Legendre prime counting function: Difference between revisions

→‎{{header|Nim}}: Added Mojo Partial Sieving version...
(→‎Iterative, partial sieving: Changed 2 variable names to align with V of which it is a translation.)
(→‎{{header|Nim}}: Added Mojo Partial Sieving version...)
 
(18 intermediate revisions by 8 users not shown)
Line 33:
<br>
<br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">
F primes_up_to_limit(Int limit)
[Int] r
I limit >= 2
r.append(2)
 
V isprime = [1B] * ((limit - 1) I/ 2)
V sieveend = Int(sqrt(limit))
L(i) 0 .< isprime.len
I isprime[i]
Int p = i * 2 + 3
r.append(p)
I i <= sieveend
L(j) ((p * p - 3) >> 1 .< isprime.len).step(p)
isprime[j] = 0B
R r
 
V p = primes_up_to_limit(Int(sqrt(1'000'000'000)))
 
F phi(x, =a)
F phi_cached(x, a)
[(Int, Int) = Int] :cache
I (x, a) C :cache
R :cache[(x, a)]
V r = phi(x, a)
:cache[(x, a)] = r
R r
 
V res = 0
L
I a == 0 | x == 0
R x + res
 
a--
res -= phi_cached(x I/ :p[a], a)
 
F legpi(n)
I n < 2
R 0
 
V a = legpi(Int(sqrt(n)))
R phi(n, a) + a - 1
 
L(e) 10
print(‘10^’e‘ ’legpi(10 ^ e))
</syntaxhighlight>
 
{{out}}
<pre>
10^0 0
10^1 4
10^2 25
10^3 168
10^4 1229
10^5 9592
10^6 78498
10^7 664579
10^8 5761455
10^9 50847534
</pre>
 
=={{header|C}}==
Line 54 ⟶ 118:
 
int64_t countPrimes(uint64_t n) {
if (n < 39) return (n < 2) ? 0 : ((int64_t)n + 1) / 2;
uint64_t rtlmt = (uint64_t)sqrt((double)n);
int64_t mxndx = (int64_t)((rtlmt - 1) / 2);
Line 740 ⟶ 804:
 
The above function enjoys quite a large gain in speed of about a further ten times over the immediately preceding version due to not using recursion at all and the greatly reduced computational complexity of O(n**(3/4)/((log n)**2)) instead of the almost-linear-for-large-counting-ranges O(n/((log n)**2)) for the previous two versions, although the previous two versions differ in performance by a constant factor due to the overheads of recursion and division. This version of prime counting function might be considered to be reasonably useful for counting primes up to a 1e16 in almost two minutes as long as the computer used has the required free memory of about 800 Megabytes. This Crystal version is about twice as slow as the Nim version from which it was translated because Nim's default GCC back-end is better at optimization (at least for this algorithm) than the LLVM back-end used by Crystal and also there is more numeric calculation checking such as numeric overflow used in Crystal that can't be turned off. At that, this version is about the same speed as when translated to Rust, which also uses a LLVM back-end.
 
=={{header|Elm}}==
 
Currently, Elm does not have linear arrays and has no mutation whatsoever, even array content mutation protected by "monadic function chains" as for Haskell, so many algorithms can't be easily implemented such as the Legendre Partial Sieving algorithm which requires random access to linear arrays whose contents are mutated according to previous passes. However, given a prime number generator based on persistent data structures such as the List version [[https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Elm|from the Sieve of Eratosthenes task page]], one can translate the algorithm of the "bottom-up" recursive version without the "TinyPhi" Look Up Table (LUT) optmization which would need a linear array to implement, as in the following code:
<syntaxhighlight lang="elm">module Main exposing (main)
 
import Browser exposing (element)
import Task exposing (Task, succeed, perform, andThen)
import Html exposing (div, text)
import Time exposing (now, posixToMillis)
 
type CIS a = CIS a (() -> CIS a) -- infinite Co-Inductive Stream...
 
uptoCIS2List : comparable -> CIS comparable -> List comparable
uptoCIS2List n cis =
let loop (CIS hd tl) lst =
if hd > n then List.reverse lst
else loop (tl()) (hd :: lst)
in loop cis []
 
-- require a range of primes by Sieve of Eratosthenes...
primesTreeFolding : () -> CIS Int
primesTreeFolding() =
let
merge (CIS x xtl as xs) (CIS y ytl as ys) =
case compare x y of
LT -> CIS x <| \ () -> merge (xtl()) ys
EQ -> CIS x <| \ () -> merge (xtl()) (ytl())
GT -> CIS y <| \ () -> merge xs (ytl())
pmult bp =
let adv = bp + bp
pmlt p = CIS p <| \ () -> pmlt (p + adv)
in pmlt (bp * bp)
allmlts (CIS bp bptl) =
CIS (pmult bp) <| \ () -> allmlts (bptl())
pairs (CIS frst tls) =
let (CIS scnd tlss) = tls()
in CIS (merge frst scnd) <| \ () -> pairs (tlss())
cmpsts (CIS (CIS hd tl) tls) =
CIS hd <| \ () -> merge (tl()) <| cmpsts <| pairs (tls())
testprm n (CIS hd tl as cs) =
if n < hd then CIS n <| \ () -> testprm (n + 2) cs
else testprm (n + 2) (tl())
oddprms() =
CIS 3 <| \ () -> testprm 5 <| cmpsts <| allmlts <| oddprms()
in CIS 2 <| \ () -> oddprms()
 
countPrimesTo : Float -> Float -- only use integral values!
countPrimesTo n =
if n < 3 then if n < 2 then 0 else 1 else
let nnf = toFloat (floor n) -- erase fractional part!
sqrtn = sqrt nnf |> truncate
oprms = primesTreeFolding() |> uptoCIS2List sqrtn |> List.drop 1
opsz = List.length oprms
lvl opi opilmt plst m acc =
if opi >= opilmt then acc else
case plst of
[] -> acc -- should never happen
(op :: optl) ->
let opl = toFloat op
nm = m * opl in
if nnf <= nm * opl then acc + toFloat (opilmt - opi) else
let q = nnf / nm |> floor |> toFloat
nacc = acc + q - toFloat (floor (q / 2))
sacc = if opi <= 0 then 0 else lvl 0 opi oprms nm 0
in lvl (opi + 1) opilmt optl m (nacc - sacc)
in nnf - toFloat (floor (nnf / 2)) - lvl 0 opsz oprms 1 0 + toFloat opsz
 
-- run the required task tests...
timemillis : () -> Task Never Int -- a side effect function
timemillis() = now |> andThen (\ t -> succeed (posixToMillis t))
 
test : () -> Cmd Msg -- side effect function chain (includes "perform")...
test() =
timemillis()
|> andThen (\ strt ->
let rsltstrs = List.range 0 9 |> List.map ( \ n ->
"π(10^" ++ String.fromInt n ++ ") = " ++
String.fromFloat (countPrimesTo (toFloat (10^n))))
in timemillis()
|> andThen (\ stop ->
succeed (List.append rsltstrs ["This took "
++ String.fromInt (stop - strt)
++ " milliseconds."])))
|> perform Done
 
-- following code has to do with outputting to a web page using MUV/TEA...
type alias Model = List String
 
type Msg = Done Model
 
main : Program () Model Msg
main = -- starts with empty list of strings; views model of filled list...
element { init = \ _ -> ( [], test() )
, update = \ (Done mdl) _ -> ( mdl , Cmd.none )
, subscriptions = \ _ -> Sub.none
, view = div [] << List.map (div [] << List.singleton << text) }</syntaxhighlight>
{{out}}
<pre>π(10^0) = 0
π(10^1) = 4
π(10^2) = 25
π(10^3) = 168
π(10^4) = 1229
π(10^5) = 9592
π(10^6) = 78498
π(10^7) = 664579
π(10^8) = 5761455
π(10^9) = 50847534
This took 341 milliseconds.</pre>
 
=={{header|Erlang}}==
Line 994 ⟶ 1,167:
 
The above function enjoys quite a large gain in speed of about a further ten times over the immediately preceding version (although one can't see that gain for these trivial ranges as it is buried in the constant overheads) due to not using recursion at all and the greatly reduced computational complexity of O(n**(3/4)/((log n)**2)) instead of the almost-linear-for-large-counting-ranges O(n/((log n)**2)) for the previous two versions, although the previous two versions differ in performance by a constant factor due to the overheads of recursion and division; for instance, this version can calculate the number of primes to 1e11 in about a hundred milliseconds. This version of prime counting function might be considered to be reasonably useful for counting primes up to a 1e16 in about a hundred seconds as long as the computer used has the required free memory of about 800 Megabytes. This F# version is about twice as slow as the Nim version from which it was translated due to the benefits of native code compilation and more optimizations for Nim rather than JIT compilation for F#. At that, this version is about the same speed as when translated to Rust and Crystal once the range is increased where constant overheads aren't a factor, which both use native code compilers.
 
=={{header|FreeBASIC}}==
 
{{incorrect|FreeBASIC|This is not a Legendre prime counting function but a very inefficient trial division (`Mod`) sieve.}}
 
<syntaxhighlight lang="vbnet">Function isPrime(n As Uinteger) As Boolean
Dim As Uinteger i
For i = 2 To Sqr(n)
If n Mod i = 0 Then Return False
Next i
Return True
End Function
 
Dim As Uinteger n, i, j, count
Dim Shared As Ulongint primes(1e8)
n = 1
For i = 0 To 9
count = 0
For j = 2 To n
If isPrime(j) Then
count += 1
primes(count) = j
End If
Next j
Print "10^"; i; " "; count
n *= 10
Next i
 
Sleep</syntaxhighlight>
 
=={{header|Go}}==
Line 1,137 ⟶ 1,339:
 
func countPrimes(n uint64) int64 {
if n < 39 {
if n < 2 {
return 0
} else {
return (int64(n) + 1) / 2
}
}
Line 2,056 ⟶ 2,258:
10^9 50847534
0.003234 seconds (421 allocations: 14.547 KiB)
</pre>
=== nonrecursive method ===
{{trans|Nim}}
<syntaxhighlight lang="julia">
function countprimes(n)
n < 3 && return typeof(n)(n > 1)
rtlmt = isqrt(n)
mxndx = (rtlmt - 1) ÷ 2
smalls::Array{UInt32} = [i for i in 0:mxndx+1]
roughs::Array{UInt32} = [i + i + 1 for i in 0:mxndx+1]
larges::Array{Int64} = [(n ÷ (i + i + 1) - 1) ÷ 2 for i in 0:mxndx+1]
cmpsts = falses(mxndx + 1)
bp, npc, mxri = 3, 0, mxndx
@inbounds while true
i = bp >> 1
sqri = (i + i) * (i + 1)
sqri > mxndx && break
if !cmpsts[i + 1]
cmpsts[i + 1] = true
for c in sqri:bp:mxndx
cmpsts[c + 1] = true
end
ri = 0
for k in 0:mxri
q = roughs[k + 1]
qi = q >> 1
cmpsts[qi + 1] && continue
d = UInt64(bp) * UInt64(q)
larges[ri + 1] = larges[k + 1] + npc -
(d <= rtlmt ? larges[smalls[d >> 1 + 1] - npc + 1]
: smalls[(Int(floor(n / d)) - 1) >> 1 + 1])
roughs[ri + 1] = q
ri += 1
end
m = mxndx
@simd for k in (rtlmt ÷ bp - 1) | 1 : -2 : bp
c = smalls[k >> 1 + 1] - npc
ee = (k * bp) >> 1
while m >= ee
smalls[m + 1] -= c
m -= 1
end
end
mxri = ri - 1
npc += 1
end
bp += 2
end
 
result = larges[1]
@simd for i in 2:mxri+1
result -= larges[i]
end
result += (mxri + 1 + 2 * (npc - 1)) * mxri ÷ 2
 
for j in 1:mxri
p = UInt64(roughs[j + 1])
m = n ÷ p
ee = smalls[(Int(floor(m / p)) - 1) >> 1 + 1] - npc
ee <= j && break
for k in j+1:ee
result += smalls[(Int(floor(m / roughs[k + 1])) - 1) >> 1 + 1]
end
result -= (ee - j) * (npc + j - 1)
end
return result + 1
end
 
for i in 0:14
println("π(10^$i) = ", countprimes(10^i))
end
 
@time countprimes(10^13)
@time countprimes(10^14)
</syntaxhighlight>{{out}}
<pre>
π(10^0) = 0
π(10^1) = 4
π(10^2) = 25
π(10^3) = 168
π(10^4) = 1229
π(10^5) = 9592
π(10^6) = 78498
π(10^7) = 664579
π(10^8) = 5761455
π(10^9) = 50847534
π(10^10) = 455052511
π(10^11) = 4118054813
π(10^12) = 37607912018
π(10^13) = 346065536839
π(10^14) = 3204941750802
0.894891 seconds (13 allocations: 48.442 MiB, 1.06% gc time)
4.479385 seconds (13 allocations: 153.185 MiB, 0.12% gc time)
</pre>
 
Line 2,286 ⟶ 2,581:
5761455
50847534</pre>
 
=={{header|Mojo}}==
 
Currently, Mojo does not allow many forms of recursion so the simple recursive solutions are not possible; however, those are much slower than the solution by partial sieving anyway, as per the following code:
 
{{trans|Nim}}
 
<syntaxhighlight lang="mojo">from time import (now)
 
alias cLIMIT: UInt64 = 100_000_000_000
 
@always_inline
fn mkMasks() -> DTypePointer[DType.uint8]:
let rslt = DTypePointer[DType.uint8].alloc(8)
for i in range(8): rslt.offset(i).store(1 << i)
return rslt
 
let masksp = mkMasks()
 
fn intsqrt(n: UInt64) -> UInt64:
if n < 4:
if n < 1: return 0 else: return 1
var x: UInt64 = n; var qn: UInt64 = 0; var r: UInt64 = 0
while qn < 64 and (1 << qn) <= n:
qn += 2
var q: UInt64 = 1 << qn
while q > 1:
if qn >= 64:
q = 1 << (qn - 2); qn = 0
else:
q >>= 2
let t: UInt64 = r + q
r >>= 1
if x >= t:
x -= t; r += q
return r
 
fn countPrimes(n: UInt64) -> Int64:
if n < 3:
if n < 2: return 0
else: return 1
let rtlmt: Int = intsqrt(n).to_int() # precision limits range to maybe 1e16!
let mxndx = (rtlmt - 1) >> 1
@always_inline
fn half(n: Int64) -> Int64 : return ((n - 1) // 2)
@always_inline
fn divide(nm: UInt64, d: UInt64) -> Int64: return ((nm * 1.0) / (d * 1.0)).to_int()
let smalls = # current accumulated counts of odd primes 1 to sqrt range
DTypePointer[DType.uint32].alloc(mxndx + 1)
# initialized for no sieving whatsoever other than odds-only - partial sieved by 2:
# 0 odd primes to 1; 1 odd prime to 3, etc....
for i in range(mxndx + 1): smalls.offset(i).store(i)
let roughs = # current odd k-rough numbers up to sqrt of range; k = 2
DTypePointer[DType.uint32].alloc(mxndx + 1)
# initialized to all odd positive numbers 1, 3, 5, ... sqrt range...
for i in range(mxndx + 1): roughs.offset(i).store(i + i + 1)
# array of current phi counts for above roughs...
# these are not strictly `phi`'s since they also include the
# count of base primes in order to match the above `smalls` definition!
let larges = # starts as size of counts just as `roughs` so they align!
DTypePointer[DType.uint64].alloc(mxndx + 1)
# initialized for current roughs after accounting for even prime of two...
for i in range(mxndx + 1): larges.offset(i).store((n // (i + i + 1) - 1) // 2)
# cmpsts is a bit-packed boolean array representing
# odd composite numbers from 1 up to rtlmt used for sieving...
# initialized as "zeros" meaning all odd positives are potentially prime
# note that this array starts at (and keeps) 1 to match the algorithm even
# though 1 is not a prime, as 1 is important in computation of phi...
let cmpsts = DTypePointer[DType.uint8].alloc((mxndx + 8) // 8)
memset_zero(cmpsts, (mxndx + 8) // 8)
 
# number of found base primes and current highest used rough index...
var npc: Int = 0; var mxri: Int = mxndx
for i in range(1, mxndx + 1): # start at index for 3; i will never reach mxndx...
let sqri = (i + i) * (i + 1) # computation of square index!
if sqri > mxndx: break # stop partial sieving due to square index limit!
if (cmpsts.offset(i >> 3).load() & masksp.offset(i & 7).load()) != 0: continue # if not prime
# culling the base prime from cmpsts means it will never be found again
let cp = cmpsts.offset(i >> 3)
cp.store(cp.load() | masksp.offset(i & 7).load()) # cull base prime
let bp = i + i + 1 # base prime from index!
for c in range(sqri, mxndx + 1, bp): # SoE culling of all bp multiples...
let cp = cmpsts.offset(c >> 3); cp.store(cp.load() | masksp.offset(c & 7).load())
# partial sieving to current base prime is now completed!
 
var ri: Int = 0 # to keep track of current used roughs index!
for k in range(mxri + 1): # processing over current roughs size...
# q is not necessarily a prime but may be a
# product of primes not yet culled by partial sieving;
# this is what saves operations compared to recursive Legendre:
let q: UInt64 = roughs.offset(k).load().to_int(); let qi = q >> 1 # index of always odd q!
# skip over values of `q` already culled in the last partial sieve:
if (cmpsts.offset(qi >> 3).load() & masksp.offset(qi & 7).load()) != 0: continue
# since `q` cannot be equal to bp due to cull of bp and above skip;
let d: UInt64 = bp * q # `d` is odd product of some combination of odd primes!
# the following computation is essential to the algorithm's speed:
# see above description in the text for how this works:
larges.offset(ri).store(larges.offset(k).load() -
(larges.offset(smalls.offset(d >> 1).load().to_int() - npc).load() if d <= rtlmt
else smalls.offset(half(divide(n, d))).load().to_int()) + npc)
# eliminate rough values that have been culled in partial sieve:
# note that `larges` and `roughs` indices relate to each other!
roughs.offset(ri).store(q.to_int()); ri += 1 # update rough value; advance rough index
 
var m = mxndx # adjust `smalls` counts for the newly culled odds...
# this is faster than recounting over the `cmpsts` array for each loop...
for k in range(((rtlmt // bp) - 1) | 1, bp - 1, -2): # k always odd!
# `c` is correction from current count to desired count...
# `e` is end limit index no correction is necessary for current cull...
let c = smalls.offset(k >> 1).load() - npc; let e = (k * bp) >> 1
while m >= e:
let cp = smalls.offset(m)
cp.store(cp.load() - c); m -= 1 # correct over range down to `e`
mxri = ri - 1; npc += 1 # set next loop max roughs index; count base prime
# now `smalls` is a LUT of odd prime accumulated counts for all odd primes;
# `roughs` is exactly the "k-roughs" up to the sqrt of range with `k` the
# index of the next prime above the quad root of the range;
# `larges` is the partial prime counts for each of the `roughs` values...
# note that `larges` values include the count of the odd base primes!!!
# `cmpsts` are never used again!
# the following does the top most "phi tree" calculation:
var result: Int64 = larges.load().to_int() # the answer to here is all valid `phis`
for i in range(1, mxri + 1): result -= larges.offset(i).load().to_int() # combined here by subtraction
# compensate for the included odd base prime counts over subracted above:
result += ((mxri + 1 + 2 * (npc - 1)) * mxri // 2)
 
# This loop adds the counts due to the products of the `roughs` primes,
# of which we only use two different ones at a time, as all the
# combinations with lower primes than the cube root of the range have
# already been computed and included with the previous major loop...
# see text description above for how this works...
for j in range(1, mxri + 1): # for all `roughs` (now prime) not including one:
let p: UInt64 = roughs.offset(j).load().to_int()
let m: UInt64 = (n // p) # `m` is the `p` quotient
# so that the end limit `e` can be calculated based on `n`/(`p`^2)
let e: Int = smalls.offset(half((m // p).to_int())).load().to_int() - npc
# following break test equivalent to non-memoization/non-splitting optmization:
if e <= j: break # stop at about `p` of cube root of range!
for k in range(j + 1, e + 1): # for all `roughs` greater than `p` to end limit:
result += smalls.offset(half(divide(m, roughs.offset(k).load().to_int()))).load().to_int()
# compensate for all the extra base prime counts just added!
result -= ((e - j) * (npc + j - 1))
 
result += 1 # include the count for the only even prime of two
smalls.free(); roughs.free(); larges.free(); cmpsts.free()
 
return result
 
fn main():
var pow: Int = 1
for i in range(10):
print('10^', i, '=', countPrimes(pow))
pow *= 10
let start = now()
let answr = countPrimes(cLIMIT)
let elpsd = (now() - start) / 1000000
print("Found", answr, "primes up to", cLIMIT, "in", elpsd, "milliseconds.")</syntaxhighlight>
 
{{out}}
 
<pre>10^ 0 = 0
10^ 1 = 4
10^ 2 = 25
10^ 3 = 168
10^ 4 = 1229
10^ 5 = 9592
10^ 6 = 78498
10^ 7 = 664579
10^ 8 = 5761455
10^ 9 = 50847534
Found 4118054813 primes up to 100000000000 in 16.696860000000001 milliseconds.</pre>
 
This is as run on an AMD 7840HS single-thread boosted to 5.1 GHz. It is over twice as slow as when run from the Nim code it is translated from, likely due to LLVM not handling this algorithm as well as the GCC compiler that did the final "back-end" compilation for the Nim code.
 
=={{header|Nim}}==
Line 2,322 ⟶ 2,791:
for i in 0..9:
echo "π(10^$1) = $2".format(i, π(n))
n *= 10</syntaxhighlight></syntaxhighlight>
 
This is not quite as fast as the Nim version or other languages whose back end is C as the LLVM-based back ends don't compile to quite the same optimization level for this algorithm than does GCC.
 
{{out}}
Line 2,650 ⟶ 3,121:
 
As counting range is increased above these trivial ranges, a better algorithm such as that of LMO will likely perform much better than this and use much less memory (to proportional to the cube root of the range), although at the cost of greater code complexity and more lines of code (about 500 LOC). The trade-off between algorithms of the Legendre type and those of the Meissel type is that the latter decreases the time complexity but at the cost of more time spent sieving; modern follow-on work to LMO produces algorithms which are able to tune the balance between Legendre-type and Meissel-type algorithm in trading off the execution time costs between the different parts of the given algorithm for the best in performance, with the latest in Kim Walisch's tuning of Xavier Gourdon's work being about five to ten times faster than LMO (plus includes multi-threading abilities).
 
=={{header|Pascal}}==
<syntaxhighlight lang="pascal">
// Rosetta Code task "Legendre prime counting function".
// Solution for Free Pascal (Lazarus) or Delphi.
program LegendrePrimeCount;
 
{$IFDEF FPC} // Free Pascal
{$MODE Delphi}
{$ELSE} // Delphi
{$APPTYPE CONSOLE}
{$ENDIF}
 
// Optimization needs to be on if the program is to finish in a reasonable
// length of time. See "Comments on Task" on the Rosetta Code website.
{$DEFINE SIMPLE_OPTIMIZATION}
 
uses SysUtils, Types;
 
{-------------------------------------------------------------------
Function to return an array of primes up to the passed-in limit.
Uses a straightforward Eratosthenes sieve.
TIntegerDynArray must be 0-based. To be compatible with Rosetta Code,
the first prime 2 is at result[1], and result[0] is not used.
}
function FindPrimes( limit : integer) : Types.TIntegerDynArray;
var
deleted : array of boolean;
j, k, p, resultSize : integer;
begin
if (limit < 2) then begin
SetLength( result, 1);
exit;
end;
SetLength( deleted, limit + 1); // 0..limit
deleted[0] := true;
for j := 1 to limit do deleted[j] := false;
p := 2;
while (p*p <= limit) do begin
j := 2*p;
while (j <= limit) do begin
deleted[j] := true;
inc( j, p);
end;
repeat inc(p)
until (p > limit) or (not deleted[p]);
end;
resultSize := 0;
for j := 0 to limit do
if not deleted[j] then inc( resultSize);
SetLength( result, resultSize);
k := 0;
for j := 0 to limit do begin
if not deleted[j] then begin
result[k] := j;
inc(k);
end;
end;
end;
 
{-----------------------------------------------------------------------------
Function to count primes up to the passed-in limit, by Legendre's method.
Iterative, using a stack. Each item in the stack is a term phi(x,a) along
with a sign. If the top item on the stack can be evaluated easily, it is
popped off and its value is added to the result. Else the top item is
replaced by two items according to the formual in the task description.
}
function CountPrimes( n : integer) : integer;
type
TPhiTerm = record
IsNeg : boolean;
x : integer;
a : integer;
end;
const
STACK_SIZE = 100; // 10 is enough for n = 10^9
var
primes : Types.TIntegerDynArray;
nrPrimes : integer;
stack : array [0..STACK_SIZE - 1] of TPhiTerm;
sp : integer; // stack pointer, points to first free entry
tos : TPhiTerm; // top of stack
begin
primes := FindPrimes( Trunc( Sqrt( n + 0.5)));
nrPrimes := Length( primes) - 1; // primes[0] is not used
result := nrPrimes - 1; // initialize total
// Push initial entry onto stack
with stack[0] do begin
IsNeg := false;
x := n;
a := nrPrimes;
end;
sp := 1;
while sp > 0 do begin
tos := stack[sp - 1];
{$IFDEF SIMPLE_OPTIMIZATION}
// Using optimization described in "Comments on Task"
if tos.x = 0 then begin // top of stack = 0
dec(sp); // pop top of stack, no change to result
end
else if (tos.a > 0) and (tos.x < primes[tos.a]) then begin // top of stack = 1
dec( sp); // pop top of stack, update result
if tos.IsNeg then dec( result)
else inc( result);
end
else if tos.a = 0 then begin
{$ELSE}
// Using only the task description, i.e. only phi(x,0) = x
if tos.a = 0 then begin
{$ENDIF}
dec( sp); // pop top of stack, update result
if tos.IsNeg then dec( result, tos.x)
else inc( result, tos.x);
end
else begin
// Replace top of stack by two items as in the task description,
// namely phi(x, a - 1) and -phi(x div primes[a], a - 1)
if (sp >= STACK_SIZE) then
raise SysUtils.Exception.Create( 'Legendre phi stack overflow');
with stack[sp - 1] do begin
IsNeg := tos.isNeg;
x := tos.x;
a := tos.a - 1;
end;
with stack[sp] do begin
IsNeg := not tos.IsNeg;
x := tos.x div primes[tos.a];
a := tos.a - 1;
end;
inc(sp);
end;
end;
end;
 
{-----------------------------------------------------------
Main routine
}
var
power, limit, count : integer;
begin
WriteLn( 'Limit Count');
limit := 1;
for power := 0 to 9 do begin
if power > 0 then limit := 10*limit;
count := CountPrimes( limit);
WriteLn( SysUtils.Format( '10^%d %10d', [power, count]))
end;
end.
</syntaxhighlight>
{{out}}
<pre>
Limit Count
10^0 0
10^1 4
10^2 25
10^3 168
10^4 1229
10^5 9592
10^6 78498
10^7 664579
10^8 5761455
10^9 50847534
</pre>
 
=={{header|Perl}}==
Line 2,763 ⟶ 3,397:
</pre>
<small>(It is about 4 times slower under pwa/p2js so output is limited to 10^8, unless you like staring at a blank screen for 52s)</small>
=== Non-recursive partial sieve ===
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #7060A8;">requires</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"1.0.2"</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- (for in, tagstart)</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">half</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">((</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span> <span style="color: #000080;font-style:italic;">// convenience convert to idx</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">count_primes</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">// non-recursive Legendre prime counting function for a range `n`...
// has O(n^(3/4)/((log n)^2)) time complexity; O(n^(1/2)) space complexity.</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">n</span><span style="color: #0000FF;"><</span><span style="color: #000000;">3</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #7060A8;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;"><</span><span style="color: #000000;">2</span><span style="color: #0000FF;">?</span><span style="color: #000000;">0</span><span style="color: #0000FF;">:</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span> <span style="color: #000080;font-style:italic;">// can't odd sieve for n less than 3!</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">sqrtn</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trunc</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">sqrt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)),</span> <span style="color: #000080;font-style:italic;">// (actual limit)</span>
<span style="color: #000000;">mxndx</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">((</span><span style="color: #000000;">sqrtn</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">// odds-only limit
--
-- smalls is the current accumulated counts of odd primes 1 to sqrt(n), initialized
-- to odds-only sieving, ie {0,1,2,3,4...} meaning 0 odd primes to 1, 1 o.p to 3,...
--
-- roughs is the current odd k-rough numbers up to sqrt of range; k = 2
-- initialized to all odd positive numbers 1, 3, 5, 7, 9, 11, ... sqrt(n)
--
-- larges is an array of current phi counts for the above roughs... except they are
-- not strictly `phi`'s since they also include primes, to match `smalls` above!
-- initialized for current roughs after accounting for the even prime of two...
--
-- composite is a flag array representing odd numbers 1..sqrtn, for sieving.
-- initialized false, meaning all positive odd numbers are potentially prime
-- note that this array starts at (and keeps) 1 to match the algorithm even
-- though 1 is not actually a prime, as 1 is important in computation of phi...
--</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">smalls</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">tagset</span><span style="color: #0000FF;">(</span><span style="color: #000000;">mxndx</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">roughs</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">tagstart</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">mxndx</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">larges</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sq_floor_div</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">sq_sub</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">sq_div</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">,</span><span style="color: #000000;">roughs</span><span style="color: #0000FF;">),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">composite</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #004600;">false</span><span style="color: #0000FF;">,</span><span style="color: #000000;">mxndx</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">bp</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">3</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">// 'current' base prime</span>
<span style="color: #000000;">nbp</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">// number of base primes found </span>
<span style="color: #000000;">mxri</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">mxndx</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">// current highest used rough index</span>
<span style="color: #000000;">i</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">sqri</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">4</span> <span style="color: #000080;font-style:italic;">// index and square (index-1) limit
// partial sieve loop, adjusting larges/smalls, compressing larges/roughs...</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">sqri</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">mxndx</span> <span style="color: #008080;">do</span> <span style="color: #000080;font-style:italic;">// partial sieve to square index limit</span>
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #000000;">composite</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">then</span>
<span style="color: #000080;font-style:italic;">// cull from composite so they will never be found again</span>
<span style="color: #000000;">composite</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #004600;">true</span> <span style="color: #000080;font-style:italic;">// cull bp and multiples</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">c</span><span style="color: #0000FF;">=</span><span style="color: #000000;">sqri</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">mxndx</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #000000;">bp</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">composite</span><span style="color: #0000FF;">[</span><span style="color: #000000;">c</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #004600;">true</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000080;font-style:italic;">// partial sieving to current base prime is now completed!
// now adjust `larges` for latest partial sieve pass...</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">ori</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span> <span style="color: #000080;font-style:italic;">// compress input rough index(k) to output one</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">q</span> <span style="color: #008080;">in</span> <span style="color: #000000;">roughs</span> <span style="color: #008080;">to</span> <span style="color: #000000;">mxri</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #000080;font-style:italic;">// q is not necessarily prime but may be a product of primes not yet
// culled by partial sieving (saves ops cmprd to recursive Legendre)
// skip over values of `q` already culled in the last partial sieve:</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">qi</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">q</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">;</span> <span style="color: #000080;font-style:italic;">// index of always odd q!</span>
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #000000;">composite</span><span style="color: #0000FF;">[</span><span style="color: #000000;">qi</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">then</span>
<span style="color: #000080;font-style:italic;">// since `q` cannot be equal to bp due to cull of bp and above skip;</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">d</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">bp</span><span style="color: #0000FF;">*</span><span style="color: #000000;">q</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">// `d` is odd product of some combination of odd primes!
// the following computation is essential to the algorithm's speed,
// see the Nim entry for the full details of how this works</span>
<span style="color: #000000;">dadj</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">d</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">sqrtn</span> <span style="color: #0000FF;">?</span> <span style="color: #000000;">larges</span><span style="color: #0000FF;">[</span><span style="color: #000000;">smalls</span><span style="color: #0000FF;">[</span><span style="color: #000000;">half</span><span style="color: #0000FF;">(</span><span style="color: #000000;">d</span><span style="color: #0000FF;">)]-</span><span style="color: #000000;">nbp</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
<span style="color: #0000FF;">:</span> <span style="color: #000000;">smalls</span><span style="color: #0000FF;">[</span><span style="color: #000000;">half</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">/</span><span style="color: #000000;">d</span><span style="color: #0000FF;">))])</span>
<span style="color: #000000;">ori</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #000000;">larges</span><span style="color: #0000FF;">[</span><span style="color: #000000;">ori</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">larges</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">]-</span><span style="color: #000000;">dadj</span><span style="color: #0000FF;">+</span><span style="color: #000000;">nbp</span> <span style="color: #000080;font-style:italic;">// base primes count over subtracted!
// eliminate rough values that have been culled in partial sieve:
// note that `larges` and `roughs` indices relate to each other!</span>
<span style="color: #000000;">roughs</span><span style="color: #0000FF;">[</span><span style="color: #000000;">ori</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">q</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">m</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">mxndx</span> <span style="color: #000080;font-style:italic;">// and adjust `smalls` for latest partial sieve pass...
// this is faster than recounting over the `composite` array for each loop...</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">=(</span><span style="color: #000000;">sqrtn</span><span style="color: #0000FF;">/</span><span style="color: #000000;">bp</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)||</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">bp</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">2</span> <span style="color: #008080;">do</span> <span style="color: #000080;font-style:italic;">// k always odd!
// `c` is correction from current count to desired count...
// `e` is end limit index no correction is necessary for current cull...</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">smalls</span><span style="color: #0000FF;">[</span><span style="color: #000000;">half</span><span style="color: #0000FF;">(</span><span style="color: #000000;">k</span><span style="color: #0000FF;">)]-</span><span style="color: #000000;">nbp</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">((</span><span style="color: #000000;">k</span><span style="color: #0000FF;">*</span><span style="color: #000000;">bp</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">m</span><span style="color: #0000FF;">>=</span><span style="color: #000000;">e</span> <span style="color: #008080;">do</span>
<span style="color: #000080;font-style:italic;">-- smalls[m+1] -= c -- (grr, js! [I have a plan, working on it])</span>
<span style="color: #000000;">m</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #000000;">smalls</span><span style="color: #0000FF;">[</span><span style="color: #000000;">m</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">-=</span> <span style="color: #000000;">c</span>
<span style="color: #000080;font-style:italic;">-- m -= 1</span>
<span style="color: #000000;">m</span> <span style="color: #0000FF;">-=</span> <span style="color: #000000;">2</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000000;">nbp</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span> <span style="color: #000080;font-style:italic;">// increase number of found base primes</span>
<span style="color: #000000;">mxri</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">ori</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #000080;font-style:italic;">// advance rough index for later</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">bp</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">2</span>
<span style="color: #000000;">sqri</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)*(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">i</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #000080;font-style:italic;">// now `smalls` is a LUT of odd prime accumulated counts for all odd primes;
// `roughs` is exactly the "k-roughs" up to the sqrt of range with `k` (erm,
// mxri?) the index of the next prime above the quad root of the range;
// `larges` is the partial prime counts for each of the `roughs` values...
// note that `larges` values include the count of the odd base primes!!!
// - and `composite` is never used again!
// the following does the top-most "phi tree" calculation:
// the answer to here is all valid `phis`, combined here by subtraction,
// + compensate for included odd base prime counts over subracted above:</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">result</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">larges</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">-</span> <span style="color: #7060A8;">sum</span><span style="color: #0000FF;">(</span><span style="color: #000000;">larges</span><span style="color: #0000FF;">[</span><span style="color: #000000;">2</span><span style="color: #0000FF;">..</span><span style="color: #000000;">mxri</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">])</span>
<span style="color: #0000FF;">+</span> <span style="color: #7060A8;">trunc</span><span style="color: #0000FF;">((</span><span style="color: #000000;">mxri</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">*(</span><span style="color: #000000;">nbp</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">))*</span><span style="color: #000000;">mxri</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">+</span> <span style="color: #000000;">1</span> <span style="color: #000080;font-style:italic;">// include the only even prime, ie 2
// This loop adds the counts due to the products of the `roughs` primes,
// of which we only use two different ones at a time, as all the
// combinations with lower primes than the cube root of the range have
// already been computed and included with the previous major loop...
// see text description in the Nim entry for how this works...</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">ri</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p</span> <span style="color: #008080;">in</span> <span style="color: #000000;">roughs</span> <span style="color: #008080;">from</span> <span style="color: #000000;">2</span> <span style="color: #008080;">do</span> <span style="color: #000080;font-style:italic;">// for all `roughs` (now prime) bar '1':</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">m</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trunc</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">/</span><span style="color: #000000;">p</span><span style="color: #0000FF;">),</span> <span style="color: #000080;font-style:italic;">// `m` is the `p` quotient
// so that the end limit `e` can be calculated based on `n`/(`p`^2)</span>
<span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">smalls</span><span style="color: #0000FF;">[</span><span style="color: #000000;">half</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">m</span><span style="color: #0000FF;">/</span><span style="color: #000000;">p</span><span style="color: #0000FF;">))+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]-</span><span style="color: #000000;">nbp</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span>
<span style="color: #000080;font-style:italic;">// the following test is equivalent to non-splitting optmization:</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">e</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">ri</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span> <span style="color: #000080;font-style:italic;">// quit when no more pairs! - aka stop
// at about `p` of cube root of range!</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">=</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">e</span> <span style="color: #008080;">do</span> <span style="color: #000080;font-style:italic;">// for all `roughs` greater than `p` to limit:</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">smalls</span><span style="color: #0000FF;">[</span><span style="color: #000000;">half</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">m</span><span style="color: #0000FF;">/</span><span style="color: #000000;">roughs</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">]))];</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000080;font-style:italic;">// compensate for all the extra base prime counts just added!</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">-=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">e</span><span style="color: #0000FF;">-</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">)*(</span><span style="color: #000000;">nbp</span><span style="color: #0000FF;">+</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">-</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">result</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">time</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">expected</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">,</span><span style="color: #000000;">25</span><span style="color: #0000FF;">,</span><span style="color: #000000;">168</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1229</span><span style="color: #0000FF;">,</span><span style="color: #000000;">9592</span><span style="color: #0000FF;">,</span><span style="color: #000000;">78498</span><span style="color: #0000FF;">,</span><span style="color: #000000;">664579</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5761455</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">50847534</span><span style="color: #0000FF;">,</span><span style="color: #000000;">455052511</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4118054813</span><span style="color: #0000FF;">,</span><span style="color: #000000;">37607912018</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">346065536839</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3204941750802</span><span style="color: #0000FF;">}</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()=</span><span style="color: #004600;">JS</span><span style="color: #0000FF;">?</span><span style="color: #000000;">11</span><span style="color: #0000FF;">:</span><span style="color: #000000;">14</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span> <span style="color: #000080;font-style:italic;">-- (sp: keep js under 2s)</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">count_primes</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">))</span>
<span style="color: #7060A8;">assert</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">==</span><span style="color: #000000;">expected</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">])</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0.1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" (%s)"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"10^%d = %d%s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #000000;">e</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\nTook %s\n"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t</span><span style="color: #0000FF;">))</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
10^0 = 0
10^1 = 4
10^2 = 25
10^3 = 168
10^4 = 1229
10^5 = 9592
10^6 = 78498
10^7 = 664579
10^8 = 5761455
10^9 = 50847534
10^10 = 455052511 (0.3s)
10^11 = 4118054813 (1.7s)
10^12 = 37607912018 (7.9s)
10^13 = 346065536839 (40.8s)
10^14 = 3204941750802 (3 minutes and 44s)
 
Took 3 minutes and 44s
</pre>
About 15 times slower than Julia on the same box (gulp, earmarked for further investigation in 2.0.0).<br>
[At the last minute, I nicked the idea of using a simple bool array instead of those bit-fields from Julia.]<br>
A copy of this code [up to 1e9] has also found it's way into tests\t68forin.exw
 
=={{header|Picat}}==
Line 2,901 ⟶ 3,698:
</pre>
 
=={{header|Ruby}}==
{{trans|Wren}}
<syntaxhighlight lang="ruby">require 'prime'
 
def pi(n)
@pr = Prime.each(Integer.sqrt(n)).to_a
a = @pr.size
case n
when 0,1 then 0
when 2 then 1
else phi(n,a) + a - 1
end
end
 
def phi(x,a)
case a
when 0 then x
when 1 then x-(x>>1)
else
pa = @pr[a-1]
return 1 if x <= pa
phi(x, a-1)- phi(x/pa, a-1)
end
end
 
(0..9).each {|n| puts "10E#{n} #{pi(10**n)}" }
</syntaxhighlight>
{{out}}
<pre>10E0 0
10E1 4
10E2 25
10E3 168
10E4 1229
10E5 9592
10E6 78498
10E7 664579
10E8 5761455
10E9 50847534
</pre>
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func legendre_phi(x, a) is cached {
Line 3,107 ⟶ 3,943:
[direct_array_access]
fn count_primes_to(n u64) i64 {
if n < u64(39) { return if n < i64(2) { i64(0) } else { i64((n + 1) / 2) } }
rtlmt := u64(sqrt(f64(n)))
mxndx := i64((rtlmt - 1) / 2)
Line 3,199 ⟶ 4,035:
 
To sieve a billion numbers and then count the primes up to 10^k would take about 53 seconds in Wren so, as expected, the Legendre method represents a considerable speed up.
<syntaxhighlight lang="ecmascriptwren">import "./math" for Int
 
var pi = Fn.new { |n|
Line 3,243 ⟶ 4,079:
 
The memoized version requires a cache of around 6.5 million map entries, which at 8 bytes each (all numbers are 64 bit floats in Wren) for both the key and the value, equates in round figures to memory usage of 104 MB on top of that needed for the prime sieve. The following version strips out memoization and, whilst somewhat slower at 5.4 seconds, may be preferred in a constrained memory environment.
<syntaxhighlight lang="ecmascriptwren">import "./math" for Int
 
var pi = Fn.new { |n|
Line 3,274 ⟶ 4,110:
{{trans|Vlang}}
This non-memoized, non-recursive version is far quicker than the first two versions, running in about 114 milliseconds. Nowhere near as quick as V, of course, but acceptable for Wren which is interpreted and only has one built-in numeric type, a 64 bit float.
<syntaxhighlight lang="ecmascriptwren">import "./math" for Int
 
var masks = [1, 2, 4, 8, 16, 32, 64, 128]
Line 3,281 ⟶ 4,117:
 
var countPrimes = Fn.new { |n|
if (n < 39) return (n < 2) ? 0 : ((n + 1)/2).floor
var rtlmt = n.sqrt.floor
var mxndx = Int.quo(rtlmt - 1, 2)
474

edits