Fortunate numbers: Difference between revisions

m
m (make output a clone of others)
 
(25 intermediate revisions by 18 users not shown)
Line 1:
{{Draft task|Prime Numbers}}
 
;Definition
Line 21:
* [[oeis:A046066]] Fortunate numbers, sorted with duplicates removed
<br><br>
 
=={{header|11l}}==
{{trans|Nim}}
 
<syntaxhighlight lang="11l">F isProbablePrime(n, k = 10)
I n < 2 | n % 2 == 0
R n == 2
 
V d = n - 1
V s = 0
L d % 2 == 0
d I/= 2
s++
 
assert(2 ^ s * d == n - 1)
 
Int nn
I n < 7FFF'FFFF
nn = Int(n)
E
nn = 7FFF'FFFF
 
L(_) 0 .< k
V a = random:(2 .< nn)
V x = pow(a, d, n)
I x == 1 | x == n - 1
L.continue
L(_) 0 .< s - 1
x = pow(x, 2, n)
I x == 1
R 0B
I x == n - 1
L.break
L.was_no_break
R 0B
 
R 1B
 
F is_prime(a)
I a == 2
R 1B
I a < 2 | a % 2 == 0
R 0B
L(i) (3 .. Int(sqrt(a))).step(2)
I a % i == 0
R 0B
R 1B
 
V primorial = BigInt(1)
 
V nn = 50
V lim = 75
V s = Set[Int]()
L(n) 1..
I is_prime(n)
primorial *= n
V m = 3
L
I isProbablePrime(primorial + m, 25)
s.add(m)
L.break
m += 2
I --lim == 0
L.break
 
print(‘First ’nn‘ fortunate numbers:’)
L(m) sorted(Array(s))[0 .< nn]
V i = L.index
print(‘#3’.format(m), end' I (i + 1) % 10 == 0 {"\n"} E ‘ ’)</syntaxhighlight>
 
{{out}}
<pre>
First 50 fortunate numbers:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443
</pre>
 
=={{header|ALGOL 68}}==
{{works with|ALGOL 68G|Any - tested with release 2.8.3.win32}}
Uses Algol 68G's LONG LONG INT which has programmer specifiable precision.<br/>
Some arbitrary limits are used here - only the first 100 primorials are considered and it is assumed that the first 50 Fortunate numbers are all under 500.<br/>
Also shows the primorial associated with the Fortunate numbers.
{{libheader|ALGOL 68-primes}}
The source of the ALGOL 68-primes library is on a separate Rosetta Code page - see the above link.
<syntaxhighlight lang="algol68">
BEGIN # find some Fortunate numbers m, m is smallest positive integer > 1 #
# where primorial(n) + m is prime for some n #
# as all primorials are even, m must be odd #
 
PR precision 2000 PR # set the number of digits for LONG LONG INT #
PR read "primes.incl.a68" PR # include prime utilities #
INT max fortunate = 500; # largeest fortunate number we will consider #
[]BOOL is prime = PRIMESIEVE 5 000;
[ 1 : max fortunate ]INT fortunate; FOR i TO max fortunate DO fortunate[ i ] := 0 OD;
INT primorial pos := 0;
LONG LONG INT primorial := 1;
INT prime pos := 0;
WHILE primorial pos < 100 DO
WHILE NOT is prime[ prime pos +:= 1 ] DO SKIP OD;
primorial pos +:= 1;
primorial *:= prime pos;
INT m := 3;
WHILE NOT is probably prime( primorial + m ) AND m <= max fortunate DO m +:= 2 OD;
IF m <= max fortunate THEN
IF fortunate[ m ] = 0 THEN fortunate[ m ] := primorial pos FI
FI
OD;
print( ( "The first 50 Fortunate numbers:", newline ) );
INT f count := 0;
FOR f TO max fortunate WHILE f count < 50 DO
IF fortunate[ f ] /= 0 THEN
print( ( whole( f, -5 ) ) );
IF ( f count +:= 1 ) MOD 10 = 0 THEN print( ( newline ) ) FI
FI
OD;
print( ( "The primorial associated with the first 50 Fortunate numbers:", newline ) );
f count := 0;
FOR f TO max fortunate WHILE f count < 50 DO
IF fortunate[ f ] /= 0 THEN
print( ( whole( fortunate[ f ], -5 ) ) );
IF ( f count +:= 1 ) MOD 10 = 0 THEN print( ( newline ) ) FI
FI
OD
 
END
</syntaxhighlight>
{{out}}
<pre>
The first 50 Fortunate numbers:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443
The primorial associated with the first 50 Fortunate numbers:
1 2 3 4 6 7 5 9 14 16
10 11 13 21 19 24 20 15 18 28
22 35 31 36 30 23 39 27 32 26
34 55 54 53 50 57 62 45 52 65
73 59 42 63 56 75 66 67 37 51
</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">firstPrimes: select 1..100 => prime?
primorial: function [n][
product first.n: n firstPrimes
]
 
fortunates: []
i: 1
 
while [8 > size fortunates][
m: 3
pmi: primorial i
while -> not? prime? m + pmi
-> m: m+2
fortunates: unique fortunates ++ m
i: i + 1
]
 
print sort fortunates</syntaxhighlight>
 
{{out}}
 
<pre>3 5 7 13 17 19 23 37</pre>
 
=={{header|C}}==
{{trans|Wren}}
{{libheader|GMP}}
<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <gmp.h>
 
int *primeSieve(int limit, int *length) {
int i, p, *primes;
int j, pc = 0;
limit++;
// True denotes composite, false denotes prime.
bool *c = calloc(limit, sizeof(bool)); // all false by default
c[0] = true;
c[1] = true;
for (i = 4; i < limit; i += 2) c[i] = true;
p = 3; // Start from 3.
while (true) {
int p2 = p * p;
if (p2 >= limit) break;
for (i = p2; i < limit; i += 2 * p) c[i] = true;
while (true) {
p += 2;
if (!c[p]) break;
}
}
for (i = 0; i < limit; ++i) {
if (!c[i]) ++pc;
}
primes = (int *)malloc(pc * sizeof(int));
for (i = 0, j = 0; i < limit; ++i) {
if (!c[i]) primes[j++] = i;
}
free(c);
*length = pc;
return primes;
}
 
int compare(const void* a, const void* b) {
int arg1 = *(const int*)a;
int arg2 = *(const int*)b;
if (arg1 < arg2) return -1;
if (arg1 > arg2) return 1;
return 0;
}
 
int main() {
int i, j, f, pc, ac, limit = 379, fc = 0;
int *primes = primeSieve(limit, &pc);
int fortunates[80];
mpz_t primorial, temp;
mpz_init_set_ui(primorial, 1);
mpz_init(temp);
for (i = 0; i < pc; ++i) {
mpz_mul_ui(primorial, primorial, primes[i]);
for (j = 3; ; j += 2) {
mpz_add_ui(temp, primorial, j);
if (mpz_probab_prime_p(temp, 15) > 0) {
fortunates[fc++] = j;
break;
}
}
}
qsort(fortunates, fc, sizeof(int), compare);
printf("After sorting, the first 50 distinct fortunate numbers are:\n");
for (i = 0, ac = 0; ac < 50; ++i) {
f = fortunates[i];
if (i > 0 && f == fortunates[i-1]) continue;
printf("%3d ", f);
++ac;
if (!(ac % 10)) printf("\n");
}
free(primes);
return 0;
} </syntaxhighlight>
 
{{out}}
<pre>
After sorting, the first 50 distinct fortunate numbers are:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443
</pre>
 
=={{header|C#}}==
{{trans|Java}}
<syntaxhighlight lang="C#">
using System;
using System.Collections.Generic;
using System.Numerics;
 
public class FortunateNumbers
{
private const int CERTAINTY_LEVEL = 10;
 
public static void Main(string[] args)
{
var primes = PrimeSieve(400);
SortedSet<int> fortunates = new SortedSet<int>();
BigInteger primorial = BigInteger.One;
 
foreach (var prime in primes)
{
primorial *= prime;
int candidate = 3;
while (!BigInteger.Add(primorial, candidate).IsProbablyPrime(CERTAINTY_LEVEL))
{
candidate += 2;
}
fortunates.Add(candidate);
}
 
Console.WriteLine("The first 50 distinct fortunate numbers are:");
int count = 0;
foreach (var fortunate in fortunates)
{
if (count >= 50) break;
Console.Write($"{fortunate,4}{(count % 10 == 9 ? "\n" : "")}");
count++;
}
}
 
private static List<int> PrimeSieve(int aNumber)
{
var sieve = new bool[aNumber + 1];
var primes = new List<int>();
 
for (int i = 2; i <= aNumber; i++)
{
if (!sieve[i])
{
primes.Add(i);
for (int j = i * i; j <= aNumber && j > 0; j += i)
{
sieve[j] = true;
}
}
}
return primes;
}
}
 
public static class BigIntegerExtensions
{
private static Random random = new Random();
 
public static bool IsProbablyPrime(this BigInteger source, int certainty)
{
if (source == 2 || source == 3)
return true;
if (source < 2 || source % 2 == 0)
return false;
 
BigInteger d = source - 1;
int s = 0;
 
while (d % 2 == 0)
{
d /= 2;
s += 1;
}
 
for (int i = 0; i < certainty; i++)
{
BigInteger a = RandomBigInteger(2, source - 2);
BigInteger x = BigInteger.ModPow(a, d, source);
if (x == 1 || x == source - 1)
continue;
 
for (int r = 1; r < s; r++)
{
x = BigInteger.ModPow(x, 2, source);
if (x == 1)
return false;
if (x == source - 1)
break;
}
 
if (x != source - 1)
return false;
}
 
return true;
}
 
private static BigInteger RandomBigInteger(BigInteger minValue, BigInteger maxValue)
{
if (minValue > maxValue)
throw new ArgumentException("minValue must be less than or equal to maxValue");
 
BigInteger range = maxValue - minValue + 1;
int length = range.ToByteArray().Length;
byte[] buffer = new byte[length];
 
BigInteger result;
do
{
random.NextBytes(buffer);
buffer[buffer.Length - 1] &= 0x7F; // Ensure non-negative
result = new BigInteger(buffer);
} while (result < minValue || result >= maxValue);
 
return result;
}
}
</syntaxhighlight>
{{out}}
<pre>
The first 50 distinct fortunate numbers are:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443
 
</pre>
 
=={{header|C++}}==
<syntaxhighlight lang="c++">
#include <algorithm>
#include <cstdint>
#include <iostream>
#include <set>
#include <vector>
 
std::vector<int32_t> prime_numbers(const int32_t& limit) {
const int32_t half_limit = ( limit % 2 == 0 ) ? limit / 2 : 1 + limit / 2;
std::vector<bool> composite(half_limit, false);
for ( int32_t i = 1, p = 3; i < half_limit; p += 2, ++i ) {
if ( ! composite[i] ) {
for ( int32_t a = i + p; a < half_limit; a += p ) {
composite[a] = true;
}
}
}
 
std::vector<int32_t> primes{2};
for ( int32_t i = 1, p = 3; i < half_limit; p += 2, ++i ) {
if ( ! composite[i] ) {
primes.push_back(p);
}
}
return primes;
}
 
bool contains(const std::vector<int32_t>& list, const int32_t& n) {
return std::find(list.begin(), list.end(), n) != list.end();
}
 
int main() {
std::vector<int32_t> primes = prime_numbers(250'000'000);
std::set<int32_t> fortunates;
int32_t primorial = 1;
int32_t index = 0;
 
while ( fortunates.size() < 8 ) {
primorial *= primes[index++];
int32_t candidate = 3;
while ( ! contains(primes, primorial + candidate) ) {
candidate += 2;
}
fortunates.emplace(candidate);
}
 
std::cout << "The first 8 distinct fortunate numbers are:" << std::endl;
for ( const int32_t& fortunate : fortunates ) {
std::cout << fortunate << " ";
}
}
</syntaxhighlight>
<pre>
The first 8 distinct fortunate numbers are:
3 5 7 13 17 19 23 37
</pre>
 
=={{header|Factor}}==
{{works with|Factor|0.99 2021-06-02}}
<langsyntaxhighlight lang="factor">USING: grouping io kernel math math.factorials math.primes
math.ranges prettyprint sequences sets sorting ;
 
Line 31 ⟶ 478:
primorial dup next-prime 2dup - abs 1 =
[ next-prime ] when - abs
] map members natural-sort 50 head 10 group simple-table.</langsyntaxhighlight>
{{out}}
<pre>
Line 41 ⟶ 488:
373 379 383 397 401 409 419 421 439 443
</pre>
 
=={{header|FreeBASIC}}==
Use any primality testing example, the [[set]]s example, and [[Bubble Sort]] as includes for finding primes, removing duplicates, and sorting the output respectively. Coding these up again would bloat the code without being illustrative. Ditto for using a bigint library to get Fortunates after the 7th one, it's just not worth the bother.
 
<syntaxhighlight lang="freebasic">
#include "isprime.bas"
#include "sets.bas"
#include "bubblesort.bas"
 
function prime(n as uinteger) as uinteger
if n = 1 then return 2
dim as integer c=1, p=3
while c<n
if isprime(p) then c+=1
p += 2
wend
return p
end function
 
function primorial( n as uinteger ) as ulongint
dim as ulongint ret = 1
for i as uinteger = 1 to n
ret *= prime(i)
next i
return ret
end function
 
function fortunate(n as uinteger) as uinteger
dim as uinteger m = 3
dim as ulongint pp = primorial(n)
while not isprime(m+pp)
m+=2
wend
return m
end function
 
redim as integer forts(-1)
dim as integer n = 0, m
while ubound(forts) < 6
n += 1
m = fortunate(n)
if not is_in(m, forts()) then
add_to_set(m, forts())
end if
wend
 
bubblesort(forts())
for n=0 to 6
print forts(n)
next n</syntaxhighlight>
 
=={{header|Go}}==
{{trans|Wren}}
{{libheader|Go-rcu}}
<langsyntaxhighlight lang="go">package main
 
import (
Line 88 ⟶ 585:
}
fmt.Println()
}</langsyntaxhighlight>
 
{{out}}
Line 99 ⟶ 596:
373 379 383 397 401 409 419 421 439 443
</pre>
 
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">import Data.Numbers.Primes (primes)
import Math.NumberTheory.Primes.Testing (isPrime)
import Data.List (nub)
 
primorials :: [Integer]
primorials = 1 : scanl1 (*) primes
 
nextPrime :: Integer -> Integer
nextPrime n
| even n = head $ dropWhile (not . isPrime) [n+1, n+3..]
| even n = nextPrime (n+1)
 
fortunateNumbers :: [Integer]
fortunateNumbers = (\p -> nextPrime (p + 2) - p) <$> tail primorials</syntaxhighlight>
 
<pre>λ> take 50 fortunateNumbers
[3,5,5,7,13,23,17,19,23,37,61,67,61,71,47,107,59,61,109,89,103,79,151,197,101,103,233,223,127,223,191,163,229,643,239,157,167,439,239,199,191,199,383,233,751,313,773,607,313,383]
 
-- unique fortunate numbers
λ> take 50 $ nub $ fortunateNumbers
[3,5,7,13,23,17,19,37,61,67,71,47,107,59,109,89,103,79,151,197,101,233,223,127,191,163,229,643,239,157,167,439,199,383,751,313,773,607,293,443,331,283,277,271,401,307,379,491,311,397]</pre>
 
=={{header|J}}==
<syntaxhighlight lang="j">fortunate =: p -~ 4 p: 2 + p =. */ @: p: @ i. @ x:
echo 'Unique fortunate numbers'
echo _10 [\ 50 {. /:~ ~. fortunate"0 >: i. 75</syntaxhighlight>
{{out}}
<pre>
Unique fortunate numbers
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443
</pre>
 
=={{header|Java}}==
<syntaxhighlight lang="java">
import java.math.BigInteger;
import java.util.BitSet;
import java.util.NavigableSet;
import java.util.TreeSet;
 
public final class FortunateNumbers {
 
public static void main(String[] aArgs) {
BitSet primes = primeSieve(400);
NavigableSet<Integer> fortunates = new TreeSet<Integer>();
BigInteger primorial = BigInteger.ONE;
for ( int prime = 2; prime >= 0; prime = primes.nextSetBit(prime + 1) ) {
primorial = primorial.multiply(BigInteger.valueOf(prime));
int candidate = 3;
while ( ! primorial.add(BigInteger.valueOf(candidate)).isProbablePrime(CERTAINTY_LEVEL) ) {
candidate += 2;
}
fortunates.add(candidate);
}
System.out.println("The first 50 distinct fortunate numbers are:");
for ( int i = 0; i < 50; i++ ) {
System.out.print(String.format("%4d%s", fortunates.pollFirst(), ( i % 10 == 9 ? "\n" : "" )));
}
}
private static BitSet primeSieve(int aNumber) {
BitSet sieve = new BitSet(aNumber + 1);
sieve.set(2, aNumber + 1);
for ( int i = 2; i <= Math.sqrt(aNumber); i = sieve.nextSetBit(i + 1) ) {
for ( int j = i * i; j <= aNumber; j = j + i ) {
sieve.clear(j);
}
}
return sieve;
}
private static final int CERTAINTY_LEVEL = 10;
 
}
</syntaxhighlight>
{{ out }}
<pre>
The first 50 distinct fortunate numbers are:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443
 
</pre>
 
=={{header|jq}}==
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''
 
See [[Erdős-primes#jq]] for a suitable definition of `is_prime` as used here.
This definition, however, is insufficiently efficient for calculating more than
the first few values of fortunate(n). Here we define `fortunates($limit)`
to be the array of length $limit comprised of the distinct values
of fortunate(n) for successive values of n.
 
<syntaxhighlight lang="jq">def primes:
2, range(3; infinite; 2) | select(is_prime);
# generate an infinite stream of primorials
def primorials:
foreach primes as $p (1; .*$p; .);
 
# Emit a sorted array of the first $limit distinct fortunate numbers
# generated in order of the primoridials
def fortunates($limit):
label $out
| foreach primorials as $p ([];
first( range(3; infinite; 2) | select($p + . | is_prime)) as $q
| . + [$q] | unique;
if length >= $limit then ., break $out else empty end);
 
fortunates(10)</syntaxhighlight>
{{out}}
<pre>
[3,5,7,13,17,19,23,37,61,67]
</pre>
 
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">using Primes
 
primorials(N) = accumulate(*, primes(N), init = big"1")
Line 112 ⟶ 734:
foreach(p -> print(rpad(last(p), 5), first(p) % 10 == 0 ? "\n" : ""),
(map(fortunate, 1:100) |> unique |> sort!)[begin:50] |> enumerate)
</langsyntaxhighlight>{{out}}
<pre>
After sorting, the first 50 distinct fortunate numbers are:
Line 121 ⟶ 743:
373 379 383 397 401 409 419 421 439 443
</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">ClearAll[primorials]
primorials[n_] := Times @@ Prime[Range[n]]
vals = Table[
primor = primorials[i];
s = NextPrime[primor];
t = NextPrime[s];
Min[DeleteCases[{s - primor, t - primor}, 1]]
,
{i, 100}
];
TakeSmallest[DeleteDuplicates[vals], 50]</syntaxhighlight>
{{out}}
<pre>{3,5,7,13,17,19,23,37,47,59,61,67,71,79,89,101,103,107,109,127,151,157,163,167,191,197,199,223,229,233,239,271,277,283,293,307,311,313,331,353,373,379,383,397,401,409,419,421,439,443}</pre>
 
=={{header|Nim}}==
{{libheader|bignum}}
Nim doesn’t provide a standard module to deal with big integers. So, we have chosen to use the third party module “bignum” which provides functions to easily find primes and check if a number is prime.
<langsyntaxhighlight Nimlang="nim">import algorithm, sequtils, strutils
import bignum
 
Line 158 ⟶ 795:
echo "First $# fortunate numbers:".format(N)
for i, m in list:
stdout.write ($m).align(3), if (i + 1) mod 10 == 0: '\n' else: ' '</langsyntaxhighlight>
 
{{out}}
Line 167 ⟶ 804:
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443</pre>
 
=={{header|Perl}}==
{{libheader|ntheory}}
<syntaxhighlight lang="perl">use strict;
use warnings;
use List::Util <first uniq>;
use ntheory qw<pn_primorial is_prime>;
 
my $upto = 50;
my @candidates;
for my $p ( map { pn_primorial($_) } 1..2*$upto ) {
push @candidates, first { is_prime($_ + $p) } 2..100*$upto;
}
 
my @fortunate = sort { $a <=> $b } uniq grep { is_prime $_ } @candidates;
 
print "First $upto distinct fortunate numbers:\n" .
(sprintf "@{['%6d' x $upto]}", @fortunate) =~ s/(.{60})/$1\n/gr;</syntaxhighlight>
{{out}}
<pre>First 50 distinct fortunate numbers:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443</pre>
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">mpfr</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">mpz</span> <span style="color: #000000;">primorial</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">pj</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">()</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">fortunates</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">p</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">75</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">mpz_mul_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">primorial</span><span style="color: #0000FF;">,</span><span style="color: #000000;">primorial</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">get_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">))</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">j</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">3</span>
<span style="color: #7060A8;">mpz_add_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pj</span><span style="color: #0000FF;">,</span><span style="color: #000000;">primorial</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">while</span> <span style="color: #008080;">not</span> <span style="color: #7060A8;">mpz_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pj</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">mpz_add_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pj</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pj</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">j</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">j</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">2</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #000000;">fortunates</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">j</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000000;">fortunates</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">unique</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">deep_copy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fortunates</span><span style="color: #0000FF;">))[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..</span><span style="color: #000000;">50</span><span style="color: #0000FF;">]</span>
<span style="color: #000000;">fortunates</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">join_by</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">apply</span><span style="color: #0000FF;">(</span><span style="color: #004600;">true</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">,{{</span><span style="color: #008000;">"%3d"</span><span style="color: #0000FF;">},</span><span style="color: #000000;">fortunates</span><span style="color: #0000FF;">}),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"The first 50 distinct fortunate numbers are:\n%s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">fortunates</span><span style="color: #0000FF;">})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
The first 50 distinct fortunate numbers are:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443
</pre>
 
=={{header|Python}}==
{{libheader|sympy}}
<syntaxhighlight lang="python">from sympy.ntheory.generate import primorial
from sympy.ntheory import isprime
 
def fortunate_number(n):
'''Return the fortunate number for positive integer n.'''
# Since primorial(n) is even for all positive integers n,
# it suffices to search for the fortunate numbers among odd integers.
i = 3
primorial_ = primorial(n)
while True:
if isprime(primorial_ + i):
return i
i += 2
 
fortunate_numbers = set()
for i in range(1, 76):
fortunate_numbers.add(fortunate_number(i))
 
# Extract the first 50 numbers.
first50 = sorted(list(fortunate_numbers))[:50]
 
print('The first 50 fortunate numbers:')
print(('{:<3} ' * 10).format(*(first50[:10])))
print(('{:<3} ' * 10).format(*(first50[10:20])))
print(('{:<3} ' * 10).format(*(first50[20:30])))
print(('{:<3} ' * 10).format(*(first50[30:40])))
print(('{:<3} ' * 10).format(*(first50[40:])))</syntaxhighlight>
{{out}}
<pre>The first 50 fortunate numbers:
3 5 7 13 17 19 23 37 47 59
61 67 71 79 89 101 103 107 109 127
151 157 163 167 191 197 199 223 229 233
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443 </pre>
 
=={{header|Raku}}==
Limit of 75 primorials to get first 50 unique fortunates is arbitrary, found through trial and error.
 
<syntaxhighlight lang="raku" perl6line>my @primorials = [\*] grep *.is-prime, ^∞;
 
say display :title("First 50 distinct fortunate numbers:\n"),
Line 181 ⟶ 911:
cache $list;
$title ~ $list.batch($cols)».fmt($fmt).join: "\n"
}</langsyntaxhighlight>
{{out}}
<pre>First 50 distinct fortunate numbers:
Line 189 ⟶ 919:
239 271 277 283 293 307 311 313 331 353
373 379 383 397 401 409 419 421 439 443</pre>
 
=={{header|REXX}}==
For this task's requirement, &nbsp; finding the 8<sup>th</sup> fortunate number requires running this REXX program in a 64-bit address
<br>space. &nbsp; It is CPU intensive as there is no &nbsp; '''isPrime''' &nbsp; BIF for the large (possible) primes generated.
<syntaxhighlight lang="rexx">/*REXX program finds/displays fortunate numbers N, where N is specified (default=8).*/
numeric digits 12
parse arg n cols . /*obtain optional argument from the CL.*/
if n=='' | n=="," then n= 8 /*Not specified? Then use the default.*/
if cols=='' | cols=="," then cols= 10 /* " " " " " " */
call genP n**2 /*build array of semaphores for primes.*/
pp.= 1
do i=1 for n+1; im= i - 1; pp.i= pp.im * @.i /*calculate primorial numbers*/
end /*i*/
i=i-1; call genp pp.i + 1000
title= ' fortunate numbers'
w= 10 /*maximum width of a number in any col.*/
say ' index │'center(title, 1 + cols*(w+1) )
say '───────┼'center("" , 1 + cols*(w+1), '─')
found= 0; idx= 1 /*number of fortunate (so far) & index.*/
!!.= 0; maxFN= 0 /*(stemmed) array of fortunate numbers*/
do j=1 until found==n; pt= pp.j /*search for fortunate numbers in range*/
pt= pp.j /*get the precalculated primorial prime*/
do m=3 by 2; t= pt + m /*find M that satisfies requirement. */
if !.t=='' then leave /*Is !.t prime? Then we found a good M*/
end /*m*/
if !!.m then iterate /*Fortunate # already found? Then skip*/
!!.m= 1; found= found + 1 /*assign fortunate number; bump count.*/
maxFN= max(maxFN, t) /*obtain max fortunate # for displaying*/
end /*j*/
$=; finds= 0 /*$: line of output; FINDS: count.*/
do k=1 for maxFN; if \!!.k then iterate /*show the fortunate numbers we found. */
finds= finds + 1 /*bump the count of numbers (for $). */
c= commas(k) /*maybe add commas to the number. */
$= $ right(c, max(w, length(c) ) ) /*add a nice prime ──► list, allow big#*/
if found//cols\==0 then iterate /*have we populated a line of output? */
say center(idx, 7)'│' substr($, 2); $= /*display what we have so far (cols). */
idx= idx + cols /*bump the index count for the output*/
end /*k*/
 
if $\=='' then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/
say '───────┴'center("" , 1 + cols*(w+1), '─') /*display the foot separator. */
say
say 'Found ' commas(found) title
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP: @.1=2; @.2=3; @.3=5; @.4=7; @.5=11 /*define some low primes. */
!.=0; !.2=; !.3=; !.5=; !.7=; !.11= /* " " " " semaphores. */
#= 5; sq.#= @.#**2 /*squares of low primes.*/
do j=@.#+2 by 2 to arg(1) /*find odd primes from here on. */
parse var j '' -1 _; if _==5 then iterate /*J ÷ by 5 ? */
if j//3==0 then iterate; if j//7==0 then iterate /*" " " 3?; J ÷ by 7 ? */
do k=5 while sq.k<=j /* [↓] divide by the known odd primes.*/
if j // @.k == 0 then iterate j /*Is J ÷ X? Then not prime. ___ */
end /*k*/ /* [↑] only process numbers ≤ √ J */
#= #+1; @.#= j; sq.#= j*j; !.j= /*bump # of Ps; assign next P; P²; P# */
end /*j*/; return</syntaxhighlight>
output
<pre>
2nd prime generation took 580.41 seconds.
index │ fortunate numbers
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ 3 5 7 13 17 19 23 37
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────
 
Found 8 fortunate numbers
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">require "gmp"
 
primorials = Enumerator.new do |y|
cur = prod = 1
loop {y << prod *= (cur = GMP::Z(cur).nextprime)}
end
 
limit = 50
fortunates = []
while fortunates.size < limit*2 do
prim = primorials.next
fortunates << (GMP::Z(prim+2).nextprime - prim)
fortunates = fortunates.uniq.sort
end
p fortunates[0, limit]
</syntaxhighlight>
{{out}}
<pre>[3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397, 401, 409, 419, 421, 439, 443]
</pre>
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func fortunate(n) {
var P = n.pn_primorial
2..Inf -> first {|m| P+m -> is_prob_prime }
}
 
var limit = 50
var uniq = Set()
var all = []
 
for (var n = 1; uniq.len < 2*limit; ++n) {
var m = fortunate(n)
all << m
uniq << m
}
 
say "Fortunate numbers for n = 1..#{limit}:"
say all.first(limit)
 
say "\n#{limit} Fortunate numbers, sorted with duplicates removed:"
say uniq.sort.first(limit)</syntaxhighlight>
{{out}}
<pre>
Fortunate numbers for n = 1..50:
[3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293]
 
50 Fortunate numbers, sorted with duplicates removed:
[3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397, 401, 409, 419, 421, 439, 443]
</pre>
 
=={{header|Wren}}==
{{libheader|Wren-math}}
{{libheader|Wren-big}}
{{libheader|Wren-sort}}
{{libheader|Wren-seq}}
{{libheader|Wren-fmt}}
<langsyntaxhighlight ecmascriptlang="wren">import "./math" for Int
import "./big" for BigInt
import "./sortseq" for SortLst
import "./seqfmt" for LstFmt
import "/fmt" for Fmt
 
var primes = Int.primeSieve(379)
Line 216 ⟶ 1,063:
}
}
fortunates = Lst.distinct(fortunates).sort()
Sort.quick(fortunates)
System.print("After sorting, the first 50 distinct fortunate numbers are:")
for Fmt.tprint(chunk"$3d", in Lst.chunks(fortunates[0..49], 10)) Fmt.print("$3d", chunk)</langsyntaxhighlight>
 
{{out}}
3,028

edits