Numerical integration: Difference between revisions

m
(→‎{{header|MATLAB}} / {{header|Octave}}: remove {{header|Sample inputs}})
m (→‎{{header|Wren}}: Minor tidy)
 
(95 intermediate revisions by 39 users not shown)
Line 1:
{{task|Arithmetic operations}}
Write functions to calculate the definite integral of a function (<span style="font-family: serif">''f(x)''</span>) using [[wp:Rectangle_method|rectangular]] (left, right, and midpoint), [[wp:Trapezoidal_rule|trapezium]], and [[wp:Simpson%27s_rule|Simpson's]] methods. Your functions should take in the upper and lower bounds (<span style="font-family: serif">''a''</span> and <span style="font-family: serif">''b''</span>) and the number of approximations to make in that range (<span style="font-family: serif">''n''</span>). Assume that your example already has a function that gives values for <span style="font-family: serif">''f(x)''</span>.
 
Write functions to calculate the definite integral of a function <big><big> {{math|1=''ƒ(x)''}} </big></big> using ''all'' five of the following methods:
Simpson's method is defined by the following pseudocode:
:* [[wp:Rectangle_method|rectangular]]
<pre>
:** left
h := (b - a) / n
:** right
sum1 := f(a + h/2)
:** midpoint
sum2 := 0
:* [[wp:Trapezoidal_rule|trapezium]]
:* [[wp:Simpson%27s_rule|Simpson's]]
:** composite
 
Your functions should take in the upper and lower bounds ({{math|''a''}} and {{math|''b''}}), and the number of approximations to make in that range ({{math|''n''}}).
loop on i from 1 to (n - 1)
 
sum1 := sum1 + f(a + h * i + h/2)
Assume that your example already has a function that gives values for <big> {{math|1=''ƒ(x)''}} </big>.
sum2 := sum2 + f(a + h * i)
 
Simpson's method is defined by the following pseudo-code:
{| class="mw-collapsible mw-collapsed"
|+ Pseudocode: Simpson's method, composite
|-
|
'''procedure''' quad_simpson_composite(f, a, b, n)
h := (b - a) / n
sum1 := f(a + h/2)
sum2 := 0
loop on i from 1 to (n - 1)
sum1 := sum1 + f(a + h * i + h/2)
sum2 := sum2 + f(a + h * i)
&nbsp;
''answer'' := (h / 6) * (f(a) + f(b) + 4*sum1 + 2*sum2)
|}
 
answer := (h / 6) * (f(a) + f(b) + 4*sum1 + 2*sum2)
</pre>
 
Demonstrate your function by showing the results for:
* f&nbsp; {{math|1=ƒ(x) = x^<sup>3</sup>}}, &nbsp; &nbsp; &nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; &nbsp; [0,1], &nbsp; &nbsp; &nbsp; with &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 100 approximations. &nbsp; The exact result is 1/4,&nbsp; or&nbsp; 0.25. &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (or 1/4)
* f&nbsp; {{math|1=ƒ(x) = 1/x}}, &nbsp; &nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; [1,100], &nbsp; &nbsp; with &nbsp; &nbsp; &nbsp; &nbsp;1,000 approximations. &nbsp; The exact result is the&nbsp; &nbsp; 4.605170<sup>+</sup> &nbsp; &nbsp; (natural log of 100, or about 4.605170)
* f&nbsp; {{math|1=ƒ(x) = x}}, &nbsp; &nbsp; &nbsp; &nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; [0,5000], &nbsp; with 5,000,000 approximations. &nbsp; The exact result is &nbsp; 12,500,000.
* f&nbsp; {{math|1=ƒ(x) = x}}, &nbsp; &nbsp; &nbsp; &nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; [0,6000], &nbsp; with 6,000,000 approximations. &nbsp; The exact result is &nbsp; 18,000,000.
 
<br/>
'''See also'''
;See also:
* [[Active object]] for integrating a function of real time.
* &nbsp; [[Active object]] for integrating a function of real time.
* [[Numerical integration/Gauss-Legendre Quadrature]] for another integration method.
* &nbsp; [[Special:PrefixIndex/Numerical integration]] for other integration methods.
 
<br/>
 
=={{header|11l}}==
{{trans|Nim}}
 
<syntaxhighlight lang="11l">F left_rect((Float -> Float) f, Float x, Float h) -> Float
R f(x)
 
F mid_rect((Float -> Float) f, Float x, Float h) -> Float
R f(x + h / 2)
 
F right_rect((Float -> Float) f, Float x, Float h) -> Float
R f(x + h)
 
F trapezium((Float -> Float) f, Float x, Float h) -> Float
R (f(x) + f(x + h)) / 2.0
 
F simpson((Float -> Float) f, Float x, Float h) -> Float
R (f(x) + 4 * f(x + h / 2) + f(x + h)) / 6.0
 
F cube(Float x) -> Float
R x * x * x
 
F reciprocal(Float x) -> Float
R 1 / x
 
F identity(Float x) -> Float
R x
 
F integrate(f, a, b, steps, meth)
V h = (b - a) / steps
V ival = h * sum((0 .< steps).map(i -> @meth(@f, @a + i * @h, @h)))
R ival
 
L(a, b, steps, func, func_name) [(0.0, 1.0, 100, cube, ‘cube’),
(1.0, 100.0, 1000, reciprocal, ‘reciprocal’),
(0.0, 5000.0, 5'000'000, identity, ‘identity’),
(0.0, 6000.0, 6'000'000, identity, ‘identity’)]
L(rule, rule_name) [(left_rect, ‘left_rect’),
(mid_rect, ‘mid_rect’),
(right_rect, ‘right_rect’),
(trapezium, ‘trapezium’),
(simpson, ‘simpson’)]
print("#. integrated using #.\n from #. to #. (#. steps) = #.".format(
func_name, rule_name, a, b, steps, integrate(func, a, b, steps, rule)))</syntaxhighlight>
 
{{out}}
<pre>
cube integrated using left_rect
from 0 to 1 (100 steps) = 0.245025
cube integrated using mid_rect
from 0 to 1 (100 steps) = 0.2499875
cube integrated using right_rect
from 0 to 1 (100 steps) = 0.255025
cube integrated using trapezium
from 0 to 1 (100 steps) = 0.250025
cube integrated using simpson
from 0 to 1 (100 steps) = 0.25
reciprocal integrated using left_rect
from 1 to 100 (1000 steps) = 4.654991058
reciprocal integrated using mid_rect
from 1 to 100 (1000 steps) = 4.604762549
reciprocal integrated using right_rect
from 1 to 100 (1000 steps) = 4.556981058
reciprocal integrated using trapezium
from 1 to 100 (1000 steps) = 4.605986058
reciprocal integrated using simpson
from 1 to 100 (1000 steps) = 4.605170385
identity integrated using left_rect
from 0 to 5000 (5000000 steps) = 12499997.5
identity integrated using mid_rect
from 0 to 5000 (5000000 steps) = 12500000
identity integrated using right_rect
from 0 to 5000 (5000000 steps) = 12500002.5
identity integrated using trapezium
from 0 to 5000 (5000000 steps) = 12500000
identity integrated using simpson
from 0 to 5000 (5000000 steps) = 12500000
identity integrated using left_rect
from 0 to 6000 (6000000 steps) = 17999997.000000003
identity integrated using mid_rect
from 0 to 6000 (6000000 steps) = 17999999.999999992
identity integrated using right_rect
from 0 to 6000 (6000000 steps) = 18000003.000000003
identity integrated using trapezium
from 0 to 6000 (6000000 steps) = 17999999.999999992
identity integrated using simpson
from 0 to 6000 (6000000 steps) = 17999999.999999992
</pre>
 
=={{header|ActionScript}}==
Integration functions:
<langsyntaxhighlight ActionScriptlang="actionscript">function leftRect(f:Function, a:Number, b:Number, n:uint):Number
{
var sum:Number = 0;
Line 77 ⟶ 185:
}
return (dx/6) * (f(a) + f(b) + 4*sum1 + 2*sum2);
}</langsyntaxhighlight>
Usage:
<langsyntaxhighlight ActionScriptlang="actionscript">function f1(n:Number):Number {
return (2/(1+ 4*(n*n)));
}
Line 87 ⟶ 195:
trace(trapezium(f1, -1, 2 ,4 ));
trace(simpson(f1, -1, 2 ,4 ));
</syntaxhighlight>
</lang>
 
=={{header|Ada}}==
Specification of a generic package implementing the five specified kinds of numerical integration:
<langsyntaxhighlight lang="ada">generic
type Scalar is digits <>;
with function F (X : Scalar) return Scalar;
Line 99 ⟶ 208:
function Trapezium (A, B : Scalar; N : Positive) return Scalar;
function Simpsons (A, B : Scalar; N : Positive) return Scalar;
end Integrate;</langsyntaxhighlight>
An alternative solution is to pass a function reference to the integration function. This solution is probably slightly faster, and works even with Ada83. One could also make each integration function generic, instead of making the whole package generic.
 
Body of the package implementing numerical integration:
<langsyntaxhighlight lang="ada">package body Integrate is
function Left_Rectangular (A, B : Scalar; N : Positive) return Scalar is
H : constant Scalar := (B - A) / Scalar (N);
Line 144 ⟶ 253:
Sum : Scalar := F(A) + F(B);
X : Scalar := 1.0;
begin
while X <= Scalar (N) - 1.0 loop
Sum := Sum + 2.0 * F (A + X * (B - A) / Scalar (N));
Line 154 ⟶ 263:
function Simpsons (A, B : Scalar; N : Positive) return Scalar is
H : constant Scalar := (B - A) / Scalar (N);
Sum_1Sum_U : Scalar := 0.0;
Sum_2Sum_E : Scalar := 0.0;
begin
for I in 01 .. N - 1 loop
Sum_1if :=I Sum_1mod +2 F (A + H * Scalar (I) +/= 0.5 * H);then
Sum_2 Sum_U := Sum_2Sum_U + F (A + H * Scalar (I));
else
Sum_E := Sum_E + F (A + H * Scalar (I));
end if;
end loop;
return (H / 63.0) * (F (A) + F (B) + 4.0 * Sum_1Sum_U + 2.0 * Sum_2Sum_E);
end Simpsons;
end Integrate;</langsyntaxhighlight>
 
Test driver:
<langsyntaxhighlight lang="ada">with Ada.Text_IO, Ada.Integer_Text_IO;
with Integrate;
 
Line 270 ⟶ 382:
end X;
end Numerical_Integration;
</syntaxhighlight>
</lang>
 
=={{header|ALGOL 68}}==
<langsyntaxhighlight lang="algol68">MODE F = PROC(LONG REAL)LONG REAL;
 
###############
Line 357 ⟶ 469:
h / 6 * (f(a) + f(b) + 4 * sum1 + 2 * sum2)
END # simpson #;
 
SKIP</lang>
# test the above procedures #
PROC test integrators = ( STRING legend
, F function
, LONG REAL lower limit
, LONG REAL upper limit
, INT iterations
) VOID:
BEGIN
print( ( legend
, fixed( left rect( function, lower limit, upper limit, iterations ), -20, 6 )
, fixed( right rect( function, lower limit, upper limit, iterations ), -20, 6 )
, fixed( mid rect( function, lower limit, upper limit, iterations ), -20, 6 )
, fixed( trapezium( function, lower limit, upper limit, iterations ), -20, 6 )
, fixed( simpson( function, lower limit, upper limit, iterations ), -20, 6 )
, newline
)
)
END; # test integrators #
print( ( " "
, " left rect"
, " right rect"
, " mid rect"
, " trapezium"
, " simpson"
, newline
)
);
test integrators( "x^3", ( LONG REAL x )LONG REAL: x * x * x, 0, 1, 100 );
test integrators( "1/x", ( LONG REAL x )LONG REAL: 1 / x, 1, 100, 1 000 );
test integrators( "x ", ( LONG REAL x )LONG REAL: x, 0, 5 000, 5 000 000 );
test integrators( "x ", ( LONG REAL x )LONG REAL: x, 0, 6 000, 6 000 000 );
 
SKIP</syntaxhighlight>
{{out}}
<pre>
left rect right rect mid rect trapezium simpson
x^3 0.245025 0.255025 0.249988 0.250025 0.250000
1/x 4.654991 4.556981 4.604763 4.605986 4.605170
x 12499997.500000 12500002.500000 12500000.000000 12500000.000000 12500000.000000
x 17999997.000000 18000003.000000 18000000.000000 18000000.000000 18000000.000000</pre>
 
=={{header|ALGOL W}}==
{{Trans|ALGOL 68}}
<syntaxhighlight lang="algolw">begin % compare some numeric integration methods %
 
long real procedure leftRect ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := 0;
x := a;
while x <= b - h do begin
sum := sum + (h * f(x));
x := x + h
end;
sum
end leftRect ;
 
long real procedure rightRect ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := 0;
x := a + h;
while x <= b do begin
sum := sum + (h * f(x));
x := x + h
end;
sum
end rightRect ;
 
long real procedure midRect ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := 0;
x := a;
while x <= b - h do begin
sum := sum + h * f(x + h / 2);
x := x + h
end;
sum
end midRect ;
long real procedure trapezium ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := f(a) + f(b);
x := 1;
while x <= n - 1 do begin
sum := sum + 2 * f(a + x * h );
x := x + 1
end;
(b - a) / (2 * n) * sum
end trapezium ;
long real procedure simpson ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum1, sum2, x;
integer limit;
h := (b - a) / n;
sum1 := 0;
sum2 := 0;
limit := n - 1;
for i := 0 until limit do sum1 := sum1 + f(a + h * i + h / 2);
for i := 1 until limit do sum2 := sum2 + f(a + h * i);
h / 6 * (f(a) + f(b) + 4 * sum1 + 2 * sum2)
end simpson ;
 
% tests the above procedures %
procedure testIntegrators1 ( string(3) value legend
; long real procedure f
; long real value lowerLimit
; long real value upperLimit
; integer value iterations
) ;
write( r_format := "A", r_w := 20, r_d := 6, s_w := 0,
, legend
, leftRect( f, lowerLimit, upperLimit, iterations )
, rightRect( f, lowerLimit, upperLimit, iterations )
, midRect( f, lowerLimit, upperLimit, iterations )
, trapezium( f, lowerLimit, upperLimit, iterations )
, simpson( f, lowerLimit, upperLimit, iterations )
);
procedure testIntegrators2 ( string(3) value legend
; long real procedure f
; long real value lowerLimit
; long real value upperLimit
; integer value iterations
) ;
write( r_format := "A", r_w := 16, r_d := 2, s_w := 0,
, legend
, leftRect( f, lowerLimit, upperLimit, iterations ), " "
, rightRect( f, lowerLimit, upperLimit, iterations ), " "
, midRect( f, lowerLimit, upperLimit, iterations ), " "
, trapezium( f, lowerLimit, upperLimit, iterations ), " "
, simpson( f, lowerLimit, upperLimit, iterations ), " "
);
 
begin % task test cases %
long real procedure xCubed ( long real value x ) ; x * x * x;
long real procedure oneOverX ( long real value x ) ; 1 / x;
long real procedure xValue ( long real value x ) ; x;
write( " "
, " left rect"
, " right rect"
, " mid rect"
, " trapezium"
, " simpson"
);
testIntegrators1( "x^3", xCubed, 0, 1, 100 );
testIntegrators1( "1/x", oneOverX, 1, 100, 1000 );
testIntegrators2( "x ", xValue, 0, 5000, 5000000 );
testIntegrators2( "x ", xValue, 0, 6000, 6000000 )
end
end.</syntaxhighlight>
 
=={{header|ATS}}==
 
<syntaxhighlight lang="ats">
#include "share/atspre_staload.hats"
 
%{^
#include <math.h>
%}
 
typedef FILEstar = $extype"FILE *"
extern castfn FILEref2star : FILEref -<> FILEstar
 
(* This type declarations is for composite quadrature functions for
all the different g0float typekinds. The function must either prove
termination or mask the requirement. (All of ours will prove
termination.) The function to be integrated will not be passed as
an argument, but inlined via the template mechanism. (This design
is more general. It can easily be used to write a quadrature
function that takes the argument, but also can be used for faster
code that requires no function call.) *)
typedef composite_quadrature (tk : tkind) =
(g0float tk, g0float tk, intGte 2) -<> g0float tk
 
extern fn {tk : tkind}
composite_quadrature$func : g0float tk -<> g0float tk
 
extern fn {tk : tkind} left_rule : composite_quadrature tk
extern fn {tk : tkind} right_rule : composite_quadrature tk
extern fn {tk : tkind} midpoint_rule : composite_quadrature tk
extern fn {tk : tkind} trapezium_rule : composite_quadrature tk
extern fn {tk : tkind} simpson_rule : composite_quadrature tk
 
extern fn {tk : tkind}
_one_point_rule$init_x :
g0float tk -<> g0float tk
 
fn {tk : tkind}
_one_point_rule : composite_quadrature tk =
lam (a, b, n) =>
let
prval [n : int] EQINT () = eqint_make_gint n
macdef f = composite_quadrature$func
val h = (b - a) / g0i2f n
val x0 = _one_point_rule$init_x<tk> h
fun
loop {i : nat | i <= n} .<n - i>.
(i : int i,
sum : g0float tk) :<> g0float tk =
if i = n then
sum
else
loop (succ i, sum + f(x0 + (g0i2f i * h)))
in
loop (0, g0i2f 0) * h
end
 
(* The left rule, for any floating point type. *)
implement {tk}
left_rule (a, b, n) =
let
implement _one_point_rule$init_x<tk> _ = a
in
_one_point_rule<tk> (a, b, n)
end
 
(* The right rule, for any floating point type. *)
implement {tk}
right_rule (a, b, n) =
let
implement _one_point_rule$init_x<tk> h = a + h
in
_one_point_rule<tk> (a, b, n)
end
 
(* The midpoint rule, for any floating point type. *)
implement {tk}
midpoint_rule (a, b, n) =
let
implement _one_point_rule$init_x<tk> h = a + (h / g0i2f 2)
in
_one_point_rule<tk> (a, b, n)
end
 
implement {tk}
trapezium_rule : composite_quadrature tk =
lam (a, b, n) =>
let
prval [n : int] EQINT () = eqint_make_gint n
macdef f = composite_quadrature$func
val h = (b - a) / g0i2f n
fun
loop {i : pos | i <= n} .<n - i>.
(i : int i,
sum : g0float tk) :<> g0float tk =
if i = n then
sum
else
loop (succ i, sum + f(a + (g0i2f i * h)))
val sum = loop (1, g0i2f 0)
in
((f(a) + sum + sum + f(b)) * h) / g0i2f 2
end
 
(* Simpson’s 1/3 rule, for any floating point type. *)
implement {tk}
simpson_rule : composite_quadrature tk =
lam (a, b, n) =>
let
(* I have noticed that the Simpson rule is a weighted average of
the trapezium and midpoint rules, which themselves evaluate
the function at different points. Therefore, the following
should be efficient and produce good results. *)
val estimate1 = trapezium_rule<tk> (a, b, n)
val estimate2 = midpoint_rule<tk> (a, b, n)
in
(estimate1 + estimate2 + estimate2) / (g0i2f 3)
end
 
extern fn {tk : tkind}
fprint_result$rule : composite_quadrature tk
 
extern fn {tk : tkind}
fprint_result (outf : FILEref,
message : string,
a : g0float tk,
b : g0float tk,
n : intGte 2,
nominal : g0float tk) : void
 
implement
fprint_result<dblknd> (outf, message, a, b, n, nominal) =
let
val integral = fprint_result$rule<dblknd> (a, b, n)
in
fprint! (outf, " ", message, " ");
ignoret ($extfcall (int, "fprintf", FILEref2star outf,
"%18.15le", integral));
fprint! (outf, " (nominal + ");
ignoret ($extfcall (int, "fprintf", FILEref2star outf,
"% .6le", integral - nominal));
fprint! (outf, ")\n")
end
 
fn {tk : tkind}
fprint_rule_results (outf : FILEref,
a : g0float tk,
b : g0float tk,
n : intGte 2,
nominal : g0float tk) : void =
let
implement fprint_result$rule<tk> (a, b, n) = left_rule<tk> (a, b, n)
val () = fprint_result (outf, "left rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = right_rule<tk> (a, b, n)
val () = fprint_result (outf, "right rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = midpoint_rule<tk> (a, b, n)
val () = fprint_result (outf, "midpoint rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = trapezium_rule<tk> (a, b, n)
val () = fprint_result (outf, "trapezium rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = simpson_rule<tk> (a, b, n)
val () = fprint_result (outf, "Simpson rule ", a, b, n, nominal)
in
end
 
implement
main () =
let
val outf = stdout_ref
 
val () = fprint! (outf, "\nx³ in [0,1] with n = 100\n")
implement composite_quadrature$func<dblknd> x = x * x * x
val () = fprint_rule_results<dblknd> (outf, 0.0, 1.0, 100, 0.25)
 
val () = fprint! (outf, "\n1/x in [1,100] with n = 1000\n")
implement composite_quadrature$func<dblknd> x = g0i2f 1 / x
val () = fprint_rule_results<dblknd> (outf, 1.0, 100.0, 1000,
$extfcall (double, "log", 100.0))
 
val () = fprint! (outf, "\nx in [0,5000] with n = 5000000\n")
implement composite_quadrature$func<dblknd> x = x
val () = fprint_rule_results<dblknd> (outf, 0.0, 5000.0, 5000000,
12500000.0)
 
val () = fprint! (outf, "\nx in [0,6000] with n = 6000000\n")
implement composite_quadrature$func<dblknd> x = x
val () = fprint_rule_results<dblknd> (outf, 0.0, 6000.0, 6000000,
18000000.0)
 
val () = fprint! (outf, "\n")
in
0
end
</syntaxhighlight>
 
{{out}}
<pre>$ patscc -std=gnu2x -Ofast numerical_integration_task.dats -lm && ./a.out
 
x³ in [0,1] with n = 100
left rule 2.450250000000000e-01 (nominal + -4.975000e-03)
right rule 2.550250000000000e-01 (nominal + 5.025000e-03)
midpoint rule 2.499875000000000e-01 (nominal + -1.250000e-05)
trapezium rule 2.500250000000000e-01 (nominal + 2.500000e-05)
Simpson rule 2.500000000000000e-01 (nominal + 0.000000e+00)
 
1/x in [1,100] with n = 1000
left rule 4.654991057514675e+00 (nominal + 4.982087e-02)
right rule 4.556981057514675e+00 (nominal + -4.818913e-02)
midpoint rule 4.604762548678376e+00 (nominal + -4.076373e-04)
trapezium rule 4.605986057514674e+00 (nominal + 8.158715e-04)
Simpson rule 4.605170384957142e+00 (nominal + 1.989691e-07)
 
x in [0,5000] with n = 5000000
left rule 1.249999750000000e+07 (nominal + -2.500000e+00)
right rule 1.250000250000000e+07 (nominal + 2.500000e+00)
midpoint rule 1.250000000000000e+07 (nominal + 0.000000e+00)
trapezium rule 1.250000000000000e+07 (nominal + -1.862645e-09)
Simpson rule 1.250000000000000e+07 (nominal + 0.000000e+00)
 
x in [0,6000] with n = 6000000
left rule 1.799999700000000e+07 (nominal + -3.000000e+00)
right rule 1.800000300000000e+07 (nominal + 3.000000e+00)
midpoint rule 1.800000000000000e+07 (nominal + 0.000000e+00)
trapezium rule 1.800000000000000e+07 (nominal + 0.000000e+00)
Simpson rule 1.800000000000000e+07 (nominal + 0.000000e+00)
 
</pre>
 
=={{header|AutoHotkey}}==
ahk [http://www.autohotkey.com/forum/viewtopic.php?t=44657&postdays=0&postorder=asc&start=139 discussion]
<langsyntaxhighlight lang="autohotkey">MsgBox % Rect("fun", 0, 1, 10,-1) ; 0.45 left
MsgBox % Rect("fun", 0, 1, 10) ; 0.50 mid
MsgBox % Rect("fun", 0, 1, 10, 1) ; 0.55 right
Line 395 ⟶ 905:
fun(x) { ; linear test function
Return x
}</syntaxhighlight>
}</lang>
 
=={{header|BASIC}}==
{{incorrect|BASIC|midRect is not sampling midpoints but recreating trap differently}}
{{works with|QuickBasic|4.5}}
{{trans|Java}}
<syntaxhighlight lang="qbasic">FUNCTION leftRect(a, b, n)
 
<lang qbasic>FUNCTION leftRect(a, b, n)
h = (b - a) / n
sum = 0
Line 423 ⟶ 931:
h = (b - a) / n
sum = 0
FOR x = a + h / 2 TO b - h / 2 STEP h
sum = sum + (h / 2) * (f(x) + f(x + h))
NEXT x
midRect = sum
Line 444 ⟶ 952:
 
FOR i = 0 TO n-1
sum1 = sumsum1 + f(a + h * i + h / 2)
NEXT i
 
Line 452 ⟶ 960:
 
simpson = h / 6 * (f(a) + f(b) + 4 * sum1 + 2 * sum2)
END FUNCTION</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
<langsyntaxhighlight lang="bbcbasic"> *FLOAT64
@% = 12 : REM Column width
Line 525 ⟶ 1,033:
NEXT
x = a
= (d / 6) * (f + EVAL(x$) + 4 * s1 + 2 * s2)</langsyntaxhighlight>
'''Output:'''
<pre>
Line 536 ⟶ 1,044:
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <math.h>
Line 593 ⟶ 1,101:
 
return h / 6.0 * (func(from) + func(to) + 4.0 * sum1 + 2.0 * sum2);
}</langsyntaxhighlight>
 
<langsyntaxhighlight lang="c">/* test */
double f3(double x)
{
Line 665 ⟶ 1,173:
printf("\n");
}
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
Line 786 ⟶ 1,294:
TestApproximationMethods(new DefiniteIntegral(x => x, new Interval(0, 6000)), 6000000);
}
}</langsyntaxhighlight>
Output:
<syntaxhighlight lang="text">0.2499500025
0.24999999875
0.2500500025
Line 807 ⟶ 1,315:
18000003
18000000
18000000</langsyntaxhighlight>
 
=={{header|C++}}==
 
Due to their similarity, it makes sense to make the integration method a policy.
<langsyntaxhighlight lang="cpp">// the integration routine
template<typename Method, typename F, typename Float>
double integrate(F f, Float a, Float b, int steps, Method m)
Line 873 ⟶ 1,382:
double rr = integrate(f, 0.0, 1.0, 10, rectangular(rectangular::right));
double t = integrate(f, 0.0, 1.0, 10, trapezium());
double s = integrate(f, 0.0, 1.0, 10, simpson());</langsyntaxhighlight>
 
=={{header|Chapel}}==
<syntaxhighlight lang="chapel">
proc f1(x:real):real {
return x**3;
}
 
proc f2(x:real):real {
return 1/x;
}
 
proc f3(x:real):real {
return x;
}
 
proc leftRectangleIntegration(a: real, b: real, N: int, f): real{
var h: real = (b - a)/N;
var sum: real = 0.0;
var x_n: real;
for n in 0..N-1 {
x_n = a + n * h;
sum = sum + f(x_n);
}
return h * sum;
}
 
proc rightRectangleIntegration(a: real, b: real, N: int, f): real{
var h: real = (b - a)/N;
var sum: real = 0.0;
var x_n: real;
for n in 0..N-1 {
x_n = a + (n + 1) * h;
sum = sum + f(x_n);
}
return h * sum;
}
 
proc midpointRectangleIntegration(a: real, b: real, N: int, f): real{
var h: real = (b - a)/N;
var sum: real = 0.0;
var x_n: real;
for n in 0..N-1 {
x_n = a + (n + 0.5) * h;
sum = sum + f(x_n);
}
return h * sum;
}
 
proc trapezoidIntegration(a: real(64), b: real(64), N: int(64), f): real{
var h: real(64) = (b - a)/N;
var sum: real(64) = f(a) + f(b);
var x_n: real(64);
for n in 1..N-1 {
x_n = a + n * h;
sum = sum + 2.0 * f(x_n);
}
return (h/2.0) * sum;
}
 
proc simpsonsIntegration(a: real(64), b: real(64), N: int(64), f): real{
var h: real(64) = (b - a)/N;
var sum: real(64) = f(a) + f(b);
var x_n: real(64);
for n in 1..N-1 by 2 {
x_n = a + n * h;
sum = sum + 4.0 * f(x_n);
}
for n in 2..N-2 by 2 {
x_n = a + n * h;
sum = sum + 2.0 * f(x_n);
}
return (h/3.0) * sum;
}
 
var exact:real;
var calculated:real;
 
writeln("f(x) = x**3 with 100 steps from 0 to 1");
exact = 0.25;
calculated = leftRectangleIntegration(a = 0.0, b = 1.0, N = 100, f = f1);
writeln("leftRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = rightRectangleIntegration(a = 0.0, b = 1.0, N = 100, f = f1);
writeln("rightRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = midpointRectangleIntegration(a = 0.0, b = 1.0, N = 100, f = f1);
writeln("midpointRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = trapezoidIntegration(a = 0.0, b = 1.0, N = 100, f = f1);
writeln("trapezoidIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = simpsonsIntegration(a = 0.0, b = 1.0, N = 100, f = f1);
writeln("simpsonsIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
writeln();
 
writeln("f(x) = 1/x with 1000 steps from 1 to 100");
exact = 4.605170;
calculated = leftRectangleIntegration(a = 1.0, b = 100.0, N = 1000, f = f2);
writeln("leftRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = rightRectangleIntegration(a = 1.0, b = 100.0, N = 1000, f = f2);
writeln("rightRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = midpointRectangleIntegration(a = 1.0, b = 100.0, N = 1000, f = f2);
writeln("midpointRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = trapezoidIntegration(a = 1.0, b = 100.0, N = 1000, f = f2);
writeln("trapezoidIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = simpsonsIntegration(a = 1.0, b = 100.0, N = 1000, f = f2);
writeln("simpsonsIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
writeln();
 
writeln("f(x) = x with 5000000 steps from 0 to 5000");
exact = 12500000;
calculated = leftRectangleIntegration(a = 0.0, b = 5000.0, N = 5000000, f = f3);
writeln("leftRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = rightRectangleIntegration(a = 0.0, b = 5000.0, N = 5000000, f = f3);
writeln("rightRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = midpointRectangleIntegration(a = 0.0, b = 5000.0, N = 5000000, f = f3);
writeln("midpointRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = trapezoidIntegration(a = 0.0, b = 5000.0, N = 5000000, f = f3);
writeln("trapezoidIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = simpsonsIntegration(a = 0.0, b = 5000.0, N = 5000000, f = f3);
writeln("simpsonsIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
writeln();
 
writeln("f(x) = x with 6000000 steps from 0 to 6000");
exact = 18000000;
calculated = leftRectangleIntegration(a = 0.0, b = 6000.0, N = 6000000, f = f3);
writeln("leftRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = rightRectangleIntegration(a = 0.0, b = 6000.0, N = 6000000, f = f3);
writeln("rightRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = midpointRectangleIntegration(a = 0.0, b = 6000.0, N = 6000000, f = f3);
writeln("midpointRectangleIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = trapezoidIntegration(a = 0.0, b = 6000.0, N = 6000000, f = f3);
writeln("trapezoidIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
calculated = simpsonsIntegration(a = 0.0, b = 6000.0, N = 6000000, f = f3);
writeln("simpsonsIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
writeln();
</syntaxhighlight>
output
<syntaxhighlight lang="text">
f(x) = x**3 with 100 steps from 0 to 1
leftRectangleIntegration: calculated = 0.245025; exact = 0.25; difference = 0.004975
rightRectangleIntegration: calculated = 0.255025; exact = 0.25; difference = 0.005025
midpointRectangleIntegration: calculated = 0.249988; exact = 0.25; difference = 1.25e-05
trapezoidIntegration: calculated = 0.250025; exact = 0.25; difference = 2.5e-05
simpsonsIntegration: calculated = 0.25; exact = 0.25; difference = 5.55112e-17
 
f(x) = 1/x with 1000 steps from 1 to 100
leftRectangleIntegration: calculated = 4.65499; exact = 4.60517; difference = 0.0498211
rightRectangleIntegration: calculated = 4.55698; exact = 4.60517; difference = 0.0481889
midpointRectangleIntegration: calculated = 4.60476; exact = 4.60517; difference = 0.000407451
trapezoidIntegration: calculated = 4.60599; exact = 4.60517; difference = 0.000816058
simpsonsIntegration: calculated = 4.60517; exact = 4.60517; difference = 3.31627e-06
 
f(x) = x with 5000000 steps from 0 to 5000
leftRectangleIntegration: calculated = 1.25e+07; exact = 1.25e+07; difference = 2.5
rightRectangleIntegration: calculated = 1.25e+07; exact = 1.25e+07; difference = 2.5
midpointRectangleIntegration: calculated = 1.25e+07; exact = 1.25e+07; difference = 0.0
trapezoidIntegration: calculated = 1.25e+07; exact = 1.25e+07; difference = 1.86265e-09
simpsonsIntegration: calculated = 1.25e+07; exact = 1.25e+07; difference = 3.72529e-09
 
f(x) = x with 6000000 steps from 0 to 6000
leftRectangleIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 3.0
rightRectangleIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 3.0
midpointRectangleIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 7.45058e-09
trapezoidIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 3.72529e-09
simpsonsIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 0.0
</syntaxhighlight>
 
=={{header|CoffeeScript}}==
{{trans|python}}
<langsyntaxhighlight lang="coffeescript">
rules =
left_rect: (f, x, h) -> f(x)
Line 911 ⟶ 1,583:
result = integrate func, a, b, steps, rule
console.log rule_name, result
</syntaxhighlight>
</lang>
output
<syntaxhighlight lang="text">
> coffee numerical_integration.coffee
-- tests for cube with 100 steps from 0 to 1
Line 939 ⟶ 1,611:
trapezium 17999999.999999993
simpson 17999999.999999993
</syntaxhighlight>
</lang>
 
=={{header|Comal}}==
{{works with|OpenComal on Linux}}
<syntaxhighlight lang="comal">
1000 PRINT "F(X)";" FROM";" TO";" L-Rect";" M-Rect";" R-Rect ";" Trapez";" Simpson"
1010 fromval:=0
1020 toval:=1
1030 PRINT "X^3 ";
1040 PRINT USING "#####": fromval;
1050 PRINT USING "#####": toval;
1060 PRINT USING "###.#########": numint(f1, "L", fromval, toval, 100);
1070 PRINT USING "###.#########": numint(f1, "R", fromval, toval, 100);
1080 PRINT USING "###.#########": numint(f1, "M", fromval, toval, 100);
1090 PRINT USING "###.#########": numint(f1, "T", fromval, toval, 100);
1100 PRINT USING "###.#########": numint(f1, "S", fromval, toval, 100)
1110 //
1120 fromval:=1
1130 toval:=100
1140 PRINT "1/X ";
1150 PRINT USING "#####": fromval;
1160 PRINT USING "#####": toval;
1170 PRINT USING "###.#########": numint(f2, "L", fromval, toval, 1000);
1180 PRINT USING "###.#########": numint(f2, "R", fromval, toval, 1000);
1190 PRINT USING "###.#########": numint(f2, "M", fromval, toval, 1000);
1200 PRINT USING "###.#########": numint(f2, "T", fromval, toval, 1000);
1210 PRINT USING "###.#########": numint(f2, "S", fromval, toval, 1000)
1220 fromval:=0
1230 toval:=5000
1240 PRINT "X ";
1250 PRINT USING "#####": fromval;
1260 PRINT USING "#####": toval;
1270 PRINT USING "#########.###": numint(f3, "L", fromval, toval, 5000000);
1280 PRINT USING "#########.###": numint(f3, "R", fromval, toval, 5000000);
1290 PRINT USING "#########.###": numint(f3, "M", fromval, toval, 5000000);
1300 PRINT USING "#########.###": numint(f3, "T", fromval, toval, 5000000);
1310 PRINT USING "#########.###": numint(f3, "S", fromval, toval, 5000000)
1320 //
1330 fromval:=0
1340 toval:=6000
1350 PRINT "X ";
1360 PRINT USING "#####": fromval;
1370 PRINT USING "#####": toval;
1380 PRINT USING "#########.###": numint(f3, "L", fromval, toval, 6000000);
1390 PRINT USING "#########.###": numint(f3, "R", fromval, toval, 6000000);
1400 PRINT USING "#########.###": numint(f3, "M", fromval, toval, 6000000);
1410 PRINT USING "#########.###": numint(f3, "T", fromval, toval, 6000000);
1420 PRINT USING "#########.###": numint(f3, "S", fromval, toval, 6000000)
1430 END
1440 //
1450 FUNC numint(FUNC f, type$, lbound, rbound, iters) CLOSED
1460 delta:=(rbound-lbound)/iters
1470 integral:=0
1480 CASE type$ OF
1490 WHEN "L", "T", "S"
1500 actval:=lbound
1510 WHEN "M"
1520 actval:=lbound+delta/2
1530 WHEN "R"
1540 actval:=lbound+delta
1550 OTHERWISE
1560 actval:=lbound
1570 ENDCASE
1580 FOR n:=0 TO iters-1 DO
1590 CASE type$ OF
1600 WHEN "L", "M", "R"
1610 integral:+f(actval+n*delta)*delta
1620 WHEN "T"
1630 integral:+delta*(f(actval+n*delta)+f(actval+(n+1)*delta))/2
1640 WHEN "S"
1650 IF n=0 THEN
1660 sum1:=f(lbound+delta/2)
1670 sum2:=0
1680 ELSE
1690 sum1:+f(actval+n*delta+delta/2)
1700 sum2:+f(actval+n*delta)
1710 ENDIF
1720 OTHERWISE
1730 integral:=0
1740 ENDCASE
1750 ENDFOR
1760 IF type$="S" THEN
1770 RETURN (delta/6)*(f(lbound)+f(rbound)+4*sum1+2*sum2)
1780 ELSE
1790 RETURN integral
1800 ENDIF
1810 ENDFUNC
1820 //
1830 FUNC f1(x) CLOSED
1840 RETURN x^3
1850 ENDFUNC
1860 //
1870 FUNC f2(x) CLOSED
1880 RETURN 1/x
1890 ENDFUNC
1900 //
1910 FUNC f3(x) CLOSED
1920 RETURN x
1930 ENDFUNC
</syntaxhighlight>
{{out}}
<pre>
F(X) FROM TO L-Rect M-Rect R-Rect Trapez Simpson
X^3 0 1 0.245025000 0.255025000 0.249987500 0.250025000 0.250000000
1/X 1 100 4.654991058 4.556981058 4.604762549 4.605986058 4.605170385
X 0 5000 12499997.500 12500002.500 12500000.000 12500000.000 12500000.000
X 0 6000 17999997.000 18000003.000 18000000.000 18000000.000 18000000.000
</pre>
 
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(defun left-rectangle (f a b n &aux (d (/ (- b a) n)))
(* d (loop for x from a below b by d summing (funcall f x))))
 
Line 969 ⟶ 1,748:
(funcall f b)
(* 4 sum1)
(* 2 sum2))))))</langsyntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.typetuple;
 
template integrate(alias method) {
Line 1,034 ⟶ 1,813:
writeln();
}
}</langsyntaxhighlight>
Output:
<pre>rectangular left: 0.202500
Line 1,061 ⟶ 1,840:
===A faster version===
This version avoids function pointers and delegates, same output:
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.typetuple;
 
template integrate(alias method) {
Line 1,131 ⟶ 1,910:
writeln();
}
}</langsyntaxhighlight>
=={{header|Delphi}}==
{{libheader| System.SysUtils}}
{{Trans|Python}}
<syntaxhighlight lang="delphi">program Numerical_integration;
 
{$APPTYPE CONSOLE}
 
uses
System.SysUtils;
 
type
TFx = TFunc<Double, Double>;
 
TMethod = TFunc<TFx, Double, Double, Double>;
 
function RectLeft(f: TFx; x, h: Double): Double;
begin
RectLeft := f(x);
end;
 
function RectMid(f: TFx; x, h: Double): Double;
begin
RectMid := f(x + h / 2);
end;
 
function RectRight(f: TFx; x, h: Double): Double;
begin
Result := f(x + h);
end;
 
function Trapezium(f: TFx; x, h: Double): Double;
begin
Result := (f(x) + f(x + h)) / 2.0;
end;
 
function Simpson(f: TFx; x, h: Double): Double;
begin
Result := (f(x) + 4 * f(x + h / 2) + f(x + h)) / 6.0;
end;
 
function Integrate(Method: TMethod; f: TFx; a, b: Double; n: Integer): Double;
var
h: Double;
k: integer;
begin
Result := 0;
h := (b - a) / n;
for k := 0 to n - 1 do
Result := Result + Method(f, a + k * h, h);
Result := Result * h;
end;
 
function f1(x: Double): Double;
begin
Result := x * x * x;
end;
 
function f2(x: Double): Double;
begin
Result := 1 / x;
end;
 
function f3(x: Double): Double;
begin
Result := x;
end;
 
var
fs: array[0..3] of TFx;
mt: array[0..4] of TMethod;
fsNames: array of string = ['x^3', '1/x', 'x', 'x'];
mtNames: array of string = ['RectLeft', 'RectMid', 'RectRight', 'Trapezium', 'Simpson'];
limits: array of array of Double = [[0, 1, 100], [1, 100, 1000], [0, 5000,
5000000], [0, 6000, 6000000]];
i, j, n: integer;
a, b: double;
 
begin
fs[0] := f1;
fs[1] := f2;
fs[2] := f3;
fs[3] := f3;
 
mt[0] := RectLeft;
mt[1] := RectMid;
mt[2] := RectRight;
mt[3] := Trapezium;
mt[4] := Simpson;
 
for i := 0 to High(fs) do
begin
Writeln('Integrate ' + fsNames[i]);
a := limits[i][0];
b := limits[i][1];
n := Trunc(limits[i][2]);
 
for j := 0 to High(mt) do
Writeln(Format('%.6f', [Integrate(mt[j], fs[i], a, b, n)]));
end;
readln;
end.</syntaxhighlight>
{{out}}
<pre>Integrate x^3
0,245025
0,249988
0,255025
0,250025
0,250000
Integrate 1/x
4,654991
4,604763
4,556981
4,605986
4,605170
Integrate x
12499997,500000
12500000,000000
12500002,500000
12500000,000000
12500000,000000
Integrate x
17999997,000000
18000000,000000
18000003,000000
18000000,000000
18000000,000000</pre>
=={{header|E}}==
 
{{trans|Python}}
 
<langsyntaxhighlight lang="e">pragma.enable("accumulator")
 
def leftRect(f, x, h) {
Line 1,162 ⟶ 2,066:
def h := (b-a) / steps
return h * accum 0 for i in 0..!steps { _ + meth(f, a+i*h, h) }
}</langsyntaxhighlight>
<langsyntaxhighlight lang="e">? integrate(fn x { x ** 2 }, 3.0, 7.0, 30, simpson)
# value: 105.33333333333334
 
? integrate(fn x { x ** 9 }, 0, 1, 300, simpson)
# value: 0.10000000002160479</langsyntaxhighlight>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">defmodule Numerical do
@funs ~w(leftrect midrect rightrect trapezium simpson)a
def leftrect(f, left,_right), do: f.(left)
def midrect(f, left, right), do: f.((left+right)/2)
def rightrect(f,_left, right), do: f.(right)
def trapezium(f, left, right), do: (f.(left)+f.(right))/2
def simpson(f, left, right), do: (f.(left) + 4*f.((left+right)/2.0) + f.(right)) / 6.0
def integrate(f, a, b, steps) when is_integer(steps) do
delta = (b - a) / steps
Enum.each(@funs, fn fun ->
total = Enum.reduce(0..steps-1, 0, fn i, acc ->
left = a + delta * i
acc + apply(Numerical, fun, [f, left, left+delta])
end)
:io.format "~10s : ~.6f~n", [fun, total * delta]
end)
end
end
f1 = fn x -> x * x * x end
IO.puts "f(x) = x^3, where x is [0,1], with 100 approximations."
Numerical.integrate(f1, 0, 1, 100)
f2 = fn x -> 1 / x end
IO.puts "\nf(x) = 1/x, where x is [1,100], with 1,000 approximations. "
Numerical.integrate(f2, 1, 100, 1000)
f3 = fn x -> x end
IO.puts "\nf(x) = x, where x is [0,5000], with 5,000,000 approximations."
Numerical.integrate(f3, 0, 5000, 5_000_000)
f4 = fn x -> x end
IO.puts "\nf(x) = x, where x is [0,6000], with 6,000,000 approximations."
Numerical.integrate(f4, 0, 6000, 6_000_000)</syntaxhighlight>
 
{{out}}
<pre>
f(x) = x^3, where x is [0,1], with 100 approximations.
leftrect : 0.245025
midrect : 0.249988
rightrect : 0.255025
trapezium : 0.250025
simpson : 0.250000
 
f(x) = 1/x, where x is [1,100], with 1,000 approximations.
leftrect : 4.654991
midrect : 4.604763
rightrect : 4.556981
trapezium : 4.605986
simpson : 4.605170
 
f(x) = x, where x is [0,5000], with 5,000,000 approximations.
leftrect : 12499997.500000
midrect : 12500000.000000
rightrect : 12500002.500000
trapezium : 12500000.000000
simpson : 12500000.000000
 
f(x) = x, where x is [0,6000], with 6,000,000 approximations.
leftrect : 17999997.000000
midrect : 18000000.000000
rightrect : 18000003.000000
trapezium : 18000000.000000
simpson : 18000000.000000
</pre>
 
=={{header|Euphoria}}==
<langsyntaxhighlight lang="euphoria">function int_leftrect(sequence bounds, integer n, integer func_id)
atom h, sum
h = (bounds[2]-bounds[1])/n
Line 1,249 ⟶ 2,222:
? int_rightrect({0,10},1000,routine_id("x"))
? int_midrect({0,10},1000,routine_id("x"))
? int_simpson({0,10},1000,routine_id("x"))</langsyntaxhighlight>
 
Output:
Line 1,267 ⟶ 2,240:
50
</pre>
 
=={{header|F Sharp}}==
<syntaxhighlight lang="fsharp">
// integration methods
let left f dx x = f x * dx
let right f dx x = f (x + dx) * dx
let mid f dx x = f (x + dx / 2.0) * dx
let trapez f dx x = (f x + f (x + dx)) * dx / 2.0
let simpson f dx x = (f x + 4.0 * f (x + dx / 2.0) + f (x + dx)) * dx / 6.0
 
// common integration function
let integrate a b f n method =
let dx = (b - a) / float n
[0..n-1] |> Seq.map (fun i -> a + float i * dx) |> Seq.sumBy (method f dx)
 
// test cases
let methods = [ left; right; mid; trapez; simpson ]
let cases = [
(fun x -> x * x * x), 0.0, 1.0, 100
(fun x -> 1.0 / x), 1.0, 100.0, 1000
(fun x -> x), 0.0, 5000.0, 5000000
(fun x -> x), 0.0, 6000.0, 6000000
]
 
// execute and output
Seq.allPairs cases methods
|> Seq.map (fun ((f, a, b, n), method) -> integrate a b f n method)
|> Seq.iter (printfn "%f")
</syntaxhighlight>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">
USE: math.functions
IN: scratchpad 0 1 [ 3 ^ ] integrate-simpson .
Line 1,281 ⟶ 2,283:
IN: scratchpad 6000000 num-steps set-global
IN: scratchpad 0 6000 [ ] integrate-simpson .
18000000</langsyntaxhighlight>
 
=={{header|Forth}}==
<langsyntaxhighlight lang="forth">fvariable step
 
defer method ( fn F: x -- fn[x] )
Line 1,323 ⟶ 2,325:
test mid fn2 \ 2.496091
test trap fn2 \ 2.351014
test simpson fn2 \ 2.447732</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ISO Fortran 95 and later if function f() is not already defined to be "elemental", define an elemental wrapper function around it to allow for array-based initialization:
<langsyntaxhighlight lang="fortran">elemental function elemf(x)
real :: elemf, x
elemf = f(x)
end function elemf</langsyntaxhighlight>
 
Use Array Initializers, Pointers, Array invocation of Elemental functions, Elemental array-array and array-scalar arithmetic, and the SUM intrinsic function. Methods are collected into a single function in a module.
<langsyntaxhighlight lang="fortran">module Integration
implicit none
 
Line 1,407 ⟶ 2,409:
end function integrate
 
end module Integration</langsyntaxhighlight>
 
Usage example:
<langsyntaxhighlight lang="fortran">program IntegrationTest
use Integration
use FunctionHolder
Line 1,421 ⟶ 2,423:
print *, integrate(afun, 0., 3**(1/3.), method='trapezoid')
 
end program IntegrationTest</langsyntaxhighlight>
 
The FunctionHolder module:
 
<langsyntaxhighlight lang="fortran">module FunctionHolder
implicit none
Line 1,437 ⟶ 2,439:
end function afun
end module FunctionHolder</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
Based on the BASIC entry and the BBC BASIC entry
<syntaxhighlight lang="freebasic">' version 17-09-2015
' compile with: fbc -s console
 
#Define screen_width 1024
#Define screen_height 256
ScreenRes screen_width, screen_height, 8
Width screen_width\8, screen_height\16
 
Function f1(x As Double) As Double
Return x^3
End Function
 
Function f2(x As Double) As Double
Return 1/x
End Function
 
Function f3(x As Double) As Double
Return x
End Function
 
Function leftrect(a As Double, b As Double, n As Double, _
ByVal f As Function (ByVal As Double) As Double) As Double
 
Dim As Double sum, x = a, h = (b - a) / n
 
For i As UInteger = 1 To n
sum = sum + h * f(x)
x = x + h
Next
 
leftrect = sum
End Function
 
Function rightrect(a As Double, b As Double, n As Double, _
ByVal f As Function (ByVal As Double) As Double) As Double
 
Dim As Double sum, x = a, h = (b - a) / n
 
For i As UInteger = 1 To n
x = x + h
sum = sum + h * f(x)
Next
 
rightrect = sum
End Function
 
Function midrect(a As Double, b As Double, n As Double, _
ByVal f As Function (ByVal As Double) As Double) As Double
 
Dim As Double sum, h = (b - a) / n, x = a + h / 2
 
For i As UInteger = 1 To n
sum = sum + h * f(x)
x = x + h
Next
 
midrect = sum
End Function
 
Function trap(a As Double, b As Double, n As Double, _
ByVal f As Function (ByVal As Double) As Double) As Double
 
Dim As Double x = a, h = (b - a) / n
Dim As Double sum = h * (f(a) + f(b)) / 2
 
For i As UInteger = 1 To n -1
x = x + h
sum = sum + h * f(x)
Next
 
trap = sum
End Function
 
Function simpson(a As Double, b As Double, n As Double, _
ByVal f As Function (ByVal As Double) As Double) As Double
 
Dim As UInteger i
Dim As Double sum1, sum2
Dim As Double h = (b - a) / n
 
For i = 0 To n -1
sum1 = sum1 + f(a + h * i + h / 2)
Next i
 
For i = 1 To n -1
sum2 = sum2 + f(a + h * i)
Next i
 
simpson = h / 6 * (f(a) + f(b) + 4 * sum1 + 2 * sum2)
End Function
 
' ------=< main >=------
 
Dim As Double y
Dim As String frmt = " ##.##########"
 
Print
Print "function range steps leftrect midrect " + _
"rightrect trap simpson "
 
Print "f(x) = x^3 0 - 1 100";
Print Using frmt; leftrect(0, 1, 100, @f1); midrect(0, 1, 100, @f1); _
rightrect(0, 1, 100, @f1); trap(0, 1, 100, @f1); simpson(0, 1, 100, @f1)
 
Print "f(x) = 1/x 1 - 100 1000";
Print Using frmt; leftrect(1, 100, 1000, @f2); midrect(1, 100, 1000, @f2); _
rightrect(1, 100, 1000, @f2); trap(1, 100, 1000, @f2); _
simpson(1, 100, 1000, @f2)
 
frmt = " #########.###"
Print "f(x) = x 0 - 5000 5000000";
Print Using frmt; leftrect(0, 5000, 5000000, @f3); midrect(0, 5000, 5000000, @f3); _
rightrect(0, 5000, 5000000, @f3); trap(0, 5000, 5000000, @f3); _
simpson(0, 5000, 5000000, @f3)
 
Print "f(x) = x 0 - 6000 6000000";
Print Using frmt; leftrect(0, 6000, 6000000, @f3); midrect(0, 6000, 6000000, @f3); _
rightrect(0, 6000, 6000000, @f3); trap(0, 6000, 6000000, @f3); _
simpson(0, 6000, 6000000, @f3)
 
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre>function range steps leftrect midrect rightrect trap simpson
f(x) = x^3 0 - 1 100 0.2450250000 0.2499875000 0.2550250000 0.2500250000 0.2500000000
f(x) = 1/x 1 - 100 1000 4.6549910575 4.6047625487 4.5569810575 4.6059860575 4.6051703850
f(x) = x 0 - 5000 5000000 12499997.501 12500000.001 12500002.501 12500000.001 12500000.000
f(x) = x 0 - 6000 6000000 17999997.001 18000000.001 18000003.001 18000000.001 18000000.000</pre>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 1,463 ⟶ 2,600:
spec{0, 6000, 6e6, 18e6, "x", func(x float64) float64 { return x }},
}
 
// object for associating a printable function name with an integration method
type method struct {
name string
integrate func(spec) float64
}
 
// integration methods implemented per task description
var methods = []method{
Line 1,478 ⟶ 2,615:
method{"Simpson's ", simpson},
}
 
func rectLeft(t spec) float64 {
var a adder
parts := make([]float64, t.n)
r := t.upper - t.lower
nf := float64(t.n)
x0 := t.lower
for i := range0; partsi < t.n; i++ {
x1 := t.lower + float64(i+1)*r/nf
// x1-x0 better than r/nf.
// (with r/nf, the represenation error accumulates)
parts[i] = a.add(t.f(x0) * (x1 - x0))
x0 = x1
}
return suma.total(parts)
}
 
func rectRight(t spec) float64 {
var a adder
parts := make([]float64, t.n)
r := t.upper - t.lower
nf := float64(t.n)
x0 := t.lower
for i := range0; partsi < t.n; i++ {
x1 := t.lower + float64(i+1)*r/nf
parts[i] = a.add(t.f(x1) * (x1 - x0))
x0 = x1
}
return suma.total(parts)
}
 
func rectMid(t spec) float64 {
var a adder
parts := make([]float64, t.n)
r := t.upper - t.lower
nf := float64(t.n)
Line 1,518 ⟶ 2,655:
// as well. we just need one extra point, so we use lower-.5.
x0 := t.lower - .5*r/nf
for i := range0; partsi < t.n; i++ {
x1 := t.lower + (float64(i)+.5)*r/nf
parts[i] = a.add(t.f(x1) * (x1 - x0))
x0 = x1
}
return suma.total(parts)
}
 
func trap(t spec) float64 {
var a adder
parts := make([]float64, t.n)
r := t.upper - t.lower
nf := float64(t.n)
x0 := t.lower
f0 := t.f(x0)
for i := range0; partsi < t.n; i++ {
x1 := t.lower + float64(i+1)*r/nf
f1 := t.f(x1)
parts[i] = a.add((f0 + f1) * .5 * (x1 - x0))
x0, f0 = x1, f1
}
return suma.total(parts)
}
 
func simpson(t spec) float64 {
var a adder
parts := make([]float64, 2*t.n+1)
r := t.upper - t.lower
nf := float64(t.n)
Line 1,548 ⟶ 2,685:
// we play a little loose with the values used for dx and dx0.
dx0 := r / nf
parts[0] = a.add(t.f(t.lower) * dx0)
parts[1] = a.add(t.f(t.lower+dx0*.5) * dx0 * 4)
x0 := t.lower + dx0
for i := 1; i < t.n; i++ {
Line 1,555 ⟶ 2,692:
xmid := (x0 + x1) * .5
dx := x1 - x0
parts[2*i] = a.add(t.f(x0) * dx * 2)
parts[2*i+1] = a.add(t.f(xmid) * dx * 4)
x0 = x1
}
parts[2*ta.n] = add(t.f(t.upper) * dx0)
return suma.total(parts) / 6
}
 
// sum a list of numbers avoiding loss of precision
func sum(v []float64) float64 {
ifvar len(v)a == 0 {adder
for _, e := returnrange 0v {
a.add(e)
}
return a.total()
var parts []float64
}
for _, x := range v {
 
var i int
type adder struct {
for _, p := range parts {
sum, := p +e xfloat64
}
var err float64
 
if math.Abs(x) < math.Abs(p) {
func (a *adder) total() float64 {
err = x - (sum - p)
return a.sum + } else {a.e
}
err = p - (sum - x)
 
}
func (a *adder) add(x float64) {
if err != 0 {
sum := a.sum + x
parts[i] = err
e := sum - i++a.sum
a.e += a.sum - (sum - e) + }(x - e)
xa.sum = sum
}
}
 
parts = append(parts[:i], x)
}
var sum float64
for _, x := range parts {
sum += x
}
return sum
}
func main() {
for _, t := range data {
Line 1,610 ⟶ 2,739:
fmt.Println("")
}
}</langsyntaxhighlight>
{{out}}
Output:
<pre>
Test case: f(x) = x^3
Integration from 0 to 1 in 100 parts
Exact result 2.5000000e-01 Error
Line 1,652 ⟶ 2,780:
=={{header|Groovy}}==
Solution:
<langsyntaxhighlight lang="groovy">def assertBounds = { List bounds, int nRect ->
assert (bounds.size() == 2) && (bounds[0] instanceof Double) && (bounds[1] instanceof Double) && (nRect > 0)
}
Line 1,695 ⟶ 2,823:
h/3*((fLeft + fRight).sum() + 4*(fMid.sum()))
}
}</langsyntaxhighlight>
 
Test:
 
Each "nRect" (number of rectangles) value given below is the minimum value that meets the tolerance condition for the given circumstances (function-to-integrate, integral-type and integral-bounds).
<langsyntaxhighlight lang="groovy">double tolerance = 0.0001 // allowable "wrongness", ensures accuracy to 1 in 10,000
 
double sinIntegralCalculated = -(Math.cos(Math.PI) - Math.cos(0d))
Line 1,739 ⟶ 2,867:
assert ((simpsonsIntegral([0d, Math.PI], 1, cubicPoly) - cpIntegralCalc0ToPI)/ cpIntegralCalc0ToPI).abs() < tolerance**2.75 // 1 in 100 billion
double cpIntegralCalcMinusEToPI = (cubicPolyAntiDeriv(Math.PI) - cubicPolyAntiDeriv(-Math.E))
assert ((simpsonsIntegral([-Math.E, Math.PI], 1, cubicPoly) - cpIntegralCalcMinusEToPI)/ cpIntegralCalcMinusEToPI).abs() < tolerance**2.5 // 1 in 10 billion</langsyntaxhighlight>
 
Requested Demonstrations:
<langsyntaxhighlight lang="groovy">println "f(x) = x**3, where x is [0,1], with 100 approximations. The exact result is 1/4, or 0.25."
println ([" LeftRect": leftRectIntegral([0d, 1d], 100) { it**3 }])
println (["RightRect": rightRectIntegral([0d, 1d], 100) { it**3 }])
Line 1,772 ⟶ 2,900:
println (["Trapezoid": trapezoidIntegral([0d, 6000d], 6000000) { it }])
println ([" Simpsons": simpsonsIntegral([0d, 6000d], 6000000) { it }])
println ()</langsyntaxhighlight>
 
Output:
Line 1,807 ⟶ 2,935:
Different approach from most of the other examples: First, the function ''f'' might be expensive to calculate, and so it should not be evaluated several times. So, ideally, we want to have positions ''x'' and weights ''w'' for each method and then just calculate the approximation of the integral by
 
<langsyntaxhighlight lang="haskell">approx f xs ws = sum [w * f x | (x,w) <- zip xs ws]</langsyntaxhighlight>
 
Second, let's to generalize all integration methods into one scheme. The methods can all be characterized by the coefficients ''vs'' they use in a particular interval. These will be fractions, and for terseness, we extract the denominator as an extra argument ''v''.
Line 1,813 ⟶ 2,941:
Now there are the closed formulas (which include the endpoints) and the open formulas (which exclude them). Let's do the open formulas first, because then the coefficients don't overlap:
<langsyntaxhighlight lang="haskell">integrateOpen :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
integrateOpen v vs f a b n = approx f xs ws * h / v where
m = fromIntegral (length vs) * n
Line 1,819 ⟶ 2,947:
ws = concat $ replicate n vs
c = a + h/2
xs = [c + h * fromIntegral i | i <- [0..m-1]]</langsyntaxhighlight>
 
Similarly for the closed formulas, but we need an additional function ''overlap'' which sums the coefficients overlapping at the interior interval boundaries:
<langsyntaxhighlight lang="haskell">integrateClosed :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
integrateClosed v vs f a b n = approx f xs ws * h / v where
m = fromIntegral (length vs - 1) * n
Line 1,836 ⟶ 2,964:
inter n [] = x : inter (n-1) xs
inter n [y] = (x+y) : inter (n-1) xs
inter n (y:ys) = y : inter n ys</langsyntaxhighlight>
 
And now we can just define
 
<langsyntaxhighlight lang="haskell">intLeftRect = integrateClosed 1 [1,0]
intRightRect = integrateClosed 1 [0,1]
intMidRect = integrateOpen 1 [1]
intTrapezium = integrateClosed 2 [1,1]
intSimpson = integrateClosed 3 [1,4,1]</langsyntaxhighlight>
 
or, as easily, some additional schemes:
 
<langsyntaxhighlight lang="haskell">intMilne = integrateClosed 45 [14,64,24,64,14]
intOpen1 = integrateOpen 2 [3,3]
intOpen2 = integrateOpen 3 [8,-4,8]</langsyntaxhighlight>
 
Some examples:
Line 1,867 ⟶ 2,995:
The whole program:
 
<syntaxhighlight lang ="haskell">approx f xs ws = sum [w * f x | (x,w) <- zip xs ws]
:: Fractional a
=> (a1 -> a) -> [a1] -> [a] -> a
approx f xs ws =
sum
[ w * f x
| (x, w) <- zip xs ws ]
 
integrateOpen
integrateOpen :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
:: Fractional a
integrateOpen v vs f a b n = approx f xs ws * h / v where
=> a -> [a] -> (a -> a) -> a -> a -> Int -> a
m = fromIntegral (length vs) * n
integrateOpen v vs f a b n = approx f xs ws * h / v
h = (b-a) / fromIntegral m
where
ws = concat $ replicate n vs
m = fromIntegral (length vs) * n
c = a + h/2
xs = [c + h *= fromIntegral(b i- |a) i/ <-fromIntegral [0..m-1]]
ws = concat $ replicate n vs
c = a + h / 2
xs =
[ c + h * fromIntegral i
| i <- [0 .. m - 1] ]
 
integrateClosed
integrateClosed :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
:: Fractional a
integrateClosed v vs f a b n = approx f xs ws * h / v where
=> a -> [a] -> (a -> a) -> a -> a -> Int -> a
m = fromIntegral (length vs - 1) * n
integrateClosed v vs f a b n = approx f xs ws * h / v
h = (b-a) / fromIntegral m
where
ws = overlap n vs
m = fromIntegral (length vs - 1) * n
xs = [a + h * fromIntegral i | i <- [0..m]]
h = (b - a) / fromIntegral m
ws = overlap n vs
xs =
[ a + h * fromIntegral i
| i <- [0 .. m] ]
 
overlap
overlap :: Num a => Int -> [a] -> [a]
:: Num a
overlap n [] = []
=> Int -> [a] -> [a]
overlap n (x:xs) = x : inter n xs where
overlap n [] = []
inter 1 ys = ys
interoverlap n [] (x:xs) = x : inter (n-1) xs
where
inter n [y] = (x+y) : inter (n-1) xs
inter n1 (y:ys) = y : inter n ys
inter n [] = x : inter (n - 1) xs
 
inter n [y] = (x + y) : inter (n - 1) xs
intLeftRect = integrateClosed 1 [1,0]
inter n (y:ys) = y : inter n ys
intMidRect = integrateOpen 1 [1]
intRightRect = integrateClosed 1 [0,1]
intTrapezium = integrateClosed 2 [1,1]
intSimpson = integrateClosed 3 [1,4,1]
 
uncurry4 :: (t1 -> t2 -> t3 -> t4 -> t) -> (t1, t2, t3, t4) -> t
uncurry4 f ~(a, b, c, d) = f a b c d
 
-- TEST ----------------------------------------------------------------------
main = do
ms
let m1 = "rectangular left: "
:: Fractional a
let m2 = "rectangular middle: "
=> [(String, (a -> a) -> a -> a -> Int -> a)]
let m3 = "rectangular right: "
ms =
let m4 = "trapezium: "
[ ("rectangular left", integrateClosed 1 [1, 0])
let m5 = "simpson: "
, ("rectangular middle", integrateOpen 1 [1])
, ("rectangular right", integrateClosed 1 [0, 1])
, ("trapezium", integrateClosed 2 [1, 1])
, ("simpson", integrateClosed 3 [1, 4, 1])
]
 
integrations
let arg1 = ((\x -> x ^ 3), 0, 1, 100)
:: (Fractional a, Num t, Num t1, Num t2)
putStrLn $ m1 ++ (show $ uncurry4 intLeftRect arg1)
=> [(String, (a -> a, t, t1, t2))]
putStrLn $ m2 ++ (show $ uncurry4 intMidRect arg1)
integrations =
putStrLn $ m3 ++ (show $ uncurry4 intRightRect arg1)
[ ("x^3", ((^ 3), 0, 1, 100))
putStrLn $ m4 ++ (show $ uncurry4 intTrapezium arg1)
, ("1/x", ((1 /), 1, 100, 1000))
putStrLn $ m5 ++ (show $ uncurry4 intSimpson arg1)
, ("x", (id, 0, 5000, 500000))
putStrLn ""
, ("x", (id, 0, 6000, 600000))
]
 
main :: IO ()
let arg2 = ((\x -> 1 / x), 1, 100, 1000)
main =
putStrLn $ m1 ++ (show $ uncurry4 intLeftRect arg2)
mapM_
putStrLn $ m2 ++ (show $ uncurry4 intMidRect arg2)
(\(s, e@(_, a, b, n)) -> do
putStrLn $ m3 ++ (show $ uncurry4 intRightRect arg2)
putStrLn
putStrLn $ m4 ++ (show $ uncurry4 intTrapezium arg2)
(concat
putStrLn $ m5 ++ (show $ uncurry4 intSimpson arg2)
[ indent 20 ("f(x) = " ++ s)
putStrLn ""
, show [a, b]
, " ("
, show n
, " approximations)"
])
mapM_
(\(s, integration) ->
putStrLn (indent 20 (s ++ ":") ++ show (uncurry4 integration e)))
ms
putStrLn [])
integrations
where
indent n = take n . (++ replicate n ' ')</syntaxhighlight>
{{Out}}
<pre>f(x) = x^3 [0.0,1.0] (100 approximations)
rectangular left: 0.24502500000000005
rectangular middle: 0.24998750000000006
rectangular right: 0.25502500000000006
trapezium: 0.25002500000000005
simpson: 0.25000000000000006
 
f(x) = 1/x [1.0,100.0] (1000 approximations)
let arg3 = ((\x -> x), 0, 5000, 5000000)
rectangular left: 4.65499105751468
putStrLn $ m1 ++ (show $ uncurry4 intLeftRect arg3)
rectangular middle: 4.604762548678376
putStrLn $ m2 ++ (show $ uncurry4 intMidRect arg3)
rectangular right: 4.55698105751468
putStrLn $ m3 ++ (show $ uncurry4 intRightRect arg3)
trapezium: 4.605986057514681
putStrLn $ m4 ++ (show $ uncurry4 intTrapezium arg3)
simpson: 4.605170384957135
putStrLn $ m5 ++ (show $ uncurry4 intSimpson arg3)
putStrLn ""
 
f(x) = x [0.0,5000.0] (500000 approximations)
let arg4 = ((\x -> x), 0, 6000, 6000000)
rectangular left: 1.2499975000000006e7
putStrLn $ m1 ++ (show $ uncurry4 intLeftRect arg4)
rectangular middle: 1.2499999999999993e7
putStrLn $ m2 ++ (show $ uncurry4 intMidRect arg4)
rectangular right: 1.2500025000000006e7
putStrLn $ m3 ++ (show $ uncurry4 intRightRect arg4)
trapezium: 1.2500000000000006e7
putStrLn $ m4 ++ (show $ uncurry4 intTrapezium arg4)
simpson: 1.2499999999999998e7
putStrLn $ m5 ++ (show $ uncurry4 intSimpson arg4)</lang>
 
f(x) = x [0.0,6000.0] (600000 approximations)
Output:
<pre>rectangular left: 01.245025000000000057999970000000004e7
rectangular middle: 01.249987500000000067999999999999993e7
rectangular right: 01.255025000000000068000030000000004e7
trapezium: 01.250025000000000058000000000000004e7
simpson: 01.250000000000000067999999999999996e7</pre>
 
rectangular left: 4.65499105751468
rectangular middle: 4.604762548678376
rectangular right: 4.55698105751468
trapezium: 4.605986057514681
simpson: 4.605170384957134
 
rectangular left: 1.24999975e7
rectangular middle: 1.25e7
rectangular right: 1.25000025e7
trapezium: 1.25e7
simpson: 1.2499999999999993e7
 
rectangular left: 1.7999997000000004e7
rectangular middle: 1.7999999999999993e7
rectangular right: 1.8000003000000004e7
trapezium: 1.8000000000000004e7
simpson: 1.7999999999999993e7</pre>
Runtime: about 7 seconds.
 
=={{header|J}}==
===Solution:===
<langsyntaxhighlight lang="j">integrate=: adverb define
'a b steps'=. 3{.y,128
size=. (b - a)%steps
Line 1,976 ⟶ 3,126:
trapezium=: adverb def '-: +/ u y'
 
simpson =: adverb def '6 %~ +/ 1 1 4 * u y, -:+/y'</langsyntaxhighlight>
===Example usage===
====Required Examples====
<langsyntaxhighlight lang="j"> Ir=: rectangle integrate
It=: trapezium integrate
Is=: simpson integrate
Line 2,006 ⟶ 3,156:
1.8e7
] Is 0 6000 6e6
1.8e7</langsyntaxhighlight>
====Older Examples====
Integrate <code>square</code> (<code>*:</code>) from 0 to &pi; in 10 steps using various methods.
<langsyntaxhighlight lang="j"> *: rectangle integrate 0 1p1 10
10.3095869962
*: trapezium integrate 0 1p1 10
10.3871026879
*: simpson integrate 0 1p1 10
10.3354255601</langsyntaxhighlight>
Integrate <code>sin</code> from 0 to &pi; in 10 steps using various methods.
<langsyntaxhighlight lang="j"> sin=: 1&o.
sin rectangle integrate 0 1p1 10
2.00824840791
Line 2,022 ⟶ 3,172:
1.98352353751
sin simpson integrate 0 1p1 10
2.00000678444</langsyntaxhighlight>
===Aside===
Note that J has a primitive verb <code>p..</code> for integrating polynomials. For example the integral of <math>x^2</math> (which can be described in terms of its coefficients as <code>0 0 1</code>) is:
<langsyntaxhighlight lang="j"> 0 p.. 0 0 1
0 0 0 0.333333333333
0 p.. 0 0 1x NB. or using rationals
0 0 0 1r3</langsyntaxhighlight>
That is: <math>0x^0 + 0x^1 + 0x^2 + \tfrac{1}{3}x^3</math><br>
So to integrate <math>x^2</math> from 0 to &pi; :
<langsyntaxhighlight lang="j"> 0 0 1 (0&p..@[ -~/@:p. ]) 0 1p1
10.3354255601</langsyntaxhighlight>
 
That said, J also has <code>d.</code> which can [http://www.jsoftware.com/help/dictionary/dddot.htm integrate] suitable functions.
 
<langsyntaxhighlight lang="j"> *:d._1]1p1
10.3354</langsyntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java5">class NumericalIntegration
{
 
Line 2,163 ⟶ 3,313:
}
}
</syntaxhighlight>
</lang>
 
=={{header|jq}}==
{{works with|jq}}
 
'''Also works with gojq, the Go implementation of jq.'''
 
The five different integration methods are each presented as independent functions
to facilitate reuse.
<syntaxhighlight lang=jq>
def integrate_left($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + ($x|f) )
| . * $h;
 
def integrate_mid($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + (($x + $h/2) | f) )
| . * $h;
 
def integrate_right($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(1; $n + 1) as $i (0;
($a + $i * $h) as $x
| . + ($x|f) )
| . * $h;
 
def integrate_trapezium($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + ( ($x|f) + (($x + $h)|f)) / 2 )
| . * $h;
 
def integrate_simpson($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + ((( ($x|f) + 4 * (($x + ($h/2))|f) + (($x + $h)|f)) / 6)) )
| . * $h;
 
def demo($a; $b; $n; f):
"Left = \(integrate_left($a;$b;$n;f))",
"Mid = \(integrate_mid ($a;$b;$n;f))",
"Right = \(integrate_right($a;$b;$n;f))",
"Trapezium = \(integrate_trapezium($a;$b;$n;f))",
"Simpson = \(integrate_simpson($a;$b;$n;f))",
"" ;
 
demo(0; 1; 100; .*.*. ),
demo(1; 100; 1000; 1 / . ),
demo(0; 5000; 5000000; . ),
demo(0; 6000; 6000000; . )
 
 
</syntaxhighlight>
{{output}}
<pre>
Left = 0.24502500000000005
Mid = 0.24998750000000006
Right = 0.25502500000000006
Trapezium = 0.250025
Simpson = 0.25
 
Left = 4.65499105751468
Mid = 4.604762548678376
Right = 4.55698105751468
Trapezium = 4.605986057514676
Simpson = 4.605170384957133
 
Left = 12499997.5
Mid = 12500000
Right = 12500002.5
Trapezium = 12500000
Simpson = 12500000
 
Left = 17999997.000000004
Mid = 17999999.999999993
Right = 18000003.000000004
Trapezium = 17999999.999999993
Simpson = 17999999.999999993
</pre>
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
 
<syntaxhighlight lang="julia">function simpson(f::Function, a::Number, b::Number, n::Integer)
h = (b - a) / n
s = f(a + h / 2)
for i in 1:(n-1)
s += f(a + h * i + h / 2) + f(a + h * i) / 2
end
return h/6 * (f(a) + f(b) + 4*s)
end
 
rst =
simpson(x -> x ^ 3, 0, 1, 100),
simpson(x -> 1 / x, 1, 100, 1000),
simpson(x -> x, 0, 5000, 5_000_000),
simpson(x -> x, 0, 6000, 6_000_000)
 
@show rst</syntaxhighlight>
 
{{out}}
<pre>rst = (0.25000000000000006, 4.605170384957135, 1.25e7, 1.8e7)</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.1.2
 
typealias Func = (Double) -> Double
 
fun integrate(a: Double, b: Double, n: Int, f: Func) {
val h = (b - a) / n
val sum = DoubleArray(5)
for (i in 0 until n) {
val x = a + i * h
sum[0] += f(x)
sum[1] += f(x + h / 2.0)
sum[2] += f(x + h)
sum[3] += (f(x) + f(x + h)) / 2.0
sum[4] += (f(x) + 4.0 * f(x + h / 2.0) + f(x + h)) / 6.0
}
val methods = listOf("LeftRect ", "MidRect ", "RightRect", "Trapezium", "Simpson ")
for (i in 0..4) println("${methods[i]} = ${"%f".format(sum[i] * h)}")
println()
}
 
fun main(args: Array<String>) {
integrate(0.0, 1.0, 100) { it * it * it }
integrate(1.0, 100.0, 1_000) { 1.0 / it }
integrate(0.0, 5000.0, 5_000_000) { it }
integrate(0.0, 6000.0, 6_000_000) { it }
}</syntaxhighlight>
 
{{out}}
<pre>
LeftRect = 0.245025
MidRect = 0.249988
RightRect = 0.255025
Trapezium = 0.250025
Simpson = 0.250000
 
LeftRect = 4.654991
MidRect = 4.604763
RightRect = 4.556981
Trapezium = 4.605986
Simpson = 4.605170
 
LeftRect = 12499997.500000
MidRect = 12500000.000000
RightRect = 12500002.500000
Trapezium = 12500000.000000
Simpson = 12500000.000000
 
LeftRect = 17999997.000000
MidRect = 18000000.000000
RightRect = 18000003.000000
Trapezium = 18000000.000000
Simpson = 18000000.000000
</pre>
 
=={{header|Lambdatalk}}==
Following Python's presentation
 
<syntaxhighlight lang="scheme">
1) FUNCTIONS
 
{def left_rect {lambda {:f :x :h} {:f :x}}}
-> left_rect
 
{def mid_rect {lambda {:f :x :h} {:f {+ :x {/ :h 2}}}}}
-> mid_rect
 
{def right_rect {lambda {:f :x :h} {:f {+ :x :h}}}}
-> right_rect
 
{def trapezium {lambda {:f :x :h} {/ {+ {:f :x} {:f {+ :x :h}}} 2}}}
-> trapezium
 
{def simpson
{lambda {:f :x :h}
{/ {+ {:f :x} {* 4 {:f {+ :x {/ :h 2}}}} {:f {+ :x :h}}} 6}}}
-> simpson
 
{def cube {lambda {:x} {* :x :x :x}}}
-> cube
 
{def reciprocal {lambda {:x} {/ 1 :x}}}
-> reciprocal
 
{def identity {lambda {:x} :x}}
-> identity
{def integrate
{lambda {:f :a :b :steps :meth}
{let { {:f :f} {:a :a} {:steps :steps} {:meth :meth}
{:h {/ {- :b :a} :steps}}
} {* :h {+ {S.map {{lambda {:meth :f :a :h :i}
{:meth :f {+ :a {* :i :h}} :h}
} :meth :f :a :h}
{S.serie 1 :steps}} }}}}}
-> integrate
 
{def methods left_rect mid_rect right_rect trapezium simpson}
-> methods
 
2) TESTS
 
We apply the following template
 
{b ∫*function* from *a* to *b* steps *steps*}
{table
{tr {td exact value:} {td *value*}} // the awaited value
{S.map {lambda {:m}
{tr {td :m}
{td {integrate *function* *a* *b* *steps* :m}} }}
{methods}} }
 
to the given *functions* from *a* to *b* with *steps*
and we get:
 
∫x3 from 0 to 100 steps 100 (computed in 13ms)
exact value: 0.25 // 1/4
left_rect 0.25502500000000006
mid_rect 0.26013825000000007
right_rect 0.26532800000000006
trapezium 0.2601765
simpson 0.260151
 
∫1/x from 1 to 100 steps 1000 (computed in 94ms)
exact value: 4.605170185988092 // log(100)
left_rect 4.55698105751468
mid_rect 4.511421425235764
right_rect 4.467888185754358
trapezium 4.512434621634517
simpson 4.511759157368674
 
∫x from 0 to 5000 steps 5000000 (computed in ... 560000m)
exact value: 12500000 // 5000*5000/2
left_rect 12500002.5
mid_rect 12500005
right_rect 12500007.5
trapezium 12500005
simpson 12500005
 
∫x from 0 to 6000 steps 6000 (computed in 420ms) too impatient for 6000000, sorry
exact value: 18000000 // 6000*6000/2
left_rect 18003000
mid_rect 18006000
right_rect 18009000
trapezium 18006000
simpson 18006000
</syntaxhighlight>
 
=={{header|Liberty BASIC}}==
Running the big loop value would take a VERY long time & seems unnecessary.<langsyntaxhighlight lang="lb">
while 1
read x$
Line 2,284 ⟶ 3,690:
 
end
</syntaxhighlight>
</lang>
 
Numerical integration
Line 2,318 ⟶ 3,724:
Trapezium method 18000000.0000000000 diff 0 0 %
Simpson's Rule 18000000.0000000000 diff 0 0 %
 
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to i.left :fn :x :step
output invoke :fn :x
end
Line 2,357 ⟶ 3,761:
print integrate "i.mid "fn2 4 -1 2 ; 2.496091
print integrate "i.trapezium "fn2 4 -1 2 ; 2.351014
print integrate "i.simpsons "fn2 4 -1 2 ; 2.447732</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">function leftRect( f, a, b, n )
local h = (b - a) / n
local x = a
Line 2,431 ⟶ 3,836:
print( int_methods[i]( function(x) return x end, 0, 5000, 5000000 ) )
print( int_methods[i]( function(x) return x end, 0, 6000, 6000000 ) )
end</langsyntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">leftRect[f_, a_Real, b_Real, N_Integer] :=
Module[{sum = 0, dx = (b - a)/N, x = a, n = N} ,
For[n = N, n > 0, n--, x += dx; sum += f[x];];
Line 2,459 ⟶ 3,864:
For[n = 1, n < N, n++, sum1 += f[a + dx*n + dx/2];
sum2 += f[a + dx*n];];
Return [(dx/6)*(f[a] + f[b] + 4*sum1 + 2*sum2)]]</langsyntaxhighlight>
<pre>f[x_] := x^3
g[x_] := 1/x
Line 2,474 ⟶ 3,879:
{12500003., 12500008., 12500005., 12500000., 12500000.},
{18000003., 18000009., 18000006., 18000000., 18000000.}}</pre>
 
=={{header|MATLAB}} / {{header|Octave}}==
 
Line 2,479 ⟶ 3,885:
 
Function for performing left rectangular integration: leftRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = leftRectIntegration(f,a,b,n)
 
format long;
Line 2,486 ⟶ 3,892:
integral = width * sum( f(x(1:n-1)) );
end</langsyntaxhighlight>
 
Function for performing right rectangular integration: rightRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = rightRectIntegration(f,a,b,n)
 
format long;
Line 2,496 ⟶ 3,902:
integral = width * sum( f(x(2:n)) );
end</langsyntaxhighlight>
 
Function for performing mid-point rectangular integration: midPointRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = midPointRectIntegration(f,a,b,n)
 
format long;
Line 2,506 ⟶ 3,912:
integral = width * sum( f( (x(1:n-1)+x(2:n))/2 ) );
end</langsyntaxhighlight>
 
Function for performing trapezoidal integration: trapezoidalIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = trapezoidalIntegration(f,a,b,n)
 
format long;
Line 2,515 ⟶ 3,921:
integral = trapz( x,f(x) );
end</langsyntaxhighlight>
 
Simpson's rule for numerical integration is already included in MATLABMatlab as "quad()". It is not the same as the above examples, instead of specifying the amount of points to divide the x-axis into, the programmer passes the acceptable error tolerance for the calculation (parameter "tol").
<langsyntaxhighlight MATLABlang="matlab">integral = quad(f,a,b,tol)</langsyntaxhighlight>
 
Using anonymous functions
 
<langsyntaxhighlight MATLABlang="matlab">trapezoidalIntegration(@(x)( exp(-(x.^2)) ),0,10,100000)
 
ans =
 
0.886226925452753</langsyntaxhighlight>
 
Using predefined functions
 
Built-in MATLAB function sin(x):
<langsyntaxhighlight MATLABlang="matlab">quad(@sin,0,pi,1/1000000000000)
 
ans =
 
2.000000000000000</langsyntaxhighlight>
 
User defined scripts and functions:
fermiDirac.m
<langsyntaxhighlight MATLABlang="matlab">function answer = fermiDirac(x)
k = 8.617343e-5; %Boltazmann's Constant in eV/K
answer = 1./( 1+exp( (x)/(k*2000) ) ); %Fermi-Dirac distribution with mu = 0 and T = 2000K
end</langsyntaxhighlight>
 
<langsyntaxhighlight MATLABlang="matlab"> rightRectIntegration(@fermiDirac,-1,1,1000000)
 
ans =
 
0.999998006023282</langsyntaxhighlight>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">right_rect(e, x, a, b, n) := block([h: (b - a) / n, s: 0],
for i from 1 thru n do s: s + subst(x = a + i * h, e),
s * h)$
Line 2,577 ⟶ 3,983:
2 * log(2) - 1 - %, bfloat;
 
trapezium(1/x, x, 1, 100, 10000) - log(100), bfloat;</langsyntaxhighlight>
 
=={{header|Modula-2}}==
{{works with|GCC|13.1.1}}
 
For ISO standard Modula-2.
 
<syntaxhighlight lang="modula2">
MODULE numericalIntegrationModula2;
 
(* ISO Modula-2 libraries. *)
IMPORT LongMath, SLongIO, STextIO;
 
TYPE functionRealToReal = PROCEDURE (LONGREAL) : LONGREAL;
 
PROCEDURE leftRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
FOR i := 1 TO n DO
sum := sum + f (a + (h * LFLOAT (i - 1)))
END;
RETURN (sum * h)
END leftRule;
 
PROCEDURE rightRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
FOR i := 1 TO n DO
sum := sum + f (a + (h * LFLOAT (i)))
END;
RETURN (sum * h)
END rightRule;
 
PROCEDURE midpointRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
h : LONGREAL;
half_h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
half_h := 0.5 * h;
FOR i := 1 TO n DO
sum := sum + f (a + (h * LFLOAT (i)) - half_h)
END;
RETURN (sum * h)
END midpointRule;
 
PROCEDURE trapeziumRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
y0 : LONGREAL;
y1 : LONGREAL;
h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
y0 := f (a);
FOR i := 1 TO n DO
y1 := f (a + (h * LFLOAT (i)));
sum := sum + 0.5 * (y0 + y1);
y0 := y1
END;
RETURN (sum * h)
END trapeziumRule;
 
 
PROCEDURE simpsonRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum1 : LONGREAL;
sum2 : LONGREAL;
h : LONGREAL;
half_h : LONGREAL;
x : LONGREAL;
i : INTEGER;
BEGIN
h := (b - a) / LFLOAT (n);
half_h := 0.5 * h;
sum1 := f (a + half_h);
sum2 := 0.0;
FOR i := 2 TO n DO
x := a + (h * LFLOAT (i - 1));
sum1 := sum1 + f (x + half_h);
sum2 := sum2 + f (x);
END;
RETURN (h / 6.0) * (f (a) + f (b) + (4.0 * sum1) + (2.0 * sum2));
END simpsonRule;
 
PROCEDURE cube (x : LONGREAL) : LONGREAL;
BEGIN
RETURN x * x * x;
END cube;
 
PROCEDURE reciprocal (x : LONGREAL) : LONGREAL;
BEGIN
RETURN 1.0 / x;
END reciprocal;
 
PROCEDURE identity (x : LONGREAL) : LONGREAL;
BEGIN
RETURN x;
END identity;
 
PROCEDURE printResults (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER;
nominal : LONGREAL);
PROCEDURE printOneResult (y : LONGREAL);
BEGIN
SLongIO.WriteFloat (y, 16, 20);
STextIO.WriteString (' (nominal + ');
SLongIO.WriteFloat (y - nominal, 6, 0);
STextIO.WriteString (')');
STextIO.WriteLn;
END printOneResult;
BEGIN
STextIO.WriteString (' left rule ');
printOneResult (leftRule (f, a, b, n));
 
STextIO.WriteString (' right rule ');
printOneResult (rightRule (f, a, b, n));
 
STextIO.WriteString (' midpoint rule ');
printOneResult (midpointRule (f, a, b, n));
 
STextIO.WriteString (' trapezium rule ');
printOneResult (trapeziumRule (f, a, b, n));
 
STextIO.WriteString (' Simpson rule ');
printOneResult (simpsonRule (f, a, b, n));
END printResults;
 
BEGIN
STextIO.WriteLn;
 
STextIO.WriteString ('x³ in [0,1] with n = 100');
STextIO.WriteLn;
printResults (cube, 0.0, 1.0, 100, 0.25);
 
STextIO.WriteLn;
 
STextIO.WriteString ('1/x in [1,100] with n = 1000');
STextIO.WriteLn;
printResults (reciprocal, 1.0, 100.0, 1000, LongMath.ln (100.0));
 
STextIO.WriteLn;
 
STextIO.WriteString ('x in [0,5000] with n = 5000000');
STextIO.WriteLn;
printResults (identity, 0.0, 5000.0, 5000000, 12500000.0);
 
STextIO.WriteLn;
 
STextIO.WriteString ('x in [0,6000] with n = 6000000');
STextIO.WriteLn;
printResults (identity, 0.0, 6000.0, 6000000, 18000000.0);
 
STextIO.WriteLn
END numericalIntegrationModula2.
</syntaxhighlight>
 
{{out}}
<pre>$ gm2 -fiso -g -O3 numericalIntegrationModula2.mod && ./a.out
 
x³ in [0,1] with n = 100
left rule 2.450250000000000E-1 (nominal + -4.97500E-3)
right rule 2.550250000000000E-1 (nominal + 5.02500E-3)
midpoint rule 2.499875000000000E-1 (nominal + -1.25000E-5)
trapezium rule 2.500250000000000E-1 (nominal + 2.50000E-5)
Simpson rule 2.500000000000000E-1 (nominal + -2.71051E-20)
 
1/x in [1,100] with n = 1000
left rule 4.654991057514676 (nominal + 4.98209E-2)
right rule 4.556981057514676 (nominal + -4.81891E-2)
midpoint rule 4.604762548678375 (nominal + -4.07637E-4)
trapezium rule 4.605986057514676 (nominal + 8.15872E-4)
Simpson rule 4.605170384957142 (nominal + 1.98969E-7)
 
x in [0,5000] with n = 5000000
left rule 1.249999750000000E+7 (nominal + -2.50000)
right rule 1.250000250000000E+7 (nominal + 2.50000)
midpoint rule 1.250000000000000E+7 (nominal + -1.81899E-12)
trapezium rule 1.250000000000000E+7 (nominal + -1.81899E-12)
Simpson rule 1.250000000000000E+7 (nominal + -9.09495E-13)
 
x in [0,6000] with n = 6000000
left rule 1.799999700000000E+7 (nominal + -3.00000)
right rule 1.800000300000000E+7 (nominal + 3.00000)
midpoint rule 1.800000000000000E+7 (nominal + 1.81899E-12)
trapezium rule 1.800000000000000E+7 (nominal + 1.81899E-12)
Simpson rule 1.800000000000000E+7 (nominal + 0.00000)
 
</pre>
 
=={{header|Nim}}==
{{trans|Python}}
<syntaxhighlight lang="nim">type Function = proc(x: float): float
type Rule = proc(f: Function; x, h: float): float
 
proc leftRect(f: Function; x, h: float): float =
f(x)
 
proc midRect(f: Function; x, h: float): float =
f(x + h/2.0)
 
proc rightRect(f: Function; x, h: float): float =
f(x + h)
 
proc trapezium(f: Function; x, h: float): float =
(f(x) + f(x+h)) / 2.0
 
proc simpson(f: Function, x, h: float): float =
(f(x) + 4.0*f(x+h/2.0) + f(x+h)) / 6.0
 
proc cube(x: float): float =
x * x * x
 
proc reciprocal(x: float): float =
1.0 / x
 
proc identity(x: float): float =
x
 
proc integrate(f: Function; a, b: float; steps: int; meth: Rule): float =
let h = (b-a) / float(steps)
for i in 0 ..< steps:
result += meth(f, a+float(i)*h, h)
result = h * result
 
for fName, a, b, steps, fun in items(
[("cube", 0, 1, 100, cube),
("reciprocal", 1, 100, 1000, reciprocal),
("identity", 0, 5000, 5_000_000, identity),
("identity", 0, 6000, 6_000_000, identity)]):
 
for rName, rule in items({"leftRect": leftRect, "midRect": midRect,
"rightRect": rightRect, "trapezium": trapezium, "simpson": simpson}):
 
echo fName, " integrated using ", rName
echo " from ", a, " to ", b, " (", steps, " steps) = ",
integrate(fun, float(a), float(b), steps, rule)</syntaxhighlight>
 
{{out}}
<pre>cube integrated using leftRect
from 0 to 1 (100 steps) = 0.245025
cube integrated using midRect
from 0 to 1 (100 steps) = 0.2499875000000001
cube integrated using rightRect
from 0 to 1 (100 steps) = 0.2550250000000001
cube integrated using trapezium
from 0 to 1 (100 steps) = 0.250025
cube integrated using simpson
from 0 to 1 (100 steps) = 0.25
reciprocal integrated using leftRect
from 1 to 100 (1000 steps) = 4.65499105751468
reciprocal integrated using midRect
from 1 to 100 (1000 steps) = 4.604762548678376
reciprocal integrated using rightRect
from 1 to 100 (1000 steps) = 4.55698105751468
reciprocal integrated using trapezium
from 1 to 100 (1000 steps) = 4.605986057514676
reciprocal integrated using simpson
from 1 to 100 (1000 steps) = 4.605170384957133
identity integrated using leftRect
from 0 to 5000 (5000000 steps) = 12499997.5
identity integrated using midRect
from 0 to 5000 (5000000 steps) = 12500000.0
identity integrated using rightRect
from 0 to 5000 (5000000 steps) = 12500002.5
identity integrated using trapezium
from 0 to 5000 (5000000 steps) = 12500000.0
identity integrated using simpson
from 0 to 5000 (5000000 steps) = 12500000.0
identity integrated using leftRect
from 0 to 6000 (6000000 steps) = 17999997.0
identity integrated using midRect
from 0 to 6000 (6000000 steps) = 17999999.99999999
identity integrated using rightRect
from 0 to 6000 (6000000 steps) = 18000003.0
identity integrated using trapezium
from 0 to 6000 (6000000 steps) = 17999999.99999999
identity integrated using simpson
from 0 to 6000 (6000000 steps) = 17999999.99999999</pre>
 
=={{header|OCaml}}==
The problem can be described as integrating using each of a set of methods, over a set of functions, so let us just build the solution in this modular way.
First define the integration function:<langsyntaxhighlight lang="ocaml">let integrate f a b steps meth =
let h = (b -. a) /. float_of_int steps in
let rec helper i s =
Line 2,587 ⟶ 4,298:
else helper (succ i) (s +. meth f (a +. h *. float_of_int i) h)
in
h *. helper 0 0.</langsyntaxhighlight>Then list the methods:<syntaxhighlight lang ="ocaml">let methods = [
( "rect_l", fun f x _ -> f x);
( "rect_m", fun f x h -> f (x +. h /. 2.) );
Line 2,593 ⟶ 4,304:
( "trap", fun f x h -> (f x +. f (x +. h)) /. 2. );
( "simp", fun f x h -> (f x +. 4. *. f (x +. h /. 2.) +. f (x +. h)) /. 6. )
]</langsyntaxhighlight> and functions (with limits and steps)<langsyntaxhighlight lang="ocaml">let functions = [
( "cubic", (fun x -> x*.x*.x), 0.0, 1.0, 100);
( "recip", (fun x -> 1.0/.x), 1.0, 100.0, 1000);
( "x to 5e3", (fun x -> x), 0.0, 5000.0, 5_000_000);
( "x to 6e3", (fun x -> x), 0.0, 6000.0, 6_000_000)
]</langsyntaxhighlight>and finally iterate the integration over both lists:<langsyntaxhighlight lang="ocaml">let () =
List.iter (fun (s,f,lo,hi,n) ->
Printf.printf "Testing function %s:\n" s;
Line 2,604 ⟶ 4,315:
Printf.printf " method %s gives %.15g\n" name (integrate f lo hi n meth)
) methods
) functions</langsyntaxhighlight>Giving the output:
<pre>
Testing function cubic:
Line 2,634 ⟶ 4,345:
=={{header|PARI/GP}}==
Note also that double exponential integration is available as <code>intnum(x=a,b,f(x))</code> and Romberg integration is available as <code>intnumromb(x=a,b,f(x))</code>.
<langsyntaxhighlight lang="parigp">rectLeft(f, a, b, n)={
sum(i=0,n-1,f(a+(b-a)*i/n), 0.)*(b-a)/n
};
Line 2,662 ⟶ 4,373:
test(x->1/x, 1, 100, 1000)
test(x->x, 0, 5000, 5000000)
test(x->x, 0, 6000, 6000000)</langsyntaxhighlight>
 
Results:
Line 2,695 ⟶ 4,406:
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">function RectLeft(function f(x: real): real; xl, xr: real): real;
begin
RectLeft := f(xl)
Line 2,735 ⟶ 4,446:
end;
integrate := integral
end;</langsyntaxhighlight>
 
=={{header|Perl 6}}==
{{trans|Raku}}
<syntaxhighlight lang="perl">use feature 'say';
 
sub leftrect {
{{works with|Rakudo|2010.09.12}}
my($func, $a, $b, $n) = @_;
 
<lang perl6>sub leftrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $sum = 0;
$h * [+] do f($_) for $a, *+$h ... $b-$h;
for ($_ = $a; $_ < $b; $_ += $h) { $sum += $func->($_) }
$h * $sum
}
 
sub rightrect(&f, $a, $b, $n) {
my($func, $a, $b, $n) = @_;
my $h = ($b - $a) / $n;
my $sum = 0;
$h * [+] do f($_) for $a+$h, *+$h ... $b;
for ($_ = $a+$h; $_ < $b+$h; $_ += $h) { $sum += $func->($_) }
$h * $sum
}
 
sub midrect(&f, $a, $b, $n) {
my($func, $a, $b, $n) = @_;
my $h = ($b - $a) / $n;
my $sum = 0;
$h * [+] do f($_) for $a+$h/2, *+$h ... $b-$h/2;
for ($_ = $a + $h/2; $_ < $b; $_ += $h) { $sum += $func->($_) }
$h * $sum
}
 
sub trapez(&f, $a, $b, $n) {
my($func, $a, $b, $n) = @_;
my $h = ($b - $a) / $n;
my $hsum /= 2 * [+] f$func->($a), f($b), do f($_) * 2 for $a+$h, *+$h ... func->($b-$h);
for ($_ = $a+$h; $_ < $b; $_ += $h) { $sum += 2 * $func->($_) }
$h/2 * $sum
}
sub simpsons {
sub simpsons my(&f$func, $a, $b, $n) {= @_;
my $h = ($b - $a) / $n;
my $h2 = $h/2;
my $sum1 = f$func->($a + $h2);
my $sum2 = 0;
 
for ($_ = $a+$h,; *+$h_ ...< $b-; $_ += $h) {
$sum1 += f$func->($_ + $h2);
$sum2 += f$func->($_);
}
($h / 6) * (f$func->($a) + f$func->($b) + 4*$sum1 + 2*$sum2);
}
 
# round where needed, display in a reasonable format
sub tryem($f, $a, $b, $n, $exact) {
sub sig {
say "\n$f\n in [$a..$b] / $n";
eval "my &f($value) = $f@_;
my $rounded;
say ' exact result: ', $exact;
if ($value < 10) {
say ' rectangle method left: ', leftrect &f, $a, $b, $n;
say ' $rounded rectangle= method right:sprintf ', rightrect &f, $a, $b%.6f', $nvalue;
$rounded =~ s/(\.\d*[1-9])0+$/$1/;
say ' rectangle method mid: ', midrect &f, $a, $b, $n;
$rounded =~ s/\.0+$//;
say 'composite trapezoidal rule: ', trapez &f, $a, $b, $n;
} else {
say ' quadratic simpsons rule: ', simpsons &f, $a, $b, $n;"
$rounded = sprintf "%.1f", $value;
$rounded =~ s/\.0+$//;
}
return $rounded;
}
 
sub integrate {
tryem '{ $_ ** 3 }', 0, 1, 100, 0.25;
my($func, $a, $b, $n, $exact) = @_;
 
my $f = sub { local $_ = shift; eval $func };
tryem '1 / *', 1, 100, 1000, log(100);
 
my @res;
tryem '{$_}', 0, 5_000, 10_000, 12_500_000;
push @res, "$func\n in [$a..$b] / $n";
 
push @res, ' exact result: ' . rnd($exact);
tryem '{$_}', 0, 6_000, 12_000, 18_000_000;</lang>
push @res, ' rectangle method left: ' . rnd( leftrect($f, $a, $b, $n));
(We run the last two tests with fewer iterations to avoid burning 60 hours of CPU,
push @res, ' rectangle method right: ' . rnd(rightrect($f, $a, $b, $n));
since rakudo hasn't been optimized yet.)
push @res, ' rectangle method mid: ' . rnd( midrect($f, $a, $b, $n));
 
push @res, 'composite trapezoidal rule: ' . rnd( trapez($f, $a, $b, $n));
Output:
push @res, ' quadratic simpsons rule: ' . rnd( simpsons($f, $a, $b, $n));
<lang>{ $_ ** 3 }
@res;
}
say for integrate('$_ ** 3', 0, 1, 100, 0.25); say '';
say for integrate('1 / $_', 1, 100, 1000, log(100)); say '';
say for integrate('$_', 0, 5_000, 5_000_000, 12_500_000); say '';
say for integrate('$_', 0, 6_000, 6_000_000, 18_000_000);</syntaxhighlight>
{{out}}
<pre>$_ ** 3
in [0..1] / 100
exact result: 0.25
rectangle method left: 0.245025
rectangle method right: 0.255025
rectangle method mid: 0.2499875249988
composite trapezoidal rule: 0.250025
quadratic simpsons rule: 0.25
 
1 / *$_
in [1..100] / 1000
exact result: 4.6051701859880960517
rectangle method left: 4.65499105751468654991
rectangle method right: 4.55698105751468556981
rectangle method mid: 4.60476254867838604763
composite trapezoidal rule: 4.60598605751468605986
quadratic simpsons rule: 4.6051703849571460517
 
{$_}
in [0..5000] / 100005000000
exact result: 12500000
rectangle method left: 1249875012499997.5
rectangle method right: 1250125012500002.5
rectangle method mid: 12500000
composite trapezoidal rule: 12500000
quadratic simpsons rule: 12500000
 
{$_}
in [0..6000] / 120006000000
exact result: 18000000
rectangle method left: 1799850017999997
rectangle method right: 1800150018000003
rectangle method mid: 18000000
composite trapezoidal rule: 18000000
quadratic simpsons rule: 18000000</langpre>
 
=={{header|Phix}}==
Note that these integrations are done with rationals rather than floats, so should be fairly precise (though of course with so few iterations they are not terribly accurate (except when they are)). Some of the sums do overflow into Num (floating point)--currently rakudo allows implements Rat32--but at least all of the interval arithmetic is exact.
<!--<syntaxhighlight lang="phix">(phixonline?)-->
 
<span style="color: #008080;">function</span> <span style="color: #000000;">rect_left</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000080;font-style:italic;">/*h*/</span><span style="color: #0000FF;">)</span>
=={{header|PL/I}}==
<span style="color: #008080;">return</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
<lang PL/I>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
integrals: procedure options (main);
 
<span style="color: #008080;">function</span> <span style="color: #000000;">rect_mid</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
/* The function to be integrated */
<span style="color: #008080;">return</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
f: procedure (x) returns (float);
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
declare x float;
return (3*x**2 + 2*x);
<span style="color: #008080;">function</span> <span style="color: #000000;">rect_right</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
end f;
<span style="color: #008080;">return</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
 
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
declare (a, b) float;
declare (rect_area, trap_area, Simpson) float;
<span style="color: #008080;">function</span> <span style="color: #000000;">trapezium</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
declare (d, dx) fixed decimal (10,2);
<span style="color: #008080;">return</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">))/</span><span style="color: #000000;">2</span>
declare (l, r) float;
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
declare (S1, S2) float;
 
<span style="color: #008080;">function</span> <span style="color: #000000;">simpson</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
l = 0; r = 5;
<span style="color: #008080;">return</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">4</span><span style="color: #0000FF;">*</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">))/</span><span style="color: #000000;">6</span>
a = 0; b = 5; /* bounds of integration */
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
dx = 0.05;
 
<span style="color: #008080;">function</span> <span style="color: #000000;">cubed</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
/* Rectangle method */
<span style="color: #008080;">return</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">)</span>
rect_area = 0;
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
do d = a to b by dx;
rect_area = rect_area + dx*f(d);
<span style="color: #008080;">function</span> <span style="color: #000000;">recip</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
end;
<span style="color: #008080;">return</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">/</span><span style="color: #000000;">x</span>
put skip data (rect_area);
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
 
/* trapezoid method */
<span style="color: #008080;">function</span> <span style="color: #000000;">ident</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
trap_area = 0;
<span style="color: #008080;">return</span> <span style="color: #000000;">x</span>
do d = a to b by dx;
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
trap_area = trap_area + dx*(f(d) + f(d+dx))/2;
end;
<span style="color: #008080;">function</span> <span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">m_id</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">f_id</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">steps</span><span style="color: #0000FF;">)</span>
put skip data (trap_area);
<span style="color: #004080;">atom</span> <span style="color: #000000;">accum</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span>
 
<span style="color: #000000;">h</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">-</span><span style="color: #000000;">a</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">steps</span>
/* Simpson's */
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">steps</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
S1 = f(a+dx/2);
<span style="color: #000000;">accum</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">m_id</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f_id</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">*</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
S2 = 0;
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
do d = a to b by dx;
<span style="color: #008080;">return</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">*</span><span style="color: #000000;">accum</span>
S1 = S1 + f(d+dx+dx/2);
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
S2 = S2 + f(d+dx);
end;
<span style="color: #008080;">function</span> <span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">N</span><span style="color: #0000FF;">)</span>
Simpson = dx * (f(a) + f(b) + 4*S1 + 2*S2) / 6;
<span style="color: #008080;">if</span> <span style="color: #000000;">N</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">N</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"%d"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
put skip data (Simpson);
<span style="color: #004080;">string</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"%12f"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">round</span><span style="color: #0000FF;">(</span><span style="color: #000000;">N</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1000000</span><span style="color: #0000FF;">))</span>
 
<span style="color: #008080;">if</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">,</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
end integrals;
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trim_tail</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"0"</span><span style="color: #0000FF;">)</span>
</lang>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trim_tail</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"."</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">test</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">name</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">steps</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Function Range Iterations L-Rect M-Rect R-Rect Trapeze Simpson\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">name</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">,</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" %-5s %6d - %-5d %10d %12s %12s %12s %12s %12s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">name</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rect_left</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rect_mid</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rect_right</span><span style="color: #0000FF;">,</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">trapezium</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">simpson</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">))})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">tests</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #008000;">"x^3"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">100</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">cubed</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #008000;">"1/x"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">100</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">recip</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #008000;">"x"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5000000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ident</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #008000;">"x"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">6000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">6000000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ident</span><span style="color: #0000FF;">}}</span>
<span style="color: #000000;">test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Function Range Iterations L-Rect M-Rect R-Rect Trapeze Simpson
x^3 0 - 1 100 0.245025 0.249988 0.255025 0.250025 0.25
1/x 1 - 100 1000 4.654991 4.604763 4.556981 4.605986 4.60517
x 0 - 5000 5000000 12499997.5 12500000 12500002.5 12500000 12500000
x 0 - 6000 6000000 17999997 18000000 18000003 18000000 18000000
</pre>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(scl 6)
 
(de leftRect (Fun X)
Line 2,913 ⟶ 4,684:
(*/ H Sum 1.0) ) )
 
(prinl (round (integrate square 3.0 7.0 30 simpson)))</langsyntaxhighlight>
Output:
<pre>105.333</pre>
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">integrals: procedure options (main); /* 1 September 2019 */
 
f: procedure (x, function) returns (float(18));
declare x float(18), function fixed binary;
select (function);
when (1) return (x**3);
when (2) return (1/x);
when (3) return (x);
when (4) return (x);
end;
end f;
 
declare (a, b) fixed decimal (10);
declare (rect_area, trap_area, Simpson) float(18);
declare (d, dx) float(18);
declare (S1, S2) float(18);
declare N fixed decimal (15), function fixed binary;
declare k fixed decimal (7,2);
 
put (' Rectangle-left Rectangle-mid Rectangle-right' ||
' Trapezoid Simpson');
do function = 1 to 4;
select(function);
when (1) do; N = 100; a = 0; b = 1; end;
when (2) do; N = 1000; a = 1; b = 100; end;
when (3) do; N = 5000000; a = 0; b = 5000; end;
when (4) do; N = 6000000; a = 0; b = 6000; end;
end;
dx = (b-a)/float(N);
 
/* Rectangle method, left-side */
rect_area = 0;
do d = 0 to N-1;
rect_area = rect_area + dx*f(a + d*dx, function);
end;
put skip edit (rect_area) (E(25, 15));
 
/* Rectangle method, mid-point */
rect_area = 0;
do d = 0 to N-1;
rect_area = rect_area + dx*f(a + d*dx + dx/2, function);
end;
put edit (rect_area) (E(25, 15));
 
/* Rectangle method, right-side */
rect_area = 0;
do d = 1 to N;
rect_area = rect_area + dx*f(a + d*dx, function);
end;
put edit (rect_area) (E(25, 15));
 
/* Trapezoid method */
trap_area = 0;
do d = 0 to N-1;
trap_area = trap_area + dx*(f(a+d*dx, function) + f(a+(d+1)*dx, function))/2;
end;
put edit (trap_area) (X(1), E(25, 15));
 
/* Simpson's Rule */
S1 = f(a+dx/2, function);
S2 = 0;
do d = 1 to N-1;
S1 = S1 + f(a+d*dx+dx/2, function);
S2 = S2 + f(a+d*dx, function);
end;
Simpson = dx * (f(a, function) + f(b, function) + 4*S1 + 2*S2) / 6;
put edit (Simpson) (X(1), E(25, 15));
end;
 
end integrals;
</syntaxhighlight>
<pre>
Rectangle-left Rectangle-mid Rectangle-right Trapezoid Simpson
2.450250000000000E-0001 2.499875000000000E-0001 2.550250000000000E-0001 2.500250000000000E-0001 2.500000000000000E-0001
4.654991057514676E+0000 4.604762548678375E+0000 4.556981057514676E+0000 4.605986057514676E+0000 4.605170384957142E+0000
1.249999750000000E+0007 1.250000000000000E+0007 1.250000250000000E+0007 1.250000000000000E+0007 1.250000000000000E+0007
1.799999700000000E+0007 1.800000000000000E+0007 1.800000300000000E+0007 1.800000000000000E+0007 1.800000000000000E+0007
</pre>
 
=={{header|PureBasic}}==
 
<langsyntaxhighlight PureBasiclang="purebasic">Prototype.d TestFunction(Arg.d)
 
Procedure.d LeftIntegral(Start, Stop, Steps, *func.TestFunction)
Line 3,020 ⟶ 4,872:
Answer$+"Trapezium="+StrD(Trapezium (0,6000,6000000,@Test3()))+#CRLF$
Answer$+"Simpson ="+StrD(Simpson (0,6000,6000000,@Test3()))
MessageRequester("Answer should be 18,000,000",Answer$) </langsyntaxhighlight>
<pre>Left =0.2353220100
Mid =0.2401367513
Line 3,047 ⟶ 4,899:
=={{header|Python}}==
Answers are first given using floating point arithmatic, then using fractions, only converted to floating point on output.
<langsyntaxhighlight lang="python">from fractions import Fraction
 
def left_rect(f,x,h):
Line 3,101 ⟶ 4,953:
print('%s integrated using %s\n from %r to %r (%i steps and fractions) = %r' %
(func.__name__, rule.__name__, a, b, steps,
float(integrate( func, a, b, steps, rule))))</langsyntaxhighlight>
 
'''Tests'''
<langsyntaxhighlight lang="python">for a, b, steps, func in ((0., 1., 100, cube), (1., 100., 1000, reciprocal)):
for rule in (left_rect, mid_rect, right_rect, trapezium, simpson):
print('%s integrated using %s\n from %r to %r (%i steps) = %r' %
Line 3,126 ⟶ 4,978:
print('%s integrated using %s\n from %r to %r (%i steps and fractions) = %r' %
(func.__name__, rule.__name__, a, b, steps,
float(integrate( func, a, b, steps, rule))))</langsyntaxhighlight>
 
'''Sample test Output'''
Line 3,211 ⟶ 5,063:
 
A faster Simpson's rule integrator is
<langsyntaxhighlight lang="python">def faster_simpson(f, a, b, steps):
h = (b-a)/float(steps)
a1 = a+h/2
s1 = sum( f(a1+i*h) for i in range(0,steps))
s2 = sum( f(a+i*h) for i in range(1,steps))
return (h/6.0)*(f(a)+f(b)+4.0*s1+2.0*s2)</langsyntaxhighlight>
 
=={{header|R}}==
The integ function defined below uses arbitrary abscissae and weights passed as argument (resp. u and v). It assumes that f can take a vector argument.
{{works with|R|2.11.0}}
 
<syntaxhighlight lang="rsplus">integ <- function(f, a, b, n, u, v) {
These presume that f can take a vector argument.
h <- (b - a) / n
 
s <- 0
<lang R>integrate.rect <- function(f, a, b, n, k=0) {
for (i in seq(0, n - 1)) {
#k = 0 for left, 1 for right, 0.5 for midpoint
s <- s + sum(v * f(a + i * h + u * h))
h <- (b-a)/n
}
x <- seq(a, b, len=n+1)
s * h
sum(f(x[-1]-h*(1-k)))*h
}
 
integrate.trapezoidtest <- function(f, a, b, n) {
c(rect.left = integ(f, a, b, n, 0, 1),
h <- (b-a)/n
x <- seqrect.right = integ(f, a, b, len=n+, 1, 1),
rect.mid = integ(f, a, b, n, 0.5, 1),
fx <- f(x)
trapezoidal = integ(f, a, b, n, c(0, 1), c(0.5, 0.5)),
sum(fx[-1] + fx[-length(x)])*h/2
simpson = integ(f, a, b, n, c(0, 0.5, 1), c(1, 4, 1) / 6))
}
 
test(\(x) x^3, 0, 1, 100)
integrate.simpsons <- function(f, a, b, n) {
# rect.left rect.right rect.mid trapezoidal simpson
h <- (b-a)/n
# 0.2450250 0.2550250 0.2499875 0.2500250 0.2500000
x <- seq(a, b, len=n+1)
fx <- f(x)
sum(fx[-length(x)] + 4*f(x[-1]-h/2) + fx[-1]) * h/6
}
 
test(\(x) 1 / x, 1, 100, 1000)
f1 <- (function(x) {x^3})
# rect.left rect.right rect.mid trapezoidal simpson
f2 <- (function(x) {1/x})
# 4.654991 4.556981 4.604763 4.605986 4.605170
f3 <- (function(x) {x})
f4 <- (function(x) {x})
 
test(\(x) x, 0, 5000, 5e6)
integrate.simpsons(f1,0,1,100) #0.25
# rect.left rect.right rect.mid trapezoidal simpson
integrate.simpsons(f2,1,100,1000) # 4.60517
# 12499998 12500003 12500000 12500000 12500000
integrate.simpsons(f3,0,5000,5000000) # 12500000
integrate.simpsons(f4,0,6000,6000000) # 1.8e+07
 
test(\(x) x, 0, 6000, 6e6)
integrate.rect(f1,0,1,100,0) #TopLeft 0.245025
# rect.left rect.right rect.mid trapezoidal simpson
integrate.rect(f1,0,1,100,0.5) #Mid 0.2499875
# 1.8e+07 1.8e+07 1.8e+07 1.8e+07 1.8e+07</syntaxhighlight>
integrate.rect(f1,0,1,100,1) #TopRight 0.255025
 
integrate.trapezoid(f1,0,1,100) # 0.250025</lang>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket
(define (integrate f a b steps meth)
Line 3,285 ⟶ 5,131:
(test (λ(x) x) 0. 5000. 5000000 "IDENTITY")
(test (λ(x) x) 0. 6000. 6000000 "IDENTITY")
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="racket">
CUBED
left-rect: 0.24502500000000005
Line 3,315 ⟶ 5,161:
trapezium: 17999999.999999993
simpson: 17999999.999999993
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
The addition of <tt>'''Promise'''</tt>/<tt>'''await'''</tt> allows for concurrent computation, and brings a significant speed-up in running time. Which is not to say that it makes this code fast, but it does make it less slow.
 
Note that these integrations are done with rationals rather than floats, so should be fairly precise (though of course with so few iterations they are not terribly accurate (except when they are)). Some of the sums do overflow into <tt>Num</tt> (floating point)--currently Rakudo allows 64-bit denominators--but at least all of the interval arithmetic is exact.
{{works with|Rakudo|2018.09}}
 
<syntaxhighlight lang="raku" line>use MONKEY-SEE-NO-EVAL;
 
sub leftrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $end = $b-$h;
my $sum = 0;
loop (my $i = $a; $i <= $end; $i += $h) { $sum += f($i) }
$h * $sum;
}
 
sub rightrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $sum = 0;
loop (my $i = $a+$h; $i <= $b; $i += $h) { $sum += f($i) }
$h * $sum;
}
 
sub midrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $sum = 0;
my ($start, $end) = $a+$h/2, $b-$h/2;
loop (my $i = $start; $i <= $end; $i += $h) { $sum += f($i) }
$h * $sum;
}
 
sub trapez(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $partial-sum = 0;
my ($start, $end) = $a+$h, $b-$h;
loop (my $i = $start; $i <= $end; $i += $h) { $partial-sum += f($i) * 2 }
$h / 2 * ( f($a) + f($b) + $partial-sum );
}
 
sub simpsons(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $h2 = $h/2;
my ($start, $end) = $a+$h, $b-$h;
my $sum1 = f($a + $h2);
my $sum2 = 0;
loop (my $i = $start; $i <= $end; $i += $h) {
$sum1 += f($i + $h2);
$sum2 += f($i);
}
($h / 6) * (f($a) + f($b) + 4*$sum1 + 2*$sum2);
}
 
sub integrate($f, $a, $b, $n, $exact) {
my $e = 0.000001;
my $r0 = "$f\n in [$a..$b] / $n\n"
~ ' exact result: '~ $exact.round($e);
 
my ($r1,$r2,$r3,$r4,$r5);
my &f;
EVAL "&f = $f";
my $p1 = Promise.start( { $r1 = ' rectangle method left: '~ leftrect(&f, $a, $b, $n).round($e) } );
my $p2 = Promise.start( { $r2 = ' rectangle method right: '~ rightrect(&f, $a, $b, $n).round($e) } );
my $p3 = Promise.start( { $r3 = ' rectangle method mid: '~ midrect(&f, $a, $b, $n).round($e) } );
my $p4 = Promise.start( { $r4 = 'composite trapezoidal rule: '~ trapez(&f, $a, $b, $n).round($e) } );
my $p5 = Promise.start( { $r5 = ' quadratic simpsons rule: '~ simpsons(&f, $a, $b, $n).round($e) } );
 
await $p1, $p2, $p3, $p4, $p5;
$r0, $r1, $r2, $r3, $r4, $r5;
}
 
.say for integrate '{ $_ ** 3 }', 0, 1, 100, 0.25; say '';
.say for integrate '1 / *', 1, 100, 1000, log(100); say '';
.say for integrate '*.self', 0, 5_000, 5_000_000, 12_500_000; say '';
.say for integrate '*.self', 0, 6_000, 6_000_000, 18_000_000;</syntaxhighlight>
{{out}}
<pre>{ $_ ** 3 }
in [0..1] / 100
exact result: 0.25
rectangle method left: 0.245025
rectangle method right: 0.255025
rectangle method mid: 0.249988
composite trapezoidal rule: 0.250025
quadratic simpsons rule: 0.25
 
1 / *
in [1..100] / 1000
exact result: 4.60517
rectangle method left: 4.654991
rectangle method right: 4.556981
rectangle method mid: 4.604763
composite trapezoidal rule: 4.605986
quadratic simpsons rule: 4.60517
 
*.self
in [0..5000] / 5000000
exact result: 12500000
rectangle method left: 12499997.5
rectangle method right: 12500002.5
rectangle method mid: 12500000
composite trapezoidal rule: 12500000
quadratic simpsons rule: 12500000
 
*.self
in [0..6000] / 6000000
exact result: 18000000
rectangle method left: 17999997
rectangle method right: 18000003
rectangle method mid: 18000000
composite trapezoidal rule: 18000000
quadratic simpsons rule: 18000000</pre>
 
=={{header|REXX}}==
Note: &nbsp; there was virtually no difference in accuracy between &nbsp; '''numeric digits 9''' &nbsp; (the default) &nbsp; and &nbsp; '''numeric digits 20'''.
<langsyntaxhighlight lang="rexx">/*REXX programpgm performs numerically integratesnumerical integration using 5 fivedifferent algorithms differentand methods.show results.*/
numeric digits 20 /*use twenty decimal digits precision. */
 
do test=1 for 4; say /*perform the test suite. /*perform the 4 different test suites. */
if test==1 then do; L= 0; H= 1; i= 100; end
if test==2 then do; L= 1; H= 100; i= 1000; end
if test==3 then do; L= 0; H= 5000; i= 5000000; end
if test==4 then do; L= 0; H= 6000; i=5000000 6000000; end
say center('test' test, 79, "═") /*display a header for the test suite. */
say
say ' left rectangular('L", "H', 'i") ──► " left_rect(L, H, i)
say center('test' test,79,'─') /*display a header for the test. */
say ' left_rectangular midpoint rectangular('L", "H', 'i") = ──► " left_rectmidpoint_rect(L, H, i)
say ' midpoint_rectangular right rectangular('L", "H', 'i") = ──► " midpoint_rect right_rect(L, H, i)
say ' right_rectangular Simpson('L", "H', 'i") = ──► " right_rect Simpson(L, H, i)
say ' simpson trapezium('L", "H', 'i") = ──► " simpsontrapezium(L, H, i)
end /*test*/
say ' trapezoid('L","H','i") = " trapezoid(L,H,i)
exit /*stick a fork in it, we're all done. */
end /*test*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
exit /*stick a fork in it, we're done.*/
f: parse arg y; if test>2 then return y /*choose the "as─is" function. */
/*──────────────────────────────────LEFT_RECT subroutine────────────────*/
if test==1 then return y**3 /* " " cube function. */
left_rect: procedure expose test; parse arg a,b,n; h=(b-a)/n
return 1/y /* " " reciprocal " */
sum=0
/*──────────────────────────────────────────────────────────────────────────────────────*/
do x=a by h for n
left_rect: procedure expose test; parse arg a,b,#; $= 0; sum h=sum+f (xb-a)/#
end do x=a by h for #; $= $ + f(x)
end /*x*/
return sum*h
return $*h/1
/*──────────────────────────────────MIDPOINT_RECT subroutine────────────*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
midpoint_rect: procedure expose test; parse arg a,b,n; h=(b-a)/n
midpoint_rect: procedure expose test; parse arg a,b,#; $= 0; h= (b-a)/#
sum=0
do x=a+h/2 by h for n#; $= $ + f(x)
sum=sum+f( end /*x)*/
return end$*h/1
/*──────────────────────────────────────────────────────────────────────────────────────*/
return sum*h
right_rect: procedure expose test; parse arg a,b,#; $= 0; h= (b-a)/#
/*──────────────────────────────────RIGHT_RECT subroutine───────────────*/
do x=a+h by h for #; $= $ + f(x)
right_rect: procedure expose test; parse arg a,b,n; h=(b-a)/n
end /*x*/
sum=0
return do x=a+$*h by h for n/1
/*──────────────────────────────────────────────────────────────────────────────────────*/
sum=sum+f(x)
Simpson: procedure expose test; parse arg a,b,#; end h= (b-a)/#
hh= h/2; $= f(a + hh)
return sum*h
@= 0; do x=1 for #-1; hx=h*x + a; @= @ + f(hx)
/*──────────────────────────────────SIMPSON subroutine──────────────────*/
simpson: procedure expose test; parse arg a,b,n; h $= $ + f(b-ahx + hh)/n
end /*x*/
sum1=f(a+h/2)
sum2=0
do x=1 to n-1
sum1=sum1+f(a+h*x+h*.5)
sum2=sum2+f(a+x*h)
end
 
return h * (f(a) + f(b) + 4*sum1$ + 2*sum2@) / 6
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────TRAPEZOID subroutine────────────────*/
trapezoidtrapezium: procedure expose test; parse arg a,b,n#; $= 0; h= (b-a)/n#
do x=a by h for #; $= $ + (f(x) + f(x+h))
sum=0
do x=a to b by h end /*x*/
return sum=sum+h$*(f(x)+f(x+h))*.5/2</syntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
end
<pre>
return sum
════════════════════════════════════test 1═════════════════════════════════════
/*──────────────────────────────────F subroutine────────────────────────*/
left rectangular(0, 1, 100) ──► 0.245025
f: procedure expose test; parse arg z
midpoint rectangular(0, 1, 100) ──► 0.2499875
if test==1 then return z**3
right rectangular(0, 1, 100) ──► 0.255025
if test==2 then return 1/z
return z</lang> Simpson(0, 1, 100) ──► 0.25
trapezium(0, 1, 100) ──► 0.250025
'''output'''
<pre style="overflow:scroll">
────────────────────────────────────test 1─────────────────────────────────────
left_rectangular(0,1,100) = 0.245025
midpoint_rectangular(0,1,100) = 0.2499875
right_rectangular(0,1,100) = 0.255025
simpson(0,1,100) = 0.25
trapezoid(0,1,100) = 0.260176505
 
════════════════════════════════════test 2═════════════════════════════════════
────────────────────────────────────test 2─────────────────────────────────────
left_rectangular left rectangular(1, 100, 1000) = ──► 4.6549910575146761473
midpoint_rectangular midpoint rectangular(1, 100, 1000) = ──► 4.604762548678375185
right_rectangular right rectangular(1, 100, 1000) = ──► 4.5569810575146761472
simpson Simpson(1, 100, 1000) = ──► 4.6051703849571421725
trapezoid trapezium(1, 100, 1000) = ──► 4.6069755679493458225605986057514676146
 
════════════════════════════════════test 3═════════════════════════════════════
────────────────────────────────────test 3─────────────────────────────────────
left_rectangular left rectangular(0, 5000, 5000000) = ──► 12499997.5
midpoint_rectangular midpoint rectangular(0, 5000, 5000000) = ──► 12500000
right_rectangular right rectangular(0, 5000, 5000000) = ──► 12500002.5
simpson Simpson(0, 5000, 5000000) = ──► 12500000
trapezoid trapezium(0, 5000, 5000000) = ──► 12500005.000000512500000
 
════════════════════════════════════test 4═════════════════════════════════════
────────────────────────────────────test 4─────────────────────────────────────
left_rectangular left rectangular(0, 6000,5000000 6000000) = ──► 17999996.417999997
midpoint_rectangular midpoint rectangular(0, 6000,5000000 6000000) = ──► 18000000
right_rectangular right rectangular(0, 6000,5000000 6000000) = ──► 18000003.6
simpson Simpson(0, 6000,5000000 6000000) = ──► 18000000
trapezoid trapezium(0, 6000,5000000 6000000) = ──► 18000007.2000007218000000
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Numerical integration
 
decimals(8)
data = [["pow(x,3)",0,1,100], ["1/x",1, 100,1000], ["x",0,5000,5000000], ["x",0,6000,6000000]]
see "Function Range L-Rect R-Rect M-Rect Trapeze Simpson" + nl
for p = 1 to 4
d1 = data[p][1]
d2 = data[p][2]
d3 = data[p][3]
d4 = data[p][4]
see "" + d1 + " " + d2 + " - " + d3 + " " + lrect(d1, d2, d3, d4) + " " + rrect(d1, d2, d3, d4)
see " " + mrect(d1, d2, d3, d4) + " " + trapeze(d1, d2, d3, d4) + " " + simpson(d1, d2, d3, d4) + nl
next
func lrect(x2, a, b, n)
s = 0
d = (b - a) / n
x = a
for i = 1 to n
eval("result = " + x2)
s = s + d * result
x = x + d
next
return s
func rrect(x2, a, b, n)
s = 0
d = (b - a) / n
x = a
for i = 1 to n
x = x + d
eval("result = " + x2)
s = s + d *result
next
return s
func mrect(x2, a, b, n)
s = 0
d = (b - a) / n
x = a
for i = 1 to n
x = x + d/2
eval("result = " + x2)
s = s + d * result
x = x +d/2
next
return s
func trapeze(x2, a, b, n)
s = 0
d = (b - a) / n
x = b
eval("result = " + x2)
f = result
x = a
eval("result = " + x2)
s = d * (f + result) / 2
for i = 1 to n-1
x = x + d
eval("result = " + x2)
s = s + d * result
next
return s
func simpson(x2, a, b, n)
s1 = 0
s = 0
d = (b - a) / n
x = b
eval("result = " + x2)
f = result
x = a + d/2
eval("result = " + x2)
s1 = result
for i = 1 to n-1
x = x + d/2
eval("result = " + x2)
s = s + result
x = x + d/2
eval("result = " + x2)
s1 = s1 + result
next
x = a
eval("result = " + x2)
return (d / 6) * (f + result + 4 * s1 + 2 * s)
</syntaxhighlight>
Output:
<pre>
Function Range L-Rect R-Rect M-Rect Trapeze Simpson
pow(x,3) 0 - 1 0.245025 0.255025 0.2499875 0.250025 0.25
1/x 1 - 100 4.65499106 4.55698106 4.60476255 4.60598606 4.60517038
x 0 - 5000 12499997.5 12500002.5 12500000 12500000 12500000
x 0 - 6000 17999997 18000003 18000000 18000000 18000000
</pre>
 
=={{header|Ruby}}==
{{trans|Tcl}}
<langsyntaxhighlight lang="ruby">def leftrect(f, left, right)
f.call(left)
end
Line 3,469 ⟶ 5,512:
printf " %-10s %s\t(%.1f%%)\n", method, int, diff
end
end</langsyntaxhighlight>
outputs
<pre>integral of #<Method: Object#square> from 0 to 3.14159265358979 in 10 steps
Line 3,483 ⟶ 5,526:
trapezium 1.98352353750945 (-0.8%)
simpson 2.0000067844418 (0.0%)</pre>
 
=={{header|Rust}}==
This is a partial solution and only implements trapezium integration.
<syntaxhighlight lang="rust">fn integral<F>(f: F, range: std::ops::Range<f64>, n_steps: u32) -> f64
where F: Fn(f64) -> f64
{
let step_size = (range.end - range.start)/n_steps as f64;
 
let mut integral = (f(range.start) + f(range.end))/2.;
let mut pos = range.start + step_size;
while pos < range.end {
integral += f(pos);
pos += step_size;
}
integral * step_size
}
 
fn main() {
println!("{}", integral(|x| x.powi(3), 0.0..1.0, 100));
println!("{}", integral(|x| 1.0/x, 1.0..100.0, 1000));
println!("{}", integral(|x| x, 0.0..5000.0, 5_000_000));
println!("{}", integral(|x| x, 0.0..6000.0, 6_000_000));
}</syntaxhighlight>
 
{{out}}
<pre>0.2500250000000004
4.605986057514688
12500000.000728702
18000000.001390498</pre>
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">object NumericalIntegration {
def leftRect(f:Double=>Double, a:Double, b:Double)=f(a)
def midRect(f:Double=>Double, a:Double, b:Double)=f((a+b)/2)
Line 3,519 ⟶ 5,591:
print(fn3, 0, 6000, 6000000)
}
}</langsyntaxhighlight>
Output:
<pre>rectangular left : 0,245025
Line 3,547 ⟶ 5,619:
=={{header|Scheme}}==
 
<langsyntaxhighlight lang="scheme">(define (integrate f a b steps meth)
(define h (/ (- b a) steps))
(* h
Line 3,567 ⟶ 5,639:
(define rr (integrate square 0 1 10 right-rect))
(define t (integrate square 0 1 10 trapezium))
(define s (integrate square 0 1 10 simpson))</langsyntaxhighlight>
 
=={{header|SequenceL}}==
<syntaxhighlight lang="sequencel">import <Utilities/Conversion.sl>;
import <Utilities/Sequence.sl>;
 
integrateLeft(f, a, b, n) :=
let
h := (b - a) / n;
vals[x] := f(x) foreach x within (0 ... (n-1)) * h + a;
in
h * sum(vals);
 
integrateRight(f, a, b, n) :=
let
h := (b - a) / n;
vals[x] := f(x+h) foreach x within (0 ... (n-1)) * h + a;
in
h * sum(vals);
 
integrateMidpoint(f, a, b, n) :=
let
h := (b - a) / n;
vals[x] := f(x+h/2.0) foreach x within (0 ... (n-1)) * h + a;
in
h * sum(vals);
 
integrateTrapezium(f, a, b, n) :=
let
h := (b - a) / n;
vals[i] := 2.0 * f(a + i * h) foreach i within 1 ... n-1;
in
h * (sum(vals) + f(a) + f(b)) / 2.0;
 
integrateSimpsons(f, a, b, n) :=
let
h := (b - a) / n;
vals1[i] := f(a + h * i + h / 2.0) foreach i within 0 ... n-1;
vals2[i] := f(a + h * i) foreach i within 1 ... n-1;
in
h / 6.0 * (f(a) + f(b) + 4.0 * sum(vals1) + 2.0 * sum(vals2));
 
xCubed(x) := x^3;
xInverse(x) := 1/x;
identity(x) := x;
 
tests[method] :=
[method(xCubed, 0.0, 1.0, 100),
method(xInverse, 1.0, 100.0, 1000),
method(identity, 0.0, 5000.0, 5000000),
method(identity, 0.0, 6000.0, 6000000)]
foreach method within [integrateLeft, integrateRight, integrateMidpoint, integrateTrapezium, integrateSimpsons];
 
//String manipulation for ouput display.
main :=
let
heading := [["Func", "Range\t", "L-Rect\t", "R-Rect\t", "M-Rect\t", "Trapezium", "Simpson"]];
ranges := [["0 - 1\t", "1 - 100\t", "0 - 5000", "0 - 6000"]];
funcs := [["x^3", "1/x", "x", "x"]];
in
delimit(delimit(heading ++ transpose(funcs ++ ranges ++ trimEndZeroes(floatToString(tests, 8))), '\t'), '\n');
 
trimEndZeroes(x(1)) := x when size(x) = 0 else x when x[size(x)] /= '0' else trimEndZeroes(x[1...size(x)-1]);</syntaxhighlight>
 
{{out}}
<pre style="height: 25ex; overflow: scroll">
"Func Range L-Rect R-Rect M-Rect Trapezium Simpson
x^3 0 - 1 0.245025 0.255025 0.2499875 0.250025 0.25
1/x 1 - 100 4.65499106 4.55698106 4.60476255 4.60598606 4.60517038
x 0 - 5000 12499997.5 12500002.5 12500000. 12500000. 12500000.
x 0 - 6000 17999997. 18000003. 18000000. 18000000. 18000000."
</pre>
 
=={{header|Sidef}}==
{{trans|Raku}}
<syntaxhighlight lang="ruby">func sum(f, start, from, to) {
var s = 0;
RangeNum(start, to, from-start).each { |i|
s += f(i);
}
return s
}
 
func leftrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a, a+h, b-h);
}
 
func rightrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a+h, a + 2*h, b);
}
 
func midrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a + h/2, a + h + h/2, b - h/2)
}
 
func trapez(f, a, b, n) {
var h = ((b - a) / n);
h/2 * (f(a) + f(b) + sum({ f(_)*2 }, a+h, a + 2*h, b-h));
}
 
func simpsons(f, a, b, n) {
var h = ((b - a) / n);
var h2 = h/2;
 
var sum1 = f(a + h2);
var sum2 = 0;
 
sum({|i| sum1 += f(i + h2); sum2 += f(i); 0 }, a+h, a+h+h, b-h);
h/6 * (f(a) + f(b) + 4*sum1 + 2*sum2);
}
 
func tryem(label, f, a, b, n, exact) {
say "\n#{label}\n in [#{a}..#{b}] / #{n}";
 
say(' exact result: ', exact);
say(' rectangle method left: ', leftrect(f, a, b, n));
say(' rectangle method right: ', rightrect(f, a, b, n));
say(' rectangle method mid: ', midrect(f, a, b, n));
say('composite trapezoidal rule: ', trapez(f, a, b, n));
say(' quadratic simpsons rule: ', simpsons(f, a, b, n));
}
 
tryem('x^3', { _ ** 3 }, 0, 1, 100, 0.25);
tryem('1/x', { 1 / _ }, 1, 100, 1000, log(100));
tryem('x', { _ }, 0, 5_000, 5_000_000, 12_500_000);
tryem('x', { _ }, 0, 6_000, 6_000_000, 18_000_000);</syntaxhighlight>
 
=={{header|Standard ML}}==
<langsyntaxhighlight lang="sml">fun integrate (f, a, b, steps, meth) = let
val h = (b - a) / real steps
fun helper (i, s) =
Line 3,592 ⟶ 5,792:
val rr = integrate (square, 0.0, 1.0, 10, right_rect)
val t = integrate (square, 0.0, 1.0, 10, trapezium )
val s = integrate (square, 0.0, 1.0, 10, simpson )</langsyntaxhighlight>
 
=={{header|Stata}}==
<syntaxhighlight lang="text">mata
function integrate(f,a,b,n,u,v) {
s = 0
h = (b-a)/n
m = length(u)
for (i=0; i<n; i++) {
x = a+i*h
for (j=1; j<=m; j++) s = s+v[j]*(*f)(x+h*u[j])
}
return(s*h)
}
 
function log_(x) {
return(log(x))
}
 
function id(x) {
return(x)
}
 
function cube(x) {
return(x*x*x)
}
 
function inv(x) {
return(1/x)
}
 
function test(f,a,b,n) {
return(integrate(f,a,b,n,(0,1),(1,0)),
integrate(f,a,b,n,(0,1),(0,1)),
integrate(f,a,b,n,(0.5),(1)),
integrate(f,a,b,n,(0,1),(0.5,0.5)),
integrate(f,a,b,n,(0,1/2,1),(1/6,4/6,1/6)))
}
 
test(&cube(),0,1,100)
test(&inv(),1,100,1000)
test(&id(),0,5000,5000000)
test(&id(),0,6000,6000000)
end</syntaxhighlight>
 
'''Output'''
 
<pre> 1 2 3 4 5
+--------------------------------------------------------+
1 | .245025 .255025 .2499875 .250025 .25 |
+--------------------------------------------------------+
 
1 2 3 4 5
+-----------------------------------------------------------------------+
1 | 4.654991058 4.556981058 4.604762549 4.605986058 4.605170385 |
+-----------------------------------------------------------------------+
 
1 2 3 4 5
+------------------------------------------------------------------+
1 | 12499997.5 12500002.5 12500000 12500000 12500000 |
+------------------------------------------------------------------+
 
1 2 3 4 5
+--------------------------------------------------------+
1 | 17999997 18000003 18000000 18000000 18000000 |
+--------------------------------------------------------+</pre>
 
=={{header|Swift}}==
<syntaxhighlight lang="swift">public enum IntegrationType : CaseIterable {
case rectangularLeft
case rectangularRight
case rectangularMidpoint
case trapezium
case simpson
}
 
public func integrate(
from: Double,
to: Double,
n: Int,
using: IntegrationType = .simpson,
f: (Double) -> Double
) -> Double {
let integrationFunc: (Double, Double, Int, (Double) -> Double) -> Double
 
switch using {
case .rectangularLeft:
integrationFunc = integrateRectL
case .rectangularRight:
integrationFunc = integrateRectR
case .rectangularMidpoint:
integrationFunc = integrateRectMid
case .trapezium:
integrationFunc = integrateTrapezium
case .simpson:
integrationFunc = integrateSimpson
}
 
return integrationFunc(from, to, n, f)
}
 
private func integrateRectL(from: Double, to: Double, n: Int, f: (Double) -> Double) -> Double {
let h = (to - from) / Double(n)
var x = from
var sum = 0.0
 
while x <= to - h {
sum += f(x)
x += h
}
 
return h * sum
}
 
private func integrateRectR(from: Double, to: Double, n: Int, f: (Double) -> Double) -> Double {
let h = (to - from) / Double(n)
var x = from
var sum = 0.0
 
while x <= to - h {
sum += f(x + h)
x += h
}
 
return h * sum
}
 
private func integrateRectMid(from: Double, to: Double, n: Int, f: (Double) -> Double) -> Double {
let h = (to - from) / Double(n)
var x = from
var sum = 0.0
 
while x <= to - h {
sum += f(x + h / 2.0)
x += h
}
 
return h * sum
}
 
private func integrateTrapezium(from: Double, to: Double, n: Int, f: (Double) -> Double) -> Double {
let h = (to - from) / Double(n)
var sum = f(from) + f(to)
 
for i in 1..<n {
sum += 2 * f(from + Double(i) * h)
}
 
return h * sum / 2
}
 
private func integrateSimpson(from: Double, to: Double, n: Int, f: (Double) -> Double) -> Double {
let h = (to - from) / Double(n)
var sum1 = 0.0
var sum2 = 0.0
 
for i in 0..<n {
sum1 += f(from + h * Double(i) + h / 2.0)
}
 
for i in 1..<n {
sum2 += f(from + h * Double(i))
}
 
return h / 6.0 * (f(from) + f(to) + 4.0 * sum1 + 2.0 * sum2)
}
 
let types = IntegrationType.allCases
 
print("f(x) = x^3:", types.map({ integrate(from: 0, to: 1, n: 100, using: $0, f: { pow($0, 3) }) }))
print("f(x) = 1 / x:", types.map({ integrate(from: 1, to: 100, n: 1000, using: $0, f: { 1 / $0 }) }))
print("f(x) = x, 0 -> 5_000:", types.map({ integrate(from: 0, to: 5_000, n: 5_000_000, using: $0, f: { $0 }) }))
print("f(x) = x, 0 -> 6_000:", types.map({ integrate(from: 0, to: 6_000, n: 6_000_000, using: $0, f: { $0 }) }))</syntaxhighlight>
 
{{out}}
<pre>f(x) = x^3: [0.2450250000000004, 0.23532201000000041, 0.2401367512500004, 0.25002500000000005, 0.25000000000000006]
f(x) = 1 / x: [4.55599105751469, 4.654000076443428, 4.603772058385689, 4.60598605751468, 4.605170384957145]
f(x) = x, 0 -> 5_000: [12499997.500728704, 12499992.500729704, 12499995.000729209, 12500000.000000002, 12500000.0]
f(x) = x, 0 -> 6_000: [17999997.001390498, 17999991.0013915, 17999994.001391016, 18000000.000000004, 17999999.999999993]</pre>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
 
proc leftrect {f left right} {
Line 3,648 ⟶ 6,026:
puts [format " %-10s %s\t(%.1f%%)" $method $int $diff]
}
}</langsyntaxhighlight>
<pre>integral of square(x) from 0 to 3.141592653589793 in 10 steps
leftrect 8.836788853885448 (-14.5%)
Line 3,661 ⟶ 6,039:
trapezium 1.9835235375094546 (-0.8%)
simpson 2.0000067844418012 (0.0%)</pre>
 
 
=={{header|TI-89 BASIC}}==
Line 3,679 ⟶ 6,056:
the integrand <math>f</math>, the bounds <math>(a,b)</math>, and the number of intervals <math>n</math>.
 
<langsyntaxhighlight Ursalalang="ursala">#import std
#import nat
#import flo
Line 3,685 ⟶ 6,062:
(integral_by "m") ("f","a","b","n") =
 
iprod ^(* ! div\float"n" minus/"b" "a",~&) ("m" "f")*ytp (ari successor "n")/"a" "b"</langsyntaxhighlight>
An alternative way of defining this function shown below prevents redundant evaluations of the integrand
at the cost of building a table-driven finite map in advance.
<langsyntaxhighlight Ursalalang="ursala">(integral_by "m") ("f","a","b","n") =
 
iprod ^(* ! div\float"n" minus/"b" "a",~&) ^H(*+ "m"+ -:"f"+ * ^/~& "f",~&ytp) (ari successor "n")/"a" "b"</langsyntaxhighlight>
As mentioned in the Haskell solution, the latter choice is preferable if evaluating the integrand
is expensive.
An integrating function is defined for each method as follows.
<langsyntaxhighlight Ursalalang="ursala">left = integral_by "f". ("l","r"). "f" "l"
right = integral_by "f". ("l","r"). "f" "r"
midpoint = integral_by "f". ("l","r"). "f" div\2. plus/"l" "r"
trapezium = integral_by "f". ("l","r"). div\2. plus "f"~~/"l" "r"
simpson = integral_by "f". ("l","r"). div\6. plus:-0. <"f" "l",times/4. "f" div\2. plus/"l" "r","f" "r"></langsyntaxhighlight>
As shown above, the method passed to the <code>integral_by</code> function
is itself a higher order function taking an integrand <math>f</math> as an argument and
Line 3,704 ⟶ 6,081:
Here is a test program showing the results of integrating the square from zero to <math>\pi</math> in ten intervals
by all five methods.
<langsyntaxhighlight Ursalalang="ursala">#cast %eL
 
examples = <.left,midpoint,rignt,trapezium,simpson> (sqr,0.,pi,10)</langsyntaxhighlight>
output:
<pre>
Line 3,718 ⟶ 6,095:
(The GNU Scientific Library integration routines are also callable in Ursala, and
are faster and more accurate.)
 
=={{header|VBA}}==
The following program does not follow the task requirement on two points: first, the same function is used for all quadrature methods, as they are really the same thing with different parameters (abscissas and weights). And since it's getting rather slow for a large number of intervals, the last two are integrated with resp. 50,000 and 60,000 intervals. It does not make sense anyway to use more, for such a simple function (and if really it were difficult to integrate, one would rely one more sophistcated methods).
 
<syntaxhighlight lang="vb">Option Explicit
Option Base 1
 
Function Quad(ByVal f As String, ByVal a As Double, _
ByVal b As Double, ByVal n As Long, _
ByVal u As Variant, ByVal v As Variant) As Double
Dim m As Long, h As Double, x As Double, s As Double, i As Long, j As Long
m = UBound(u)
h = (b - a) / n
s = 0#
For i = 1 To n
x = a + (i - 1) * h
For j = 1 To m
s = s + v(j) * Application.Run(f, x + h * u(j))
Next
Next
Quad = s * h
End Function
 
Function f1fun(x As Double) As Double
f1fun = x ^ 3
End Function
 
Function f2fun(x As Double) As Double
f2fun = 1 / x
End Function
 
Function f3fun(x As Double) As Double
f3fun = x
End Function
 
Sub Test()
Dim fun, f, coef, c
Dim i As Long, j As Long, s As Double
 
fun = Array(Array("f1fun", 0, 1, 100, 1 / 4), _
Array("f2fun", 1, 100, 1000, Log(100)), _
Array("f3fun", 0, 5000, 50000, 5000 ^ 2 / 2), _
Array("f3fun", 0, 6000, 60000, 6000 ^ 2 / 2))
 
coef = Array(Array("Left rect. ", Array(0, 1), Array(1, 0)), _
Array("Right rect. ", Array(0, 1), Array(0, 1)), _
Array("Midpoint ", Array(0.5), Array(1)), _
Array("Trapez. ", Array(0, 1), Array(0.5, 0.5)), _
Array("Simpson ", Array(0, 0.5, 1), Array(1 / 6, 4 / 6, 1 / 6)))
For i = 1 To UBound(fun)
f = fun(i)
Debug.Print f(1)
For j = 1 To UBound(coef)
c = coef(j)
s = Quad(f(1), f(2), f(3), f(4), c(2), c(3))
Debug.Print " " + c(1) + ": ", s, (s - f(5)) / f(5)
Next j
Next i
End Sub</syntaxhighlight>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt
 
var integrate = Fn.new { |a, b, n, f|
var h = (b - a) / n
var sum = List.filled(5, 0)
for (i in 0...n) {
var x = a + i * h
sum[0] = sum[0] + f.call(x)
sum[1] = sum[1] + f.call(x + h/2)
sum[2] = sum[2] + f.call(x + h)
sum[3] = sum[3] + (f.call(x) + f.call(x+h))/2
sum[4] = sum[4] + (f.call(x) + 4 * f.call(x + h/2) + f.call(x + h))/6
}
var methods = ["LeftRect ", "MidRect ", "RightRect", "Trapezium", "Simpson "]
for (i in 0..4) Fmt.print("$s = $h", methods[i], sum[i] * h)
System.print()
}
 
integrate.call(0, 1, 100) { |v| v * v * v }
integrate.call(1, 100, 1000) { |v| 1 / v }
integrate.call(0, 5000, 5000000) { |v| v }
integrate.call(0, 6000, 6000000) { |v| v }
</syntaxhighlight>
 
{{out}}
<pre>
LeftRect = 0.245025
MidRect = 0.249988
RightRect = 0.255025
Trapezium = 0.250025
Simpson = 0.25
 
LeftRect = 4.654991
MidRect = 4.604763
RightRect = 4.556981
Trapezium = 4.605986
Simpson = 4.60517
 
LeftRect = 12499997.5
MidRect = 12500000
RightRect = 12500002.5
Trapezium = 12500000
Simpson = 12500000
 
LeftRect = 17999997
MidRect = 18000000
RightRect = 18000003
Trapezium = 18000000
Simpson = 18000000
</pre>
 
=={{header|XPL0}}==
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes; \intrinsic 'code' declarations
 
func real Func(FN, X); \Return F(X) for function number FN
Line 3,766 ⟶ 6,257:
Integrate(0.0, 5000.0, 3, 5_000_000);
Integrate(0.0, 6000.0, 3, 6_000_000);
]</langsyntaxhighlight>
 
Interestingly, the small rounding errors creep in when millions of
Line 3,779 ⟶ 6,270:
17999997.001391 18000003.001391 18000000.001391 18000000.001391 18000000.001391
</pre>
 
=={{header|Yabasic}}==
Based on the XPL0entry and the Free BASIC entry
<syntaxhighlight lang="yabasic">// Rosetta Code problem: https://rosettacode.org/wiki/Numerical_integration
// by Jjuanhdez, 06/2022
 
print "function range steps leftrect midrect rightrect trap simpson "
frmt$ = "%1.10f"
print "f(x) = x^3 0 - 1 100 ";
Integrate(0.0, 1.0, 1, 100)
print "f(x) = 1/x 1 - 100 1000 ";
Integrate(1.0, 100.0, 2, 1000)
frmt$ = "%8.3f"
print "f(x) = x 0 - 5000 5000000 ";
Integrate(0.0, 5000.0, 3, 5000000)
print "f(x) = x 0 - 6000 6000000 ";
Integrate(0.0, 6000.0, 3, 6000000)
end
 
sub Func(FN, X) //Return F(X) for function number FN
switch FN
case 1
return X ^ 3
case 2
return 1.0 / X
case 3
return X
default
return 0.0
end switch
end sub
 
sub Integrate(A, B, FN, N) //Display area under curve for function FN
// A, B, FN limits A, B, and number of slices N
DX = (B-A)/N
X = A
Area = 0.0 //rectangular left
for i = 1 to N
Area = Area + Func(FN,X)*DX
X = X + DX
next i
print str$(Area, frmt$);
X = A
Area = 0.0 //rectangular right
for i = 1 to N
X = X + DX
Area = Area + Func(FN,X)*DX
next i
print " ";
print str$(Area, frmt$);
X = A + DX / 2.0
Area = 0.0 //rectangular mid point
for i = 1 to N
Area = Area + Func(FN,X)*DX
X = X + DX
next i
print " ";
print str$(Area, frmt$);
X = A
Area = 0.0 //trapezium
for i = 1 to N
Area = Area + (Func(FN,X)+Func(FN,X + DX))/2.0*DX
X = X + DX
next i
print " ";
print str$(Area, frmt$);
X = A
Area = 0.0 //Simpson's rule
for i = 1 to N
Area = Area + DX/6.0*(Func(FN,X) + 4.0*Func(FN,(X+X + DX)/2.0) + Func(FN,X + DX))
X = X + DX
next i
print " ";
print str$(Area, frmt$)
end sub</syntaxhighlight>
 
=={{header|zkl}}==
{{trans|D}}
<syntaxhighlight lang="zkl">fcn integrate(F,f,a,b,steps){
h:=(b - a) / steps;
h*(0).reduce(steps,'wrap(s,i){ F(f, h*i + a, h) + s },0.0);
}
fcn rectangularLeft(f,x) { f(x) }
fcn rectangularMiddle(f,x,h){ f(x+h/2) }
fcn rectangularRight(f,x,h) { f(x+h) }
fcn trapezium(f,x,h) { (f(x) + f(x+h))/2 }
fcn simpson(f,x,h) { (f(x) + 4.0*f(x+h/2) + f(x+h))/6 }
args:=T( T(fcn(x){ x.pow(3) }, 0.0, 1.0, 10),
T(fcn(x){ 1.0 / x }, 1.0, 100.0, 1000),
T(fcn(x){ x }, 0.0, 5000.0, 0d5_000_000),
T(fcn(x){ x }, 0.0, 6000.0, 0d6_000_000) );
fs:=T(rectangularLeft,rectangularMiddle,rectangularRight,
trapezium,simpson);
names:=fs.pump(List,"name",'+(":"),"%-18s".fmt);
 
foreach a in (args){
names.zipWith('wrap(nm,f){
"%s %f".fmt(nm,integrate(f,a.xplode())).println() }, fs);
println();
}</syntaxhighlight>
{{out}}
<pre>
rectangularLeft: 0.202500
rectangularMiddle: 0.248750
rectangularRight: 0.302500
trapezium: 0.252500
simpson: 0.250000
 
rectangularLeft: 4.654991
rectangularMiddle: 4.604763
rectangularRight: 4.556981
trapezium: 4.605986
simpson: 4.605170
 
rectangularLeft: 12499997.500000
rectangularMiddle: 12500000.000000
rectangularRight: 12500002.500000
trapezium: 12500000.000000
simpson: 12500000.000000
 
rectangularLeft: 17999997.000000
rectangularMiddle: 18000000.000000
rectangularRight: 18000003.000000
trapezium: 18000000.000000
simpson: 18000000.000000
</pre>
 
 
{{omit from|GUISS}}
9,485

edits