N-queens problem: Difference between revisions

m
→‎Python: Backtracking on permutations: Restored the original look
(Convert <lang> elements to <syntaxhighlight>)
m (→‎Python: Backtracking on permutations: Restored the original look)
 
(44 intermediate revisions by 14 users not shown)
Line 1:
{{taskTask}}
[[File:chess_queen.jpg|400px||right]]
 
Line 26:
{{trans|Nim}}
 
<syntaxhighlight lang="11l">-V BoardSize = 8
 
F underAttack(col, queens)
Line 92:
Translated from the Fortran 77 solution.<br>
For maximum compatibility, this program uses only the basic instruction set (S/360).
<syntaxhighlight lang="360asm">* N-QUEENS PROBLEM 04/09/2015
MACRO
&LAB XDECO &REG,&TARGET
Line 252:
</pre>
 
=={{header|6502 Assembly}}==
{{trans|Java}}
A few optimization techniques are used in this implementation. One goal was to get 8-queens to run in under 2 seconds on a 1 MHz computer.
 
Zero page values are stored where frequent use of the immediate addressing mode can be used as a speed up. This can be seen where a byte is referenced as variablename+1. INC and DEC instructions are used instead of ADC and SBC instructions for the comparison offsets.
 
The solution count is a 64-bit little endian value stored in memory starting at $0020, or $0D20 if the [[#Zero Page stub|Zero Page stub]] routine is used.
 
<syntaxhighlight lang="6502asm">n equ 8 ; queens
maximum equ 32 ; only limited by time
place equ $00
count equ maximum+place ; 64 bits (8 bytes)
length equ maximum+8
org $80
start
LDY #n ; n queens on an n x n board
STY greater+1
DEY
STY safe+1
LDX #length
LDA #$00
clear
STA place,X
DEX
BPL clear
next
INX
LDA #$FF
STA place,X
loop
INC place,X
LDA place,X
greater
CMP #n
BCS max
STX index+1
index
LDY #$00 ; index+1
BEQ safe
DEY
STA compare+1
STA add+1 ; compare
STA sub+1 ; compare
issafe
LDA place,Y
compare
CMP #$00 ; compare+1
BEQ loop ; unsafe
INC add+1
add
CMP #$00 ; add+1
BEQ loop ; unsafe
DEC sub+1
sub
CMP #$00 ; sub+1
BEQ loop ; unsafe
DEY
BPL issafe
safe
CPX #n-1
BNE next
INC count ; 64 bits (8 bytes)
BNE loop
INC count+1
BNE loop
INC count+2
BNE loop
INC count+3
BNE loop
INC count+4
BNE loop
INC count+5
BNE loop
INC count+6
BNE loop
INC count+7
BNE loop
BRK
max
DEX
BPL loop
; RTS</syntaxhighlight>
The code was assembled using Merlin32. The code length is 104 bytes not including the final 6 cycle RTS instruction.
<pre> n solutions cycles
1 1 443
2 0 710
3 0 1440
4 2 4359
5 10 17134
6 4 75848
7 40 337161
8 92 1616054
9 352 8044019
10 724 41556729
11 2680 230829955
12 14200 1378660940
13 73712 8684130248
14 365596 58185218171
15 2279184 412358679630
</pre>
==== Zero Page stub ====
The 6502 N-queens problem code resides within the zero page starting at $80 which can make running the program a bit tricky on some platforms. A stub is provided to facilitate running the zero page code. The stub routine turns off interrupts and swaps the zero page memory with an area residing at $D00 to $DFF, runs the zero page code, and swaps memory again. The cycle counts listed above do not include the time to run this stub. With the final RTS instruction included, the 105 byte N-queens zero page code must be in memory starting at $D80.
<syntaxhighlight lang="6502asm"> org $C00
PHP
SEI
JSR swap
JSR $0080
JSR swap
PLP
jmp end
swap
LDX #$00
loop
LDY $D00,X
LDA $00,X
STY $00,X
STA $D00,X
INX
BNE loop
RTS
end
; RTS</syntaxhighlight>
=={{header|ABAP}}==
<syntaxhighlight lang=ABAP"abap">
TYPES: BEGIN OF gty_matrix,
1 TYPE c,
Line 542 ⟶ 664:
 
=={{header|Ada}}==
<syntaxhighlight lang=Ada"ada">with Ada.Text_IO; use Ada.Text_IO;
 
procedure Queens is
Line 610 ⟶ 732:
This one only counts solutions, though it's easy to do something else with each one (instead of the <code>M := M + 1;</code> line).
 
<syntaxhighlight lang="ada">with Ada.Text_IO;
use Ada.Text_IO;
 
Line 668 ⟶ 790:
 
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8.8d.fc9.i386]}}
<syntaxhighlight lang=Algol68"algol68">INT ofs = 1, # Algol68 normally uses array offset of 1 #
dim = 8; # dim X dim chess board #
[ofs:dim+ofs-1]INT b;
Line 723 ⟶ 845:
{{works with|Dyalog APL}}
More or less copied from the "DFS" lesson on tryapl.org .
<syntaxhighlight lang=APL"apl">
⍝Solution
accm←{⍺,((⍴⍵)=⍴⊃⍺)↑⊂⍵}
Line 769 ⟶ 891:
 
=={{header|AppleScript}}==
<syntaxhighlight lang="applescript">-- Finds all possible solutions and the unique patterns.
 
property Grid_Size : 8
Line 933 ⟶ 1,055:
return newRows
end Reflect</syntaxhighlight>
 
=={{header|Applesoft BASIC}}==
{{trans|Java}}
<syntaxhighlight lang="basic"> 1 READ N,T,M,R(0): FOR Y = 0 TO M STEP 0: FOR L = 0 TO T STEP 0:R(Y) = R(Y) + T:X = R(Y):C = NOT Y: IF NOT C THEN FOR I = T TO Y:A = R(Y - I): IF NOT (A = X OR A = X - I OR A = X + I) THEN NEXT I:C = T
2 L = R(Y) > N OR C: NEXT L:D = - (R(Y) > N): IF NOT D AND Y < N THEN R(Y + T) = M:D = D + T
3 S = S + NOT D:Y = Y + D: NEXT Y: PRINT "THERE " MID$ ("AREIS",4 ^ (S = 1),3)" "S" SOLUTION" MID$ ("S",1,S < > 1)" FOR "N + T" X "N + T: DATA7,1,-1,-1</syntaxhighlight>
{{out}}
<pre>THERE ARE 92 SOLUTIONS FOR 8 X 8
</pre>
 
=={{header|Arc}}==
This program prints out all possible solutions:
<syntaxhighlight lang=Lisp"lisp">(def nqueens (n (o queens))
(if (< len.queens n)
(let row (if queens (+ 1 queens.0.0) 0)
Line 964 ⟶ 1,095:
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">result: new []
 
queens: function [n, i, a, b, c][
Line 1,029 ⟶ 1,160:
=={{header|AWK}}==
Inspired by Raymond Hettinger's Python solution, but builds the vector incrementally.
<syntaxhighlight lang="awk">
#!/usr/bin/gawk -f
# Solve the Eight Queens Puzzle
Line 1,118 ⟶ 1,249:
 
=={{header|ATS}}==
<syntaxhighlight lang=ATS"ats">
(* ****** ****** *)
//
Line 1,204 ⟶ 1,335:
=== Output to formatted Message box ===
{{trans|C}}
<syntaxhighlight lang=AutoHotkey"autohotkey">;
; Post: http://www.autohotkey.com/forum/viewtopic.php?p=353059#353059
; Timestamp: 05/may/2010
Line 1,289 ⟶ 1,420:
The screenshot shows the first solution of 10 possible solutions for N = 5 queens.
 
<syntaxhighlight lang=AutoHotkey"autohotkey">N := 5
Number: ; main entrance for different # of queens
SI := 1
Line 1,387 ⟶ 1,518:
[[Image:queens9_bbc.gif|right]]
[[Image:queens10_bbc.gif|right]]
<syntaxhighlight lang="bbcbasic"> Size% = 8
Cell% = 32
VDU 23,22,Size%*Cell%;Size%*Cell%;Cell%,Cell%,16,128+8,5
Line 1,450 ⟶ 1,581:
 
=={{header|BCPL}}==
<syntaxhighlight lang=BCPL"bcpl">// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10.
 
GET "libhdr.h"
Line 1,486 ⟶ 1,617:
It runs about 25 times faster that the version given above.
 
<syntaxhighlight lang=BCPL"bcpl">
GET "libhdr.h"
GET "mc.h"
Line 1,627 ⟶ 1,758:
This algorithm works with any board size from 4 upwards.
 
<syntaxhighlight lang="befunge"><+--XX@_v#!:-1,+55,g\1$_:00g2%-0vv:,+55<&,,,,,,"Size: "
"| Q"$$$>:01p:2%!00g0>>^<<!:-1\<1>00p::2%-:40p2/50p2*1+
!77**48*+31p\:1\g,::2\g:,\3\g,,^g>0g++40g%40g\-\40g\`*-
Line 1,655 ⟶ 1,786:
 
=={{header|Bracmat}}==
<syntaxhighlight lang="bracmat">( ( printBoard
= board M L x y S R row line
. :?board
Line 1,760 ⟶ 1,891:
 
=={{header|C}}==
C99, compiled with <code>gcc -std=c99 -Wall</code>. Take one commandline argument: size of board, or default to 8. Shows the board layout for each solution.<syntaxhighlight lang=C"c">#include <stdio.h>
#include <stdlib.h>
 
Line 1,792 ⟶ 1,923:
}</syntaxhighlight>
 
Similiar to above, but using bits to save board configurations and quite a bit faster:<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
Line 1,831 ⟶ 1,962:
}</syntaxhighlight>
Take that and unwrap the recursion, plus some heavy optimizations, and we have a very fast and very unreadable solution:
<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
 
Line 1,925 ⟶ 2,056:
A slightly cleaned up version of the code above where some optimizations were redundant. This version is also further optimized, and runs about 15% faster than the one above on modern compilers:
 
<syntaxhighlight lang="c">#include <stdio.h>
#define MAXN 31
 
Line 2,007 ⟶ 2,138:
{{works with|C sharp|C#|7}}
<!-- By Martin Freedman, 13/02/2018 -->
<syntaxhighlight lang="csharp">using System.Collections.Generic;
using static System.Linq.Enumerable;
using static System.Console;
Line 2,057 ⟶ 2,188:
===Hettinger Algorithm===
Compare this to the Hettinger solution used in the first Python answer. The logic is similar but the diagonal calculation is different and more expensive computationally (Both suffer from being unable to eliminate permutation prefixes that are invalid e.g. 0 1 ...)
<syntaxhighlight lang="csharp">
using System.Collections.Generic;
using static System.Linq.Enumerable;
Line 2,100 ⟶ 2,231:
{{works with|C sharp|C#|7.1}}
<!-- By Martin Freedman, 9/02/2018 -->
<syntaxhighlight lang="csharp">using static System.Linq.Enumerable;
using static System.Console;
 
Line 2,131 ⟶ 2,262:
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">// Much shorter than the version below;
// uses C++11 threads to parallelize the computation; also uses backtracking
// Outputs all solutions for any table size
Line 2,248 ⟶ 2,379:
3 #
4 # </pre>
<syntaxhighlight lang="cpp">
// A straight-forward brute-force C++ version with formatted output,
// eschewing obfuscation and C-isms, producing ALL solutions, which
Line 2,527 ⟶ 2,658:
=== Alternate version ===
Windows-only
<syntaxhighlight lang="cpp">
#include <windows.h>
#include <iostream>
Line 2,657 ⟶ 2,788:
 
Version using Heuristics - explained here: [http://en.wikipedia.org/wiki/8_queens_puzzle#Solution_construction Solution_construction]
<syntaxhighlight lang="cpp">
#include <windows.h>
#include <iostream>
Line 2,750 ⟶ 2,881:
=={{header|Clojure}}==
This produces all solutions by essentially a backtracking algorithm. The heart is the ''extends?'' function, which takes a partial solution for the first ''k<size'' columns and sees if the solution can be extended by adding a queen at row ''n'' of column ''k+1''. The ''extend'' function takes a list of all partial solutions for ''k'' columns and produces a list of all partial solutions for ''k+1'' columns. The final list ''solutions'' is calculated by starting with the list of 0-column solutions (obviously this is the list ''[ [] ]'', and iterates ''extend'' for ''size'' times.
<syntaxhighlight lang="clojure">(def size 8)
 
(defn extends? [v n]
Line 2,774 ⟶ 2,905:
(println (count solutions) "solutions")</syntaxhighlight>
===Short Version===
<syntaxhighlight lang="clojure">(ns queens
(:require [clojure.math.combinatorics :as combo]
 
Line 2,783 ⟶ 2,914:
Each state of the board can be represented as a sequence of the row coordinate for a queen, the column being the index in the sequence (coordinates starting at 0). Each state can have 'children' states if it is legal (no conflict) and has less than n queens. A child state is the result of adding a new queen on the next column, there are as many children states as rows as we are trying all of them. A depth first traversal of this virtual tree of states gives us the solutions when we filter out the illegal states and the incomplete states. The sequence of states is lazy so we could read only one result and not have to compute the other states.
 
<syntaxhighlight lang="clojure">
(defn n-queens [n]
(let[children #(map (partial conj %) (range n))
Line 2,797 ⟶ 2,928:
=={{header|CLU}}==
{{trans|C}}
<syntaxhighlight lang="clu">n_queens = cluster is solve
rep = null
own hist: array[int] := array[int]$[]
Line 3,870 ⟶ 4,001:
 
=={{header|CoffeeScript}}==
<syntaxhighlight lang="coffeescript">
# Unlike traditional N-Queens solutions that use recursion, this
# program attempts to more closely model the "human" algorithm.
Line 3,985 ⟶ 4,116:
 
=={{header|Common Lisp}}==
<syntaxhighlight lang="lisp">(defun queens (n &optional (m n))
(if (zerop n)
(list nil)
Line 4,007 ⟶ 4,138:
=== Alternate solution ===
Translation of Fortran 77
<syntaxhighlight lang="lisp">(defun queens1 (n)
(let ((a (make-array n))
(s (make-array n))
Line 4,050 ⟶ 4,181:
As in Fortran, the iterative function above is equivalent to the recursive function below:
 
<syntaxhighlight lang="lisp">(defun queens2 (n)
(let ((a (make-array n))
(u (make-array (+ n n -1) :initial-element t))
Line 4,074 ⟶ 4,205:
=={{header|Curry}}==
Three different ways of attacking the same problem. All copied from [http://web.cecs.pdx.edu/~antoy/flp/patterns/ A Catalog of Design Patterns in FLP]
<syntaxhighlight lang="curry">
-- 8-queens implementation with the Constrained Constructor pattern
-- Sergio Antoy
Line 4,137 ⟶ 4,268:
Another approach from the same source.
 
<syntaxhighlight lang="curry">
-- N-queens puzzle implemented with "Distinct Choices" pattern
-- Sergio Antoy
Line 4,176 ⟶ 4,307:
Yet another approach, also from the same source.
 
<syntaxhighlight lang="curry">
-- 8-queens implementation with both the Constrained Constructor
-- and the Fused Generate and Test patterns.
Line 4,238 ⟶ 4,369:
</syntaxhighlight>
Mainly [http://www-ps.informatik.uni-kiel.de/~pakcs/webpakcs/main.cgi?queens webpakcs], uses constraint-solver.
<syntaxhighlight lang="curry">import CLPFD
import Findall
 
Line 4,261 ⟶ 4,392:
===Short Version===
This high-level version uses the second solution of the Permutations task.
<syntaxhighlight lang="d">void main() {
import std.stdio, std.algorithm, std.range, permutations2;
 
Line 4,276 ⟶ 4,407:
This version shows all the solutions.
{{trans|C}}
<syntaxhighlight lang="d">enum side = 8;
__gshared int[side] board;
 
Line 4,356 ⟶ 4,487:
===Fast Version===
{{trans|C}}
<syntaxhighlight lang="d">ulong nQueens(in uint nn) pure nothrow @nogc @safe
in {
assert(nn > 0 && nn <= 27,
Line 4,454 ⟶ 4,585:
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">/**
Return true if queen placement q[n] does not conflict with
other queens q[0] through q[n-1]
Line 4,533 ⟶ 4,664:
{{libheader| System.SysUtils}}
{{Trans|Go}}
<syntaxhighlight lang=Delphi"delphi">
program N_queens_problem;
 
Line 4,601 ⟶ 4,732:
=={{header|Draco}}==
{{trans|C}}
<syntaxhighlight lang="draco">byte SIZE = 8;
word count;
 
Line 4,664 ⟶ 4,795:
=={{header|EasyLang}}==
 
<syntaxhighlight lang="easylang">
<lang>subr show_sol
subr show_sol
print "Solution " & n_sol
print "Solution " & n_sol
for iprint range n""
for writei "= 1 "to n
for j rangewrite n" "
iffor j = x[i]1 to n
write "Qif "j = x[i]
else write "Q "
write ". "else
write ". "
.
.
. print ""
print "".
print ""
.
print ""
.
subr test
ok = 1
for i range= 1 to y - 1
if x[y] = x[i] or abs (x[i] - x[y]) = abs (y - i)
ok = 0
.
.
.
n = 8
len x[] n
y = 01
x[01] = 01
while y >= 01
call test
if ok = 1 and y + 1 <>= n
y += 1
x[y] = 01
else
if ok = 1
n_sol += 1
if n_sol <= 1
call show_sol
.
.
while y >= 1 and x[y] = n
.
while y >= 0 and x[y] -= n - 1
y -= 1.
. if y >= 1
if x[y] >+= 01
x[y] += 1.
.
.
.
print n_sol & " solutions"</syntaxhighlight>
</syntaxhighlight>
{{out}}
<pre>Solution 1
Line 4,728 ⟶ 4,861:
 
=={{header|EchoLisp}}==
<syntaxhighlight lang="scheme">
;; square num is i + j*N
(define-syntax-rule (sq i j) (+ i (* j N)))
Line 4,805 ⟶ 4,938:
12 ♕ 14200 solutions
</pre>
 
=={{header|Ecstasy}}==
<syntaxhighlight lang="Ecstasy">/**
* A solver for the classic 8-queens problem.
*
* @see https://rosettacode.org/wiki/N-queens_problem
*/
module eightQueens {
void run() {
@Inject Console console;
Int count = new Board().solve(b -> console.print($"{b}\n"));
console.print($"{count} solutions found");
}
 
/**
* `Board` represents a chess board that holds only queens. The board
* is organized as columns 0 ("A") to 7 ("H"), and rows 0 (rank "1")
* to 7 (rank "8").
*/
const Board {
/**
* Construct an empty board.
*/
construct() {}
 
/**
* Internal: Construct a specifically-populated board.
*/
private construct(Int queens, Int claimed) {
this.queens = queens;
this.claimed = claimed;
}
 
/**
* Each bit of this 64-bit integer represents a queen.
*/
private Int queens;
/**
* Each bit of this 64-bit integer represents a queen or a threat.
*/
private Int claimed;
 
/**
* Translate a column and row to a bit-mask, used with the
* [queens] and [claimed] properties. Examples:
* * A1 is (0,0) => 0x0000000000000001
* * H8 is (7,7) => 0x8000000000000000
*/
private Int mask(Int col, Int row) = 1 << (row << 3) + col;
 
/**
* Determine if the specified square has a queen in it.
*/
Boolean occupied(Int col, Int row) {
return queens & mask(col, row) != 0;
}
 
/**
* Determine if the specified square is safe from the queens.
*/
Boolean safe(Int col, Int row) {
return claimed & mask(col, row) == 0;
}
 
/**
* Attempt to place a queen in a specified square.
*
* @return True iff a queen can be safely placed in the square
* @return (conditional) the new Board with the new queen on it
*/
conditional Board placeQueen(Int col, Int row) {
assert 0 <= col < 8 && 0 <= row < 8;
if (!safe(col, row)) {
return False;
}
 
Int newQueens = queens | mask(col, row);
Int newClaimed = claimed | queens;
// claim all threatened spaces
for (Int i : 0..7) {
newClaimed |= mask(i, row) | mask(col, i);
val diagDownRow = row + i - col;
if (0 <= diagDownRow < 8) {
newClaimed |= mask(i, diagDownRow);
}
val diagUpRow = row - i + col;
if (0 <= diagUpRow < 8) {
newClaimed |= mask(i, diagUpRow);
}
}
return True, new Board(newQueens, newClaimed);
}
 
/**
* Attempt to find all solutions to the n-queens problem.
*/
Int solve(function void(Board) yield) = solve(yield, 0);
 
/**
* Internal: Attempt to find all solutions to the n-queens problem,
* starting with the specified column and recursively solving by
* moving to the next column for each potential solution found in
* the specified column.
*/
private Int solve(function void(Board) yield, Int col) {
if (col == 8) {
// there is no column 8; we've found a solution
yield(this);
return 1;
}
 
Int count = 0;
for (Int rank : 8..1) {
val row = 8-rank;
if (Board afterPlacing := placeQueen(col, row)) {
count += afterPlacing.solve(yield, col + 1);
}
}
return count;
}
 
@Override String toString() {
val buf = new StringBuffer();
for (Int rank : 8..1) {
buf.append($"{rank} |");
val row = 8-rank;
for (Int col : 0..7) {
buf.add(occupied(col, row) ? 'q' : '_').add('|');
}
buf.add('\n');
}
return buf.append(" A B C D E F G H").toString();
}
}
}</syntaxhighlight>
<b>Output:</b>
<code><pre>
8 |q|_|_|_|_|_|_|_|
7 |_|_|_|_|_|_|q|_|
6 |_|_|_|_|q|_|_|_|
5 |_|_|_|_|_|_|_|q|
4 |_|q|_|_|_|_|_|_|
3 |_|_|_|q|_|_|_|_|
2 |_|_|_|_|_|q|_|_|
1 |_|_|q|_|_|_|_|_|
A B C D E F G H
 
8 |q|_|_|_|_|_|_|_|
7 |_|_|_|_|_|_|q|_|
6 |_|_|_|q|_|_|_|_|
5 |_|_|_|_|_|q|_|_|
4 |_|_|_|_|_|_|_|q|
3 |_|q|_|_|_|_|_|_|
2 |_|_|_|_|q|_|_|_|
1 |_|_|q|_|_|_|_|_|
A B C D E F G H
 
(...)
 
8 |_|_|q|_|_|_|_|_|
7 |_|_|_|_|_|q|_|_|
6 |_|_|_|q|_|_|_|_|
5 |_|q|_|_|_|_|_|_|
4 |_|_|_|_|_|_|_|q|
3 |_|_|_|_|q|_|_|_|
2 |_|_|_|_|_|_|q|_|
1 |q|_|_|_|_|_|_|_|
A B C D E F G H
 
92 solutions found
</pre></code>
 
=={{header|Eiffel}}==
<syntaxhighlight lang=Eiffel"eiffel">
class
QUEENS
Line 4,912 ⟶ 5,216:
=={{header|Elixir}}==
{{trans|Ruby}}
<syntaxhighlight lang="elixir">defmodule RC do
def queen(n, display \\ true) do
solve(n, [], [], [], display)
Line 5,082 ⟶ 5,386:
11 Queen : 2680
12 Queen : 14200
</pre>
 
=={{header|Emacs Lisp}}==
<syntaxhighlight lang="lisp">
(let ((*result* '()))
(defun grid-cnt (n)
(* n n) )
(defun x-axis (n pos)
(/ pos n) )
(defun y-axis (n pos)
(% pos n) )
(defun chess-cnt (chess-map)
(seq-count (lambda (x) x) chess-map))
(defun check-conflict (n chess-map pos)
(let ((is-conflict nil))
(cl-loop for i from 0 to (1- (grid-cnt n)) while (not is-conflict) do
(when (aref chess-map i)
(when (or (= (x-axis n i) (x-axis n pos))
(= (y-axis n i) (y-axis n pos))
(= (abs (- (x-axis n i) (x-axis n pos)))
(abs (- (y-axis n i) (y-axis n pos))))
)
(setq is-conflict 't)
)
)
)
is-conflict )
)
(defun place-chess (n chess-map start-pos)
(if (< (chess-cnt chess-map) n)
(progn
(let ()
(cl-loop for i from start-pos to (1- (grid-cnt n)) do
(when (not (aref chess-map i)) ;; check if place is empty
;; check if place is on hold by other chess
(when (not (check-conflict n chess-map i))
(let ((map1 (copy-sequence chess-map)))
(aset map1 i 't)
(place-chess n map1 i)
)
)
)
)
)
)
(progn
(if *result* (nconc *result* (list chess-map)) (setq *result* (list chess-map)))
)
)
)
 
(defun show-result (n)
(let ()
(seq-map (lambda (map1)
(let ((map-txt ""))
(message ">>>>>>>>>>>>>>")
(seq-map-indexed (lambda (elm idx)
(if (= (% idx n) 0)
;;(setq map-text (concat map-txt "\n"))
(progn
(message map-txt)
(setq map-txt "") )
)
(setq map-txt
(concat map-txt (if elm "✓" "⓪")))
) map1)
(message "<<<<<<<<<<<<<<\n")
)
) *result*)
)
(message "%d solutions in total" (length *result*))
)
(defun start-calculate (n)
(let ((chess-map (make-vector (grid-cnt n) nil)))
(place-chess n chess-map 0)
)
(show-result n)
)
 
(start-calculate 8)
)
</syntaxhighlight>
 
{{out}}
<pre>
...
92 solutions in total
</pre>
 
=={{header|Erlang}}==
Instead of spawning a new process to search for each possible solution I backtrack.
<syntaxhighlight lang=Erlang"erlang">
-module( n_queens ).
 
Line 5,191 ⟶ 5,585:
 
===Alternative Version===
<syntaxhighlight lang=Erlang"erlang">
%%%For 8X8 chessboard with N queens.
-module(queens).
Line 5,209 ⟶ 5,603:
 
=={{header|ERRE}}==
<syntaxhighlight lang="erre">
!------------------------------------------------
! QUEENS.R : solve queens problem on a NxN board
Line 5,298 ⟶ 5,692:
 
=={{header|F Sharp}}==
<syntaxhighlight lang="fsharp">
let rec iterate f value = seq {
yield value
Line 5,345 ⟶ 5,739:
The output:
 
<langpre>
| | | |X| | | | | |
| |X| | | | | | | |
Line 5,367 ⟶ 5,761:
10 724
11 2680
</pre>
</syntaxhighlight>
 
=={{header|Factor}}==
{{works with|Factor|0.98}}
<syntaxhighlight lang="factor">USING: kernel sequences math math.combinatorics formatting io locals ;
IN: queens
 
Line 5,400 ⟶ 5,794:
 
=={{header|Forth}}==
<syntaxhighlight lang="forth">variable solutions
variable nodes
 
Line 5,429 ⟶ 5,823:
 
8 queens \ 92 solutions, 1965 nodes</syntaxhighlight>
 
=== Alternate solution adapted from FD-V02N1.pdf ===
<syntaxhighlight lang="forth">
\ http://www.forth.org/fd/FD-V02N1.pdf
VOCABULARY nqueens ALSO nqueens DEFINITIONS
 
8 constant queens
 
\ Nqueen solution from FD-V02N1.pdf
: 1array CREATE 0 DO 1 , LOOP DOES> SWAP CELLS + ;
queens 1array a \ a,b & c: workspaces for solutions
queens 2* 1array b
queens 2* 1array c
queens 1array x \ trial solutions
 
: safe ( c i -- n )
SWAP
2DUP - queens 1- + c @ >R
2DUP + b @ >R
DROP a @ R> R> * * ;
 
: mark ( c i -- )
SWAP
2DUP - queens 1- + c 0 swap !
2DUP + b 0 swap !
DROP a 0 swap ! ;
 
: unmark ( c i -- )
SWAP
2DUP - queens 1- + c 1 swap !
2DUP + b 1 swap !
DROP a 1 swap ! ;
 
VARIABLE tries
VARIABLE sols
 
: .cols queens 0 DO I x @ 1+ 5 .r loop ;
: .sol ." Found on try " tries @ 6 .R .cols cr ;
 
: try
queens 0
DO 1 tries +!
DUP I safe
IF DUP I mark
DUP I SWAP x !
DUP queens 1- < IF DUP 1+ RECURSE ELSE sols ++ .sol THEN
DUP I unmark
THEN
LOOP DROP ;
 
: go 0 tries ! CR 0 try CR sols @ . ." solutions Found, for n = " queens . ;
go
</syntaxhighlight>
 
=={{header|Fortran}}==
Line 5,434 ⟶ 5,881:
 
Using a back tracking method to find one solution
<syntaxhighlight lang="fortran">program Nqueens
implicit none
 
Line 5,658 ⟶ 6,105:
 
===Alternate Fortran 77 solution===
<syntaxhighlight lang="fortran">C This one implements depth-first backtracking.
C See the 2nd program for Scheme on the "Permutations" page for the
C main idea.
Line 5,732 ⟶ 6,179:
</syntaxhighlight>
 
<syntaxhighlight lang="fortran">!The preceding program implements recursion using arrays, since Fortran 77 does not allow recursive
!functions. The same algorithm is much easier to follow in Fortran 90, using the RECURSIVE keyword.
!Like previously, the program only counts solutions. It's pretty straightforward to adapt it to print
Line 5,797 ⟶ 6,244:
With some versions of GCC the function OMP_GET_WTIME is not known, which seems to be a bug. Then it's enough to comment out the two calls, and the program won't display timings.
 
<syntaxhighlight lang="fortran">program queens
use omp_lib
implicit none
Line 5,928 ⟶ 6,375:
 
Part of the intent here is to show that Fortran can do quite a few things people would not think it could, if it is given adequate library support.
<syntaxhighlight lang="fortran">program example__n_queens
 
use, intrinsic :: iso_fortran_env, only: output_unit
Line 6,245 ⟶ 6,692:
=={{header|FreeBASIC}}==
Get slower for N > 14
<syntaxhighlight lang="freebasic">' version 13-04-2017
' compile with: fbc -s console
Dim Shared As ULong count, c()
Line 6,331 ⟶ 6,778:
=== Alternate version : recursive ===
 
<syntaxhighlight lang="freebasic">Sub aux(n As Integer, i As Integer, a() As Integer, _
u() As Integer, v() As Integer, ByRef m As LongInt)
 
Line 6,375 ⟶ 6,822:
=== Alternate version : iterative ===
 
<syntaxhighlight lang="freebasic">Dim As Integer n, i, j, k, p, q
Dim m As LongInt = 0
 
Line 6,421 ⟶ 6,868:
=={{header|Frink}}==
This example uses Frink's built-in <CODE>array.permute[]</CODE> method to generate possible permutations of the board efficiently.
<syntaxhighlight lang=Frink"frink">solution[board] :=
{
for q = 0 to length[board] - 1
Line 6,436 ⟶ 6,883:
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/N-queens_problem}}
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation &mdash;i.e. XML, JSON&mdash; they are intended for storage and transfer purposes more than visualization and edition.
 
'''Solution'''
Programs in Fōrmulæ are created/edited online in its [https://formulae.org website], However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.
 
The following function:
In '''[https://formulae.org/?example=N-queens_problem this]''' page you can see the program(s) related to this task and their results.
 
* Is able to calculate solution for chessboards of any size (but it is slow for big chessboards)
* It does not detect rotated or reflected solutions
 
This is an example of backtracking:
 
[[File:Fōrmulæ - N-queens problem 01.png]]
 
[[File:Fōrmulæ - N-queens problem 02.png]]
 
[[File:Fōrmulæ - N-queens problem 03.png]]
 
'''Improvement.''' The following functions calls the previous one, but shows the solution on a more friendly way
 
[[File:Fōrmulæ - N-queens problem 04.png]]
 
[[File:Fōrmulæ - N-queens problem 05.png]]
 
[[File:Fōrmulæ - N-queens problem 06.png]]
 
=={{header|GAP}}==
Line 6,446 ⟶ 6,912:
Translation of Fortran 77. See also alternate Python implementation. One function to return the number of solutions, another to return the list of permutations.
 
<syntaxhighlight lang="gap">NrQueens := function(n)
local a, up, down, m, sub;
a := [1 .. n];
Line 6,527 ⟶ 6,993:
=={{header|Go}}==
===Niklaus Wirth algorithm (Wikipedia)===
<syntaxhighlight lang="go">// A fairly literal translation of the example program on the referenced
// WP page. Well, it happened to be the example program the day I completed
// the task. It seems from the WP history that there has been some churn
Line 6,602 ⟶ 7,068:
 
=== Refactored Niklaus Wirth algorithm (clearer/Go friendly solution) ===
<syntaxhighlight lang="go">/*
* N-Queens Problem
*
Line 6,746 ⟶ 7,212:
[[N-queens_problem/dlx_go|dlx packge]].
 
<syntaxhighlight lang=Go"go">package main
 
import (
Line 6,915 ⟶ 7,381:
===Distinct Solutions===
This solver starts with the N! distinct solutions to the N-Rooks problem and then keeps only the candidates in which all Queens are mutually diagonal-safe.
<syntaxhighlight lang="groovy">def listOrder = { a, b ->
def k = [a.size(), b.size()].min()
def i = (0..<k).find { a[it] != b[it] }
Line 6,942 ⟶ 7,408:
===Unique Solutions===
Unique solutions are equivalence classes of distinct solutions, factoring out all reflections and rotations of a given solution. See the [[WP:Eight_queens_puzzle|Wikipedia page]] for more details.
<syntaxhighlight lang="groovy">class Reflect {
public static final diag = { list ->
final n = list.size()
Line 6,996 ⟶ 7,462:
===Test and Results===
This script tests both distinct and unique solution lists.
<syntaxhighlight lang="groovy">(1..9).each { n ->
def qds = queensDistinctSolutions(n)
def qus = queensUniqueSolutions(qds)
Line 7,073 ⟶ 7,539:
 
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">import Control.Monad
import Data.List
 
Line 7,107 ⟶ 7,573:
 
===Alternative version===
<syntaxhighlight lang="haskell">import Control.Monad (foldM)
import Data.List ((\\))
 
Line 7,121 ⟶ 7,587:
===Using permutations===
This version uses permutations to generate unique horizontal and vertical position for each queen. Thus, we only need to check diagonals. However, it is less efficient than the previous version because it does not prune out prefixes that are found to be unsuitable.
<syntaxhighlight lang="haskell">import Data.List (nub, permutations)
 
-- checks if queens are on the same diagonal
Line 7,137 ⟶ 7,603:
A back-tracking variant using the Prelude's plain '''foldr''':
{{Trans|JavaScript}}
<syntaxhighlight lang="haskell">import Data.List (intercalate, transpose)
 
--------------------- N QUEENS PROBLEM -------------------
Line 7,225 ⟶ 7,691:
 
===Breadth-first search and Depth-first search===
<syntaxhighlight lang="haskell">import Control.Monad
import System.Environment
 
Line 7,294 ⟶ 7,760:
 
=={{header|Heron}}==
<syntaxhighlight lang="heron">module NQueens {
inherits {
Heron.Windows.Console;
Line 7,392 ⟶ 7,858:
=={{header|Icon}} and {{header|Unicon}}==
Here's a solution to the <tt>n = 8</tt> case:
<syntaxhighlight lang="icon">procedure main()
write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))
end
Line 7,418 ⟶ 7,884:
* As the calls to q() are evaluated in main, each one will suspend a possible row, thereby allowing the next q(n) in main to be evaluated. If any of the q() fails to yield a row for the nth queen (or runs out of solutions) the previous, suspended calls to q() are backtracked progressively. If the final q(8) yields a row, the write() will be called with the row positions of each queen. Note that even the final q(8) will be suspended along with the other 7 calls to q(). Unless the write() is driven to produce more solutions (see next point) the suspended procedures will be closed at the "end of statement" ie after the write has "succeeded".
* If you want to derive all possible solutions, main() can be embellished with the '''every''' keyword:
<syntaxhighlight lang="icon">
procedure main()
every write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))
Line 7,430 ⟶ 7,896:
The comment explains how to modify the program to produce <i>all</i>
solutions for a given <tt>N</tt>.
<syntaxhighlight lang="icon">global n, rw, dd, ud
 
procedure main(args)
Line 7,488 ⟶ 7,954:
 
=={{header|IS-BASIC}}==
<syntaxhighlight lang=IS"is-BASICbasic">100 PROGRAM "NQueens.bas"
110 TEXT 80
120 DO
Line 7,531 ⟶ 7,997:
This is one of several J solutions shown and explained on this [[J:Essays/N%20Queens%20Problem|J wiki page]]
 
<syntaxhighlight lang="j">perm =: ! A.&i. ] NB. all permutations of integers 0 to y
comb2 =: (, #: I.@,@(</)&i.)~ NB. all size 2 combinations of integers 0 to y
mask =: [ */@:~:&(|@-/) {
Line 7,540 ⟶ 8,006:
Example use:
 
<syntaxhighlight lang="j"> $queenst 8
92 8</syntaxhighlight>
 
92 distinct solutions for an 8 by 8 board.
 
<syntaxhighlight lang="j"> {.queenst 8
0 4 7 5 2 6 1 3</syntaxhighlight>
 
Line 7,551 ⟶ 8,017:
 
=={{header|Java}}==
<syntaxhighlight lang="java">public class NQueens {
 
private static int[] b = new int[8];
Line 7,603 ⟶ 8,069:
===ES5===
Algorithm uses recursive Backtracking. Checks for correct position on subfields, whichs saves a lot position checks. Needs 15.720 position checks for a 8x8 field.
<syntaxhighlight lang="javascript">function queenPuzzle(rows, columns) {
if (rows <= 0) {
return [[]];
Line 7,639 ⟶ 8,105:
===ES6===
Translating the ES5 version, and adding a function to display columns of solutions.
<syntaxhighlight lang=JavaScript"javascript">(() => {
"use strict";
 
Line 7,806 ⟶ 8,272:
This section presents a function for finding a single solution using
the formulae for explicit solutions at [[WP:Eight_queens_puzzle|Eight Queens Puzzle]].
<syntaxhighlight lang="jq">def single_solution_queens(n):
def q: "♛";
def init(k): reduce range(0;k) as $i ([]; . + ["."]);
Line 7,833 ⟶ 8,299:
{{out}}
$ jq -M -n -r -f n-queens-single-solution.jq
<syntaxhighlight lang="sh">...♛....
.....♛..
.......♛
Line 7,844 ⟶ 8,310:
{{ works with|jq|1.4}}
'''Part 1: Generic functions'''
<syntaxhighlight lang="jq"># permutations of 0 .. (n-1)
def permutations(n):
# Given a single array, generate a stream by inserting n at different positions:
Line 7,858 ⟶ 8,324:
def count(g): reduce g as $i (0; .+1);</syntaxhighlight>
'''Part 2: n-queens'''
<syntaxhighlight lang="jq">def queens(n):
def sums:
. as $board
Line 7,876 ⟶ 8,342:
</syntaxhighlight>
'''Example''':
<syntaxhighlight lang="jq">queens(8)</syntaxhighlight>
{{out}}
92
Line 7,882 ⟶ 8,348:
=={{header|Julia}}==
 
<syntaxhighlight lang="ruby">"""
# EightQueensPuzzle
 
Line 8,022 ⟶ 8,488:
=={{header|Kotlin}}==
{{trans|FreeBASIC}}
<syntaxhighlight lang="scala">// version 1.1.3
 
var count = 0
Line 8,112 ⟶ 8,578:
=={{header|Liberty BASIC}}==
Program uses permutation generator (stores all permutations) and solves tasks 4x4 to 9x9. It prints all the solutions.
<syntaxhighlight lang="lb">
'N queens
'>10 would not work due to way permutations used
Line 8,204 ⟶ 8,670:
Uses the heuristic from the Wikipedia article to get one solution.
 
<syntaxhighlight lang="locobasic">10 mode 1:defint a-z
20 while n<4:input "How many queens (N>=4)";n:wend
30 dim q(n),e(n),o(n)
Line 8,261 ⟶ 8,727:
 
=={{header|Logo}}==
<syntaxhighlight lang="logo">to try :files :diag1 :diag2 :tried
if :files = 0 [make "solutions :solutions+1 show :tried stop]
localmake "safe (bitand :files :diag1 :diag2)
Line 8,280 ⟶ 8,746:
 
=={{header|Lua}}==
<syntaxhighlight lang=Lua"lua">N = 8
 
-- We'll use nil to indicate no queen is present.
Line 8,318 ⟶ 8,784:
=={{header|M2000 Interpreter}}==
{{trans|VBA}}
<syntaxhighlight lang=M2000"m2000 Interpreterinterpreter">
Module N_queens {
Const l = 15 'number of queens
Line 8,383 ⟶ 8,849:
It finds one solution of the Eight Queens problem.
 
<syntaxhighlight lang="m4">divert(-1)
 
The following macro find one solution to the eight-queens problem:
Line 8,501 ⟶ 8,967:
{{trans|Python}}
 
<syntaxhighlight lang="maple">queens:=proc(n)
local a,u,v,m,aux;
a:=[$1..n];
Line 8,548 ⟶ 9,014:
=={{header|Mathematica}}/{{header|Wolfram Language}}==
This code recurses through the possibilities, using the "safe" method to check if the current set is allowed. The recursive method has the advantage that finding all possibilities is about as hard (code-wise, not computation-wise) as finding just one.
<syntaxhighlight lang=Mathematica"mathematica">safe[q_List, n_] :=
With[{l = Length@q},
Length@Union@q == Length@Union[q + Range@l] ==
Line 8,559 ⟶ 9,025:
 
This returns a list of valid permutations by giving the queen's column number for each row. It can be displayed in a list of chess-board tables like this:
<syntaxhighlight lang=Mathematica"mathematica">matrixView[n_] :=
Grid[Normal@
SparseArray[MapIndexed[{#, First@#2} -> "Q" &, #], {n, n}, "."],
Line 8,580 ⟶ 9,046:
This solution uses Permutations and subsets, also prints out a board representation.
 
<syntaxhighlight lang=Mathematica"mathematica">n=8;cnt=1;per=Permutations[Range[n],{n}];(* All Permutations of length n *)
Do[per[[q]]=Partition[Riffle[Reverse[Range[n]],per[[q]]],2],{q,1,Length[per]}];(* Riffled in the reverse of [range n] partitioned into pairs*)
Do[w=Subsets[per[[t]],{2}];(* This is a full subset of the previous set of pairs taken 2 at a time *)
Line 8,591 ⟶ 9,057:
Alternative Solution using Linear Programming:
 
<syntaxhighlight lang=Mathematica"mathematica">
dispSol[sol_] := sol /. {1 -> "Q" , 0 -> "-"} // Grid
 
Line 8,648 ⟶ 9,114:
=={{header|MATLAB}}==
This solution is inspired by Raymond Hettinger's permutations based solution which was made in Python: https://code.activestate.com/recipes/576647/
<syntaxhighlight lang=MATLAB"matlab">n=8;
solutions=[[]];
v = 1:n;
Line 8,688 ⟶ 9,154:
 
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">/* translation of Fortran 77, return solutions as permutations */
 
queens(n) := block([a, i, j, m, p, q, r, s, u, v, w, y, z],
Line 8,706 ⟶ 9,172:
...]] */
length(%); /* 92 */</syntaxhighlight>
 
<syntaxhighlight lang="maxima">
/* Inspired by code from Python */
Queens(N):=block([K,C,P,V,L:[]],
C: makelist(K,K,1,N),
P: permutations(C),
for V in P do (
if is(N=length(unique(makelist(V[K]+K, K, C)))) then (
if is(N=length(unique(makelist(V[K]-K, K, C)))) then (
L: endcons(V, L)
)
)
), L
)$
 
Queens(8);length(%);</syntaxhighlight>
 
=={{header|MiniScript}}==
This GUI implementation is for use with [http://miniscript.org/MiniMicro Mini Micro]. It displays a chess board with animation of the possibilities. At the end, after all of the solutions have been calculated, you can scroll through them with the left/right cursor keys.
<syntaxhighlight lang="miniscript">
clear
N = 8
SOLUTIONCOUNT = 0
 
getTileDisplay = function
gfx.clear
queen = file.loadImage("/sys/pics/gamePieces/blackQueen.png")
gfx.color = color.white
gfx.fillRect 0, 0, 80, 80
gfx.fillRect 160, 0, 80, 80
gfx.color = color.brown
gfx.fillRect 80, 0, 80, 80
gfx.fillRect 240, 0, 80, 80
gfx.drawImage queen, 172, 14
gfx.drawImage queen, 252, 14
tiles = gfx.getImage(0,0, 320, 80)
gfx.clear
display(4).mode = displayMode.tile
td = display(4)
td.cellSize = 640 / N
td.extent = [N, N]
td.overlap = 0
td.tileSet = tiles
td.tileSetTileSize = 80
td.scrollX = -160
td.clear
return td
end function
 
updateBoard = function(td, arr)
for y in range(0, N - 1)
ix = y % 2
for x in range(0, N - 1)
td.setCell x, y, ix
ix += 1
ix %= 2
end for
end for
y = 0
for x in arr
td.setCell x, y, td.cell(x, y) + 2
y += 1
end for
yield
end function
 
list.has = function(n)
return self.indexOf(n) != null
end function
 
queens = function(n, i, a, b, c, td)
solutions = []
updateBoard(td, a)
if i < n then
for j in range(0, n - 1)
if not a.has(j) and not b.has(i + j) and not c.has(i - j) then
solution = queens(n, i + 1, a + [j], b + [i + j], c + [i - j], td)
if solution != null then solutions += solution
end if
end for
else
globals.SOLUTIONCOUNT += 1
text.row = 25
text.print "SOLUTIONS"
text.print globals.SOLUTIONCOUNT
solutions.push(a)
end if
return solutions
end function
 
td = getTileDisplay
solutions = queens(N, 0, [], [], [], td)
ix = 0
while true
text.row = 25
text.print "SOLUTION # "
text.print (ix + 1) + (" " * 10)
text.print
text.print char(17) + "/" + char(18) + " keys"
updateBoard(td, solutions[ix])
k = key.get
kcode = code(k)
if kcode == 27 then break
ix = ix - (kcode == 17) + (kcode == 18) + solutions.len
ix %= solutions.len
end while
</syntaxhighlight>
 
=={{header|MiniZinc}}==
<syntaxhighlight lang="minizinc">int: n;
array [1..n] of var 1..n: q; % queen in column i is in row q[i]
 
Line 8,727 ⟶ 9,302:
=={{header|Modula-2}}==
{{trans|C}}
<syntaxhighlight lang="modula2">MODULE NQueens;
FROM InOut IMPORT Write, WriteCard, WriteString, WriteLn;
 
Line 9,799 ⟶ 10,374:
 
=={{header|MUMPS}}==
<syntaxhighlight lang=MUMPS"mumps">Queens New count,flip,row,sol
Set sol=0
For row(1)=1:1:4 Do try(2) ; Not 8, the other 4 are symmetric...
Line 9,860 ⟶ 10,435:
</syntaxhighlight>
<div style="overflow:scroll; height:400px;">
<syntaxhighlight lang=MUMPS"mumps">
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
8 | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|
Line 10,071 ⟶ 10,646:
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">const BoardSize = 8
 
proc underAttack(col: int; queens: seq[int]): bool =
Line 10,131 ⟶ 10,706:
{{trans|Java}}
 
<syntaxhighlight lang="objeck">bundle Default {
class NQueens {
b : static : Int[];
Line 10,193 ⟶ 10,768:
{{libheader|FaCiLe}}
 
<syntaxhighlight lang="ocaml">(* Authors: Nicolas Barnier, Pascal Brisset
Copyright 2004 CENA. All rights reserved.
This code is distributed under the terms of the GNU LGPL *)
Line 10,253 ⟶ 10,828:
queens (int_of_string Sys.argv.(1));;</syntaxhighlight>
===A stand-alone OCaml solution===
<syntaxhighlight lang="ocaml">let solutions n =
 
let show board =
Line 10,318 ⟶ 10,893:
=={{header|Oz}}==
A pretty naive solution, using constraint programming:
<syntaxhighlight lang="oz">declare
fun {Queens N}
proc {$ Board}
Line 10,390 ⟶ 10,965:
 
=={{header|Pascal}}==
<syntaxhighlight lang="pascal">program queens;
 
const l=16;
Line 10,488 ⟶ 11,063:
Solution found</pre>
<syntaxhighlight lang="pascal">program NQueens;
{$IFDEF FPC}
{$MODE DELPHI}
Line 10,623 ⟶ 11,198:
 
=={{header|PDP-11 Assembly}}==
<syntaxhighlight lang=PDP"pdp-11 Assemblyassembly">
; "eight queens problem" benchmark test
 
Line 10,741 ⟶ 11,316:
 
=={{header|Perl}}==
<syntaxhighlight lang="perl">my ($board_size, @occupied, @past, @solutions);
 
sub try_column {
Line 10,785 ⟶ 11,360:
 
=={{header|Phix}}==
<!--<syntaxhighlight lang=Phix>(phixonline)-->
<syntaxhighlight lang="phix">
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
with javascript_semantics
<span style="color: #000080;font-style:italic;">--
--
-- demo\rosetta\n_queens.exw
-- demo\rosetta\n_queens.exw
-- =========================
-- =========================
--</span>
--
<span style="color: #004080;">sequence</span> <span style="color: #000000;">co</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">-- columns occupied
sequence co, -- columns occupied
-- (ro is implicit)</span>
-- (ro is implicit)
<span style="color: #000000;">fd</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">-- forward diagonals</span>
fd, -- forward diagonals
<span style="color: #000000;">bd</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">-- backward diagonals</span>
bd, <span style="color: #000000;">board</span> -- backward diagonals
board
<span style="color: #004080;">atom</span> <span style="color: #000000;">count</span>
atom count
<span style="color: #008080;">procedure</span> <span style="color: #000000;">solve</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">row</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">N</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">show</span><span style="color: #0000FF;">)</span>
procedure solve(integer row, integer N, integer show)
<span style="color: #008080;">for</span> <span style="color: #000000;">col</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">N</span> <span style="color: #008080;">do</span>
for col=1 to N do
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #000000;">co</span><span style="color: #0000FF;">[</span><span style="color: #000000;">col</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">then</span>
if not co[col] then
<span style="color: #004080;">integer</span> <span style="color: #000000;">fdi</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">col</span><span style="color: #0000FF;">+</span><span style="color: #000000;">row</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span>
integer fdi = col+row-1,
<span style="color: #000000;">bdi</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">row</span><span style="color: #0000FF;">-</span><span style="color: #000000;">col</span><span style="color: #0000FF;">+</span><span style="color: #000000;">N</span>
bdi = row-col+N
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #000000;">fd</span><span style="color: #0000FF;">[</span><span style="color: #000000;">fdi</span><span style="color: #0000FF;">]</span>
if not fd[fdi]
<span style="color: #008080;">and</span> <span style="color: #008080;">not</span> <span style="color: #000000;">bd</span><span style="color: #0000FF;">[</span><span style="color: #000000;">bdi</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">then</span>
and not bd[bdi] then
<span style="color: #000000;">board</span><span style="color: #0000FF;">[</span><span style="color: #000000;">row</span><span style="color: #0000FF;">][</span><span style="color: #000000;">col</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">'Q'</span>
board[row][col] = 'Q'
<span style="color: #000000;">co</span><span style="color: #0000FF;">[</span><span style="color: #000000;">col</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
co[col] = true
<span style="color: #000000;">fd</span><span style="color: #0000FF;">[</span><span style="color: #000000;">fdi</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
fd[fdi] = true
<span style="color: #000000;">bd</span><span style="color: #0000FF;">[</span><span style="color: #000000;">bdi</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
bd[bdi] = true
<span style="color: #008080;">if</span> <span style="color: #000000;">row</span><span style="color: #0000FF;">=</span><span style="color: #000000;">N</span> <span style="color: #008080;">then</span>
if row=N then
<span style="color: #008080;">if</span> <span style="color: #000000;">show</span> <span style="color: #008080;">then</span>
if show then
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">join</span><span style="color: #0000FF;">(</span><span style="color: #000000;">board</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\n"</span><span style="color: #0000FF;">)&</span><span style="color: #008000;">"\n"</span><span style="color: #0000FF;">)</span>
puts(1,join(board,"\n")&"\n")
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'='</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">)&</span><span style="color: #008000;">"\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span styleputs(1,repeat('=',N)&"color: #008080;\n">if</span>)
end if
<span style="color: #000000;">count</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style count +="color: #008080;">else</span>1
else
<span style="color: #000000;">solve</span><span style="color: #0000FF;">(</span><span style="color: #000000;">row</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">,</span><span style="color: #000000;">show</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>solve(row+1,N,show)
end if
<span style="color: #000000;">board</span><span style="color: #0000FF;">[</span><span style="color: #000000;">row</span><span style="color: #0000FF;">][</span><span style="color: #000000;">col</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">'.'</span>
board[row][col] = '.'
<span style="color: #000000;">co</span><span style="color: #0000FF;">[</span><span style="color: #000000;">col</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
co[col] = false
<span style="color: #000000;">fd</span><span style="color: #0000FF;">[</span><span style="color: #000000;">fdi</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
fd[fdi] = false
<span style="color: #000000;">bd</span><span style="color: #0000FF;">[</span><span style="color: #000000;">bdi</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
bd[bdi] = false
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
end if
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
end if
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
end for
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
end procedure
<span style="color: #008080;">procedure</span> <span style="color: #000000;">n_queens</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">N</span><span style="color: #0000FF;">=</span><span style="color: #000000;">8</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">show</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
procedure n_queens(integer N=8, integer show=1)
<span style="color: #000000;">co</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">)</span>
co = repeat(false,N)
<span style="color: #000000;">fd</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">*</span><span style="color: #000000;">2</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
fd = repeat(false,N*2-1)
<span style="color: #000000;">bd</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">*</span><span style="color: #000000;">2</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
bd = repeat(false,N*2-1)
<span style="color: #000000;">board</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">),</span><span style="color: #000000;">N</span><span style="color: #0000FF;">)</span>
board = repeat(repeat('.',N),N)
<span style="color: #000000;">count</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
count = 0
<span style="color: #000000;">solve</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">,</span><span style="color: #000000;">show</span><span style="color: #0000FF;">)</span>
solve(1,N,show)
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d queens: %d solutions\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">N</span><span style="color: #0000FF;">,</span><span style="color: #000000;">count</span><span style="color: #0000FF;">})</span>
printf(1,"%d queens: %d solutions\n",{N,count})
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
end procedure
<span style="color: #008080;">for</span> <span style="color: #000000;">N</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()=</span><span style="color: #004600;">JS</span><span style="color: #0000FF;">?</span><span style="color: #000000;">12</span><span style="color: #0000FF;">:</span><span style="color: #000000;">14</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
for N=1 to iff(platform()=JS?12:14) do
<span style="color: #000000;">n_queens</span><span style="color: #0000FF;">(</span><span style="color: #000000;">N</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;"><</span><span style="color: #000000;">5</span><span style="color: #0000FF;">)</span>
n_queens(N,N<5)
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
end for
<!--</syntaxhighlight>-->
</syntaxhighlight>
{{out}}
<pre>
Line 10,874 ⟶ 11,450:
 
=={{header|PHP}}==
<syntaxhighlight lang=PHP"php">
<html>
<head>
Line 11,056 ⟶ 11,632:
<h2>Solution with recursion</h2>
 
<syntaxhighlight lang=PHP"php">
<html>
<body>
Line 11,135 ⟶ 11,711:
===0/1 encoding a N x N matrix===
Using constraint modelling using an 0/1 encoding of an N x N matrix. It is the probably the fastest approach when using SAT and MIP solvers.
<syntaxhighlight lang=Picat"picat">import sat.
% import mip.
 
Line 11,161 ⟶ 11,737:
===Constraint programming===
This is the "standard" model using constraint programming (in contract to the SAT 0/1 approach). Instead of an NxN matrix, this encoding uses a single list representing the columns. The three <code>all_different/1</code> then ensures that the rows, and the two diagonals are distinct.
<syntaxhighlight lang=Picat"picat">import cp.
 
queens(N, Q) =>
Line 11,173 ⟶ 11,749:
==="Naive" approach===
This approach might be called "naive" (in the constraint programming context) since it doesn't use the (general) faster <code>all_different/1</code> constraint.
<syntaxhighlight lang=Picat"picat">queens_naive(N, Q) =>
Q = new_list(N),
Q :: 1..N,
Line 11,222 ⟶ 11,798:
=={{header|PicoLisp}}==
===Calling 'permute'===
<syntaxhighlight lang=PicoLisp"picolisp">(load "@lib/simul.l") # for 'permute'
 
(de queens (N)
Line 11,237 ⟶ 11,813:
'permute', but creates them recursively. Also, it directly checks for
duplicates, instead of calling 'uniq' and 'length'. This is much faster.
<syntaxhighlight lang=PicoLisp"picolisp">(de queens (N)
(let (R (range 1 N) L (copy R) X L Cnt 0)
(recur (X) # Permute
Line 11,259 ⟶ 11,835:
=={{header|PL/I}}==
This code compiles with PL/I compilers ranging from the ancient IBM MVT PL/I F compiler of the 1960s, the IBM PL/I Optimizing compiler, thru the IBM PL/I compiler for MVS and VM, to the z/OS Enterprise PL/I v4.60 compiler;spanning 50 years of PL/I compilers. It only outputs the number of solutions found for a given N instead of printing out each individual chess board solution to avoid filling up spool space for large values of N. It's trivial to add a print-out of the individual solutions.
<syntaxhighlight lang="pli">
NQUEENS: PROC OPTIONS (MAIN);
DCL A(35) BIN FIXED(31) EXTERNAL;
Line 11,342 ⟶ 11,918:
=== Recursive version ===
{{trans|Stata}}
<syntaxhighlight lang="powerbasic">#COMPILE EXE
#DIM ALL
 
Line 11,391 ⟶ 11,967:
=== Iterative version ===
{{trans|Stata}}
<syntaxhighlight lang="powerbasic">#COMPILE EXE
#DIM ALL
 
Line 11,441 ⟶ 12,017:
=={{header|PowerShell}}==
{{works with|PowerShell|2}}
<syntaxhighlight lang=PowerShell"powershell">
function PlaceQueen ( [ref]$Board, $Row, $N )
{
Line 11,502 ⟶ 12,078:
}
</syntaxhighlight>
<syntaxhighlight lang=PowerShell"powershell">
Get-NQueensBoard 8
''
Line 11,547 ⟶ 12,123:
=={{header|Processing}}==
{{trans|Java}}
<syntaxhighlight lang="java">
int n = 8;
int[] b = new int[n];
Line 11,625 ⟶ 12,201:
This solution, originally by Raymond Hettinger for demonstrating the power of the itertools module, generates all solutions.
 
<syntaxhighlight lang="python">from itertools import permutations, product
 
n = 8
Line 11,659 ⟶ 12,235:
 
Solution #1:
<syntaxhighlight lang=Prolog"prolog">solution([]).
solution([X/Y|Others]) :-
Line 11,682 ⟶ 12,258:
 
Solution #2:
<syntaxhighlight lang=Prolog"prolog">solution(Queens) :-
permutation([1,2,3,4,5,6,7,8], Queens),
safe(Queens).
Line 11,712 ⟶ 12,288:
 
Solution #3:
<syntaxhighlight lang=Prolog"prolog">solution(Ylist) :-
sol(Ylist,[1,2,3,4,5,6,7,8],
[1,2,3,4,5,6,7,8],
Line 11,739 ⟶ 12,315:
===Alternative version===
Uses non-ISO predicates between/3 and select/3 (available in SWI Prolog and GNU Prolog).
<syntaxhighlight lang="prolog">:- initialization(main).
 
 
Line 11,760 ⟶ 12,336:
Uses backtracking- a highly efficient mechanism in Prolog to find all solutions.
{{works with|SWI Prolog|version 6.2.6 by Jan Wielemaker, University of Amsterdam}}
<syntaxhighlight lang="prolog">% 8 queens problem.
% q(Row) represents a queen, allocated one per row. No rows ever clash.
% The columns are chosen iteratively from available columns held in a
Line 11,799 ⟶ 12,375:
===Short version===
SWI-Prolog 7.2.3
<syntaxhighlight lang=Prolog"prolog">not_diagonal(X, N) :-
maplist(plus, X, N, Z1), maplist(plus, X, Z2, N), is_set(Z1), is_set(Z2).
 
Line 11,812 ⟶ 12,388:
 
===SWISH Prolog version===
<syntaxhighlight lang=Prolog"prolog">
% John Devou: 26-Nov-2021
% Short solution to use on https://swish.swi-prolog.org/.
Line 11,846 ⟶ 12,422:
</ul>
<br/>
<syntaxhighlight lang=Prolog"prolog">:- use_module(library(clpfd)).
 
% DOC: http://www.pathwayslms.com/swipltuts/clpfd/clpfd.html
Line 11,946 ⟶ 12,522:
From the Pure (programming language) Wikipedia page
 
<syntaxhighlight lang="pure">/*
n-queens.pure
Tectonics:
Line 11,982 ⟶ 12,558:
=={{header|PureBasic}}==
A recursive approach is taken. A queen is placed in an unused column for each new row. An array keeps track if a queen has already been placed in a given column so that no duplicate columns result. That handles the Rook attacks. Bishop attacks are handled by checking the diagonal alignments of each new placement against the previously placed queens and if an attack is possible the solution backtracks. The solutions are kept track of in a global variable and the routine <tt>queens(n)</tt> is called with the required number of queens specified.
<syntaxhighlight lang=PureBasic"purebasic">Global solutions
 
Procedure showBoard(Array queenCol(1))
Line 12,184 ⟶ 12,760:
This solution, originally by [http://code.activestate.com/recipes/576647/ Raymond Hettinger] for demonstrating the power of the itertools module, generates all solutions. On a regular 8x8 board only 40,320 possible queen positions are examined.
 
<syntaxhighlight lang="python">from itertools import permutations
 
n = 8
Line 12,195 ⟶ 12,771:
The output is presented in vector form (each number represents the column position of a queen on consecutive rows).
The vector can be pretty printed by substituting a call to <code>board</code> instead of <code>print</code>, with the same argument, and where board is pre-defined as:
<syntaxhighlight lang="python">def board(vec):
print ("\n".join('.' * i + 'Q' + '.' * (n-i-1) for i in vec) + "\n===\n")</syntaxhighlight>
 
Line 12,211 ⟶ 12,787:
On a regular 8x8 board only 15,720 possible queen positions are examined.
{{works with|Python|2.6, 3.x}}
<syntaxhighlight lang="python"># From: http://wiki.python.org/moin/SimplePrograms, with permission from the author, Steve Howell
BOARD_SIZE = 8
 
Line 12,233 ⟶ 12,809:
to a generator expression) produces a backtracking solution. On a regular 8x8 board only 15,720 possible queen positions are examined.
{{works with|Python|2.6, 3.x}}
<syntaxhighlight lang="python">BOARD_SIZE = 8
 
def under_attack(col, queens):
Line 12,253 ⟶ 12,829:
print(list(enumerate(first_answer, start=1)))</syntaxhighlight>
 
===Python: Simple Backtracking Solution (Niklaus Wirth Algorithm)algorithm===
The following program is a translation of Niklaus Wirth's solution into the Python programming language, but does without the index arithmetic used in the original and uses simple lists instead, which means that the array ''x'' for recording the solution can be omitted. A generator replaces the procedure (see [https://www.inf.ethz.ch/personal/wirth/AD Niklaus Wirth] or [https://informatika-21.pdfru/ADen/ Fyodor Tkachov]: Algorithms and Data Structures], pages 114 to 118). On a regular 8x8 board only 15,720 possible queen positions are examined.
<syntaxhighlight lang="python">def queens(n: int, i: int, a: list, b: list, c: list):
if i < n:
for j in range(n):
Line 12,262 ⟶ 12,838:
else:
yield a
 
 
for solution in queens(8, 0, [], [], []):
print(solution)</syntaxhighlight>
The algorithm can be slightlyeasily improved by using permutations and O(1) sets instead of lists O(cf. backtracking on permutationsn). Butlists thisand makesby theavoiding algorithmunnecessary acopy bitoperations harderduring torecursion. read,An since theadditional list ''x'' has to bewas added to record the solution. On a regular 8x8 board only 5,508 possible queen positions are examined. However, since these two solutions are intended for educational purposes, they are neither resource-friendly nor optimized for speed. The next program (backtracking on permutations) shows a much faster solution that also uses less space on the stack.
<syntaxhighlight lang="python">def queens(x,i: iint, a, b,: cset):
if a: # set a is not empty
for j in a:
if i + j not in b and i - j not in c:
yield from queensb.add(xi + [j],); c.add(i + 1, a - {j}, b | {i + j}, c | {i -); x.append(j})
yield from queens(i + 1, a - {j})
b.remove(i + j); c.remove(i - j); x.pop()
else:
yield x
 
 
for solution in queens([], 0, set(range(8)), set(), set()):
b = set(); c = set(); x = []
for solution in queens(0, set(range(8))):
print(solution)</syntaxhighlight>
 
===Python: backtrackingBacktracking on permutations===
Queens positions on a n x n board are encoded as permutations of [0, 1, ..., n]. The algorithms consists in building a permutation from left to right, by swapping elements of the initial [0, 1, ..., n], recursively calling itself unless the current position is not possible. The test is done by checking only diagonals, since rows/columns have by definition of a permutation, only one queen.
 
This is initially a translation of the Fortran 77 solution. The solutions are returned as a generator, using the "yield from" functionality of Python 3.3, described in [https://www.python.org/dev/peps/pep-0380/ PEP-380]. On a regular 8x8 board only 5,508 possible queen positions are examined.
 
<syntaxhighlight lang="python">def queens(n: int):
The solutions are returned as a generator, using the "yield from" functionality of Python 3.3, described in [https://www.python.org/dev/peps/pep-0380/ PEP-380].
 
def sub(i: int):
<syntaxhighlight lang=python>def queens(n):
a = list(range( if i < n)):
up = [True]*(2*n - 1)
down = [True]*(2*n - 1)
def sub(i):
if i == n:
yield tuple(a)
else:
for k in range(i, n):
j = a[k]
p =if b[i + j] and c[i - j]:
q = i - j + n - 1
if up[p] and down[q]:
up[p] = down[q] = False
a[i], a[k] = a[k], a[i]
b[i + j] = c[i - j] = False
yield from sub(i + 1)
upb[pi + j] = downc[qi - j] = True
a[i], a[k] = a[k], a[i]
else:
yield a
 
a = list(range(n))
b = [True] * (2 * n - 1)
c = [True] * (2 * n - 1)
yield from sub(0)
 
 
#Count solutions for n=8:
sum(1 for p in queens(8)) # count solutions
92</syntaxhighlight>
 
The preceding function does not enumerate solutions in lexicographic order, see [[Permutations#Recursive implementation]] for an explanation. The following does, but is almost 50% slower, because the exchange is always made (otherwise, restoring the loopstate to shiftof the array aafter bythe one place wouldloop notwouldn't work). On a regular 8x8 board only 5,508 possible queen positions are examined.
 
However, it may be interesting to look at the first solution in lexicographic order: for growing n, and apart from a +1 offset, it gets closer and closer to the sequence [http://oeis.org/A065188 A065188] at OEIS. The first n for which the first solutions differ is n=26.
 
<syntaxhighlight lang="python">def queens_lex(n: int):
 
a = list(range(n))
updef = [True]*sub(2*n -i: 1int):
down = [True]*(2*n - 1)if i < n:
def sub(i):
if i == n:
yield tuple(a)
else:
for k in range(i, n):
j = a[k]
a[i], a[k] = a[k], a[i]
if b[i + j] =and ac[i - j]:
p = b[i + j] = c[i - j] = False
q = i - j + n - 1
if up[p] and down[q]:
up[p] = down[q] = False
yield from sub(i + 1)
upb[pi + j] = downc[qi - j] = True
xa[i:(n - 1)], a[n - 1] = a[(i + 1):n], a[i]
for k in range(i + 1, n)else:
a[k - 1] =yield a[k]
 
a[n - 1] = x
a = list(range(n))
b = [True] * (2 * n - 1)
c = [True] * (2 * n - 1)
yield from sub(0)
 
 
next(queens(31))
([0, 2, 4, 1, 3, 8, 10, 12, 14, 6, 17, 21, 26, 28, 25, 27, 24, 30, 7, 5, 29, 15, 13, 11, 9, 18, 22, 19, 23, 16, 20)]
 
next(queens_lex(31))
([0, 2, 4, 1, 3, 8, 10, 12, 14, 5, 17, 22, 25, 27, 30, 24, 26, 29, 6, 16, 28, 13, 9, 7, 19, 11, 15, 18, 21, 23, 20)]
 
#Compare to A065188
Line 12,347 ⟶ 12,924:
Expressed in terms of nested folds, allowing for graphic display of results, and listing the number of solutions found for boards of various sizes. On a regular 8x8 board only 15,720 possible queen positions are examined.
{{Works with|Python|3.7}}
<syntaxhighlight lang=Python"python">'''N Queens problem'''
 
from functools import reduce
Line 12,514 ⟶ 13,091:
9 -> 352
10 -> 724</pre>
 
=={{header|Quackery}}==
 
<code>perms</code> is defined at [[Permutations#Quackery]]. The solution used determines the order in which the n-Queen solutions found are listed. The output illustrated here is from the <code>perms</code> solution titled "An Uncommon Ordering".
 
The method used here stems from the following observations.
 
* Queens can attach with rook (castle) moves or bishop moves.
 
* The solutions to the N-rooks problem correspond to the permutations of the numbers 0 to N-1 in a zero-indexed list.
 
* Two queens are attacking one another with bishop moves to the left (from the appropriate point of view) if the sum of the x-coordinate and the y-coordinate for each of the queens is the same.
 
* A bishop move to the right is the mirror image of a bishop move to the left.
 
<syntaxhighlight lang="Quackery"> [ false 0 rot
witheach
[ i + bit
2dup & iff
[ drop dip not
conclude ]
done
| ]
drop ] is l-bishop ( [ --> b )
 
[ reverse l-bishop ] is r-bishop ( [ --> b )
 
[ [] swap perms
witheach
[ dup l-bishop iff
drop done
dup r-bishop iff
drop done
nested join ] ] is queens ( n --> [ )
 
8 queens
dup size echo say " solutions."
cr cr
witheach
[ echo
i^ 1+ 4 mod iff sp else cr ]</syntaxhighlight>
 
{{out}}
 
<pre>92 solutions.
 
[ 4 1 5 0 6 3 7 2 ] [ 5 2 4 6 0 3 1 7 ] [ 5 3 6 0 2 4 1 7 ] [ 2 5 1 6 4 0 7 3 ]
[ 5 2 0 6 4 7 1 3 ] [ 5 1 6 0 2 4 7 3 ] [ 5 3 6 0 7 1 4 2 ] [ 2 5 1 6 0 3 7 4 ]
[ 5 2 6 1 3 7 0 4 ] [ 5 2 6 3 0 7 1 4 ] [ 1 5 0 6 3 7 2 4 ] [ 5 1 6 0 3 7 4 2 ]
[ 5 2 6 1 7 4 0 3 ] [ 4 6 1 5 2 0 3 7 ] [ 4 6 1 5 2 0 7 3 ] [ 3 6 4 2 0 5 7 1 ]
[ 3 6 4 1 5 0 2 7 ] [ 6 4 2 0 5 7 1 3 ] [ 3 1 6 2 5 7 0 4 ] [ 3 1 6 2 5 7 4 0 ]
[ 0 6 3 5 7 1 4 2 ] [ 6 1 5 2 0 3 7 4 ] [ 1 6 2 5 7 4 0 3 ] [ 6 2 0 5 7 4 1 3 ]
[ 4 1 3 6 2 7 5 0 ] [ 2 4 6 0 3 1 7 5 ] [ 4 6 3 0 2 7 5 1 ] [ 4 6 1 3 7 0 2 5 ]
[ 1 4 6 3 0 7 5 2 ] [ 4 6 0 3 1 7 5 2 ] [ 4 2 0 6 1 7 5 3 ] [ 1 4 6 0 2 7 5 3 ]
[ 4 6 0 2 7 5 3 1 ] [ 3 1 6 4 0 7 5 2 ] [ 6 3 1 4 7 0 2 5 ] [ 2 0 6 4 7 1 3 5 ]
[ 1 6 4 7 0 3 5 2 ] [ 0 6 4 7 1 3 5 2 ] [ 3 6 2 7 1 4 0 5 ] [ 3 6 0 7 4 1 5 2 ]
[ 6 1 3 0 7 4 2 5 ] [ 2 6 1 7 4 0 3 5 ] [ 6 2 7 1 4 0 5 3 ] [ 6 3 1 7 5 0 2 4 ]
[ 2 6 1 7 5 3 0 4 ] [ 6 0 2 7 5 3 1 4 ] [ 4 1 3 5 7 2 0 6 ] [ 4 0 3 5 7 1 6 2 ]
[ 4 2 0 5 7 1 3 6 ] [ 3 5 0 4 1 7 2 6 ] [ 5 3 0 4 7 1 6 2 ] [ 5 2 4 7 0 3 1 6 ]
[ 2 5 1 4 7 0 6 3 ] [ 5 0 4 1 7 2 6 3 ] [ 2 5 3 1 7 4 6 0 ] [ 2 5 3 0 7 4 6 1 ]
[ 5 3 1 7 4 6 0 2 ] [ 5 2 0 7 4 1 3 6 ] [ 2 5 7 0 4 6 1 3 ] [ 1 3 5 7 2 0 6 4 ]
[ 3 5 7 2 0 6 4 1 ] [ 3 5 7 1 6 0 2 4 ] [ 2 5 7 1 3 0 6 4 ] [ 2 5 7 0 3 6 4 1 ]
[ 5 2 0 7 3 1 6 4 ] [ 1 5 7 2 0 3 6 4 ] [ 5 7 1 3 0 6 4 2 ] [ 0 5 7 2 6 3 1 4 ]
[ 3 1 4 7 5 0 2 6 ] [ 3 0 4 7 5 2 6 1 ] [ 4 7 3 0 2 5 1 6 ] [ 2 4 1 7 5 3 6 0 ]
[ 0 4 7 5 2 6 1 3 ] [ 4 0 7 5 2 6 1 3 ] [ 3 1 7 5 0 2 4 6 ] [ 7 2 0 5 1 4 6 3 ]
[ 1 7 5 0 2 4 6 3 ] [ 3 7 0 2 5 1 6 4 ] [ 7 3 0 2 5 1 6 4 ] [ 3 0 4 7 1 6 2 5 ]
[ 2 4 7 3 0 6 1 5 ] [ 4 2 7 3 6 0 5 1 ] [ 4 1 7 0 3 6 2 5 ] [ 4 0 7 3 1 6 2 5 ]
[ 4 7 3 0 6 1 5 2 ] [ 2 4 1 7 0 6 3 5 ] [ 3 7 4 2 0 6 1 5 ] [ 3 1 7 4 6 0 2 5 ]
[ 3 7 0 4 6 1 5 2 ] [ 7 1 4 2 0 6 3 5 ] [ 7 1 3 0 6 4 2 5 ] [ 2 7 3 6 0 5 1 4 ]</pre>
 
=={{header|QBasic}}==
{{works with|QBasic}}
{{trans|QB64}}
<syntaxhighlight lang=QBasic"qbasic">DIM SHARED queens AS INTEGER
CLS
COLOR 15
Line 12,566 ⟶ 13,212:
 
=={{header|QB64}}==
<syntaxhighlight lang=QB64"qb64">
DIM SHARED QUEENS AS INTEGER
PRINT "# of queens:";: INPUT QUEENS
Line 12,614 ⟶ 13,260:
This solution uses recursive backtracking.
 
<syntaxhighlight lang="r">queens <- function(n) {
a <- seq(n)
u <- rep(T, 2 * n - 1)
Line 12,645 ⟶ 13,291:
Show the first solution found for size 8 as a permutation matrix.
 
<syntaxhighlight lang=R"r">library(Matrix)
a <- queens(8)
as(a[, 1], "pMatrix")</syntaxhighlight>
Line 12,664 ⟶ 13,310:
Count solutions for board size 4 to 12.
 
<syntaxhighlight lang=R"r">sapply(4:12, function(n) ncol(queens(n)))</syntaxhighlight>
 
{{out}}
Line 12,674 ⟶ 13,320:
Backtracking algorithm; returns one solution
 
<syntaxhighlight lang="racket">
#lang racket
 
Line 12,708 ⟶ 13,354:
 
Show result with "How to Design Programs" GUI.
<syntaxhighlight lang="racket">
(require htdp/show-queen)
 
Line 12,731 ⟶ 13,377:
Computes all solutions.
 
<syntaxhighlight lang="racket">
#lang racket
 
Line 12,781 ⟶ 13,427:
Taking the first solution does not compute the other solutions:
 
<syntaxhighlight lang="racket">
(car (nqueens 8))
;; => (list (Q 7 3) (Q 6 1) (Q 5 6) (Q 4 2) (Q 3 5) (Q 2 7) (Q 1 4) (Q 0 0))
Line 12,788 ⟶ 13,434:
Computing all solutions is also possible:
 
<syntaxhighlight lang="racket">
(define (force-and-print qs)
(define forced (force qs))
Line 12,809 ⟶ 13,455:
 
Logic borrowed from the Ruby example
<syntaxhighlight lang="racket">
#lang racket
(define (remove x lst)
Line 12,873 ⟶ 13,519:
Neither pretty nor efficient, a simple backtracking solution
 
<syntaxhighlight lang=perl6"raku" line>sub MAIN(\N = 8) {
sub collision(@field, $row) {
for ^$row -> $i {
Line 12,902 ⟶ 13,548:
=={{header|Rascal}}==
 
<syntaxhighlight lang=Rascal"rascal">import Prelude;
 
public set[list[int]] Nqueens(int n){
Line 12,920 ⟶ 13,566:
 
About half of the REXX code involves presentation (and colorization achieved through dithering) of the chessboard and queens.
<syntaxhighlight lang="rexx">/*REXX program places N queens on an NxN chessboard (the eight queens problem). */
parse arg N . /*obtain optional argument from the CL.*/
if N=='' | N=="," then N= 8 /*Not specified: Then use the default.*/
Line 13,040 ⟶ 13,686:
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
 
// Bert Mariani 2020-07-17
Line 13,112 ⟶ 13,758:
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
load "stdlib.ring"
load "guilib.ring"
Line 13,806 ⟶ 14,452:
=={{header|Ruby}}==
This implements the heuristics found on the wikipedia page to return just one solution
<syntaxhighlight lang="ruby"># 1. Divide n by 12. Remember the remainder (n is 8 for the eight queens
# puzzle).
# 2. Write a list of the even numbers from 2 to n in order.
Line 14,016 ⟶ 14,662:
===Alternate solution===
If there is not specification, it outputs all solutions.
<syntaxhighlight lang="ruby">class Queen
attr_reader :count
Line 14,057 ⟶ 14,703:
 
'''Example:'''
<syntaxhighlight lang="ruby">(1..6).each do |n|
puzzle = Queen.new(n)
puts " #{n} Queen : #{puzzle.count}"
Line 14,201 ⟶ 14,847:
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">[loop]
input "How many queens (N>=4)";n
if n < 4 then
Line 14,324 ⟶ 14,970:
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">const N: usize = 8;
 
fn try(mut board: &mut [[bool; N]; N], row: usize, mut count: &mut i64) {
Line 14,360 ⟶ 15,006:
===Using Iterators===
Solution to the puzzle using an iterator that yields the 92 solutions for 8 queens.
 
<syntaxhighlight lang=rust>use std::collections::LinkedList;
<syntaxhighlight lang="rust">
use std::collections::LinkedList;
use std::iter::IntoIterator;
 
Line 14,369 ⟶ 15,017:
}
 
fn permutations<'a, T, I>(collection: I) -> Box<Iterator<dyn Item=LinkedList<T>> + 'a>
where I: 'a + IntoIterator<Item=T> + Clone,
T: 'a + PartialEq + Copy + Clone {
Line 14,388 ⟶ 15,036:
 
pub struct NQueens {
iterator: Box<Iterator<dyn Item=NQueensSolution>>
}
 
Line 14,436 ⟶ 15,084:
str
}
}
}</syntaxhighlight>
</syntaxhighlight>
 
===Permutation with Filtering===
 
Using Itertools and arrays.
 
{{trans|D}}
 
<syntaxhighlight lang="rust">
extern crate itertools;
 
use itertools::Itertools;
 
fn main() {
const N: usize = 8;
 
let permutations = (0..N).permutations(N);
let solution_count = permutations
.filter(|p| {
let mut diag1 = [false; 2 * N - 1];
let mut diag2 = [false; 2 * N - 1];
for (i, &row) in p.iter().enumerate() {
if diag1[row + i] || diag2[N - 1 + row - i] {
return false; // Queens mutual threat
}
diag1[row + i] = true;
diag2[N - 1 + row - i] = true;
}
true // No Queens mutual threat
})
.count();
 
println!("{}", solution_count);
}
</syntaxhighlight>
 
=={{header|SAS}}==
<syntaxhighlight lang="sas">/* Store all 92 permutations in a SAS dataset. Translation of Fortran 77 */
data queens;
array a{8} p1-p8;
Line 14,504 ⟶ 15,191:
Lazily generates permutations with an <code>Iterator</code>.
 
<syntaxhighlight lang="scala">
object NQueens {
 
Line 14,585 ⟶ 15,272:
This is a simple breadth-first technique to retrieve all solutions.
 
<syntaxhighlight lang="scheme">
(import (scheme base)
(scheme write)
Line 14,734 ⟶ 15,421:
=={{header|Scilab}}==
Naive brute-force search.
<syntaxhighlight lang="scilab">//Length of board side
Board_size = 8;
 
Line 14,884 ⟶ 15,571:
 
=={{header|Seed7}}==
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
var array integer: board is 8 times 0;
Line 14,938 ⟶ 15,625:
=={{header|Sidef}}==
{{trans|Raku}}
<syntaxhighlight lang="ruby">func N_queens_solution(N = 8) {
 
func collision(field, row) {
Line 14,989 ⟶ 15,676:
 
=={{header|SNOBOL4}}==
<syntaxhighlight lang=SNOBOL4"snobol4">
* N queens problem
* Set N to the desired number. The program prints out all solution boards.
Line 15,018 ⟶ 15,705:
This is somewhat a transliteration of the "shortened" C++ code above.
 
<syntaxhighlight lang="sparkling">let print_table = function (pos) {
pos.foreach(function (_, i) {
stdout.printf(" %c", 'a' + i);
Line 15,077 ⟶ 15,764:
This implementation, which solves the problem for n=8, makes use of Common Table Expressions and has been tested with SQLite (>=3.8.3) and Postgres (please note the related comment in the code). It might be compatible with other SQL dialects as well. A gist with the SQL file and a Python script that runs it using SQLite is available on Github: https://gist.github.com/adewes/5e5397b693eb50e67f07
 
<syntaxhighlight lang=SQL"sql">
WITH RECURSIVE
positions(i) as (
Line 15,113 ⟶ 15,800:
{{works with|Db2 LUW}} version 9.7 or higher.
With SQL PL:
<syntaxhighlight lang="sql pl">
-- A column of a matrix.
CREATE TYPE INTEGER_ARRAY AS INTEGER ARRAY[]@
Line 15,431 ⟶ 16,118:
=={{header|Standard ML}}==
This implementation uses failure continuations for backtracking.
<syntaxhighlight lang=Standard"standard MLml">
(*
* val threat : (int * int) -> (int * int) -> bool
Line 15,477 ⟶ 16,164:
Adapted from the Fortran 77 program, to illustrate the '''[http://www.stata.com/help.cgi?m2_goto goto]''' statement in Stata.
 
<syntaxhighlight lang="stata">mata
real matrix queens(real scalar n) {
real scalar i, j, k, p, q
Line 15,538 ⟶ 16,225:
It's also possible to save the solutions to a Stata dataset:
 
<syntaxhighlight lang="stata">clear
mata: a=queens(8)
getmata (a*)=a
Line 15,547 ⟶ 16,234:
The recursive solution is adapted from one of the Python programs.
 
<syntaxhighlight lang="stata">mata
real matrix queens_rec(real scalar n) {
real rowvector a, u, v
Line 15,587 ⟶ 16,274:
The iterative and the recursive programs are equivalent:
 
<syntaxhighlight lang="stata">queens(8) == queens_rec(8)
1</syntaxhighlight>
 
=={{header|Swift}}==
Port of the optimized C code above
<syntaxhighlight lang=Swift"swift">
let maxn = 31
 
Line 15,654 ⟶ 16,341:
=={{header|SystemVerilog}}==
Create a random board configuration, with the 8-queens as a constraint
<syntaxhighlight lang=SystemVerilog"systemverilog">program N_queens;
 
parameter SIZE_LOG2 = 3;
Line 15,695 ⟶ 16,382:
=={{header|Tailspin}}==
A functional-ish solution utilising tailspin's data flows
<syntaxhighlight lang="tailspin">
templates queens
def n: $;
Line 15,736 ⟶ 16,423:
 
A solution using state to find one solution if any exist
<syntaxhighlight lang="tailspin">
templates queens
def n: $;
Line 15,797 ⟶ 16,484:
 
{{works with|Tcl|8.5}}
<syntaxhighlight lang="tcl">package require Tcl 8.5
 
proc unsafe {y} {
Line 15,886 ⟶ 16,573:
The total number of solutions for 8 queens is displayed at the end of the run. The code could be adapted to display a selected solution or multiple solutions. This code runs anywhere you can get bash to run.
 
<syntaxhighlight lang="bash">#!/bin/bash
# variable declaration
Line 15,969 ⟶ 16,656:
n is a number greater than 3. Multiple solutions may be reported
but reflections and rotations thereof are omitted.
<syntaxhighlight lang=Ursala"ursala">#import std
#import nat
 
Line 16,004 ⟶ 16,691:
=={{header|VBA}}==
{{trans|BBC BASIC}}
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vba - 26/02/2017
Sub n_queens()
Const l = 15 'number of queens
Line 16,084 ⟶ 16,771:
{{trans|BBC BASIC}}
To have the solutions printed (raw format) uncomment the ad hoc statement.
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vbs - 24/02/2017
const l=15
dim a(),s(),u(): redim a(l),s(l),u(4*l-2)
Line 16,152 ⟶ 16,839:
{{works with|Visual Basic|VB6 Standard}}
{{trans|BBC BASIC}}
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vb6 - 25/02/2017
Sub n_queens()
Const l = 15 'number of queens
Line 16,231 ⟶ 16,918:
=={{header|Visual Basic .NET}}==
{{trans|BBC BASIC}}
<syntaxhighlight lang="vb">'N-queens problem - non recursive & structured - vb.net - 26/02/2017
Module Mod_n_queens
Sub n_queens()
Line 16,312 ⟶ 16,999:
 
=={{header|Wart}}==
<syntaxhighlight lang=Wart"wart">def (nqueens n queens)
prn "step: " queens # show progress
if (len.queens = n)
Line 16,340 ⟶ 17,027:
{{trans|Kotlin}}
Very slow for the larger boards.
<syntaxhighlight lang=ecmascript"wren">var count = 0
var c = []
var f = []
Line 16,439 ⟶ 17,126:
 
Copied from http://www.cs.bu.edu/~hwxi/Xanadu/Examples/
<syntaxhighlight lang=Xanadu"xanadu">
int abs(i: int) {
if (i >= 0) return i; else return -i;
Line 16,512 ⟶ 17,199:
=={{header|XPL0}}==
[[File:NQueensXPL0.GIF|right]]
<syntaxhighlight lang=XPL0"xpl0">def N=8; \board size (NxN)
int R, C; \row and column of board
char B(N,N); \board
Line 16,574 ⟶ 17,261:
(either by XSLT processors saxon-6.5.5, xsltproc, xalan,
or any of the big5 browsers):
<langpre>
15863724
16837425
Line 16,580 ⟶ 17,267:
83162574
84136275
</pre>
</syntaxhighlight>
 
You can view the results directly in your browser (Chrome/FF/IE/Opera/Safari) here: [[http://stamm-wilbrandt.de/en/xsl-list/n-queens/8-queens.xsl.xml]]
Line 16,599 ⟶ 17,286:
 
Here is stylesheet 8-queens.xsl.xml which produces the (simple) output by having itself as input: [[http://stamm-wilbrandt.de/en/xsl-list/n-queens/8-queens.xsl.xml]]
<syntaxhighlight lang="xml">
<!-- 8-queens.xsl disguised as XML file for the browsers -->
 
Line 16,729 ⟶ 17,416:
 
=={{header|Yabasic}}==
<syntaxhighlight lang=Yabasic"yabasic">DOCU The N Queens Problem:
DOCU Place N Queens on an NxN chess board
DOCU such that they don't threaten each other.
Line 16,797 ⟶ 17,484:
=={{header|Zig}}==
Outputs all 92 solutions.
<syntaxhighlight lang=Zig"zig">
const std = @import("std");
const stdout = std.io.getStdOut().outStream();
Line 16,851 ⟶ 17,538:
=={{header|zkl}}==
Modified from a Haskell version (if I remember correctly)
<syntaxhighlight lang="zkl">fcn isAttacked(q, x,y) // ( (r,c), x,y ) : is queen at r,c attacked by q@(x,y)?
{ r,c:=q; (r==x or c==y or r+c==x+y or r-c==x-y) }
fcn isSafe(r,c,qs) // queen safe at (r,c)?, qs=( (r,c),(r,c)..) solution so far
Line 16,861 ⟶ 17,548:
return(qs.apply(self.fcn.fp(N,row+1)).flatten());
}</syntaxhighlight>
<syntaxhighlight lang="zkl">queens := queensN(4);
println(queens.len()," solution(s):");
queens.apply2(Console.println);</syntaxhighlight>
305

edits