I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Numbers with equal rises and falls

Numbers with equal rises and falls
You are encouraged to solve this task according to the task description, using any language you may know.

When a number is written in base 10,   adjacent digits may "rise" or "fall" as the number is read   (usually from left to right).

Definition

Given the decimal digits of the number are written as a series   d:

•   A   rise   is an index   i   such that   d(i)  <  d(i+1)
•   A   fall    is an index   i   such that   d(i)  >  d(i+1)

Examples
•   The number   726,169   has   3   rises and   2   falls,   so it isn't in the sequence.
•   The number     83,548   has   2   rises and   2   falls,   so it   is   in the sequence.

•   Print the first   200   numbers in the sequence
•   Show that the   10 millionth   (10,000,000th)   number in the sequence is   41,909,002

•   OEIS Sequence  A296712   describes numbers whose digit sequence in base 10 have equal "rises" and "falls".

## 11l

Translation of: Python
`F riseEqFall(=num)   ‘Check whether a number belongs to sequence A296712.’   V height = 0   V d1 = num % 10   num I/= 10   L num != 0      V d2 = num % 10      height += (d1 < d2) - (d1 > d2)      d1 = d2      num I/= 10   R height == 0 V num = 0F nextNum()   L      :num++      I riseEqFall(:num)         L.break   R :num print(‘The first 200 numbers are:’)L 200   print(nextNum(), end' ‘ ’)print() L 0 .< 10'000'000 - 200 - 1   nextNum()print(‘The 10,000,000th number is: ’nextNum())`
Output:
```The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
The 10,000,000th number is: 41909002
```

## 8080 Assembly

`puts:	equ	9	; CP/M callsputch:	equ	2	org	100h	;;;	Print first 200 numbers	lxi	d,first	mvi	c,puts	call	5	mvi	b,200	; 200 numbersf200:	push	b	call	next	; Get next number	call	pnum	; Print the number	pop	b	; Restore counter	dcr	b	; Are we there yet?	jnz	f200	; If not, next number	;;;	Find 10,000,000th number	lxi	d,tenmil	mvi	c,puts	call	5f1e7:	call	next	; Keep generating numbers until ten million reached	jnz	f1e7	; Then print the number	;;;	Print the current numberpnum:	lxi	d,numpscan:	dcx	d	; Scan for zero	ldax	d	ana	a	jnz	pscan	mvi	c,puts	; Once found, print string	jmp	5	;;;	Increment number until rises and falls are equalnext:	lxi	h,numincdgt:	mov	a,m	; Get digit	ana	a	; If 0, then initialize	jz	grow	inr	a	; Otherwise, increment	mov	m,a	; Store back	cpi	'9'+1	; Rollover?	jnz	idone	; If not, we're done	mvi	m,'0'	; If so, set digit to 0	dcx	h	; And increment previous digit	jmp	incdgt grow:	mvi	m,'1'idone:	lxi	h,num	; Find rises and falls	mvi	b,0	; B = rises - falls	mov	c,m	; C = right digit in comparisonpair:	dcx	h	mov	a,m	; A = left digit in comparison	ana	a	; When zero, done	jz	check	cmp	c	; Compare left digit to right digit	jc	fall	; A<C = fall	jnz	rise	; A>C = risenxdgt:	mov	c,a	; C is now left digit	jmp	pair	; Check next pairfall:	dcr	b	; Fall: decrement B	jmp	nxdgtrise:	inr	b	; Rise: increment B	jmp	nxdgtcheck:	mov	a,b	; If B=0 then rises and falls are equal	ana	a	jnz	next	; Otherwise, increment number and try again	lxi	h,ctr	; But if so, decrement the counter to 10 million	mov	a,m	; First byte	sui	1	mov	m,a	inx	h	; Second byte	mov	a,m	sbb	b	; B=0 here	mov	m,a	inx	h	; Third byte	mov	a,m	sbb	b	mov	m,a	dcx	h	; OR them together to see if the number is zero	ora	m	dcx	h	ora	m	ret	;;;	Stringsfirst:	db	'The first 200 numbers are:',13,10,'\$'tenmil:	db	13,10,10,'The 10,000,000th number is: \$'	;;;	Current number (stored as ASCII)	db	0,0,0,0,0,0,0,0num:	db	'0 \$'	;;;	24-bit counter to keep track of ten millionctr:	db	80h,96h,98h	; 1e7 = 989680h`
Output:
```The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002 ```

## 8086 Assembly

`puts:	equ	9		; MS-DOS print string	cpu	8086	bits	16	org	100hsection	.text	mov	bp,98h		; BP:DI = 989680h = ten million	mov	di,9680h	;;;	Print first 200 numbers	mov	dx,first	; Print message	mov	ah,puts	int	21hn200:	call	next		; Get next number	call	pnum		; Print the number	cmp	di,95B8h	; Have we had 200 yet?	ja	n200		; If not, print next number	;;;	Print the 10 millionth number	mov	dx,tenmil	; Print message	mov	ah,puts	int	21hn1e7:	call	next		; Get next number	jnz	n1e7		; Until we have the 10 millionth	;;;	Print the current numberpnum:	std			; Read backwards	xchg	si,di		; Keep DI safe	mov	di,num	mov	cx,9	xor	al,al		; Find the first zero	repnz	scasb	inc	di		; Go to first digit	inc	di	xchg	si,di		; Put DI back	mov	dx,si		; Call DOS to print the number	mov	ah,puts	int	21h	ret	;;;	Increment number until rises and falls are equalnext:	std			; Read number backwards.inc:	mov	bx,num.iloop:	mov	al,[bx]		; Get digit	test	al,al		; If uninitialized, write a 1	jz	.grow	inc	ax		; Otherwise, increment	mov	[bx],al		; Write it back	cmp	al,'9'+1	; Rollover?	jnz	.idone		; If not, the increment is done	mov	[bx],byte '0'	; But if so, this digit should be 0,	dec	bx		; and the next digit incremented.	jmp	.iloop.grow:	mov	[bx],byte '1'	; The number gains an extra digit.idone:	xor	bl,bl		; BL = rise and fall counter	mov	si,num	lodsb			; Read first digit to compare to.pair:	xchg	ah,al		; Previous digit to compare	lodsb			; Read next digit	test	al,al		; Done yet?	jz	.done	cmp	al,ah		; If not, compare the digits	ja	.fall		; If they are different,		jb	.rise		; there is a fall or a rise	jmp	.pair		; Otherwise, try next pair.fall:	dec	bl		; Fall: decrement BL	jmp	.pair.rise:	inc	bl		; Rise: increment BL	jmp	.pair.done:	test	bl,bl		; At the end, check if BL is zero	jnz	.inc		; If not, try next number	sub	di,1		; Decrement the million counter in BP:DI	sbb	bp,0	mov	ax,di		; Test if BP:DI is zero	or	ax,bp 	retsection	.data	;;;	Stringsfirst:	db	'The first 200 numbers are:',13,10,'\$'tenmil:	db	13,10,10,'The 10,000,000th number is: \$'	;;;	Current number, stored as ASCII	db	0,0,0,0,0,0,0,0num:	db	'0 \$'`
Output:
```The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002 ```

`with Ada.Text_Io;with Ada.Integer_Text_Io; procedure Equal_Rise_Fall is   use Ada.Text_Io;    function Has_Equal_Rise_Fall (Value : Natural) return Boolean is      Rises : Natural := 0;      Falls : Natural := 0;      Image : constant String := Natural'Image (Value);      Last  : Character := Image (Image'First + 1);   begin      for Pos in Image'First + 2 .. Image'Last loop         if Image (Pos) > Last then            Rises := Rises + 1;         elsif Image (Pos) < Last then            Falls := Falls + 1;         end if;         Last := Image (Pos);      end loop;      return Rises = Falls;   end Has_Equal_Rise_Fall;    Value : Natural := 1;   Count : Natural := 0;begin   loop      if Has_Equal_Rise_Fall (Value) then         Count := Count + 1;         if Count <= 200 then            Ada.Integer_Text_Io.Put (Value, Width => 5);            if Count mod 20 = 0 then               New_Line;            end if;         end if;         if Count = 10_000_000 then            New_Line;            Put_Line ("The 10_000_000th: " & Natural'Image (Value));            exit;         end if;      end if;      Value := Value + 1;   end loop;end Equal_Rise_Fall;`
Output:
```    1    2    3    4    5    6    7    8    9   11   22   33   44   55   66   77   88   99  101  102
103  104  105  106  107  108  109  111  120  121  130  131  132  140  141  142  143  150  151  152
153  154  160  161  162  163  164  165  170  171  172  173  174  175  176  180  181  182  183  184
185  186  187  190  191  192  193  194  195  196  197  198  201  202  203  204  205  206  207  208
209  212  213  214  215  216  217  218  219  222  230  231  232  240  241  242  243  250  251  252
253  254  260  261  262  263  264  265  270  271  272  273  274  275  276  280  281  282  283  284
285  286  287  290  291  292  293  294  295  296  297  298  301  302  303  304  305  306  307  308
309  312  313  314  315  316  317  318  319  323  324  325  326  327  328  329  333  340  341  342
343  350  351  352  353  354  360  361  362  363  364  365  370  371  372  373  374  375  376  380
381  382  383  384  385  386  387  390  391  392  393  394  395  396  397  398  401  402  403  404

The 10_000_000th:  41909002```

## ALGOL 68

Translation of: Wren
... with a single counter for rises and falls.
`BEGIN    # returns TRUE if the number of digits in n followed by a higher digit (rises)  #    #              equals the number of digits followed by a lower digit (falls)    #    #        FALSE otherwise                                                        #    PROC rises equals falls = ( INT n )BOOL:         BEGIN            INT rf   := 0;            INT prev := n MOD 10;            INT v    := n OVER 10;            WHILE v > 0 DO                INT d = v MOD 10;                IF d < prev THEN                    rf +:= 1    # rise                                              #                ELIF d > prev THEN                     rf -:= 1    # fall                                              #                FI;                prev := d;                v OVERAB 10            OD;            rf = 0        END; # rises equals falls #    # task tests                                                                    #     print( ( "The first 200 numbers in the sequence are:", newline ) );    INT count    := 0;    INT max count = 10 000 000;    FOR n WHILE count < max count DO        IF rises equals falls( n ) THEN            count +:= 1;            IF count <= 200 THEN                print( ( whole( n, -4 ) ) );                IF count MOD 20 = 0 THEN print( ( newline ) ) FI            ELIF count = max count THEN                print( ( newline, "The 10 millionth number in the sequence is ", whole( n, -8 ), ".", newline ) )            FI        FI    ODEND `
Output:
```The first 200 numbers in the sequence are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10 millionth number in the sequence is 41909002.
```

## APL

Works with: Dyalog APL
`risefall←{    ⍝ Determine if a number is in the sequence    inSeq←0=(+/2(<->)/10(⊥⍣¯1)⊢)     ⍝ First 200 numbers    ⎕←'The first 200 numbers are:'    ⎕←(⊢(/⍨)inSeq¨)⍳404     ⍝ 10,000,000th number    ⍝ You can't just make a list that big and filter    ⍝ it, because that will just get you a WS FULL.    ⍝ Instead it's necessary to loop over them the old-    ⍝ fashioned way    ⍞←'The 10,000,000th number is: '    ⎕←1e7{⍺=0:⍵-1 ⋄ (⍺-inSeq ⍵)∇ ⍵+1}1}`
Output:
```The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102
103 104 105 106 107 108 109 111 120 121 130 131
132 140 141 142 143 150 151 152 153 154 160 161
162 163 164 165 170 171 172 173 174 175 176 180
181 182 183 184 185 186 187 190 191 192 193 194
195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231
232 240 241 242 243 250 251 252 253 254 260 261
262 263 264 265 270 271 272 273 274 275 276 280
281 282 283 284 285 286 287 290 291 292 293 294
295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325
326 327 328 329 333 340 341 342 343 350 351 352
353 354 360 361 362 363 364 365 370 371 372 373
374 375 376 380 381 382 383 384 385 386 387 390
391 392 393 394 395 396 397 398 401 402 403 404
The 10,000,000th number is:
41909002```

## AutoHotkey

`limit1 := 200, limit2 := 10000000count := 0, result1 := result1 := ""loop{    num := A_Index    if !Rise_Fall(num)        continue    count++    if (count <= limit1)        result1 .= num . (Mod(count, 20) ? "`t" : "`n")    if (count = limit2){        result2 := num        break    }    if !mod(count, 10000)        ToolTip % count}ToolTipMsgBox % "The first " limit1 " numbers in the sequence:`n" result1 "`nThe " limit2 " number in the sequence is: " result2return Rise_Fall(num){    rise := fall := 0    for i, n in StrSplit(num){        if (i=1)            prev := n        else if (n > prev)            rise++        else if (n < prev)            fall++        if (rise > (StrLen(num)-1) /2) || (fall > (StrLen(num)-1) /2)            return 0        prev := n    }    if (fall = rise)        return 1}`
Output:
```The first 200 numbers in the sequence:
1	2	3	4	5	6	7	8	9	11	22	33	44	55	66	77	88	99	101	102
103	104	105	106	107	108	109	111	120	121	130	131	132	140	141	142	143	150	151	152
153	154	160	161	162	163	164	165	170	171	172	173	174	175	176	180	181	182	183	184
185	186	187	190	191	192	193	194	195	196	197	198	201	202	203	204	205	206	207	208
209	212	213	214	215	216	217	218	219	222	230	231	232	240	241	242	243	250	251	252
253	254	260	261	262	263	264	265	270	271	272	273	274	275	276	280	281	282	283	284
285	286	287	290	291	292	293	294	295	296	297	298	301	302	303	304	305	306	307	308
309	312	313	314	315	316	317	318	319	323	324	325	326	327	328	329	333	340	341	342
343	350	351	352	353	354	360	361	362	363	364	365	370	371	372	373	374	375	376	380
381	382	383	384	385	386	387	390	391	392	393	394	395	396	397	398	401	402	403	404

The 10000000 number in the sequence is: 41909002```

## AWK

` # syntax: GAWK -f NUMBERS_WITH_EQUAL_RISES_AND_FALLS.AWK# converted from GoBEGIN {    print("1-200:")    while (1) {      if (rises_equals_falls(++n)) {        if (++count <= 200) {          printf("%4d",n)          if (count % 20 == 0) {            printf("\n")          }        }        if (count == 1E7) {          printf("\n%d: %d",count,n)          break        }      }    }    exit(0)}function rises_equals_falls(n,  d,falls,prev,rises) {    if (n < 10) {      return(1)    }    prev = -1    while (n > 0) {      d = n % 10      if (prev >= 0) {        if (d < prev) {          rises++        }        else if (d > prev) {          falls++        }      }      prev = d      n = int(n / 10)    }    return(rises == falls)} `
Output:
```1-200:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

10000000: 41909002
```

## C

`#include <stdio.h> /* Check whether a number has an equal amount of rises * and falls */int riseEqFall(int num) {    int rdigit = num % 10;    int netHeight = 0;    while (num /= 10) {        netHeight += ((num % 10) > rdigit) - ((num % 10) < rdigit);        rdigit = num % 10;    }    return netHeight == 0;} /* Get the next member of the sequence, in order, * starting at 1 */int nextNum() {    static int num = 0;    do {num++;} while (!riseEqFall(num));    return num;} int main(void) {    int total, num;     /* Generate first 200 numbers */    printf("The first 200 numbers are: \n");    for (total = 0; total < 200; total++)        printf("%d ", nextNum());     /* Generate 10,000,000th number */    printf("\n\nThe 10,000,000th number is: ");    for (; total < 10000000; total++) num = nextNum();    printf("%d\n", num);     return 0;}`
Output:
```The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002```

## C++

`#include <iomanip>#include <iostream> bool equal_rises_and_falls(int n) {    int total = 0;    for (int previous_digit = -1; n > 0; n /= 10) {        int digit = n % 10;        if (previous_digit > digit)            ++total;        else if (previous_digit >= 0 && previous_digit < digit)            --total;        previous_digit = digit;    }    return total == 0;} int main() {    const int limit1 = 200;    const int limit2 = 10000000;    int n = 0;    std::cout << "The first " << limit1 << " numbers in the sequence are:\n";    for (int count = 0; count < limit2; ) {        if (equal_rises_and_falls(++n)) {            ++count;            if (count <= limit1)                std::cout << std::setw(3) << n << (count % 20 == 0 ? '\n' : ' ');        }    }    std::cout << "\nThe " << limit2 << "th number in the sequence is " << n << ".\n";}`
Output:
```The first 200 numbers in the sequence are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000th number in the sequence is 41909002.
```

## CLU

`% Find how many rises and falls a number hasrises_falls = proc (n: int) returns (int,int)    rises: int := 0    falls: int := 0     while n >= 10 do        dl: int := n//10        n := n / 10        dh: int := n//10        if dh < dl then rises := rises + 1        elseif dl < dh then falls := falls + 1        end     end     return (rises, falls)end rises_falls % Generate all numbers with equal rises and fallsequal_rises_falls = iter () yields (int)    n: int := 1    rises, falls: int     while true do        rises, falls := rises_falls(n)        if rises = falls then yield (n) end        n := n + 1    endend equal_rises_falls % Show the first 200 and the 10,000,000thstart_up = proc ()    po: stream := stream\$primary_output()    count: int := 0     for n: int in equal_rises_falls() do        count := count + 1        if count <= 200 then            stream\$putright(po, int\$unparse(n), 5)            if count//10 = 0 then stream\$putc(po, '\n') end        elseif count = 10000000 then            stream\$putl(po, "\nThe 10,000,000th number is: "                          || int\$unparse(n))            break        end    endend start_up`
Output:
```    1    2    3    4    5    6    7    8    9   11
22   33   44   55   66   77   88   99  101  102
103  104  105  106  107  108  109  111  120  121
130  131  132  140  141  142  143  150  151  152
153  154  160  161  162  163  164  165  170  171
172  173  174  175  176  180  181  182  183  184
185  186  187  190  191  192  193  194  195  196
197  198  201  202  203  204  205  206  207  208
209  212  213  214  215  216  217  218  219  222
230  231  232  240  241  242  243  250  251  252
253  254  260  261  262  263  264  265  270  271
272  273  274  275  276  280  281  282  283  284
285  286  287  290  291  292  293  294  295  296
297  298  301  302  303  304  305  306  307  308
309  312  313  314  315  316  317  318  319  323
324  325  326  327  328  329  333  340  341  342
343  350  351  352  353  354  360  361  362  363
364  365  370  371  372  373  374  375  376  380
381  382  383  384  385  386  387  390  391  392
393  394  395  396  397  398  401  402  403  404

The 10,000,000th number is: 41909002```

## Cowgol

`include "cowgol.coh"; # return the change in height of a numbersub height(n: uint32): (h: int8) is    h := 0;    var dgt := (n % 10) as uint8;    var prev: uint8;    n := n / 10;     while n > 0 loop            prev := dgt;        dgt := (n % 10) as uint8;        n := n / 10;        if prev < dgt then            h := h + 1;        elseif prev > dgt then            h := h - 1;        end if;    end loop;end sub; var number: uint32 := 0; var seen: uint32 := 0; var col: uint8 := 10; print("The first 200 numbers are:");print_nl();while seen < 10000000 loop    loop        number := number + 1;        if height(number) == 0 then break; end if;    end loop;    seen := seen + 1;    if seen <= 200 then        print_i32(number);        col := col - 1;        if col != 0 then            print_char('\t');        else            print_char('\n');            col := 10;        end if;    end if;end loop; print_nl();print("The 10,000,000th number is: ");print_i32(number);print_nl();`
Output:
```The first 200 numbers are:
1       2       3       4       5       6       7       8       9       11
22      33      44      55      66      77      88      99      101     102
103     104     105     106     107     108     109     111     120     121
130     131     132     140     141     142     143     150     151     152
153     154     160     161     162     163     164     165     170     171
172     173     174     175     176     180     181     182     183     184
185     186     187     190     191     192     193     194     195     196
197     198     201     202     203     204     205     206     207     208
209     212     213     214     215     216     217     218     219     222
230     231     232     240     241     242     243     250     251     252
253     254     260     261     262     263     264     265     270     271
272     273     274     275     276     280     281     282     283     284
285     286     287     290     291     292     293     294     295     296
297     298     301     302     303     304     305     306     307     308
309     312     313     314     315     316     317     318     319     323
324     325     326     327     328     329     333     340     341     342
343     350     351     352     353     354     360     361     362     363
364     365     370     371     372     373     374     375     376     380
381     382     383     384     385     386     387     390     391     392
393     394     395     396     397     398     401     402     403     404

The 10,000,000th number is: 41909002
```

## F#

` // A296712. Nigel Galloway: October 9th., 2020let fN g=let rec fN Ψ n g=match n,Ψ with (0,0)->true |(0,_)->false |_->let i=n%10 in fN (Ψ + (compare i g)) (n/10) i in fN 0 g (g%10)let A296712=seq{1..2147483647}|>Seq.filter fNA296712|>Seq.take 200|>Seq.iter(printf "%d "); printfn"\n"[999999;9999999;99999999]|>List.iter(fun n->printfn "The %dth element is %d" (n+1) (Seq.item n A296712)) `
Output:
```1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 1000000th element is 3284698
The 10000000th element is 41909002
The 100000000th element is 375551037
```

## Factor

Works with: Factor version 0.99 2020-08-14
`USING: grouping io kernel lists lists.lazy math math.extrasprettyprint tools.memory.private ; : rises-and-falls-equal? ( n -- ? )    0 swap 10 /mod swap    [ 10 /mod rot over - sgn rotd + spin ] until-zero drop 0 = ; : OEIS:A296712 ( -- list )    1 lfrom [ rises-and-falls-equal? ] lfilter ; ! Task"The first 200 numbers in OEIS:A296712 are:" print200 OEIS:A296712 ltake list>array 20 group simple-table. nl "The 10 millionth number in OEIS:A296712 is " write9,999,999 OEIS:A296712 lnth commas print`
Output:
```The first 200 numbers in OEIS:A296712 are:
1   2   3   4   5   6   7   8   9   11  22  33  44  55  66  77  88  99  101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10 millionth number in OEIS:A296712 is 41,909,002
```

## Forth

`: in-seq? ( n -- is N in the sequence? )  0 swap            \ height   10 /mod           \  digit and rest of number   begin dup while   \ as long as the number isn't zero...     10 /mod         \ get next digit and quotient    -rot swap       \ retrieve previous digit     over - sgn      \ see if higher, lower or equal (-1, 0, 1)     >r rot r> +     \ add to height    -rot swap       \ quotient on top of stack   repeat  drop drop         \ drop number and last digit   0=                \ is height equal to zero? ; : next-val ( n -- n: retrieve first element of sequence higher than N )  begin 1+ dup in-seq? until; : two-hundred  begin over 200 < while     next-val dup .     swap 1+ swap  repeat  ; : ten-million  begin over 10000000 < while     next-val    swap 1+ swap  repeat; 0 0 \ top of stack: current index and number ." The first 200 numbers are: " two-hundred cr cr ." The 10,000,000th number is: " ten-million . crbye`
Output:
```The first 200 numbers are: 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002
```

## Fortran

`      PROGRAM A296712          INTEGER IDX, NUM, I*         Index and number start out at zero          IDX = 0          NUM = 0 *         Find and write the first 200 numbers          WRITE (*,'(A)') 'The first 200 numbers are: '          DO 100 I = 1, 200              CALL NEXT NUM(IDX, NUM)              WRITE (*,'(I4)',ADVANCE='NO') NUM              IF (MOD(I,20).EQ.0) WRITE (*,*)  100     CONTINUE*         Find the 10,000,000th number          WRITE (*,*)          WRITE (*,'(A)',ADVANCE='NO') 'The 10,000,000th number is: '  200     CALL NEXT NUM(IDX, NUM)          IF (IDX.NE.10000000) GOTO 200          WRITE (*,'(I8)') NUM          STOP      END     *     Given index and current number, retrieve the next number*     in the sequence.      SUBROUTINE NEXT NUM(IDX, NUM)           INTEGER IDX, NUM          LOGICAL IN SEQ  100     NUM = NUM + 1          IF (.NOT. IN SEQ(NUM)) GOTO 100          IDX = IDX + 1                 END *     See whether N is in the sequence      LOGICAL FUNCTION IN SEQ(N)          INTEGER N, DL, DR, VAL, HEIGHT*         Get first digit and divide value by 10          DL = MOD(N, 10)          VAL = N / 10          HEIGHT = 0  100     IF (VAL.NE.0) THEN*             Retrieve digits by modulo and division              DR = DL              DL = MOD(VAL, 10)              VAL = VAL / 10*             Record rise or fall              IF (DL.LT.DR) HEIGHT = HEIGHT + 1              IF (DL.GT.DR) HEIGHT = HEIGHT - 1              GOTO 100          END IF*         N is in the sequence if the final height is 0          IN SEQ = HEIGHT.EQ.0          RETURN      END `
Output:
```The first 200 numbers are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002
```

## FreeBASIC

`function eqrf( n as uinteger ) as boolean    dim as string sn = str(n)    dim as integer q = 0    for i as uinteger = 2 to len(sn)        if asc(mid(sn,i,1)) > asc(mid(sn,i-1,1)) then             q += 1         elseif asc(mid(sn,i,1)) < asc(mid(sn,i-1,1)) then             q -= 1        end if    next i    if q = 0 then return true else return falseend function dim as uinteger c = 0, i = 1while c < 10000001    if eqrf(i) then        c += 1        if c <= 200 then print i;" ";        if c = 10000000 then print : print i    end if    i += 1wend`
Output:
```1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
41909002```

## Go

Translation of: Wren
`package main import "fmt" func risesEqualsFalls(n int) bool {    if n < 10 {        return true    }    rises := 0    falls := 0    prev := -1    for n > 0 {        d := n % 10        if prev >= 0 {            if d < prev {                rises = rises + 1            } else if d > prev {                falls = falls + 1            }        }        prev = d        n /= 10       }    return rises == falls} func main() {    fmt.Println("The first 200 numbers in the sequence are:")    count := 0    n := 1    for {        if risesEqualsFalls(n) {            count++            if count <= 200 {                fmt.Printf("%3d ", n)                if count%20 == 0 {                    fmt.Println()                }            }            if count == 1e7 {                fmt.Println("\nThe 10 millionth number in the sequence is ", n)                break            }        }        n++    }}`
Output:
```The first 200 numbers in the sequence are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10 millionth number in the sequence is  41909002
```

`import Data.Char pairs :: [a] -> [(a,a)]pairs (a:b:as) = (a,b):pairs (b:as)pairs _        = []  riseEqFall :: Int -> BoolriseEqFall n = rel (>) digitPairs == rel (<) digitPairs    where rel r = sum . map (fromEnum . uncurry r)          digitPairs = pairs \$ map digitToInt \$ show n a296712 :: [Int]a296712 = [n | n <- [1..], riseEqFall n] main :: IO ()main = do	putStrLn "The first 200 numbers are: "	putStrLn \$ unwords \$ map show \$ take 200 a296712	putStrLn ""	putStr "The 10,000,000th number is: "	putStrLn \$ show \$ a296712 !! 9999999 `
Output:
```The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002
```

## Java

`public class EqualRisesFalls {    public static void main(String[] args) {        final int limit1 = 200;        final int limit2 = 10000000;        System.out.printf("The first %d numbers in the sequence are:\n", limit1);        int n = 0;        for (int count = 0; count < limit2; ) {            if (equalRisesAndFalls(++n)) {                ++count;                if (count <= limit1)                    System.out.printf("%3d%c", n, count % 20 == 0 ? '\n' : ' ');            }        }        System.out.printf("\nThe %dth number in the sequence is %d.\n", limit2, n);    }     private static boolean equalRisesAndFalls(int n) {        int total = 0;        for (int previousDigit = -1; n > 0; n /= 10) {            int digit = n % 10;            if (previousDigit > digit)                ++total;            else if (previousDigit >= 0 && previousDigit < digit)                --total;            previousDigit = digit;        }        return total == 0;    }}`
Output:
```The first 200 numbers in the sequence are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000th number in the sequence is 41909002.
```

## jq

Works with: jq

Works with gojq, the Go implementation of jq (*)

(*) gojq requires a very large amount of memory for computing the 10 millionth number in the sequence.

`def risesEqualsFalls:  . as \$n  | if . < 10 then true    else {rises: 0, falls: 0, prev: -1, n: \$n}    | until (.n <= 0;        (.n % 10 ) as \$d        | if .prev >= 0          then if \$d < .prev then .rises += 1               elif \$d > .prev then .falls += 1               else .	       end	  else .	  end        | .prev = \$d        | .n = ((.n/10)|floor) )    | .rises == .falls    end ; def A296712: range(1; infinite) | select(risesEqualsFalls); # Override jq's incorrect definition of nth/2# Emit the \$n-th value of the stream, counting from 0; or emit nothingdef nth(\$n; s): if \$n < 0 then error("nth/2 doesn't support negative indices") else label \$out | foreach s as \$x (-1; .+1; select(. >= \$n) | \$x, break \$out) end; # The tasks"First 200:", [limit(200; A296712)],  "\nThe 10 millionth number in the sequence is \(    nth(1e7 - 1; A296712))"`
Output:
```First 200:
[1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,102,103,104,105,106,107,108,109,111,120,121,130,131,132,140,141,142,143,150,151,152,153,154,160,161,162,163,164,165,170,171,172,173,174,175,176,180,181,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,201,202,203,204,205,206,207,208,209,212,213,214,215,216,217,218,219,222,230,231,232,240,241,242,243,250,251,252,253,254,260,261,262,263,264,265,270,271,272,273,274,275,276,280,281,282,283,284,285,286,287,290,291,292,293,294,295,296,297,298,301,302,303,304,305,306,307,308,309,312,313,314,315,316,317,318,319,323,324,325,326,327,328,329,333,340,341,342,343,350,351,352,353,354,360,361,362,363,364,365,370,371,372,373,374,375,376,380,381,382,383,384,385,386,387,390,391,392,393,394,395,396,397,398,401,402,403,404]

The 10 millionth number in the sequence is 41909002
```

## Julia

`using Lazy function rises_and_falls(n)    if n < 10        return 0, 0    end    lastr, rises, falls = n % 10, 0, 0    while n != 0        n, r = divrem(n, 10)        if r > lastr            falls += 1        elseif r < lastr            rises += 1        end        lastr = r    end    return rises, fallsend isA296712(x) = ((a, b) = rises_and_falls(x); return a == b) function genA296712(N, M)    A296712 = filter(isA296712, Lazy.range(1));    j = 0    for i in take(200, A296712)        j += 1        print(lpad(i, 4), j % 20 == 0 ? "\n" : "")    end    for i in take(M, A296712)        j = i    end    println("\nThe \$M-th number in sequence A296712 is \$j.")end genA296712(200, 10_000_000) `
Output:
```   1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000-th number in sequence A296712 is 41909002.
```

`            NORMAL MODE IS INTEGER            VECTOR VALUES FMT = \$I8,1H:,I9*\$             INTERNAL FUNCTION(NUM)            ENTRY TO RISFAL.            N=NUM            DEPTH = 0            DIGA = N-(N/10)*10            N = N/10LOOP        WHENEVER N.E.0, FUNCTION RETURN DEPTH.E.0            DIGB = DIGA            DIGA = N-(N/10)*10            N = N/10            WHENEVER DIGA.L.DIGB, DEPTH=DEPTH-1            WHENEVER DIGA.G.DIGB, DEPTH=DEPTH+1            TRANSFER TO LOOP            END OF FUNCTION             I=0            J=0LOOP        J=J+1            WHENEVER .NOT.RISFAL.(J), TRANSFER TO LOOP            I=I+1            WHENEVER I.LE.200, PRINT FORMAT FMT, I, J            WHENEVER I.L.10000000, TRANSFER TO LOOP            PRINT FORMAT FMT, I, J             END OF PROGRAM`
Output:
```       1:        1
2:        2
3:        3
4:        4
5:        5
6:        6
7:        7
8:        8
9:        9
10:       11
11:       22
12:       33
13:       44
14:       55
15:       66
16:       77
17:       88
18:       99
19:      101
20:      102
21:      103
22:      104
23:      105
24:      106
25:      107
26:      108
27:      109
28:      111
29:      120
30:      121
31:      130
32:      131
33:      132
34:      140
35:      141
36:      142
37:      143
38:      150
39:      151
40:      152
41:      153
42:      154
43:      160
44:      161
45:      162
46:      163
47:      164
48:      165
49:      170
50:      171
51:      172
52:      173
53:      174
54:      175
55:      176
56:      180
57:      181
58:      182
59:      183
60:      184
61:      185
62:      186
63:      187
64:      190
65:      191
66:      192
67:      193
68:      194
69:      195
70:      196
71:      197
72:      198
73:      201
74:      202
75:      203
76:      204
77:      205
78:      206
79:      207
80:      208
81:      209
82:      212
83:      213
84:      214
85:      215
86:      216
87:      217
88:      218
89:      219
90:      222
91:      230
92:      231
93:      232
94:      240
95:      241
96:      242
97:      243
98:      250
99:      251
100:      252
101:      253
102:      254
103:      260
104:      261
105:      262
106:      263
107:      264
108:      265
109:      270
110:      271
111:      272
112:      273
113:      274
114:      275
115:      276
116:      280
117:      281
118:      282
119:      283
120:      284
121:      285
122:      286
123:      287
124:      290
125:      291
126:      292
127:      293
128:      294
129:      295
130:      296
131:      297
132:      298
133:      301
134:      302
135:      303
136:      304
137:      305
138:      306
139:      307
140:      308
141:      309
142:      312
143:      313
144:      314
145:      315
146:      316
147:      317
148:      318
149:      319
150:      323
151:      324
152:      325
153:      326
154:      327
155:      328
156:      329
157:      333
158:      340
159:      341
160:      342
161:      343
162:      350
163:      351
164:      352
165:      353
166:      354
167:      360
168:      361
169:      362
170:      363
171:      364
172:      365
173:      370
174:      371
175:      372
176:      373
177:      374
178:      375
179:      376
180:      380
181:      381
182:      382
183:      383
184:      384
185:      385
186:      386
187:      387
188:      390
189:      391
190:      392
191:      393
192:      394
193:      395
194:      396
195:      397
196:      398
197:      401
198:      402
199:      403
200:      404
10000000: 41909002```

## Mathematica/Wolfram Language

`ClearAll[EqualRisesAndFallsQ]EqualRisesAndFallsQ[n_Integer] := Total[Sign[Differences[IntegerDigits[n]]]] == 0Take[Select[Range[1000], EqualRisesAndFallsQ], 200]valid = 0;Dynamic[{i, valid}]Do[ If[EqualRisesAndFallsQ[i],  valid += 1;  If[valid == 10^7, Print[i]; Break[]]  ] , {i, 50 10^6} ]`
Output:
```{1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,102,103,104,105,106,107,108,109,111,120,121,130,131,132,140,141,142,143,150,151,152,153,154,160,161,162,163,164,165,170,171,172,173,174,175,176,180,181,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,201,202,203,204,205,206,207,208,209,212,213,214,215,216,217,218,219,222,230,231,232,240,241,242,243,250,251,252,253,254,260,261,262,263,264,265,270,271,272,273,274,275,276,280,281,282,283,284,285,286,287,290,291,292,293,294,295,296,297,298,301,302,303,304,305,306,307,308,309,312,313,314,315,316,317,318,319,323,324,325,326,327,328,329,333,340,341,342,343,350,351,352,353,354,360,361,362,363,364,365,370,371,372,373,374,375,376,380,381,382,383,384,385,386,387,390,391,392,393,394,395,396,397,398,401,402,403,404}
41909002```

## Nim

`import strutils func insequence(n: Positive): bool =  ## Return true if "n" is in the sequence.  if n < 10: return true  var diff = 0  var prev = n mod 10  var n = n div 10  while n != 0:    let digit = n mod 10    if digit < prev: inc diff    elif digit > prev: dec diff    prev = digit    n = n div 10  result = diff == 0 iterator a297712(): (int, int) =  ## Yield the positions and the numbers of the sequence.  var n = 1  var pos = 0  while true:    if n.insequence:      inc pos      yield (pos, n)    inc n echo "First 200 numbers in the sequence:"for (pos, n) in a297712():  if pos <= 200:    stdout.write (\$n).align(3), if pos mod 20 == 0: '\n' else: ' '  elif pos == 10_000_000:    echo "\nTen millionth number in the sequence: ", n    break`
Output:
```First 200 numbers in the sequence:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

Ten millionth number in the sequence: 41909002```

## Perl

`#!/usr/bin/perl use strict;use warnings; sub rf  {  local \$_ = shift;  my \$sum = 0;  \$sum += \$1 <=> \$2 while /(.)(?=(.))/g;  \$sum  } my \$count = 0;my \$n = 0;my @numbers;while( \$count < 200 )  {  rf(++\$n) or \$count++, push @numbers, \$n;  }print "first 200: @numbers\n" =~ s/.{1,70}\K\s/\n/gr; \$count = 0;\$n = 0;while( \$count < 10e6 )  {  rf(++\$n) or \$count++;  }print "\n10,000,000th number: \$n\n";`
Output:
```first 200: 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103
104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150
151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176
180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198
201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219
222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263
264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287
290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333
340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371
372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393
394 395 396 397 398 401 402 403 404

10,000,000th number: 41909002
```

## Phix

```with javascript_semantics
atom t1 = time()+1
integer count = 0, n = 0
printf(1,"The first 200 numbers are:\n")
while true do
n += 1
integer rmf = 0,
l = remainder(n,10),
r = floor(n/10)
while r do
integer p = remainder(r,10)
rmf += compare(l,p)
l = p
r = floor(r/10)
end while
if rmf=0 then
count += 1
if count<=200 then
printf(1,"%3d ",n)
if remainder(count,20)=0 then
printf(1,"\n")
end if
end if
if count == 1e7 then
if platform()!=JS then progress("") end if
printf(1,"\nThe %,dth number is %,d\n",{count,n})
exit
end if
if time()>t1 and platform()!=JS then
progress("%,d:%,d\r",{count,n})
t1 = time()+1
end if
end if
end while
```
Output:
```The first 200 numbers are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is 41,909,002
```

## Python

`import itertools def riseEqFall(num):    """Check whether a number belongs to sequence A296712."""    height = 0    d1 = num % 10    num //= 10    while num:        d2 = num % 10        height += (d1<d2) - (d1>d2)        d1 = d2        num //= 10    return height == 0 def sequence(start, fn):    """Generate a sequence defined by a function"""    num=start-1    while True:        num += 1        while not fn(num): num += 1        yield num a296712 = sequence(1, riseEqFall) # Generate the first 200 numbersprint("The first 200 numbers are:")print(*itertools.islice(a296712, 200)) # Generate the 10,000,000th numberprint("The 10,000,000th number is:")print(*itertools.islice(a296712, 10000000-200-1, 10000000-200))# It is necessary to subtract 200 from the index, because 200 numbers# have already been consumed. `
Output:
```The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
The 10,000,000th number is:
41909002
```

## Raku

Works with: Rakudo version 2020.09
`use Lingua::EN::Numbers;use Base::Any; sub rf (int \$base = 10, \$batch = Any, &op = &infix:<==>) {    my %batch = batch => \$batch if \$batch;    flat (1 .. ∞).hyper(|%batch).map: {        my int (\$this, \$last) = \$_, \$_ % \$base;        my int (\$rise, \$fall) = 0, 0;        while \$this {            my int \$rem = \$this % \$base;            \$this = \$this div \$base;            if    \$rem > \$last { \$fall = \$fall + 1 }            elsif \$rem < \$last { \$rise = \$rise + 1 }            \$last = \$rem        }        next unless &op(\$rise, \$fall);        \$_    }} # The taskmy \$upto = 200;put "Rise = Fall:\nFirst {\$upto.&cardinal} (base 10):";.put for rf[^\$upto]».fmt("%3d").batch(20); \$upto = 10_000_000;put "\nThe {\$upto.&ordinal} (base 10): ", comma rf(10, 65536)[\$upto - 1]; # Other bases and comparisonsput "\n\nGeneralized for other bases and other comparisons:";\$upto = ^5;my \$which = "{tc \$upto.map({.exp(10).&ordinal}).join: ', '}, values in some other bases:"; put "\nRise = Fall: \$which";for <3 296691 4 296694 5 296697 6 296700 7 296703 8 296706 9 296709 10 296712     11 296744 12 296747 13 296750 14 296753 15 296756 16 296759 20 296762 60 296765>  -> \$base, \$oeis {    put "Base {\$base.fmt(<%2d>)} (https://oeis.org/A\$oeis): ",    \$upto.map({rf(+\$base, Any)[.exp(10) - 1].&to-base(\$base)}).join: ', '} put "\nRise > Fall: \$which";for <3 296692 4 296695 5 296698 6 296701 7 296704 8 296707 9 296710 10 296713     11 296745 12 296748 13 296751 14 296754 15 296757 16 296760 20 296763 60 296766>  -> \$base, \$oeis {     put "Base {\$base.fmt(<%2d>)} (https://oeis.org/A\$oeis): ",     \$upto.map({rf(+\$base, Any, &infix:«>»)[.exp(10) - 1].&to-base(\$base)}).join: ', ' } put "\nRise < Fall: \$which";for <3 296693 4 296696 5 296699 6 296702 7 296705 8 296708 9 296711 10 296714     11 296746 12 296749 13 296752 14 296755 15 296758 16 296761 20 296764 60 296767>  -> \$base, \$oeis {     put "Base {\$base.fmt(<%2d>)} (https://oeis.org/A\$oeis): ",     \$upto.map({rf(+\$base, Any, &infix:«<»)[.exp(10) - 1].&to-base(\$base)}).join: ', ' }`
Output:
```Rise = Fall:
First two hundred (base 10):
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The ten millionth (base 10): 41,909,002

Generalized for other bases and other comparisons:

Rise = Fall: First, tenth, one hundredth, one thousandth, ten thousandth, values in some other bases:
Base  3 (https://oeis.org/A296691): 1, 201, 22112, 10101111, 1100022001
Base  4 (https://oeis.org/A296694): 1, 111, 3333, 221012, 13002120
Base  5 (https://oeis.org/A296697): 1, 102, 1441, 40011, 1431201
Base  6 (https://oeis.org/A296700): 1, 55, 512, 20424, 400402
Base  7 (https://oeis.org/A296703): 1, 44, 365, 12620, 155554
Base  8 (https://oeis.org/A296706): 1, 33, 316, 7466, 60404
Base  9 (https://oeis.org/A296709): 1, 22, 275, 5113, 40217
Base 10 (https://oeis.org/A296712): 1, 11, 252, 3396, 29201
Base 11 (https://oeis.org/A296744): 1, A, 216, 2240, 21718
Base 12 (https://oeis.org/A296747): 1, A, 201, 10AA, 19723
Base 13 (https://oeis.org/A296750): 1, A, 1B8, A0A, 172A7
Base 14 (https://oeis.org/A296753): 1, A, 1B5, 8B9, 14B81
Base 15 (https://oeis.org/A296756): 1, A, 1B2, 7D4, 11BBA
Base 16 (https://oeis.org/A296759): 1, A, 1A9, 716, 10424
Base 20 (https://oeis.org/A296762): 1, A, 196, 523, 8011
Base 60 (https://oeis.org/A296765): 1, A, ff, 1f2, 63Q

Rise > Fall: First, tenth, one hundredth, one thousandth, ten thousandth, values in some other bases:
Base  3 (https://oeis.org/A296692): 12, 1222, 122202, 12222001, 2001200001
Base  4 (https://oeis.org/A296695): 12, 233, 12113, 1003012, 13131333
Base  5 (https://oeis.org/A296698): 12, 122, 2302, 112013, 1342223
Base  6 (https://oeis.org/A296701): 12, 45, 1305, 20233, 333134
Base  7 (https://oeis.org/A296704): 12, 34, 1166, 11612, 140045
Base  8 (https://oeis.org/A296707): 12, 26, 1013, 4557, 106756
Base  9 (https://oeis.org/A296710): 12, 25, 348, 2808, 36781
Base 10 (https://oeis.org/A296713): 12, 24, 249, 2345, 23678
Base 11 (https://oeis.org/A296745): 12, 23, 223, 1836, 15806
Base 12 (https://oeis.org/A296748): 12, 1B, 166, 1623, 12534
Base 13 (https://oeis.org/A296751): 12, 1B, 145, 149B, A069
Base 14 (https://oeis.org/A296754): 12, 1B, 12B, 1393, 6BC9
Base 15 (https://oeis.org/A296757): 12, 1B, 11A, 12B7, 568E
Base 16 (https://oeis.org/A296760): 12, 1B, CD, 1206, 466A
Base 20 (https://oeis.org/A296763): 12, 1B, 7E, 6BF, 2857
Base 60 (https://oeis.org/A296766): 12, 1B, 2i, Lp, 66U

Rise < Fall: First, tenth, one hundredth, one thousandth, ten thousandth, values in some other bases:
Base  3 (https://oeis.org/A296693): 10, 221, 22220, 10021001, 1012110000
Base  4 (https://oeis.org/A296696): 10, 210, 3330, 231210, 13132000
Base  5 (https://oeis.org/A296699): 10, 43, 2420, 43033, 2030042
Base  6 (https://oeis.org/A296702): 10, 43, 1540, 25543, 403531
Base  7 (https://oeis.org/A296705): 10, 43, 1010, 10051, 206260
Base  8 (https://oeis.org/A296708): 10, 43, 660, 5732, 75051
Base  9 (https://oeis.org/A296711): 10, 43, 643, 5010, 60873
Base 10 (https://oeis.org/A296714): 10, 43, 621, 4120, 44100
Base 11 (https://oeis.org/A296746): 10, 43, 544, 3243, 31160
Base 12 (https://oeis.org/A296749): 10, 43, 520, 2A71, 18321
Base 13 (https://oeis.org/A296752): 10, 43, 422, 2164, B624
Base 14 (https://oeis.org/A296755): 10, 43, 310, 1CA3, A506
Base 15 (https://oeis.org/A296758): 10, 43, E8, 1A20, 9518
Base 16 (https://oeis.org/A296761): 10, 43, E8, 10D0, 860D
Base 20 (https://oeis.org/A296764): 10, 43, E8, G33, 5F43
Base 60 (https://oeis.org/A296767): 10, 43, E8, j9, ZUT```

## REXX

To do the heavy lifting,   this REXX program constructs a table of every two-digit sequence which indicates a
rise   (+1),     fall   (-1),     or   neither   (0).

`/*REXX pgm  finds and displays  N  numbers that have an equal number of rises and falls,*/parse arg n .                                    /*obtain optional argument from the CL.*/if n=='' | n==","  then n= 200                   /*Not specified?  Then use the default.*/append= n>0                                      /*a flag that is used to append numbers*/n= abs(n)                                        /*use the absolute value of  N.        */call init                                        /*initialize the  rise/fall  database. */          do j=1  until #==n                     /*test integers until we have N of them*/          s= 0                                   /*initialize the sum of  rises/falls.  */                        do k=1  for length(j)-1  /*obtain a set of two digs from number.*/                        t= substr(j, k, 2)       /*obtain a set of two digs from number.*/                        s= s + @.t               /*sum the rises and falls in the number*/                        end   /*k*/          if s\==0  then iterate                 /*Equal # of rises & falls? Then add it*/          #= # + 1                               /*bump the count of numbers found.     */          if append  then \$= \$ j                 /*append to the list of numbers found. */          end   /*j*/ if append  then call show                        /*display a list of  N  numbers──►term.*/           else say  'the '  commas(n)th(n)  " number is: "   commas(j)    /*show Nth #.*/exit 0                                           /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/commas:  parse arg _;  do c=length(_)-3  to 1  by -3; _=insert(',', _, c); end;   return _th:      parse arg th;  return word('th st nd rd',1+(th//10)*(th//100%10\==1)*(th//10<4))/*──────────────────────────────────────────────────────────────────────────────────────*/init: @.= 0;   do i=1  for 9;    _= i' ';     @._= 1;    _= '0'i;   @._= +1;   end  /*i*/               do i=10  to 99;   parse var i  a 2 b;     if a>b  then              @.i= -1                                                                 else if a<b  then @.i= +1               end   /*i*/;      #= 0;        \$=;        return/*──────────────────────────────────────────────────────────────────────────────────────*/show: say 'the first '   commas(#)   " numbers are:";   say;       w= length( word(\$, #) )      _=;    do o=1  for n;     _= _ right( word(\$, o), w);    if o//20\==0  then iterate             say substr(_, 2);  _=               /*display a line;  nullify a new line. */             end   /*o*/                         /* [↑]  display  20  numbers to a line.*/       if _\==''  then say substr(_, 2);   return /*handle any residual numbers in list. */`
output   when using the default input:
```the first  200  numbers are:

1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
```
output   when using the input of:     -10000000
```the  10,000,000th  number is:  41,909,002
```

## Sidef

`func isok(arr) {    var diffs = arr.map_cons(2, {|a,b| a - b })    diffs.count { .is_pos } == diffs.count { .is_neg }} var base = 10 with (200) {|n|    say "First #{n} terms (base #{base}):"    n.by { isok(.digits(base)) && .is_pos }.each_slice(20, {|*a|        say a.map { '%3s' % _ }.join(' ')    })} with (1e7) {|n|     # takes a very long time    say "\nThe #{n.commify}-th term (base #{base}): #{            n.th { isok(.digits(base)) && .is_pos }.commify}"}`
Output:
```First 200 terms (base 10):
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000-th term (base 10): 41,909,002
```

## Swift

`import Foundation func equalRisesAndFalls(_ n: Int) -> Bool {    var total = 0    var previousDigit = -1    var m = n    while m > 0 {        let digit = m % 10        m /= 10        if previousDigit > digit {            total += 1        } else if previousDigit >= 0 && previousDigit < digit {            total -= 1        }        previousDigit = digit    }    return total == 0} var count = 0var n = 0let limit1 = 200let limit2 = 10000000print("The first \(limit1) numbers in the sequence are:")while count < limit2 {    n += 1    if equalRisesAndFalls(n) {        count += 1        if count <= limit1 {            print(String(format: "%3d", n), terminator: count % 20 == 0 ? "\n" : " ")        }    }}print("\nThe \(limit2)th number in the sequence is \(n).")`
Output:
```The first 200 numbers in the sequence are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000th number in the sequence is 41909002.
```

## Wren

Library: Wren-fmt
`import "/fmt" for Fmt var risesEqualsFalls = Fn.new { |n|    if (n < 10) return true    var rises = 0    var falls = 0    var prev = -1    while (n > 0) {        var d = n%10        if (prev >= 0) {            if (d < prev) {                rises = rises + 1            } else if (d > prev) {                falls = falls + 1            }        }        prev = d        n = (n/10).floor    }    return rises == falls} System.print("The first 200 numbers in the sequence are:")var count = 0var n = 1while (true) {    if (risesEqualsFalls.call(n)) {        count = count + 1        if (count <= 200) {            Fmt.write("\$3d ", n)            if (count % 20 == 0) System.print()        }        if (count == 1e7) {            Fmt.print("\nThe 10 millionth number in the sequence is \$,d.", n)            break        }    }    n = n + 1}`
Output:
```The first 200 numbers in the sequence are:
1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10 millionth number in the sequence is 41,909,002.
```

## XPL0

`func RiseFall(N);       \Return 'true' if N has equal rises and fallsint  N, R, F, D, D0;[R:= 0;  F:= 0;N:= N/10;D0:= rem(0);while N do    [N:= N/10;    D:= rem(0);    if D > D0 then R:= R+1;    if D < D0 then F:= F+1;    D0:= D;    ];return R = F;]; int N, Cnt;[N:= 1;Cnt:= 0;loop    [if RiseFall(N) then            [Cnt:= Cnt+1;            if Cnt <= 200 then                [IntOut(0, N);                if rem (Cnt/10) = 0 then CrLf(0)                                    else ChOut(0, 9\tab\);                ];            if Cnt = 10_000_000 then                [Text(0, "10 millionth number is ");                IntOut(0, N);  CrLf(0);                quit;                ];            ];        N:= N+1;        ];]`
Output:
```1       2       3       4       5       6       7       8       9       11
22      33      44      55      66      77      88      99      101     102
103     104     105     106     107     108     109     111     120     121
130     131     132     140     141     142     143     150     151     152
153     154     160     161     162     163     164     165     170     171
172     173     174     175     176     180     181     182     183     184
185     186     187     190     191     192     193     194     195     196
197     198     201     202     203     204     205     206     207     208
209     212     213     214     215     216     217     218     219     222
230     231     232     240     241     242     243     250     251     252
253     254     260     261     262     263     264     265     270     271
272     273     274     275     276     280     281     282     283     284
285     286     287     290     291     292     293     294     295     296
297     298     301     302     303     304     305     306     307     308
309     312     313     314     315     316     317     318     319     323
324     325     326     327     328     329     333     340     341     342
343     350     351     352     353     354     360     361     362     363
364     365     370     371     372     373     374     375     376     380
381     382     383     384     385     386     387     390     391     392
393     394     395     396     397     398     401     402     403     404
10 millionth number is 41909002
```