I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Numbers with prime digits whose sum is 13

Numbers with prime digits whose sum is 13 is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find all the positive integers whose decimal digits are all primes and sum to   13.

## ALGOL 68

Based on the Algol W sample.

`BEGIN    # find numbers whose digits are prime and whose digit sum is 13   #    # as noted by the Wren sample, the digits can only be 2, 3, 5, 7  #    # and there can only be 3, 4, 5 or 6 digits                       #    []INT possible digits = []INT( 0, 2, 3, 5, 7 )[ AT 0 ];    INT number count := 0;    INT zero          = ABS "0"; # integer value of the character "0" #    print( ( newline ) );    FOR d1 index FROM 0 TO UPB possible digits DO        INT  d1 = possible digits[ d1 index ];        CHAR c1 = IF d1 /= 0 THEN REPR ( d1 + zero ) ELSE " " FI;        FOR d2 index FROM 0 TO UPB possible digits DO            INT  d2 = possible digits[ d2 index ];            IF d2 /= 0 OR d1 = 0 THEN                CHAR c2 = IF ( d1 + d2 ) /= 0 THEN REPR ( d2 + zero ) ELSE " " FI;                FOR d3 index FROM 0 TO UPB possible digits DO                    INT  d3 = possible digits[ d3 index ];                    IF d3 /= 0 OR ( d1 + d2 ) = 0 THEN                        CHAR c3 = IF ( d1 + d2 + d3 ) /= 0 THEN REPR ( d3 + zero ) ELSE " " FI;                        FOR d4 index FROM 1 TO UPB possible digits DO                            INT  d4 = possible digits[ d4 index ];                            CHAR c4 = REPR ( d4 + zero );                            FOR d5 index FROM 1 TO UPB possible digits DO                                INT  d5 = possible digits[ d5 index ];                                CHAR c5 = REPR ( d5 + zero );                                FOR d6 index FROM 1 TO UPB possible digits DO                                    INT d6  = possible digits[ d6 index ];                                    IF ( d1 + d2 + d3 + d4 + d5 + d6 ) = 13 THEN                                        # found a number whose prime digits sum to 13 #                                        CHAR c6 = REPR ( d6 + zero );                                        print( ( " ", c1, c2, c3, c4, c5, c6 ) );                                        number count := number count + 1;                                        IF ( number count +:= 1 ) MOD 12 = 0 THEN print( ( newline ) ) FI                                    FI                                OD # d6 #                            OD # d5 #                        OD # d4 #                    FI                OD # d3 #            FI        OD # d2 #    OD # d1 #END`
Output:
```    337    355    373    535    553    733   2227   2272   2335   2353   2533   2722
3235   3253   3325   3352   3523   3532   5233   5323   5332   7222  22225  22252
22333  22522  23233  23323  23332  25222  32233  32323  32332  33223  33232  33322
52222 222223 222232 222322 223222 232222 322222
```

## ALGOL W

Uses the observations about the digits and numbers in the Wren solution to generate the sequence.

`begin    % find numbers whose digits are prime and whose digit sum is 13  %    % as noted by the Wren sample, the digits can only be 2, 3, 5, 7 %    % and there can only be 3, 4, 5 or 6 digits                      %    integer numberCount;    numberCount := 0;    write();    for d1 := 0, 2, 3, 5, 7 do begin        for d2 := 0, 2, 3, 5, 7 do begin            if d2 not = 0 or d1 = 0 then begin                for d3 := 0, 2, 3, 5, 7 do begin                    if d3 not = 0 or ( d1 = 0 and d2 = 0 ) then begin                        for d4 := 2, 3, 5, 7 do begin                            for d5 := 2, 3, 5, 7 do begin                                for d6 := 2, 3, 5, 7 do begin                                    integer sum;                                    sum := d1 + d2 + d3 + d4 + d5 + d6;                                    if sum = 13 then begin                                        % found a number whose prime digits sum to 13 %                                        integer n;                                        n := 0;                                        for d := d1, d2, d3, d4, d5, d6 do n := ( n * 10 ) + d;                                        writeon( i_w := 6, s_w := 1, n );                                        numberCount := numberCount + 1;                                        if numberCount rem 12 = 0 then write()                                    end if_sum_eq_13                                end for_d6                            end for_d5                        end for_d4                    end if_d3_ne_0_or_d1_eq_0_and_d2_e_0                end for_d3            end if_d2_ne_0_or_d1_eq_0        end for_d2    end for_d1end.`
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533   2722
3235   3253   3325   3352   3523   3532   5233   5323   5332   7222  22225  22252
22333  22522  23233  23323  23332  25222  32233  32323  32332  33223  33232  33322
52222 222223 222232 222322 223222 232222 322222
```

## Arturo

`pDigits: [2 3 5 7] lst: map pDigits 'd -> @[d]result: new [] while [0 <> size lst][    nextList: new []    loop lst 'digitSeq [        currSum: sum digitSeq        loop pDigits 'n [            newSum: currSum + n            newDigitSeq: digitSeq ++ n            case [newSum]                when? [<13] -> 'nextList ++ @[newDigitSeq]                when? [=13] -> 'result ++ @[to :integer join to [:string] newDigitSeq]                else -> break        ]    ]    lst: new nextList] loop split.every: 10 result 'a ->     print map a => [pad to :string & 6]`
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353
2533   2722   3235   3253   3325   3352   3523   3532   5233   5323
5332   7222  22225  22252  22333  22522  23233  23323  23332  25222
32233  32323  32332  33223  33232  33322  52222 222223 222232 222322
223222 232222 322222```

## AWK

` # syntax: GAWK -f NUMBERS_WITH_PRIME_DIGITS_WHOSE_SUM_IS_13.AWKBEGIN {    for (i=1; i<=1000000; i++) {      if (prime_digits_sum13(i)) {        printf("%6d ",i)        if (++count % 10 == 0) {          printf("\n")        }      }    }    printf("\n")    exit(0)}function prime_digits_sum13(n,  r,sum) {     while (n > 0) {      r = int(n % 10)      switch (r) {        case 2:        case 3:        case 5:        case 7:          break        default:          return(0)      }      n = int(n / 10)      sum += r    }    return(sum == 13)} `
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353
2533   2722   3235   3253   3325   3352   3523   3532   5233   5323
5332   7222  22225  22252  22333  22522  23233  23323  23332  25222
32233  32323  32332  33223  33232  33322  52222 222223 222232 222322
223222 232222 322222
```

## C

Brute force

`#include <stdbool.h>#include <stdio.h> bool primeDigitsSum13(int n) {    int sum = 0;    while (n > 0) {        int r = n % 10;        switch (r) {        case 2:        case 3:        case 5:        case 7:            break;        default:            return false;        }        n /= 10;        sum += r;    }    return sum == 13;} int main() {    int i, c;     // using 2 for all digits, 6 digits is the max prior to over-shooting 13    c = 0;    for (i = 1; i < 1000000; i++) {        if (primeDigitsSum13(i)) {            printf("%6d ", i);            if (c++ == 10) {                c = 0;                printf("\n");            }        }    }    printf("\n");     return 0;}`
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533
2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
33223  33232  33322  52222 222223 222232 222322 223222 232222 322222```

## C#

Translation of: Phix

Same recursive method.

`using System;using static System.Console; using LI = System.Collections.Generic.SortedSet<int>; class Program {   static LI unl(LI res, LI set, int lft, int mul = 1, int vlu = 0) {    if (lft == 0) res.Add(vlu);    else if (lft > 0) foreach (int itm in set)      res = unl(res, set, lft - itm, mul * 10, vlu + itm * mul);    return res; }   static void Main(string[] args) { WriteLine(string.Join(" ",      unl(new LI {}, new LI { 2, 3, 5, 7 }, 13))); }}`
Output:
```337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222
```

### Alternate

Based in Nigel Galloway's suggestion from the discussion page.

`class Program {   static void Main(string[] args) { int[] lst; int sum;    var w = new System.Collections.Generic.List<(int digs, int sum)> {};    foreach (int x in lst = new int[] { 2, 3, 5, 7 } ) w.Add((x, x));    while (w.Count > 0) { var i = w[0]; w.RemoveAt(0);      foreach (var j in lst) if ((sum = i.sum + j) == 13)          System.Console.Write ("{0}{1} ", i.digs, j);        else if (sum < 12)          w.Add((i.digs * 10 + j, sum)); } }}`

Same output.

## C++

Translation of: C#
(the alternate version)
`#include <cstdio>#include <vector>#include <bits/stdc++.h> using namespace std; int main() {   vector<tuple<int, int>> w; int lst[4] = { 2, 3, 5, 7 }, sum;  for (int x : lst) w.push_back({x, x});  while (w.size() > 0) { auto i = w[0]; w.erase(w.begin());    for (int x : lst) if ((sum = get<1>(i) + x) == 13)        printf("%d%d ", get<0>(i), x);      else if (sum < 12) w.push_back({get<0>(i) * 10 + x, sum}); }  return 0; }`

Same output as C#.

## D

Translation of: C
`import std.stdio; bool primeDigitsSum13(int n) {    int sum = 0;    while (n > 0) {        int r = n % 10;        switch (r) {            case 2,3,5,7:                break;            default:                return false;        }        n /= 10;        sum += r;    }    return sum == 13;} void main() {    // using 2 for all digits, 6 digits is the max prior to over-shooting 13    int c = 0;    for (int i = 1; i < 1_000_000; i++) {        if (primeDigitsSum13(i)) {            writef("%6d ", i);            if (c++ == 10) {                c = 0;                writeln;            }        }    }    writeln;}`
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533
2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
33223  33232  33322  52222 222223 222232 222322 223222 232222 322222```

## F#

` // prime digits whose sum is 13. Nigel Galloway: October 21st., 2020let rec fN g=let g=[for n in [2;3;5;7] do for g in g->n::g]|>List.groupBy(fun n->match List.sum n with 13->'n' |n when n<12->'g' |_->'x')|>Map.ofSeq             [yield! (if g.ContainsKey 'n' then g.['n'] else []); yield! (if g.ContainsKey 'g' then fN g.['g'] else [])]fN [[]] |> Seq.iter(fun n->n|>List.iter(printf "%d");printf " ");printfn "" `
Output:
```337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222
```

## Factor

### Filtering selections

Generate all selections of the prime digits in the only possible lengths whose sum can be 13, then filter for sums that equal 13.

`USING: formatting io kernel math math.combinatoricsmath.functions math.ranges sequences sequences.extras ; : digits>number ( seq -- n ) reverse 0 [ 10^ * + ] reduce-index ; "Numbers whose digits are prime and sum to 13:" print{ 2 3 5 7 } 3 6 [a,b] [ selections [ sum 13 = ] filter ] withmap-concat [ digits>number ] map "%[%d, %]\n" printf`
Output:
```Numbers whose digits are prime and sum to 13:
{ 337, 355, 373, 535, 553, 733, 2227, 2272, 2335, 2353, 2533, 2722, 3235, 3253, 3325, 3352, 3523, 3532, 5233, 5323, 5332, 7222, 22225, 22252, 22333, 22522, 23233, 23323, 23332, 25222, 32233, 32323, 32332, 33223, 33232, 33322, 52222, 222223, 222232, 222322, 223222, 232222, 322222 }
```

### F# translation

The following is based on Nigel Galloway's algorithm as described here on the talk page. It's about 10x faster than the previous method.

`USING: io kernel math prettyprint sequences sequences.extras ; { } { { 2 } { 3 } { 5 } { 7 } } [    { 2 3 5 7 } [ suffix ] cartesian-map concat    [ sum 13 = ] partition [ append ] dip [ sum 11 > ] reject] until-empty [ bl ] [ [ pprint ] each ] interleave nl`
Output:
```337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222
```

## FreeBASIC

Ho hum. Another prime digits task.

` function digit_is_prime( n as integer ) as boolean    select case n        case 2,3,5,7            return true        case else            return false    end selectend function function all_digits_prime( n as uinteger ) as boolean    dim as string sn = str(n)    for i as uinteger = 1 to len(sn)        if not digit_is_prime( val(mid(sn,i,1)) ) then return false    next i    return trueend function function digit_sum_13( n as uinteger ) as boolean    dim as string sn = str(n)    dim as integer k = 0    for i as uinteger = 1 to len(sn)        k = k + val(mid(sn,i,1))        if k>13 then return false    next i    if k<>13 then return false else return trueend function for i as uinteger = 1 to 322222    if all_digits_prime(i) andalso digit_sum_13(i) then print i,next i`
Output:
```337           355           373           535           553           733
2227          2272          2335          2353          2533          2722
3235          3253          3325          3352          3523          3532
5233          5323          5332          7222          22225         22252
22333         22522         23233         23323         23332         25222
32233         32323         32332         33223         33232         33322
52222         222223        222232        222322        223222        232222
322222```

## Go

Reuses code from some other tasks.

`package main import (    "fmt"    "sort"    "strconv") func combrep(n int, lst []byte) [][]byte {    if n == 0 {        return [][]byte{nil}    }    if len(lst) == 0 {        return nil    }    r := combrep(n, lst[1:])    for _, x := range combrep(n-1, lst) {        r = append(r, append(x, lst[0]))    }    return r} func shouldSwap(s []byte, start, curr int) bool {    for i := start; i < curr; i++ {        if s[i] == s[curr] {            return false        }    }    return true} func findPerms(s []byte, index, n int, res *[]string) {    if index >= n {        *res = append(*res, string(s))        return    }    for i := index; i < n; i++ {        check := shouldSwap(s, index, i)        if check {            s[index], s[i] = s[i], s[index]            findPerms(s, index+1, n, res)            s[index], s[i] = s[i], s[index]        }    }} func main() {    primes := []byte{2, 3, 5, 7}    var res []string    for n := 3; n <= 6; n++ {        reps := combrep(n, primes)        for _, rep := range reps {            sum := byte(0)            for _, r := range rep {                sum += r            }            if sum == 13 {                var perms []string                for i := 0; i < len(rep); i++ {                    rep[i] += 48                }                findPerms(rep, 0, len(rep), &perms)                res = append(res, perms...)            }        }    }    res2 := make([]int, len(res))    for i, r := range res {        res2[i], _ = strconv.Atoi(r)    }    sort.Ints(res2)    fmt.Println("Those numbers whose digits are all prime and sum to 13 are:")    fmt.Println(res2)}`
Output:
```Those numbers whose digits are all prime and sum to 13 are:
[337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222]
```

### only counting

See Julia [1]

` package main import (    "fmt")var  Primes = []byte{2, 3, 5, 7};var  gblCount = 0;var  PrimesIdx = []byte{0, 1, 2, 3}; func combrep(n int, lst []byte) [][]byte {    if n == 0 {        return [][]byte{nil}    }    if len(lst) == 0 {        return nil    }    r := combrep(n, lst[1:])    for _, x := range combrep(n-1, lst) {        r = append(r, append(x, lst[0]))    }    return r} func Count(rep []byte)int {    var PrimCount  [4]int    for i := 0; i < len(PrimCount); i++ {      PrimCount[i] = 0;      }    //get the count of every item    for i := 0; i < len(rep); i++ {      PrimCount[rep[i]]++      }    var numfac int = len(rep)     var numerator,denominator[]int     for i := 1; i <= len(rep); i++ {      numerator = append(numerator,i) // factors 1,2,3,4. n      denominator = append(denominator,1)      }    numfac =  0; //idx  in denominator    for i := 0; i < len(PrimCount); i++ {      denfac := 1;      for j := 0; j < PrimCount[i]; j++ {        denominator[numfac] = denfac        denfac++        numfac++        }    }    //calculate permutations with identical items    numfac = 1;    for i := 0; i < len(numerator); i++ {      numfac = (numfac * numerator[i])/denominator[i]    }    return numfac} func main() {  for mySum := 2; mySum <= 103;mySum++ {    gblCount = 0;    //check for prime    for i := 2; i*i <= mySum;i++{      if mySum%i == 0 {        gblCount=1;        break        }      }    if  gblCount != 0 {      continue      }     for n := 1; n <= mySum / 2 ; n++ {        reps := combrep(n, PrimesIdx)        for _, rep := range reps {            sum := byte(0)            for _, r := range rep {                sum += Primes[r]            }            if sum == byte(mySum) {               gblCount+=Count(rep);            }        }    }    fmt.Println("The count of numbers whose digits are all prime and sum to",mySum,"is",gblCount)  }}`
Output:
```The count of numbers whose digits are all prime and sum to 2 is 1
The count of numbers whose digits are all prime and sum to 3 is 1
The count of numbers whose digits are all prime and sum to 5 is 3
The count of numbers whose digits are all prime and sum to 7 is 6
The count of numbers whose digits are all prime and sum to 11 is 19
The count of numbers whose digits are all prime and sum to 13 is 43
The count of numbers whose digits are all prime and sum to 17 is 221
The count of numbers whose digits are all prime and sum to 19 is 468
The count of numbers whose digits are all prime and sum to 23 is 2098
The count of numbers whose digits are all prime and sum to 29 is 21049
The count of numbers whose digits are all prime and sum to 31 is 45148
The count of numbers whose digits are all prime and sum to 37 is 446635
The count of numbers whose digits are all prime and sum to 41 is 2061697
The count of numbers whose digits are all prime and sum to 43 is 4427752
The count of numbers whose digits are all prime and sum to 47 is 20424241
The count of numbers whose digits are all prime and sum to 53 is 202405001
The count of numbers whose digits are all prime and sum to 59 is 2005642061
The count of numbers whose digits are all prime and sum to 61 is 4307930784
The count of numbers whose digits are all prime and sum to 67 is 42688517778
The count of numbers whose digits are all prime and sum to 71 is 196942068394
The count of numbers whose digits are all prime and sum to 73 is 423011795680
The count of numbers whose digits are all prime and sum to 79 is 4191737820642
The count of numbers whose digits are all prime and sum to 83 is 19338456915087
The count of numbers whose digits are all prime and sum to 89 is 191629965405641
The count of numbers whose digits are all prime and sum to 97 is 4078672831913824
The count of numbers whose digits are all prime and sum to 101 is 18816835854129198
The count of numbers whose digits are all prime and sum to 103 is 40416663565084464

real  0m4,489s
user  0m5,584s
sys 0m0,188s```

As an unfold, in the recursive pattern described by Nigel Galloway on the Talk page.

`import Data.List.Split (chunksOf)import Data.List (intercalate, transpose, unfoldr)import Text.Printf primeDigitsNumsSummingToN :: Int -> [Int]primeDigitsNumsSummingToN n = concat \$ unfoldr go (return <\$> primeDigits)  where    primeDigits = [2, 3, 5, 7]     go :: [[Int]] -> Maybe ([Int], [[Int]])    go xs      | null xs = Nothing      | otherwise = Just (nextLength xs)     nextLength :: [[Int]] -> ([Int], [[Int]])    nextLength xs =      let harvest nv =            [ unDigits \$ fst nv            | n == snd nv ]          prune nv =            [ fst nv            | pred n > snd nv ]      in ((,) . concatMap harvest <*> concatMap prune)           (((,) <*> sum) <\$> ((<\$> xs) . (<>) . return =<< primeDigits)) --------------------------- TEST -------------------------main :: IO ()main = do  let n = 13      xs = primeDigitsNumsSummingToN n  mapM_    putStrLn    [ concat        [ (show . length) xs        , " numbers with prime digits summing to "        , show n        , ":\n"        ]    , table " " \$ chunksOf 10 (show <\$> xs)    ] table :: String -> [[String]] -> Stringtable gap rows =  let ic = intercalate      ws = maximum . fmap length <\$> transpose rows      pw = printf . flip ic ["%", "s"] . show  in unlines \$ ic gap . zipWith pw ws <\$> rows unDigits :: [Int] -> IntunDigits = foldl ((+) . (10 *)) 0`
Output:
```43 numbers with prime digits summing to 13:

337    355    373   535   553   733  2227   2272   2335   2353
2533   2722   3235  3253  3325  3352  3523   3532   5233   5323
5332   7222  22225 22252 22333 22522 23233  23323  23332  25222
32233  32323  32332 33223 33232 33322 52222 222223 222232 222322
223222 232222 322222```

## Java

Translation of: Kotlin
`public class PrimeDigits {    private static boolean primeDigitsSum13(int n) {        int sum = 0;        while (n > 0) {            int r = n % 10;            if (r != 2 && r != 3 && r != 5 && r != 7) {                return false;            }            n /= 10;            sum += r;        }        return sum == 13;    }     public static void main(String[] args) {        // using 2 for all digits, 6 digits is the max prior to over-shooting 13        int c = 0;        for (int i = 1; i < 1_000_000; i++) {            if (primeDigitsSum13(i)) {                System.out.printf("%6d ", i);                if (c++ == 10) {                    c = 0;                    System.out.println();                }            }        }        System.out.println();    }}`
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533
2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
33223  33232  33322  52222 222223 222232 222322 223222 232222 322222 ```

## JavaScript

As an unfold, in the recursive pattern described by Nigel Galloway on the Talk page.

`(() => {    'use strict';     // ---- NUMBERS WITH PRIME DIGITS WHOSE SUM IS 13 ----     // primeDigitsSummingToN :: Int -> [Int]    const primeDigitsSummingToN = n => {        const primeDigits = [2, 3, 5, 7];        const go = xs =>            fanArrow(                concatMap( // Harvested,                    nv => n === nv[1] ? (                        [unDigits(nv[0])]                    ) : []                )            )(                concatMap( // Pruned.                    nv => pred(n) > nv[1] ? (                        [nv[0]]                    ) : []                )            )(                // Existing numbers with prime digits appended,                // tupled with the resulting digit sums.                xs.flatMap(                    ds => primeDigits.flatMap(d => [                        fanArrow(identity)(sum)(                            ds.concat(d)                        )                    ])                )            );        return concat(            unfoldr(                xs => 0 < xs.length ? (                    Just(go(xs))                ) : Nothing()            )(                primeDigits.map(pureList)            )        );    }     // ---------------------- TEST -----------------------    // main :: IO ()    const main = () =>        chunksOf(6)(            primeDigitsSummingToN(13)        ).forEach(            x => console.log(x)        )      // ---------------- GENERIC FUNCTIONS ----------------     // Just :: a -> Maybe a    const Just = x => ({        type: 'Maybe',        Nothing: false,        Just: x    });      // Nothing :: Maybe a    const Nothing = () => ({        type: 'Maybe',        Nothing: true,    });      // Tuple (,) :: a -> b -> (a, b)    const Tuple = a =>        b => ({            type: 'Tuple',            '0': a,            '1': b,            length: 2        });     // chunksOf :: Int -> [a] -> [[a]]    const chunksOf = n =>        xs => enumFromThenTo(0)(n)(            xs.length - 1        ).reduce(            (a, i) => a.concat([xs.slice(i, (n + i))]),            []        );      // concat :: [[a]] -> [a]    // concat :: [String] -> String    const concat = xs => (        ys => 0 < ys.length ? (            ys.every(Array.isArray) ? (                []            ) : ''        ).concat(...ys) : ys    )(list(xs));      // concatMap :: (a -> [b]) -> [a] -> [b]    const concatMap = f =>        xs => xs.flatMap(f)      // enumFromThenTo :: Int -> Int -> Int -> [Int]    const enumFromThenTo = x1 =>        x2 => y => {            const d = x2 - x1;            return Array.from({                length: Math.floor(y - x2) / d + 2            }, (_, i) => x1 + (d * i));        };      // fanArrow (&&&) :: (a -> b) -> (a -> c) -> (a -> (b, c))    const fanArrow = f =>        // A function from x to a tuple of (f(x), g(x))        // ((,) . f <*> g)        g => x => Tuple(f(x))(            g(x)        );      // identity :: a -> a    const identity = x =>        // The identity function.        x;      // list :: StringOrArrayLike b => b -> [a]    const list = xs =>        // xs itself, if it is an Array,        // or an Array derived from xs.        Array.isArray(xs) ? (            xs        ) : Array.from(xs || []);      // pred :: Enum a => a -> a    const pred = x =>        x - 1;      // pureList :: a -> [a]    const pureList = x => [x];     // sum :: [Num] -> Num    const sum = xs =>        // The numeric sum of all values in xs.        xs.reduce((a, x) => a + x, 0);      // unDigits :: [Int] -> Int    const unDigits = ds =>        // The integer with the given digits.        ds.reduce((a, x) => 10 * a + x, 0);      // The 'unfoldr' function is a *dual* to 'foldr':     // while 'foldr' reduces a list to a summary value,     // 'unfoldr' builds a list from a seed value.      // unfoldr :: (b -> Maybe (a, b)) -> b -> [a]    const unfoldr = f =>        v => {            const xs = [];            let xr = [v, v];            while (true) {                const mb = f(xr[1]);                if (mb.Nothing) {                    return xs;                } else {                    xr = mb.Just;                    xs.push(xr[0]);                }            }        };     return main();})();`
Output:
```337,355,373,535,553,733
2227,2272,2335,2353,2533,2722
3235,3253,3325,3352,3523,3532
5233,5323,5332,7222,22225,22252
22333,22522,23233,23323,23332,25222
32233,32323,32332,33223,33232,33322
52222,222223,222232,222322,223222,232222
322222```

## Julia

`using Combinatorics, Primes function primedigitsums(targetsum)     possibles = mapreduce(x -> fill(x, div(targetsum, x)), vcat, [2, 3, 5, 7])     a = map(x -> evalpoly(BigInt(10), x),        mapreduce(x -> unique(collect(permutations(x))), vcat,        unique(filter(x -> sum(x) == targetsum, collect(combinations(possibles))))))     println("There are \$(length(a)) prime-digit-only numbers summing to \$targetsum : \$a") end foreach(primedigitsums, [5, 7, 11, 13]) function primedigitcombos(targetsum)    possibles = [2, 3, 5, 7]    found = Vector{Vector{Int}}()    combos = [Int[]]    tempcombos = Vector{Vector{Int}}()    newcombos = Vector{Vector{Int}}()    while !isempty(combos)        for combo in combos, j in possibles            csum = sum(combo) + j            if csum <= targetsum                newcombo = sort!([combo; j])                csum < targetsum && !(newcombo in newcombos) && push!(newcombos, newcombo)                csum == targetsum && !(newcombo in found) && push!(found, newcombo)            end        end        empty!(combos)        tempcombos = combos        combos = newcombos        newcombos = tempcombos    end    return foundend function countprimedigitsums(targetsum)    found = primedigitcombos(targetsum)    total = sum(arr -> factorial(BigInt(length(arr))) ÷        prod(x -> factorial(BigInt(count(y -> y == x, arr))), unique(arr)), found)    println("There are \$total prime-digit-only numbers summing to \$targetsum.")end foreach(countprimedigitsums, nextprimes(17, 40)) `
Output:
```There are 3 prime-digit-only numbers summing to 5 : [5, 32, 23]
There are 6 prime-digit-only numbers summing to 7 : [7, 52, 25, 322, 232, 223]
There are 19 prime-digit-only numbers summing to 11 : [722, 272, 227, 533, 353, 335, 5222, 2522, 2252, 2225, 3332, 3323, 3233, 2333, 32222, 23222, 22322, 22232, 22223]
There are 43 prime-digit-only numbers summing to 13 : [733, 373, 337, 553, 535, 355, 7222, 2722, 2272, 2227, 5332, 3532, 3352, 5323, 3523, 5233, 2533, 3253, 2353, 3325, 3235, 2335, 52222, 25222, 22522, 22252, 22225, 33322, 33232, 32332, 23332, 33223, 32323, 23323, 32233, 23233, 22333, 322222, 232222, 223222, 222322, 222232, 222223]
There are 221 prime-digit-only numbers summing to 17.
There are 468 prime-digit-only numbers summing to 19.
There are 2098 prime-digit-only numbers summing to 23.
There are 21049 prime-digit-only numbers summing to 29.
There are 45148 prime-digit-only numbers summing to 31.
There are 446635 prime-digit-only numbers summing to 37.
There are 2061697 prime-digit-only numbers summing to 41.
There are 4427752 prime-digit-only numbers summing to 43.
There are 20424241 prime-digit-only numbers summing to 47.
There are 202405001 prime-digit-only numbers summing to 53.
There are 2005642061 prime-digit-only numbers summing to 59.
There are 4307930784 prime-digit-only numbers summing to 61.
There are 42688517778 prime-digit-only numbers summing to 67.
There are 196942068394 prime-digit-only numbers summing to 71.
There are 423011795680 prime-digit-only numbers summing to 73.
There are 4191737820642 prime-digit-only numbers summing to 79.
There are 19338456915087 prime-digit-only numbers summing to 83.
There are 191629965405641 prime-digit-only numbers summing to 89.
There are 4078672831913824 prime-digit-only numbers summing to 97.
There are 18816835854129198 prime-digit-only numbers summing to 101.
There are 40416663565084464 prime-digit-only numbers summing to 103.
There are 186461075642340151 prime-digit-only numbers summing to 107.
There are 400499564627237889 prime-digit-only numbers summing to 109.
There are 1847692833654336940 prime-digit-only numbers summing to 113.
There are 389696778451488128521 prime-digit-only numbers summing to 127.
There are 1797854500757846669066 prime-digit-only numbers summing to 131.
There are 17815422682488317051838 prime-digit-only numbers summing to 137.
There are 38265729200380568226735 prime-digit-only numbers summing to 139.
There are 1749360471151229472803187 prime-digit-only numbers summing to 149.
There are 3757449669085729778349997 prime-digit-only numbers summing to 151.
There are 37233577041224219717325533 prime-digit-only numbers summing to 157.
There are 368957506121989278337474430 prime-digit-only numbers summing to 163.
There are 1702174484494837917764813972 prime-digit-only numbers summing to 167.
There are 16867303726643249517987636148 prime-digit-only numbers summing to 173.
There are 167142638782573042636172836062 prime-digit-only numbers summing to 179.
There are 359005512666242240589945886415 prime-digit-only numbers summing to 181.
There are 16412337250779890525195727788488 prime-digit-only numbers summing to 191.
There are 35252043354611887665339338710961 prime-digit-only numbers summing to 193.
There are 162634253887997896351270835136345 prime-digit-only numbers summing to 197.
There are 349321957098598244959032342621956 prime-digit-only numbers summing to 199.
```

## Kotlin

Translation of: D
`fun primeDigitsSum13(n: Int): Boolean {    var nn = n    var sum = 0    while (nn > 0) {        val r = nn % 10        if (r != 2 && r != 3 && r != 5 && r != 7) {            return false        }        nn /= 10        sum += r    }    return sum == 13} fun main() {    // using 2 for all digits, 6 digits is the max prior to over-shooting 13    var c = 0    for (i in 1 until 1000000) {        if (primeDigitsSum13(i)) {            print("%6d ".format(i))            if (c++ == 10) {                c = 0                println()            }        }    }    println()}`
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533
2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
33223  33232  33322  52222 222223 222232 222322 223222 232222 322222 ```

## Lua

Translation of: C
`function prime_digits_sum_13(n)    local sum = 0    while n > 0 do        local r = n % 10        if r ~= 2 and r ~= 3 and r ~= 5 and r ~= 7 then            return false        end        n = math.floor(n / 10)        sum = sum + r    end    return sum == 13end local c = 0for i=1,999999 do    if prime_digits_sum_13(i) then        io.write(string.format("%6d ", i))        if c == 10 then            c = 0            print()        else            c = c + 1        end    endendprint()`
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533
2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
33223  33232  33322  52222 222223 222232 222322 223222 232222 322222 ```

## Nim

`import math, sequtils, strutils type Digit = 0..9 proc toInt(s: seq[Digit]): int =  ## Convert a sequence of digits to an integer.  for n in s:    result = 10 * result + n const PrimeDigits = @[Digit 2, 3, 5, 7] var list = PrimeDigits.mapIt(@[it])   # List of sequences of digits.var result: seq[int]while list.len != 0:  var nextList: seq[seq[Digit]]       # List with one more digit.  for digitSeq in list:    let currSum = sum(digitSeq)    for n in PrimeDigits:      let newSum = currSum + n      let newDigitSeq = digitSeq & n      if newSum < 13: nextList.add newDigitSeq      elif newSum == 13: result.add newDigitSeq.toInt      else: break  list = move(nextList) for i, n in result:  stdout.write (\$n).align(6), if (i + 1) mod 9 == 0: '\n' else: ' 'echo()`
Output:
```   337    355    373    535    553    733   2227   2272   2335
2353   2533   2722   3235   3253   3325   3352   3523   3532
5233   5323   5332   7222  22225  22252  22333  22522  23233
23323  23332  25222  32233  32323  32332  33223  33232  33322
52222 222223 222232 222322 223222 232222 322222 ```

## Pascal

Works with: Free Pascal
Only counting.
Extreme fast in finding the sum of primesdigits = value.
Limited by Uint64
`program PrimSumUpTo13;{\$IFDEF FPC}   {\$MODE DELPHI}{\$ELSE}  {\$APPTYPE CONSOLE}{\$ENDIF}uses  sysutils; type  tDigits = array[0..3] of Uint32;const  MAXNUM = 113;var gblPrimDgtCnt :tDigits; gblCount: NativeUint; function isPrime(n: NativeUint):boolean;var  i : NativeUInt;Begin  result := (n>1);  if n<4 then    EXIT;  result := false;  if n AND 1 = 0 then    EXIT;  i := 3;  while i*i<= n do  Begin    If n MOD i = 0 then      EXIT;    inc(i,2);  end;  result := true;end; procedure Sort(var t:tDigits);var  i,j,k: NativeUint;  temp : Uint32;Begin  For k := 0 to high(tdigits)-1 do  Begin    temp:= t[k];    j := k;    For i := k+1 to high(tdigits) do    Begin      if temp < t[i] then      Begin        temp := t[i];        j := i;      end;    end;    t[j] := t[k];    t[k] := temp;  end;end; function CalcPermCount:NativeUint;//TempDgtCnt[0] = 3 and TempDgtCnt[1..3]= 2 -> dgtcnt = 3+3*2= 9//permcount = dgtcnt! /(TempDgtCnt[0]!*TempDgtCnt[1]!*TempDgtCnt[2]!*TempDgtCnt[3]!);//nom of n!  = 1,2,3, 4,5, 6,7, 8,9//denom      = 1,2,3, 1,2, 1,2, 1,2var  TempDgtCnt : tdigits;  i,f : NativeUint;begin  TempDgtCnt := gblPrimDgtCnt;  Sort(TempDgtCnt);  //jump over 1/1*2/2*3/3*4/4*..* TempDgtCnt[0]/TempDgtCnt[0]  f := TempDgtCnt[0]+1;  result :=1;   For i := 1 to TempDgtCnt[1] do  Begin    result := (result*f) DIV i;    inc(f);  end;  For i := 1 to TempDgtCnt[2] do  Begin    result := (result*f) DIV i;    inc(f);  end;  For i := 1 to TempDgtCnt[3] do  Begin    result := (result*f) DIV i;    inc(f);  end;end; procedure check32(sum3 :NativeUint);var  n3 : nativeInt;begin   n3 := sum3 DIV 3;   gblPrimDgtCnt[1]:= 0;   while n3 >= 0 do   begin     //divisible by 2     if sum3 AND 1 = 0 then     Begin       gblPrimDgtCnt[0] := sum3 shr 1;       inc(gblCount,CalcPermCount);       sum3 -= 3;       inc(gblPrimDgtCnt[1]);       dec(n3);     end;     sum3 -= 3;     inc(gblPrimDgtCnt[1]);     dec(n3);   end;end; var  Num : NativeUint;  i,sum7,sum5: NativeInt;BEGIN  writeln('Sum':6,'Count of arrangements':25);   Num := 1;  repeat    inc(num);    if Not(isPrime(Num)) then      CONTINUE;    gblCount := 0;    sum7 :=num;    gblPrimDgtCnt[3] := 0;    while sum7 >=0 do    Begin      sum5 := sum7;      gblPrimDgtCnt[2]:=0;      while sum5 >= 0 do      Begin        check32(sum5);        dec(sum5,5);        inc(gblPrimDgtCnt[2]);      end;      inc(gblPrimDgtCnt[3]);      dec(sum7,7);    end;    writeln(num:6,gblCount:25,'   ');  until num > MAXNUM;END.`
Output:
```   Sum    Count of arrangements
2                        1
3                        1
5                        3
7                        6
11                       19
13                       43
17                      221
19                      468
23                     2098
29                    21049
31                    45148
37                   446635
41                  2061697
43                  4427752
47                 20424241
53                202405001
59               2005642061
61               4307930784
67              42688517778
71             196942068394
73             423011795680
79            4191737820642
83           19338456915087
89          191629965405641
97         4078672831913824
101        18816835854129198
103        40416663565084464
107       186461075642340151
109       400499564627237889
113      1847692833654336940
real  0m0,003s
```

### using gmp

`program PrimSumUpTo13_GMP;{\$IFDEF FPC}  {\$OPTIMIZATION ON,ALL}  {\$MODE DELPHI}{\$ELSE}  {\$APPTYPE CONSOLE}{\$ENDIF}uses  sysutils,gmp; type  tDigits = array[0..3] of Uint32;const  MAXNUM = 199;//999var  //split factors of n! in Uint64 groups  Fakul : array[0..MAXNUM] of UInt64;  IdxLimits : array[0..MAXNUM DIV 3] of word;  gblPrimDgtCnt :tDigits;   gblSum,  gbldelta : MPInteger; // multi precision (big) integers selve cleaning  s : AnsiString; procedure Init;var  i,j,tmp,n :NativeUint;Begin  //generate n! by Uint64 factors  j := 1;  n := 0;  For i := 1 to MAXNUM do  begin    tmp := j;    j *= i;    if j div i <> tmp then    Begin      IdxLimits[n]:= i-1;      j := i;      inc(n);    end;    Fakul[i] := j;  end;   setlength(s,512);// 997 -> 166  z_init_set_ui(gblSum,0);  z_init_set_ui(gbldelta,0);end; function isPrime(n: NativeUint):boolean;var  i : NativeUInt;Begin  result := (n>1);  if n<4 then    EXIT;  result := false;  if n AND 1 = 0 then    EXIT;  i := 3;  while i*i<= n do  Begin    If n MOD i = 0 then      EXIT;    inc(i,2);  end;  result := true;end; procedure Sort(var t:tDigits);// sorting descending to reduce calculationsvar  i,j,k: NativeUint;  temp : Uint32;Begin  For k := 0 to high(tdigits)-1 do  Begin    temp:= t[k];    j := k;    For i := k+1 to high(tdigits) do    Begin      if temp < t[i] then      Begin        temp := t[i];        j := i;      end;    end;    t[j] := t[k];    t[k] := temp;  end;end; function calcOne(f,n: NativeUint):NativeUint;var  i,idx,MaxMulLmt : NativeUint;Begin  result := f;  if n = 0 then    EXIT;   MaxMulLmt := High(MaxMulLmt) DIV (f+n);  z_mul_ui(gbldelta,gbldelta,result);  inc(result);  if n > 1 then  Begin    //multiply by parts of (f+n)!/f! with max Uint64 factors    i := 2;    while (i<=n) do    begin      idx := 1;      while (i<=n) AND (idx<MaxMulLmt) do      Begin        idx *= result;        inc(i);        inc(result);      end;      z_mul_ui(gbldelta,gbldelta,idx);    end;     //divide by n! with max Uint64 divisors    idx := 0;    if n > IdxLimits[idx] then      repeat        z_divexact_ui(gbldelta,gbldelta,Fakul[IdxLimits[idx]]);        inc(idx);      until IdxLimits[idx] >= n;    z_divexact_ui(gbldelta,gbldelta,Fakul[n]);  end;end; procedure CalcPermCount;//TempDgtCnt[0] = 3 and TempDgtCnt[1..3]= 2 -> dgtcnt = 3+3*2= 9//permcount = dgtcnt! /(TempDgtCnt[0]!*TempDgtCnt[1]!*TempDgtCnt[2]!*TempDgtCnt[3]!);//nom of n!  = 1,2,3, 4,5, 6,7, 8,9//denom      = 1,2,3, 1,2, 1,2, 1,2var  TempDgtCnt : tdigits;  f : NativeUint;begin  TempDgtCnt := gblPrimDgtCnt;  Sort(TempDgtCnt);  //jump over 1/1*2/2*3/3*4/4*..*  //res := 1;  f := TempDgtCnt[0]+1;  z_set_ui(gbldelta,1);   f := calcOne(f,TempDgtCnt[1]);  f := calcOne(f,TempDgtCnt[2]);  f := calcOne(f,TempDgtCnt[3]);   z_add(gblSum,gblSum,gblDelta);end; procedure check32(sum3 :NativeInt);var  n3 : nativeInt;begin   n3 := sum3 DIV 3;   gblPrimDgtCnt[1]:= 0;   while n3 >= 0 do   begin     //divisible by 2     if sum3 AND 1 = 0 then     Begin       gblPrimDgtCnt[0] := sum3 shr 1;       CalcPermCount;     end;     sum3 -= 3;     inc(gblPrimDgtCnt[1]);     dec(n3);   end;end;procedure CheckAll(num:NativeUint);var  sum7,sum5: NativeInt;BEGIN  z_set_ui(gblSum,0);  sum7 :=num;  gblPrimDgtCnt[3] := 0;  while sum7 >=0 do  Begin    sum5 := sum7;    gblPrimDgtCnt[2]:=0;    while sum5 >= 0 do    Begin      check32(sum5);      dec(sum5,5);      inc(gblPrimDgtCnt[2]);    end;    inc(gblPrimDgtCnt[3]);    dec(sum7,7);  end;end; var  T0 : Int64;  Num : NativeUint;BEGIN  Init;   T0 := GettickCount64;  // Number crunching goes here  writeln('Sum':6,'Count of arrangements':25);  For num := 2 to MAXNUM do    IF isPrime(Num) then    Begin      CheckAll(num);       z_get_str(pChar(s),10,gblSum);      writeln(num:6,'  ',pChar(s));    end;  writeln('Time taken : ',GettickCount64-T0,' ms');   z_clear(gblSum);  z_clear(gbldelta);END.`
Output:
```tio.run/#pascal-fpc
Sum    Count of arrangements
2  1
3  1
5  3
7  6
11  19
13  43
17  221
19  468
23  2098
29  21049
31  45148
37  446635
41  2061697
43  4427752
47  20424241
53  202405001
59  2005642061
61  4307930784
67  42688517778
71  196942068394
73  423011795680
79  4191737820642
83  19338456915087
89  191629965405641
97  4078672831913824
101  18816835854129198
103  40416663565084464
107  186461075642340151
109  400499564627237889
113  1847692833654336940
127  389696778451488128521
131  1797854500757846669066
137  17815422682488317051838
139  38265729200380568226735
149  1749360471151229472803187
151  3757449669085729778349997
157  37233577041224219717325533
163  368957506121989278337474430
167  1702174484494837917764813972
173  16867303726643249517987636148
179  167142638782573042636172836062
181  359005512666242240589945886415
191  16412337250779890525195727788488
193  35252043354611887665339338710961
197  162634253887997896351270835136345
199  349321957098598244959032342621956
Time taken : 23 ms```

## Perl

`#!/usr/bin/perl use strict;use warnings; my @queue = my @primedigits = ( 2, 3, 5, 7 );my \$numbers; while( my \$n = shift @queue )  {  if( eval \$n == 13 )    {    \$numbers .= \$n =~ tr/+//dr . " ";    }  elsif( eval \$n < 13 )    {    push @queue, map "\$n+\$_", @primedigits;    }  }print \$numbers =~ s/.{1,80}\K /\n/gr;`
Output:
```337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523
3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233
32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222
```

## Phix

```with javascript_semantics
function unlucky(sequence set, integer needed, string v="", sequence res={})
if needed=0 then
res = append(res,sprintf("%6s",v))
elsif needed>0 then
for i=length(set) to 1 by -1 do
res = unlucky(set,needed-set[i],(set[i]+'0')&v,res)
end for
end if
return res
end function

sequence r = sort(unlucky({2,3,5,7},13))
puts(1,join_by(r,1,11," "))
```
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533
2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
33223  33232  33322  52222 222223 222232 222322 223222 232222 322222
```

### iterative

Queue-based version of Nigel's recursive algorithm, same output.

```with javascript_semantics
requires("0.8.2") -- uses latest apply() mods, rest is fine
constant dgts = {2,3,5,7}
function unlucky()
sequence res = {}, q = {{0,0}}
integer s, -- partial digit sum, <=11
v  -- corresponding value
while length(q) do
{{s,v}, q} = {q[1], q[2..\$]}
for i=1 to length(dgts) do
integer d = dgts[i], {ns,nv} = {s+d,v*10+d}
if ns<=11 then q &= {{ns,nv}}
elsif ns=13 then res &= nv end if
end for
end while
return res
end function

sequence r = unlucky()
r = apply(true,sprintf,{{"%6d"},r})
puts(1,join_by(r,1,11," "))
```

I've archived a slightly more OTT version: Numbers_with_prime_digits_whose_sum_is_13/Phix.

## Prolog

` digit_sum(N, M) :- digit_sum(N, 0, M).digit_sum(0, A, B) :- !, A = B.digit_sum(N, A0, M) :-    divmod(N, 10, Q, R),    plus(A0, R, A1),    digit_sum(Q, A1, M). prime_digits(0).prime_digits(N) :-    prime_digits(M),    member(D, [2, 3, 5, 7]),    N is 10 * M + D.	 prime13(N) :-    prime_digits(N),    (N > 333_333 -> !, false ; true),    digit_sum(N, 13). main :-    findall(N, prime13(N), S),    format("Those numbers whose digits are all prime and sum to 13 are: ~n~w~n", [S]),    halt. ?- main. `
Output:
```Those numbers whose digits are all prime and sum to 13 are:
[337,355,373,535,553,733,2227,2272,2335,2353,2533,2722,3235,3253,3325,3352,3523,3532,5233,5323,5332,7222,22225,22252,22333,22522,23233,23323,23332,25222,32233,32323,32332,33223,33232,33322,52222,222223,222232,222322,223222,232222,322222]
```

## Raku

`put join ', ', sort +*, unique flat   < 2 2 2 2 2 3 3 3 5 5 7 >.combinations   .grep( *.sum == 13 )   .map( { .join => \$_ } )   .map: { .value.permutations».join }`
Output:
`337, 355, 373, 535, 553, 733, 2227, 2272, 2335, 2353, 2533, 2722, 3235, 3253, 3325, 3352, 3523, 3532, 5233, 5323, 5332, 7222, 22225, 22252, 22333, 22522, 23233, 23323, 23332, 25222, 32233, 32323, 32332, 33223, 33232, 33322, 52222, 222223, 222232, 222322, 223222, 232222, 322222`

## REXX

`/*REXX pgm finds and displays all decimal numbers whose digits are prime and sum to 13. */parse arg LO HI COLS .                           /*obtain optional arguments from the CL*/if   LO=='' |   LO==","  then   LO=    337       /*Not specified?  Then use the default.*/if   HI=='' |   HI==","  then   HI= 322222       /* "      "         "   "   "     "    */if cols=='' | cols==","  then cols=     10       /* "      "         "   "   "     "    */w= 10                                            /*width of a number in any column.     */                     title= ' decimal numbers found whose digits are prime and sum to 13 'say ' index │'center(title,  1 + cols*(w+1)     )say '───────┼'center(""   ,  1 + cols*(w+1), '─')w= 10                                            /*max width of a integer in any column.*/found= 0;                    idx= 1              /*the number of numbers found (so far).*/\$=                                               /*variable to hold the list of #s found*/      do j=LO  for HI-LO+1                       /*search for numbers in this range.    */      if verify(j, 2357) \== 0  then iterate     /*J  must be comprised of prime digits.*/      parse var  j    a  2  b  3  ''  -1  z      /*parse: 1st, 2nd, & last decimal digs.*/      sum= a + b + z                             /*sum:    "    "   "   "     "     "   */                      do k=3  for length(j)-3    /*only need to sum #s with #digits ≥ 4 */                      sum= sum + substr(j, k, 1) /*sum some middle decimal digits of  J.*/                      end   /*k*/      if sum\==13           then iterate         /*Sum not equal to 13? Then skip this #*/      found= found + 1                           /*bump the number of numbers found.    */      c= commas(j)                               /*maybe add commas to the number.      */      \$= \$ right( commas(j), w)                  /*add the found number ───► the \$ list.*/      if found//cols\==0    then iterate         /*have we populated a line of output?  */      say center(idx, 7)'│'  substr(\$, 2);   \$=  /*display what we have so far  (cols). */      idx= idx + cols                            /*bump the  index  count for the output*/      end   /*j*/ if \$\==''  then say center(idx, 7)"│"  substr(\$, 2)  /*possible display residual output.*/say '───────┴'center(""   ,  1 + cols*(w+1), '─')saysay 'Found '       commas(found)      title      exit 0                                           /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/commas: parse arg _;  do jc=length(_)-3  to 1  by -3; _=insert(',', _, jc); end;  return _`
output   when using the internal default inputs:
``` index │                          decimal numbers found whose digits are prime and sum to 13
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
1   │        337        355        373        535        553        733      2,227      2,272      2,335      2,353
11   │      2,533      2,722      3,235      3,253      3,325      3,352      3,523      3,532      5,233      5,323
21   │      5,332      7,222     22,225     22,252     22,333     22,522     23,233     23,323     23,332     25,222
31   │     32,233     32,323     32,332     33,223     33,232     33,322     52,222    222,223    222,232    222,322
41   │    223,222    232,222    322,222
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  43  decimal numbers found whose digits are prime and sum to 13
```

## Ring

` load "stdlib.ring" sum = 0limit = 1000000aPrimes = [] for n = 1 to limit    sum = 0    st = string(n)    for m = 1 to len(st)        num = number(st[m])        if isprime(num)           sum = sum + num           flag = 1        else           flag = 0           exit        ok     next     if flag = 1 and sum = 13        add(aPrimes,n)     oknext see "Unlucky numbers are:" + nlsee showArray(aPrimes) func showarray vect     svect = ""     for n in vect         svect += "" + n + ","     next     ? "[" + left(svect, len(svect) - 1) + "]" `
Output:
```Unlucky numbers are:
[337,355,373,535,553,733,2227,2272,2335,2353,2533,2722,3235,3253,3325,3352,3523,3532,5233,5323,5332,7222,22225,22252,22333,22522,23233,23323,23332,25222,32233,32323,32332,33223,33232,33322,52222,222223,222232,222322,223222,232222,322222]
```

## Ruby

Translation of: C
`def primeDigitsSum13(n)    sum = 0    while n > 0        r = n % 10        if r != 2 and r != 3 and r != 5 and r != 7 then            return false        end        n = (n / 10).floor        sum = sum + r    end    return sum == 13end c = 0for i in 1 .. 1000000    if primeDigitsSum13(i) then        print "%6d " % [i]        if c == 10 then            c = 0            print "\n"        else            c = c + 1        end    endendprint "\n" `
Output:
```   337    355    373    535    553    733   2227   2272   2335   2353   2533
2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
33223  33232  33322  52222 222223 222232 222322 223222 232222 322222```

## Sidef

`func generate_from_prefix(sum, p, base, digits) {     var seq = [p]     for d in (digits) {        seq << __FUNC__(sum, [d, p...], base, digits)... if (p.sum+d <= sum)    }     return seq} func numbers_with_digitsum(sum, base = 10, digits = (base-1 -> primes)) {     digits.map  {|p| generate_from_prefix(sum, [p], base, digits)... }\          .map  {|t| digits2num(t, base) }\          .grep {|t| t.sumdigits(base) == sum }\          .sort} say numbers_with_digitsum(13)`
Output:
```[337, 355, 373, 535, 553, 733, 2227, 2272, 2335, 2353, 2533, 2722, 3235, 3253, 3325, 3352, 3523, 3532, 5233, 5323, 5332, 7222, 22225, 22252, 22333, 22522, 23233, 23323, 23332, 25222, 32233, 32323, 32332, 33223, 33232, 33322, 52222, 222223, 222232, 222322, 223222, 232222, 322222]
```

## Visual Basic .NET

Translation of: Phix

Same recursive method.

`Imports SystemImports System.ConsoleImports LI = System.Collections.Generic.SortedSet(Of Integer) Module Module1     Function unl(ByVal res As LI, ByVal lst As LI, ByVal lft As Integer, ByVal Optional mul As Integer = 1, ByVal Optional vlu As Integer = 0) As LI        If lft = 0 Then            res.Add(vlu)        ElseIf lft > 0 Then            For Each itm As Integer In lst                res = unl(res, lst, lft - itm, mul * 10, vlu + itm * mul)            Next        End If        Return res    End Function     Sub Main(ByVal args As String())        WriteLine(string.Join(" ",            unl(new LI From {}, new LI From { 2, 3, 5, 7 }, 13)))    End SubEnd Module`
Output:
```337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222
```

### Alternate

Thanks to Nigel Galloway's suggestion from the discussion page.

`Imports Tu = System.Tuple(Of Integer, Integer)  Module Module1   Sub Main()    Dim w As New List(Of Tu), sum, x As Integer,        lst() As Integer = { 2, 3, 5, 7 }    For Each x In lst : w.Add(New Tu(x, x)) : Next    While w.Count > 0 : With w(0) : For Each j As Integer In lst        sum = .Item2 + j        If sum = 13 Then Console.Write("{0}{1} ", .Item1, j)        If sum < 12 Then w.Add(New Tu(.Item1 * 10 + j, sum))      Next : End With : w.RemoveAt(0) : End While  End Sub End Module`

Same output.

## Wren

Library: Wren-math
Library: Wren-seq
Library: Wren-sort

As the only digits which are prime are [2, 3, 5, 7], it is clear that a number must have between 3 and 6 digits for them to sum to 13.

`import "/math" for Numsimport "/seq" for Lstimport "/sort" for Sort var combrep // recursivecombrep = Fn.new { |n, lst|    if (n == 0 ) return [[]]    if (lst.count == 0) return []    var r = combrep.call(n, lst[1..-1])    for (x in combrep.call(n-1, lst)) {        var y = x.toList        y.add(lst[0])        r.add(y)    }    return r} var permute // recursivepermute = Fn.new { |input|    if (input.count == 1) return [input]    var perms = []    var toInsert = input[0]    for (perm in permute.call(input[1..-1])) {        for (i in 0..perm.count) {            var newPerm = perm.toList            newPerm.insert(i, toInsert)            perms.add(newPerm)        }    }    return perms} var primes = [2, 3, 5, 7]var res = []for (n in 3..6) {    var reps = combrep.call(n, primes)    for (rep in reps) {        if (Nums.sum(rep) == 13) {            var perms = permute.call(rep)            for (i in 0...perms.count) perms[i] = Num.fromString(perms[i].join())            res.addAll(Lst.distinct(perms))        }    }}Sort.quick(res)System.print("Those numbers whose digits are all prime and sum to 13 are:")System.print(res)`
Output:
```Those numbers whose digits are all prime and sum to 13 are:
[337, 355, 373, 535, 553, 733, 2227, 2272, 2335, 2353, 2533, 2722, 3235, 3253, 3325, 3352, 3523, 3532, 5233, 5323, 5332, 7222, 22225, 22252, 22333, 22522, 23233, 23323, 23332, 25222, 32233, 32323, 32332, 33223, 33232, 33322, 52222, 222223, 222232, 222322, 223222, 232222, 322222]
```

## XPL0

` int N, M, S, D;[for N:= 2 to 322222 do        [M:= N;  S:= 0;        repeat  M:= M/10;               \get digit D                D:= remainder(0);                case D of                 2, 3, 5, 7:                        [S:= S+D;                        if S=13 and M=0 \all digits included\ then                                [IntOut(0, N);  ChOut(0, ^ )];                        ]                other   M:= 0;  \digit not prime so exit repeat loop        until M=0;              \all digits in N tested or digit not prime        ];]`
Output:
```337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222
```