Find the intersection of a line with a plane

Finding the intersection of an infinite ray with a plane in 3D is an important topic in collision detection.

Task
Find the intersection of a line with a plane
You are encouraged to solve this task according to the task description, using any language you may know.


Task

Find the point of intersection for the infinite ray with direction   (0, -1, -1)   passing through position   (0, 0, 10)   with the infinite plane with a normal vector of   (0, 0, 1)   and which passes through [0, 0, 5].

11l

<lang 11l>F intersection_point(ray_direction, ray_point, plane_normal, plane_point)

  R ray_point - ray_direction * dot(ray_point - plane_point, plane_normal) / dot(ray_direction, plane_normal)

print(‘The ray intersects the plane at ’intersection_point((0.0, -1.0, -1.0), (0.0, 0.0, 10.0), (0.0, 0.0, 1.0), (0.0, 0.0, 5.0)))</lang>

Output:
The ray intersects the plane at (0, -5, 5)

Action!

<lang Action!>INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

DEFINE REALPTR="CARD" TYPE VectorR=[REALPTR x,y,z]

PROC PrintVector(VectorR POINTER v)

 Print("(") PrintR(v.x)
 Print(",") PrintR(v.y)
 Print(",") PrintR(v.z)
 Print(")")

RETURN

PROC Vector(REAL POINTER vx,vy,vz VectorR POINTER v)

 v.x=vx v.y=vy v.z=vz

RETURN

PROC VectorSub(VectorR POINTER a,b,res)

 RealSub(a.x,b.x,res.x)
 RealSub(a.y,b.y,res.y)
 RealSub(a.z,b.z,res.z)

RETURN

PROC VectorDot(VectorR POINTER a,b REAL POINTER res)

 REAL tmp1,tmp2
 RealMult(a.x,b.x,res)
 RealMult(a.y,b.y,tmp1)
 RealAdd(res,tmp1,tmp2)
 RealMult(a.z,b.z,tmp1)
 RealAdd(tmp1,tmp2,res)

RETURN

PROC VectorMul(VectorR POINTER a REAL POINTER b VectorR POINTER res)

 RealMult(a.x,b,res.x)
 RealMult(a.y,b,res.y)
 RealMult(a.z,b,res.z)

RETURN

BYTE FUNC IsZero(REAL POINTER a)

 CHAR ARRAY s(10)
 StrR(a,s)
 IF s(0)=1 AND s(1)='0 THEN
   RETURN (1)
 FI

RETURN (0)

BYTE FUNC Intersection(VectorR POINTER

 rayVector,rayPoint,planeNormal,planePoint,result)
 
 REAL tmpx,tmpy,tmpz,prod1,prod2,prod3
 VectorR tmp
 Vector(tmpx,tmpy,tmpz,tmp)
 VectorSub(rayPoint,planePoint,tmp)
 VectorDot(tmp,planeNormal,prod1)
 VectorDot(rayVector,planeNormal,prod2)
 IF IsZero(prod2) THEN
   RETURN (1)
 FI
 RealDiv(prod1,prod2,prod3)
 VectorMul(rayVector,prod3,tmp)
 VectorSub(rayPoint,tmp,result)

RETURN (0)

PROC Test(VectorR POINTER rayVector,rayPoint,planeNormal,planePoint)

 BYTE res
 REAL px,py,pz
 VectorR p
 Vector(px,py,pz,p)
 res=Intersection(rayVector,rayPoint,planeNormal,planePoint,p)
 Print("Ray vector: ")
 PrintVector(rayVector) PutE()
 Print("Ray point: ")
 PrintVector(rayPoint) PutE()
 Print("Plane normal: ")
 PrintVector(planeNormal) PutE()
 Print("Plane point: ")
 PrintVector(planePoint) PutE()
 IF res=0 THEN
   Print("Intersection point: ")
   PrintVector(p) PutE()
 ELSEIF res=1 THEN
   PrintE("There is no intersection")
 FI
 PutE()

RETURN

PROC Main()

 REAL r0,r1,r5,r10,rm1    
 VectorR rayVector,rayPoint,planeNormal,planePoint
 Put(125) PutE() ;clear screen
 ValR("0",r0) ValR("1",r1) ValR("5",r5)
 ValR("10",r10) ValR("-1",rm1)
 Vector(r0,rm1,rm1,rayVector)
 Vector(r0,r0,r10,rayPoint)
 Vector(r0,r0,r1,planeNormal)
 Vector(r0,r0,r5,planePoint)
 Test(rayVector,rayPoint,planeNormal,planePoint)
 Vector(r1,r1,r0,rayVector)
 Vector(r1,r1,r0,rayPoint)
 Vector(r0,r0,r1,planeNormal)
 Vector(r5,r1,r0,planePoint)
 Test(rayVector,rayPoint,planeNormal,planePoint)

RETURN</lang>

Output:

Screenshot from Atari 8-bit computer

Ray vector: (0,-1,-1)
Ray point: (0,0,10)
Plane normal: (0,0,1)
Plane point: (0,0,5)
Intersection point: (0,-5,5)

Ray vector: (1,1,0)
Ray point: (1,1,0)
Plane normal: (0,0,1)
Plane point: (5,1,0)
There is no intersection

Ada

<lang Ada>with Ada.Numerics.Generic_Real_Arrays; with Ada.Text_IO;

procedure Intersection is

  type Real is new Long_Float;
  package Real_Arrays is
     new Ada.Numerics.Generic_Real_Arrays (Real => Real);
  use Real_Arrays;
  package Real_IO is
     new Ada.Text_IO.Float_IO (Num => Real);
  subtype Vector_3D is Real_Vector (1 .. 3);
  function Line_Plane_Intersection (Line_Vector  : in Vector_3D;
                                    Line_Point   : in Vector_3D;
                                    Plane_Normal : in Vector_3D;
                                    Plane_Point  : in Vector_3D)
                                   return Vector_3D
  is
     Diff  : constant Vector_3D := Line_Point - Plane_Point;
     Denom : constant Real      := Line_Vector * Plane_Normal;
  begin
     if Denom = 0.0 then
        raise Constraint_Error with "Line does not intersect plane";
     end if;
     declare
        Scale : constant Real :=
          -Real'(Diff * Plane_Normal) / Denom;
        Point : constant Vector_3D :=
          Diff + Plane_Point + Scale * Line_Vector;
     begin
        return Point;
     end;
  end Line_Plane_Intersection;
  procedure Put (V : in Vector_3D) is
     use Ada.Text_IO, Real_IO;
  begin
     Put ("(");
     Put (V (1));  Put (",");
     Put (V (2));  Put (",");
     Put (V (3));  Put (")");
  end Put;

begin

  Real_IO.Default_Exp := 0;
  Real_IO.Default_Aft := 3;
  Put (Line_Plane_Intersection (Line_Vector  => (0.0, -1.0, -1.0),
                                Line_Point   => (0.0,  0.0, 10.0),
                                Plane_Normal => (0.0,  0.0,  1.0),
                                Plane_Point  => (0.0,  0.0,  5.0)));

end Intersection;</lang>

Output:
( 0.000,-5.000, 5.000)

APL

<lang APL>⍝ Find the intersection of a line with a plane ⍝ The intersection I belongs to a line defined by point L and vector V, translates to: ⍝ A real parameter t exists, that satisfies I = L + tV ⍝ I belongs to the plan defined by point P and normal vector N. This means that any two points of the plane make a vector ⍝ normal to vector N. As I and P belong to the plane, the vector IP is normal to N. ⍝ This translates to: The scalar product IP.N = 0. ⍝ (P - I).N = 0 <=> (P - L - tV).N = 0 ⍝ Using distributivity, then associativity, the following equations are established: ⍝ (P - L - tV).N = (P - L).N - (tV).N = (P - L).N - t(V.N) = 0 ⍝ Which allows to resolve t: t = ((P - L).N) ÷ (V.N) ⍝ In APL, A.B is coded +/A x B

 V ← 0 ¯1 ¯1
 L ← 0 0 10
 N ← 0 0 1
 P ← 0 0 5 
 dot ← { +/ ⍺ × ⍵ }
 t ← ((P - L) dot N) ÷ V dot N
 I ← L + t × V

</lang>

Output:
  I
0 ¯5 5

AutoHotkey

<lang AutoHotkey>/*

https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection#Algebraic_form

l = line vector lo = point on the line n = plane normal vector Po = point on the plane

if (l . n) = 0 ; line and plane are parallel. if (Po - lo) . n = 0 ; line is contained in the plane.

(P - Po) . n = 0 ; vector equation of plane. P = lo + l * d ; vector equation of line. ((lo + l * d) - Po) . n = 0 ; Substitute line into plane equation. (l . n) * d + (lo - Po) . n = 0 ; Expanding. d = ((Po - lo) . n) / (l . n) ; solving for d. P = lo + l * ((Po - lo) . n) / (l . n) ; solving P.

  • /

intersectPoint(l, lo, n, Pn ){ if (Vector_dot(Vector_sub(Pn, lo), n) = 0) ; line is contained in the plane return [1] if (Vector_dot(l, n) = 0) ; line and plane are parallel return [0]

   diff  := Vector_Sub(Pn, lo)				; (Po - lo)
   prod1 := Vector_Dot(diff, n)			; ((Po - lo) . n)
   prod2 := Vector_Dot(l, n)				; (l . n)
   d := prod1 / prod2					; d = ((Po - lo) . n) / (l . n)
   return Vector_Add(lo, Vector_Mul(l, d))		; P = lo + l * d

}

Vector_Add(v, w){

   return [v.1+w.1, v.2+w.2, v.3+w.3]

} Vector_Sub(v, w){

   return [v.1-w.1, v.2-w.2, v.3-w.3]

} Vector_Mul(v, s){

   return [s*v.1, s*v.2, s*v.3]

} Vector_Dot(v, w){

   return v.1*w.1 + v.2*w.2 + v.3*w.3

}</lang> Examples:<lang AutoHotkey>; task l1 := [0, -1, -1] lo1 := [0, 0, 10] n1 := [0, 0, 1] Po1 := [0, 0, 5]

line on plane

l2 := [1, 1, 0] lo2 := [1, 1, 0] n2 := [0, 0, 1] Po2 := [5, 1, 0]

line parallel to plane

l3 := [1, 1, 0] lo3 := [1, 1, 1] n3 := [0, 0, 1] Po3 := [5, 1, 0]

output := "" loop 3 { result := "" ip := intersectPoint(l%A_Index%, lo%A_Index%, n%A_Index%, Po%A_Index%) for i, v in ip result .= v ", " output .= Trim(result, ", ") "`n" } MsgBox % output return</lang>

Output:
0.000000, -5.000000, 5.000000
1	; line on plane
0	; line parallel to plane

C

Straightforward application of the intersection formula, prints usage on incorrect invocation. <lang C>

  1. include<stdio.h>

typedef struct{ double x,y,z; }vector;

vector addVectors(vector a,vector b){ return (vector){a.x+b.x,a.y+b.y,a.z+b.z}; }

vector subVectors(vector a,vector b){ return (vector){a.x-b.x,a.y-b.y,a.z-b.z}; }

double dotProduct(vector a,vector b){ return a.x*b.x + a.y*b.y + a.z*b.z; }

vector scaleVector(double l,vector a){ return (vector){l*a.x,l*a.y,l*a.z}; }

vector intersectionPoint(vector lineVector, vector linePoint, vector planeNormal, vector planePoint){ vector diff = subVectors(linePoint,planePoint);

return addVectors(addVectors(diff,planePoint),scaleVector(-dotProduct(diff,planeNormal)/dotProduct(lineVector,planeNormal),lineVector)); }

int main(int argC,char* argV[]) { vector lV,lP,pN,pP,iP;

if(argC!=5) printf("Usage : %s <line direction, point on line, normal to plane and point on plane given as (x,y,z) tuples separated by space>"); else{ sscanf(argV[1],"(%lf,%lf,%lf)",&lV.x,&lV.y,&lV.z); sscanf(argV[3],"(%lf,%lf,%lf)",&pN.x,&pN.y,&pN.z);

if(dotProduct(lV,pN)==0) printf("Line and Plane do not intersect, either parallel or line is on the plane"); else{ sscanf(argV[2],"(%lf,%lf,%lf)",&lP.x,&lP.y,&lP.z); sscanf(argV[4],"(%lf,%lf,%lf)",&pP.x,&pP.y,&pP.z);

iP = intersectionPoint(lV,lP,pN,pP);

printf("Intersection point is (%lf,%lf,%lf)",iP.x,iP.y,iP.z); } }

return 0; } </lang> Invocation and output:

C:\rosettaCode>linePlane.exe (0,-1,-1) (0,0,10) (0,0,1) (0,0,5)
Intersection point is (0.000000,-5.000000,5.000000)

C#

<lang csharp>using System;

namespace FindIntersection {

   class Vector3D {
       private double x, y, z;
       public Vector3D(double x, double y, double z) {
           this.x = x;
           this.y = y;
           this.z = z;
       }
       public static Vector3D operator +(Vector3D lhs, Vector3D rhs) {
           return new Vector3D(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z);
       }
       public static Vector3D operator -(Vector3D lhs, Vector3D rhs) {
           return new Vector3D(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z);
       }
       public static Vector3D operator *(Vector3D lhs, double rhs) {
           return new Vector3D(lhs.x * rhs, lhs.y * rhs, lhs.z * rhs);
       }
       public double Dot(Vector3D rhs) {
           return x * rhs.x + y * rhs.y + z * rhs.z;
       }
       public override string ToString() {
           return string.Format("({0:F}, {1:F}, {2:F})", x, y, z);
       }
   }
   class Program {
       static Vector3D IntersectPoint(Vector3D rayVector, Vector3D rayPoint, Vector3D planeNormal, Vector3D planePoint) {
           var diff = rayPoint - planePoint;
           var prod1 = diff.Dot(planeNormal);
           var prod2 = rayVector.Dot(planeNormal);
           var prod3 = prod1 / prod2;
           return rayPoint - rayVector * prod3;
       }
       static void Main(string[] args) {
           var rv = new Vector3D(0.0, -1.0, -1.0);
           var rp = new Vector3D(0.0, 0.0, 10.0);
           var pn = new Vector3D(0.0, 0.0, 1.0);
           var pp = new Vector3D(0.0, 0.0, 5.0);
           var ip = IntersectPoint(rv, rp, pn, pp);
           Console.WriteLine("The ray intersects the plane at {0}", ip);
       }
   }

}</lang>

Output:
The ray intersects the plane at (0.00, -5.00, 5.00)

C++

Translation of: Java

<lang cpp>#include <iostream>

  1. include <sstream>

class Vector3D { public: Vector3D(double x, double y, double z) { this->x = x; this->y = y; this->z = z; }

double dot(const Vector3D& rhs) const { return x * rhs.x + y * rhs.y + z * rhs.z; }

Vector3D operator-(const Vector3D& rhs) const { return Vector3D(x - rhs.x, y - rhs.y, z - rhs.z); }

Vector3D operator*(double rhs) const { return Vector3D(rhs*x, rhs*y, rhs*z); }

friend std::ostream& operator<<(std::ostream&, const Vector3D&);

private: double x, y, z; };

std::ostream & operator<<(std::ostream & os, const Vector3D &f) { std::stringstream ss; ss << "(" << f.x << ", " << f.y << ", " << f.z << ")"; return os << ss.str(); }

Vector3D intersectPoint(Vector3D rayVector, Vector3D rayPoint, Vector3D planeNormal, Vector3D planePoint) { Vector3D diff = rayPoint - planePoint; double prod1 = diff.dot(planeNormal); double prod2 = rayVector.dot(planeNormal); double prod3 = prod1 / prod2; return rayPoint - rayVector * prod3; }

int main() { Vector3D rv = Vector3D(0.0, -1.0, -1.0); Vector3D rp = Vector3D(0.0, 0.0, 10.0); Vector3D pn = Vector3D(0.0, 0.0, 1.0); Vector3D pp = Vector3D(0.0, 0.0, 5.0); Vector3D ip = intersectPoint(rv, rp, pn, pp);

std::cout << "The ray intersects the plane at " << ip << std::endl;

return 0; }</lang>

Output:
The ray intersects the plane at (0, -5, 5)

D

Translation of: Kotlin

<lang D>import std.stdio;

struct Vector3D {

   private real x;
   private real y;
   private real z;
   this(real x, real y, real z) {
       this.x = x;
       this.y = y;
       this.z = z;
   }
   auto opBinary(string op)(Vector3D rhs) const {
       static if (op == "+" || op == "-") {
           mixin("return Vector3D(x" ~ op ~ "rhs.x, y" ~ op ~ "rhs.y, z" ~ op ~ "rhs.z);");
       }
   }
   auto opBinary(string op : "*")(real s) const {
       return Vector3D(s*x, s*y, s*z);
   }
   auto dot(Vector3D rhs) const {
       return x*rhs.x + y*rhs.y + z*rhs.z;
   }
   void toString(scope void delegate(const(char)[]) sink) const {
       import std.format;
       sink("(");
       formattedWrite!"%f"(sink, x);
       sink(",");
       formattedWrite!"%f"(sink, y);
       sink(",");
       formattedWrite!"%f"(sink, z);
       sink(")");
   }

}

auto intersectPoint(Vector3D rayVector, Vector3D rayPoint, Vector3D planeNormal, Vector3D planePoint) {

   auto diff = rayPoint - planePoint;
   auto prod1 = diff.dot(planeNormal);
   auto prod2 = rayVector.dot(planeNormal);
   auto prod3 = prod1 / prod2;
   return rayPoint - rayVector * prod3;

}

void main() {

   auto rv = Vector3D(0.0, -1.0, -1.0);
   auto rp = Vector3D(0.0,  0.0, 10.0);
   auto pn = Vector3D(0.0,  0.0,  1.0);
   auto pp = Vector3D(0.0,  0.0,  5.0);
   auto ip = intersectPoint(rv, rp, pn, pp);
   writeln("The ray intersects the plane at ", ip);

}</lang>

Output:
The ray intersects the plane at (0.000000,-5.000000,5.000000)

F#

Translation of: C#

<lang fsharp>open System

type Vector(x : double, y : double, z : double) =

   member this.x = x
   member this.y = y
   member this.z = z
   static member (-) (lhs : Vector, rhs : Vector) =
       Vector(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z)
   static member (*) (lhs : Vector, rhs : double) =
       Vector(lhs.x * rhs, lhs.y * rhs, lhs.z * rhs)
   override this.ToString() =
       String.Format("({0:F}, {1:F}, {2:F})", x, y, z)

let Dot (lhs:Vector) (rhs:Vector) =

   lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z

let IntersectPoint rayVector rayPoint planeNormal planePoint =

   let diff = rayPoint - planePoint
   let prod1 = Dot diff planeNormal
   let prod2 = Dot rayVector planeNormal
   let prod3 = prod1 / prod2
   rayPoint - rayVector * prod3

[<EntryPoint>] let main _ =

   let rv = Vector(0.0, -1.0, -1.0)
   let rp = Vector(0.0, 0.0, 10.0)
   let pn = Vector(0.0, 0.0, 1.0)
   let pp = Vector(0.0, 0.0, 5.0)
   let ip = IntersectPoint rv rp pn pp
   Console.WriteLine("The ray intersects the plane at {0}", ip)
   0 // return an integer exit code</lang>
Output:
The ray intersects the plane at (0.00, -5.00, 5.00)

Factor

Translation of: 11l

<lang factor>USING: io locals math.vectors prettyprint ;

intersection-point ( rdir rpt pnorm ppt -- loc )
   rpt rdir pnorm rpt ppt v- v. v*n rdir pnorm v. v/n v- ;

"The ray intersects the plane at " write { 0 -1 -1 } { 0 0 10 } { 0 0 1 } { 0 0 5 } intersection-point .</lang>

Output:
The ray intersects the plane at { 0 -5 5 }

FreeBASIC

<lang freebasic>' version 11-07-2018 ' compile with: fbc -s console

Type vector3d

   Dim As Double x, y ,z
   Declare Constructor ()
   Declare Constructor (ByVal x As Double, ByVal y As Double, ByVal z As Double)

End Type

Constructor vector3d()

   This.x = 0
   This.y = 0
   This.z = 0

End Constructor

Constructor vector3d(ByVal x As Double, ByVal y As Double, ByVal z As Double)

   This.x = x
   This.y = y
   This.z = z

End Constructor

Operator + (lhs As vector3d, rhs As vector3d) As vector3d

   Return Type(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z)

End Operator

Operator - (lhs As vector3d, rhs As vector3d) As vector3d

   Return Type(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z)

End Operator

Operator * (lhs As vector3d, d As Double) As vector3d

   Return Type(lhs.x * d, lhs.y * d, lhs.z * d)

End Operator

Function dot(lhs As vector3d, rhs As vector3d) As Double

   Return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z

End Function

Function tostring(vec As vector3d) As String

   Return "(" + Str(vec.x) + ", " + Str(vec.y) + ", " + Str(vec.z) + ")"

End Function

Function intersectpoint(rayvector As vector3d, raypoint As vector3d, _

                   planenormal As vector3d, planepoint As vector3d) As vector3d
   Dim As vector3d diff = raypoint - planepoint
   Dim As Double prod1 = dot(diff, planenormal)
   Dim As double prod2 = dot(rayvector, planenormal)
   Return raypoint - rayvector * (prod1 / prod2)

End Function

' ------=< MAIN >=------

Dim As vector3d rv = Type(0, -1, -1) Dim As vector3d rp = Type(0, 0, 10) Dim As vector3d pn = Type(0, 0, 1) Dim As vector3d pp = Type(0, 0, 5) Dim As vector3d ip = intersectpoint(rv, rp, pn, pp)

print Print "line intersects the plane at "; tostring(ip)

' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
line intersects the plane at (0, -5, 5)

Go

Translation of: Kotlin

<lang go>package main

import "fmt"

type Vector3D struct{ x, y, z float64 }

func (v *Vector3D) Add(w *Vector3D) *Vector3D {

   return &Vector3D{v.x + w.x, v.y + w.y, v.z + w.z}

}

func (v *Vector3D) Sub(w *Vector3D) *Vector3D {

   return &Vector3D{v.x - w.x, v.y - w.y, v.z - w.z}

}

func (v *Vector3D) Mul(s float64) *Vector3D {

   return &Vector3D{s * v.x, s * v.y, s * v.z}

}

func (v *Vector3D) Dot(w *Vector3D) float64 {

   return v.x*w.x + v.y*w.y + v.z*w.z

}

func (v *Vector3D) String() string {

   return fmt.Sprintf("(%v, %v, %v)", v.x, v.y, v.z)

}

func intersectPoint(rayVector, rayPoint, planeNormal, planePoint *Vector3D) *Vector3D {

   diff := rayPoint.Sub(planePoint)
   prod1 := diff.Dot(planeNormal)
   prod2 := rayVector.Dot(planeNormal)
   prod3 := prod1 / prod2
   return rayPoint.Sub(rayVector.Mul(prod3))

}

func main() {

   rv := &Vector3D{0.0, -1.0, -1.0}
   rp := &Vector3D{0.0, 0.0, 10.0}
   pn := &Vector3D{0.0, 0.0, 1.0}
   pp := &Vector3D{0.0, 0.0, 5.0}
   ip := intersectPoint(rv, rp, pn, pp)
   fmt.Println("The ray intersects the plane at", ip)

}</lang>

Output:
The ray intersects the plane at (0, -5, 5)

Groovy

Translation of: Java

<lang groovy>class LinePlaneIntersection {

   private static class Vector3D {
       private double x, y, z
       Vector3D(double x, double y, double z) {
           this.x = x
           this.y = y
           this.z = z
       }
       Vector3D plus(Vector3D v) {
           return new Vector3D(x + v.x, y + v.y, z + v.z)
       }
       Vector3D minus(Vector3D v) {
           return new Vector3D(x - v.x, y - v.y, z - v.z)
       }
       Vector3D multiply(double s) {
           return new Vector3D(s * x, s * y, s * z)
       }
       double dot(Vector3D v) {
           return x * v.x + y * v.y + z * v.z
       }
       @Override
       String toString() {
           return "($x, $y, $z)"
       }
   }
   private static Vector3D intersectPoint(Vector3D rayVector, Vector3D rayPoint, Vector3D planeNormal, Vector3D planePoint) {
       Vector3D diff = rayPoint - planePoint
       double prod1 = diff.dot(planeNormal)
       double prod2 = rayVector.dot(planeNormal)
       double prod3 = prod1 / prod2
       return rayPoint - rayVector * prod3
   }
   static void main(String[] args) {
       Vector3D rv = new Vector3D(0.0, -1.0, -1.0)
       Vector3D rp = new Vector3D(0.0, 0.0, 10.0)
       Vector3D pn = new Vector3D(0.0, 0.0, 1.0)
       Vector3D pp = new Vector3D(0.0, 0.0, 5.0)
       Vector3D ip = intersectPoint(rv, rp, pn, pp)
       println("The ray intersects the plane at $ip")
   }

}</lang>

Output:
The ray intersects the plane at (0.0, -5.0, 5.0)

Haskell

Translation of: Kotlin

Note that V3 is implemented similarly in the external library linear. <lang Haskell>import Control.Applicative (liftA2) import Text.Printf (printf)

data V3 a = V3 a a a

   deriving Show

instance Functor V3 where

   fmap f (V3 a b c) = V3 (f a) (f b) (f c)

instance Applicative V3 where

   pure a = V3 a a a
   V3 a b c <*> V3 d e f = V3 (a d) (b e) (c f)

instance Num a => Num (V3 a) where

   (+) = liftA2 (+)
   (-) = liftA2 (-)
   (*) = liftA2 (*)
   negate = fmap negate
   abs = fmap abs
   signum = fmap signum
   fromInteger = pure . fromInteger

dot ::Num a => V3 a -> V3 a -> a dot a b = x + y + z

 where
   V3 x y z = a * b

intersect :: Fractional a => V3 a -> V3 a -> V3 a -> V3 a -> V3 a intersect rayVector rayPoint planeNormal planePoint =

   rayPoint - rayVector * pure prod3
 where
   diff = rayPoint - planePoint
   prod1 = diff `dot` planeNormal
   prod2 = rayVector `dot` planeNormal
   prod3 = prod1 / prod2

main = printf "The ray intersects the plane at (%f, %f, %f)\n" x y z

 where
   V3 x y z = intersect rv rp pn pp :: V3 Double
   rv = V3 0 (-1) (-1)
   rp = V3 0 0 10
   pn = V3 0 0 1
   pp = V3 0 0 5</lang>
Output:
The ray intersects the plane at (0.0, -5.0, 5.0)

J

Solution: <lang j>mp=: +/ .* NB. matrix product p=: mp&{: %~ -~&{. mp {:@] NB. solve intersectLinePlane=: [ +/@:* 1 , p NB. substitute</lang> Example Usage: <lang j> Line=: 0 0 10 ,: 0 _1 _1 NB. Point, Ray

  Plane=: 0 0 5 ,: 0 0 1     NB. Point, Normal
  Line intersectLinePlane Plane

0 _5 5</lang>

Java

Translation of: Kotlin

<lang Java>public class LinePlaneIntersection {

   private static class Vector3D {
       private double x, y, z;
       Vector3D(double x, double y, double z) {
           this.x = x;
           this.y = y;
           this.z = z;
       }
       Vector3D plus(Vector3D v) {
           return new Vector3D(x + v.x, y + v.y, z + v.z);
       }
       Vector3D minus(Vector3D v) {
           return new Vector3D(x - v.x, y - v.y, z - v.z);
       }
       Vector3D times(double s) {
           return new Vector3D(s * x, s * y, s * z);
       }
       double dot(Vector3D v) {
           return x * v.x + y * v.y + z * v.z;
       }
       @Override
       public String toString() {
           return String.format("(%f, %f, %f)", x, y, z);
       }
   }
   private static Vector3D intersectPoint(Vector3D rayVector, Vector3D rayPoint, Vector3D planeNormal, Vector3D planePoint) {
       Vector3D diff = rayPoint.minus(planePoint);
       double prod1 = diff.dot(planeNormal);
       double prod2 = rayVector.dot(planeNormal);
       double prod3 = prod1 / prod2;
       return rayPoint.minus(rayVector.times(prod3));
   }
   public static void main(String[] args) {
       Vector3D rv = new Vector3D(0.0, -1.0, -1.0);
       Vector3D rp = new Vector3D(0.0, 0.0, 10.0);
       Vector3D pn = new Vector3D(0.0, 0.0, 1.0);
       Vector3D pp = new Vector3D(0.0, 0.0, 5.0);
       Vector3D ip = intersectPoint(rv, rp, pn, pp);
       System.out.println("The ray intersects the plane at " + ip);
   }

}</lang>

Output:
The ray intersects the plane at (0.000000, -5.000000, 5.000000)

jq

Works with: jq

Works with gojq, the Go implementation of jq

In the following, a 3d vector is represented by a JSON array: [x, y, z] <lang jq># add as many as you please def addVector:

 transpose | add;
  1. . - y

def minusVector(y):

 [.[0] - y[0], .[1] - y[1], .[2] - y[2]];
  1. scalar multiplication: . * s

def multVector(s):

   map(. * s);

def dot(y):

 .[0] * y[0] + .[1] * y[1] + .[2] * y[2];

def intersectPoint($rayVector; $rayPoint; $planeNormal; $planePoint):

 ($rayPoint | minusVector($planePoint)) as $diff
 | ($diff|dot($planeNormal)) as $prod1
 | ($rayVector|dot($planeNormal)) as $prod2
 | $rayPoint | minusVector($rayVector | multVector(($prod1 / $prod2) )) ;


def rv : [0, -1, -1]; def rp : [0, 0, 10]; def pn : [0, 0, 1]; def pp : [0, 0, 5];

"The ray intersects the plane at:", intersectPoint(rv; rp; pn; pp)</lang>

Output:
The ray intersects the plane at:
[0,-5,5]


Julia

Works with: Julia version 0.6
Translation of: Python

<lang julia>function lineplanecollision(planenorm::Vector, planepnt::Vector, raydir::Vector, raypnt::Vector)

   ndotu = dot(planenorm, raydir)
   if ndotu ≈ 0 error("no intersection or line is within plane") end
   w  = raypnt - planepnt
   si = -dot(planenorm, w) / ndotu
   ψ  = w .+ si .* raydir .+ planepnt
   return ψ

end

  1. Define plane

planenorm = Float64[0, 0, 1] planepnt = Float64[0, 0, 5]

  1. Define ray

raydir = Float64[0, -1, -1] raypnt = Float64[0, 0, 10]

ψ = lineplanecollision(planenorm, planepnt, raydir, raypnt) println("Intersection at $ψ")</lang>

Output:
Intersection at [0.0, -5.0, 5.0]

Kotlin

<lang scala>// version 1.1.51

class Vector3D(val x: Double, val y: Double, val z: Double) {

   operator fun plus(v: Vector3D) = Vector3D(x + v.x, y + v.y, z + v.z)
   operator fun minus(v: Vector3D) = Vector3D(x - v.x, y - v.y, z - v.z)
   operator fun times(s: Double) = Vector3D(s * x, s * y, s * z)
   infix fun dot(v: Vector3D) = x * v.x + y * v.y + z * v.z
   override fun toString() = "($x, $y, $z)"

}

fun intersectPoint(

   rayVector: Vector3D,
   rayPoint: Vector3D,
   planeNormal: Vector3D,
   planePoint: Vector3D

): Vector3D {

   val diff  = rayPoint - planePoint
   val prod1 = diff dot planeNormal
   val prod2 = rayVector dot planeNormal
   val prod3 = prod1 / prod2
   return rayPoint - rayVector * prod3

}

fun main(args: Array<String>) {

   val rv = Vector3D(0.0, -1.0, -1.0)
   val rp = Vector3D(0.0,  0.0, 10.0)
   val pn = Vector3D(0.0,  0.0,  1.0)
   val pp = Vector3D(0.0,  0.0,  5.0)
   val ip = intersectPoint(rv, rp, pn, pp)
   println("The ray intersects the plane at $ip")

}</lang>

Output:
The ray intersects the plane at (0.0, -5.0, 5.0)

Lua

<lang lua>function make(xval, yval, zval)

   return {x=xval, y=yval, z=zval}

end

function plus(lhs, rhs)

   return make(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z)

end

function minus(lhs, rhs)

   return make(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z)

end

function times(lhs, scale)

   return make(scale * lhs.x, scale * lhs.y, scale * lhs.z)

end

function dot(lhs, rhs)

   return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z

end

function tostr(val)

   return "(" .. val.x .. ", " .. val.y .. ", " .. val.z .. ")"

end

function intersectPoint(rayVector, rayPoint, planeNormal, planePoint)

   diff = minus(rayPoint, planePoint)
   prod1 = dot(diff, planeNormal)
   prod2 = dot(rayVector, planeNormal)
   prod3 = prod1 / prod2
   return minus(rayPoint, times(rayVector, prod3))

end

rv = make(0.0, -1.0, -1.0) rp = make(0.0, 0.0, 10.0) pn = make(0.0, 0.0, 1.0) pp = make(0.0, 0.0, 5.0) ip = intersectPoint(rv, rp, pn, pp) print("The ray intersects the plane at " .. tostr(ip))</lang>

Output:
The ray intersects the plane at (0, -5, 5)

Maple

<lang Maple>geom3d:-plane(P, [geom3d:-point(p1,0,0,5), [0,0,1]]); geom3d:-line(L, [geom3d:-point(p2,0,0,10), [0,-1,-1]]); geom3d:-intersection(px,L,P); geom3d:-detail(px);</lang>

Output:
[["name of the object",px],["form of the object",point3d],["coordinates of the point",[0,-5,5]]]

Mathematica / Wolfram Language

<lang Mathematica>RegionIntersection[InfiniteLine[{0, 0, 10}, {0, -1, -1}], InfinitePlane[{0, 0, 5}, {{0, 1, 0}, {1, 0, 0}}]]</lang>

Output:
Point[{0, -5, 5}]


MATLAB

Translation of: Kotlin

<lang MATLAB>function point = intersectPoint(rayVector, rayPoint, planeNormal, planePoint)

pdiff = rayPoint - planePoint; prod1 = dot(pdiff, planeNormal); prod2 = dot(rayVector, planeNormal); prod3 = prod1 / prod2;

point = rayPoint - rayVector * prod3;</lang>

Output:

<lang MATLAB>>> intersectPoint([0 -1 -1], [0 0 10], [0 0 1], [0 0 5])

ans =

    0    -5     5

</lang>

Modula-2

<lang modula2>MODULE LinePlane; FROM RealStr IMPORT RealToStr; FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

TYPE

   Vector3D = RECORD
       x,y,z : REAL;
   END;

PROCEDURE Minus(lhs,rhs : Vector3D) : Vector3D; VAR out : Vector3D; BEGIN

   RETURN Vector3D{lhs.x-rhs.x, lhs.y-rhs.y, lhs.z-rhs.z};

END Minus;

PROCEDURE Times(a : Vector3D; s : REAL) : Vector3D; BEGIN

   RETURN Vector3D{a.x*s, a.y*s, a.z*s};

END Times;

PROCEDURE Dot(lhs,rhs : Vector3D) : REAL; BEGIN

   RETURN lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z;

END Dot;

PROCEDURE ToString(self : Vector3D); VAR buf : ARRAY[0..63] OF CHAR; BEGIN

   WriteString("(");
   RealToStr(self.x,buf);
   WriteString(buf);
   WriteString(", ");
   RealToStr(self.y,buf);
   WriteString(buf);
   WriteString(", ");
   RealToStr(self.z,buf);
   WriteString(buf);
   WriteString(")");

END ToString;

PROCEDURE IntersectPoint(rayVector,rayPoint,planeNormal,planePoint : Vector3D) : Vector3D; VAR

   diff : Vector3D;
   prod1,prod2,prod3 : REAL;

BEGIN

   diff := Minus(rayPoint,planePoint);
   prod1 := Dot(diff, planeNormal);
   prod2 := Dot(rayVector, planeNormal);
   prod3 := prod1 / prod2;
   RETURN Minus(rayPoint, Times(rayVector, prod3));

END IntersectPoint;

VAR ip : Vector3D; BEGIN

   ip := IntersectPoint(Vector3D{0.0,-1.0,-1.0},Vector3D{0.0,0.0,10.0},Vector3D{0.0,0.0,1.0},Vector3D{0.0,0.0,5.0});
   WriteString("The ray intersects the plane at ");
   ToString(ip);
   WriteLn;
   ReadChar;

END LinePlane.</lang>

Nim

<lang Nim> type Vector = tuple[x, y, z: float]


func `+`(v1, v2: Vector): Vector =

 ## Add two vectors.
 (v1.x + v2.x, v1.y + v2.y, v1.z + v2.z)

func `-`(v1, v2: Vector): Vector =

 ## Subtract a vector to another one.
 (v1.x - v2.x, v1.y - v2.y, v1.z - v2.z)

func `*`(v1, v2: Vector): float =

 ## Compute the dot product of two vectors.
 v1.x * v2.x + v1.y * v2.y + v1.z * v2.z

func `*`(v: Vector; k: float): Vector =

 ## Multiply a vector by a scalar.
 (v.x * k, v.y * k, v.z * k)


func intersection(lineVector, linePoint, planeVector, planePoint: Vector): Vector =

 ## Return the coordinates of the intersection of two vectors.
 let tnum = planeVector * (planePoint - linePoint)
 let tdenom = planeVector * lineVector
 if tdenom == 0: return (Inf, Inf, Inf)  # No intersection.
 let t = tnum / tdenom
 result = lineVector * t + linePoint

let coords = intersection(lineVector = (0.0, -1.0, -1.0),

                         linePoint = (0.0, 0.0, 10.0),
                         planeVector = (0.0, 0.0, 1.0),
                         planePoint = (0.0, 0.0, 5.0))

echo "Intersection at ", coords</lang>

Output:
Intersection at (x: 0.0, y: -5.0, z: 5.0)

Perl

Translation of: Raku

<lang perl>package Line; sub new { my ($c, $a) = @_; my $self = { P0 => $a->{P0}, u => $a->{u} } } # point / ray package Plane; sub new { my ($c, $a) = @_; my $self = { V0 => $a->{V0}, n => $a->{n} } } # point / normal

package main;

sub dot { my $p; $p += $_[0][$_] * $_[1][$_] for 0..@{$_[0]}-1; $p } # dot product sub vd { my @v; $v[$_] = $_[0][$_] - $_[1][$_] for 0..@{$_[0]}-1; @v } # vector difference sub va { my @v; $v[$_] = $_[0][$_] + $_[1][$_] for 0..@{$_[0]}-1; @v } # vector addition sub vp { my @v; $v[$_] = $_[0][$_] * $_[1][$_] for 0..@{$_[0]}-1; @v } # vector product

sub line_plane_intersection {

   my($L, $P) = @_;
   my $cos = dot($L->{u}, $P->{n});     # cosine between normal & ray
   return 'Vectors are orthogonol; no intersection or line within plane' if $cos == 0;
   my @W = vd($L->{P0},$P->{V0});       # difference between P0 and V0
   my $SI = -dot($P->{n}, \@W) / $cos;  # line segment where it intersets the plane
   my @a = vp($L->{u},[($SI)x3]);
   my @b = va($P->{V0},\@a);
   va(\@W,\@b);

}

my $L = Line->new({ P0=>[0,0,10], u=>[0,-1,-1]}); my $P = Plane->new({ V0=>[0,0,5 ], n=>[0, 0, 1]}); print 'Intersection at point: ', join(' ', line_plane_intersection($L, $P)) . "\n"; </lang>

Output:
Intersection at point: 0 -5 5

Phix

with javascript_semantics
function dot(sequence a, b) return sum(sq_mul(a,b)) end function
 
function intersection_point(sequence line_vector,line_point,plane_normal,plane_point)
    atom a = dot(line_vector,plane_normal)
    if a=0 then return "no intersection" end if
    sequence diff = sq_sub(line_point,plane_point)
    return sq_add(sq_add(diff,plane_point),sq_mul(-dot(diff,plane_normal)/a,line_vector))
end function
 
?intersection_point({0,-1,-1},{0,0,10},{0,0,1},{0,0,5})
?intersection_point({3,2,1},{0,2,4},{1,2,3},{3,3,3})
?intersection_point({1,1,0},{0,0,1},{0,0,3},{0,0,0}) -- (parallel to plane)
?intersection_point({1,1,0},{1,1,0},{0,0,3},{0,0,0}) -- (line within plane)
Output:
{0,-5,5}
{0.6,2.4,4.2}
"no intersection"
"no intersection"

Picat

Translation of: Java
Works with: Picat

<lang Picat> plus(U, V) = {U[1] + V[1], U[2] + V[2], U[3] + V[3]}.

minus(U, V) = {U[1] - V[1], U[2] - V[2], U[3] - V[3]}.

times(U, S) = {U[1] * S, U[2] * S, U[3] * S}.

dot(U, V) = U[1] * V[1] + U[2] * V[2] + U[3] * V[3].

intersect_point(RayVector, RayPoint, PlaneNormal, PlanePoint) = IntersectPoint =>

   Diff = minus(RayPoint, PlanePoint),
   Prod1 = dot(Diff, PlaneNormal),
   Prod2 = dot(RayVector, PlaneNormal),
   Prod3 = Prod1 / Prod2,
   IntersectPoint = minus(RayPoint, times(RayVector, Prod3)).

main =>

   RayVector = {0.0, -1.0, -1.0},
   RayPoint = {0.0, 0.0, 10.0},
   PlaneNormal = {0.0, 0.0, 1.0},
   PlanePoint = {0.0, 0.0, 5.0},
   IntersectPoint = intersect_point(RayVector, RayPoint, PlaneNormal, PlanePoint),
   printf("The ray intersects the plane at (%f, %f, %f)\n",
       IntersectPoint[1],
       IntersectPoint[2],
       IntersectPoint[3]
   ).

</lang>

Output:
The ray intersects the plane at (0.000000, -5.000000, 5.000000)


Python

Based on the approach at geomalgorithms.com[1]

<lang python>#!/bin/python from __future__ import print_function import numpy as np

def LinePlaneCollision(planeNormal, planePoint, rayDirection, rayPoint, epsilon=1e-6):

ndotu = planeNormal.dot(rayDirection) if abs(ndotu) < epsilon: raise RuntimeError("no intersection or line is within plane")

w = rayPoint - planePoint si = -planeNormal.dot(w) / ndotu Psi = w + si * rayDirection + planePoint return Psi


if __name__=="__main__": #Define plane planeNormal = np.array([0, 0, 1]) planePoint = np.array([0, 0, 5]) #Any point on the plane

#Define ray rayDirection = np.array([0, -1, -1]) rayPoint = np.array([0, 0, 10]) #Any point along the ray

Psi = LinePlaneCollision(planeNormal, planePoint, rayDirection, rayPoint) print ("intersection at", Psi)</lang>

Output:
intersection at [ 0 -5  5]

R

Translation of: MATLAB

<lang R>intersect_point <- function(ray_vec, ray_point, plane_normal, plane_point) {

 pdiff <- ray_point - plane_point
 prod1 <- pdiff %*% plane_normal
 prod2 <- ray_vec %*% plane_normal
 prod3 <- prod1 / prod2
 point <- ray_point - ray_vec * as.numeric(prod3)
 return(point)

}</lang>

Output:

<lang R>>>intersect_point(c(0, -1, -1), c(0, 0, 10), c(0, 0, 1), c(0, 0, 5)) [1] 0 -5 5</lang>

Racket

Translation of: Sidef

<lang racket>#lang racket

Translation of: Sidef
vectors are represented by lists

(struct Line (P0 u⃗))

(struct Plane (V0 n⃗))

(define (· a b) (apply + (map * a b)))

(define (line-plane-intersection L P)

 (match-define (cons (Line P0 u⃗) (Plane V0 n⃗)) (cons L P))  
 (define cos (· n⃗ u⃗))
 (when (zero? cos) (error "vectors are orthoganal"))
 (define W (map - P0 V0))
 (define *SI (let ((SI (- (/ (· n⃗ W) cos)))) (λ (n) (* SI n))))
 (map + W (map *SI u⃗) V0))

(module+ test

 (require rackunit)
 (check-equal?
  (line-plane-intersection (Line '(0 0 10) '(0 -1 -1))
                           (Plane '(0 0 5) '(0 0 1)))
  '(0 -5 5)))</lang>
Output:

No output -- all tests passed!

Raku

(formerly Perl 6)

Works with: Rakudo version 2016.11
Translation of: Python

<lang perl6>class Line {

   has $.P0; # point
   has $.u⃗;  # ray

} class Plane {

   has $.V0; # point
   has $.n⃗;  # normal

}

sub infix:<∙> ( @a, @b where +@a == +@b ) { [+] @a «*» @b } # dot product

sub line-plane-intersection ($𝑳, $𝑷) {

   my $cos = $𝑷.n⃗ ∙ $𝑳.u⃗; # cosine between normal & ray
   return 'Vectors are orthogonal; no intersection or line within plane'
     if $cos == 0;
   my $𝑊 = $𝑳.P0 «-» $𝑷.V0;      # difference between P0 and V0
   my $S𝐼 = -($𝑷.n⃗ ∙ $𝑊) / $cos;  # line segment where it intersects the plane
   $𝑊 «+» $S𝐼 «*» $𝑳.u⃗ «+» $𝑷.V0; # point where line intersects the plane
}

say 'Intersection at point: ', line-plane-intersection(

    Line.new( :P0(0,0,10), :u⃗(0,-1,-1) ),
   Plane.new( :V0(0,0, 5), :n⃗(0, 0, 1) )
 );</lang>
Output:
Intersection at point: (0 -5 5)

REXX

version 1

This program does NOT handle the case when the line is parallel to or within the plane. <lang rexx>/* REXX */ Parse Value '0 0 1' With n.1 n.2 n.3 /* Normal Vector of the plane */ Parse Value '0 0 5' With p.1 p.2 p.3 /* Point in the plane */ Parse Value '0 0 10' With a.1 a.2 a.3 /* Point of the line */ Parse Value '0 -1 -1' With v.1 v.2 v.3 /* Vector of the line */

a=n.1 b=n.2 c=n.3 d=n.1*p.1+n.2*p.2+n.3*p.3 /* Parameter form of the plane */ Say a'*x +' b'*y +' c'*z =' d

t=(d-(a*a.1+b*a.2+c*a.3))/(a*v.1+b*v.2+c*v.3)

x=a.1+t*v.1 y=a.2+t*v.2 z=a.3+t*v.3

Say 'Intersection: P('||x','y','z')'</lang>

Output:
0*x + 0*y + 1*z = 5
Intersection: P(0,-5,5)

version 2

handle the case that the line is parallel to the plane or lies within it. <lang rexx>/*REXX*/ Parse Value '1 2 3' With n.1 n.2 n.3 Parse Value '3 3 3' With p.1 p.2 p.3 Parse Value '0 2 4' With a.1 a.2 a.3 Parse Value '3 2 1' With v.1 v.2 v.3

a=n.1 b=n.2 c=n.3 d=n.1*p.1+n.2*p.2+n.3*p.3 /* Parameter form of the plane */ Select

 When a=0 Then
   pd=
 When a=1 Then
   pd='x'
 When a=-1 Then
   pd='-x'
 Otherwise
   pd=a'*x'
 End

pd=pd yy=mk2('y',b) Select

 When left(yy,1)='-' Then
   pd=pd '-' substr(yy,2)
 When left(yy,1)='0' Then
   Nop
 Otherwise
   pd=pd '+' yy
 End

zz=mk2('z',c) Select

 When left(zz,1)='-' Then
   pd=pd '-' substr(zz,2)
 When left(zz,1)='0' Then
   Nop
 Otherwise
   pd=pd '+' zz
 End

pd=pd '=' d

Say 'Plane definition:' pd

ip=0 Do i=1 To 3

 ip=ip+n.i*v.i
 dd=n.1*a.1+n.2*a.2+n.3*a.3
 End

If ip=0 Then Do

 If dd=d Then
   Say 'Line is part of the plane'
 Else
   Say 'Line is parallel to the plane'
 Exit
 End

t=(d-(a*a.1+b*a.2+c*a.3))/(a*v.1+b*v.2+c*v.3)

x=a.1+t*v.1 y=a.2+t*v.2 z=a.3+t*v.3

ld=mk('x',a.1,v.1) ';' mk('y',a.2,v.2) ';' mk('z',a.3,v.3) Say 'Line definition:' ld

Say 'Intersection: P('||x','y','z')' Exit

Mk: Procedure /*---------------------------------------------------------------------

  • build part of line definition
  • --------------------------------------------------------------------*/

Parse Arg v,aa,vv If aa<>0 Then

 res=v'='aa

Else

 res=v'='

Select

 When vv=0 Then
   res=res||'0'
 When vv=-1 Then
   res=res||'-t'
 When vv<0 Then
   res=res||vv'*t'
 Otherwise Do
   If res=v'=' Then Do
     If vv=1 Then
       res=res||'t'
     Else
       res=res||vv'*t'
     End
   Else Do
     If vv=1 Then
       res=res||'+t'
     Else
       res=res||'+'vv'*t'
     End
   End
 End

Return res

mk2: Procedure /*---------------------------------------------------------------------

  • build part of plane definition
  • --------------------------------------------------------------------*/

Parse Arg v,u Select

 When u=0 Then
   res=
 When u=1 Then
   res=v
 When u=-1 Then
   res='-'v
 When u<0 Then
   res=u'*'v
 Otherwise Do
   If pd<> Then
     res='+'u'*'v
   Else
     res=u'*'v
   End
 End

Return res </lang>

Output:
Plane definition: x+2*y+3*z=18
Line definition: x=3*t ; y=2+2*t ; z=4+t
Intersection: P(0.6,2.4,4.2)

Ruby

Translation of: C#

<lang ruby>require "matrix"

def intersectPoint(rayVector, rayPoint, planeNormal, planePoint)

   diff = rayPoint - planePoint
   prod1 = diff.dot planeNormal
   prod2 = rayVector.dot planeNormal
   prod3 = prod1 / prod2
   return rayPoint - rayVector * prod3

end

def main

   rv = Vector[0.0, -1.0, -1.0]
   rp = Vector[0.0, 0.0, 10.0]
   pn = Vector[0.0, 0.0, 1.0]
   pp = Vector[0.0, 0.0, 5.0]
   ip = intersectPoint(rv, rp, pn, pp)
   puts "The ray intersects the plane at %s" % [ip]

end

main()</lang>

Output:
The ray intersects the plane at Vector[0.0, -5.0, 5.0]

Rust

Translation of: Kotlin

<lang Rust>use std::ops::{Add, Div, Mul, Sub};

  1. [derive(Copy, Clone, Debug, PartialEq)]

struct V3<T> {

   x: T,
   y: T,
   z: T,

}

impl<T> V3<T> {

   fn new(x: T, y: T, z: T) -> Self {
       V3 { x, y, z }
   }

}

fn zip_with<F, T, U>(f: F, a: V3<T>, b: V3<T>) -> V3 where

   F: Fn(T, T) -> U,

{

   V3 {
       x: f(a.x, b.x),
       y: f(a.y, b.y),
       z: f(a.z, b.z),
   }

}

impl<T> Add for V3<T> where

   T: Add<Output = T>,

{

   type Output = Self;
   fn add(self, other: Self) -> Self {
       zip_with(<T>::add, self, other)
   }

}

impl<T> Sub for V3<T> where

   T: Sub<Output = T>,

{

   type Output = Self;
   fn sub(self, other: Self) -> Self {
       zip_with(<T>::sub, self, other)
   }

}

impl<T> Mul for V3<T> where

   T: Mul<Output = T>,

{

   type Output = Self;
   fn mul(self, other: Self) -> Self {
       zip_with(<T>::mul, self, other)
   }

}

impl<T> V3<T> where

   T: Mul<Output = T> + Add<Output = T>,

{

   fn dot(self, other: Self) -> T {
       let V3 { x, y, z } = self * other;
       x + y + z
   }

}

impl<T> V3<T> where

   T: Mul<Output = T> + Copy,

{

   fn scale(self, scalar: T) -> Self {
       self * V3 {
           x: scalar,
           y: scalar,
           z: scalar,
       }
   }

}

fn intersect<T>(

   ray_vector: V3<T>,
   ray_point: V3<T>,
   plane_normal: V3<T>,
   plane_point: V3<T>,

) -> V3<T> where

   T: Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Div<Output = T> + Copy,

{

   let diff = ray_point - plane_point;
   let prod1 = diff.dot(plane_normal);
   let prod2 = ray_vector.dot(plane_normal);
   let prod3 = prod1 / prod2;
   ray_point - ray_vector.scale(prod3)

}

fn main() {

   let rv = V3::new(0.0, -1.0, -1.0);
   let rp = V3::new(0.0, 0.0, 10.0);
   let pn = V3::new(0.0, 0.0, 1.0);
   let pp = V3::new(0.0, 0.0, 5.0);
   println!("{:?}", intersect(rv, rp, pn, pp));

} </lang>

Scala

<lang Scala>object LinePLaneIntersection extends App {

 val (rv, rp, pn, pp) =
   (Vector3D(0.0, -1.0, -1.0), Vector3D(0.0, 0.0, 10.0), Vector3D(0.0, 0.0, 1.0), Vector3D(0.0, 0.0, 5.0))
 val ip = intersectPoint(rv, rp, pn, pp)
 def intersectPoint(rayVector: Vector3D,
                    rayPoint: Vector3D,
                    planeNormal: Vector3D,
                    planePoint: Vector3D): Vector3D = {
   val diff = rayPoint - planePoint
   val prod1 = diff dot planeNormal
   val prod2 = rayVector dot planeNormal
   val prod3 = prod1 / prod2
   rayPoint - rayVector * prod3
 }
 case class Vector3D(x: Double, y: Double, z: Double) {
   def +(v: Vector3D) = Vector3D(x + v.x, y + v.y, z + v.z)
   def -(v: Vector3D) = Vector3D(x - v.x, y - v.y, z - v.z)
   def *(s: Double) = Vector3D(s * x, s * y, s * z)
   def dot(v: Vector3D): Double = x * v.x + y * v.y + z * v.z
   override def toString = s"($x, $y, $z)"
 }
 
 println(s"The ray intersects the plane at $ip")

}</lang>

Output:

See it in running in your browser by ScalaFiddle (JavaScript).

Sidef

Translation of: Raku

<lang ruby>struct Line {

   P0,       # point
   u⃗,        # ray

}

struct Plane {

   V0,       # point
   n⃗,        # normal

}

func dot_prod(a, b) { a »*« b -> sum }

func line_plane_intersection(𝑳, 𝑷) {

   var cos = dot_prod(𝑷.n⃗, 𝑳.u⃗) ->
    || return 'Vectors are orthogonal'
   var 𝑊 = (𝑳.P0 »-« 𝑷.V0)
   var S𝐼 = -(dot_prod(𝑷.n⃗, 𝑊) / cos)
   𝑊 »+« (𝑳.u⃗ »*» S𝐼) »+« 𝑷.V0

}

say ('Intersection at point: ', line_plane_intersection(

        Line(P0: [0,0,10], u⃗: [0,-1,-1]),
       Plane(V0: [0,0, 5], n⃗: [0, 0, 1]),

))</lang>

Output:
Intersection at point: [0, -5, 5]

Visual Basic .NET

Translation of: C#

<lang vbnet>Module Module1

   Class Vector3D
       Private ReadOnly x As Double
       Private ReadOnly y As Double
       Private ReadOnly z As Double
       Sub New(nx As Double, ny As Double, nz As Double)
           x = nx
           y = ny
           z = nz
       End Sub
       Public Function Dot(rhs As Vector3D) As Double
           Return x * rhs.x + y * rhs.y + z * rhs.z
       End Function
       Public Shared Operator +(ByVal a As Vector3D, ByVal b As Vector3D) As Vector3D
           Return New Vector3D(a.x + b.x, a.y + b.y, a.z + b.z)
       End Operator
       Public Shared Operator -(ByVal a As Vector3D, ByVal b As Vector3D) As Vector3D
           Return New Vector3D(a.x - b.x, a.y - b.y, a.z - b.z)
       End Operator
       Public Shared Operator *(ByVal a As Vector3D, ByVal b As Double) As Vector3D
           Return New Vector3D(a.x * b, a.y * b, a.z * b)
       End Operator
       Public Overrides Function ToString() As String
           Return String.Format("({0:F}, {1:F}, {2:F})", x, y, z)
       End Function
   End Class
   Function IntersectPoint(rayVector As Vector3D, rayPoint As Vector3D, planeNormal As Vector3D, planePoint As Vector3D) As Vector3D
       Dim diff = rayPoint - planePoint
       Dim prod1 = diff.Dot(planeNormal)
       Dim prod2 = rayVector.Dot(planeNormal)
       Dim prod3 = prod1 / prod2
       Return rayPoint - rayVector * prod3
   End Function
   Sub Main()
       Dim rv = New Vector3D(0.0, -1.0, -1.0)
       Dim rp = New Vector3D(0.0, 0.0, 10.0)
       Dim pn = New Vector3D(0.0, 0.0, 1.0)
       Dim pp = New Vector3D(0.0, 0.0, 5.0)
       Dim ip = IntersectPoint(rv, rp, pn, pp)
       Console.WriteLine("The ray intersects the plane at {0}", ip)
   End Sub

End Module</lang>

Output:
The ray intersects the plane at (0.00, -5.00, 5.00)

Wren

Translation of: Kotlin

<lang ecmascript>class Vector3D {

   construct new(x, y, z) {
       _x = x
       _y = y
       _z = z
   }
   x { _x }
   y { _y }
   z { _z }
   +(v) { Vector3D.new(_x + v.x, _y + v.y, _z + v.z) }
   -(v) { Vector3D.new(_x - v.x, _y - v.y, _z - v.z) }
   *(s) { Vector3D.new(s * _x, s * _y, s * _z) }
   dot(v) { _x * v.x + _y * v.y + _z * v.z }
   toString { "(%(_x), %(_y), %(_z))" }

}

var intersectPoint = Fn.new { |rayVector, rayPoint, planeNormal, planePoint|

   var diff  = rayPoint - planePoint
   var prod1 = diff.dot(planeNormal)
   var prod2 = rayVector.dot(planeNormal)
   var prod3 = prod1 / prod2
   return rayPoint - rayVector*prod3

}

var rv = Vector3D.new(0, -1, -1) var rp = Vector3D.new(0, 0, 10) var pn = Vector3D.new(0, 0, 1) var pp = Vector3D.new(0, 0, 5) var ip = intersectPoint.call(rv, rp, pn, pp) System.print("The ray intersects the plane at %(ip).")</lang>

Output:
The ray intersects the plane at (0, -5, 5).

zkl

Translation of: Raku
Translation of: Python

<lang zkl>class Line { fcn init(pxyz, ray_xyz) { var pt=pxyz, ray=ray_xyz; } } class Plane{ fcn init(pxyz, normal_xyz){ var pt=pxyz, normal=normal_xyz; } }

fcn dotP(a,b){ a.zipWith('*,b).sum(0.0); } # dot product --> x fcn linePlaneIntersection(line,plane){

  cos:=dotP(plane.normal,line.ray); # cosine between normal & ray
  _assert_((not cos.closeTo(0,1e-6)),
     "Vectors are orthogonol; no intersection or line within plane");
  w:=line.pt.zipWith('-,plane.pt); # difference between P0 and V0
  si:=-dotP(plane.normal,w)/cos;   # line segment where it intersets the plane
     # point where line intersects the plane:
  //w.zipWith('+,line.ray.apply('*,si)).zipWith('+,plane.pt);  // or
  w.zipWith('wrap(w,r,pt){ w + r*si + pt },line.ray,plane.pt);

}</lang> <lang zkl>println("Intersection at point: ", linePlaneIntersection(

  Line( T(0.0, 0.0, 10.0), T(0.0, -1.0, -1.0) ),
  Plane(T(0.0, 0.0,  5.0), T(0.0,  0.0,  1.0) ))

);</lang>

Output:
Intersection at point: L(0,-5,5)

References