Character codes: Difference between revisions

m
Added Plain English
m (Added Plain English)
 
(133 intermediate revisions by 72 users not shown)
Line 1:
{{task|Text processing}}
[[Category:Basic language learning]]
[[Category:String manipulation]]
[[Category:Simple]]
{{task|Text processing}}
 
 
Line 14:
Conversely, given a code, print out the corresponding character.
<br><br>
=={{header|11l}}==
<syntaxhighlight lang="11l">print(‘a’.code) // prints "97"
print(Char(code' 97)) // prints "a"</syntaxhighlight>
=={{header|360 Assembly}}==
S/360 architecture and EBCDIC was born together.
In EBCDIC, the character 'a' (lowercase letter A) has a code of 129 in decimal and '81'x in hexadecimal.
To perform conversion, we use IC (insert character) and STC (store character) opcodes.
<syntaxhighlight lang="360asm">* Character codes EBCDIC 15/02/2017
CHARCODE CSECT
USING CHARCODE,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) " <-
ST R15,8(R13) " ->
LR R13,R15 " addressability
* Character to Decimal
SR R1,R1 r1=0
IC R1,=C'a' insert character 'a'
XDECO R1,PG
XPRNT PG,L'PG print -> 129
* Hexadecimal to character
SR R1,R1 r1=0
IC R1,=X'81' insert character X'81'
STC R1,CHAR store character r1
XPRNT CHAR,L'CHAR print -> 'a'
* Decimal to character
LH R1,=H'129' r1=129
STC R1,CHAR store character r1
XPRNT CHAR,L'CHAR print -> 'a'
*
XDUMP CHAR,L'CHAR dump -> X'81'
*
RETURN L R13,4(0,R13) epilog
LM R14,R12,12(R13) " restore
XR R15,R15 " rc=0
BR R14 exit
PG DS CL12
CHAR DS CL1
YREGS
END CHARCODE</syntaxhighlight>
{{out}}
<pre>
129
a
a
</pre>
=={{header|68000 Assembly}}==
The printing routine only understands ASCII characters as codes anyway, so the "given a code produce its character" part is trivial.
The <code>PrintChar</code> routine is omitted for brevity. It converts the two cursor variables to a FIX layer address and outputs the character using the NEOGEO's FIX layer (the layer where text is displayed). Characters are stored in ROM and arranged in ASCII order.
<syntaxhighlight lang="68000devpac"> JSR ResetCoords ;RESET TYPING CURSOR
 
MOVE.B #'A',D1
MOVE.W #25,D2
MOVE.B #0,(softCarriageReturn) ;new line takes the cursor to left edge of screen.
jsr PrintAllTheCodes
jsr ResetCoords
MOVE.B #8,(Cursor_X)
MOVE.B #'a',D1
MOVE.W #25,D2
MOVE.B #8,(softCarriageReturn)
;set the writing cursor to column 3 of the screen
;so we don't erase the old output.
jsr PrintAllTheCodes
 
forever:
bra forever
 
PrintAllTheCodes:
MOVE.B D1,D0
jsr PrintChar ;print the character as-is
MOVE.B #" ",D0
jsr PrintChar
MOVE.B #"=",D0
jsr PrintChar
MOVE.B #" ",D0
jsr PrintChar
MOVE.B D1,D0 ;get ready to print the code
JSR UnpackNibbles8
SWAP D0
ADD.B #$30,D0
JSR PrintChar
 
SWAP D0
CMP.B #10,D0
BCS noCorrectHex
ADD.B #$07,D0
noCorrectHex:
ADD.B #$30,D0
JSR PrintChar
MOVE.B (softCarriageReturn),D0
JSR doNewLine2 ;new line, with D0 as the carraige return point.
ADDQ.B #1,D1
DBRA D2,PrintAllTheCodes
rts
 
 
UnpackNibbles8:
; INPUT: D0 = THE VALUE YOU WISH TO UNPACK.
; HIGH NIBBLE IN HIGH WORD OF D0, LOW NIBBLE IN LOW WORD. SWAP D0 TO GET THE OTHER HALF.
pushWord D1
CLR.W D1
MOVE.B D0,D1
CLR.L D0
MOVE.B D1,D0 ;now D0 = D1 = $000000II, where I = input
AND.B #$F0,D0 ;chop off bottom nibble
LSR.B #4,D0 ;downshift top nibble into bottom nibble of the word
SWAP D0 ;store in high word
AND.B #$0F,D1 ;chop off bottom nibble
MOVE.B D1,D0 ;store in low word
popWord D1
rts</syntaxhighlight>
Output can be seen [https://ibb.co/ngtDXpq here.]
=={{header|AArch64 Assembly}}==
{{works with|as|Raspberry Pi 3B version Buster 64 bits}}
<syntaxhighlight lang="aarch64 assembly">
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program character64.s */
 
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessCodeChar: .asciz "The code of character is : @ \n"
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
sZoneconv: .skip 32
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // entry of program
mov x0,'A'
ldr x1,qAdrsZoneconv
bl conversion10S
ldr x0,qAdrszMessCodeChar
ldr x1,qAdrsZoneconv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess
mov x0,'a'
ldr x1,qAdrsZoneconv
bl conversion10S
ldr x0,qAdrszMessCodeChar
ldr x1,qAdrsZoneconv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess
mov x0,'1'
ldr x1,qAdrsZoneconv
bl conversion10S
ldr x0,qAdrszMessCodeChar
ldr x1,qAdrsZoneconv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess
100: // standard end of the program */
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsZoneconv: .quad sZoneconv
qAdrszMessCodeChar: .quad szMessCodeChar
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
</syntaxhighlight>
=={{header|ABAP}}==
In ABAP you must first cast the character to a byte field and back to a number in order to get its ASCII value.
<langsyntaxhighlight ABAPlang="abap">report zcharcode
data: c value 'A', n type i.
field-symbols <n> type x.
Line 23 ⟶ 210:
assign c to <n> casting.
move <n> to n.
write: c, '=', n left-justified.</langsyntaxhighlight>
{{Out}}<pre>A = 65</pre>
 
=={{header|ACL2}}==
Similar to Common Lisp:
<langsyntaxhighlight Lisplang="lisp">(cw "~x0" (char-code #\a))
(cw "~x0" (code-char 97))</langsyntaxhighlight>
=={{header|Action!}}==
<syntaxhighlight lang="action!">PROC Main()
CHAR c=['a]
BYTE b=[97]
 
Put(c) Put('=) PrintBE(c)
PrintB(b) Put('=) Put(b)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Character_codes.png Screenshot from Atari 8-bit computer]
<pre>
a=97
97=a
</pre>
=={{header|ActionScript}}==
In ActionScript, you cannot take the character code of a character directly. Instead you must create a string and call charCodeAt with the character's position in the string as a parameter.
<langsyntaxhighlight ActionSciptlang="actionscipt">trace(String.fromCharCode(97)); //prints 'a'
trace("a".charCodeAt(0));//prints '97'</langsyntaxhighlight>
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
 
procedure Char_Code is
begin
Put_Line (Character'Val (97) & " =" & Integer'Image (Character'Pos ('a')));
end Char_Code;</langsyntaxhighlight>
The predefined language attributes S'Pos and S'Val for every discrete subtype, and Character is such a type, yield the position of a value and value by its position correspondingly.
{{out}}
<pre>a = 97</pre>
 
=={{header|Aime}}==
<langsyntaxhighlight lang="aime"># prints "97"
o_integer('a');
o_byte('\n');
# prints "a"
o_byte(97);
o_byte('\n');</langsyntaxhighlight>
 
=={{header|ALGOL 68}}==
In ALGOL 68 the '''format''' $g$ is type aware, hence the type conversion operators '''abs''' & '''repr''' are used to set the type.
<langsyntaxhighlight lang="algol68">main:(
printf(($gl$, ABS "a")); # for ASCII this prints "+97" EBCDIC prints "+129" #
printf(($gl$, REPR 97)) # for ASCII this prints "a"; EBCDIC prints "/" #
)</langsyntaxhighlight>
''Character conversions'' may be available in the ''standard prelude'' so that when
a foreign tape is mounted, the characters will be converted transparently as the tape's
records are read.
<langsyntaxhighlight lang="algol68">FILE tape;
INT errno = open(tape, "/dev/tape1", stand out channel)
make conv(tape, ebcdic conv);
FOR record DO getf(tape, ( ~ )) OD; ~ # etc ... #</langsyntaxhighlight>
Every '''channel''' has an associated standard character conversion that can be determined
using the ''stand conv'' query routine and then the conversion applied to a particular
file/tape. eg.
<langsyntaxhighlight lang="algol68"> make conv(tape, stand conv(stand out channel))</langsyntaxhighlight>
 
=={{header|ALGOL W}}==
<langsyntaxhighlight lang="algolw">begin
% display the character code of "a" (97 in ASCII) %
write( decode( "a" ) );
% display the character corresponding to 97 ("a" in ASCII) %
write( code( 97 ) );
end.</langsyntaxhighlight>
 
=={{header|APL}}==
{{works with|Dyalog APL}}
{{works with|GNU APL}}
In Dyalog, <tt>⎕UCS</tt> with an integer returns the corresponding Unicode character:
In GNU APL and Dyalog, <tt>⎕UCS</tt> with an integer returns the corresponding Unicode character:
<lang apl> ⎕UCS 97
<syntaxhighlight lang="apl"> ⎕UCS 97
a</lang>
a</syntaxhighlight>
and <tt>⎕UCS</tt> with a character returns the corresponding code:
<langsyntaxhighlight lang="apl"> ⎕UCS 'a'
97</langsyntaxhighlight>
Like most things in APL, <tt>⎕UCS</tt> can also be used with an array or with a string (which is an array of characters):
<langsyntaxhighlight lang="apl"> ⎕UCS 65 80 76
APL
⎕UCS 'Hello, world!'
72 101 108 108 111 44 32 119 111 114 108 100 33</langsyntaxhighlight>
 
=={{header|AppleScript}}==
<langsyntaxhighlight AppleScriptlang="applescript">log(id of "a")
log(id of "aA")</langsyntaxhighlight>
{{out}}
<pre>(*97*)
(*97, 65*)</pre>
 
The converse instruction is <tt>character id</tt> — or either of its synonyms <tt>string id</tt> and <tt>Unicode text id</tt>. Because of a bug admitted to in Apple's AppleScript Language Guide, the expression <tt>text id</tt>, which one might expect to work, can't be used.
=={{header|AutoHotkey}}==
<lang AutoHotkey>MsgBox % Chr(97)
MsgBox % Asc("a")</lang>
 
<syntaxhighlight lang="applescript">character id 97
--> "a"
 
character id {72, 101, 108, 108, 111, 33}
--> "Hello!"
 
string id {72, 101, 108, 108, 111, 33}
--> "Hello!"
 
Unicode text id {72, 101, 108, 108, 111, 33}
--> "Hello!"</syntaxhighlight>
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
/* ARM assembly Raspberry PI */
/* program character.s */
 
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/* Initialized data */
.data
szMessCodeChar: .ascii "The code of character is :"
sZoneconv: .fill 12,1,' '
szCarriageReturn: .asciz "\n"
 
/* UnInitialized data */
.bss
 
/* code section */
.text
.global main
main: /* entry of program */
push {fp,lr} /* saves 2 registers */
mov r0,#'A'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
mov r0,#'a'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
mov r0,#'1'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
100: /* standard end of the program */
mov r0, #0 @ return code
pop {fp,lr} @restaur 2 registers
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdrsZoneconv: .int sZoneconv
iAdrszMessCodeChar: .int szMessCodeChar
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {fp,lr} /* save registres */
push {r0,r1,r2,r7} /* save others registers */
mov r2,#0 /* counter length */
1: /* loop length calculation */
ldrb r1,[r0,r2] /* read octet start position + index */
cmp r1,#0 /* if 0 its over */
addne r2,r2,#1 /* else add 1 in the length */
bne 1b /* and loop */
/* so here r2 contains the length of the message */
mov r1,r0 /* address message in r1 */
mov r0,#STDOUT /* code to write to the standard output Linux */
mov r7, #WRITE /* code call system "write" */
swi #0 /* call systeme */
pop {r0,r1,r2,r7} /* restaur others registers */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* return */
/***************************************************/
/* conversion register signed décimal */
/***************************************************/
/* r0 contient le registre */
/* r1 contient l adresse de la zone de conversion */
conversion10S:
push {r0-r5,lr} /* save des registres */
mov r2,r1 /* debut zone stockage */
mov r5,#'+' /* par defaut le signe est + */
cmp r0,#0 /* nombre négatif ? */
movlt r5,#'-' /* oui le signe est - */
mvnlt r0,r0 /* et inversion en valeur positive */
addlt r0,#1
mov r4,#10 /* longueur de la zone */
1: /* debut de boucle de conversion */
bl divisionpar10 /* division */
add r1,#48 /* ajout de 48 au reste pour conversion ascii */
strb r1,[r2,r4] /* stockage du byte en début de zone r5 + la position r4 */
sub r4,r4,#1 /* position précedente */
cmp r0,#0
bne 1b /* boucle si quotient different de zéro */
strb r5,[r2,r4] /* stockage du signe à la position courante */
subs r4,r4,#1 /* position précedente */
blt 100f /* si r4 < 0 fin */
/* sinon il faut completer le debut de la zone avec des blancs */
mov r3,#' ' /* caractere espace */
2:
strb r3,[r2,r4] /* stockage du byte */
subs r4,r4,#1 /* position précedente */
bge 2b /* boucle si r4 plus grand ou egal a zero */
100: /* fin standard de la fonction */
pop {r0-r5,lr} /*restaur desregistres */
bx lr
 
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 contient le dividende */
/* r0 retourne le quotient */
/* r1 retourne le reste */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} /* save registers */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */
add r0, r2, r1 /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */
pop {r2-r4}
bx lr /* leave function */
bx lr /* leave function */
.Ls_magic_number_10: .word 0x66666667
 
 
</syntaxhighlight>
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">print to :integer first "a"
print to :integer `a`
print to :char 97</syntaxhighlight>
 
{{out}}
 
<pre>97
97
a</pre>
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">MsgBox % Chr(97)
MsgBox % Asc("a")</syntaxhighlight>
=={{header|AWK}}==
AWK has no built-in way to convert a character into ASCII (or whatever) code;
but a function that does so can be easily built using an associative array (where the keys are the characters).
The opposite can be done using <tt>printf</tt> (or <tt>sprintf</tt>) with <tt>%c</tt>
<langsyntaxhighlight lang="awk">function ord(c)
{
return chmap[c]
Line 122 ⟶ 469:
s = sprintf("%c%c", 97, 98)
print s
}</langsyntaxhighlight>
 
=={{header|Axe}}==
<langsyntaxhighlight lang="axe">Disp 'a'▶Dec,i
Disp 97▶Char,i</langsyntaxhighlight>
 
=={{header|Babel}}==
 
<langsyntaxhighlight lang="babel">'abcdefg' str2ar
{%d nl <<} eachar</langsyntaxhighlight>
 
{{Out}}<pre>
Line 143 ⟶ 488:
</pre>
 
<langsyntaxhighlight lang="babel">(98 97 98 101 108) ls2lf ar2str nl <<
</syntaxhighlight>
</lang>
{{out}}
babel
 
=={{header|BASIC}}==
{{works with|QBasic|1.1}}
{{works with|QuickBasic|4.5}}
<langsyntaxhighlight lang="qbasic">charCode = 97
char = "a"
PRINT CHR$(charCode) 'prints a
PRINT ASC(char) 'prints 97</langsyntaxhighlight>
 
On the ZX Spectrum string variable names must be a single letter but numeric variables can be multiple characters:
{{works with|ZX Spectrum Basic}}
<langsyntaxhighlight lang="zxbasic">10 LET c = 97: REM c is a character code
20 LET d$ = "b": REM d$ holds the character
30 PRINT CHR$(c): REM this prints a
40 PRINT CODE(d$): REM this prints 98</langsyntaxhighlight>
 
==={{header|Applesoft BASIC}}===
CHR$(97) is used in place of "a" because on the older model Apple II, lower case is difficult to input.
<langsyntaxhighlight lang="qbasic">?CHR$(97)"="ASC(CHR$(97))</langsyntaxhighlight>
{{Out}}<pre>a=97</pre>
 
Line 170 ⟶ 515:
<pre>!=97</pre>
 
==={{header|BaCon}}===
<syntaxhighlight lang="qbasic">' ASCII
c$ = "$"
PRINT c$, ": ", ASC(c$)
 
' UTF-8
uc$ = "€"
PRINT uc$, ": ", UCS(uc$), ", ", UCS(c$)</syntaxhighlight>
 
{{out}}
<pre>
$: 36
€: 8364, 36</pre>
 
==={{header|Chipmunk Basic}}===
<syntaxhighlight lang="qbasic">10 print "a - > ";asc("a")
20 print "98 -> ";chr$(98)</syntaxhighlight>
 
==={{header|Commodore BASIC}}===
Commodore BASIC uses PETSCII code for its character set.
<syntaxhighlight lang="gwbasic">10 CH = 65: REM IN PETSCII CODE FOR 'A' IS 65
20 D$ = "B": REM D$ HOLDS THE CHARACTER 'B'
30 PRINT CHR$(CH): REM THIS PRINTS 'A'
40 PRINT ASC(D$): REM THIS PRINTS 66</syntaxhighlight>
{{Out}}<pre>A
66</pre>
 
==={{header|GW-BASIC}}===
{{works with|PC-BASIC|any}}
{{works with|BASICA}}
<syntaxhighlight lang="qbasic">10 PRINT "a - > "; ASC("a")
20 PRINT "98 -> "; CHR$(98)</syntaxhighlight>
 
==={{header|IS-BASIC}}===
<syntaxhighlight lang="is-basic">100 PRINT ORD("A")
110 PRINT CHR$(65)</syntaxhighlight>
 
==={{header|MSX Basic}}===
{{works with|MSX BASIC|any}}
<syntaxhighlight lang="qbasic">10 PRINT "a - > "; ASC("a")
20 PRINT "98 -> "; CHR$(98)</syntaxhighlight>
 
==={{header|QBasic}}===
{{works with|BASICA}}
{{works with|Chipmunk Basic}}
{{works with|FreeBASIC}}
{{works with|GW-BASIC}}
{{works with|MSX BASIC}}
{{works with|PC-BASIC}}
{{works with|Run BASIC}}
{{works with|Yabasic}}
<syntaxhighlight lang="qbasic">PRINT "a - > "; ASC("a")
PRINT "98 -> "; CHR$(98)</syntaxhighlight>
 
==={{header|Sinclair ZX81 BASIC}}===
<syntaxhighlight lang="basic">10 REM THE ZX81 USES ITS OWN NON-ASCII CHARACTER SET
20 REM WHICH DOES NOT INCLUDE LOWER-CASE LETTERS
30 PRINT CODE "A"
40 PRINT CHR$ 38</syntaxhighlight>
{{out}}
<pre>38
A</pre>
 
==={{header|SmallBASIC}}===
<syntaxhighlight lang="qbasic">
Print "a -> "; Asc("a")
Print "98 -> "; Chr(98)
</syntaxhighlight>
 
==={{header|True BASIC}}===
<syntaxhighlight lang="qbasic">PRINT "a - > "; ord("a")
PRINT "98 -> "; chr$(98)
END</syntaxhighlight>
 
==={{header|XBasic}}===
{{works with|Windows XBasic}}
{{works with|Linux XBasic}}
<syntaxhighlight lang="qbasic">PROGRAM "Character codes"
VERSION "0.0000"
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
PRINT "a - >"; ASC("a")
PRINT "98 -> "; CHR$(98)
END FUNCTION
END PROGRAM</syntaxhighlight>
 
==={{header|Yabasic}}===
<syntaxhighlight lang="yabasic">print "a - > ", asc("a")
print "98 -> ", chr$(98)</syntaxhighlight>
=={{header|BASIC256}}==
<syntaxhighlight lang="freebasic"># ASCII char
charCode = 97
char$ = "a"
print chr(97) #prints a
print asc("a") #prints 97
 
# Unicode char
charCode = 960
char$ = "π"
print chr(960) #prints π
print asc("π") #prints 960</syntaxhighlight>
{{out}}
<pre>a
97
π
960</pre>
=={{header|Batch File}}==
<syntaxhighlight lang="dos">
@echo off
 
:: Supports all ASCII characters and codes from 34-126 with the exceptions of:
:: 38 &
:: 60 <
:: 62 >
:: 94 ^
:: 124 |
 
:_main
call:_toCode a
call:_toChar 97
pause>nul
exit /b
 
:_toCode
setlocal enabledelayedexpansion
set codecount=32
 
for /l %%i in (33,1,126) do (
set /a codecount+=1
cmd /c exit %%i
if %1==!=exitcodeAscii! (
echo !codecount!
exit /b
)
)
 
:_toChar
setlocal
cmd /c exit %1
echo %=exitcodeAscii%
exit /b
</syntaxhighlight>
{{in}}
<pre>
toCode a
toChar 97
</pre>
{{out}}
<pre>
97
a
</pre>
=={{header|BBC BASIC}}==
<langsyntaxhighlight lang="bbcbasic"> charCode = 97
char$ = "a"
PRINT CHR$(charCode) : REM prints a
PRINT ASC(char$) : REM prints 97</langsyntaxhighlight>
 
=={{header|Befunge}}==
The instruction <tt>.</tt> will output as an integer. <tt>,</tt> will output as ASCII character.
<langsyntaxhighlight lang="befunge">"a". 99*44*+, @</langsyntaxhighlight>
=={{header|BQN}}==
BQN's character arithmetic makes it easy to convert between numbers and characters. Since arithmetic generalizes to arrays, the same function works for both integers and arrays. Here, only the conversion from number to character is defined, since it can be automatically inverted with Undo (<code>⁼</code>): the inverse simply subtracts <code>@</code>.
 
<syntaxhighlight lang="bqn"> FromCharCode ← @⊸+
@⊸+
FromCharCode 97
'a'
FromCharCode 97‿67‿126
"aC~"
FromCharCode⁼ 'a'
97</syntaxhighlight>
=={{header|Bracmat}}==
<langsyntaxhighlight lang="bracmat">( put
$ ( str
$ ( "\nLatin a
Line 201 ⟶ 709:
)
)
)</langsyntaxhighlight>
{{Out}}<pre>Latin a
ISO-9959-1: 97 = a
UTF-8: 97 = a
Cyrillic а (UTF-8): 1072 = а</pre>
 
=={{header|C}}==
<tt>char</tt> is already an integer type in C, and it gets automatically promoted to <tt>int</tt>. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as <tt>char</tt> is smaller.
 
<langsyntaxhighlight lang="c">#include <stdio.h>
 
int main() {
Line 216 ⟶ 723:
printf("%c\n", 97); /* prints "a"; we don't have to cast because printf is type agnostic */
return 0;
}</langsyntaxhighlight>
 
=={{header|C++}}==
<tt>char</tt> is already an integer type in C++, and it gets automatically promoted to <tt>int</tt>. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as <tt>char</tt> is smaller.
 
In this case, the output operator <tt><<</tt> is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases.
<lang cpp>#include <iostream>
 
int main() {
std::cout << (int)'a' << std::endl; // prints "97"
std::cout << (char)97 << std::endl; // prints "a"
return 0;
}</lang>
 
=={{header|C sharp|C#}}==
C# represents strings and characters internally as Unicode,
so casting a char to an int returns its Unicode character encoding.
<langsyntaxhighlight lang="csharp">using System;
 
namespace RosettaCode.CharacterCode
Line 245 ⟶ 739:
}
}
}</langsyntaxhighlight>
=={{header|C++}}==
<tt>char</tt> is already an integer type in C++, and it gets automatically promoted to <tt>int</tt>. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as <tt>char</tt> is smaller.
 
In this case, the output operator <tt><<</tt> is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases.
<syntaxhighlight lang="cpp">#include <iostream>
 
int main() {
std::cout << (int)'a' << std::endl; // prints "97"
std::cout << (char)97 << std::endl; // prints "a"
return 0;
}</syntaxhighlight>
=={{header|Clojure}}==
<langsyntaxhighlight lang="clojure">(print (int \a)) ; prints "97"
(print (char 97)) ; prints \a
 
Line 257 ⟶ 761:
; use String because char in Java can't represent characters outside Basic Multilingual Plane
(print (.codePointAt "𝅘𝅥𝅮" 0)) ; prints 119136
(print (String. (int-array 1 119136) 0 1)) ; prints 𝅘𝅥𝅮</langsyntaxhighlight>
=={{header|CLU}}==
 
<syntaxhighlight lang="clu">start_up = proc ()
po: stream := stream$primary_output()
% To turn a character code into an integer, use char$c2i
% (but then to print it, it needs to be turned into a string first
% with int$unparse)
stream$putl(po, int$unparse( char$c2i( 'a' ) ) ) % prints '97'
% To turn an integer into a character code, use char$i2c
stream$putc(po, char$i2c( 97 ) ); % prints 'a'
end start_up</syntaxhighlight>
{{out}}
<pre>97
a</pre>
=={{header|COBOL}}==
Tested with GnuCOBOL on an ASCII based GNU/Linux system.
Running this code on EBCDIC native hardware would display a control code and 000000093.
<langsyntaxhighlight COBOLlang="cobol"> identification division.
program-id. character-codes.
remarks. COBOL is an ordinal language, first is 1.
Line 270 ⟶ 788:
display function ord('*')
goback.
end program character-codes.</langsyntaxhighlight>
 
{{out}}
Line 276 ⟶ 794:
)
000000043</pre>
=={{header|CoffeeScript}}==
CoffeeScript transcompiles to JavaScript, so it uses the JS standard library.
<langsyntaxhighlight lang="coffeescript">console.log 'a'.charCodeAt 0 # 97
console.log String.fromCharCode 97 # a</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
<langsyntaxhighlight lang="lisp">(princ (char-code #\a)) ; prints "97"
(princ (code-char 97)) ; prints "a"</langsyntaxhighlight>
 
=={{header|Component Pascal}}==
BlackBox Component Builder
<langsyntaxhighlight lang="oberon2">PROCEDURE CharCodes*;
VAR
c : CHAR;
Line 296 ⟶ 811:
c := CHR(3A9H);
StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln
END CharCodes;</langsyntaxhighlight>
{{Out}}
<pre>A:> 65
Ω:> 937</pre>
=={{header|D}}==
<langsyntaxhighlight lang="d">void main() {
import std.stdio, std.utf;
 
Line 312 ⟶ 827:
// 'index' has moved to next character input position.
assert(index == 1);
}</langsyntaxhighlight>
{{out}}
<pre>97</pre>
=={{header|Dc}}==
 
A dc program cannot look into strings. But it can convert numeric values into single char strings or print numeric codes directly:
<syntaxhighlight lang="dc">97P</syntaxhighlight>
{{out}}
<pre>a</pre>
=={{header|Delphi}}==
Example from Studio 2006.
<langsyntaxhighlight lang="delphi">program Project1;
 
{$APPTYPE CONSOLE}
Line 336 ⟶ 855:
 
Readln;
end.</langsyntaxhighlight>
=={{header|Draco}}==
<syntaxhighlight lang="draco">proc nonrec main() void:
writeln(pretend(97, char)); /* prints "a" */
writeln(pretend('a', byte)); /* prints 97 */
corp</syntaxhighlight>
 
=={{header|DWScript}}==
<langsyntaxhighlight lang="delphi">PrintLn(Ord('a'));
PrintLn(Chr(97));</langsyntaxhighlight>
 
=={{header|Dyalect}}==
<syntaxhighlight lang="dyalect">print('a'.Order())
print(Char(97))</syntaxhighlight>
=={{header|E}}==
<langsyntaxhighlight lang="e">? 'a'.asInteger()
# value: 97
 
? <import:java.lang.makeCharacter>.asChar(97)
# value: 'a'</langsyntaxhighlight>
=={{header|EasyLang}}==
<syntaxhighlight lang="text">print strcode "a"
print strchar 97</syntaxhighlight>
 
=={{header|Ecstasy}}==
<syntaxhighlight lang="java">
module CharacterCodes {
@Inject Console console;
void run() {
for (Char char : ['\0', '\d', 'A', '$', '¢', '~', '˜']) {
// character to its integer value
UInt32 codepoint = char.codepoint;
 
// integer value back to its character value
Char fromCodePoint = codepoint.toChar(); // or: "new Char(codepoint)"
 
console.print($|Character {char.quoted()}:\
| Unicode codepoint={char.codepoint},\
| ASCII={char.ascii},\
| UTF8 bytes={char.utf8()},\
| char from codepoint={fromCodePoint.quoted()}
);
}
}
}
</syntaxhighlight>
 
{{out}}
<pre>
Character '\0': Unicode codepoint=0, ASCII=True, UTF8 bytes=0x00, char from codepoint='\0'
Character '\d': Unicode codepoint=127, ASCII=True, UTF8 bytes=0x7F, char from codepoint='\d'
Character 'A': Unicode codepoint=65, ASCII=True, UTF8 bytes=0x41, char from codepoint='A'
Character '$': Unicode codepoint=36, ASCII=True, UTF8 bytes=0x24, char from codepoint='$'
Character '¢': Unicode codepoint=162, ASCII=False, UTF8 bytes=0xC2A2, char from codepoint='¢'
Character '~': Unicode codepoint=126, ASCII=True, UTF8 bytes=0x7E, char from codepoint='~'
Character '˜': Unicode codepoint=732, ASCII=False, UTF8 bytes=0xCB9C, char from codepoint='˜'
</pre>
 
=={{header|Eiffel}}==
All characters are of the type CHARACTER_8 (ASCII encoding) or CHARACTER_32 (Unicode encoding). CHARACTER is a synonym for either of these two (depending on the compiler option). Characters can be assigned using character literals (a single character enclosed in single quotes) or code value notation (of the form '%/value/' where value is an integer literal of any of the recognized forms).
<langsyntaxhighlight lang="eiffel">
class
APPLICATION
Line 380 ⟶ 944:
end
end
</syntaxhighlight>
</lang>
 
Limitations: There is no "put_character_32" feature for standard io (FILE class), so there appears to be no way to print Unicode characters.
 
=={{header|Elena}}==
ELENA 6.x :
<lang elena>#define system.
<syntaxhighlight lang="elena">import extensions;
 
#symbolpublic program =>()
{
[
#var ch := #$97.;
 
console writeLine:ch.printLine(ch);
console writeLine:.printLine(ch int).toInt())
}</syntaxhighlight>
].</lang>
{{out}}
<pre>
Line 402 ⟶ 966:
=={{header|Elixir}}==
A String in Elixir is a UTF-8 encoded binary.
<langsyntaxhighlight lang="elixir">iex(1)> code = ?a
97
iex(2)> to_string([code])
"a"</langsyntaxhighlight>
=={{header|Emacs Lisp}}==
<syntaxhighlight lang="lisp">(string-to-char "a") ;=> 97
(format "%c" 97) ;=> "a"</syntaxhighlight>
 
=={{header|EMal}}==
<syntaxhighlight lang="emal">
^|ord and chr work with Unicode code points|^
writeLine(ord("a")) # prints "97"
writeLine(chr(97)) # prints "a"
writeLine(ord("π")) # prints "960"
writeLine(chr(960)) # prints "π"
writeLine()
var cps = int[]
for each var c in text["a", "π", "字", "🐘"]
var cp = ord(c)
cps.append(cp)
writeLine(c + " = " + cp)
end
writeLine()
for each int i in cps
var c = chr(i)
writeLine(i + " = " + c)
end
</syntaxhighlight>
{{out}}
<pre>
97
a
960
π
 
a = 97
π = 960
字 = 23383
🐘 = 128024
 
97 = a
960 = π
23383 = 字
128024 = 🐘
</pre>
 
=={{header|Erlang}}==
In Erlang, lists and strings are the same, only the representation changes. Thus:
<langsyntaxhighlight lang="erlang">1> F = fun([X]) -> X end.
#Fun<erl_eval.6.13229925>
2> F("a").
97</langsyntaxhighlight>
If entered manually, one can also get ASCII codes by prefixing characters with <tt>$</tt>:
<langsyntaxhighlight lang="erlang">3> $a.
97</langsyntaxhighlight>
Unicode is fully supported since release R13A only.
 
=={{header|Euphoria}}==
<langsyntaxhighlight Euphorialang="euphoria">printf(1,"%d\n", 'a') -- prints "97"
printf(1,"%s\n", 97) -- prints "a"</langsyntaxhighlight>
 
=={{header|F Sharp|F#}}==
<langsyntaxhighlight lang="fsharp">let c = 'A'
let n = 65
printfn "%d" (int c)
printfn "%c" (char n)</langsyntaxhighlight>
{{Out}}<pre>65
A</pre>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">CHAR: katakana-letter-a .
"ア" first .
 
12450 1string print</langsyntaxhighlight>
 
=={{header|FALSE}}==
<langsyntaxhighlight lang="false">'A."
"65,</langsyntaxhighlight>
 
=={{header|Fantom}}==
A character is represented in single quotes: the 'toInt' method returns the code for the character. The 'toChar' method converts an integer into its respective character.
<langsyntaxhighlight lang="fantom">fansh> 97.toChar
a
fansh> 'a'.toInt
97</langsyntaxhighlight>
 
=={{header|Fennel}}==
<syntaxhighlight lang="fennel">
(string.byte :A) ; 65
(string.char 65) ; "A"
</syntaxhighlight>
 
=={{header|Forth}}==
As with C, characters are just integers on the stack which are treated as ASCII.
<langsyntaxhighlight lang="forth">char a
dup . \ 97
emit \ a</langsyntaxhighlight>
 
=={{header|Fortran}}==
Functions ACHAR and IACHAR specifically work with the ASCII character set, while the results of CHAR and ICHAR will depend on the default character set being used.
<langsyntaxhighlight lang="fortran">WRITE(*,*) ACHAR(97), IACHAR("a")
WRITE(*,*) CHAR(97), ICHAR("a")</langsyntaxhighlight>
=={{header|Free Pascal}}==
 
''See [[#Pascal|Pascal]]''
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">
' FreeBASIC v1.05.0 win64
Print "a - > "; Asc("a")
Line 467 ⟶ 1,073:
Sleep
End
</syntaxhighlight>
</lang>
 
{{out}}
Line 474 ⟶ 1,080:
98 -> b
</pre>
 
=={{header|Frink}}==
The function <code>char[x]</code> in Frink returns the numerical Unicode codepoints for a string or character, or returns the Unicode string for an integer value or array of integer values. The <code>chars[x]</code> returns an array even if the string is a single character. These functions also correctly handle upper-plane Unicode characters as a single codepoint.
<langsyntaxhighlight lang="frink">println[char["a"]] // prints 97
println[chars["a"]] // prints [97] (an array)
println[char[97]] // prints a
println[char["Frink rules!"]] // prints [70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33]
println[[70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33]] // prints "Frink rules!"</langsyntaxhighlight>
 
 
=={{header|GAP}}==
=={{header|FutureBasic}}==
<lang gap># Code must be in 0 .. 255.
<syntaxhighlight lang="futurebasic">
print "a -> "; ASC("a")
print "98 -> "; CHR$(98)
 
handleevents
</syntaxhighlight>
{{output}}
<pre>
a -> 97
98 -> b
</pre>
 
 
=={{header|Gambas}}==
<syntaxhighlight lang="gambas">Public Sub Form_Open()
Dim sChar As String
 
sChar = InputBox("Enter a character")
Print "Character " & sChar & " = ASCII " & Str(Asc(sChar))
 
sChar = InputBox("Enter a ASCII code")
Print "ASCII code " & sChar & " represents " & Chr(Val(sChar))
 
End</syntaxhighlight>
Output:
<pre>
Character W = ASCII 87
ASCII code 35 represents #
</pre>
 
 
{{header|GAP}}==
<syntaxhighlight lang="gap"># Code must be in 0 .. 255.
CharInt(65);
# 'A'
IntChar('Z');
# 90</langsyntaxhighlight>
 
 
=={{header|Go}}==
In Go, a character literal ''is'' simply an integer constant of the character code:
<langsyntaxhighlight lang="go">fmt.Println('a') // prints "97"
fmt.Println('π') // prints "960"</langsyntaxhighlight>
<syntaxhighlight lang="go">package main
 
import (
"fmt"
)
 
func main() {
// Given a character value in your language, print its code
fmt.Printf("%d\n", 'A') // prt 65
// Given a code, print out the corresponding character.
fmt.Printf("%c\n", 65) // prt A
}</syntaxhighlight>
Literal constants in Go are not typed (named constants can be).
The variable and constant types most commonly used for character data are <code>byte</code>, <code>rune</code>, and <code>string</code>.
This example program shows character codes (as literals) stored in typed variables, and printed out with default formatting. Note that since byte and rune are integer types, the default formatting is a printable base 10 number. String is not numeric, and a little extra work must be done to print the character codes.
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 517 ⟶ 1,168:
// We can also print the bytes of a string without an explicit loop
fmt.Printf("\n string bytes: % #x\n", s)
}</langsyntaxhighlight>
{{out}}
<pre>
Line 526 ⟶ 1,177:
</pre>
For the second part of the task, printing the character of a given code, the <code>%c</code> verb of <code>fmt.Printf</code> will do this directly from integer values, emitting the UTF-8 encoding of the code, (which will typically print the character depending on your hardware and operating system configuration).
<langsyntaxhighlight lang="go">b := byte(97)
r := rune(960)
fmt.Printf("%c %c\n%c %c\n", 97, 960, b, r)</langsyntaxhighlight>
{{out}}
<pre>
Line 537 ⟶ 1,188:
 
Examples showing strings constructed from integer constants and then printed:
<langsyntaxhighlight lang="go">fmt.Println(string(97)) // prints "a"
fmt.Println(string(960)) // prints "π"
fmt.Println(string([]rune{97, 960})) // prints "aπ"</langsyntaxhighlight>
 
=={{header|Golfscript}}==
To convert a number to a string, we use the array to string coercion.
<syntaxhighlight lang ="golfscript">97[]+''+p</langsyntaxhighlight>
To convert a string to a number, we have a many options, of which the simplest and shortest are:
<langsyntaxhighlight lang="golfscript">'a')\;p
'a'(\;p
'a'0=p
'a'{}/p</langsyntaxhighlight>
 
=={{header|Groovy}}==
Groovy does not have a character literal at all, so one-character strings have to be ''coerced'' to '''char'''. Groovy '''printf''' (like Java, but unlike C) is ''not type-agnostic'', so the cast or coercion from '''char''' to '''int''' is also required. The reverse direction is considerably simpler.
<langsyntaxhighlight lang="groovy">printf ("%d\n", ('a' as char) as int)
printf ("%c\n", 97)</langsyntaxhighlight>
{{Out}}
<pre>97
a</pre>
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Data.Char
 
main = do
Line 565 ⟶ 1,213:
print (chr 97) -- prints "'a'"
print (ord 'π') -- prints "960"
print (chr 960) -- prints "'\960'"</langsyntaxhighlight>
 
=={{header|HicEst}}==
<langsyntaxhighlight lang="hicest">WRITE(Messagebox) ICHAR('a'), CHAR(97)</langsyntaxhighlight>
=={{header|HolyC}}==
 
<syntaxhighlight lang="holyc">Print("%d\n", 'a'); /* prints "97" */
=={{header|I}}==
Print("%c\n", 97); /* prints "a" */</syntaxhighlight>
<lang i>software {
=={{header|Hoon}}==
<syntaxhighlight lang="hoon">|%
++ enc
|= char=@t `@ud`char
++ dec
|= code=@ud `@t`code
--</syntaxhighlight>
=={{header|i}}==
<syntaxhighlight lang="i">software {
print(number('a'))
print(text([97]))
}</langsyntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
<langsyntaxhighlight Iconlang="icon">procedure main(arglist)
if *arglist > 0 then L := arglist else L := [97, "a"]
 
every x := !L do
write(x, " ==> ", char(integer(x)) | ord(x) ) # char produces a character, ord produces a number
end</langsyntaxhighlight>
Icon and Unicon do not currently support double byte character sets.
{{Out}}<pre>97 ==> a
a ==> 97</pre>
 
=={{header|Io}}==
Here character is a sequence (string) of length one.
<langsyntaxhighlight Iolang="io">"a" at(0) println // --> 97
97 asCharacter println // --> a
 
"π" at(0) println // --> 960
960 asCharacter println // --> π</langsyntaxhighlight>
 
=={{header|J}}==
<langsyntaxhighlight lang="j"> 4 u: 97 98 99 9786
abc☺
 
3 u: 7 u: 'abc☺'
97 98 99 9786</langsyntaxhighlight>
 
<code>7 u:</code> converts fromto utf-16 (<code>8 u:</code> would convert to utf-8, and <code>9 u:</code> would convert to utf-32), and <code>3 u:</code> converts what the uncode consortium calls "code points" to numeric form. Since J character literals are utf-8 (primarily because that's how OS interfaces work), by itself <code>3 u:</code> would give us:
 
<langsyntaxhighlight lang="j"> 3 u: 'abc☺'
97 98 99 226 152 186</langsyntaxhighlight>
 
Also, if we limit ourselves to ascii, we have other ways of accomplishing the same thing. <code>a.</code> is a list of the 8 bit character codes and we can index from it, or search it (though that's mostly a notational convenience, since the underlying type already gives us all we need to know).
 
<langsyntaxhighlight lang="j"> 97 98 99{a.
abc
a.i.'abc'
97 98 99</langsyntaxhighlight>
 
=={{header|Java}}==
In Java, a <code>char</code> is a 2-byte unsigned value, so it will fit within an 4-byte <code>int</code>.<br />
<tt>char</tt> is already an integer type in Java, and it gets automatically promoted to <tt>int</tt>. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as <tt>char</tt> is smaller.
<br />
 
To convert a character to it's ASCII code, cast the <code>char</code> to an <code>int</code>.<br />
In this case, the <tt>println</tt> method is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases.
The following will yield <kbd>97</kbd>.
<lang java>public class Foo {
<syntaxhighlight lang="java">
public static void main(String[] args) {
(int) 'a'
System.out.println((int)'a'); // prints "97"
</syntaxhighlight>
System.out.println((char)97); // prints "a"
You could also specify a unicode hexadecimal value, using the <kbd>\u</kbd> escape sequence.
}
<syntaxhighlight lang="java">
}</lang>
(int) '\u0061'
Java characters support Unicode:
</syntaxhighlight>
<lang java>public class Bar {
To convert an ASCII code to it's ASCII representation, cast the <code>int</code> value to a <code>char</code>.
public static void main(String[] args) {
<syntaxhighlight lang="java">
System.out.println((int)'π'); // prints "960"
(char) 97
System.out.println((char)960); // prints "π"
</syntaxhighlight>
}
}<br /lang>
Java also offers the <code>Character</code> class, comprised of several utilities for Unicode based operations.<br />
Here are a few examples.<br /><br />
Get the integer value represented by the ASCII character.<br />
The second parameter here, is the radix.
This will return an <code>int</code> with the value of <kbd>1</kbd>.
<syntaxhighlight lang="java">
Character.digit('1', 10)
</syntaxhighlight>
Inversely, get the ASCII representation of the integer.<br />
Again, the second parameter is the radix.
This will return a <code>char</code> with the value of '<kbd>1</kbd>'.
<syntaxhighlight lang="java">
Character.forDigit(1, 10)
</syntaxhighlight>
 
=={{header|JavaScript}}==
Here character is just a string of length 1
<langsyntaxhighlight lang="javascript">console.log('a'.charCodeAt(0)); // prints "97"
console.log(String.fromCharCode(97)); // prints "a"</langsyntaxhighlight>
 
ES6 brings '''String.codePointAt()''' and '''String.fromCodePoint()''', which provide access to 4-byte unicode characters,
in addition to the usual 2-byte unicode characters.
 
<langsyntaxhighlight JavaScriptlang="javascript">['字'.codePointAt(0), '🐘'.codePointAt(0)]</langsyntaxhighlight>
 
{{Out}}
 
<syntaxhighlight lang JavaScript="javascript">[23383, 128024]</langsyntaxhighlight>
 
and
 
<langsyntaxhighlight JavaScriptlang="javascript">[23383, 128024].map(function (x) {
return String.fromCodePoint(x);
})</langsyntaxhighlight>
 
{{Out}}
 
<langsyntaxhighlight JavaScriptlang="javascript">["字", "🐘"]</langsyntaxhighlight>
 
=={{header|Joy}}==
<langsyntaxhighlight lang="joy">'a ord.
97 chr.</langsyntaxhighlight>
 
=={{header|jq}}==
jq data strings are JSON strings, which can be "explode"d into an array of integers, each representing a Unicode codepoint. The inverse of the <tt>explode</tt> filter is <tt>implode</tt>. <tt>explode</tt> can of course be used for single-character strings, and so for example:
<langsyntaxhighlight lang="jq">"a" | explode # => [ 97 ]
[97] | implode # => "a"</langsyntaxhighlight>
Here is a filter which can be used to convert an integer to the corresponding
character:<langsyntaxhighlight lang="jq">def chr: [.] | implode;
</syntaxhighlight>
</lang>
Example:
1024 | chr # => "Ѐ"
 
=={{header|Julia}}==
Julia character constants (of type <code>Char</code>) are treated as an integer type representing the Unicode codepoint of the character, and can easily be converted to and from other integer types.
 
<lang julia>println(int('a'))
<syntaxhighlight lang="julia">println(Int('a'))
println(char(97))</lang>
println(Char(97))</syntaxhighlight>
 
{{out}}<pre>97
a</pre>
 
=={{header|K}}==
<langsyntaxhighlight Klang="k"> _ic "abcABC"
97 98 99 65 66 67
 
_ci 97 98 99 65 66 67
"abcABC"</langsyntaxhighlight>
=={{header|Kotlin}}==
<syntaxhighlight lang="kotlin">fun main() {
var c = 'a'
var i = c.code
println("$c <-> $i")
i += 2
c = i.toChar()
println("$i <-> $c")
}</syntaxhighlight>
 
{{out}}
<pre>
a <-> 97
99 <-> c
</pre>
 
=={{header|LabVIEW}}==
{{VI snippet}}<br/>
[[File:LabVIEW_Character_codes.png]]
 
=={{header|Lang}}==
{{trans|Python}}
<syntaxhighlight lang="lang">
fn.println(fn.toValue(a)) # Prints "97"
fn.println(fn.toChar(97)) # Prints "a"
 
# Unicode
fn.println(fn.toValue(π)) # Prints "960"
fn.println(fn.toChar(960)) # Prints "π"
</syntaxhighlight>
 
=={{header|Lang5}}==
<langsyntaxhighlight lang="lang5">: CHAR "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[" comb
'\\ comb -1 remove append "]^_`abcdefghijklmnopqrstuvwxyz{|}~" comb append ;
: CODE 95 iota 33 + ; : comb "" split ;
Line 697 ⟶ 1,388:
 
'a ord . # 97
97 chr . # a</langsyntaxhighlight>
=={{header|langur}}==
Langur has code point literals (enclosed in straight single quotes), which may use escape codes. They are integers.
 
The s2cp(), cp2s(), and s2gc() functions convert between code point integers, grapheme clusters and strings. Also, string indexing is by code point.
 
<syntaxhighlight lang="langur">val .a1 = 'a'
val .a2 = 97
val .a3 = "a"[1]
val .a4 = s2cp "a", 1
val .a5 = [.a1, .a2, .a3, .a4]
 
writeln .a1 == .a2
writeln .a2 == .a3
writeln .a3 == .a4
writeln "numbers: ", join ", ", [.a1, .a2, .a3, .a4, .a5]
writeln "letters: ", join ", ", map cp2s, [.a1, .a2, .a3, .a4, .a5]</syntaxhighlight>
 
{{out}}
<pre>true
true
true
numbers: 97, 97, 97, 97, [97, 97, 97, 97]
letters: a, a, a, a, aaaa
</pre>
 
=={{header|Lasso}}==
<langsyntaxhighlight Lassolang="lasso">'a'->integer
'A'->integer
97->bytes
65->bytes</langsyntaxhighlight>
{{out}}<pre>97
65
a
A</pre>
 
=={{header|LFE}}==
In LFE/Erlang, lists and strings are the same, only the representation changes. For example:
<langsyntaxhighlight lang="lisp">> (list 68 111 110 39 116 32 80 97 110 105 99 46)
"Don't Panic."</langsyntaxhighlight>
 
As for this exercise, here's how you could print out the ASCII code for a letter, and a letter from the ASCII code:
<langsyntaxhighlight lang="lisp">> (: io format '"~w~n" '"a")
97
ok
> (: io format '"~p~n" (list '(97)))
"a"
ok</langsyntaxhighlight>
 
=={{header|Liberty BASIC}}==
<langsyntaxhighlight lang="lb">charCode = 97
char$ = "a"
print chr$(charCode) 'prints a
print asc(char$) 'prints 97</langsyntaxhighlight>
=={{header|LIL}}==
LIL does not handle NUL bytes in character strings, char 0 returns an empty string.
<syntaxhighlight lang="tcl">print [char 97]
print [codeat "a" 0]</syntaxhighlight>
 
{{out}}
<pre>a
97</pre>
=={{header|Lingo}}==
<langsyntaxhighlight lang="lingo">-- returns Unicode code point (=ASCII code for ASCII characters) for character
put chartonum("a")
-- 97
Line 735 ⟶ 1,455:
-- returns character for Unicode code point (=ASCII code for ASCII characters)
put numtochar(934)
-- Φ</langsyntaxhighlight>
 
=={{header|Little}}==
<langsyntaxhighlight Clang="c">puts("Unicode value of ñ is ${scan("ñ", "%c")}");
printf("The code 241 in Unicode is the letter: %c.\n", 241);
</syntaxhighlight>
</lang>
 
=={{header|LiveCode}}==
<langsyntaxhighlight LiveCodelang="livecode">Since 7.0.x works with unicode
put charToNum("") && numToChar(240)</langsyntaxhighlight>
 
=={{header|Logo}}==
Logo characters are words of length 1.
<langsyntaxhighlight lang="logo">print ascii "a ; 97
print char 97 ; a</langsyntaxhighlight>
 
=={{header|Logtalk}}==
<langsyntaxhighlight lang="logtalk">|?- char_code(Char, 97), write(Char).
a
Char = a
yes</langsyntaxhighlight>
<langsyntaxhighlight lang="logtalk">|?- char_code(a, Code), write(Code).
97
Code = 97
yes</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">print(string.byte("a")) -- prints "97"
print(string.char(97)) -- prints "a"</langsyntaxhighlight>
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
\\ ANSI
Print Asc("a")
Print Chr$(Asc("a"))
\\ Utf16-Le
Print ChrCode("a")
Print ChrCode$(ChrCode("a"))
 
\\ (,) is an empty array.
 
Function Codes(a$) {
If Len(A$)=0 then =(,) : Exit
Buffer Mem as byte*Len(a$)
\\ Str$(string) return one byte character
Return Mem, 0:=Str$(a$)
Inventory Codes
For i=0 to len(Mem)-1
Append Codes, i:=Eval(Mem, i)
Next i
=Codes
}
Print Codes("abcd")
\\ 97 98 99 100
</syntaxhighlight>
=={{header|Maple}}==
There are two ways to do this in Maple. First, there are procedures in StringTools for this purpose.
<langsyntaxhighlight Maplelang="maple">> use StringTools in Ord( "A" ); Char( 65 ) end;
65
 
"A"
</syntaxhighlight>
</lang>
Second, the procedure convert handles conversions to and from byte values.
<langsyntaxhighlight Maplelang="maple">> convert( "A", bytes );
[65]
 
> convert( [65], bytes );
"A"
</syntaxhighlight>
</lang>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Use the FromCharacterCode and ToCharacterCode functions:
<langsyntaxhighlight Mathematicalang="mathematica">ToCharacterCode["abcd"]
FromCharacterCode[{97}]</langsyntaxhighlight>
{{Out}}<pre>{97, 98, 99, 100}
 
"a"</pre>
 
=={{header|MATLAB}} / {{header|Octave}}==
There are two built-in function that perform these tasks.
To convert from a number to a character use:
<langsyntaxhighlight MATLABlang="matlab">character = char(asciiNumber)</langsyntaxhighlight>
 
To convert from a character to its corresponding ascii character use:
<langsyntaxhighlight MATLABlang="matlab">asciiNumber = double(character)</langsyntaxhighlight>
 
or if you need this number as an integer not a double use:
<langsyntaxhighlight MATLABlang="matlab">asciiNumber = uint16(character)
asciiNumber = uint32(character)
asciiNumber = uint64(character)</langsyntaxhighlight>
 
Sample Usage:
<langsyntaxhighlight MATLABlang="matlab">>> char(87)
 
ans =
Line 818 ⟶ 1,555:
ans =
 
87</langsyntaxhighlight>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">ascii(65);
"A"
 
cint("A");
65</langsyntaxhighlight>
 
=={{header|Metafont}}==
Metafont handles only ''ASCII'' (even though codes beyond 127 can be given and used as real ASCII codes)
<langsyntaxhighlight lang="metafont">message "enter a letter: ";
string a;
a := readstring;
Line 842 ⟶ 1,577:
message char10; % (this add a newline...)
message char hex"c3" & char hex"a8"; % since C3 A8 is the UTF-8 encoding for "è"
end</langsyntaxhighlight>
=={{header|Microsoft Small Basic}}==
<syntaxhighlight lang="vb">TextWindow.WriteLine("The ascii code for 'A' is: " + Text.GetCharacterCode("A") + ".")
TextWindow.WriteLine("The character for '65' is: " + Text.GetCharacter(65) + ".")</syntaxhighlight>
 
{{out}}
<syntaxhighlight lang="basic">The ascii code for 'A' is: 65.
The character for '65' is: A.
Press any key to continue...</syntaxhighlight>
=={{header|MiniScript}}==
{{trans|Wren}}
MiniScript does not have a ''character'' type as such but one can use single character strings instead. Strings can contain any Unicode code point.
<syntaxhighlight lang="miniscript">cps = []
for c in ["a", "π", "字", "🐘"]
cp = c.code
cps.push cp
print c + " = " + cp
end for
print
for i in cps
print i + " = " + char(i)
end for</syntaxhighlight>
 
{{out}}
<pre>a = 97
π = 960
字 = 23383
🐘 = 128024
 
97 = a
960 = π
23383 = 字
128024 = 🐘
</pre>
 
=={{header|Modula-2}}==
<langsyntaxhighlight lang="modula2">MODULE asc;
 
IMPORT InOut;
Line 862 ⟶ 1,630:
InOut.Write (CHR (ascii));
InOut.WriteLn
END asc.</langsyntaxhighlight>
{{out}}
<langsyntaxhighlight Modulalang="modula-2">jan@Beryllium:~/modula/rosetta$ ./asc
a 97 1</langsyntaxhighlight>
 
=={{header|Modula-3}}==
The built in functions <code>ORD</code> and <code>VAL</code> work on characters, among other things.
<langsyntaxhighlight lang="modula3">ORD('a') (* Returns 97 *)
VAL(97, CHAR); (* Returns 'a' *)</langsyntaxhighlight>
 
=={{header|MUMPS}}==
<langsyntaxhighlight MUMPSlang="mumps">WRITE $ASCII("M")
WRITE $CHAR(77)</langsyntaxhighlight>
=={{header|Nanoquery}}==
<syntaxhighlight lang="nanoquery">println ord("a")
println chr(97)
 
println ord("π")
println chr(960)</syntaxhighlight>
{{out}}
<pre>97
a
960
π</pre>
=={{header|Neko}}==
Neko treats strings as an array of bytes
 
<syntaxhighlight lang="neko">// An 'a' and a 'b'
var s = "a";
var c = 98;
var h = " ";
 
$print("Character code for 'a': ", $sget(s, 0), "\n");
 
$sset(h, 0, c);
$print("Character code ", c, ": ", h, "\n");</syntaxhighlight>
 
{{out}}
<pre>Character code for 'a': 97
Character code 98: b</pre>
 
Neko also has standard primitives for handling the byte array as UTF-8
 
<syntaxhighlight lang="neko">// While Neko also includes some UTF-8 operations,
// native strings are just arrays of bytes
var us = "¥·£·€·$·¢·₡·₢·₣·₤·₥·₦·₧·₨·₩·₪·₫·₭·₮·₯·₹";
 
// load some Std lib primitives
utfGet = $loader.loadprim("std@utf8_get", 2);
utfSub = $loader.loadprim("std@utf8_sub", 3);
utfAlloc = $loader.loadprim("std@utf8_buf_alloc", 1);
utfAdd = $loader.loadprim("std@utf8_buf_add", 2);
utfContent = $loader.loadprim("std@utf8_buf_content", 1);
 
// Pull out the Euro currency symbol from the UTF-8 currency sampler
var uc = utfGet(us, 4);
$print("UFT-8 code for '", utfSub(us, 4, 1), "': ", uc, "\n");
 
// Build a UTF-8 buffer
var buf = utfAlloc(4);
 
// Add a Pound Sterling symbol
uc = 8356;
utfAdd(buf, uc);
$print("UTF-8 code ", uc, ": ", utfContent(buf), "\n");</syntaxhighlight>
 
{{out}}
<pre>UFT-8 code for '€': 8364
UTF-8 code 8356: ₤</pre>
=={{header|NESL}}==
In NESL, character literals are prefixed with a backtick. The functions <tt>char_code</tt> and <tt>code_char</tt> convert between characters and integer character codes.
<langsyntaxhighlight lang="nesl">char_code(`a);
 
it = 97 : int</lang>
<lang nesl>code_char(97);
 
it = `a97 : charint</langsyntaxhighlight>
<syntaxhighlight lang="nesl">code_char(97);
 
it = `a : char</syntaxhighlight>
=={{header|NetRexx}}==
NetRexx provides built-in functions to convert between character and decimal/hexadecimal.
<langsyntaxhighlight NetRexxlang="netrexx">/* NetRexx */
options replace format comments java crossref symbols nobinary
 
Line 909 ⟶ 1,730:
say ci.right(3)"| '"cc"'" cd.right(6) cx.right(4, 0) "'"dc"' '"xc"'"
end ci
return</langsyntaxhighlight>
{{Out}}
<pre style="height:20ex; overflow:scroll">' abcde$¢£¤¥₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵'
Line 947 ⟶ 1,768:
32| '₴' 8372 20B4 '₴' '₴'
33| '₵' 8373 20B5 '₵' '₵'</pre>
 
=={{header|Nim}}==
<langsyntaxhighlight lang="nim">echo ord('a') # echoes 97
echo chr(97) # echoes a
 
Line 955 ⟶ 1,775:
 
echo int("π".runeAt(0)) # echoes 960
echo Rune(960) # echoes π</langsyntaxhighlight>
=={{header|NS-HUBASIC}}==
 
NS-HUBASIC uses a non-ASCII character set that doesn't include letters in lowercase.
<syntaxhighlight lang="ns-hubasic">10 PRINT CODE "A"
20 PRINT CHR$(38)</syntaxhighlight>
{{Out}}
<pre> 0A
&</pre>
=={{header|Oberon-2}}==
<langsyntaxhighlight lang="oberon2">MODULE Ascii;
IMPORT Out;
VAR
Line 968 ⟶ 1,794:
Out.Int(d,3);Out.Ln;
Out.Char(c);Out.Ln
END Ascii.</langsyntaxhighlight>
{{Out}}<pre>
97
a</pre>
=={{header|Objeck}}==
<langsyntaxhighlight lang="objeck">'a'->As(Int)->PrintLine();
97->As(Char)->PrintLine();</langsyntaxhighlight>
=={{header|Object Pascal}}==
 
''See [[#Pascal|Pascal]]''
=={{header|OCaml}}==
<langsyntaxhighlight lang="ocaml">Printf.printf "%d\n" (int_of_char 'a'); (* prints "97" *)
Printf.printf "%c\n" (char_of_int 97); (* prints "a" *)</langsyntaxhighlight>
 
The following are aliases for the above functions:
<langsyntaxhighlight lang="ocaml"># Char.code ;;
- : char -> int = <fun>
# Char.chr;;
- : int -> char = <fun></langsyntaxhighlight>
 
=={{header|Oforth}}==
 
Oforth has not type or class for characters. A character is an integer which value is its unicode code.
 
<syntaxhighlight lang Oforth="oforth">'a' println</langsyntaxhighlight>
 
{{out}}
Line 996 ⟶ 1,822:
97
</pre>
 
=={{header|OpenEdge/Progress}}==
<langsyntaxhighlight Progresslang="progress (Openedgeopenedge ABLabl)">MESSAGE
CHR(97) SKIP
ASC("a")
VIEW-AS ALERT-BOX.</langsyntaxhighlight>
 
=={{header|Oz}}==
Characters in Oz are the same as integers in the range 0-255 (ISO 8859-1 encoding). To print a number as a character, we need to use it as a string (i.e. a list of integers from 0 to 255):
<langsyntaxhighlight lang="oz">{System.show &a} %% prints "97"
{System.showInfo [97]} %% prints "a"</langsyntaxhighlight>
 
=={{header|PARI/GP}}==
<langsyntaxhighlight lang="parigp">print(Vecsmall("a")[1]);
print(Strchr([72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]))</langsyntaxhighlight>
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">writeln(ord('a'));
writeln(chr(97));</langsyntaxhighlight>
=={{header|Plain English}}==
 
<syntaxhighlight>
\ Obs: The little-a byte is a byte equal to 97.
Write the little-a byte's whereabouts on the console.
Put 97 into a number.
Write the number's target on the console.
</syntaxhighlight>
=={{header|Perl}}==
===Narrow===
Here character is just a string of length 1
The code is straightforward when characters are all narrow (single byte).
<lang perl>print ord('a'), "\n"; # prints "97"
<syntaxhighlight lang="perl">use strict;
print chr(97), "\n"; # prints "a"</lang>
use warnings;
=={{header|Perl 6}}==
use utf8;
Both Perl 5 and Perl 6 have good Unicode support. Note that even characters outside the BMP are considered single characters, not a surrogate pair. Here we use the character "four dragons" (with 64 strokes!) to demonstrate that.
binmode(STDOUT, ':utf8');
<lang perl6>say ord('𪚥').fmt('0x%04x');
use Encode;
say chr(0x2a6a5);</lang>
use Unicode::UCD 'charinfo';
{{out}}<pre>0x2a6a5
use List::AllUtils qw(zip natatime);
𪚥</pre>
 
for my $c (split //, 'AΑА薵') {
my $o = ord $c;
my $utf8 = join '', map { sprintf "%x ", ord } split //, Encode::encode("utf8", $c);
my $iterator = natatime 2, zip
@{['Character', 'Character name', 'Ordinal(s)', 'Hex ordinal(s)', 'UTF-8', 'Round trip']},
@{[ $c, charinfo($o)->{'name'}, $o, sprintf("0x%x",$o), $utf8, chr $o, ]};
while ( my ($label, $value) = $iterator->() ) {
printf "%14s: %s\n", $label, $value
}
print "\n";
}</syntaxhighlight>
{{out}}
<pre> Character: A
Character name: LATIN CAPITAL LETTER A
Ordinal(s): 65
Hex ordinal(s): 0x41
UTF-8: 41
Round trip: A
 
Character: Α
Character name: GREEK CAPITAL LETTER ALPHA
Ordinal(s): 913
Hex ordinal(s): 0x391
UTF-8: ce 91
Round trip: Α
 
Character: А
Character name: CYRILLIC CAPITAL LETTER A
Ordinal(s): 1040
Hex ordinal(s): 0x410
UTF-8: d0 90
Round trip: А
 
Character: 薵
Character name: CJK UNIFIED IDEOGRAPH-2A6A5
Ordinal(s): 173733
Hex ordinal(s): 0x2a6a5
UTF-8: f0 aa 9a a5
Round trip: 薵</pre>
 
===Wide===
Have to work a little harder to handle wide (multi-byte) characters.
<syntaxhighlight lang="perl">use strict;
use warnings;
use feature 'say';
use utf8;
binmode(STDOUT, ':utf8');
use Unicode::Normalize 'NFC';
use Unicode::UCD qw(charinfo charprop);
 
while ('Δ̂🇺🇸👨‍👩‍👧‍👦' =~ /(\X)/g) {
my @ordinals = map { ord } split //, my $c = $1;
printf "%14s: %s\n"x7 . "\n",
'Character', NFC $c,
'Character name', join(', ', map { charinfo($_)->{'name'} } @ordinals),
'Unicode property', join(', ', map { charprop($_, "Gc") } @ordinals),
'Ordinal(s)', join(' ', @ordinals),
'Hex ordinal(s)', join(' ', map { sprintf("0x%x", $_) } @ordinals),
'UTF-8', join('', map { sprintf "%x ", ord } (utf8::encode($c), split //, $c)),
'Round trip', join('', map { chr } @ordinals);
}</syntaxhighlight>
{{out}}
<pre> Character: Δ̂
Character name: GREEK CAPITAL LETTER DELTA, COMBINING CIRCUMFLEX ACCENT
Unicode property: Uppercase_Letter, Nonspacing_Mark
Ordinal(s): 916 770
Hex ordinal(s): 0x394 0x302
UTF-8: ce 94 cc 82
Round trip: Δ̂
 
Character: 🇺🇸
Character name: REGIONAL INDICATOR SYMBOL LETTER U, REGIONAL INDICATOR SYMBOL LETTER S
Unicode property: Other_Symbol, Other_Symbol
Ordinal(s): 127482 127480
Hex ordinal(s): 0x1f1fa 0x1f1f8
UTF-8: f0 9f 87 ba f0 9f 87 b8
Round trip: 🇺🇸
 
Character: 👨‍👩‍👧‍👦
Character name: MAN, ZERO WIDTH JOINER, WOMAN, ZERO WIDTH JOINER, GIRL, ZERO WIDTH JOINER, BOY
Unicode property: Other_Symbol, Format, Other_Symbol, Format, Other_Symbol, Format, Other_Symbol
Ordinal(s): 128104 8205 128105 8205 128103 8205 128102
Hex ordinal(s): 0x1f468 0x200d 0x1f469 0x200d 0x1f467 0x200d 0x1f466
UTF-8: f0 9f 91 a8 e2 80 8d f0 9f 91 a9 e2 80 8d f0 9f 91 a7 e2 80 8d f0 9f 91 a6
Round trip: 👨‍👩‍👧‍👦</pre>
=={{header|Phix}}==
{{libheader|Phix/basics}}
Characters and their ascii codes are one and the same. (See also printf, %d / %s / %c.)
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>?'A'
<span style="color: #0000FF;">?</span><span style="color: #008000;">'A'</span>
puts(1,65)</lang>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">65</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 1,037 ⟶ 1,953:
</pre>
 
=={{header|Phixmonti}}==
<syntaxhighlight lang="phixmonti">'a' print nl
97 tochar print</syntaxhighlight>
=={{header|PHP}}==
Here character is just a string of length 1
<langsyntaxhighlight lang="php">echo ord('a'), "\n"; // prints "97"
echo chr(97), "\n"; // prints "a"</langsyntaxhighlight>
=={{header|Picat}}==
<syntaxhighlight lang="picat">main =>
println(chr(97)),
println(ord('a')),
println(ord(a)).</syntaxhighlight>
 
{{out}}
<pre>a
97
97</pre>
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">: (char "a")
-> 97
: (char "字")
Line 1,052 ⟶ 1,980:
-> ("文" "字")
: (mapcar char @)
-> (25991 23383)</langsyntaxhighlight>
 
=={{header|PL/I}}==
<langsyntaxhighlight PLlang="pl/Ii">declare 1 u union,
2 c character (1),
2 i fixed binary (8) unsigned;
c = 'a'; put skip list (i); /* prints 97 */
i = 97; put skip list (c); /* prints 'a' */</langsyntaxhighlight>
 
=={{header|PowerShell}}==
Powershell does allow for character literals with [convert]
<syntaxhighlight lang="powershell">$char = [convert]::toChar(0x2f) #=> /</syntaxhighlight>
 
PowerShell does not allow for character literals directly, so to get a character one first needs to convert a single-character string to a char:
<langsyntaxhighlight lang="powershell">$char = [char] 'a'</langsyntaxhighlight>
Then a simple cast to int yields the character code:
<langsyntaxhighlight lang="powershell">$charcode = [int] $char # => 97</langsyntaxhighlight>
This also works with Unicode:
<langsyntaxhighlight lang="powershell">[int] [char] '☺' # => 9786</langsyntaxhighlight>
For converting an integral character code into the actual character, a cast to char suffices:
<langsyntaxhighlight lang="powershell">[char] 97 # a
[char] 9786 # ☺</langsyntaxhighlight>
 
=={{header|Prolog}}==
SWI-Prolog has predefined predicate char_code/2.
Line 1,079 ⟶ 2,007:
?- char_code(X, 97).
X = a.</pre>
 
=={{header|PureBasic}}==
PureBasic allows compiling code so that it will use either Ascii or a Unicode (UCS-2) encoding for representing its string content.
Line 1,085 ⟶ 2,012:
A one-character string is used here to hold the character and a numerical character type is used to hold the character code.
The character type is either one or two bytes in size, depending on whether compiling for Ascii or Unicode respectively.
<langsyntaxhighlight PureBasiclang="purebasic">If OpenConsole()
;Results are the same when compiled for Ascii or Unicode
charCode.c = 97
Line 1,095 ⟶ 2,022:
Input()
CloseConsole()
EndIf</langsyntaxhighlight>
 
This version should be compiled with Unicode setting and the source code to be encoded using UTF-8.
<langsyntaxhighlight PureBasiclang="purebasic">If OpenConsole()
;UTF-8 encoding compiled for Unicode (UCS-2)
charCode.c = 960
Line 1,108 ⟶ 2,035:
Input()
CloseConsole()
EndIf</langsyntaxhighlight>
 
=={{header|Python}}==
{{works with|Python|2.x}}
Line 1,115 ⟶ 2,041:
 
8-bit characters:
<langsyntaxhighlight lang="python">print ord('a') # prints "97"
print chr(97) # prints "a"</langsyntaxhighlight>
 
Unicode characters:
<langsyntaxhighlight lang="python">print ord(u'π') # prints "960"
print unichr(960) # prints "π"</langsyntaxhighlight>
 
{{works with|Python|3.x}}
Here character is just a string of length 1
<langsyntaxhighlight lang="python">print(ord('a')) # prints "97" (will also work in 2.x)
print(ord('π')) # prints "960"
print(chr(97)) # prints "a" (will also work in 2.x)
print(chr(960)) # prints "π"</langsyntaxhighlight>
=={{header|Quackery}}==
 
As a dialogue in the Quackery shell.
=={{header|R}}==
<lang R>ascii <- as.integer(charToRaw("hello world")); ascii
text <- rawToChar(as.raw(ascii)); text</lang>
 
<pre>Welcome to Quackery.
 
Enter "leave" to leave the shell.
 
/O> char a
...
 
Stack: 97
 
/O> emit
...
a
Stack empty.</pre>
=={{header|R}}==
<syntaxhighlight lang="r">ascii <- as.integer(charToRaw("hello world")); ascii
text <- rawToChar(as.raw(ascii)); text</syntaxhighlight>
=={{header|Racket}}==
<langsyntaxhighlight Racketlang="racket">#lang racket
 
(define (code ch)
Line 1,144 ⟶ 2,085:
(printf "The unicode number ~a is the character ~s\n" n (integer->char n)))
(char 97)
(char 955)</langsyntaxhighlight>
=={{header|Raku}}==
(formerly Perl 6)
Both Perl 5 and Raku have good Unicode support, though Raku attempts to make working with Unicode effortless. Note that even multi-byte emoji and characters outside the BMP are considered single characters. Also note: all of these routines are built into the base compiler. No need to load external libraries. See [[wp:Unicode_character_property#General_Category|Wikipedia: Unicode character properties]] for explanation of Unicode property.
<syntaxhighlight lang="raku" line>for 'AΑА𪚥🇺🇸👨‍👩‍👧‍👦'.comb {
.put for
[ 'Character',
'Character name',
'Unicode property',
'Unicode script',
'Unicode block',
'Added in Unicode version',
'Ordinal(s)',
'Hex ordinal(s)',
'UTF-8',
'UTF-16LE',
'UTF-16BE',
'Round trip by name',
'Round trip by ordinal'
]».fmt('%25s:')
Z
[ $_,
.uninames.join(', '),
.uniprops.join(', '),
.uniprops('Script').join(', '),
.uniprops('Block').join(', '),
.uniprops('Age').join(', '),
.ords,
.ords.fmt('0x%X'),
.encode('utf8' )».fmt('%02X'),
.encode('utf16le')».fmt('%02X').join.comb(4),
.encode('utf16be')».fmt('%02X').join.comb(4),
.uninames».uniparse.join,
.ords.chrs
];
say '';
}</syntaxhighlight>
{{out}}
<pre> Character: A
Character name: LATIN CAPITAL LETTER A
Unicode property: Lu
Unicode script: Latin
Unicode block: Basic Latin
Added in Unicode version: 1.1
Ordinal(s): 65
Hex ordinal(s): 0x41
UTF-8: 41
UTF-16LE: 4100
UTF-16BE: 0041
Round trip by name: A
Round trip by ordinal: A
 
Character: Α
Character name: GREEK CAPITAL LETTER ALPHA
Unicode property: Lu
Unicode script: Greek
Unicode block: Greek and Coptic
Added in Unicode version: 1.1
Ordinal(s): 913
Hex ordinal(s): 0x391
UTF-8: CE 91
UTF-16LE: 9103
UTF-16BE: 0391
Round trip by name: Α
Round trip by ordinal: Α
 
Character: А
Character name: CYRILLIC CAPITAL LETTER A
Unicode property: Lu
Unicode script: Cyrillic
Unicode block: Cyrillic
Added in Unicode version: 1.1
Ordinal(s): 1040
Hex ordinal(s): 0x410
UTF-8: D0 90
UTF-16LE: 1004
UTF-16BE: 0410
Round trip by name: А
Round trip by ordinal: А
 
Character: 𪚥
Character name: CJK UNIFIED IDEOGRAPH-2A6A5
Unicode property: Lo
Unicode script: Han
Unicode block: CJK Unified Ideographs Extension B
Added in Unicode version: 3.1
Ordinal(s): 173733
Hex ordinal(s): 0x2A6A5
UTF-8: F0 AA 9A A5
UTF-16LE: 69D8 A5DE
UTF-16BE: D869 DEA5
Round trip by name: 𪚥
Round trip by ordinal: 𪚥
 
Character: 🇺🇸
Character name: REGIONAL INDICATOR SYMBOL LETTER U, REGIONAL INDICATOR SYMBOL LETTER S
Unicode property: So, So
Unicode script: Common, Common
Unicode block: Enclosed Alphanumeric Supplement, Enclosed Alphanumeric Supplement
Added in Unicode version: 6.0, 6.0
Ordinal(s): 127482 127480
Hex ordinal(s): 0x1F1FA 0x1F1F8
UTF-8: F0 9F 87 BA F0 9F 87 B8
UTF-16LE: 3CD8 FADD 3CD8 F8DD
UTF-16BE: D83C DDFA D83C DDF8
Round trip by name: 🇺🇸
Round trip by ordinal: 🇺🇸
 
Character: 👨‍👩‍👧‍👦
Character name: MAN, ZERO WIDTH JOINER, WOMAN, ZERO WIDTH JOINER, GIRL, ZERO WIDTH JOINER, BOY
Unicode property: So, Cf, So, Cf, So, Cf, So
Unicode script: Common, Inherited, Common, Inherited, Common, Inherited, Common
Unicode block: Miscellaneous Symbols and Pictographs, General Punctuation, Miscellaneous Symbols and Pictographs, General Punctuation, Miscellaneous Symbols and Pictographs, General Punctuation, Miscellaneous Symbols and Pictographs
Added in Unicode version: 6.0, 1.1, 6.0, 1.1, 6.0, 1.1, 6.0
Ordinal(s): 128104 8205 128105 8205 128103 8205 128102
Hex ordinal(s): 0x1F468 0x200D 0x1F469 0x200D 0x1F467 0x200D 0x1F466
UTF-8: F0 9F 91 A8 E2 80 8D F0 9F 91 A9 E2 80 8D F0 9F 91 A7 E2 80 8D F0 9F 91 A6
UTF-16LE: 3DD8 68DC 0D20 3DD8 69DC 0D20 3DD8 67DC 0D20 3DD8 66DC
UTF-16BE: D83D DC68 200D D83D DC69 200D D83D DC67 200D D83D DC66
Round trip by name: 👨‍👩‍👧‍👦
Round trip by ordinal: 👨‍👩‍👧‍👦</pre>
 
=={{header|RapidQ}}==
<syntaxhighlight lang="vb">
<lang vb>
Print Chr$(97)
Print Asc("a")
</syntaxhighlight>
</lang>
=={{header|Red}}==
 
<syntaxhighlight lang="red">Red []
print to-integer first "a" ;; -> 97
print to-integer #"a" ;; -> 97
print to-binary "a" ;; -> #{61}
print to-char 97 ;; -> a
</syntaxhighlight>
=={{header|Retro}}==
<syntaxhighlight lang Retro="retro">'c putc</langsyntaxhighlight>
 
=={{header|REXX}}==
REXX supports handling of characters with built-in functions (BIFs), whether it be hexadecimal, binary (bits), or decimal code(s).
===ASCII===
<langsyntaxhighlight lang="rexx">/*REXX program displays a char's ASCII code/value (or EBCDIC if run on an EBCDIC system)*/
yyy= 'c' /*assign a lowercase c to YYY. */
yyy= "c" /* (same as above) */
Line 1,183 ⟶ 2,249:
say ' dec code: ' c2d(yyy) /* decimal */
say ' bin code: ' x2b( c2x(yyy) ) /* binary (as a bit string) */
/*stick a fork in it, we're all done with display*/</langsyntaxhighlight>
'''output'''
<pre>
Line 1,199 ⟶ 2,265:
 
===EBCDIC===
<langsyntaxhighlight lang="rexx">/* REXX */
yyy='c' /*assign a lowercase c to YYY */
yyy='83'x /*assign hexadecimal 83 to YYY */
Line 1,212 ⟶ 2,278:
say c2x(yyy) /*displays the value of YYY in hexadecimal. */
say c2d(yyy) /*displays the value of YYY in decimal. */
say x2b(c2x(yyy))/*displays the value of YYY in binary (bit string). */</langsyntaxhighlight>
{{out}}
<pre>a
Line 1,218 ⟶ 2,284:
129
10000001</pre>
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
see ascii("a") + nl
see char(97) + nl
</syntaxhighlight>
</lang>
=={{header|RPL}}==
{{in}}
<pre>
"a" NUM
97 CHR
</pre>
{{out}}
<pre>
2: 97
1: "a"
</pre>
 
=={{header|Ruby}}==
===1.8===
In Ruby 1.8 characters are usually represented directly as their integer character code. Ruby has a syntax for "character literal" which evaluates directly to the integer code: <tt>?a</tt> evaluates to the integer 97. Subscripting a string also gives just the integer code for the character.
<lang ruby>> ?a
=> 97
> "a"[0]
=> 97
> 97.chr
=> "a"</lang>
 
===1.9===
In Ruby 1.9 characters are represented as length-1 strings; same as in Python. The previous "character literal" syntax <tt>?a</tt> is now the same as <tt>"a"</tt>. Subscripting a string also gives a length-1 string. There is now an "ord" method of strings to convert a character into its integer code.
 
<langsyntaxhighlight lang="ruby">> "a".ord
=> 97
> 97.chr
=> "a"</langsyntaxhighlight>
 
=={{header|Run BASIC}}==
<langsyntaxhighlight lang="runbasic">print chr$(97) 'prints a
print asc("a") 'prints 97</langsyntaxhighlight>
 
=={{header|Rust}}==
<langsyntaxhighlight lang="rust">use std::char::from_u32;
 
fn main() {
Line 1,257 ⟶ 2,322:
//unicode char
println!("{}", 'π' as u32);
println!("{}", from_u32(960).unwrap());
}</langsyntaxhighlight>
{{out}}
<pre>97
Line 1,264 ⟶ 2,329:
960
π</pre>
 
=={{header|Sather}}==
<langsyntaxhighlight lang="sather">class MAIN is
main is
#OUT + 'a'.int + "\n"; -- or
Line 1,272 ⟶ 2,336:
#OUT + CHAR::from_ascii_int(97) + "\n";
end;
end;</langsyntaxhighlight>
 
=={{header|Scala}}==
{{libheader|Scala}}
Scala supports unicode characters, but each character is UTF-16, so there is not a 1-to-1 relationship for supplementary character sets.
===In a REPL session===
<langsyntaxhighlight lang="scala">scala> 'a' toInt
res2: Int = 97
 
Line 1,288 ⟶ 2,351:
 
scala> "\uD869\uDEA5"
res5: String = 𪚥</langsyntaxhighlight>
===Full swing workout===
Taken the supplemental character sets in account.
<langsyntaxhighlight lang="scala">import java.lang.Character._; import scala.annotation.tailrec
 
object CharacterCode extends App {
Line 1,333 ⟶ 2,396:
f"${"(" + UnicodeToInt(coll).toString}%8s) ${flags(coll)} ${getName(coll(0).toInt)} "
}.foreach(println)
}</langsyntaxhighlight>
{{Out}}
<pre style="height:20ex; overflow:scroll">
Line 1,406 ⟶ 2,469:
65: 𠀀 "\uD840\uDC00" U+20000 (131072) NN HIGH SURROGATES D840
66: 𪚥 "\uD869\uDEA5" U+2A6A5 (173733) NN HIGH SURROGATES D869</pre>[http://illegalargumentexception.blogspot.nl/2009/05/java-rough-guide-to-character-encoding.html More background info: "Java: a rough guide to character encoding"]
 
=={{header|Scheme}}==
<langsyntaxhighlight lang="scheme">(display (char->integer #\a)) (newline) ; prints "97"
(display (integer->char 97)) (newline) ; prints "a"</langsyntaxhighlight>
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">writeln(ord('a'));
writeln(chr(97));</langsyntaxhighlight>
=={{header|SenseTalk}}==
 
<syntaxhighlight lang="sensetalk">put CharToNum("a")
=={{header|Sidef}}==
put NumToChar(97)</syntaxhighlight>
<lang ruby>say 'a'.ord; # => 97
say 97.chr; # => 'a'</lang>
 
=={{header|SequenceL}}==
SequenceL natively supports ASCII characters.<br>
'''SequenceL Interpreter Session:'''
<langsyntaxhighlight lang="sequencel">cmd:>asciiToInt('a')
97
cmd:>intToAscii(97)
'a'</langsyntaxhighlight>
=={{header|Sidef}}==
 
<syntaxhighlight lang="ruby">say 'a'.ord; # => 97
say 97.chr; # => 'a'</syntaxhighlight>
=={{header|Slate}}==
<langsyntaxhighlight lang="slate">$a code.
97 as: String Character.</langsyntaxhighlight>
 
=={{header|Smalltalk}}==
<langsyntaxhighlight lang="smalltalk">($a asInteger) displayNl. "output 97"
(Character value: 97) displayNl. "output a"</langsyntaxhighlight>
 
{{works with|Smalltalk/X}}
Ansi Smalltalk defines <tt>codePoint</tt>
<syntaxhighlight lang="smalltalk">Transcript showCR:$a codePoint.
Transcript showCR:(Character codePoint:97).
Transcript showCR:(98 asCharacter).
 
'abcmøøse𝔘𝔫𝔦𝔠𝔬𝔡𝔢' do:[:ch |
Transcript showCR:ch codePoint
]</syntaxhighlight>
{{out}}
<pre>97
a
b
97
98
99
109
248
248
115
101
120088
120107
120102
120096
120108
120097
120098</pre>
=={{header|SmileBASIC}}==
<syntaxhighlight lang="smilebasic">PRINT CHR$(97) 'a
PRINT ASC("a") '97</syntaxhighlight>
=={{header|SNOBOL4}}==
Snobol implementations may or may not have built-in char( ) and ord ( ) or asc( ).
These are based on examples in the Snobol4+ tutorial and work with the native (1-byte) charset.
<langsyntaxhighlight SNOBOL4lang="snobol4"> define('chr(n)') :(chr_end)
chr &alphabet tab(n) len(1) . chr :s(return)f(freturn)
chr_end
Line 1,451 ⟶ 2,543:
output = chr(65)
output = asc('A')
end</langsyntaxhighlight>
{{Out}}
<pre>A
Line 1,457 ⟶ 2,549:
65</pre>
 
=={{header|SparForte}}==
As a structured script.
<syntaxhighlight lang="ada">#!/usr/local/bin/spar
pragma annotate( summary, "charcode" )
@( description, "Given a character value in your language, print its code (could be" )
@( description, "ASCII code, Unicode code, or whatever your language uses). For example," )
@( description, "the character 'a' (lowercase letter A) has a code of 97 in ASCII (as" )
@( description, "well as Unicode, as ASCII forms the beginning of Unicode). Conversely," )
@( description, "given a code, print out the corresponding character. " )
@( category, "tutorials" )
@( see_also, "http://rosettacode.org/wiki/Character_codes" )
@( author, "Ken O. Burtch");
pragma license( unrestricted );
 
pragma restriction( no_external_commands );
 
procedure charcode is
code : constant natural := 97;
ch : constant character := 'a';
begin
put_line( "character code" & strings.image( code ) & " = character " & strings.val( code ) );
put_line( "character " & ch & " = character code" & strings.image( numerics.pos( ch ) ) );
end charcode;</syntaxhighlight>
 
=={{header|SPL}}==
In SPL all characters are used in UTF-16LE encoding.
<syntaxhighlight lang="spl">x = #.array("a")
#.output("a -> ",x[1]," ",x[2])
x = [98,0]
#.output("98 0 -> ",#.str(x))</syntaxhighlight>
{{out}}
<pre>
a -> 97 0
98 0 -> b
</pre>
=={{header|Standard ML}}==
<langsyntaxhighlight lang="sml">print (Int.toString (ord #"a") ^ "\n"); (* prints "97" *)
print (Char.toString (chr 97) ^ "\n"); (* prints "a" *)</langsyntaxhighlight>
=={{header|Stata}}==
The Mata '''ascii''' function transforms a string into a numeric vector of UTF-8 bytes. For instance:
 
<syntaxhighlight lang="stata">: ascii("α")
1 2
+-------------+
1 | 206 177 |
+-------------+</syntaxhighlight>
 
Where 206, 177 is the UTF-8 encoding of Unicode character 945 (GREEK SMALL LETTER ALPHA).
 
ASCII characters are mapped to single bytes:
 
<syntaxhighlight lang="stata">: ascii("We the People")
1 2 3 4 5 6 7 8 9 10 11 12 13
+-------------------------------------------------------------------------------+
1 | 87 101 32 116 104 101 32 80 101 111 112 108 101 |
+-------------------------------------------------------------------------------+</syntaxhighlight>
 
Conversely, the '''char''' function transforms a byte vector into a string:
 
<syntaxhighlight lang="stata">: char((73,32,115,116,97,110,100,32,104,101,114,101))
I stand here</syntaxhighlight>
=={{header|Swift}}==
The type that represent a Unicode code point is <code>UnicodeScalar</code>.
You can initialize it with a string literal:
<langsyntaxhighlight lang="swift">let c1: UnicodeScalar = "a"
println(c1.value) // prints "97"
let c2: UnicodeScalar = "π"
println(c2.value) // prints "960"</langsyntaxhighlight>
Or, you can get it by iterating a string's unicode scalars view:
<langsyntaxhighlight lang="swift">let s1 = "a"
for c in s1.unicodeScalars {
println(c.value) // prints "97"
Line 1,476 ⟶ 2,625:
for c in s2.unicodeScalars {
println(c.value) // prints "960"
}</langsyntaxhighlight>
 
You can also initialize it from a <code>UInt32</code> integer:
<langsyntaxhighlight lang="swift">let i1: UInt32 = 97
println(UnicodeScalar(i1)) // prints "a"
let i2: UInt32 = 960
println(UnicodeScalar(i2)) // prints "π"</langsyntaxhighlight>
=={{header|Tailspin}}==
 
Tailspin works with Unicode codepoints
<syntaxhighlight lang="tailspin">
'abc' -> $::asCodePoints -> !OUT::write
'$#10;' -> !OUT::write
'$#97;' -> !OUT::write
</syntaxhighlight>
{{out}}
<pre>
[97, 98, 99]
a
</pre>
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl"># ASCII
puts [scan "a" %c] ;# ==> 97
puts [format %c 97] ;# ==> a
# Unicode is the same
puts [scan "π" %c] ;# ==> 960
puts [format %c 960] ;# ==> π</langsyntaxhighlight>
 
=={{header|TI-83 BASIC}}==
TI-83 BASIC provides no built in way to do this, so in all String<-->List routines and anything else which requires character codes, a workaround using inString( and sub( is used.
In this example, the code of 'A' is displayed, and then the character matching a user-defined code is displayed.
<langsyntaxhighlight lang="ti83b">"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789→Str1
Disp inString(Str1,"A
Input "CODE? ",A
Disp sub(Str1,A,1</langsyntaxhighlight>
 
=={{header|TI-89 BASIC}}==
The TI-89 uses an 8-bit charset/encoding which is similar to ISO-8859-1, but with more mathematical symbols and Greek letters.
Line 1,509 ⟶ 2,667:
The below program will display the character and code for any key pressed. Some keys do not correspond to characters and have codes greater than 255.
The portion of the program actually implementing the task is marked with a line of “©”s.
<langsyntaxhighlight lang="ti89b">Prgm
Local k, s
ClrIO
Line 1,529 ⟶ 2,687:
EndIf
EndLoop
EndPrgm</langsyntaxhighlight>
 
=={{header|Trith}}==
Characters are Unicode code points, so the solution is the same for Unicode characters as it is for ASCII characters:
<langsyntaxhighlight lang="trith">"a" ord print
97 chr print</langsyntaxhighlight>
<langsyntaxhighlight lang="trith">"π" ord print
960 chr print</langsyntaxhighlight>
 
=={{header|TUSCRIPT}}==
<langsyntaxhighlight lang="tuscript">$$ MODE TUSCRIPT
SET character ="a", code=DECODE (character,byte)
PRINT character,"=",code</langsyntaxhighlight>
{{Out}}<pre>a=97</pre>
 
=={{header|uBasic/4tH}}==
uBasic/4tH is an integer BASIC, just like Tiny BASIC. However, the function ORD() is supported, just as CHR(). The latter is only allowed within a PRINT statement.
<syntaxhighlight lang="text">z = ORD("a") : PRINT CHR(z) ' Prints "a"</langsyntaxhighlight>
=={{header|UNIX Shell}}==
 
<syntaxhighlight lang="bash">
Aamrun$ printf "%d\n" \'a
97
Aamrun$ printf "\x$(printf %x 97)\n"
a
Aamrun$
</syntaxhighlight>
=={{header|Ursa}}==
<langsyntaxhighlight lang="ursa"># outputs the character value for 'a'
out (ord "a") endl console
# outputs the character 'a' given its value
out (chr 97) endl console</langsyntaxhighlight>
 
=={{header|Ursala}}==
Character code functions are not built in but easily defined as reifications of
the character table.
<langsyntaxhighlight Ursalalang="ursala">#import std
#import nat
 
Line 1,565 ⟶ 2,726:
#cast %cnX
 
test = (chr97,asc`a)</langsyntaxhighlight>
{{Out}}<pre>(`a,97)</pre>
 
=={{header|VBAUxntal}}==
<syntaxhighlight lang="Uxntal">
<lang vba>Debug.Print Chr(97) 'Prints a
( uxnasm char-codes.tal char-codes.rom && uxncli char-codes.rom )
Debug.Print [Code("a")] ' Prints 97</lang>
 
|00 @System &vector $2 &expansion $2 &wst $1 &rst $1 &metadata $2 &r $2 &g $2 &b $2 &debug $1 &state $1
|10 @Console &vector $2 &read $1 &pad $4 &type $1 &write $1 &error $1
 
|0100
[ LIT "a ] print-hex
newline
#61 .Console/write DEO
newline
 
( exit )
#80 .System/state DEO
BRK
 
@print-hex
DUP #04 SFT print-digit #0f AND print-digit
JMP2r
 
@print-digit
DUP #09 GTH #27 MUL ADD #30 ADD .Console/write DEO
JMP2r
 
@newline
#0a .Console/write DEO
JMP2r</syntaxhighlight>
 
Output:
<pre>61
a</pre>
 
=={{header|VBA}}==
<syntaxhighlight lang="vba">Debug.Print Chr(97) 'Prints a
Debug.Print [Code("a")] ' Prints 97</syntaxhighlight>
=={{header|VBScript}}==
<syntaxhighlight lang="vb">
<lang vb>
'prints a
WScript.StdOut.WriteLine Chr(97)
Line 1,579 ⟶ 2,772:
'prints 97
WScript.StdOut.WriteLine Asc("a")
</syntaxhighlight>
</lang>
 
=={{header|Vim Script}}==
The behavior of the two functions depends on the value of the option <code>encoding</code>.
<langsyntaxhighlight lang="vim">"encoding is set to utf-8
echo char2nr("a")
"Prints 97
 
echo nr2char(97)
"Prints a</langsyntaxhighlight>
=={{header|Visual Basic .NET}}==
<syntaxhighlight lang="vbnet">Console.WriteLine(Chr(97)) 'Prints a
Console.WriteLine(Asc("a")) 'Prints 97</syntaxhighlight>
=={{header|V (Vlang)}}==
<syntaxhighlight lang="v (vlang)">fn main() {
println('a'[0]) // prints "97"
println('π'[0]) // prints "207"
 
s := 'aπ'
println('string cast to bytes: ${s.bytes()}')
for c in s {
print('0x${c:x} ')
}
}</syntaxhighlight>
 
{{out}}
=={{header|Visual Basic .NET}}==
<pre>
<lang vbnet>Console.WriteLine(Chr(97)) 'Prints a
97
Console.WriteLine(Asc("a")) 'Prints 97</lang>
207
string cast to bytes: [a, 0xcf, 0x80]
97->0x61 207->0xcf 128->0x80
</pre>
 
=={{header|Wren}}==
Wren does not have a ''character'' type as such but one can use single character strings instead. Strings can contain any Unicode code point.
<syntaxhighlight lang="wren">var cps = []
for (c in ["a", "π", "字", "🐘"]) {
var cp = c.codePoints[0]
cps.add(cp)
System.print("%(c) = %(cp)")
}
System.print()
for (i in cps) {
var c = String.fromCodePoint(i)
System.print("%(i) = %(c)")
}</syntaxhighlight>
 
{{out}}
<pre>
a = 97
π = 960
字 = 23383
🐘 = 128024
 
97 = a
960 = π
23383 = 字
128024 = 🐘
</pre>
 
=={{header|XLISP}}==
In a REPL:
<langsyntaxhighlight lang="scheme">[1] (INTEGER->CHAR 97)
 
#\a
[2] (CHAR->INTEGER #\a)
 
97</langsyntaxhighlight>
 
=={{header|XPL0}}==
A character is represented by an integer value equal to its ASCII code.
Line 1,609 ⟶ 2,844:
character to an integer equal to its ASCII code.
 
<langsyntaxhighlight XPL0lang="xpl0">IntOut(0, ^a); \(Integer Out) displays "97" on the console (device 0)
ChOut(0, 97); \(Character Out) displays "a" on the console (device 0)</langsyntaxhighlight>
=={{header|Z80 Assembly}}==
The Z80 doesn't understand what ASCII codes are by itself. Most computers/systems that use it will have firmware that maps each code to its corresponding glyph. Printing a character given its code is trivial. On the Amstrad CPC:
<syntaxhighlight lang="z80">LD A,'a'
call &BB5a</syntaxhighlight>
 
Printing a character code given a character takes slightly more work. You'll need to separate each hexadecimal digit of the ASCII code, convert each digit to ASCII, and print it. Once again, thanks to Keith of [[http://www.chibiakumas.com Chibiakumas]] for this code:
<syntaxhighlight lang="z80">ShowHex:
push af
and %11110000
rrca
rrca
rrca
rrca
call PrintHexChar
pop af
and %00001111
;call PrintHexChar (execution flows into it naturally)
PrintHexChar:
or a ;Clear Carry Flag
daa
add a,&F0
adc a,&40 ;this sequence of instructions converts a single hex digit to ASCII.
 
jp PrintChar ;this is whatever routine prints to the screen on your system.
; It must end in a "ret" and it must take the accumulator as its argument.</syntaxhighlight>
=={{header|Zig}}==
<syntaxhighlight lang="zig">const std = @import("std");
const unicode = std.unicode;
 
pub fn main() !void {
const stdout = std.io.getStdOut().writer();
 
try characterAsciiCodes(stdout);
try characterUnicodeCodes(stdout);
}
 
fn characterAsciiCodes(writer: anytype) !void {
try writer.writeAll("Sample ASCII characters and codes:\n");
 
// Zig's string is just an array of bytes (u8).
const message: []const u8 = "ABCabc";
 
for (message) |val| {
try writer.print(" '{c}' code: {d} [hexa: 0x{x}]\n", .{ val, val, val });
}
try writer.writeByte('\n');
}
 
fn characterUnicodeCodes(writer: anytype) !void {
try writer.writeAll("Sample Unicode characters and codes:\n");
 
const message: []const u8 = "あいうえお";
 
const utf8_view = unicode.Utf8View.initUnchecked(message);
var iter = utf8_view.iterator();
 
while (iter.nextCodepoint()) |val| {
var array: [4]u8 = undefined;
const slice = array[0..try unicode.utf8Encode(val, &array)];
 
try writer.print(" '{s}' code: {d} [hexa: U+{x}]\n", .{ slice, val, val });
}
try writer.writeByte('\n');
}</syntaxhighlight>
 
{{out}}
<pre>Sample ASCII characters and codes:
'A' code: 65 [hexa: 0x41]
'B' code: 66 [hexa: 0x42]
'C' code: 67 [hexa: 0x43]
'a' code: 97 [hexa: 0x61]
'b' code: 98 [hexa: 0x62]
'c' code: 99 [hexa: 0x63]
 
Sample Unicode characters and codes:
'あ' code: 12354 [hexa: U+3042]
'い' code: 12356 [hexa: U+3044]
'う' code: 12358 [hexa: U+3046]
'え' code: 12360 [hexa: U+3048]
'お' code: 12362 [hexa: U+304a]</pre>
 
=={{header|zkl}}==
The character set is 8 bit ASCII (but doesn't care if you use UTF-8 or unicode characters).
<langsyntaxhighlight lang="zkl"> "a".toAsc() //-->97
(97).toChar() //-->"a"</langsyntaxhighlight>
=={{header|Zoea}}==
 
<syntaxhighlight lang="zoea">
program: character_codes
input: a
output: 97
</syntaxhighlight>
=={{header|Zoea Visual}}==
[http://zoea.co.uk/examples/zv-rc/Character_codes.png Character Codes]
=={{header|ZX Spectrum Basic}}==
<langsyntaxhighlight lang="zxbasic">10 PRINT CHR$ 97: REM prints a
20 PRINT CODE "a": REM prints 97</langsyntaxhighlight>
 
{{omit from|bc}}
{{omit from|GUISS}}
18

edits