Long primes

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Long primes
You are encouraged to solve this task according to the task description, using any language you may know.

A   long prime   (as defined here)   is a prime number whose reciprocal   (in decimal)   has a   period length   of one less than the prime number.

Long primes   are also known as:

•   base ten cyclic numbers
•   full reptend primes
•   golden primes
•   long period primes
•   maximal period primes
•   proper primes

Another definition:   primes   p   such that the decimal expansion of   1/p   has period   p-1,   which is the greatest period possible for any integer.

Example

7   is the first long prime,   the reciprocal of seven is   1/7,   which is equal to the repeating decimal fraction   0.142857142857···

The length of the   repeating   part of the decimal fraction is six,   (the underlined part)   which is one less than the (decimal) prime number   7.
Thus   7   is a long prime.

There are other (more) general definitions of a   long prime   which include wording/verbiage for bases other than ten.

•   Show all long primes up to   500   (preferably on one line).
•   Show the   number   of long primes up to        500
•   Show the   number   of long primes up to     1,000
•   Show the   number   of long primes up to     2,000
•   Show the   number   of long primes up to     4,000
•   Show the   number   of long primes up to     8,000
•   Show the   number   of long primes up to   16,000
•   Show the   number   of long primes up to   32,000
•   Show the   number   of long primes up to   64,000   (optional)
•   Show all output here.

Also see

11l

Translation of: Python
```F sieve(limit)
[Int] primes
V c = [0B] * (limit + 1)
V p = 3
L
V p2 = p * p
I p2 > limit
L.break
L(i) (p2 .< limit).step(2 * p)
c[i] = 1B
L
p += 2
I !c[p]
L.break

L(i) (3 .< limit).step(2)
I !(c[i])
primes.append(i)
R primes

F findPeriod(n)
V r = 1
L(i) 1 .< n
r = (10 * r) % n
V rr = r
V period = 0
L
r = (10 * r) % n
period++
I r == rr
L.break
R period

V primes = sieve(64000)
[Int] longPrimes
L(prime) primes
I findPeriod(prime) == prime - 1
longPrimes.append(prime)
V numbers = [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
V count = 0
V index = 0
V totals = [0] * numbers.len
L(longPrime) longPrimes
I longPrime > numbers[index]
totals[index] = count
index++
count++
totals.last = count
print(‘The long primes up to 500 are:’)
print(String(longPrimes[0 .< totals[0]]).replace(‘,’, ‘’))
print("\nThe number of long primes up to:")
L(total) totals
print(‘  #5 is #.’.format(numbers[L.index], total))```
Output:
```The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

AppleScript

The isLongPrime(n) handler here is a translation of the faster Phix one.

```on sieveOfEratosthenes(limit)
script o
property numberList : {missing value}
end script

repeat with n from 2 to limit
set end of o's numberList to n
end repeat
repeat with n from 2 to (limit ^ 0.5 div 1)
if (item n of o's numberList is n) then
repeat with multiple from (n * n) to limit by n
set item multiple of o's numberList to missing value
end repeat
end if
end repeat

return o's numberList's numbers
end sieveOfEratosthenes

on factors(n)
set output to {}

if (n < 0) then set n to -n
set sqrt to n ^ 0.5
set limit to sqrt div 1
if (limit = sqrt) then
set end of output to limit
set limit to limit - 1
end if
repeat with i from limit to 1 by -1
if (n mod i is 0) then
set beginning of output to i
set end of output to n div i
end if
end repeat

return output
end factors

on isLongPrime(n)
if (n < 3) then return false
script o
property f : factors(n - 1)
end script

set counter to 0
repeat with fi in o's f
set fi to fi's contents
set e to 1
set base to 10
repeat until (fi = 0)
if (fi mod 2 = 1) then set e to e * base mod n
set base to base * base mod n
set fi to fi div 2
end repeat
if (e = 1) then
set counter to counter + 1
if (counter > 1) then exit repeat
end if
end repeat

return (counter = 1)
end isLongPrime

script o
-- The isLongPrime() handler above returns the correct result for any number
-- passed to it, but feeeding it only primes in the first place speeds things up.
property primes : sieveOfEratosthenes(64000)
property longs : {}
end script

set output to {}
set counter to 0
set mileposts to {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000}
set m to 1
set nextMilepost to beginning of mileposts
set astid to AppleScript's text item delimiters
repeat with p in o's primes
set p to p's contents
if (isLongPrime(p)) then
-- p being odd, it's never exactly one of the even mileposts.
if (p < 500) then
set end of o's longs to p
else if (p > nextMilepost) then
if (nextMilepost = 500) then
set AppleScript's text item delimiters to space
set end of output to "Long primes up to 500:"
set end of output to o's longs as text
end if
set end of output to "Number of long primes up to " & nextMilepost & ":  " & counter
set m to m + 1
set nextMilepost to item m of mileposts
end if
set counter to counter + 1
end if
end repeat
set end of output to "Number of long primes up to " & nextMilepost & ":  " & counter
set AppleScript's text item delimiters to linefeed
set output to output as text
set AppleScript's text item delimiters to astid

return output

```
Output:
```"Long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to 500:  35
Number of long primes up to 1000:  60
Number of long primes up to 2000:  116
Number of long primes up to 4000:  218
Number of long primes up to 8000:  390
Number of long primes up to 16000:  716
Number of long primes up to 32000:  1300
Number of long primes up to 64000:  2430"```

C

Translation of: Go
```#include <stdio.h>
#include <stdlib.h>

#define TRUE 1
#define FALSE 0

typedef int bool;

void sieve(int limit, int primes[], int *count) {
bool *c = calloc(limit + 1, sizeof(bool)); /* composite = TRUE */
/* no need to process even numbers */
int i, p = 3, p2, n = 0;
p2 = p * p;
while (p2 <= limit) {
for (i = p2; i <= limit; i += 2 * p)
c[i] = TRUE;
do {
p += 2;
} while (c[p]);
p2 = p * p;
}
for (i = 3; i <= limit; i += 2) {
if (!c[i]) primes[n++] = i;
}
*count = n;
free(c);
}

/* finds the period of the reciprocal of n */
int findPeriod(int n) {
int i, r = 1, rr, period = 0;
for (i = 1; i <= n + 1; ++i) {
r = (10 * r) % n;
}
rr = r;
do {
r = (10 * r) % n;
period++;
} while (r != rr);
return period;
}

int main() {
int i, prime, count = 0, index = 0, primeCount, longCount = 0, numberCount;
int *primes, *longPrimes, *totals;
int numbers[] = {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000};

primes = calloc(6500, sizeof(int));
numberCount = sizeof(numbers) / sizeof(int);
totals = calloc(numberCount, sizeof(int));
sieve(64000, primes, &primeCount);
longPrimes = calloc(primeCount, sizeof(int));
/* Surely longCount < primeCount */
for (i = 0; i < primeCount; ++i) {
prime = primes[i];
if (findPeriod(prime) == prime - 1) {
longPrimes[longCount++] = prime;
}
}
for (i = 0; i < longCount; ++i, ++count) {
if (longPrimes[i] > numbers[index]) {
totals[index++] = count;
}
}
totals[numberCount - 1] = count;
printf("The long primes up to %d are:\n", numbers[0]);
printf("[");
for (i = 0; i < totals[0]; ++i) {
printf("%d ", longPrimes[i]);
}
printf("\b]\n");

printf("\nThe number of long primes up to:\n");
for (i = 0; i < 8; ++i) {
printf("  %5d is %d\n", numbers[i], totals[i]);
}
free(totals);
free(longPrimes);
free(primes);
return 0;
}
```
Output:
```The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

C#

Works with: C sharp version 7
```using System;
using System.Collections.Generic;
using System.Linq;

public static class LongPrimes
{
public static void Main() {
var primes = SomePrimeGenerator.Primes(64000).Skip(1).Where(p => Period(p) == p - 1).Append(99999);
Console.WriteLine(string.Join(" ", primes.TakeWhile(p => p <= 500)));
int count = 0, limit = 500;
foreach (int prime in primes) {
if (prime > limit) {
Console.WriteLine(\$"There are {count} long primes below {limit}");
limit *= 2;
}
count++;
}

int Period(int n) {
int r = 1, rr;
for (int i = 0; i <= n; i++) r = 10 * r % n;
rr = r;
for (int period = 1;; period++) {
r = (10 * r) % n;
if (r == rr) return period;
}
}
}

}

static class SomePrimeGenerator {

public static IEnumerable<int> Primes(int lim) {
bool [] flags = new bool[lim + 1]; int j = 2;
for (int d = 3, sq = 4; sq <= lim; j++, sq += d += 2)
if (!flags[j]) {
yield return j; for (int k = sq; k <= lim; k += j)
flags[k] = true;
}
for (; j<= lim; j++) if (!flags[j]) yield return j;
}
}
```
Output:
```7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
There are 35 long primes below 500
There are 60 long primes below 1000
There are 116 long primes below 2000
There are 218 long primes below 4000
There are 390 long primes below 8000
There are 716 long primes below 16000
There are 1300 long primes below 32000
There are 2430 long primes below 64000```

C++

Translation of: C
```#include <iomanip>
#include <iostream>
#include <list>
using namespace std;

void sieve(int limit, list<int> &primes)
{
bool *c = new bool[limit + 1];
for (int i = 0; i <= limit; i++)
c[i] = false;
// No need to process even numbers
int p = 3, n = 0;
int p2 = p * p;
while (p2 <= limit)
{
for (int i = p2; i <= limit; i += 2 * p)
c[i] = true;
do
p += 2;
while (c[p]);
p2 = p * p;
}
for (int i = 3; i <= limit; i += 2)
if (!c[i])
primes.push_back(i);
delete [] c;
}

// Finds the period of the reciprocal of n
int findPeriod(int n)
{
int r = 1, rr, period = 0;
for (int i = 1; i <= n + 1; ++i)
r = (10 * r) % n;
rr = r;
do
{
r = (10 * r) % n;
period++;
}
while (r != rr);
return period;
}

int main()
{
int count = 0, index = 0;
int numbers[] = {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000};
list<int> primes;
list<int> longPrimes;
int numberCount = sizeof(numbers) / sizeof(int);
int *totals = new int[numberCount];
cout << "Please wait." << endl << endl;
sieve(64000, primes);
for (list<int>::iterator iterPrime = primes.begin();
iterPrime != primes.end();
iterPrime++)
{
if (findPeriod(*iterPrime) == *iterPrime - 1)
longPrimes.push_back(*iterPrime);
}

for (list<int>::iterator iterLongPrime = longPrimes.begin();
iterLongPrime != longPrimes.end();
iterLongPrime++)
{
if (*iterLongPrime > numbers[index])
totals[index++] = count;
++count;
}
totals[numberCount - 1] = count;
cout << "The long primes up to " << totals[0] << " are:" << endl;
cout << "[";
int i = 0;
for (list<int>::iterator iterLongPrime = longPrimes.begin();
iterLongPrime != longPrimes.end() && i < totals[0];
iterLongPrime++, i++)
{
cout << *iterLongPrime << " ";
}
cout << "\b]" << endl;
cout << endl << "The number of long primes up to:" << endl;
for (int i = 0; i < 8; ++i)
cout << "  " << setw(5) << numbers[i] << " is " << totals[i] << endl;
delete [] totals;
}
```
Output:
```Please wait.

The long primes up to 35 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

Common Lisp

Translation of: Raku
```; Primality test using the Sieve of Eratosthenes with a couple minor optimizations
(defun primep (n)
(cond ((and (<= n 3) (> n 1)) t)
((some #'zerop (mapcar (lambda (d) (mod n d)) '(2 3))) nil)
(t (loop for i = 5 then (+ i 6)
while (<= (* i i) n)
when (some #'zerop (mapcar (lambda (d) (mod n (+ i d))) '(0 2))) return nil
finally (return t)))))

; Translation of the long-prime algorithm from the Raku solution
(defun long-prime-p (n)
(cond
((< n 3) nil)
((not (primep n)) nil)
(t (let* ((rr (loop repeat (1+ n)
for r = 1 then (mod (* 10 r) n)
finally (return r)))

(period (loop for p = 0 then (1+ p)
for r = (mod (* 10 rr) n) then (mod (* 10 r) n)
while (and (< p n) (/= r rr))
finally (return (1+ p)))))

(= period (1- n))))))

(format t "~{~a~^, ~}" (loop for n from 1 to 500 if (long-prime-p n) collect n))
```
Output:
`7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499`

Crystal

Translation of: Sidef

Simpler but slower.

```require "big"

def prime?(n)                     # P3 Prime Generator primality test
return n | 1 == 3 if n < 5      # n: 2,3|true; 0,1,4|false
return false if n.gcd(6) != 1   # this filters out 2/3 of all integers
pc = typeof(n).new(5)           # first P3 prime candidates sequence value
until pc*pc > n
return false if n % pc == 0 || n % (pc + 2) == 0  # if n is composite
pc += 6                       # 1st prime candidate for next residues group
end
true
end

# The smallest divisor d of p-1 such that 10^d = 1 (mod p),
# is the length of the period of the decimal expansion of 1/p.
def long_prime?(p)
return false unless prime? p
(2...p).each do |d|
return d == (p - 1) if (p - 1) % d == 0 && (10.to_big_i ** d) % p == 1
end
false
end

start = Time.monotonic  # time of starting
puts "Long primes ≤ 500:"
(2..500).each { |pc| print "#{pc} " if long_prime? pc }
puts
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |n|
puts "Number of long primes ≤ #{n}: #{(7..n).count { |pc| long_prime? pc }}"
end
puts "\nTime: #{(Time.monotonic - start).total_seconds} secs"
```
Output:
```Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430```
```System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.17, Crystal 0.35
Run as: \$ crystal run longprimes.cr --release
Time: 1.090748711 secs
```

Faster: using divisors of (p - 1) and powmod().

```require "big"

def prime?(n)                     # P3 Prime Generator primality test
n = n.to_big_i
return n | 1 == 3 if n < 5      # n: 0,1,4|false, 2,3|true
return false if n.gcd(6) != 1   # 1/3 (2/6) of integers are P3 pc
p = typeof(n).new(5)            # first P3 sequence value
until p*p > n
return false if n % p == 0 || n % (p + 2) == 0  # if n is composite
p += 6      # first prime candidate for next kth residues group
end
true
end

def powmod(b, e, m)               # Compute b**e mod m
r, b = 1, b.to_big_i
while e > 0
r = (b * r) % m if e.odd?
b = (b * b) % m
e >>= 1
end
r
end

def divisors(n)                   # divisors of n -> [1,..,n]
f = [] of Int32
(1..Math.sqrt(n)).each { |i| (n % i).zero? && (f << i; f << n // i if n // i != i) }
f.sort
end

# The smallest divisor d of p-1 such that 10^d = 1 (mod p),
# is the length of the period of the decimal expansion of 1/p.
def long_prime?(p)
return false unless prime? p
divisors(p - 1).each { |d| return d == (p - 1) if powmod(10, d, p) == 1 }
false
end

start = Time.monotonic  # time of starting
puts "Long primes ≤ 500:"
(7..500).each { |pc| print "#{pc} " if long_prime? pc }
puts
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |n|
puts "Number of long primes ≤ #{n}: #{(7..n).count { |pc| long_prime? pc }}"
end
puts "\nTime: #{(Time.monotonic - start).total_seconds} secs"
```
Output:
```Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430```
```System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.17, Crystal 0.35
Run as: \$ crystal run longprimes.cr --release
Time: 0.28927228 secs
```

See Pascal.

F#

The Functions

This task uses Extensible Prime Generator (F#)

```// Return true if prime n is a long prime. Nigel Galloway: September 25th., 2018
let fN n g = let rec fN i g e l = match e with | 0UL                -> i
| _ when e%2UL = 1UL -> fN ((i*g)%l) ((g*g)%l) (e/2UL) l
| _                  -> fN i ((g*g)%l) (e/2UL) l
fN 1UL 10UL (uint64 g) (uint64 n)
let isLongPrime n=Seq.length (factors (n-1) |> Seq.filter(fun g->(fN n g)=1UL))=1
```

```primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<500) |> Seq.filter isLongPrime |> Seq.iter(printf "%d ")
```
Output:
```7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
```
```printfn "There are %d long primes less than 500" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<500) |> Seq.filter isLongPrime |> Seq.length)
```
Output:
```There are 35 long primes less than 500
```
```printfn "There are %d long primes less than 1000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<1000) |> Seq.filter isLongPrime |> Seq.length)
```
Output:
```There are 60 long primes less than 1000
```
```printfn "There are %d long primes less than 2000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<2000) |> Seq.filter isLongPrime |> Seq.length)
```
Output:
```There are 116 long primes less than 2000
```
```printfn "There are %d long primes less than 4000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<4000) |> Seq.filter isLongPrime|> Seq.length)
```
Output:
```There are 218 long primes less than 4000
```
```printfn "There are %d long primes less than 8000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<8000) |> Seq.filter isLongPrime |> Seq.length)
```
Output:
```There are 390 long primes less than 8000
```
```printfn "There are %d long primes less than 16000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<16000) |> Seq.filter isLongPrime |> Seq.length)
```
Output:
```There are 716 long primes less than 16000
```
```printfn "There are %d long primes less than 32000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<32000) |> Seq.filter isLongPrime |> Seq.length)
```
Output:
```There are 1300 long primes less than 32000
```
```printfn "There are %d long primes less than 64000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<64000) |> Seq.filter isLongPrime|> Seq.length)
```
Output:
```There are 2430 long primes less than 64000
```
```printfn "There are %d long primes less than 128000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<128000) |> Seq.filter isLongPrime|> Seq.length)
```
Output:
```There are 4498 long primes less than 128000
Real: 00:00:01.294, CPU: 00:00:01.300, GC gen0: 27, gen1: 0
```
```printfn "There are %d long primes less than 256000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<256000) |> Seq.filter isLongPrime|> Seq.length)
```
Output:
```There are 8434 long primes less than 256000
Real: 00:00:03.434, CPU: 00:00:03.440, GC gen0: 58, gen1: 0
```
```printfn "There are %d long primes less than 512000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<512000) |> Seq.filter isLongPrime|> Seq.length)
```
Output:
```There are 15920 long primes less than 512000
Real: 00:00:09.248, CPU: 00:00:09.260, GC gen0: 128, gen1: 0
```
```printfn "There are %d long primes less than 1024000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<1024000) |> Seq.filter isLongPrime|> Seq.length)
```
Output:
```There are 30171 long primes less than 1024000
Real: 00:00:24.959, CPU: 00:00:25.020, GC gen0: 278, gen1: 1
```

Factor

```USING: formatting fry io kernel math math.functions math.primes
math.primes.factors memoize prettyprint sequences ;
IN: rosetta-code.long-primes

: period-length ( p -- len )
[ 1 - divisors ] [ '[ 10 swap _ ^mod 1 = ] ] bi find nip ;

MEMO: long-prime? ( p -- ? ) [ period-length ] [ 1 - ] bi = ;

: .lp<=500 ( -- )
500 primes-upto [ long-prime? ] filter
"Long primes <= 500:" print [ pprint bl ] each nl ;

: .#lp<=n ( n -- )
dup primes-upto [ long-prime? t = ] count swap
"%-4d long primes <= %d\n" printf ;

: long-primes-demo ( -- )
.lp<=500 nl
{ 500 1,000 2,000 4,000 8,000 16,000 32,000 64,000 }
[ .#lp<=n ] each ;

MAIN: long-primes-demo
```
Output:
```Long primes <= 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

35   long primes <= 500
60   long primes <= 1000
116  long primes <= 2000
218  long primes <= 4000
390  long primes <= 8000
716  long primes <= 16000
1300 long primes <= 32000
2430 long primes <= 64000
```

Forth

Works with: Gforth

The prime sieve code was borrowed from Sieve of Eratosthenes#Forth.

```: prime? ( n -- ? ) here + c@ 0= ;
: notprime! ( n -- ) here + 1 swap c! ;

: sieve ( n -- )
here over erase
0 notprime!
1 notprime!
2
begin
2dup dup * >
while
dup prime? if
2dup dup * do
i notprime!
dup +loop
then
1+
repeat
2drop ;

: modpow { c b a -- a^b mod c }
c 1 = if 0 exit then
1
a c mod to a
begin
b 0>
while
b 1 and 1 = if
a * c mod
then
a a * c mod to a
b 2/ to b
repeat ;

: divide_out ( n1 n2 -- n )
begin
2dup mod 0=
while
tuck / swap
repeat drop ;

: long_prime? ( n -- ? )
dup prime? invert if drop false exit then
10 over mod 0= if drop false exit then
dup 1-
2 >r
begin
over r@ dup * >
while
r@ prime? if
dup r@ mod 0= if
over dup 1- r@ / 10 modpow 1 = if
2drop rdrop false exit
then
r@ divide_out
then
then
r> 1+ >r
repeat
rdrop
dup 1 = if 2drop true exit then
over 1- swap / 10 modpow 1 <> ;

: next_long_prime ( n -- n )
begin 2 + dup long_prime? until ;

500    constant limit1
512000 constant limit2

: main
limit2 1+ sieve
limit2 limit1 3
0 >r
." Long primes up to " over 1 .r ." :" cr
begin
2 pick over >
while
next_long_prime
dup limit1 < if dup . then
dup 2 pick > if
over limit1 = if cr then
." Number of long primes up to " over 6 .r ." : " r@ 5 .r cr
swap 2* swap
then
r> 1+ >r
repeat
2drop drop rdrop ;

main
bye
```
Output:

Execution time is about 1.1 seconds on my machine (3.2GHz Quad-Core Intel Core i5).

```Long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to    500:    35
Number of long primes up to   1000:    60
Number of long primes up to   2000:   116
Number of long primes up to   4000:   218
Number of long primes up to   8000:   390
Number of long primes up to  16000:   716
Number of long primes up to  32000:  1300
Number of long primes up to  64000:  2430
Number of long primes up to 128000:  4498
Number of long primes up to 256000:  8434
Number of long primes up to 512000: 15920
```

FreeBASIC

```' version 01-02-2019
' compile with: fbc -s console

Dim Shared As UByte prime()

Sub find_primes(n As UInteger)

ReDim prime(n)
Dim As UInteger i, k

' need only to consider odd primes, 2 has no repetion
For i = 3 To n Step 2
If prime(i) = 0 Then
For k = i * i To n Step i + i
prime(k) = 1
Next
End If
Next

End Sub

Function find_period(p As UInteger) As UInteger
' finds period for every positive number
Dim As UInteger period, r = 1

Do
r = (r * 10) Mod p
period += 1
If r <= 1 Then Return period
Loop

End Function

' ------=< MAIN >=------

#Define max 64000
Dim As UInteger p = 3, n1 = 3, n2 = 500, i, n50, count

find_primes(max)
Print "Long primes upto 500 are ";

For i = n1 To n2 Step 2
If prime(i) = 0 Then
If i -1 = find_period(i) Then
If n50 <= 50 Then
Print Str(i); " ";
End If
count += 1
End If
End If
Next

Print : Print

Do
Print "There are "; Str(count); " long primes upto "; Str(n2)

n1 = n2 +1
n2 += n2
If n1 > max Then Exit Do

For i = n1 To n2 Step 2
If prime(i) = 0 Then
If i -1 = find_period(i) Then
count += 1
End If
End If
Next
Loop

' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
```
Output:
```Long primes upto 500 are 7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

There are 35 long primes upto 500
There are 60 long primes upto 1000
There are 116 long primes upto 2000
There are 218 long primes upto 4000
There are 390 long primes upto 8000
There are 716 long primes upto 16000
There are 1300 long primes upto 32000
There are 2430 long primes upto 64000```

Go

```package main

import "fmt"

func sieve(limit int) []int {
var primes []int
c := make([]bool, limit + 1) // composite = true
// no need to process even numbers
p := 3
p2 := p * p
for p2 <= limit {
for i := p2; i <= limit; i += 2 * p {
c[i] = true
}
for ok := true; ok; ok = c[p] {
p += 2
}
p2 = p * p
}
for i := 3; i <= limit; i += 2 {
if !c[i] {
primes = append(primes, i)
}
}
return primes
}

// finds the period of the reciprocal of n
func findPeriod(n int) int {
r := 1
for i := 1; i <= n + 1; i++ {
r = (10 * r) % n
}
rr := r
period := 0
for ok := true; ok; ok = r != rr {
r = (10 * r) % n
period++
}
return period
}

func main() {
primes := sieve(64000)
var longPrimes []int
for _, prime := range primes {
if findPeriod(prime) == prime - 1 {
longPrimes = append(longPrimes, prime)
}
}
numbers := []int{500, 1000, 2000, 4000, 8000, 16000, 32000, 64000}
index := 0
count := 0
totals := make([]int, len(numbers))
for _, longPrime := range longPrimes {
if longPrime > numbers[index] {
totals[index] = count
index++
}
count++
}
totals[len(numbers)-1] = count
fmt.Println("The long primes up to", numbers[0], "are: ")
fmt.Println(longPrimes[:totals[0]])

fmt.Println("\nThe number of long primes up to: ")
for i, total := range totals {
fmt.Printf("  %5d is %d\n", numbers[i], total)
}
}
```
Output:
```The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

```import Data.List (elemIndex)

longPrimesUpTo :: Int -> [Int]
longPrimesUpTo n =
filter isLongPrime \$
takeWhile (< n) primes
where
sieve (p : xs) = p : sieve [x | x <- xs, x `mod` p /= 0]
primes = sieve [2 ..]
isLongPrime n = found
where
cycles = take n (iterate ((`mod` n) . (10 *)) 1)
index = elemIndex (head cycles) \$ tail cycles
found = case index of
(Just i) -> n - i == 2
_ -> False

display :: Int -> IO ()
display n =
if n <= 64000
then do
putStrLn
( show n <> " is "
<> show (length \$ longPrimesUpTo n)
)
display (n * 2)
else pure ()

main :: IO ()
main = do
let fiveHundred = longPrimesUpTo 500
putStrLn
( "The long primes up to 35 are:\n"
<> show fiveHundred
<> "\n"
)
putStrLn ("500 is " <> show (length fiveHundred))
display 1000
```
Output:
```The long primes up to 35 are:
[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]

500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430```

J

```   NB. define the verb long
NB. long is true iff the prime input greater than 2
NB. is a rosettacode long prime.
NB. 0 is false, 1 is true.

long =: ( <:@:[ = #@~.@( [: }. ( | 10&* )^:( <@[ ) ) )&1&>

NB. demonstration of the long verb
NB. long applied to integers 3 through 9 inclusively

(,: long) 3 4 5 6 7 8 9
3 4 5 6 7 8 9
0 0 0 0 1 0 0

NB. find the number of primes through 64000

[ N =: p:^:_1 ] 64000
6413

NB. copy the long primes, excluding 2, the first.

LONG_PRIMES =: (#~ long) p: >: i. N

NB. those less than 500

( #~ <&500) LONG_PRIMES
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

NB. counts

[ MEASURE =: 500 * 2 ^ i. 8
500 1000 2000 4000 8000 16000 32000 64000

LONG_PRIMES ( ] ,: [: +/ </ ) MEASURE
500 1000 2000 4000 8000 16000 32000 64000
35   60  116  218  390   716  1300  2430
```

Java

Translation of: C
```import java.util.LinkedList;
import java.util.List;

public class LongPrimes
{
private static void sieve(int limit, List<Integer> primes)
{
boolean[] c = new boolean[limit];
for (int i = 0; i < limit; i++)
c[i] = false;
// No need to process even numbers
int p = 3, n = 0;
int p2 = p * p;
while (p2 <= limit)
{
for (int i = p2; i <= limit; i += 2 * p)
c[i] = true;
do
p += 2;
while (c[p]);
p2 = p * p;
}
for (int i = 3; i <= limit; i += 2)
if (!c[i])
}

// Finds the period of the reciprocal of n
private static int findPeriod(int n)
{
int r = 1, period = 0;
for (int i = 1; i < n; i++)
r = (10 * r) % n;
int rr = r;
do
{
r = (10 * r) % n;
++period;
}
while (r != rr);
return period;
}

public static void main(String[] args)
{
int[] numbers = new int[]{500, 1000, 2000, 4000, 8000, 16000, 32000, 64000};
int[] totals = new int[numbers.length];
sieve(64000, primes);
for (int prime : primes)
if (findPeriod(prime) == prime - 1)
int count = 0, index = 0;
for (int longPrime : longPrimes)
{
if (longPrime > numbers[index])
totals[index++] = count;
++count;
}
totals[numbers.length - 1] = count;
System.out.println("The long primes up to " + numbers[0] + " are:");
System.out.println(longPrimes.subList(0, totals[0]));
System.out.println();
System.out.println("The number of long primes up to:");
for (int i = 0; i <= 7; i++)
System.out.printf("  %5d is %d\n", numbers[i], totals[i]);
}
}
```
Output:
```The long primes up to 500 are:
[7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

jq

Works with: jq

Works with gojq, the Go implementation of jq (*)

This entry does not attempt to avoid the redundancy involved in the subtasks, but instead includes a prime number generator intended for efficiently generating large numbers of primes.

(*) For the computationally intensive subtasks, gojq will require too much memory.

Preliminaries

```def count(s): reduce s as \$x (0; .+1);

# Is the input integer a prime?
# "previous" should be a sorted array of consecutive primes
# from 2 on that includes the greatest prime less than (.|sqrt)
def is_prime(previous):
. as \$in
| ((\$in + 1) | sqrt) as \$sqrt
| first(previous[]
| if . > \$sqrt then 1
elif 0 == (\$in % .) then 0
else empty
end) // 1
| . == 1;

# This assumes . is an array of consecutive primes beginning with [2,3]
def next_prime:
. as \$previous
| (2 +  .[-1] )
| until(is_prime(\$previous); . + 2) ;

# Emit primes from 2 up
def primes:
# The helper function has arity 0 for TCO
# It expects its input to be an array of previously found primes, in order:
def next:
. as \$previous
| (\$previous|next_prime) as \$next
| \$next, ((\$previous + [\$next]) | next) ;
2, 3, ([2,3] | next);```

Long Primes

```# finds the period of the reciprocal of .
# (The following definition does not make a special case of 2
# but yields a justifiable result for 2, namely 1.)
def findPeriod:
. as \$n
| (reduce range(1; \$n+2) as \$i (1; (. * 10) % \$n)) as \$rr
| {r: \$rr, period:0, ok:true}
| until( .ok|not;
.r = (10 * .r) % \$n
| .period += 1
| .ok = (.r != \$rr) )
| .period ;

# This definition takes into account the
# claim in the preamble that the first long prime is 7:
def long_primes_less_than(\$n):
label \$out
| primes
| if . >= \$n then break \$out else . end
| select(. > 2 and (findPeriod == . - 1));

def count_long_primes:
count(long_primes_less_than(.));

# Since 2 is not a "long prime" for the purposes of this
# article, we can begin searching at 3:
"Long primes ≤ 500: ",  long_primes_less_than(500),

"\n",

(500,1000, 2000, 4000, 8000, 16000, 32000, 64000
| "Number of long primes ≤ \(.): \(count_long_primes)" )```
Output:
```Long primes ≤ 500:
7
17
19
23
29
47
59
61
97
109
113
131
149
167
179
181
193
223
229
233
257
263
269
313
337
367
379
383
389
419
433
461
487
491
499

Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430
```

Julia

Translation of: Sidef
```using Primes

function divisors(n)
f = [one(n)]
for (p,e) in factor(n)
f = reduce(vcat, [f*p^j for j in 1:e], init=f)
end
return length(f) == 1 ? [one(n), n] : sort!(f)
end

function islongprime(p)
for i in divisors(p-1)
if powermod(10, i, p) == 1
return i + 1 == p
end
end
false
end

println("Long primes ≤ 500: ")
for i in 2:500
if islongprime(i)
i == 229 ? println(i) : print(i, "  ")
end
end
print("\n\n")

for i in [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
println("Number of long primes ≤ \$i: \$(sum(map(x->islongprime(x), 1:i)))")
end
```
Output:
```
Long primes ≤ 500:
7  17  19  23  29  47  59  61  97  109  113  131  149  167  179  181  193  223  229
233  257  263  269  313  337  367  379  383  389  419  433  461  487  491  499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430

```

Kotlin

Translation of: Go
```// Version 1.2.60

fun sieve(limit: Int): List<Int> {
val primes = mutableListOf<Int>()
val c = BooleanArray(limit + 1)  // composite = true
// no need to process even numbers
var p = 3
var p2 = p * p
while (p2 <= limit) {
for (i in p2..limit step 2 * p) c[i] = true
do {
p += 2
} while (c[p])
p2 = p * p
}
for (i in 3..limit step 2) {
}
return primes
}

// finds the period of the reciprocal of n
fun findPeriod(n: Int): Int {
var r = 1
for (i in 1..n + 1) r = (10 * r) % n
val rr = r
var period = 0
do {
r = (10 * r) % n
period++
} while (r != rr)
return period
}

fun main(args: Array<String>) {
val primes = sieve(64000)
val longPrimes = mutableListOf<Int>()
for (prime in primes) {
if (findPeriod(prime) == prime - 1) {
}
}
val numbers = listOf(500, 1000, 2000, 4000, 8000, 16000, 32000, 64000)
var index = 0
var count = 0
val totals = IntArray(numbers.size)
for (longPrime in longPrimes) {
if (longPrime > numbers[index]) {
totals[index++] = count
}
count++
}
totals[numbers.lastIndex] = count
println("The long primes up to " + numbers[0] + " are:")
println(longPrimes.take(totals[0]))

println("\nThe number of long primes up to:")
for ((i, total) in totals.withIndex()) {
System.out.printf("  %5d is %d\n", numbers[i], total)
}
}
```
Output:
```The long primes up to 500 are:
[7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

M2000 Interpreter

Translation of: Go

Sieve leave to stack of values primes. This happen because we call the function as a module, so we pass the current stack (modules call modules passing own stack of values). We can place value to stack using Push to the top (as LIFO) or using Data to bottom (as FIFO). Variable Number read a number from stack and drop it.

```Module LongPrimes {
Sieve=lambda (limit)->{
Flush
Buffer clear c as byte*limit+1
\\ no need to process even numbers
p=3
do
p2=p^2
if p2>limit then exit
i=p2
while i<=limit
Return c, i:=1
i+=2*p
end While
do
p+=2
Until not eval(c,p)
always
for i = 3 to limit step 2
if  eval(c,i) else data i
next i
}
findPeriod=lambda (n) -> {
r = 1
for i = 1 to n+1 {r = (10 * r) mod n}
rr = r : period = 0
do
r = (10 * r) mod n
period++
if r == rr then exit
always
=period
}
Call sieve(64000)  ' leave stack with primes
stops=(500,1000,2000,4000,8000,16000,32000,64000)
acc=0
stp=0
limit=array(stops, stp)
p=number  ' pop one
Print "Long primes up to 500:"
document lp500\$
for i=1 to 500
if i=p then
if findPeriod(i)=i-1 then acc++ :lp500\$=str\$(i)
p=number
end if
if empty then exit for
next i
lp500\$="]"
insert 1,1 lp500\$="["
Print lp500\$
Print
i=500
Print "The number of long primes up to:"
print i," is ";acc
stp++
m=each(stops,1,-2)
while m
for i=array(m)+1 to array(m,m^+1)
if i=p then
if findPeriod(i)=i-1 then acc++
p=number
end if
if empty then exit for
next i
print array(m,m^+1)," is ";acc
end While
}
LongPrimes```
Output:
```The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

Maple

```with(NumberTheory):
with(ArrayTools):

isLong := proc(x::integer)
if irem(10^(x - 1) - 1, x) = 0 then
for local count from 1 to x - 2 do
if irem(10^(count) - 1, x) = 0 then
return false;
end if;
end do;
else
return false;
end if;
return true;
end proc:

longPrimes := Array([]):

for number from 1 to PrimeCounting(500) do
if isLong(ithprime(number)) then Append(longPrimes, ithprime(number)): end if:
end:

longPrimes;
lpcount := ArrayNumElems(longPrimes):
numOfLongPrimes := Array([lpcount]):
for expon from 1 to 7 do
for number from PrimeCounting(500 * 2^(expon - 1)) + 1 to PrimeCounting(500 * 2^expon) do
if isLong(ithprime(number)) then lpcount += 1: end if:
end:
Append(numOfLongPrimes, lpcount):
end:

numOfLongPrimes;```
Output:
```
[7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193,

223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461,

487, 491, 499]

[35, 60, 116, 218, 390, 716, 1300, 2430]

```

Mathematica/Wolfram Language

```lPrimes[n_] := Select[Range[2, n], Length[RealDigits[1/#][[1, 1]]] == # - 1 &];
lPrimes[500]
Length /@ lPrimes /@ ( 250*2^Range[8])
```
Output:
```{7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179,
181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389,
419, 433, 461, 487, 491, 499}

{35, 60, 116, 218, 390, 716, 1300, 2430}
```

Maxima

```/* Test cases */
/* Long primes up to 500 */
sublist(makelist(i,i,500),lambda([x],primep(x) and zn_order(10,x)=x-1));

/* Number of long primes up to a specified limit */
length(sublist(makelist(i,i,500),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,1000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,2000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,4000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,8000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,16000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,32000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,64000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
```
Output:
```[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]

35
60
116
218
390
716
1300
2430
```

NewLISP

```;;;	Using the fact that 10 has to be a primitive root mod p
;;;	for p to be a reptend/long prime.
;;;	p supposed prime and >= 7
(define (cycle-mod p)
(let (n 10 tally 1)
(while (!= n 1)
(++ tally)
(setq n (% (* n 10) p))
tally)))
;
;;;	Primality test
(define (prime? n)
(= (length (factor n)) 1))
;
;;;	Reptend test (p >= 7)
(define (reptend? p)
(if (prime? p)
(= (- p (cycle-mod p)) 1)
false))
;
;;;	Find reptends in interval 7 .. n
(define (find-reptends n)
(filter reptend? (sequence 7 n)))
;
(println (find-reptends 500))
(println (map (fn(n) (println n " --> " (length (find-reptends n)))) '(500 1000 2000 4000 8000 16000 32000 64000)))
```
Output:
```(7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499)
500 --> 35
1000 --> 60
2000 --> 116
4000 --> 218
8000 --> 390
16000 --> 716
32000 --> 1300
64000 --> 2430
```

Nim

Translation of: Kotlin
```import strformat

func sieve(limit: int): seq[int] =

var composite = newSeq[bool](limit + 1)
var p = 3
var p2 = p * p
while p2 < limit:
if not composite[p]:
for n in countup(p2, limit, 2 * p):
composite[n] = true
inc p, 2
p2 = p * p

for n in countup(3, limit, 2):
if not composite[n]:

func period(n: int): int =
## Find the period of the reciprocal of "n".
var r = 1
for i in 1..(n + 1):
r = 10 * r mod n
let r1 = r
while true:
r = 10 * r mod n
inc result
if r == r1: break

let primes = sieve(64000)
var longPrimes: seq[int]
for prime in primes:
if prime.period() == prime - 1:

const Numbers = [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
var index, count = 0
var totals = newSeq[int](Numbers.len)
for longPrime in longPrimes:
if longPrime > Numbers[index]:
totals[index] = count
inc index
inc count
totals[^1] = count

echo &"The long primes up to {Numbers[0]} are:"
for i in 0..<totals[0]:
stdout.write ' ', longPrimes[i]
stdout.write '\n'

echo "\nThe number of long primes up to:"
for i, total in totals:
echo &"  {Numbers[i]:>5} is {total}"
```
Output:
```The long primes up to 500 are:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430```

Pascal

first post.old program modified. Using Euler Phi

```  www . arndt-bruenner.de/mathe/scripts/periodenlaenge.htm
```
```program Periode;

{\$IFDEF FPC}
{\$MODE Delphi}
{\$OPTIMIZATION ON}
{\$OPTIMIZATION Regvar}
{\$OPTIMIZATION Peephole}
{\$OPTIMIZATION cse}
{\$OPTIMIZATION asmcse}
{\$else}
{\$Apptype Console}
{\$ENDIF}

uses
sysutils;

const
cBASIS = 10;
PRIMFELDOBERGRENZE = 6542;
{Das sind alle Primzahlen bis 2^16}
{Das reicht fuer al8le Primzahlen bis 2^32}
TESTZAHL = 500; //429496709;//High(Cardinal) DIV cBasis;

type
tPrimFeld = array[1..PRIMFELDOBERGRENZE] of Word;

tFaktorPotenz = record
Faktor, Potenz: Cardinal;
end;
//2*3*5*7*11*13*17*19*23  *29 > Cardinal also maximal 9 Faktoren

tFaktorFeld = array[1..9] of TFaktorPotenz; //Cardinal
// tFaktorFeld =  array [1..15] of TFaktorPotenz;//QWord

tFaktorisieren = class(TObject)
private
fFakZahl: Cardinal;
fFakBasis: Cardinal;
fFakAnzahl: Cardinal;
fAnzahlMoeglicherTeiler: Cardinal;
fEulerPhi: Cardinal;
fStartPeriode: Cardinal;
fPeriodenLaenge: Cardinal;
fTeiler: array of Cardinal;
fFaktoren: tFaktorFeld;
fBasFakt: tFaktorFeld;
fPrimfeld: tPrimFeld;
procedure PrimFeldAufbauen;
procedure Fakteinfuegen(var Zahl: Cardinal; inFak: Cardinal);
function BasisPeriodeExtrahieren(var inZahl: Cardinal): Cardinal;
procedure NachkommaPeriode(var OutText: string);
public
function Prim(inZahl: Cardinal): Boolean;
procedure AusgabeFaktorfeld(n: Cardinal);
procedure Faktorisierung(inZahl: Cardinal);
procedure TeilerErmitteln;
procedure PeriodeErmitteln(inZahl: Cardinal);
function BasExpMod(b, e, m: Cardinal): Cardinal;
end;

constructor tFaktorisieren.create;
begin
inherited;
PrimFeldAufbauen;

fFakZahl := 0;
fFakBasis := cBASIS;
Faktorisierung(fFakBasis);
fBasFakt := fFaktoren;

fFakZahl := 0;
fEulerPhi := 1;
fPeriodenLaenge := 0;
fFakZahl := 0;
fFakAnzahl := 0;
fAnzahlMoeglicherTeiler := 0;
end;

function tFaktorisieren.Prim(inZahl: Cardinal): Boolean;
{Testet auf PrimZahl}
var
Wurzel, pos: Cardinal;
begin
if fFakZahl = inZahl then
begin
result := (fAnzahlMoeglicherTeiler = 2);
exit;
end;
result := false;
if inZahl > 1 then
begin
result := true;
pos := 1;
Wurzel := trunc(sqrt(inZahl));
while fPrimFeld[pos] <= Wurzel do
begin
if (inZahl mod fPrimFeld[pos]) = 0 then
begin
result := false;
break;
end;
inc(pos);
if pos > High(fPrimFeld) then
break;
end;
end;
end;

procedure tFaktorisieren.PrimFeldAufbauen;
{Baut die Liste der Primzahlen bis Obergrenze auf}
const
MAX = 65536;
var
TestaufPrim, Zaehler, delta: Cardinal;
begin
Zaehler := 1;
fPrimFeld[Zaehler] := 2;
inc(Zaehler);
fPrimFeld[Zaehler] := 3;

delta := 2;
TestaufPrim := 5;
repeat
if prim(TestaufPrim) then
begin
inc(Zaehler);
fPrimFeld[Zaehler] := TestaufPrim;
end;
inc(TestaufPrim, delta);
delta := 6 - delta; // 2,4,2,4,2,4,2,
until (TestaufPrim >= MAX);

end; {PrimfeldAufbauen}

procedure tFaktorisieren.Fakteinfuegen(var Zahl: Cardinal; inFak: Cardinal);
var
i: Cardinal;
begin
inc(fFakAnzahl);
with fFaktoren[fFakAnzahl] do
begin
fEulerPhi := fEulerPhi * (inFak - 1);
Faktor := inFak;
Potenz := 0;
while (Zahl mod inFak) = 0 do
begin
Zahl := Zahl div inFak;
inc(Potenz);
end;
for i := 2 to Potenz do
fEulerPhi := fEulerPhi * inFak;
end;
fAnzahlMoeglicherTeiler := fAnzahlMoeglicherTeiler * (1 + fFaktoren[fFakAnzahl].Potenz);
end;

procedure tFaktorisieren.Faktorisierung(inZahl: Cardinal);
var
j, og: longint;
begin
if fFakZahl = inZahl then
exit;

fPeriodenLaenge := 0;
fFakZahl := inZahl;
fEulerPhi := 1;
fFakAnzahl := 0;
fAnzahlMoeglicherTeiler := 1;
setlength(fTeiler, 0);

if inZahl < 2 then
exit;
og := round(sqrt(inZahl) + 1.0);
{Suche Teiler von inZahl}
for j := 1 to High(fPrimfeld) do
begin
if fPrimfeld[j] > og then
Break;
if (inZahl mod fPrimfeld[j]) = 0 then
Fakteinfuegen(inZahl, fPrimfeld[j]);
end;
if inZahl > 1 then
Fakteinfuegen(inZahl, inZahl);
TeilerErmitteln;
end; {Faktorisierung}

procedure tFaktorisieren.AusgabeFaktorfeld(n: Cardinal);
var
i: integer;
begin
if fFakZahl <> n then
Faktorisierung(n);
write(fAnzahlMoeglicherTeiler: 5, ' Faktoren ');

for i := 1 to fFakAnzahl - 1 do
with fFaktoren[i] do
if potenz > 1 then
write(Faktor, '^', Potenz, '*')
else
write(Faktor, '*');
with fFaktoren[fFakAnzahl] do
if potenz > 1 then
write(Faktor, '^', Potenz)
else
write(Faktor);

writeln('  Euler Phi: ', fEulerPhi: 12, PeriodenLaenge: 12);
end;

procedure tFaktorisieren.TeilerErmitteln;
var
Position: Cardinal;
i, j: Cardinal;

procedure FaktorAufbauen(Faktor: Cardinal; n: Cardinal);
var
i, Pot: Cardinal;
begin
Pot := 1;
i := 0;
repeat
if n > Low(fFaktoren) then
FaktorAufbauen(Pot * Faktor, n - 1)
else
begin
FTeiler[Position] := Pot * Faktor;
inc(Position);
end;
Pot := Pot * fFaktoren[n].Faktor;
inc(i);
until i > fFaktoren[n].Potenz;
end;

begin
Position := 0;
setlength(FTeiler, fAnzahlMoeglicherTeiler);
FaktorAufbauen(1, fFakAnzahl);
//Sortieren
for i := Low(fTeiler) to fAnzahlMoeglicherTeiler - 2 do
begin
j := i;
while (j >= Low(fTeiler)) and (fTeiler[j] > fTeiler[j + 1]) do
begin
Position := fTeiler[j];
fTeiler[j] := fTeiler[j + 1];
fTeiler[j + 1] := Position;
dec(j);
end;
end;
end;

function tFaktorisieren.BasisPeriodeExtrahieren(var inZahl: Cardinal): Cardinal;
var
i, cnt, Teiler: Cardinal;
begin
cnt := 0;
result := 0;
for i := Low(fBasFakt) to High(fBasFakt) do
begin
with fBasFakt[i] do
begin
if Faktor = 0 then
BREAK;
Teiler := Faktor;
for cnt := 2 to Potenz do
Teiler := Teiler * Faktor;
end;
cnt := 0;
while (inZahl <> 0) and (inZahl mod Teiler = 0) do
begin
inZahl := inZahl div Teiler;
inc(cnt);
end;
if cnt > result then
result := cnt;
end;
end;

procedure tFaktorisieren.PeriodeErmitteln(inZahl: Cardinal);
var
i, TempZahl, TempPhi, TempPer, TempBasPer: Cardinal;
begin
Faktorisierung(inZahl);
TempZahl := inZahl;
//Die Basis_Nicht_Periode ermitteln
TempBasPer := BasisPeriodeExtrahieren(TempZahl);
TempPer := 0;
if TempZahl > 1 then
begin
Faktorisierung(TempZahl);
TempPhi := fEulerPhi;
if (TempPhi > 1) then
begin
Faktorisierung(TempPhi);
i := 0;
repeat
TempPer := fTeiler[i];
if BasExpMod(fFakBasis, TempPer, TempZahl) = 1 then
Break;
inc(i);
until i >= Length(fTeiler);
if i >= Length(fTeiler) then
TempPer := inZahl - 1;
end;
end;

Faktorisierung(inZahl);
fPeriodenlaenge := TempPer;
fStartPeriode := TempBasPer;
end;

procedure tFaktorisieren.NachkommaPeriode(var OutText: string);
var
i, limit: integer;
Rest, Rest1, Divi, basis: Cardinal;
pText: pChar;

procedure Ziffernfolge(Ende: longint);
var
j: longint;
begin
j := i - Ende;

while j < 0 do
begin
Rest := Rest * basis;
Rest1 := Rest div Divi;
Rest := Rest - Rest1 * Divi; //== Rest1 Mod Divi

pText^ := chr(Rest1 + Ord('0'));
inc(pText);

inc(j);
end;

i := Ende;
end;

begin
limit := fStartPeriode + fPeriodenlaenge;

setlength(OutText, limit + 2 + 2 + 5);
OutText[1] := '0';
OutText[2] := '.';
pText := @OutText[3];

Rest := 1;
Divi := fFakZahl;
basis := fFakBasis;

i := 0;
Ziffernfolge(fStartPeriode);
if fPeriodenlaenge = 0 then
begin
setlength(OutText, fStartPeriode + 2);
EXIT;
end;

pText^ := '_';
inc(pText);
Ziffernfolge(limit);
pText^ := '_';
inc(pText);

Ziffernfolge(limit + 5);
end;

type
tZahl = integer;

tRestFeld = array[0..31] of integer;

var
F: tFaktorisieren;

function tFaktorisieren.BasExpMod(b, e, m: Cardinal): Cardinal;
begin
Result := 1;
if m = 0 then
exit;
Result := 1;
while (e > 0) do
begin
if (e and 1) <> 0 then
Result := (Result * int64(b)) mod m;
b := (int64(b) * b) mod m;
e := e shr 1;
end;
end;

procedure start;
var
Limit, Testzahl: Cardinal;
longPrimCount: int64;
t1, t0: TDateTime;
begin

Limit := 500;
Testzahl := 2;
longPrimCount := 0;
t0 := time;

repeat
write(Limit: 8, ': ');
repeat
if F.Prim(Testzahl) then
begin
F.PeriodeErmitteln(Testzahl);
if F.PeriodenLaenge = Testzahl - 1 then
begin
inc(longPrimCount);
if Limit = 500 then
write(Testzahl, ',');
end
end;
inc(Testzahl);
until Testzahl = Limit;
inc(Limit, Limit);
write('  .. count ', longPrimCount: 8, ' ');
t1 := time;
if (t1 - t0) > 1 / 864000 then
write(FormatDateTime('HH:NN:SS.ZZZ', t1 - t0));
writeln;
until Limit > 10 * 1000 * 1000;

t1 := time;
writeln;
writeln('count of long primes ', longPrimCount);
writeln('Benoetigte Zeit ', FormatDateTime('HH:NN:SS.ZZZ', t1 - t0));

end;

begin
F := tFaktorisieren.create;
writeln('Start');
start;
writeln('Fertig.');
F.free;
end.
```
Output:
```sh-4.4# ./Periode
Start
500: 7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499,  .. count       35
1000:   .. count       60
2000:   .. count      116
4000:   .. count      218
8000:   .. count      390
16000:   .. count      716
32000:   .. count     1300
64000:   .. count     2430
128000:   .. count     4498
256000:   .. count     8434 00:00:00.100
512000:   .. count    15920 00:00:00.220
1024000:   .. count    30171 00:00:00.494
2048000:   .. count    57115 00:00:01.140
4096000:   .. count   108381 00:00:02.578
8192000:   .. count   206594 00:00:06.073

count of long primes 206594
Benoetigte Zeit 00:00:06.073
Fertig.
```

Perl

Translation of: Sidef
Library: ntheory
```use ntheory qw/divisors powmod is_prime/;

sub is_long_prime {
my(\$p) = @_;
return 0 unless is_prime(\$p);
for my \$d (divisors(\$p-1)) {
return \$d+1 == \$p if powmod(10, \$d, \$p) == 1;
}
0;
}

print "Long primes ≤ 500:\n";
print join(' ', grep {is_long_prime(\$_) } 1 .. 500), "\n\n";

for my \$n (500, 1000, 2000, 4000, 8000, 16000, 32000, 64000) {
printf "Number of long primes ≤ \$n: %d\n",  scalar grep { is_long_prime(\$_) } 1 .. \$n;
}
```
Output:
```Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430```

Using znorder

Faster due to going directly over primes and using znorder. Takes one second to count to 8,192,000.

```use ntheory qw/forprimes znorder/;
my(\$t,\$z)=(0,0);
forprimes {
\$z = znorder(10, \$_);
\$t++ if defined \$z && \$z+1 == \$_;
} 8192000;
print "\$t\n";
```
Output:
`206594`

Phix

Slow version:

```function is_long_prime(integer n)
integer r = 1, rr, period = 0
for i=1 to n+1 do
r = mod(10*r,n)
end for
rr = r
while true do
r = mod(10*r,n)
period += 1
if period>=n then return false end if
if r=rr then exit end if
end while
return period=n-1
end function
```

(use the same main() as below but limit maxN to 8 iterations)

Much faster version:

```function is_long_prime(integer n)
sequence f = factors(n-1,1)
integer count = 0
for i=1 to length(f) do
integer fi = f[i], e=1, base=10
while fi!=0 do
if mod(fi,2)=1 then
e = mod(e*base,n)
end if
base = mod(base*base,n)
fi = floor(fi/2)
end while
if e=1 then
count += 1
if count>1 then exit end if
end if
end for
return count=1
end function

procedure main()
atom t0 = time()
integer maxN = 500*power(2,14)
--integer maxN = 500*power(2,7) -- (slow version)
sequence long_primes = {}
integer count = 0,
n = 500,
i = 2
while true do
integer prime = get_prime(i)
if is_long_prime(prime) then
if prime<500 then
long_primes &= prime
end if
if prime>n then
if n=500 then
printf(1,"The long primes up to 500 are:\n %V\n",{long_primes})
printf(1,"\nThe number of long primes up to:\n")
end if
printf(1,"  %7d is %d  (%s)\n", {n, count, elapsed(time()-t0)})
if n=maxN then exit end if
n *= 2
end if
count += 1
end if
i += 1
end while
end procedure
main()
```
Output:

slow version:

```The long primes up to 500 are:
{7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499}

The number of long primes up to:
500 is 35  (0.2s)
1000 is 60  (0.2s)
2000 is 116  (0.3s)
4000 is 218  (0.5s)
8000 is 390  (1.4s)
16000 is 716  (4.5s)
32000 is 1300  (16.0s)
64000 is 2430  (59.5s)
```

fast version:

```The long primes up to 500 are:
{7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499}

The number of long primes up to:
500 is 35  (0.2s)
1000 is 60  (0.3s)
2000 is 116  (0.3s)
4000 is 218  (0.3s)
8000 is 390  (0.3s)
16000 is 716  (0.4s)
32000 is 1300  (0.5s)
64000 is 2430  (0.7s)
128000 is 4498  (1.4s)
256000 is 8434  (2.7s)
512000 is 15920  (5.8s)
1024000 is 30171  (12.3s)
2048000 is 57115  (26.3s)
4096000 is 108381  (56.5s)
8192000 is 206594  (1 minute and 60s)
```

Picat

```go =>
println(findall(P, (member(P,primes(500)),long_prime(P)))),
nl,
println("Number of long primes up to limit are:"),
foreach(Limit in [500,1_000,2_000,4_000,8_000,16_000,32_000,64_000])
printf(" <= %5d: %4d\n", Limit, count_all( (member(P,primes(Limit)), long_prime(P)) ))
end,
nl.

long_prime(P) =>
get_rep_len(P) == (P-1).

%
% Get the length of the repeating cycle for 1/n
%
get_rep_len(I) = Len =>
FoundRemainders = {0 : _K in 1..I+1},
Value = 1,
Position = 1,
while (FoundRemainders[Value+1] == 0, Value != 0)
FoundRemainders[Value+1] := Position,
Value := (Value*10) mod I,
Position := Position+1
end,
Len = Position-FoundRemainders[Value+1].```
Output:
```[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]

Number of long primes up to limit are:
<=   500:   35
<=  1000:   60
<=  2000:  116
<=  4000:  218
<=  8000:  390
<= 16000:  716
<= 32000: 1300
<= 64000: 2430```

Prolog

Works with: SWI Prolog
```% See https://en.wikipedia.org/wiki/Full_reptend_prime
long_prime(Prime):-
is_prime(Prime),
M is 10 mod Prime,
M > 1,
primitive_root(10, Prime).

% See https://en.wikipedia.org/wiki/Primitive_root_modulo_n#Finding_primitive_roots
primitive_root(Base, Prime):-
Phi is Prime - 1,
primitive_root(Phi, 2, Base, Prime).

primitive_root(1, _, _, _):-!.
primitive_root(N, P, Base, Prime):-
is_prime(P),
0 is N mod P,
!,
X is (Prime - 1) // P,
R is powm(Base, X, Prime),
R \= 1,
divide_out(N, P, M),
Q is P + 1,
primitive_root(M, Q, Base, Prime).
primitive_root(N, P, Base, Prime):-
Q is P + 1,
Q * Q < Prime,
!,
primitive_root(N, Q, Base, Prime).
primitive_root(N, _, Base, Prime):-
X is (Prime - 1) // N,
R is powm(Base, X, Prime),
R \= 1.

divide_out(N, P, M):-
divmod(N, P, Q, 0),
!,
divide_out(Q, P, M).
divide_out(N, _, N).

print_long_primes([], _):-
!,
nl.
print_long_primes([Prime|_], Limit):-
Prime > Limit,
!,
nl.
print_long_primes([Prime|Primes], Limit):-
writef('%w ', [Prime]),
print_long_primes(Primes, Limit).

count_long_primes(_, L, Limit, _):-
L > Limit,
!.
count_long_primes([], Limit, _, Count):-
writef('Number of long primes up to %w: %w\n', [Limit, Count]),
!.
count_long_primes([Prime|Primes], L, Limit, Count):-
Prime > L,
!,
writef('Number of long primes up to %w: %w\n', [L, Count]),
Count1 is Count + 1,
L1 is L * 2,
count_long_primes(Primes, L1, Limit, Count1).
count_long_primes([_|Primes], L, Limit, Count):-
Count1 is Count + 1,
count_long_primes(Primes, L, Limit, Count1).

main(Limit):-
find_prime_numbers(Limit),
findall(Prime, long_prime(Prime), Primes),
writef('Long primes up to 500:\n'),
print_long_primes(Primes, 500),
count_long_primes(Primes, 500, Limit, 0).

main:-
main(256000).
```

Module for finding prime numbers up to some limit:

```:- module(prime_numbers, [find_prime_numbers/1, is_prime/1]).
:- dynamic is_prime/1.

find_prime_numbers(N):-
retractall(is_prime(_)),
assertz(is_prime(2)),
init_sieve(N, 3),
sieve(N, 3).

init_sieve(N, P):-
P > N,
!.
init_sieve(N, P):-
assertz(is_prime(P)),
Q is P + 2,
init_sieve(N, Q).

sieve(N, P):-
P * P > N,
!.
sieve(N, P):-
is_prime(P),
!,
S is P * P,
cross_out(S, N, P),
Q is P + 2,
sieve(N, Q).
sieve(N, P):-
Q is P + 2,
sieve(N, Q).

cross_out(S, N, _):-
S > N,
!.
cross_out(S, N, P):-
retract(is_prime(S)),
!,
Q is S + 2 * P,
cross_out(Q, N, P).
cross_out(S, N, P):-
Q is S + 2 * P,
cross_out(Q, N, P).
```
Output:
```?- time(main(256000)).
Long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to 500: 35
Number of long primes up to 1000: 60
Number of long primes up to 2000: 116
Number of long primes up to 4000: 218
Number of long primes up to 8000: 390
Number of long primes up to 16000: 716
Number of long primes up to 32000: 1300
Number of long primes up to 64000: 2430
Number of long primes up to 128000: 4498
Number of long primes up to 256000: 8434
% 8,564,024 inferences, 0.991 CPU in 1.040 seconds (95% CPU, 8641390 Lips)
true.
```

alternative version

the smallest divisor d of p - 1 such that 10^d = 1 (mod p) is the length of the period of the decimal expansion of 1/p

```isPrime(A):-
A1 is ceil(sqrt(A)),
between(2, A1, N),
0 =:= A mod N,!,
false.
isPrime(_).

divisors(N, Dlist):-
N1 is floor(sqrt(N)),
numlist(1, N1, Ds0),
include([D]>>(N mod D =:= 0), Ds0, Ds1),
reverse(Ds1, [Dh|Dt]),
( Dh * Dh < N
-> Ds1a = [Dh|Dt]
;  Ds1a = Dt
),
maplist([X,Y]>>(Y is N div X), Ds1a, Ds2),
append(Ds1, Ds2, Dlist).

longPrime(P):-
divisors(P - 1, Dlist),
longPrime(P, Dlist).

longPrime(_,[]):- false.
longPrime(P, [D|Dtail]):-
powm(10, D, P) =\= 1,!,
longPrime(P, Dtail).
longPrime(P, [D|_]):-!,
D =:= P - 1.

isLongPrime(N):-
isPrime(N),
longPrime(N).

longPrimes(N, LongPrimes):-
numlist(7, N, List),
include(isLongPrime, List, LongPrimes).

run([]):-!.
run([Limit|Tail]):-
statistics(runtime,[Start|_]),
longPrimes(Limit, LongPrimes),
length(LongPrimes, Num),
statistics(runtime,[Stop|_]),
Runtime is Stop - Start,
writef('there are%5r long primes up to%6r [time (ms)%5r]\n',[Num, Limit, Runtime]),
run(Tail).

do:-	longPrimes(500, LongPrimes),
writeln('long primes up to 500:'),
writeln(LongPrimes),
numlist(0, 7, List),
maplist([X, Y]>>(Y is 500 * 2**X), List, LimitList),
run(LimitList).
```
Output:
```long primes up to 500:
[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]
there are   35 long primes up to   500 [time (ms)    7]
there are   60 long primes up to  1000 [time (ms)   16]
there are  116 long primes up to  2000 [time (ms)   42]
there are  218 long primes up to  4000 [time (ms)   98]
there are  390 long primes up to  8000 [time (ms)  242]
there are  716 long primes up to 16000 [time (ms)  603]
there are 1300 long primes up to 32000 [time (ms) 1507]
there are 2430 long primes up to 64000 [time (ms) 3851]
```

PureBasic

```#MAX=64000
If OpenConsole()=0 : End 1 : EndIf

Dim p.b(#MAX) : FillMemory(@p(),#MAX,#True,#PB_Byte)
For n=2 To Int(Sqr(#MAX))+1 : If p(n) : m=n*n : While m<=#MAX : p(m)=#False : m+n : Wend : EndIf : Next

Procedure.i periodic(v.i)
r=1 : Repeat : r=(r*10)%v : c+1 : If r<=1 : ProcedureReturn c : EndIf : ForEver
EndProcedure

n=500
PrintN(LSet("_",15,"_")+"Long primes upto "+Str(n)+LSet("_",15,"_"))
For i=3 To 500 Step 2
If p(i) And (i-1)=periodic(i)
Print(RSet(Str(i),5)) : c+1 : If c%10=0 : PrintN("") : EndIf
EndIf
Next

PrintN(~"\n")
PrintN("The number of long primes up to:")
PrintN(RSet(Str(n),8)+" is "+Str(c)) : n+n
For i=501 To #MAX+1 Step 2
If p(i) And (i-1)=periodic(i) : c+1 : EndIf
If i>n : PrintN(RSet(Str(n),8)+" is "+Str(c)) : n+n : EndIf
Next
Input()
```
Output:
```_______________Long primes upto 500_______________
7   17   19   23   29   47   59   61   97  109
113  131  149  167  179  181  193  223  229  233
257  263  269  313  337  367  379  383  389  419
433  461  487  491  499

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

Python

Translation of: Kotlin
```def sieve(limit):
primes = []
c = [False] * (limit + 1) # composite = true
# no need to process even numbers
p = 3
while True:
p2 = p * p
if p2 > limit: break
for i in range(p2, limit, 2 * p): c[i] = True
while True:
p += 2
if not c[p]: break

for i in range(3, limit, 2):
if not c[i]: primes.append(i)
return primes

# finds the period of the reciprocal of n
def findPeriod(n):
r = 1
for i in range(1, n): r = (10 * r) % n
rr = r
period = 0
while True:
r = (10 * r) % n
period += 1
if r == rr: break
return period

primes = sieve(64000)
longPrimes = []
for prime in primes:
if findPeriod(prime) == prime - 1:
longPrimes.append(prime)
numbers = [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
count = 0
index = 0
totals = [0] * len(numbers)
for longPrime in longPrimes:
if longPrime > numbers[index]:
totals[index] = count
index += 1
count += 1
totals[-1] = count
print('The long primes up to 500 are:')
print(str(longPrimes[:totals[0]]).replace(',', ''))
print('\nThe number of long primes up to:')
for (i, total) in enumerate(totals):
print('  %5d is %d' % (numbers[i], total))
```
Output:
```The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

Quackery

`eratosthenes` and `isprime` are defined at Sieve of Eratosthenes#Quackery.

`bsearchwith` is defined at Binary search#Quackery.

```  [ over size 0 swap 2swap
bsearchwith < drop ]      is search      ( [ --> n )

[ 1 over 1 - times
[ 10 * over mod ]
tuck
0 temp put
[ 10 * over mod
1 temp tally
rot 2dup != while
unrot again ]
2drop drop
temp take ]               is period      ( n --> n )

[ dup isprime not iff
[ drop false ] done
dup period 1+ = ]         is islongprime ( n --> b )

64000 eratosthenes

[]
64000 times
[ i^ islongprime if [ i^ join ] ]
dup dup 500 search split drop echo cr cr

' [ 500 1000 2000 4000 8000 16000 32000 64000 ]
witheach
[ dup echo say " --> "
dip dup search echo cr ]
drop```
Output:
```[ 7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499 ]

500 --> 35
1000 --> 60
2000 --> 116
4000 --> 218
8000 --> 390
16000 --> 716
32000 --> 1300
64000 --> 2430```

Racket

Translation of: Go
(at least find-period)
```#lang racket
(require math/number-theory)

(define (find-period n)
(let ((rr (for/fold ((r 1))
((i (in-range 1 (+ n 2))))
(modulo (* 10 r) n))))
(let period-loop ((r rr) (p 1))
(let ((r′ (modulo (* 10 r) n)))
(if (= r′ rr) p (period-loop r′ (add1 p)))))))

(define (long-prime? n)
(and (prime? n) (= (find-period n) (sub1 n))))

(define memoised-long-prime? (let ((h# (make-hash))) (λ (n) (hash-ref! h# n (λ () (long-prime? n))))))

(module+ main
;; strictly, won't test 500 itself... but does it look prime to you?
(filter memoised-long-prime? (range 7 500 2))
(for-each
(λ (n) (displayln (cons n (for/sum ((i (in-range 7 n 2))) (if (memoised-long-prime? i) 1 0)))))
'(500 1000 2000 4000 8000 16000 32000 64000)))

(module+ test
(require rackunit)
(check-equal? (map find-period '(7 11 977)) '(6 2 976)))
```
Output:
```'(7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499)
(500 . 35)
(1000 . 60)
(2000 . 116)
(4000 . 218)
(8000 . 390)
(16000 . 716)
(32000 . 1300)
(64000 . 2430)```

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.06

Not very fast as the numbers get larger.

```use Math::Primesieve;
my \$sieve = Math::Primesieve.new;

sub is-long (Int \$p) {
my \$r = 1;
my \$rr = \$r = (10 * \$r) % \$p for ^\$p;
my \$period;
loop {
\$r = (10 * \$r) % \$p;
++\$period;
last if \$period >= \$p or \$r == \$rr;
}
\$period == \$p - 1 and \$p > 2;
}

my @primes = \$sieve.primes(500);
my @long-primes = @primes.grep: {.&is-long};

put "Long primes ≤ 500:\n", @long-primes;

@long-primes = ();

for 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000 -> \$upto {
state \$from = 0;
my @extend = \$sieve.primes(\$from, \$upto);
@long-primes.append: @extend.hyper(:8degree).grep: {.&is-long};
say "\nNumber of long primes ≤ \$upto: ", +@long-primes;
\$from = \$upto;
}
```
Output:
```Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

Number of long primes ≤ 500: 35

Number of long primes ≤ 1000: 60

Number of long primes ≤ 2000: 116

Number of long primes ≤ 4000: 218

Number of long primes ≤ 8000: 390

Number of long primes ≤ 16000: 716

Number of long primes ≤ 32000: 1300

Number of long primes ≤ 64000: 2430```

REXX

For every   doubling   of the limit, it takes about roughly   5   times longer to compute the long primes.

uses odd numbers

```/*REXX pgm calculates/displays base ten  long primes  (AKA golden primes, proper primes,*/
/*───────────────────── maximal period primes, long period primes, full reptend primes).*/
parse arg a                                      /*obtain optional argument from the CL.*/
if a='' | a=","  then a= '500 -500 -1000 -2000 -4000 -8000 -16000' ,  /*Not specified?  */
'-32000 -64000 -128000 -512000 -1024000'     /*Then use default*/
do k=1  for words(a);     H=word(a, k)       /*step through the list of high limits.*/
neg= H<1                                     /*used as an indicator to display count*/
H= abs(H)                                    /*obtain the absolute value of  H.     */
\$=                                           /*the list of  long primes   (so far). */
do j=7  to H  by 2                        /*start with 7,  just use odd integers.*/
if .len(j) + 1 \== j  then iterate        /*Period length wrong?   Then skip it. */
\$=\$ j                                     /*add the   long prime   to the \$ list.*/
end   /*j*/
say
if neg  then do;  say 'number of long primes ≤ '    H     " is: "     words(\$);    end
else do;  say   'list of long primes ≤ '    H":";         say strip(\$);    end
end      /*k*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
.len: procedure; parse arg x;  r=1;   do x;                   r= 10*r // x;     end  /*x*/
rr=r;   do p=1  until r==rr;    r= 10*r // x;     end  /*p*/
return p
```
output   when using the internal default inputs:
```list of long primes ≤  500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

number of long primes ≤  500  is:  35

number of long primes ≤  1000  is:  60

number of long primes ≤  2000  is:  116

number of long primes ≤  4000  is:  218

number of long primes ≤  8000  is:  390

number of long primes ≤  16000  is:  716

number of long primes ≤  32000  is:  1300

number of long primes ≤  64000  is:  2430

number of long primes ≤  128000  is:  4498

number of long primes ≤  512000  is:  15920

number of long primes ≤  1024000  is:  30171
```

uses odd numbers, some prime tests

This REXX version is about   2   times faster than the 1st REXX version   (because it does some primality testing).

```/*REXX pgm calculates/displays base ten  long primes  (AKA golden primes, proper primes,*/
/*───────────────────── maximal period primes, long period primes, full reptend primes).*/
parse arg a                                      /*obtain optional argument from the CL.*/
if a='' | a=","  then a= '500 -500 -1000 -2000 -4000 -8000 -16000' ,  /*Not specified?  */
'-32000 -64000 -128000 -512000 -1024000'     /*Then use default*/
do k=1  for words(a);     H=word(a, k)       /*step through the list of high limits.*/
neg= H<1                                     /*used as an indicator to display count*/
H= abs(H)                                    /*obtain the absolute value of  H.     */
\$=                                           /*the list of  long primes   (so far). */
do j=7  to H  by 2;  parse var j '' -1 _  /*start with 7,  just use odd integers.*/
if     _==5  then iterate /*last digit a five?  Then not a prime.*/
if j// 3==0  then iterate /*Is divisible by  3?   "   "  "   "   */
if j\==11  then if j//11==0  then iterate /* "     "      " 11?   "   "  "   "   */
if j\==13  then if j//13==0  then iterate /* "     "      " 13?   "   "  "   "   */
if j\==17  then if j//17==0  then iterate /* "     "      " 17?   "   "  "   "   */
if j\==19  then if j//19==0  then iterate /* "     "      " 19?   "   "  "   "   */
if .len(j) + 1 \== j  then iterate        /*Period length wrong?   Then skip it. */
\$=\$ j                                     /*add the   long prime   to the \$ list.*/
end   /*j*/
say
if neg  then do;  say 'number of long primes ≤ '    H     " is: "     words(\$);    end
else do;  say   'list of long primes ≤ '    H":";         say strip(\$);    end
end      /*k*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
.len: procedure; parse arg x;  r=1;   do x;                   r= 10*r // x;     end  /*x*/
rr=r;   do p=1  until r==rr;    r= 10*r // x;     end  /*p*/
return p
```
output   is identical to the 1st REXX version.

uses primes

This REXX version is about   5   times faster than the 1st REXX version   (because it only tests primes).

```/*REXX pgm calculates/displays base ten  long primes  (AKA golden primes, proper primes,*/
/*───────────────────── maximal period primes, long period primes, full reptend primes).*/
parse arg a                                      /*obtain optional argument from the CL.*/
if a='' | a=","  then a= '500 -500 -1000 -2000 -4000 -8000 -16000' ,  /*Not specified?  */
'-32000 -64000 -128000 -512000 -1024000'     /*Then use default*/
m=0;            aa= words(a)                     /* [↑]  two list types of low primes.  */
do j=1  for aa;   m= max(m, abs(word(a, j))) /*find the maximum argument in the list*/
end   /*j*/
call genP                                        /*go and generate some primes.         */
do k=1  for aa;           H= word(a, k)      /*step through the list of high limits.*/
neg= H<1                                     /*used as an indicator to display count*/
H= abs(H)                                    /*obtain the absolute value of  H.     */
\$=                                           /*the list of  long primes   (so far). */
do j=7  to H  by 2
if \@.j               then iterate        /*Is  J  not a prime?    Then skip it. */
if .len(j) + 1 \== j  then iterate        /*Period length wrong?     "    "   "  */
\$= \$ j                                    /*add the   long prime   to the \$ list.*/
end   /*j*/                               /* [↑]  some pretty weak prime testing.*/
say
if neg  then      say 'number of long primes ≤ '    H     " is: "     words(\$)
else do;  say   'list of long primes ≤ '    H":";         say strip(\$);    end
end      /*k*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP: @.=0; @.2=1; @.3=1; @.5=1; @.7=1; @.11=1;   !.=0; !.1=2; !.2=3; !.3=5; !.4=7; !.5=11
#= 5                                       /*the number of primes  (so far).      */
do g=!.#+2  by 2  until g>=m           /*gen enough primes to satisfy max  A. */
if @.g\==0  then iterate               /*Is it not a prime?     Then skip it. */
do d=2  until !.d**2>g          /*only divide up to square root of  X. */
if g//!.d==0  then iterate g    /*Divisible?   Then skip this integer. */
end   /*d*/                     /* [↓]  a spanking new prime was found.*/
#= #+1               @.g= 1;  !.#= g   /*bump P counter; assign P, add to P's.*/
end            /*g*/
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
.len: procedure; parse arg x;  r=1;   do x;                   r= 10*r // x;     end  /*x*/
rr=r;   do p=1  until r==rr;    r= 10*r // x;     end  /*p*/
return p
```
output   is identical to the 1st REXX version.

Ruby

```System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.17
Run as: \$ ruby longprimes.rb
```

Finding long prime numbers using finding period location (translation of Python's module def findPeriod(n))

```require 'prime'

batas = 64_000    # limit number
start = Time.now  # time of starting
lp_array = []     # array of long-prime numbers

def find_period(n)
r, period = 1, 0
(1...n).each {r = (10 * r) % n}
rr = r
loop do
r = (10 * r) % n
period += 1
break if r == rr
end
return period
end

Prime.each(batas).each do |prime|
lp_array.push(prime) if find_period(prime) == prime-1 && prime != 2
end

[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |s|
if s == 500
puts "\nAll long primes up to  #{s} are: #{lp_array.count {|x| x < s}}. They are:"
lp_array.each {|x| print x, " " if x < s}
else
print "\nAll long primes up to #{s} are: #{lp_array.count {|x| x < s}}"
end
end

puts "\n\nTime: #{Time.now - start}"
```
Output:
```All long primes up to  500 are: 35. They are:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
All long primes up to 1000 are: 60
All long primes up to 2000 are: 116
All long primes up to 4000 are: 218
All long primes up to 8000 are: 390
All long primes up to 16000 are: 716
All long primes up to 32000 are: 1300
All long primes up to 64000 are: 2430```
```Time: 16.212039    # Ruby 2.7.1
Time: 18.664795    # JRuby 9.2.11.1
Time: 3.198        # Truffleruby 20.1.0
```

Alternatively, by using primitive way: converting value into string and make assessment for proper repetend position. Indeed produce same information, but with longer time.

```require 'prime'
require 'bigdecimal'
require 'strscan'

batas = 64_000          # limit number
start = Time.now        # time of starting
lp_array = []           # array of long-prime numbers
a = BigDecimal.("1")    # number being divided, that is 1.

Prime.each(batas).each do |prime|
cek = a.div(prime, (prime-1)*2).truncate((prime-1)*2).to_s('F')[2..-1] # Dividing 1 with prime and take its value as string.
if (cek[0, prime-1] == cek[prime-1, prime-1])
i = prime-2
until i < 5
break if cek[0, i] == cek[i, i]
i-=1
cek.slice!(-2, 2) # Shortening checked string to reduce checking process load
end

until i == 0
break if cek[0, (cek.size/i)*i].scan(/.{#{i}}/).uniq.length == 1
i-=1
end

lp_array.push(prime) if i == 0
end
end

[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |s|
if s == 500
puts "\nAll long primes up to  #{s} are: #{lp_array.count {|x| x < s}}. They are:"
lp_array.each {|x| print x, " " if x < s}
else
print "\nAll long primes up to #{s} are: #{lp_array.count {|x| x < s}}"
end
end

puts "\n\nTime: #{Time.now - start}"
```
Output:
```(same output with previous version, but longer time elapse)

Time: 629.360075011 secs # Ruby 2.7.1```
Translation of: Crystal of Sidef

Fastest version.

```def prime?(n)                     # P3 Prime Generator primality test
return n | 1 == 3 if n < 5      # n: 2,3|true; 0,1,4|false
return false if n.gcd(6) != 1   # this filters out 2/3 of all integers
pc, sqrtn = 5, Integer.sqrt(n)  # first P3 prime candidates sequence value
until pc > sqrtn
return false if n % pc == 0 || n % (pc + 2) == 0  # if n is composite
pc += 6                       # 1st prime candidate for next residues group
end
true
end

def divisors(n)                   # divisors of n -> [1,..,n]
f = []
(1..Integer.sqrt(n)).each { |i| (n % i).zero? && (f << i; f << n / i if n / i != i) }
f.sort
end

# The smallest divisor d of p-1 such that 10^d = 1 (mod p),
# is the length of the period of the decimal expansion of 1/p.
def long_prime?(p)
return false unless prime? p
divisors(p - 1).each { |d| return d == (p - 1) if 10.pow(d, p) == 1 }
false
end

start = Time.now
puts "Long primes ≤ 500:"
(7..500).each { |pc| print "#{pc} " if long_prime? pc }
puts
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |n|
puts "Number of long primes ≤ #{n}: #{(7..n).count { |pc| long_prime? pc }}"
end
puts "\nTime: #{(Time.now - start)} secs"
```
Output:
```Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430```
```Time: 0.228912772 secs  # Ruby 2.7.1
Time: 0.544648 secs     # JRuby 9.2.11.1
Time: 11.985 secs       # Truffleruby 20.1.0
```

Rust

```// main.rs
// References:
// https://en.wikipedia.org/wiki/Full_reptend_prime
// https://en.wikipedia.org/wiki/Primitive_root_modulo_n#Finding_primitive_roots

mod bit_array;
mod prime_sieve;

use prime_sieve::PrimeSieve;

fn modpow(mut base: usize, mut exp: usize, n: usize) -> usize {
if n == 1 {
return 0;
}
let mut result = 1;
base %= n;
while exp > 0 {
if (exp & 1) == 1 {
result = (result * base) % n;
}
base = (base * base) % n;
exp >>= 1;
}
result
}

fn is_long_prime(sieve: &PrimeSieve, prime: usize) -> bool {
if !sieve.is_prime(prime) {
return false;
}
if 10 % prime == 0 {
return false;
}
let n = prime - 1;
let mut m = n;
let mut p = 2;
while p * p <= n {
if sieve.is_prime(p) && m % p == 0 {
if modpow(10, n / p, prime) == 1 {
return false;
}
while m % p == 0 {
m /= p;
}
}
p += 1;
}
if m == 1 {
return true;
}
modpow(10, n / m, prime) != 1
}

fn long_primes(limit1: usize, limit2: usize) {
let sieve = PrimeSieve::new(limit2);
let mut count = 0;
let mut limit = limit1;
let mut prime = 3;
while prime < limit2 {
if is_long_prime(&sieve, prime) {
if prime < limit1 {
print!("{} ", prime);
}
if prime > limit {
print!("\nNumber of long primes up to {}: {}", limit, count);
limit *= 2;
}
count += 1;
}
prime += 2;
}
println!("\nNumber of long primes up to {}: {}", limit, count);
}

fn main() {
long_primes(500, 8192000);
}
```
```// prime_sieve.rs
use crate::bit_array;

pub struct PrimeSieve {
composite: bit_array::BitArray,
}

impl PrimeSieve {
pub fn new(limit: usize) -> PrimeSieve {
let mut sieve = PrimeSieve {
composite: bit_array::BitArray::new(limit / 2),
};
let mut p = 3;
while p * p <= limit {
if !sieve.composite.get(p / 2 - 1) {
let inc = p * 2;
let mut q = p * p;
while q <= limit {
sieve.composite.set(q / 2 - 1, true);
q += inc;
}
}
p += 2;
}
sieve
}
pub fn is_prime(&self, n: usize) -> bool {
if n < 2 {
return false;
}
if n % 2 == 0 {
return n == 2;
}
!self.composite.get(n / 2 - 1)
}
}
```
```// bit_array.rs
pub struct BitArray {
array: Vec<u32>,
}

impl BitArray {
pub fn new(size: usize) -> BitArray {
BitArray {
array: vec![0; (size + 31) / 32],
}
}
pub fn get(&self, index: usize) -> bool {
let bit = 1 << (index & 31);
(self.array[index >> 5] & bit) != 0
}
pub fn set(&mut self, index: usize, new_val: bool) {
let bit = 1 << (index & 31);
if new_val {
self.array[index >> 5] |= bit;
} else {
self.array[index >> 5] &= !bit;
}
}
}
```
Output:

Execution time is just over 1.5 seconds on my system (macOS 10.15, 3.2 GHz Quad-Core Intel Core i5)

```7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to 500: 35
Number of long primes up to 1000: 60
Number of long primes up to 2000: 116
Number of long primes up to 4000: 218
Number of long primes up to 8000: 390
Number of long primes up to 16000: 716
Number of long primes up to 32000: 1300
Number of long primes up to 64000: 2430
Number of long primes up to 128000: 4498
Number of long primes up to 256000: 8434
Number of long primes up to 512000: 15920
Number of long primes up to 1024000: 30171
Number of long primes up to 2048000: 57115
Number of long primes up to 4096000: 108381
Number of long primes up to 8192000: 206594
```

Rust FP

```fn is_oddprime(n: u64) -> bool {
let limit = (n as f64).sqrt().ceil() as u64;
(3..=limit).step_by(2).all(|a| n % a > 0)
}

fn divisors(n: u64) -> Vec<u64> {
let list1: Vec<u64> = (1..=(n as f64).sqrt().floor() as u64)
.filter(|d| n % d == 0).collect();
let list2: Vec<u64> = list1.iter().rev()
.skip_while(|&d| d * d == n).map(|d| n / d).collect();
[list1, list2].concat()
}

fn power_mod(base: u64, exp: u64, modulo: u64) -> u64 {
fn iter(base: u64, modu: &u64, exp: u64, res: u64) -> u64 {
if exp > 0 {
let base1 = (base * base) % modu;
let res1 = if exp & 1 > 0 {(base * res) % modu} else {res};
iter(base1, modu, exp >> 1, res1)
}
else {res}
}
iter(base, &modulo, exp, 1)
}

// the smallest divisor d of p-1 such that 10^d = 1 (mod p)
// is the length of the period of the decimal expansion of 1/p
fn is_longprime(p: u64) -> bool {
match divisors(p - 1).into_iter()
.skip_while(|&d| power_mod(10, d, p) != 1)
.next() {
Some(d) => d + 1 == p,
None => false
}
}

fn long_primes() -> impl Iterator<Item = u64> {
(7..).step_by(2).filter(|&p|is_oddprime(p))
.filter(|&p| is_longprime(p))
}

fn main() {
println!("long primes up to 500:");
let list500: Vec<u64> = long_primes()
.take_while(|&p| p <= 500)
.collect();
println!("{:?}\n", list500);

let limits: Vec<u64> = (0..8).map(|n| 2u64.pow(n) * 500).collect();
for limit in limits {
let start = std::time::Instant::now();
let count = long_primes().take_while(|&p| p <= limit).count();
let duration = start.elapsed().as_millis();
println!("there are {:4} long primes up to {:5} [time(ms) {:3}]",
count, limit, duration);
}
}
```
Output:
```long primes up to 500:
[7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499]

there are   35 long primes up to   500 [time(ms)   0]
there are   60 long primes up to  1000 [time(ms)   1]
there are  116 long primes up to  2000 [time(ms)   2]
there are  218 long primes up to  4000 [time(ms)   5]
there are  390 long primes up to  8000 [time(ms)  13]
there are  716 long primes up to 16000 [time(ms)  31]
there are 1300 long primes up to 32000 [time(ms)  36]
there are 2430 long primes up to 64000 [time(ms)  41]
```

Scala

```object LongPrimes extends App {
def primeStream = LazyList.from(3, 2)
.filter(p => (3 to math.sqrt(p).ceil.toInt by 2).forall(p % _ > 0))

def longPeriod(p: Int): Boolean = {
val mstart = 10 % p
@annotation.tailrec
def iter(mod: Int, period: Int): Int = {
val mod1 = (10 * mod) % p
if (mod1 == mstart) period
else iter(mod1, period + 1)
}
iter(mstart, 1) == p - 1
}

val longPrimes = primeStream.filter(longPeriod(_))
println("long primes up to 500:")
println(longPrimes.takeWhile(_ <= 500).mkString(" "))
println

val limitList = Seq.tabulate(8)(math.pow(2, _).toInt * 500)
for (limit <- limitList) {
val count = longPrimes.takeWhile(_ <= limit).length
println(f"there are \$count%4d long primes up to \$limit%5d")
}
}
```
Output:
```long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

there are   35 long primes up to   500
there are   60 long primes up to  1000
there are  116 long primes up to  2000
there are  218 long primes up to  4000
there are  390 long primes up to  8000
there are  716 long primes up to 16000
there are 1300 long primes up to 32000
there are 2430 long primes up to 64000
```

Sidef

The smallest divisor d of p-1 such that 10^d = 1 (mod p), is the length of the period of the decimal expansion of 1/p.

```func is_long_prime(p) {

for d in (divisors(p-1)) {
if (powmod(10, d, p) == 1) {
return (d+1 == p)
}
}

return false
}

say "Long primes ≤ 500:"
say primes(500).grep(is_long_prime).join(' ')

for n in ([500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]) {
say ("Number of long primes ≤ #{n}: ", primes(n).count_by(is_long_prime))
}
```
Output:
```Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430
```

Alternatively, we can implement the is_long_prime(p) function using the `znorder(a, p)` built-in method, which is considerably faster:

```func is_long_prime(p) {
znorder(10, p) == p-1
}
```

Swift

```public struct Eratosthenes: Sequence, IteratorProtocol {
private let n: Int
private let limit: Int

private var i = 2
private var sieve: [Int]

public init(upTo: Int) {
if upTo <= 1 {
self.n = 0
self.limit = -1
self.sieve = []
} else {
self.n = upTo
self.limit = Int(Double(n).squareRoot())
self.sieve = Array(0...n)
}
}

public mutating func next() -> Int? {
while i < n {
defer { i += 1 }

if sieve[i] != 0 {
if i <= limit {
for notPrime in stride(from: i * i, through: n, by: i) {
sieve[notPrime] = 0
}
}

return i
}
}

return nil
}
}

func findPeriod(n: Int) -> Int {
let r = (1...n+1).reduce(1, {res, _ in (10 * res) % n })
var rr = r
var period = 0

repeat {
rr = (10 * rr) % n
period += 1
} while r != rr

return period
}

let longPrimes = Eratosthenes(upTo: 64000).dropFirst().lazy.filter({ findPeriod(n: \$0) == \$0 - 1 })

print("Long primes less than 500: \(Array(longPrimes.prefix(while: { \$0 <= 500 })))")

let counts =
longPrimes.reduce(into: [500: 0, 1000: 0, 2000: 0, 4000: 0, 8000: 0, 16000: 0, 32000: 0, 64000: 0], {counts, n in
for key in counts.keys where n < key {
counts[key]! += 1
}
})

for key in counts.keys.sorted() {
print("There are \(counts[key]!) long primes less than \(key)")
}
```
Output:
```Long primes less than 500: [7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499]
There are 35 long primes less than 500
There are 60 long primes less than 1000
There are 116 long primes less than 2000
There are 218 long primes less than 4000
There are 390 long primes less than 8000
There are 716 long primes less than 16000
There are 1300 long primes less than 32000
There are 2430 long primes less than 64000```

Visual Basic .NET

Translation of: C#
```Imports System, System.Collections.Generic, System.Linq, System.Console

Module LongPrimes

Function Period(ByVal n As Integer) As Integer
Dim m As Integer, r As Integer = 1
For i As Integer = 0 To n : r = 10 * r Mod n : Next
m = r : Period = 1 : While True
r = (10 * r) Mod n : If r = m Then Return Period
Period += 1 : End While
End Function

Sub Main()
Dim primes As IEnumerable(Of Integer) = SomePrimeGenerator.Primes(64000).Skip(1).Where(Function(p) Period(p) = p - 1).Append(99999)
Dim count As Integer = 0, limit As Integer = 500
WriteLine(String.Join(" ", primes.TakeWhile(Function(p) p <= limit)))
For Each prime As Integer In primes
If prime > limit Then
WriteLine(\$"There are {count} long primes below {limit}")
limit <<= 1 : End If : count += 1 : Next
End Sub

End Module

Module SomePrimeGenerator

Iterator Function Primes(lim As Integer) As IEnumerable(Of Integer)
Dim flags As Boolean() = New Boolean(lim) {},
j As Integer = 2, d As Integer = 3, sq As Integer = 4
While sq <= lim
If Not flags(j) Then
Yield j : For k As Integer = sq To lim step j
flags(k) = True : Next
End If : j += 1 : d += 2 : sq += d
End While : While j <= lim
If Not flags(j) Then Yield j
j += 1 : End While
End Function

End Module
```
Output:

Same output as C#.

Wren

Translation of: Go
Library: Wren-fmt
Library: Wren-math
```import "/fmt" for Fmt
import "/math" for Int

// finds the period of the reciprocal of n
var findPeriod = Fn.new { |n|
var r = 1
for (i in 1..n+1) r = (10*r) % n
var rr = r
var period = 0
var ok = true
while (ok) {
r = (10*r) % n
period = period + 1
ok = (r != rr)
}
return period
}

var primes = Int.primeSieve(64000).skip(1)
var longPrimes = []
for (prime in primes) {
if (findPeriod.call(prime) == prime - 1) longPrimes.add(prime)
}
var numbers = [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
var index = 0
var count = 0
var totals = List.filled(numbers.count, 0)
for (longPrime in longPrimes) {
if (longPrime > numbers[index]) {
totals[index] = count
index = index + 1
}
count = count + 1
}
totals[-1] = count
System.print("The long primes up to %(numbers[0]) are: ")
System.print(longPrimes[0...totals[0]].join(" "))

System.print("\nThe number of long primes up to: ")
var i = 0
for (total in totals) {
System.print("  %(Fmt.d(5, numbers[i])) is %(total)")
i = i + 1
}
```
Output:
```The long primes up to 500 are:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

XBasic

Translation of: C
Works with: Windows XBasic
```PROGRAM "longprimes"
VERSION "0.0002"

DECLARE FUNCTION Entry()
INTERNAL FUNCTION Sieve(limit&, primes&[], count%)
INTERNAL FUNCTION FindPeriod(n&)

FUNCTION Entry()
DIM numbers&[7]
numbers&[0] = 500
numbers&[1] = 1000
numbers&[2] = 2000
numbers&[3] = 4000
numbers&[4] = 8000
numbers&[5] = 16000
numbers&[6] = 32000
numbers&[7] = 64000
numberUpperBound% = UBOUND(numbers&[])
DIM totals%[numberUpperBound%]
DIM primes&[6499]
PRINT
Sieve(64000, @primes&[], @primeCount%)
DIM longPrimes&[primeCount% - 1] ' Surely longCount% < primeCount%
longCount% = 0
FOR i% = 0 TO primeCount% - 1
prime& = primes&[i%]
IF FindPeriod(prime&) = prime& - 1 THEN
longPrimes&[longCount%] = prime&
INC longCount%
END IF
NEXT i%
count% = 0
index% = 0
FOR i% = 0 TO longCount% - 1
IF longPrimes&[i%] > numbers&[index%] THEN
totals%[index%] = count%
INC index%
END IF
INC count%
NEXT i%
totals%[numberUpperBound%] = count%
PRINT "The long primes up to"; numbers&[0]; " are:"
PRINT "[";
FOR i% = 0 TO totals%[0] - 2
PRINT STRING\$(longPrimes&[i%]); " ";
NEXT i%
IF totals%[0] > 0 THEN
PRINT STRING\$(longPrimes&[totals%[0] - 1]);
END IF
PRINT "]"
PRINT
PRINT "The number of long primes up to:"
FOR i% = 0 TO numberUpperBound%
PRINT FORMAT\$("  #####", numbers&[i%]); " is"; totals%[i%]
NEXT i%
END FUNCTION

FUNCTION Sieve(limit&, primes&[], count%)
DIM c@[limit&]
FOR i& = 0 TO limit&
c@[i&] = 0
NEXT i&
' No need to process even numbers
p% = 3
n% = 0
p2& = p% * p%
DO WHILE p2& <= limit&
FOR i& = p2& TO limit& STEP 2 * p%
c@[i&] = 1
NEXT i&
DO
p% = p% + 2
LOOP UNTIL !c@[p%]
p2& = p% * p%
LOOP
FOR i& = 3 TO limit& STEP 2
IFZ c@[i&] THEN
primes&[n%] = i&
INC n%
END IF
NEXT i&
count% = n%
END FUNCTION

' Finds the period of the reciprocal of n&
FUNCTION FindPeriod(n&)
r& = 1
period& = 0
FOR i& = 1 TO n& + 1
r& = (10 * r&) MOD n&
NEXT i&
rr& = r&
DO
r& = (10 * r&) MOD n&
INC period&
LOOP UNTIL r& = rr&
END FUNCTION period&

END PROGRAM
```
Output:
```Please wait.

The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```

zkl

Using GMP (GNU Multiple Precision Arithmetic Library, probabilistic primes), because it is easy and fast to generate primes.

```var [const] BN=Import("zklBigNum");  // libGMP
primes,p := List.createLong(7_000), BN(3);  // one big alloc vs lots of allocs
while(p.nextPrime()<=64_000){ primes.append(p.toInt()) } // 6412 of them, skipped 2
primes.append(p.toInt());	// and one more so tail prime is >64_000

longPrimes:=primes.filter(fcn(p){ findPeriod(p)==p-1 }); // yawn
fcn findPeriod(n){
r,period := 1,0;
do(n){ r=(10*r)%n }
rr:=r;
while(True){   // reduce is more concise but 2.5 times slower
r=(10*r)%n;
period+=1;
if(r==rr) break;
}
period
}```
```fiveHundred:=longPrimes.filter('<(500));
println("The long primes up to 500 are:\n",longPrimes.filter('<(500)).concat(","));

println("\nThe number of long primes up to:");
foreach n in (T(500, 1000, 2000, 4000, 8000, 16000, 32000, 64000)){
println("  %5d is %d".fmt( n, longPrimes.filter1n('>(n)) ));
}```
Output:
```The long primes up to 500 are:
7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499

The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
```