
end
 
procedure mapTree(tree, f)
every f(\tree[1]) | mapTree(!tree[2:0], f)
end</lang>
 
=={{header|J}}==
Line 653 ⟶ 780:
=={{header|Java}}==
Following the C++ example:
<langsyntaxhighlight lang="java">public class Tree<T>{
private T value;
private Tree<T> left;
Line 660 ⟶ 787:
public void replaceAll(T value){
this.value = value;
if (left != null)
left.replaceAll(value);
if (right != null)
right.replaceAll(value);
}
}</langsyntaxhighlight>
 
=={{header|Julia}}==
{{works with|Julia|01.6}}
 
{{trans|C++}}
<syntaxhighlight lang="julia">module BinaryTrees
 
mutable struct BinaryTree{V}
v::V
l::Union{BinaryTree{V}, Nothing}
r::Union{BinaryTree{V}, Nothing}
end
 
BinaryTree(v) = BinaryTree(v, nothing, nothing)
 
map(f, bt::BinaryTree) = BinaryTree(f(bt.v), map(f, bt.l), map(f, bt.r))
map(f, bt::Nothing) = nothing
 
let inttree = BinaryTree(
0,
BinaryTree(
1,
BinaryTree(3),
BinaryTree(5),
),
BinaryTree(
2,
BinaryTree(4),
nothing,
),
)
map(x -> 2x^2, inttree)
end
 
let strtree = BinaryTree(
<lang julia>mutable struct Tree{T}
value::T "hello",
BinaryTree(
lchild::Nullable{Tree{T}}
"world!",
rchild::Nullable{Tree{T}}
BinaryTree("Julia"),
nothing,
),
BinaryTree(
"foo",
BinaryTree("bar"),
BinaryTree("baz"),
),
)
map(uppercase, strtree)
end
 
end</syntaxhighlight>
function replaceall!(t::Tree{T}, v::T) where T
t.value = v
isnull(lchild) || replaceall(get(lchild), v)
isnull(rchild) || replaceall(get(rchild), v)
return t
end</lang>
 
=={{header|Kotlin}}==
{{trans|C#}}
<langsyntaxhighlight lang="scala">// version 1.0.6
 
class BinaryTree<T>(var value: T) {
Line 709 ⟶ 869:
val b2 = b.map { it * 10.0 }
println(b2.showTopThree())
}</langsyntaxhighlight>
 
{{out}}
Line 716 ⟶ 876:
(50.0, 60.0, 70.0)
</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
The Wolfram language is naturally polymorphic. Function can (generally) accept any type. Here an example to join two lists of with different types and an example of squaring an input:
<syntaxhighlight lang="mathematica">f[a_] := Join[a, a]
f[{1, 2, 3}]
f[{"1", "2", "3"}]
f[{1.1, 2.1, 3.1}]
f[G[1, "a", Pi]]
g[x_] := x^2
g[2]
g[3.5]
g[Pi]
g["a"]</syntaxhighlight>
{{out}}
<pre>{1,2,3,1,2,3}
{1,2,3,1,2,3}
{1.1,2.1,3.1,1.1,2.1,3.1}
G[1,a,\[Pi],1,a,\[Pi]]
4
12.25
\[Pi]^2
(a)^2</pre>
 
=={{header|Mercury}}==
<langsyntaxhighlight lang="mercury">:- type tree(A) ---> empty ; node(A, tree(A), tree(A)).
 
:- func map(func(A) = B, tree(A)) = tree(B).
 
map(_, empty) = empty.
map(F, node(A, Left, Right)) = node(F(A), map(F, Left), map(F, Right)).</langsyntaxhighlight>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import strutils, sugar
<lang nim>type Tree[T] = ref object
 
type Tree[T] = ref object
value: T
left, right: Tree[T]</lang>
 
 
proc newTree[T](value = default(T)): Tree[T] =
## Create a tree with a single node with the given value.
Tree[T](value: value)
 
 
proc map[T, U](tree: Tree[T]; f: (T) -> U): Tree[U] =
## Apply function "f" to each element of a tree, building
## another tree.
result = newTree[U](f(tree.value))
if not tree.left.isNil:
result.left = tree.left.map(f)
if not tree.right.isNil:
result.right = tree.right.map(f)
 
 
proc print(tree: Tree; indent = 0) =
## Print a tree.
let start = repeat(' ', indent)
echo start, "value: ", tree.value
if tree.left.isNil:
echo start, " nil"
else:
print(tree.left, indent + 2)
if tree.right.isNil:
echo start, " nil"
else:
print(tree.right, indent + 2)
 
 
when isMainModule:
 
echo "Initial tree:"
var tree = newTree[int](5)
tree.left = newTree[int](2)
tree.right = newTree[int](7)
print(tree)
 
echo ""
echo "Tree created by applying a function to each node:"
let tree1 = tree.map((x) => 1 / x)
print(tree1)</syntaxhighlight>
 
{{out}}
<pre>Initial tree:
value: 5
value: 2
nil
nil
value: 7
nil
nil
 
Tree created by applying a function to each node:
value: 0.2
value: 0.5
nil
nil
value: 0.1428571428571428
nil
nil</pre>
 
=={{header|Objective-C}}==
{{trans|C++}}
{{works with|Xcode|7}}
<langsyntaxhighlight lang="objc">@interface Tree<T> : NSObject {
T value;
Tree<T> *left;
Line 748 ⟶ 994:
[right replaceAll:v];
}
@end</langsyntaxhighlight>
Note that the generic type variable is only used in the declaration, but not in the implementation.
 
=={{header|OCaml}}==
 
<langsyntaxhighlight lang="ocaml">type 'a tree = Empty | Node of 'a * 'a tree * 'a tree
 
(** val map_tree : ('a -> 'b) -> 'a tree -> 'b tree *)
let rec map_tree f = function
| Empty -> Empty
| Node (x,l,r) -> Node (f x, map_tree f l, map_tree f r)</langsyntaxhighlight>
 
{{omit from|Oforth|Oforth is nt statically-typed language}}
 
=={{header|Perl 6}}==
<lang perl6>role BinaryTree[::T] {
has T $.value;
has BinaryTree[T] $.left;
has BinaryTree[T] $.right;
 
method replace-all(T $value) {
$!value = $value;
$!left.replace-all($value) if $!left.defined;
$!right.replace-all($value) if $!right.defined;
}
}
 
class IntTree does BinaryTree[Int] { }
 
my IntTree $it .= new(value => 1,
left => IntTree.new(value => 2),
right => IntTree.new(value => 3));
 
$it.replace-all(42);
say $it.perl;</lang>
{{out}}
<pre>IntTree.new(value => 42, left => IntTree.new(value => 42, left => BinaryTree[T], right => BinaryTree[T]), right => IntTree.new(value => 42, left => BinaryTree[T], right => BinaryTree[T]))</pre>
 
=={{header|Phix}}==
Line 801 ⟶ 1,023:
Of course many builtin routines are naturally generic, such as sort and print.<br>
Most programming languages would throw a hissy fit if you tried to sort (or print) a mixed collection of strings and integers, but not Phix:
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>?sort(shuffle({5,"oranges",6,"apples",7}))</lang>
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">sort</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">shuffle</span><span style="color: #0000FF;">({</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"oranges"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">6</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"apples"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">7</span><span style="color: #0000FF;">}))</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 813 ⟶ 1,037:
because lhs assignee!=rhs reference (aka root2!=root) in "root2 = tmap(root,rid)", not that such a "deep clone"
would (barring a few dirty low-level tricks) behave any differently to "root2=root", which is "a straightforward shared reference
with cow semantics". Aside: this example lost a little bit of it's charm when the deep_copy() had to go in to make it pwa/p2js compatible, which has somewhat negated the previous sentence, but that was happening implicitly anyway, and the depths of 1 (ie ",1" on the deep_copy()) retain similar efficiency.
with cow semantics".
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>enum data, left, right
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
 
<span style="color: #008080;">enum</span> <span style="color: #000000;">data</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">left</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">right</span>
function tmap(sequence tree, integer rid)
tree[data] = call_func(rid,{tree[data]})
if tree[left]!=null then tree[left] = tmap(tree[left],rid) end if
if tree[right]!=null then tree[right] = tmap(tree[right],rid) end if
return tree
end function
 
function newnode(object v)
return {v,null,null}
end function
<span style="color: #008080;">function</span> <span style="color: #000000;">tmap</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">tree</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">)</span>
function add10(atom x) return x+10 end function
<span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">data</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">data</span><span style="color: #0000FF;">])</span>
 
<span style="color: #008080;">if</span> <span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">left</span><span style="color: #0000FF;">]!=</span><span style="color: #004600;">null</span> <span style="color: #008080;">then</span> <span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">left</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tmap</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">deep_copy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">left</span><span style="color: #0000FF;">],</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
procedure main()
<span style="color: #008080;">if</span> <span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">right</span><span style="color: #0000FF;">]!=</span><span style="color: #004600;">null</span> <span style="color: #008080;">then</span> <span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">right</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tmap</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">deep_copy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tree</span><span style="color: #0000FF;">[</span><span style="color: #000000;">right</span><span style="color: #0000FF;">],</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
object root = newnode(1.00)
<span style="color: #008080;">return</span> <span style="color: #000000;">tree</span>
-- Add some nodes.
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
root[left] = newnode(1.10)
root[left][left] = newnode(1.11)
root[left][right] = newnode(1.12)
<span style="color: #008080;">function</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #004080;">object</span> <span style="color: #000000;">v</span><span style="color: #0000FF;">)</span>
root[right] = newnode(1.20)
<span style="color: #008080;">return</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">v</span><span style="color: #0000FF;">,</span><span style="color: #004600;">null</span><span style="color: #0000FF;">,</span><span style="color: #004600;">null</span><span style="color: #0000FF;">}</span>
root[right][left] = newnode(1.21)
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
root[right][right] = newnode(1.22)
<span style="color: #008080;">function</span> <span style="color: #000000;">add10</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">10</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
-- Now the tree has seven nodes.
<span style="color: #004080;">object</span> <span style="color: #000000;">root</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1.00</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">-- Add some nodes.</span>
<span style="color: #000000;">root</span><span style="color: #0000FF;">[</span><span style="color: #000000;">left</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1.10</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">root</span><span style="color: #0000FF;">[</span><span style="color: #000000;">left</span><span style="color: #0000FF;">][</span><span style="color: #000000;">left</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1.11</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">root</span><span style="color: #0000FF;">[</span><span style="color: #000000;">left</span><span style="color: #0000FF;">][</span><span style="color: #000000;">right</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1.12</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">root</span><span style="color: #0000FF;">[</span><span style="color: #000000;">right</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1.20</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">root</span><span style="color: #0000FF;">[</span><span style="color: #000000;">right</span><span style="color: #0000FF;">][</span><span style="color: #000000;">left</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1.21</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">root</span><span style="color: #0000FF;">[</span><span style="color: #000000;">right</span><span style="color: #0000FF;">][</span><span style="color: #000000;">right</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">newnode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1.22</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">-- Now the tree has seven nodes.
-- Show the whole tree.</span>
<span style="color: #7060A8;">ppOpt</span><span style="color: #0000FF;">({</span><span style="color: #004600;">pp_Nest</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">})</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">root</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">-- Modify the whole tree.</span>
<span style="color: #000000;">root</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tmap</span><span style="color: #0000FF;">(</span><span style="color: #000000;">root</span><span style="color: #0000FF;">,</span><span style="color: #000000;">add10</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">-- ShowCreate thea whole new tree.</span>
<span style="color: #004080;">object</span> <span style="color: #000000;">root2</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tmap</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">deep_copy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">root</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span><span style="color: #000000;">newnode</span><span style="color: #0000FF;">)</span>
ppOpt({pp_Nest,2})
pp(root)
<span style="color: #000080;font-style:italic;">-- ModifyShow the whole tree again.</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">root</span><span style="color: #0000FF;">)</span>
root = tmap(root,routine_id("add10"))
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
 
<span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
-- Create a whole new tree.
<!--</syntaxhighlight>-->
object root2 = tmap(root,rid)
 
-- Show the whole tree again.
pp(root)
end procedure
main()</lang>
{{out}}
<pre>
Line 876 ⟶ 1,103:
=={{header|PicoLisp}}==
PicoLisp is dynamically-typed, so in principle every function is polymetric over its arguments. It is up to the function to decide what to do with them. A function traversing a tree, modifying the nodes in-place (no matter what the type of the node is):
<langsyntaxhighlight PicoLisplang="picolisp">(de mapTree (Tree Fun)
(set Tree (Fun (car Tree)))
(and (cadr Tree) (mapTree @ Fun))
(and (cddr Tree) (mapTree @ Fun)) )</langsyntaxhighlight>
Test:
<pre style="height:20em;overflow:scroll">(balance 'MyTree (range 1 7)) # Create a tree of numbers
Line 935 ⟶ 1,162:
-> NIL</pre>
 
=={{header|RacketProlog}}==
{{works with|SWI Prolog}}
SWI-Prolog does not support object-oriented programming, but we can simulate it.
<syntaxhighlight lang="prolog">% Tree Definition
tree(leaf(_)).
tree(branch(Left, Right)) :- tree(Left), tree(Right).
 
% Definition of the addone function
Typed Racket has parametric polymorphism:
addone(X, Y) :- Y is X + 1.
 
% Definition of treewalk
<lang racket>
treewalk(leaf(Value), Func, leaf(NewValue)) :- call(Func, Value, NewValue).
treewalk(branch(Left, Right), Func, branch(NewLeft, NewRight)) :-
treewalk(Left, Func, NewLeft),
treewalk(Right, Func, NewRight).
 
% Execution
run :-
X = branch(leaf(2), branch(leaf(3),leaf(4))),
treewalk(X, addone, Y),
write(Y).</syntaxhighlight>
 
=={{header|Racket}}==
Typed Racket has parametric polymorphism:
<syntaxhighlight lang="racket">
#lang typed/racket
 
Line 960 ⟶ 1,207:
(tree-map add1 (Node 5 (Node 3 #f #f) #f))
(Node 6 (Node 4 #f #f) #f))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
{{works with|Rakudo|2020.08.1}}
<syntaxhighlight lang="raku" line>role BinaryTree[::T] {
has T $.value;
has BinaryTree[T] $.left;
has BinaryTree[T] $.right;
 
method replace-all(T $value) {
$!value = $value;
$!left.replace-all($value) if $!left.defined;
$!right.replace-all($value) if $!right.defined;
}
}
 
class IntTree does BinaryTree[Int] { }
 
my IntTree $it .= new(value => 1,
left => IntTree.new(value => 2),
right => IntTree.new(value => 3));
 
$it.replace-all(42);
say $it;</syntaxhighlight>
{{out}}
<pre>IntTree.new(value => 42, left => IntTree.new(value => 42, left => BinaryTree[T], right => BinaryTree[T]), right => IntTree.new(value => 42, left => BinaryTree[T], right => BinaryTree[T]))</pre>
 
=={{header|REXX}}==
This REXX programming example is modeled after the &nbsp; '''D''' &nbsp; example.
<langsyntaxhighlight lang="rexx">/*REXX program demonstrates (with displays) a method of parametric polymorphism. */
call newRoot 1.00, 3 /*new root, and also indicate 3 stems.*/
/* [↓] no need to label the stems. */
Line 978 ⟶ 1,251:
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
addStem: nodes= nodes + 1; do j=1 for stems; root.nodes.j= arg(1); end; return
newRoot: parse arg @,stems; nodes= -1; call addStem copies('═',9); call addStem @; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
modRoot: arg #; do j=1 for nodes /*traipse through all the defined nodes*/
do k=1 for stems /*add bias ──►───────────────────────┐ */
if datatype(root.j.k, 'N') then root.j.k= root.j.k + # /*add bias.◄───┘ */
end /*k*/ /* [↑] only add if numeric stem value is numeric.*/
end /*j*/
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
sayNodes: w= 9; do j=0 to nodes; _= /*ensure each of the nodes gets shown. */
do k=1 for stems; _= _ center(root.j.k, w) /*concatenate a node.*/
end /*k*/
$= word('node='j, 1 + (j<1) ) /*define a label for this line's output*/
say center($, w) substr(_, 2) /*ignore 1st (leading) blank which was */
end /*j*/ /* [↑] caused by concatenation.*/
say /*show a blank line to separate outputs*/
return</syntaxhighlight>
return /* [↑] extreme indentation to terminal*/</lang>
{{out|output|text=&nbsp; when using the default input:}}
<pre>
Line 1,018 ⟶ 1,291:
 
=={{header|Rust}}==
<langsyntaxhighlight lang="rust">struct TreeNode<T> {
value: T,
left: Option<Box<TreeNode<T>>>,
Line 1,063 ⟶ 1,336:
let new_root = root.my_map(&|x| *x as f64 * 333.333f64);
new_root.my_map(&|x| { println!("{}" , x) });
}</langsyntaxhighlight>
 
=={{header|Scala}}==
Line 1,070 ⟶ 1,343:
the example in question:
 
<langsyntaxhighlight lang="scala">case class Tree[+A](value: A, left: Option[Tree[A]], right: Option[Tree[A]]) {
def map[B](f: A => B): Tree[B] =
Tree(f(value), left map (_.map(f)), right map (_.map(f)))
}</langsyntaxhighlight>
 
Note that the type parameter of the class <tt>Tree</tt>, <tt>[+A]</tt>. The
Line 1,079 ⟶ 1,352:
will be a subtype of <tt>Tree[Y]</tt> if <tt>X</tt> is a subtype of <tt>Y</tt>. For example:
 
<langsyntaxhighlight lang="scala">class Employee(val name: String)
class Manager(name: String) extends Employee(name)
 
val t = Tree(new Manager("PHB"), None, None)
val t2: Tree[Employee] = t</langsyntaxhighlight>
 
The second assignment is legal because <tt>t</tt> is of type <tt>Tree[Manager]</tt>, and since
Line 1,091 ⟶ 1,364:
Another possible variance is the ''contra-variance''. For instance, consider the following example:
 
<langsyntaxhighlight lang="scala">def toName(e: Employee) = e.name
val treeOfNames = t.map(toName)</langsyntaxhighlight>
 
This works, even though <tt>map</tt> is expecting a function from <tt>Manager</tt> into something,
Line 1,099 ⟶ 1,372:
definition in Scala:
 
<langsyntaxhighlight lang="scala">trait Function1[-T1, +R]</langsyntaxhighlight>
 
The minus sign indicates that this trait is ''contra-variant'' in <tt>T1</tt>, which happens to be
Line 1,110 ⟶ 1,383:
Let's add another method to <tt>Tree</tt> to see another concept:
 
<langsyntaxhighlight lang="scala">case class Tree[+A](value: A, left: Option[Tree[A]], right: Option[Tree[A]]) {
def map[B](f: A => B): Tree[B] =
Tree(f(value), left map (_.map(f)), right map (_.map(f)))
def find[B >: A](what: B): Boolean =
(value == what) || left.map(_.find(what)).getOrElse(false) || right.map(_.find(what)).getOrElse(false)
}</langsyntaxhighlight>
 
The type parameter of <tt>find</tt> is <tt>[B >: A]</tt>. That means the type is some <tt>B</tt>, as long
Line 1,121 ⟶ 1,394:
accept it. To understand why, let's consider the following code:
 
<langsyntaxhighlight lang="scala">if (t2.find(new Employee("Dilbert")))
println("Call Catbert!")</langsyntaxhighlight>
 
Here we have <tt>find</tt> receiving an argument of type <tt>Employee</tt>, even though the tree
Line 1,133 ⟶ 1,406:
to be defined when a class is inherited. One simple example would be:
 
<langsyntaxhighlight lang="scala">trait DFA {
type Element
val map = new collection.mutable.HashMap[Element, DFA]()
}</langsyntaxhighlight>
 
A concrete class wishing to inherit from <tt>DFA</tt> would need to define <tt>Element</tt>. Abstract
Line 1,151 ⟶ 1,424:
When ''map'' is called ''aVariable'' is used also in the actual parameter of ''aFunc'': map(container1, num, num + 1)
 
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const func type: container (in type: elemType) is func
Line 1,187 ⟶ 1,460:
end for;
writeln;
end func;</langsyntaxhighlight>
 
Output:
Line 1,195 ⟶ 1,468:
 
=={{header|Standard ML}}==
<langsyntaxhighlight lang="sml">datatype 'a tree = Empty | Node of 'a * 'a tree * 'a tree
 
(** val map_tree = fn : ('a -> 'b) -> 'a tree -> 'b tree *)
fun map_tree f Empty = Empty
| map_tree f (Node (x,l,r)) = Node (f x, map_tree f l, map_tree f r)</langsyntaxhighlight>
 
=={{header|Swift}}==
{{trans|Java}}
<langsyntaxhighlight lang="swift">class Tree<T> {
var value: T?
var left: Tree<T>?
Line 1,213 ⟶ 1,486:
right?.replaceAll(value)
}
}</langsyntaxhighlight>
 
Another version based on Algebraic Data Types:
{{works with|Swift|2+}}
<langsyntaxhighlight lang="swift">enum Tree<T> {
case Empty
indirect case Node(T, Tree<T>, Tree<T>)
Line 1,227 ⟶ 1,500:
}
}
}</langsyntaxhighlight>
 
=={{header|Ursala}}==
Line 1,233 ⟶ 1,506:
routinely. A parameterized binary tree type can be defined using a syntax for anonymous
recursion in type expressions as in this example,
<langsyntaxhighlight Ursalalang="ursala">binary_tree_of "node-type" = "node-type"%hhhhWZAZ</langsyntaxhighlight>
or by way of a recurrence solved using a fixed point combinator imported from a library
as shown below.
<langsyntaxhighlight Ursalalang="ursala">#import tag
 
#fix general_type_fixer 1
 
binary_tree_of "node-type" = ("node-type",(binary_tree_of "node-type")%Z)%drWZwlwAZ</langsyntaxhighlight>
(The <code>%Z</code> type operator constructs a "maybe" type, i.e., the free union of its operand type
with the null value. Others shown above are standard stack manipulation primitives, e.g. <code>d</code> (dup) and <code>w</code> (swap), used to build the type expression tree.) At the other extreme, one may construct an equivalent parameterized type in
point-free form.
<langsyntaxhighlight Ursalalang="ursala">binary_tree_of = %-hhhhWZAZ</langsyntaxhighlight>
A mapping combinator over this type can be defined with pattern matching like this
<langsyntaxhighlight Ursalalang="ursala">binary_tree_map "f" = ~&a^& ^A/"f"@an ~&amPfamPWB</langsyntaxhighlight>
or in point free form like this.
<langsyntaxhighlight Ursalalang="ursala">binary_tree_map = ~&a^&+ ^A\~&amPfamPWB+ @an</langsyntaxhighlight>
Here is a test program
defining a type of binary trees of strings, and a function that concatenates each node
with itself.
<langsyntaxhighlight Ursalalang="ursala">string_tree = binary_tree_of %s
 
x = 'foo': ('bar': (),'baz': ())
Line 1,258 ⟶ 1,531:
#cast string_tree
 
example = (binary_tree_map "s". "s"--"s") x</langsyntaxhighlight>
Type signatures are not necessarily associated with function declarations, but
have uses in the other contexts such as assertions and compiler directives
Line 1,265 ⟶ 1,538:
'foofoo': ('barbar': (),'bazbaz': ())
</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C# modern version}}
<syntaxhighlight lang="vbnet">Class BinaryTree(Of T)
ReadOnly Property Left As BinaryTree(Of T)
ReadOnly Property Right As BinaryTree(Of T)
ReadOnly Property Value As T
 
Sub New(value As T, Optional left As BinaryTree(Of T) = Nothing, Optional right As BinaryTree(Of T) = Nothing)
Me.Value = value
Me.Left = left
Me.Right = right
End Sub
 
Function Map(Of U)(f As Func(Of T, U)) As BinaryTree(Of U)
Return New BinaryTree(Of U)(f(Me.Value), Me.Left?.Map(f), Me.Right?.Map(f))
End Function
 
Overrides Function ToString() As String
Dim sb As New Text.StringBuilder()
Me.ToString(sb, 0)
Return sb.ToString()
End Function
 
Private Overloads Sub ToString(sb As Text.StringBuilder, depth As Integer)
sb.Append(New String(ChrW(AscW(vbTab)), depth))
sb.AppendLine(Me.Value?.ToString())
Me.Left?.ToString(sb, depth + 1)
Me.Right?.ToString(sb, depth + 1)
End Sub
End Class
 
Module Program
Sub Main()
Dim b As New BinaryTree(Of Integer)(6, New BinaryTree(Of Integer)(5), New BinaryTree(Of Integer)(7))
Dim b2 As BinaryTree(Of Double) = b.Map(Function(x) x * 0.5)
 
Console.WriteLine(b)
Console.WriteLine(b2)
End Sub
End Module</syntaxhighlight>
{{out}}
<pre>6
5
7
 
3
2.5
3.5</pre>
 
=={{header|Visual Prolog}}==
<langsyntaxhighlight lang="prolog">
domains
tree{Type} = branch(tree{Type} Left, tree{Type} Right); leaf(Type Value).
Line 1,287 ⟶ 1,609:
write(Y),
succeed().
</syntaxhighlight>
</lang>
 
=={{header|Wren}}==
{{trans|Kotlin}}
Wren is dynamically type and so doesn't have parametric polymorphism (PP) as such; in a sense every method or function is polymorphic over its parameters.
 
However, that doesn't mean that type safety is unimportant and, in the case of a Binary Tree, we'd generally want all its nodes to contain values of the same type.
 
Fortunately, we can simulate PP by passing an extra parameter to a collection class's contructor to specify the type of values to be used for that particular instantiation. We can then use this to guard against the wrong type of values being passed to the class's other methods.
<syntaxhighlight lang="wren">class BinaryTree {
construct new(T, value) {
if (!(T is Class)) Fiber.abort ("T must be a class.")
if (value.type != T) Fiber.abort("Value must be of type T.")
_kind = T
_value = value
_left = null
_right = null
}
 
// constructor overload to enable kind to be inferred from type of value
static new (value) { new(value.type, value) }
 
kind { _kind }
value { _value}
value=(v) {
if (v.type != _kind) Fiber.abort("Value must be of type %(_kind)")
_value = v
}
 
left { _left }
right { _right }
left=(b) {
if (b.type != BinaryTree || b.kind != _kind) {
Fiber.abort("Argument must be a BinaryTree of type %(_kind)")
}
_left = b
}
right=(b) {
if (b.type != BinaryTree || b.kind != _kind) {
Fiber.abort("Argument must be a BinaryTree of type %(_kind)")
}
_right = b
}
 
map(f) {
var tree = BinaryTree.new(f.call(_value))
if (_left) tree.left = left.map(f)
if (_right) tree.right = right.map(f)
return tree
}
 
showTopThree() { "(%(left.value), %(value), %(right.value))" }
}
 
var b = BinaryTree.new(6)
b.left = BinaryTree.new(5)
b.right = BinaryTree.new(7)
System.print(b.showTopThree())
 
var b2 = b.map{ |i| i * 10 }
System.print(b2.showTopThree())
b2.value = "six" // generates an error because "six" is not a Num</syntaxhighlight>
 
{{out}}
<pre>
(5, 6, 7)
(50, 60, 70)
Value must be of type Num
[./parametric_polymorphism line 17] in value=(_)
[./parametric_polymorphism line 53] in (script)
</pre>
 
 
 
Line 1,296 ⟶ 1,689:
 
{{omit from|Axe}}
{{omit from|Bc|no types in bc}}
{{omit from|C|no type variables in stdc}}
{{omit from|C|no type variables}}
{{omit from|Dc|no types in dc}}
{{omit from|Factor|not statically typed}}
{{omit from|J|not statically typed}}
Line 1,312 ⟶ 1,707:
{{omit from|LaTeX}}
{{omit from|Retro|typeless}}
{{omit from|VBA|the Variant type is available.}}
{{omit from|zkl|typeless}}
2,122

edits