B-spline

Revision as of 16:28, 12 November 2021 by Hkdtam (talk | contribs) (added Raku programming solution)

Generate a B-spline curve with a list of 12 points and plot or save image.

B-spline is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Coordinates of control points:

   start=171,171 
   1 185,111, 
   2 202,109, 
   3 202,189 
   4 328,160 
   5 208,254 
   6 241,330 
   7 164,252 
   8 69,278 
   9 139,208 
   10 72,148 
   end=168,172


Rules!!!!

Do not use third party libraries or functions

See also




Julia

Choose BSpline D of 2, ie degree 1. <lang julia>using Graphics, Plots

Point(t::Tuple) = Vec2(Float64(t[1]), Float64(t[2])) const controlpoints = Point.([(171, 171), (185, 111), (202, 109), (202, 189), (328, 160),

   (208, 254), (241, 330), (164,252), (69, 278), (139, 208), (72, 148), (168, 172)])

plt = plot(map(a -> a.x, controlpoints), map(a -> a.y, controlpoints)) savefig(plt, "BSplineplot.png")</lang>

Mathematica/Wolfram Language

<lang Mathematica>Graphics[

BSplineCurve[{{171, 171}, {185, 111}, {202, 109}, {202, 189}, {328, 
   160}, {208, 254}, {241, 330}, {164, 252}, {69, 278}, {139, 
   208}, {72, 148}, {168, 172}}, SplineClosed -> True, 
 SplineDegree -> 2]]</lang>
Output:

Outputs a graphical representation of a B-spline.

Phix

Translation of: Wren
Library: Phix/pGUI
Library: Phix/online

You can run this online here.

--
-- demo\rosetta\B-spline.exw
-- =========================
--
--  Use +/- to change the order between k = 1 and k = 4.
--
with javascript_semantics
include pGUI.e
include IupGraph.e

constant ctrl_points = {{171, 171}, {185, 111}, {202, 109}, {202, 189}, {328, 160}, {208, 254},
                        {241, 330}, {164, 252}, { 69, 278}, {139, 208}, { 72, 148}, {168, 172}}
integer k = 2, n
sequence t

function w(integer i, k, x)  // B-spline helper function
    return iff(t[i+k]!=t[i] ? (x-t[i])/(t[i+k]-t[i]) : 0 )
end function

function b(integer i, k, x)  // B-spline function
    if k==1 then return iff(t[i]<=x and x<t[i+1] ? 1 : 0) end if
    return w(i,k-1,x)*b(i,k-1,x) + (1-w(i+1,k-1,x))*b(i+1,k-1,x)
end function

function b_spline(Ihandle graph)
    n = length(ctrl_points)
    t = tagset(n+1+k) // use a uniform knot vector, delta = 1
    assert(k<=n+1 and k>=1,"k (= %d) cannot be more than %d or less than 1.",{k,n+1})

    sequence px = {}, py = {}
    for x=t[k] to t[n+1] do
        atom sumX = 0,
             sumY = 0
        for i=1 to n do
            atom f = b(i,k,x)
            sumX += f*ctrl_points[i][1]
            sumY += f*ctrl_points[i][2]
        end for
        px &= round(sumX)
        py &= round(sumY)
    end for

    integer xtick = 40,
            ytick = 40,
            xmin = trunc(min(px)/xtick)*xtick,
            xmax = ceil(max(px)/xtick)*xtick,
            ymin = trunc(min(py)/ytick)*ytick,
            ymax = ceil(max(py)/ytick)*ytick

    IupSetInt(graph,"XTICK",xtick)
    IupSetInt(graph,"XMIN",xmin)
    IupSetInt(graph,"XMAX",xmax)
    IupSetInt(graph,"YTICK",ytick)
    IupSetInt(graph,"YMIN",ymin)
    IupSetInt(graph,"YMAX",ymax)
    sequence graphdata = {{px,py,CD_BLUE}}
    return graphdata
end function

procedure set_title(Ihandle dlg)
    IupSetStrAttribute(dlg, "TITLE", "B-spline curve (order k = %d)",{k})
end procedure

function key_cb(Ihandle dlg, atom c)
    if c=K_ESC then return IUP_CLOSE end if
    if c='+' then k = min(k+1,4) end if
    if c='-' then k = max(k-1,1) end if
    set_title(dlg)
    IupRedraw(dlg)
    return IUP_IGNORE
end function

procedure main()
    IupOpen()
    Ihandle graph = IupGraph(b_spline,`RASTERSIZE=600x600`)
    Ihandle dlg = IupDialog(graph)
    IupSetCallback(dlg, "KEY_CB", Icallback("key_cb"))
    set_title(dlg)
    IupShow(dlg)
    if platform()!=JS then
        IupMainLoop()
        IupClose()
    end if
end procedure

main()

Raku

A minimal translation of this C program, by Bernhard R. Fischer. <lang perl6># 20211112 Raku programming solution

use Cairo;

  1. class point_t { has Num ($.x,$.y) is rw } # get by with two element lists

class line_t { has ($.A,$.B) is rw }

my (\WIDTH, \HEIGHT, \W_LINE, \CURVE_F, \DETACHED, \OUTPUT ) =

      400,      400,        2,      0.25,          0,  './b-spline.png' ;

my \cnt = #`(Number of points) ( my \pt = [

  [171, 171], [185, 111], [202, 109], [202, 189], [328, 160], [208, 254],
  [241, 330], [164, 252], [ 69, 278], [139, 208], [ 72, 148], [168, 172], ]

).elems;

sub angle(\g) { atan2(g.B.[1] - g.A.[1], g.B.[0] - g.A.[0]) }

sub control_points(\g, \l, @p1, @p2){

  1. `[ This function calculates the control points. It takes two lines g and l as
* arguments but it takes three lines into account for calculation. This is
* line g (P0/P1), line h (P1/P2), and line l (P2/P3). The control points being
* calculated are actually those for the middle line h, this is from P1 to P2.
* Line g is the predecessor and line l the successor of line h.
* @param g Pointer to first line (P0 to P1)
* @param l Pointer to third line (P2 to P3)
* @param p1 Pointer to memory of first control point. 
* @param p2 Pointer to memory of second control point. ]

  my \h = $ = line_t.new;
  my \lgt = sqrt([+]([ g.B.[0]-l.A.[0], g.B.[1]-l.A.[1] ]>>²));#length of P1 to P2
  h.B = l.A.clone;  # end point of 1st tangent
  # start point of tangent at same distance as end point along 'g'
  h.A = g.B.[0] - lgt * cos(angle g) , g.B.[1] - lgt * sin(angle g);
  my $a = angle h ; # angle of tangent
  # 1st control point on tangent at distance 'lgt * CURVE_F'
  @p1 = g.B.[0] + lgt * cos($a) * CURVE_F,  g.B.[1] + lgt * sin($a) * CURVE_F;
  h.A = g.B.clone; # start point of 2nd tangent
  # end point of tangent at same distance as start point along 'l'
  h.B = l.A.[0] + lgt * cos(angle l) , l.A.[1] + lgt * sin(angle l);
  $a = angle h; # angle of tangent
  # 2nd control point on tangent at distance 'lgt * CURVE_F'
  @p2 = l.A.[0] - lgt * cos($a) * CURVE_F,  l.A.[1] - lgt * sin($a) * CURVE_F;

}


given Cairo::Image.create(Cairo::FORMAT_ARGB32, WIDTH, HEIGHT) {

  given Cairo::Context.new($_) {
     my line_t ($g,$l);
     my (@p1,@p2);
     .line_width = W_LINE;
     .move_to(pt[DETACHED - 1 + cnt].[0], pt[DETACHED - 1 + cnt].[1]);
     for DETACHED..^cnt -> \j { 
        $g = line_t.new: A=>pt[(j + cnt - 2) % cnt], B=>pt[(j + cnt - 1) % cnt];
        $l = line_t.new: A=>pt[(j + cnt + 0) % cnt], B=>pt[(j + cnt + 1) % cnt];
       
        # Calculate controls points for points pt[j-1] and pt[j].
        control_points($g, $l, @p1, @p2);
        
        .curve_to(@p1[0], @p1[1], @p2[0], @p2[1], pt[j].[0], pt[j].[1]);
     }
     .stroke;
  };
  .write_png(OUTPUT) and die # C return

}</lang>

Output: (Offsite image file)

Wren

Library: DOME

In the absence of any clarification on what to use (see Talk page), the following uses a degree of 3 (i.e order k = 4) and a uniform knot vector from 1 to 16 (as there are 12 control points) with a delta of 1.

If one uses a value for k of 1, then the script will simply plot the control points as in the Julia example. <lang ecmascript>import "dome" for Window, Process import "graphics" for Canvas, Color

class BSpline {

   construct new(width, height, cpoints, k) {
       Window.resize(width, height)
       Canvas.resize(width, height)
       Window.title = "B-spline curve"
       _p = cpoints
       _n = cpoints.count - 1
       _k = k
       _t = (1.._n + 1 + k).toList // use a uniform knot vector, delta = 1
   }
   // B-spline helper function
   w(i, k, x) { (_t[i+k] != _t[i]) ? (x - _t[i]) / (_t[i+k] - _t[i]) : 0 }
       
   // B-spline function
   b(i, k, x) {
       if (k == 1) return (_t[i] <= x  &&  x < _t[i + 1]) ? 1 : 0
       return w(i, k-1, x) * b(i, k-1, x) + (1 - w(i+1, k-1, x)) * b(i+1, k-1, x)
   }
   // B-spline points
   p() {
       var bpoints = []
       for (x in _t[_k-1]..._t[_n + 1]) {
           var sumX = 0
           var sumY = 0
           for (i in 0.._n) {
               var f = b(i, _k, x)
               sumX = sumX + f * _p[i][0]
               sumY = sumY + f * _p[i][1]
           }
           bpoints.add([sumX.round, sumY.round])
        }
        return bpoints
   }
   init() {
       if (_k > _n + 1 || _k < 1) {
           System.print("k (= %(_k)) can't be more than %(_n+1) or less than 1.")
           Process.exit()
       }
       var bpoints = p()
       // plot the curve
       for (i in 1...bpoints.count) {
           Canvas.line(bpoints[i-1][0], bpoints[i-1][1], bpoints[i][0], bpoints[i][1], Color.white)
       }
   }
   update() {}
   draw(alpha) {}

}

var cpoints = [

   [171, 171], [185, 111], [202, 109], [202, 189], [328, 160], [208, 254],
   [241, 330], [164, 252], [ 69, 278], [139, 208], [ 72, 148], [168, 172]

] var k = 4 // polynomial degree is one less than this i.e. cubic var Game = BSpline.new(400, 400, cpoints, k)</lang>