Infinity: Difference between revisions

7,685 bytes added ,  2 months ago
m
(Added XPL0 example.)
 
(36 intermediate revisions by 23 users not shown)
Line 13:
 
=={{header|11l}}==
<syntaxhighlight lang ="11l">print(Float.infinity)</langsyntaxhighlight>
 
{{out}}
Line 22:
=={{header|ActionScript}}==
ActionScript has the built in function isFinite() to test if a number is finite or not.
<langsyntaxhighlight lang="actionscript">trace(5 / 0); // outputs "Infinity"
trace(isFinite(5 / 0)); // outputs "false"</langsyntaxhighlight>
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
 
procedure Infinities is
Line 49:
Put_Line ("Supremum" & Float'Image (Sup));
Put_Line ("Infimum " & Float'Image (Inf));
end Infinities;</langsyntaxhighlight>
The language-defined attribute Machine_Overflows is defined for each floating-point type. It is true when an overflow or divide-by-zero results in Constraint_Error exception propagation. When the underlying machine type is incapable to implement this semantics the attribute is false. It is to expect that on the machines with [[IEEE]] 754 hardware Machine_Overflows is true. The language-defined attributes Succ and Pred yield the value next or previous to the argument, correspondingly.
 
Line 60:
 
Here is the code that should work for any type on any machine:
<langsyntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
 
procedure Infinities is
Line 85:
Put_Line ("Supremum" & Real'Image (Sup));
Put_Line ("Infimum " & Real'Image (Inf));
end Infinities;</langsyntaxhighlight>
Sample output. Note that the compiler is required to generate Constraint_Error even if the hardware is [[IEEE]] 754. So the upper and lower bounds are 10.0 and -10.0:
<pre>
Line 93:
===Getting rid of IEEE ideals===
There is a simple way to strip [[IEEE]] 754 ideals (non-numeric values) from a predefined floating-point type such as Float or Long_Float:
<langsyntaxhighlight lang="ada">subtype Safe_Float is Float range Float'Range;</langsyntaxhighlight>
The subtype Safe_Float keeps all the range of Float, yet behaves properly upon overflow, underflow and zero-divide.
 
Line 107:
ALGOL 68 does have some 7 built in [[Exceptions#ALGOL_68|exceptions]], these might be used to detect exceptions during transput, and so <u>if</u> the underlying hardware <u>does</u> support &infin;, then it would be detected with a ''on value error'' while printing and if ''mended'' would appear as a field full of ''error char''.
 
<langsyntaxhighlight lang="algol68">printf(($"max int: "gl$,max int));
printf(($"long max int: "gl$,long max int));
printf(($"long long max int: "gl$,long long max int));
Line 113:
printf(($"long max real: "gl$,long max real));
printf(($"long long max real: "gl$,long long max real));
printf(($"error char: "gl$,error char))</langsyntaxhighlight>
Output:
<pre>
Line 124:
error char: *
</pre>
 
=={{header|APL}}==
For built-in functions, reduction over an empty list returns the identity value for that function.
E.g., <code>+/⍬</code> gives <code>0</code>, and <code>×/⍬</code> gives 1.
 
The identity value for <code>⌊</code> (minimum) is the largest possible value. For APL implementations
that support infinity, this will be infinity. Otherwise, it will be some large, but finite value.
 
<syntaxhighlight lang="apl">inf ← {⌊/⍬}</syntaxhighlight>
{{out}}
 
[[GNU APL]]:
<pre>∞</pre>
 
[[Dyalog APL]]:
<pre>1.797693135E308</pre>
 
=={{header|Argile}}==
{{trans|C}} (simplified)
<langsyntaxhighlight Argilelang="argile">use std
printf "%f\n" atof "infinity" (: this prints "inf" :)
#extern :atof<text>: -> real</langsyntaxhighlight>
 
=={{header|AWKArturo}}==
 
<syntaxhighlight lang="rebol">print infinity
<lang AWK> BEGIN {
print neg infinity</syntaxhighlight>
 
{{out}}
 
<pre>∞
-∞</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk"> BEGIN {
k=1;
while (2^(k-1) < 2^k) k++;
INF = 2^k;
print INF;
}</langsyntaxhighlight>
 
This has been tested with GAWK 3.1.7 and MAWK, both return
<pre> inf </pre>
 
=={{header|BBC BASIC}}==
==={{header|BASIC256}}===
<syntaxhighlight lang="basic256">onerror TratoError
infinity = 1e300*1e300
end
 
TratoError:
if lasterror = 29 then print lasterrormessage
return</syntaxhighlight>
 
==={{header|BBC BASIC}}===
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> *FLOAT 64
PRINT FNinfinity
END
Line 163 ⟶ 198:
RESTORE ERROR
UNTIL maxpos = prev
= maxpos</langsyntaxhighlight>
Output:
<pre>
Line 169 ⟶ 204:
</pre>
 
==={{header|bootBASIC}}===
There are no floating point numbers in bootBASIC. All numbers and variables are 2 byte unsigned integers.
 
The code below can't print anything on the screen, plus the program won't end. No way is currently known to break out of the program.
<syntaxhighlight lang bootBASIC="BASIC">10 print 1/0</langsyntaxhighlight>
 
=={{header|BQN}}==
 
Positive infinity is just ∞:
 
<pre>
∞ + 1
∞ - 3
-∞
¯∞
∞ - ∞
NaN
</pre>
 
=={{header|C}}==
Line 178 ⟶ 230:
C89 has a macro HUGE_VAL in <math.h>. HUGE_VAL is a <tt>double</tt>. HUGE_VAL will be infinity if infinity exists, else it will be the largest possible number. HUGE_VAL is a <tt>double</tt>.
 
<langsyntaxhighlight lang="c">#include <math.h> /* HUGE_VAL */
#include <stdio.h> /* printf() */
 
Line 188 ⟶ 240:
printf("%g\n", inf());
return 0;
}</langsyntaxhighlight>
 
The output from the above program might be "inf", "1.#INF", or something else.
Line 194 ⟶ 246:
C99 also has a macro for infinity:
 
<langsyntaxhighlight lang="c">#define _ISOC99_SOURCE
 
#include <math.h>
Line 202 ⟶ 254:
printf("%g\n", INFINITY);
return 0;
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
 
class Program
Line 218 ⟶ 270:
Console.WriteLine(PositiveInfinity());
}
}</langsyntaxhighlight>
Output:
<syntaxhighlight lang="text">Infinity</langsyntaxhighlight>
 
=={{header|C++}}==
 
<langsyntaxhighlight lang="cpp">#include <limits>
 
double inf()
Line 232 ⟶ 284:
else
return std::numeric_limits<double>::max();
}</langsyntaxhighlight>
 
=={{header|Clojure}}==
{{trans|Java}}
Java's floating-point types (float, double) all support infinity. Clojure has literals for infinity:
<langsyntaxhighlight lang="clojure">##Inf ;; same as Double/POSITIVE_INFINITY
##-Inf ;; same as Double/NEGATIVE_INFINITY
(Double/isInfinite ##Inf) ;; true</langsyntaxhighlight>
 
The largest possible number in Java (without using the Big classes) is also in the Double class
Line 249 ⟶ 301:
 
JavaScript has a special global property called "Infinity":
<syntaxhighlight lang ="coffeescript">Infinity</langsyntaxhighlight>
as well as constants in the Number class:
<langsyntaxhighlight lang="coffeescript">Number.POSITIVE_INFINITY
Number.NEGATIVE_INFINITY</langsyntaxhighlight>
 
The global isFinite function tests for finiteness:
<syntaxhighlight lang ="coffeescript">isFinite x</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
Line 263 ⟶ 315:
{{works with|LispWorks}} 5.1.2, Intel, OS X, 32-bit
 
<langsyntaxhighlight lang="lisp">> (apropos "MOST-POSITIVE" :cl)
MOST-POSITIVE-LONG-FLOAT, value: 1.7976931348623158D308
MOST-POSITIVE-SHORT-FLOAT, value: 3.4028172S38
Line 275 ⟶ 327:
MOST-NEGATIVE-SHORT-FLOAT, value: -3.4028172S38
MOST-NEGATIVE-DOUBLE-FLOAT, value: -1.7976931348623158D308
MOST-NEGATIVE-FIXNUM, value: -536870912</langsyntaxhighlight>
 
=={{header|Component Pascal}}==
BlackBox Component Builder
<langsyntaxhighlight lang="oberon2">
MODULE Infinity;
IMPORT StdLog;
Line 291 ⟶ 343:
END Do;
 
</syntaxhighlight>
</lang>
Execute: ^Q Infinity.Do<br/>
Output:
Line 300 ⟶ 352:
=={{header|D}}==
 
<langsyntaxhighlight lang="d">auto inf() {
return typeof(1.5).infinity;
}
 
void main() {}</langsyntaxhighlight>
 
=={{header|Delphi}}==
 
Delphi defines the following constants in Math:
<langsyntaxhighlight Delphilang="delphi"> Infinity = 1.0 / 0.0;
NegInfinity = -1.0 / 0.0;</langsyntaxhighlight>
Test for infinite value using:
<syntaxhighlight lang Delphi="delphi">Math.IsInfinite()</langsyntaxhighlight>
 
=={{header|Dyalect}}==
Line 319 ⟶ 371:
Dyalect floating point number support positive infinity:
 
<langsyntaxhighlight Dyalectlang="dyalect">func infinityTask() {=> Float.Infinity</syntaxhighlight>
Float.inf()
}</lang>
 
=={{header|E}}==
 
<langsyntaxhighlight lang="e">def infinityTask() {
return Infinity # predefined variable holding positive infinity
}</langsyntaxhighlight>
 
=={{header|EasyLang}}==
<syntaxhighlight>
print number "inf"
# or
print 1 / 0
 
</syntaxhighlight>
 
=={{header|Eiffel}}==
<langsyntaxhighlight lang="eiffel">
class
APPLICATION
Line 349 ⟶ 407:
end
end
</syntaxhighlight>
</lang>
 
Output:
Line 365 ⟶ 423:
floating and MAXLONGREAL for double precision floating. An infinity test can be achieved with
an EXCEPTION:
<syntaxhighlight lang="erre">
<lang ERRE>
PROGRAM INFINITY
 
Line 381 ⟶ 439:
END WHILE
END PROGRAM
</syntaxhighlight>
</lang>
 
=={{header|Euphoria}}==
 
<langsyntaxhighlight Euphorialang="euphoria">constant infinity = 1E400
 
? infinity -- outputs "inf"</langsyntaxhighlight>
 
=={{header|F_Sharp|F#}}==
<langsyntaxhighlight lang="fsharp">
printfn "%f" (1.0/0.0)
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 399 ⟶ 457:
 
=={{header|Factor}}==
<syntaxhighlight lang ="factor">1/0.</langsyntaxhighlight>
 
=={{header|Fantom}}==
Line 405 ⟶ 463:
Fantom's <code>Float</code> data type is an IEEE 754 64-bit floating point type. Positive infinity is represented by the constant <code>posInf</code>.
 
<langsyntaxhighlight lang="fantom">
class Main
{
Line 411 ⟶ 469:
public static Void main () { echo (getInfinity ()) }
}
</syntaxhighlight>
</lang>
 
=={{header|Forth}}==
<langsyntaxhighlight lang="forth">: inf ( -- f ) 1e 0e f/ ;
inf f. \ implementation specific. GNU Forth will output "inf"
 
Line 420 ⟶ 478:
\ IEEE infinity is the only value for which this will return true
 
: has-inf ( -- ? ) ['] inf catch if false else inf? then ;</langsyntaxhighlight>
 
=={{header|Fortran}}==
ISO Fortran 2003 or later supports an IEEE_ARITHMETIC module which defines a wide range of intrinsic functions and types in support of IEEE floating point formats and arithmetic rules.
<langsyntaxhighlight lang="fortran">program to_f_the_ineffable
use, intrinsic :: ieee_arithmetic
integer :: i
Line 441 ⟶ 499:
end if
end do
end program to_f_the_ineffable</langsyntaxhighlight>
 
ISO Fortran 90 or later supports a HUGE intrinsic which returns the largest value supported by the data type of the number given.
<langsyntaxhighlight lang="fortran">real :: x
real :: huge_real = huge(x)</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
#Include "crt/math.bi"
Line 456 ⟶ 514:
Print d; " (String representation of Positive Infinity)"
Sleep
</syntaxhighlight>
</lang>
 
{{out}}
Line 462 ⟶ 520:
1.#INF (String representation of Positive Infinity)
</pre>
 
 
=={{header|FutureBasic}}==
FB has a native definition for infinite floating point types. As demonstrated below, it returns "inf".
<syntaxhighlight lang="futurebasic">
printf @"%g", INFINITY
 
HandleEvents
</syntaxhighlight>
{{output}}
<pre>
inf
</pre>
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Infinity}}
 
'''Solution'''
 
Fōrmulæ does not use floating point numbers, but arbitrary-size integers and arbitrary-precision decimal numbers.
 
Infinity is a predefined expression in Fōrmulæ.
 
Reduction of certain expressions can produce it:
 
[[File:Fōrmulæ - Infinity 01.png]]
 
[[File:Fōrmulæ - Infinity 02.png]]
 
=={{header|GAP}}==
<langsyntaxhighlight lang="gap"># Floating point infinity
inf := FLOAT_INT(1) / FLOAT_INT(0);
 
Line 472 ⟶ 559:
# GAP has also a formal ''infinity'' value
infinity in Cyclotomics;
# true</langsyntaxhighlight>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 493 ⟶ 580:
x = posInf() // test function
fmt.Println(x, math.IsInf(x, 1)) // demonstrate result
}</langsyntaxhighlight>
Output:
<pre>
Line 501 ⟶ 588:
=={{header|Groovy}}==
Groovy, like Java, requires full support for IEEE 32-bit (Float) and 64-bit (Double) formats. So the solution function would simply return either the Float or Double constant encoded as IEEE infinity.
<langsyntaxhighlight lang="groovy">def biggest = { Double.POSITIVE_INFINITY }</langsyntaxhighlight>
 
Test program:
<langsyntaxhighlight lang="groovy">println biggest()
printf ( "0x%xL \n", Double.doubleToLongBits(biggest()) )</langsyntaxhighlight>
 
Output:
Line 517 ⟶ 604:
Nevertheless, the following may come close to the task description:
 
<langsyntaxhighlight lang="haskell">maxRealFloat :: RealFloat a => a -> a
maxRealFloat x = encodeFloat b (e-1) `asTypeOf` x where
b = floatRadix x - 1
Line 524 ⟶ 611:
infinity :: RealFloat a => a
infinity = if isInfinite inf then inf else maxRealFloat 1.0 where
inf = 1/0</langsyntaxhighlight>
 
Test for the two standard floating point types:
 
<langsyntaxhighlight lang="haskell">*Main> infinity :: Float
Infinity
*Main> infinity :: Double
Infinity</langsyntaxhighlight>
 
Or you can simply use division by 0:
<langsyntaxhighlight lang="haskell">Prelude> 1 / 0 :: Float
Infinity
Prelude> 1 / 0 :: Double
Infinity</langsyntaxhighlight>
 
Or use "read" to read the string representation:
<langsyntaxhighlight lang="haskell">Prelude> read "Infinity" :: Float
Infinity
Prelude> read "Infinity" :: Double
Infinity</langsyntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
Line 554 ⟶ 641:
IDL provides the standard IEEE values for _inf and _NaN in the !Values system structure:
 
<langsyntaxhighlight lang="idl">print, !Values.f_infinity ;; for normal floats or
print, !Values.D_infinity ;; for doubles</langsyntaxhighlight>
 
=={{header|Io}}==
<langsyntaxhighlight lang="io">inf := 1/0</langsyntaxhighlight>
 
or
 
<syntaxhighlight lang ="io">Number constants inf</langsyntaxhighlight>
 
=={{header|IS-BASIC}}==
<syntaxhighlight lang IS="is-BASICbasic">PRINT INF</langsyntaxhighlight>
Output:
<pre>
Line 576 ⟶ 663:
 
Example:
<syntaxhighlight lang="j">
<lang j>
_ * 5 NB. multiplying infinity to 5 results in infinity
_
Line 583 ⟶ 670:
5 % 0 NB. dividing 5 by 0 results in infinity
_
</syntaxhighlight>
</lang>
 
=={{header|Java}}==
Java's floating-point types (<tt>float</tt>, <tt>double</tt>) all support infinity. You can get infinity from constants in the corresponding wrapper class; for example, <tt>Double</tt>:
<langsyntaxhighlight lang="java">double infinity = Double.POSITIVE_INFINITY; //defined as 1.0/0.0
Double.isInfinite(infinity); //true</langsyntaxhighlight>
As a function:
<langsyntaxhighlight lang="java">public static double getInf(){
return Double.POSITIVE_INFINITY;
}</langsyntaxhighlight>
The largest possible number in Java (without using the <tt>Big</tt> classes) is also in the <tt>Double</tt> class.
<langsyntaxhighlight lang="java">double biggestNumber = Double.MAX_VALUE;</langsyntaxhighlight>
Its value is (2-2<sup>-52</sup>)*2<sup>1023</sup> or 1.7976931348623157*10<sup>308</sup> (a.k.a. "big"). Other number classes (<tt>Integer</tt>, <tt>Long</tt>, <tt>Float</tt>, <tt>Byte</tt>, and <tt>Short</tt>) have maximum values that can be accessed in the same way.
 
=={{header|JavaScript}}==
JavaScript has a special global property called "Infinity":
<syntaxhighlight lang ="javascript">Infinity</langsyntaxhighlight>
as well as constants in the Number class:
<langsyntaxhighlight lang="javascript">Number.POSITIVE_INFINITY
Number.NEGATIVE_INFINITY</langsyntaxhighlight>
 
The global isFinite() function tests for finiteness:
<syntaxhighlight lang ="javascript">isFinite(x)</langsyntaxhighlight>
 
=={{header|jqJoy}}==
<syntaxhighlight lang="joy">1 1024 ldexp dup neg stack.</syntaxhighlight>
jq uses IEEE 754 64-bit floating-point arithmetic, and very large number literals, e.g. 1e1000, are evaluated as IEEE 754 infinity. If your version of jq does not include `infinite` as a built-in, you could therefore define it as follows:
{{out}}
<pre>[-inf inf]</pre>
 
=={{header|jq}}==
<lang jq>def infinite: 1e1000;</lang>
Sufficiently recent versions of the C, Go and Rust implementations of jq (jq, gojq, and jaq, respectively) all allow `infinite` as a scalar value in jq programs; jq and gojq display its value as 1.7976931348623157e+308. The C implementation also allows the token `inf` when reading JSON, and stores it as `infinite`.
 
ToThe testC whetherimplementation aof JSONjq entityuses isIEEE equal754 to64-bit `infinite`floating-point arithmetic, oneand canvery simplylarge usereal `==`number inliterals, thee.g. expected1e1000, manner.are Thusevaluated as IEEE 754 infinity, assumingso if your version of jq does not include `infinite` hasas beena definedbuilt-in, oneyou could therefore define a predicate, isinfinite,it as follows:
 
<syntaxhighlight lang ="jq">def isinfiniteinfinite: . == infinite1e1000;</langsyntaxhighlight>
 
To test whether a jq value is equal to `infinite` or `- infinite`, one can use the built-in filter `isinfinite`. One can also use `==` in the expected manner.
Currently, the infinite value prints as though it were a very large floating point number.
 
=={{header|Julia}}==
Julia uses IEEE floating-point arithmetic and includes a built-in constant `Inf` for (64-bit) floating-point infinity. Inf32 can be used as 32-bit infinity, when avoiding type promotions to Int64.
 
<syntaxhighlight lang="julia">
<lang Julia>
julia> julia> Inf32 == Inf64 == Inf16 == Inf
true
</syntaxhighlight>
</lang>
 
=={{header|K}}==
K has predefined positive and negative integer and float infinities: -0I, 0I, -0i, 0i. They have following properties:
{{works with|Kona}}
<langsyntaxhighlight Klang="k"> / Integer infinities
/ 0I is just 2147483647
/ -0I is just -2147483647
Line 677 ⟶ 767:
/ but
0.0%0.0
0.0</langsyntaxhighlight>
 
=={{header|Klingphix}}==
<langsyntaxhighlight Klingphixlang="klingphix">1e300 dup mult tostr "inf" equal ["Infinity" print] if
 
" " input</langsyntaxhighlight>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">fun main(args: Array<String>) {
val p = Double.POSITIVE_INFINITY // +∞
println(p.isInfinite()) // true
Line 695 ⟶ 785:
println(n.isFinite()) // false
println("${n < 0} ${n > 0}") // true false
}</langsyntaxhighlight>
{{out}}
<pre>true
Line 706 ⟶ 796:
=={{header|Lambdatalk}}==
Lambdatalk is built on Javascript and can inherit lots of its capabilities. For instance:
<langsyntaxhighlight lang="scheme">
{/ 1 0}
-> Infinity
Line 715 ⟶ 805:
{< {pow 10 1000} Infinity}
-> false
</syntaxhighlight>
</lang>
 
=={{header|Lasso}}==
Lasso supports 64-bit decimals.. This gives Lasso's decimal numbers a range from approximately negative to positive 2x10^300 and with precision down to 2x10^-300. Lasso also supports decimal literals for NaN (not a number) as well and positive and negative infinity.
<langsyntaxhighlight Lassolang="lasso">infinity
'<br />'
infinity -> type</langsyntaxhighlight>
-> inf
 
Line 729 ⟶ 819:
Lingo stores floats using IEEE 754 double-precision (64-bit) format.
INF is not a constant that can be used programmatically, but only a special return value.
<langsyntaxhighlight lang="lingo">x = (1-power(2, -53)) * power(2, 1023) * 2
put ilk(x), x
-- #float 1.79769313486232e308
Line 735 ⟶ 825:
x = (1-power(2, -53)) * power(2, 1023) * 3
put ilk(x), x, -x
-- #float INF -INF</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">
function infinity()
return 1/0 --lua uses unboxed C floats for all numbers
end
</syntaxhighlight>
</lang>
 
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
<lang M2000 Interpreter>
Rem : locale 1033
Module CheckIt {
Line 793 ⟶ 883:
}
Checkit
</syntaxhighlight>
</lang>
 
=={{header|Maple}}==
Maple's floating point numerics are a strict extension of IEEE/754 and IEEE/854 so there is already a built-in infinity. (In fact, there are several.) The following procedure just returns the floating point (positive) infinity directly.
<syntaxhighlight lang="maple">
<lang Maple>
> proc() Float(infinity) end();
Float(infinity)
</syntaxhighlight>
</lang>
There is also an exact infinity ("infinity"), a negative float infinity ("Float(-infinity)" or "-Float(infinity)") and a suite of complex infinities. The next procedure returns a boxed machine (double precision) float infinity.
<syntaxhighlight lang="maple">
<lang Maple>
> proc() HFloat(infinity) end();
HFloat(infinity)
</syntaxhighlight>
</lang>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Mathematica has infinity built-in as a symbol. Which can be used throughout the software:
<langsyntaxhighlight Mathematicalang="mathematica">Sum[1/n^2,{n,Infinity}]
1/Infinity
Integrate[Exp[-x^2], {x, -Infinity, Infinity}]
10^100 < Infinity</langsyntaxhighlight>
gives back:
<pre>Pi^2/6
Line 819 ⟶ 909:
True</pre>
Moreover Mathematica has 2 other variables that represent 'infinity': DirectedInfinity[r] and ComplexInfinity. DirectInfinity[r] represents an infinite quantity with complex direction r. ComplexInfinity represents an infinite quantity with an undetermined direction; like 1/0. Which has infinite size but undetermined direction. So the general infinity is DirectedInfinity, however if the direction is unknown it will turn to ComplexInfinity, DirectedInfinity[-1] will return -infinity and DirectedInfinity[1] will return infinity. Directed infinity can, for example, be used to integrate over an infinite domain with a given complex direction: one might want to integrate Exp[-x^2]/(x^2-1) from 0 to DirectedInfinity[Exp[I Pi/4]]:
<langsyntaxhighlight Mathematicalang="mathematica">Integrate[Exp[-x^2]/(x^2 - 1), {x, 0, DirectedInfinity[Exp[I Pi/4]]}]</langsyntaxhighlight>
gives back:
<pre>-((Pi (I+Erfi[1]))/(2 E))</pre>
Line 826 ⟶ 916:
MATLAB implements the IEEE 754 floating point standard as the default for all numeric data types. +Inf and -Inf are by default implemented and supported by MATLAB. To check if a variable has the value +/-Inf, one can use the built-in function "isinf()" which will return a Boolean 1 if the number is +/-inf.
 
<langsyntaxhighlight Matlablang="matlab">a = +Inf;
isinf(a)
</syntaxhighlight>
</lang>
 
Returns:
Line 837 ⟶ 927:
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">/* Maxima has inf (positive infinity) and minf (negative infinity) */
 
declare(x, real)$
Line 850 ⟶ 940:
1.0/0.0;
/* expt: undefined: 0 to a negative exponent.
-- an error. To debug this try: debugmode(true); */</langsyntaxhighlight>
 
=={{header|Metafont}}==
Line 856 ⟶ 946:
Metafont numbers are a little bit odd (it uses fixed binary arithmetic). For Metafont, the biggest number (and so the one which is also considered to be infinity) is 4095.99998. In fact, in the basic set of macros for Metafont, we can read
 
<langsyntaxhighlight lang="metafont">infinity := 4095.99998;</langsyntaxhighlight>
 
=={{header|MiniScript}}==
MiniScript uses IEEE numerics, so:
 
<langsyntaxhighlight MiniScriptlang="miniscript">posInfinity = 1/0
print posInfinity</langsyntaxhighlight>
{{out}}
<pre>INF</pre>
 
=={{header|Modula-2}}==
<langsyntaxhighlight Modulalang="modula-2">MODULE inf;
 
IMPORT InOut;
Line 874 ⟶ 964:
InOut.WriteReal (1.0 / 0.0, 12, 12);
InOut.WriteLn
END inf.</langsyntaxhighlight>
Producing
<langsyntaxhighlight Modulalang="modula-2">jan@Beryllium:~/modula/rosetta$ inf
 
**** RUNTIME ERROR bound check error
Floating point exception</langsyntaxhighlight>
 
=={{header|Modula-3}}==
Line 885 ⟶ 975:
 
If the implementation doesn't support IEEE floats, the program prints arbitrary values (Critical Mass Modula-3 implementation does support IEEE floats).
<langsyntaxhighlight lang="modula3">MODULE Inf EXPORTS Main;
 
IMPORT IO, IEEESpecial;
Line 892 ⟶ 982:
IO.PutReal(IEEESpecial.RealPosInf);
IO.Put("\n");
END Inf.</langsyntaxhighlight>
 
Output:
Line 901 ⟶ 991:
=={{header|Nemerle}}==
Both single and double precision floating point numbers support PositiveInfinity, NegativeInfinity and NaN.
<langsyntaxhighlight Nemerlelang="nemerle">def posinf = double.PositiveInfinity;
def a = IsInfinity(posinf); // a = true
def b = IsNegativeInfinity(posinf); // b = false
def c = IsPositiveInfinity(posinf); // c = true</langsyntaxhighlight>
 
=={{header|Nim}}==
<syntaxhighlight lang ="nim">Inf</langsyntaxhighlight>
is a predefined constant in Nim:
<langsyntaxhighlight lang="nim">var f = Inf
echo f</langsyntaxhighlight>
 
=={{header|NS-HUBASIC}}==
<syntaxhighlight lang NS="ns-HUBASIChubasic">10 PRINT 1/0</langsyntaxhighlight>
{{out}}
?DZ ERROR is a division by zero error in NS-HUBASIC.
Line 921 ⟶ 1,011:
 
=={{header|OCaml}}==
<syntaxhighlight lang ="ocaml">infinity</langsyntaxhighlight>
is already a pre-defined value in OCaml.
 
Line 933 ⟶ 1,023:
=={{header|Oforth}}==
 
<langsyntaxhighlight Oforthlang="oforth">10 1000.0 powf dup println dup neg println 1 swap / println</langsyntaxhighlight>
 
{{out}}
Line 948 ⟶ 1,038:
-inf.0 ; negative infinity
 
<langsyntaxhighlight lang="scheme">
(define (infinite? x) (or (equal? x +inf.0) (equal? x -inf.0)))
 
Line 957 ⟶ 1,047:
(infinite? 1/3456) ==> #false
(infinite? 17+28i) ==> #false
</syntaxhighlight>
</lang>
 
=={{header|OpenEdge/Progress}}==
Line 963 ⟶ 1,053:
The unknown value (represented by a question mark) can be considered to equal infinity. There is no difference between positive and negative infinity but the unknown value sometimes sorts low and sometimes sorts high when used in queries.
 
<langsyntaxhighlight lang="progress">MESSAGE
1.0 / 0.0 SKIP
-1.0 / 0.0 SKIP(1)
( 1.0 / 0.0 ) = ( -1.0 / 0.0 )
VIEW-AS ALERT-BOX.</langsyntaxhighlight>
 
Output
Line 984 ⟶ 1,074:
=={{header|OxygenBasic}}==
Using double precision floats:
<langsyntaxhighlight lang="oxygenbasic">
print 1.5e-400 '0
 
Line 1,005 ⟶ 1,095:
 
print f '#-INF
</syntaxhighlight>
</lang>
 
=={{header|Oz}}==
<langsyntaxhighlight lang="oz">declare
PosInf = 1./0.
NegInf = ~1./0.
Line 1,020 ⟶ 1,110:
PosInf * PosInf = PosInf
PosInf * NegInf = NegInf
NegInf * NegInf = PosInf</langsyntaxhighlight>
 
=={{header|PARI/GP}}==
{{works with|PARI/GP|version 2.8.0 and higher}}
<syntaxhighlight lang ="parigp">+oo</langsyntaxhighlight>
 
{{works with|PARI/GP|version 2.2.9 to 2.7.0}}
<langsyntaxhighlight lang="parigp">infty()={
[1] \\ Used for many functions like intnum
};</langsyntaxhighlight>
 
=={{header|Pascal}}==
Line 1,036 ⟶ 1,126:
=={{header|Perl}}==
Positive infinity:
<langsyntaxhighlight lang="perl">my $x = 0 + "inf";
my $y = 0 + "+inf";</langsyntaxhighlight>
Negative infinity:
<langsyntaxhighlight lang="perl">my $x = 0 - "inf";
my $y = 0 + "-inf";</langsyntaxhighlight>
The "<code>0 + </code>..." is used here to make sure that the variable stores a value that is actually an infinitive number instead of just a string <code>"inf"</code> but in practice one can use just:
<langsyntaxhighlight lang="perl">my $x = "inf";</langsyntaxhighlight>
and <code>$x</code> while originally holding a string will get converted to an infinite number when it is first used as a number.
 
Some programmers use expressions that overflow the IEEE floating point numbers such as:
<langsyntaxhighlight lang="perl">my $x = 1e1000;</langsyntaxhighlight>
which is 10<sup>1000</sup> or googol<sup>10</sup> or even numbers like this one:
<langsyntaxhighlight lang="perl">my $y = 10**10**10;</langsyntaxhighlight>
which is 10<sup>10000000000</sup> but it has to make some assumptions about the underlying hardware format and its size. Furthermore, using such literals in the scope of some pragmas such as <code>bigint</code>, <code>bignum</code> or <code>bigrat</code> would actually compute those numbers:
 
<langsyntaxhighlight lang="perl">use bigint;
my $x = 1e1000;
my $y = 10**10**10; # N.B. this will consume vast quantities of RAM</langsyntaxhighlight>
Here the <code>$x</code> and <code>$y</code> when printed would give 1001 and 10000000001-digit numbers respectively, the latter taking no less than 10GB of space to just output.
 
Under those pragmas, however, there is a simpler way to use infinite values, thanks to the <code>inf</code> symbol being exported into the namespace by default:
<langsyntaxhighlight lang="perl">use bigint;
my $x = inf;
my $y = -inf;</langsyntaxhighlight>
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>constant infinity = 1e300*1e300
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
? infinity</lang>
<span style="color: #008080;">constant</span> <span style="color: #000000;">infinity</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1e300</span><span style="color: #0000FF;">*</span><span style="color: #000000;">1e300</span>
<span style="color: #0000FF;">?</span> <span style="color: #000000;">infinity</span>
<!--</syntaxhighlight>-->
{{out}}
desktop/Phix:
<pre>
inf
</pre>
pwa/p2js:
<pre>
Infinity
</pre>
 
=={{header|Phixmonti}}==
<langsyntaxhighlight Phixmontilang="phixmonti">1e300 dup * tostr "inf" == if "Infinity" print endif</langsyntaxhighlight>
 
=={{header|PHP}}==
This is how you get infinity:
<syntaxhighlight lang ="php">INF</langsyntaxhighlight>
Unfortunately, "1.0 / 0.0" doesn't evaluate to infinity; but instead seems to evaluate to False, which is more like 0 than infinity.
 
Line 1,085 ⟶ 1,183:
support (scaled bignum arithmetics), but some functions return 'T' for infinite
results.
<langsyntaxhighlight PicoLisplang="picolisp">(load "@lib/math.l")
 
: (exp 1000.0)
-> T</langsyntaxhighlight>
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
declare x float, y float (15), z float (18);
 
put skip list (huge(x), huge(y), huge(z));
</syntaxhighlight>
</lang>
 
=={{header|PostScript}}==
<langsyntaxhighlight lang="postscript">/infinity { 9 99 exp } def</langsyntaxhighlight>
 
=={{header|PowerShell}}==
A .NET floating-point number representing infinity is available.
<langsyntaxhighlight lang="powershell">function infinity {
[double]::PositiveInfinity
}</langsyntaxhighlight>
 
=={{header|PureBasic}}==
Line 1,110 ⟶ 1,208:
PureBasic uses [[wp:IEEE_754-2008|IEEE 754]] coding for float types. PureBasic also includes the function <tt>Infinity()</tt> that return the positive value for infinity and the boolean function <tt>IsInfinite(value.f)</tt> that returns true if the floating point value is either positive or negative infinity.
 
<langsyntaxhighlight PureBasiclang="purebasic">If OpenConsole()
Define.d a, b
b = 0
Line 1,129 ⟶ 1,227:
CloseConsole()
EndIf
</syntaxhighlight>
</lang>
 
''Outputs''
Line 1,139 ⟶ 1,237:
=={{header|Python}}==
This is how you get infinity:
<langsyntaxhighlight lang="python">>>> float('infinity')
inf</langsyntaxhighlight>
''Note: When passing in a string to float(), values for NaN and Infinity may be returned, depending on the underlying C library. The specific set of strings accepted which cause these values to be returned depends entirely on the underlying C library used to compile Python itself, and is known to vary.'' <br>
''The Decimal module explicitly supports +/-infinity Nan, +/-0.0, etc without exception.''
 
Floating-point division by 0 doesn't give you infinity, it raises an exception:
<langsyntaxhighlight lang="python">>>> 1.0 / 0.0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: float division</langsyntaxhighlight>
 
If <tt>float('infinity')</tt> doesn't work on your platform, you could use this trick:
Line 1,154 ⟶ 1,252:
1.#INF</pre>
It works by trying to create a float bigger than the machine can handle.
 
=={{header|QB64}}==
<syntaxhighlight lang="c++">#include<math.h>
//save as inf.h
double inf(void){
return HUGE_VAL;
}</syntaxhighlight>
<syntaxhighlight lang="vb">Declare CustomType Library "inf"
Function inf#
End Declare
 
Print inf</syntaxhighlight>
 
=={{header|QBasic}}==
{{works with|QBasic|1.1}}
<syntaxhighlight lang="qbasic">DECLARE FUNCTION f! ()
 
ON ERROR GOTO TratoError
PRINT 0!
PRINT 0 / -1.5
PRINT 1.5 / 0
PRINT 0 / 0
PRINT f
END
 
TratoError:
PRINT "Error "; ERR; " on line "; ERL; CHR$(9); " --> ";
SELECT CASE ERR
CASE 6
PRINT "Overflow"
RESUME NEXT
CASE 11
PRINT "Division by zero"
RESUME NEXT
CASE ELSE
PRINT "Unexpected error, ending program."
END
END SELECT
 
FUNCTION f!
f! = -1.5 / 0
END FUNCTION</syntaxhighlight>
 
 
=={{header|R}}==
<langsyntaxhighlight Rlang="r"> Inf #positive infinity
-Inf #negative infinity
.Machine$double.xmax # largest finite floating-point number
Line 1,166 ⟶ 1,307:
forcefinite(c(1, -1, 0, .Machine$double.xmax, -.Machine$double.xmax, Inf, -Inf))
# [1] 1.000000e+00 -1.000000e+00 0.000000e+00 1.797693e+308
# [5] -1.797693e+308 1.797693e+308 -1.797693e+308</langsyntaxhighlight>
 
=={{header|Racket}}==
Line 1,172 ⟶ 1,313:
as in Scheme:
 
<langsyntaxhighlight Racketlang="racket">#lang racket
 
+inf.0 ; positive infinity
(define (finite? x) (< -inf.0 x +inf.0))
(define (infinite? x) (not (finite? x)))</langsyntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
Inf support is required by language spec on all abstract Numeric types (in the absence of subset constraints) including Num, Rat and Int types. Native integers cannot support Inf, so attempting to assign Inf will result in an exception; native floats are expected to follow IEEE standards including +/- Inf and NaN.
<syntaxhighlight lang="raku" perl6line>my $x = 1.5/0; # Failure: catchable error, if evaluated will return: "Attempt to divide by zero ...
my $y = (1.5/0).Num; # assigns 'Inf'</langsyntaxhighlight>
 
=={{header|REXX}}==
Line 1,223 ⟶ 1,364:
 
=={{header|RLaB}}==
<syntaxhighlight lang="rlab">
<lang RLaB>
>> x = inf()
inf
Line 1,232 ⟶ 1,373:
>> -inf() > 10
0
</syntaxhighlight>
</lang>
 
=={{header|RPL}}==
{{in}}
<pre>
MAXR →NUM
</pre>
{{out}}
<pre>
1: 1.7976931348E+308
</pre>
=={{header|Ruby}}==
Infinity is a Float value
<langsyntaxhighlight lang="ruby">a = 1.0/0 # => Infinity
a.finite? # => false
a.infinite? # => 1
Line 1,245 ⟶ 1,395:
a = Float::MAX # => 1.79769313486232e+308
a.finite? # => true
a.infinite? # => nil</langsyntaxhighlight>
{{works with|Ruby|1.9.2+}}
<langsyntaxhighlight lang="ruby">a = Float::INFINITY # => Infinity</langsyntaxhighlight>
 
=={{header|Rust}}==
Rust has builtin function for floating types which returns infinity. This program outputs 'inf'.
<langsyntaxhighlight lang="rust">fn main() {
let inf = std::f32::INFINITY;
println!("{}", inf);
}</langsyntaxhighlight>
 
=={{header|Scala}}==
Line 1,262 ⟶ 1,412:
* [[Extreme_floating_point_values#Scala]]
In order to be compliant with IEEE-754, Scala has all support for infinity on its floating-point types (<tt>float</tt>, <tt>double</tt>). You can get infinity from constants in the corresponding wrapper class; for example, <tt>Double</tt>:
<langsyntaxhighlight Scalalang="scala">val inf = Double.PositiveInfinity //defined as 1.0/0.0
inf.isInfinite; //true</langsyntaxhighlight>
The largest possible number in Scala (without using the <tt>Big</tt> classes) is also in the <tt>Double</tt> class.
<langsyntaxhighlight Scalalang="scala">val biggestNumber = Double.MaxValue</langsyntaxhighlight>
 
REPL session:
<langsyntaxhighlight lang="scala">scala> 1 / 0.
res2: Double = Infinity
 
Line 1,278 ⟶ 1,428:
 
scala> 1 / Double.NegativeInfinity
res5: Double = -0.0</langsyntaxhighlight>
 
=={{header|Scheme}}==
<langsyntaxhighlight lang="scheme">+inf.0 ; positive infinity
(define (finite? x) (< -inf.0 x +inf.0))
(define (infinite? x) (not (finite? x)))</langsyntaxhighlight>
 
=={{header|Seed7}}==
Line 1,289 ⟶ 1,439:
The library [http://seed7.sourceforge.net/libraries/float.htm float.s7i] defines
the constant [http://seed7.sourceforge.net/libraries/float.htm#Infinity Infinity] as:
<langsyntaxhighlight lang="seed7">const float: Infinity is 1.0 / 0.0;</langsyntaxhighlight>
Checks for infinity can be done by comparing with this constant.
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">var a = 1.5/0 # Inf
say a.is_inf # true
say a.is_pos # true
Line 1,303 ⟶ 1,453:
var inf = Inf
var ninf = -Inf
say (inf == -ninf) # true</langsyntaxhighlight>
 
=={{header|Slate}}==
 
<syntaxhighlight lang ="slate">PositiveInfinity</langsyntaxhighlight>
 
=={{header|Smalltalk}}==
Line 1,319 ⟶ 1,469:
</pre>
{{works with|Smalltalk/X}}
The behavior is slightly different, in that an exception is raised if you divide by zero:
The class names are different (Float, ShortFloat and LongFloat);
<syntaxhighlight lang="smalltalk">FloatD infinity -> INF
for sourcecode compatibility, you can do "Smalltalk at:#FloatQ put:LongFloat".
1.0 / 0.0 -> "ZeroDivide exception"</syntaxhighlight>
The behavior is slightly different, in that an exception is raised:
<lang smalltalk>Float infinity -> INF
1.0 / 0.0 -> "ZeroDivide exception"</lang>
but we can simulate the other behavior with:
<langsyntaxhighlight lang="smalltalk">[
1.0 / 0.0
] on: ZeroDivide do:[:ex |
ex proceedWith: (FloatFloatD infinity)
]
-> INF</langsyntaxhighlight>
 
=={{header|Standard ML}}==
<syntaxhighlight lang ="sml">Real.posInf</langsyntaxhighlight>
 
<pre>
Line 1,344 ⟶ 1,492:
=={{header|Swift}}==
Swift's floating-point types (<tt>Float</tt>, <tt>Double</tt>, and any other type that conforms to the <tt>FloatingPointNumber</tt> protocol) all support infinity. You can get infinity from the <tt>infinity</tt> class property in the type:
<langsyntaxhighlight lang="swift">let inf = Double.infinity
inf.isInfinite //true</langsyntaxhighlight>
As a function:
<langsyntaxhighlight lang="swift">func getInf() -> Double {
return Double.infinity
}</langsyntaxhighlight>
 
=={{header|Tcl}}==
Line 1,355 ⟶ 1,503:
 
Tcl 8.5 has Infinite as a floating point value, not an integer value
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
 
expr {1.0 / 0} ;# ==> Inf
expr {-1.0 / 0} ;# ==> -Inf
expr {inf} ;# ==> Inf
expr {1 / 0} ;# ==> "divide by zero" error; Inf not part of range of integer division</langsyntaxhighlight>
 
A maximal integer is not easy to find, as Tcl switches to unbounded integers when a 64-bit integer is about to roll over:
<langsyntaxhighlight Tcllang="tcl">% format %lx -1 ;# all bits set
ffffffffffffffff
 
Line 1,373 ⟶ 1,521:
 
% incr ii
9223372036854775808 ;# silently upgrade to unbounded integer, still positive</langsyntaxhighlight>
A theoretical MAXINT, though very impractical, could be
string repeat 9 [expr 2**32-1]
Line 1,379 ⟶ 1,527:
=={{header|TI-89 BASIC}}==
 
<syntaxhighlight lang ="ti89b">∞</langsyntaxhighlight>
 
=={{header|TorqueScript}}==
<langsyntaxhighlight TorqueScriptlang="torquescript">function infinity()
{
return 1/0;
}</langsyntaxhighlight>
 
=={{header|Trith}}==
The following functions are included as part of the core operators:
<langsyntaxhighlight lang="trith">
: inf 1.0 0.0 / ;
: -inf inf neg ;
: inf? abs inf = ;
</syntaxhighlight>
</lang>
 
=={{header|Ursa}}==
Infinity is a defined value in Ursa.
<langsyntaxhighlight lang="ursa">decl double d
set d Infinity</langsyntaxhighlight>
 
=={{header|Ursala}}==
Line 1,407 ⟶ 1,555:
 
 
<langsyntaxhighlight Ursalalang="ursala">#import flo
 
infinity = inf!</langsyntaxhighlight>
 
=={{header|Visual Basic}}==
Line 1,419 ⟶ 1,567:
Positive infinity, negative infinity and indefinite number (usable as NaN) can be generated by deliberately dividing by zero under the influence of <code>On Error Resume Next</code>:
 
<langsyntaxhighlight lang="vb">Option Explicit
 
Private Declare Sub GetMem8 Lib "msvbvm60.dll" _
Line 1,445 ⟶ 1,593:
DoubleAsHex = Right$(String$(8, "0") & Hex$(l(1)), 8) _
& Right$(String$(8, "0") & Hex$(l(0)), 8)
End Function</langsyntaxhighlight>
{{out}}<pre>PlusInfinity = 1,#INF (7FF0000000000000)
MinusInfinity = -1,#INF (FFF0000000000000)
IndefiniteNumber = -1,#IND (FFF8000000000000)
</pre>
 
=={{header|V (Vlang)}}==
<syntaxhighlight lang="v (vlang)">import math
fn main() {
mut x := 1.5 // type of x determined by literal
// that this compiles demonstrates that PosInf returns same type as x,
// the type specified by the task.
x = math.inf(1)
println('$x ${math.is_inf(x, 1)}') // demonstrate result
}</syntaxhighlight>
 
=={{header|Wren}}==
Wren certainly supports infinity for floating point numbers as we already have a method ''Num.isInfinity'' to test for it.
<langsyntaxhighlight ecmascriptlang="wren">var x = 1.5
var y = x / 0
System.print("x = %(x)")
System.print("y = %(y)")
System.print("'x' is infinite? %(x.isInfinity)")
System.print("'y' is infinite? %(y.isInfinity)")</langsyntaxhighlight>
 
{{out}}
Line 1,470 ⟶ 1,629:
=={{header|XPL0}}==
The IEEE 754 floating point standard is used.
<langsyntaxhighlight XPL0lang="xpl0">int A;
real X;
[Format(0, 15); \output in scientific notation
Line 1,477 ⟶ 1,636:
A(1):= $7FEF_FFFF;
RlOut(0, X); \display it
]</langsyntaxhighlight>
 
{{out}}
Line 1,485 ⟶ 1,644:
 
=={{header|Yabasic}}==
<langsyntaxhighlight Yabasiclang="yabasic">infinity = 1e300*1e300
if str$(infinity) = "inf" print "Infinity"</langsyntaxhighlight>
 
=={{header|Zig}}==
<lang zig>const std = @import("std");
 
'''Works with:''' 0.10.x, 0.11.x, 0.12.0-dev.1577+9ad03b628
const debug = std.debug;
const math = std.math;
 
Assumes that defaul float optimization mode was not changed via @setFloatMode (performed in Strict mode, not Optimized, latter is equivalent to -ffast-math).
test "infinity" {
const infinite_f16 = math.inf(f16);
const infinite_f32 = math.inf(f32);
const infinite_f64 = math.inf(f64);
const infinite_f128 = math.inf(f128);
 
<syntaxhighlight lang="zig">const std = @import("std");
// Any other types besides these four floating types are not implemented.
 
const math = std.math;
debug.assert(math.isInf(infinite_f16));
debug.assert(math.isInf(infinite_f32));
debug.assert(math.isInf(infinite_f64));
debug.assert(math.isInf(infinite_f128));
 
test "infinity" {
debug.assert(math.isPositiveInf(infinite_f16));
const expect = std.testing.expect;
debug.assert(math.isPositiveInf(infinite_f32));
debug.assert(math.isPositiveInf(infinite_f64));
debug.assert(math.isPositiveInf(infinite_f128));
 
const float_types = [_]type{ f16, f32, f64, f80, f128, c_longdouble };
debug.assert(math.isNegativeInf(-infinite_f16));
inline for (float_types) |T| {
debug.assert(math.isNegativeInf(-infinite_f32));
const infinite_value: T = comptime std.math.inf(T);
debug.assert(math.isNegativeInf(-infinite_f64));
debug.assert(math.isNegativeInf(-infinite_f128));
 
debug.assert try expect(!math.isFiniteisInf(infinite_f16infinite_value));
debug.assert try expect(!math.isFiniteisPositiveInf(infinite_f32infinite_value));
debug.assert try expect(!math.isFiniteisNegativeInf(infinite_f64infinite_value));
try expect(!math.isFinite(infinite_value));
// isFinite(f128) is not implemented.
}
//debug.assert(!math.isFinite(infinite_f128));
}</langsyntaxhighlight>
 
{{out}}
<pre>
$ zig test src/infinity_float.zig
All 1 tests passed.
</pre>
 
=={{header|zkl}}==
zkl doesn't like INF, NaN, etc but sorta knows about them:
<syntaxhighlight lang ="zkl">1.5/0</langsyntaxhighlight>
{{out}}
<pre>
Line 1,533 ⟶ 1,686:
 
=={{header|ZX Spectrum Basic}}==
ZX Spectrum BASIC has no infinity handling; <syntaxhighlight lang ="zxbasic">PRINT 1/0</langsyntaxhighlight> will be met with <pre>6 Number too big, 0:1</pre>
A quick doubling loop will get you halfway to the maximum floating point value:
<langsyntaxhighlight lang="zxbasic">10 LET z=1
20 PRINT z
30 LET z=z*2
40 GO TO 20</langsyntaxhighlight>
 
Output will end with:
Line 1,549 ⟶ 1,702:
Precision has been lost by this stage through the loop, but one more manual double and subtract 1 will get you the true displayable maximum of 1.7014118E+38 (or 2^127-1).
 
{{omit from|6502 Assembly|Has no dedicated floating point hardware}}
{{omit from|8080 Assembly|Has no dedicated floating point hardware}}
{{omit from|bc|No infinity. Numbers have unlimited precision, so no largest possible value.}}
{{omit from|Brainf***}}
{{omit from|Computer/zero Assembly|Has no dedicated floating point hardware}}
{{omit from|dc|No infinity. Numbers have unlimited precision, so no largest possible value.}}
{{omit from|Integer BASIC}}
Line 1,557 ⟶ 1,713:
{{omit from|VBScript}}
{{omit from|UNIX Shell}}
{{omit from|Z80 Assembly|Has no dedicated floating point hardware}}
 
[[Category:Irrational numbers]]
2,120

edits