Zhang-Suen thinning algorithm: Difference between revisions

From Rosetta Code
Content added Content deleted
(C++ added)
Line 429: Line 429:
</pre>
</pre>


=={{header|C++}}==
Compiled with --std=c++14
<lang CPP>
// http://www.rosettacode.org/wiki/Zhang-Suen_thinning_algorithm#C

#include <iostream>
#include <string>
#include <sstream>
#include <valarray>
const std::string input {
"................................"
".#########.......########......."
".###...####.....####..####......"
".###....###.....###....###......"
".###...####.....###............."
".#########......###............."
".###.####.......###....###......"
".###..####..###.####..####.###.."
".###...####.###..########..###.."
"................................"
};
const std::string input2 {
".........................................................."
".#################...................#############........"
".##################...............################........"
".###################............##################........"
".########.....#######..........###################........"
"...######.....#######.........#######.......######........"
"...######.....#######........#######......................"
"...#################.........#######......................"
"...################..........#######......................"
"...#################.........#######......................"
"...######.....#######........#######......................"
"...######.....#######........#######......................"
"...######.....#######.........#######.......######........"
".########.....#######..........###################........"
".########.....#######.######....##################.######."
".########.....#######.######......################.######."
".########.....#######.######.........#############.######."
".........................................................."
};

class ZhangSuen;

class Image {
public:
friend class ZhangSuen;
using pixel_t = char;
static const pixel_t BLACK_PIX;
static const pixel_t WHITE_PIX;

Image(unsigned width = 1, unsigned height = 1)
: width_{width}, height_{height}, data_( WHITE_PIX, width_ * height_)
{}
Image(const Image& i) : width_{ i.width_}, height_{i.height_}, data_{i.data_}
{}
Image(Image&& i) : width_{ i.width_}, height_{i.height_}, data_{std::move(i.data_)}
{}
~Image() = default;
Image& operator=(const Image& i) {
if (this != &i) {
width_ = i.width_;
height_ = i.height_;
data_ = i.data_;
}
return *this;
}
Image& operator=(Image&& i) {
if (this != &i) {
width_ = i.width_;
height_ = i.height_;
data_ = std::move(i.data_);
}
return *this;
}
size_t idx(unsigned x, unsigned y) const noexcept { return y * width_ + x; }
bool operator()(unsigned x, unsigned y) {
return data_[idx(x, y)];
}
friend std::ostream& operator<<(std::ostream& o, const Image& i) {
o << i.width_ << " x " << i.height_ << std::endl;
size_t px = 0;
for(const auto& e : i.data_) {
o << (e?Image::BLACK_PIX:Image::WHITE_PIX);
if (++px % i.width_ == 0)
o << std::endl;
}
return o << std::endl;
}
friend std::istream& operator>>(std::istream& in, Image& img) {
auto it = std::begin(img.data_);
const auto end = std::end(img.data_);
Image::pixel_t tmp;
while(in && it != end) {
in >> tmp;
if (tmp != Image::BLACK_PIX && tmp != Image::WHITE_PIX)
throw "Bad character found in image";
*it = (tmp == Image::BLACK_PIX)?1:0;
++it;
}
return in;
}
unsigned width() const noexcept { return width_; }
unsigned height() const noexcept { return height_; }
struct Neighbours {
// 9 2 3
// 8 1 4
// 7 6 5
Neighbours(const Image& img, unsigned p1_x, unsigned p1_y)
: img_{img}
, p1_{img.idx(p1_x, p1_y)}
, p2_{p1_ - img.width()}
, p3_{p2_ + 1}
, p4_{p1_ + 1}
, p5_{p4_ + img.width()}
, p6_{p5_ - 1}
, p7_{p6_ - 1}
, p8_{p1_ - 1}
, p9_{p2_ - 1}
{}
const Image& img_;
const Image::pixel_t& p1() const noexcept { return img_.data_[p1_]; }
const Image::pixel_t& p2() const noexcept { return img_.data_[p2_]; }
const Image::pixel_t& p3() const noexcept { return img_.data_[p3_]; }
const Image::pixel_t& p4() const noexcept { return img_.data_[p4_]; }
const Image::pixel_t& p5() const noexcept { return img_.data_[p5_]; }
const Image::pixel_t& p6() const noexcept { return img_.data_[p6_]; }
const Image::pixel_t& p7() const noexcept { return img_.data_[p7_]; }
const Image::pixel_t& p8() const noexcept { return img_.data_[p8_]; }
const Image::pixel_t& p9() const noexcept { return img_.data_[p9_]; }
const size_t p1_, p2_, p3_, p4_, p5_, p6_, p7_, p8_, p9_;
};
Neighbours neighbours(unsigned x, unsigned y) const { return Neighbours(*this, x, y); }
private:
unsigned height_ { 0 };
unsigned width_ { 0 };
std::valarray<pixel_t> data_;
};

constexpr const Image::pixel_t Image::BLACK_PIX = '#';
constexpr const Image::pixel_t Image::WHITE_PIX = '.';

class ZhangSuen {
public:

// the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2
unsigned transitions_white_black(const Image::Neighbours& a) const {
unsigned sum = 0;
sum += (a.p9() == 0) && a.p2();
sum += (a.p2() == 0) && a.p3();
sum += (a.p3() == 0) && a.p4();
sum += (a.p8() == 0) && a.p9();
sum += (a.p4() == 0) && a.p5();
sum += (a.p7() == 0) && a.p8();
sum += (a.p6() == 0) && a.p7();
sum += (a.p5() == 0) && a.p6();
return sum;
}

// The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
unsigned black_pixels(const Image::Neighbours& a) const {
unsigned sum = 0;
sum += a.p9();
sum += a.p2();
sum += a.p3();
sum += a.p8();
sum += a.p4();
sum += a.p7();
sum += a.p6();
sum += a.p5();
return sum;
}
const Image& operator()(const Image& img) {
tmp_a_ = img;
size_t changed_pixels = 0;
do {
changed_pixels = 0;
// Step 1
tmp_b_ = tmp_a_;
for(size_t y = 1; y < tmp_a_.height() - 1; ++y) {
for(size_t x = 1; x < tmp_a_.width() - 1; ++x) {
if (tmp_a_.data_[tmp_a_.idx(x, y)]) {
auto n = tmp_a_.neighbours(x, y);
auto bp = black_pixels(n);
if (bp >= 2 && bp <= 6) {
auto tr = transitions_white_black(n);
if ( tr == 1
&& (n.p2() * n.p4() * n.p6() == 0)
&& (n.p4() * n.p6() * n.p8() == 0)
) {
tmp_b_.data_[n.p1_] = 0;
++changed_pixels;
}
}
}
}
}
// Step 2
tmp_a_ = tmp_b_;
for(size_t y = 1; y < tmp_b_.height() - 1; ++y) {
for(size_t x = 1; x < tmp_b_.width() - 1; ++x) {
if (tmp_b_.data_[tmp_b_.idx(x, y)]) {
auto n = tmp_b_.neighbours(x, y);
auto bp = black_pixels(n);
if (bp >= 2 && bp <= 6) {
auto tr = transitions_white_black(n);
if ( tr == 1
&& (n.p2() * n.p4() * n.p8() == 0)
&& (n.p2() * n.p6() * n.p8() == 0)
) {
tmp_a_.data_[n.p1_] = 0;
++changed_pixels;
}
}
}
}
}
} while(changed_pixels > 0);
return tmp_a_;
}
private:
Image tmp_a_;
Image tmp_b_;
};

int main(int argc, char const *argv[])
{
using namespace std;
Image img(32, 10);
istringstream iss{input};
iss >> img;
cout << img;
cout << "ZhangSuen" << endl;
ZhangSuen zs;
Image res = std::move(zs(img));
cout << res << endl;

Image img2(58,18);
istringstream iss2{input2};
iss2 >> img2;
cout << img2;
cout << "ZhangSuen with big image" << endl;
Image res2 = std::move(zs(img2));
cout << res2 << endl;
return 0;
}
</lang>

Output:
<pre>
32 x 10
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

ZhangSuen
32 x 10
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................


58 x 18
..........................................................
.#################...................#############........
.##################...............################........
.###################............##################........
.########.....#######..........###################........
...######.....#######.........#######.......######........
...######.....#######........#######......................
...#################.........#######......................
...################..........#######......................
...#################.........#######......................
...######.....#######........#######......................
...######.....#######........#######......................
...######.....#######.........#######.......######........
.########.....#######..........###################........
.########.....#######.######....##################.######.
.########.....#######.######......################.######.
.########.....#######.######.........#############.######.
..........................................................

ZhangSuen with big image
58 x 18
..........................................................
..........................................................
....#.##########.......................#######............
.....##........#...................####.......#...........
.....#..........#.................##......................
.....#..........#................#........................
.....#..........#................#........................
.....#..........#................#........................
.....############...............#.........................
.....#..........#...............#.........................
.....#..........#................#........................
.....#..........#................#........................
.....#..........#................#........................
.....#............................##......................
.....#.............................############...........
.......................###..........................###...
..........................................................
..........................................................
</pre>
=={{header|D}}==
=={{header|D}}==
This uses the module from the Bitmap Task. And it performs no heap allocations.
This uses the module from the Bitmap Task. And it performs no heap allocations.

Revision as of 19:56, 22 July 2018

Task
Zhang-Suen thinning algorithm
You are encouraged to solve this task according to the task description, using any language you may know.

This is an algorithm used to thin a black and white i.e. one bit per pixel images.

For example, with an input image of:

                                                           
 #################                   #############         
 ##################               ################         
 ###################            ##################         
 ########     #######          ###################         
   ######     #######         #######       ######         
   ######     #######        #######                       
   #################         #######                       
   ################          #######                       
   #################         #######                       
   ######     #######        #######                       
   ######     #######        #######                       
   ######     #######         #######       ######         
 ########     #######          ###################         
 ########     ####### ######    ################## ######  
 ########     ####### ######      ################ ######  
 ########     ####### ######         ############# ######  
                                                           

It produces the thinned output:

                                                           
                                                           
    # ##########                       #######             
     ##        #                   ####       #            
     #          #                 ##                       
     #          #                #                         
     #          #                #                         
     #          #                #                         
     ############               #                          
     #          #               #                          
     #          #                #                         
     #          #                #                         
     #          #                #                         
     #                            ##                       
     #                             ############            
                       ###                          ###    
                                                           
                                                           
Algorithm

Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.

The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:

P9P2P3
P8P1P4
P7P6P5

Obviously the boundary pixels of the image cannot have the full eight neighbours.

  • Define = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
  • Define = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1

All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.

  • (0) The pixel is black and has eight neighbours
  • (1)
  • (2) A(P1) = 1
  • (3) At least one of P2 and P4 and P6 is white
  • (4) At least one of P4 and P6 and P8 is white

After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.

Step 2

All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.

  • (0) The pixel is black and has eight neighbours
  • (1)
  • (2) A(P1) = 1
  • (3) At least one of P2 and P4 and P8 is white
  • (4) At least one of P2 and P6 and P8 is white

After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.

Iteration

If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.

Task
  1. Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
  2. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference



AutoHotkey

Works with: AutoHotkey_L

Reads input from a text file and writes output to a different text file (first creating the file, if necessary). <lang AutoHotkey>FileIn  := A_ScriptDir "\Zhang-Suen.txt" FileOut := A_ScriptDir "\NewFile.txt"

if (!FileExist(FileIn)) { MsgBox, 48, File Not Found, % "File """ FileIn """ not found." ExitApp } S := {} N := [2,3,4,5,6,7,8,9,2]

Loop, Read, % FileIn { LineNum := A_Index Loop, Parse, A_LoopReadLine S[LineNum, A_Index] := A_LoopField }

Loop { FlipCount := 0 Loop, 2 { Noted := [], i := A_Index for LineNum, Line in S { for PixNum, Pix in Line { ; (0) if (Pix = 0 || (P := GetNeighbors(LineNum, PixNum, S)) = 1) continue ; (1) BP := 0 for j, Val in P BP += Val if (BP < 2 || BP > 6) continue ; (2) AP := 0 Loop, 8 if (P[N[A_Index]] = "0" && P[N[A_Index + 1]] = "1") AP++ if (AP != 1) continue ; (3 and 4) if (i = 1) { if (P[2] + P[4] + P[6] = 3 || P[4] + P[6] + P[8] = 3) continue } else if (P[2] + P[4] + P[8] = 3 || P[2] + P[6] + P[8] = 3) continue

Noted.Insert([LineNum, PixNum]) FlipCount++ } } for j, Coords in Noted S[Coords[1], Coords[2]] := 0 } if (!FlipCount) break }

for LineNum, Line in S { for PixNum, Pix in Line Out .= Pix ? "#" : " " Out .= "`n" } FileAppend, % Out, % FileOut

GetNeighbors(Y, X, S) { Neighbors := [] if ((Neighbors[8] := S[Y, X - 1]) = "") return 1 if ((Neighbors[4] := S[Y, X + 1]) = "") return 1 Loop, 3 if ((Neighbors[A_Index = 1 ? 9 : A_Index] := S[Y - 1, X - 2 + A_Index]) = "") return 1 Loop, 3 if ((Neighbors[8 - A_Index] := S[Y + 1, X - 2 + A_Index]) = "") return 1 return Neighbors }</lang> Output:

                                
  #######         ######        
  #     #        ##             
  #      #       #              
  #     #        #              
  ##### #        #              
       ##        #              
        #    #   ##    ##   #   
         #         ####         
                                

C

Input and out images written from and to files. Format of input file is :

<Rows> <Columns>
<Blank pixel character> <Image Pixel character>
<Image of specified rows and columns made up of the two pixel types specified in the second line.>

The images before and after thinning are also printed on the console. <lang C> /*Abhishek Ghosh, 24th September 2017*/

  1. include<stdlib.h>
  2. include<stdio.h>

char** imageMatrix;

char blankPixel,imagePixel;

typedef struct{ int row,col; }pixel;

int getBlackNeighbours(int row,int col){

int i,j,sum = 0;

for(i=-1;i<=1;i++){ for(j=-1;j<=1;j++){ if(i!=0 && j!=0) sum+= (imageMatrix[row+i][col+i]==imagePixel); } }

return sum; }

int getBWTransitions(int row,int col){ return ((imageMatrix[row-1][col]==blankPixel && imageMatrix[row-1][col+1]==imagePixel) +(imageMatrix[row-1][col+1]==blankPixel && imageMatrix[row][col+1]==imagePixel) +(imageMatrix[row][col+1]==blankPixel && imageMatrix[row+1][col+1]==imagePixel) +(imageMatrix[row+1][col+1]==blankPixel && imageMatrix[row+1][col]==imagePixel) +(imageMatrix[row+1][col]==blankPixel && imageMatrix[row+1][col-1]==imagePixel) +(imageMatrix[row+1][col-1]==blankPixel && imageMatrix[row][col-1]==imagePixel) +(imageMatrix[row][col-1]==blankPixel && imageMatrix[row-1][col-1]==imagePixel) +(imageMatrix[row-1][col-1]==blankPixel && imageMatrix[row-1][col]==imagePixel)); }

int zhangSuenTest1(int row,int col){ int neighbours = getBlackNeighbours(row,col);

return ((neighbours>=2 && neighbours<=6) && (getBWTransitions(row,col)==1) && (imageMatrix[row-1][col]==blankPixel||imageMatrix[row][col+1]==blankPixel||imageMatrix[row+1][col]==blankPixel) && (imageMatrix[row][col+1]==blankPixel||imageMatrix[row+1][col]==blankPixel||imageMatrix[row][col-1]==blankPixel)); }

int zhangSuenTest2(int row,int col){ int neighbours = getBlackNeighbours(row,col);

return ((neighbours>=2 && neighbours<=6) && (getBWTransitions(row,col)==1) && (imageMatrix[row-1][col]==blankPixel||imageMatrix[row][col+1]==blankPixel||imageMatrix[row][col-1]==blankPixel) && (imageMatrix[row-1][col]==blankPixel||imageMatrix[row+1][col]==blankPixel||imageMatrix[row][col+1]==blankPixel)); }

void zhangSuen(char* inputFile, char* outputFile){

int startRow = 1,startCol = 1,endRow,endCol,i,j,count,rows,cols,processed;

pixel* markers;

FILE* inputP = fopen(inputFile,"r");

fscanf(inputP,"%d%d",&rows,&cols);

fscanf(inputP,"%d%d",&blankPixel,&imagePixel);

blankPixel<=9?blankPixel+='0':blankPixel; imagePixel<=9?imagePixel+='0':imagePixel;

printf("\nPrinting original image :\n");

imageMatrix = (char**)malloc(rows*sizeof(char*));

for(i=0;i<rows;i++){ imageMatrix[i] = (char*)malloc((cols+1)*sizeof(char)); fscanf(inputP,"%s\n",imageMatrix[i]); printf("\n%s",imageMatrix[i]);

}

fclose(inputP);

endRow = rows-2; endCol = cols-2; do{ markers = (pixel*)malloc((endRow-startRow+1)*(endCol-startCol+1)*sizeof(pixel)); count = 0;

for(i=startRow;i<=endRow;i++){ for(j=startCol;j<=endCol;j++){ if(imageMatrix[i][j]==imagePixel && zhangSuenTest1(i,j)==1){ markers[count].row = i; markers[count].col = j; count++; } } }

processed = (count>0);

for(i=0;i<count;i++){ imageMatrix[markers[i].row][markers[i].col] = blankPixel; }

free(markers); markers = (pixel*)malloc((endRow-startRow+1)*(endCol-startCol+1)*sizeof(pixel)); count = 0;

for(i=startRow;i<=endRow;i++){ for(j=startCol;j<=endCol;j++){ if(imageMatrix[i][j]==imagePixel && zhangSuenTest2(i,j)==1){ markers[count].row = i; markers[count].col = j; count++; } } }

if(processed==0) processed = (count>0);

for(i=0;i<count;i++){ imageMatrix[markers[i].row][markers[i].col] = blankPixel; }

free(markers); }while(processed==1);

FILE* outputP = fopen(outputFile,"w");

printf("\n\n\nPrinting image after applying Zhang Suen Thinning Algorithm : \n\n\n");

for(i=0;i<rows;i++){ for(j=0;j<cols;j++){ printf("%c",imageMatrix[i][j]); fprintf(outputP,"%c",imageMatrix[i][j]); } printf("\n"); fprintf(outputP,"\n"); }

fclose(outputP);

printf("\nImage also written to : %s",outputFile); }

int main() { char inputFile[100],outputFile[100];

printf("Enter full path of input image file : "); scanf("%s",inputFile);

printf("Enter full path of output image file : "); scanf("%s",outputFile);

zhangSuen(inputFile,outputFile);

return 0; } </lang>

Contents of input file : zhImage.txt

10 32
0 1
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000

Console interaction :

Enter full path of input image file : zhImage.txt
Enter full path of output image file : out.txt

Printing original image :

00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000


Printing image after applying Zhang Suen Thinning Algorithm :


00000000000000000000000000000000
00111111100000000011111100000000
00100000100000000110000000000000
01000000100000000100000000000000
01000000100000001000000000000000
01111111100000001000000000000000
01000001000000000100000011000000
01000001000001100110000110001100
01000000000010000001111000010000
00000000000000000000000000000000

Image also written to : out.txt

Contents of out.txt :

00000000000000000000000000000000
00111111100000000011111100000000
00100000100000000110000000000000
01000000100000000100000000000000
01000000100000001000000000000000
01111111100000001000000000000000
01000001000000000100000011000000
01000001000001100110000110001100
01000000000010000001111000010000
00000000000000000000000000000000

C++

Compiled with --std=c++14 <lang CPP> // http://www.rosettacode.org/wiki/Zhang-Suen_thinning_algorithm#C

  1. include <iostream>
  2. include <string>
  3. include <sstream>
  4. include <valarray>

const std::string input { "................................" ".#########.......########......." ".###...####.....####..####......" ".###....###.....###....###......" ".###...####.....###............." ".#########......###............." ".###.####.......###....###......" ".###..####..###.####..####.###.." ".###...####.###..########..###.." "................................" }; const std::string input2 { ".........................................................." ".#################...................#############........" ".##################...............################........" ".###################............##################........" ".########.....#######..........###################........" "...######.....#######.........#######.......######........" "...######.....#######........#######......................" "...#################.........#######......................" "...################..........#######......................" "...#################.........#######......................" "...######.....#######........#######......................" "...######.....#######........#######......................" "...######.....#######.........#######.......######........" ".########.....#######..........###################........" ".########.....#######.######....##################.######." ".########.....#######.######......################.######." ".########.....#######.######.........#############.######." ".........................................................." };

class ZhangSuen;

class Image { public:

   friend class ZhangSuen;
   using pixel_t = char;
   static const pixel_t BLACK_PIX;
   static const pixel_t WHITE_PIX;
   Image(unsigned width = 1, unsigned height = 1) 
   : width_{width}, height_{height}, data_( WHITE_PIX, width_ * height_)
   {}
   Image(const Image& i) : width_{ i.width_}, height_{i.height_}, data_{i.data_}
   {}
   Image(Image&& i) : width_{ i.width_}, height_{i.height_}, data_{std::move(i.data_)}
   {}
   ~Image() = default;
   Image& operator=(const Image& i) {
       if (this != &i) {
           width_ = i.width_;
           height_ = i.height_;
           data_ = i.data_;
       }
       return *this;
   }
   Image& operator=(Image&& i) {
       if (this != &i) {
           width_ = i.width_;
           height_ = i.height_;
           data_ = std::move(i.data_);
       }
       return *this;
   }
   size_t idx(unsigned x, unsigned y) const noexcept { return y * width_ + x; }
   bool operator()(unsigned x, unsigned y) {
       return data_[idx(x, y)];
   }
   friend std::ostream& operator<<(std::ostream& o, const Image& i) {
       o << i.width_ << " x " << i.height_ << std::endl;
       size_t px = 0;
       for(const auto& e : i.data_) {
           o << (e?Image::BLACK_PIX:Image::WHITE_PIX);
           if (++px % i.width_ == 0)
               o << std::endl;
       }
       return o << std::endl;
   }
   friend std::istream& operator>>(std::istream& in, Image& img) {
       auto it = std::begin(img.data_);
       const auto end = std::end(img.data_);
       Image::pixel_t tmp;
       while(in && it != end) {
           in >> tmp;
           if (tmp != Image::BLACK_PIX && tmp != Image::WHITE_PIX)
               throw "Bad character found in image";
           *it = (tmp == Image::BLACK_PIX)?1:0;
           ++it;
       }
       return in;
   }
   unsigned width() const noexcept { return width_; }
   unsigned height() const noexcept { return height_; }
   struct Neighbours {
       // 9 2 3
       // 8 1 4
       // 7 6 5
       Neighbours(const Image& img, unsigned p1_x, unsigned p1_y)
       : img_{img}
       , p1_{img.idx(p1_x, p1_y)}
       , p2_{p1_ - img.width()}
       , p3_{p2_ + 1}
       , p4_{p1_ + 1}
       , p5_{p4_ + img.width()}
       , p6_{p5_ - 1}
       , p7_{p6_ - 1}
       , p8_{p1_ - 1}
       , p9_{p2_ - 1} 
       {}
       const Image& img_;
       const Image::pixel_t& p1() const noexcept { return img_.data_[p1_]; }
       const Image::pixel_t& p2() const noexcept { return img_.data_[p2_]; }
       const Image::pixel_t& p3() const noexcept { return img_.data_[p3_]; }
       const Image::pixel_t& p4() const noexcept { return img_.data_[p4_]; }
       const Image::pixel_t& p5() const noexcept { return img_.data_[p5_]; }
       const Image::pixel_t& p6() const noexcept { return img_.data_[p6_]; }
       const Image::pixel_t& p7() const noexcept { return img_.data_[p7_]; }
       const Image::pixel_t& p8() const noexcept { return img_.data_[p8_]; }
       const Image::pixel_t& p9() const noexcept { return img_.data_[p9_]; }
       const size_t p1_, p2_, p3_, p4_, p5_, p6_, p7_, p8_, p9_;
   };
   Neighbours neighbours(unsigned x, unsigned y) const { return Neighbours(*this, x, y); }

private:

   unsigned height_ { 0 };
   unsigned width_ { 0 };
   std::valarray<pixel_t> data_;

};

constexpr const Image::pixel_t Image::BLACK_PIX = '#'; constexpr const Image::pixel_t Image::WHITE_PIX = '.';

class ZhangSuen { public:

   // the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2
   unsigned transitions_white_black(const Image::Neighbours& a) const {
       unsigned sum = 0;
       sum += (a.p9() == 0) && a.p2();
       sum += (a.p2() == 0) && a.p3();
       sum += (a.p3() == 0) && a.p4();
       sum += (a.p8() == 0) && a.p9();
       sum += (a.p4() == 0) && a.p5();
       sum += (a.p7() == 0) && a.p8();
       sum += (a.p6() == 0) && a.p7();
       sum += (a.p5() == 0) && a.p6();
       return sum;
   }
   // The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
   unsigned black_pixels(const Image::Neighbours& a) const {
       unsigned sum = 0;
       sum += a.p9();
       sum += a.p2();
       sum += a.p3();
       sum += a.p8();
       sum += a.p4();
       sum += a.p7();
       sum += a.p6();
       sum += a.p5();
       return sum;
   }
   const Image& operator()(const Image& img) {
       tmp_a_ = img;
       size_t changed_pixels = 0;
       do {
           changed_pixels = 0;
           // Step 1
           tmp_b_ = tmp_a_;
           for(size_t y = 1; y < tmp_a_.height() - 1; ++y) {
               for(size_t x = 1; x < tmp_a_.width() - 1; ++x) {
                   if (tmp_a_.data_[tmp_a_.idx(x, y)]) {
                       auto n = tmp_a_.neighbours(x, y);
                       auto bp = black_pixels(n);
                       if (bp >= 2 && bp <= 6) {
                           auto tr = transitions_white_black(n);
                           if (    tr == 1 
                               && (n.p2() * n.p4() * n.p6() == 0)
                               && (n.p4() * n.p6() * n.p8() == 0)
                               ) {
                               tmp_b_.data_[n.p1_] = 0;
                               ++changed_pixels;
                           }
                       }
                   } 
               }
           }
           // Step 2
           tmp_a_ = tmp_b_;
           for(size_t y = 1; y < tmp_b_.height() - 1; ++y) {
               for(size_t x = 1; x < tmp_b_.width() - 1; ++x) {
                   if (tmp_b_.data_[tmp_b_.idx(x, y)]) {
                       auto n = tmp_b_.neighbours(x, y);
                       auto bp = black_pixels(n);
                       if (bp >= 2 && bp <= 6) {
                           auto tr = transitions_white_black(n);
                           if (    tr == 1 
                               && (n.p2() * n.p4() * n.p8() == 0)
                               && (n.p2() * n.p6() * n.p8() == 0)
                               ) {
                               tmp_a_.data_[n.p1_] = 0;
                               ++changed_pixels;
                           }
                       }
                   } 
               }
           }
       } while(changed_pixels > 0);
       return tmp_a_;
   }

private:

   Image tmp_a_;
   Image tmp_b_;

};

int main(int argc, char const *argv[]) {

   using namespace std;
   Image img(32, 10);
   istringstream iss{input};
   iss >> img;
   cout << img;
   cout << "ZhangSuen" << endl;
   ZhangSuen zs;
   Image res = std::move(zs(img));
   cout << res << endl;
   Image img2(58,18);
   istringstream iss2{input2};
   iss2 >> img2;
   cout << img2;
   cout << "ZhangSuen with big image" << endl;
   Image res2 = std::move(zs(img2));
   cout << res2 << endl;
   return 0;

} </lang>

Output:

32 x 10
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

ZhangSuen
32 x 10
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................


58 x 18
..........................................................
.#################...................#############........
.##################...............################........
.###################............##################........
.########.....#######..........###################........
...######.....#######.........#######.......######........
...######.....#######........#######......................
...#################.........#######......................
...################..........#######......................
...#################.........#######......................
...######.....#######........#######......................
...######.....#######........#######......................
...######.....#######.........#######.......######........
.########.....#######..........###################........
.########.....#######.######....##################.######.
.########.....#######.######......################.######.
.########.....#######.######.........#############.######.
..........................................................

ZhangSuen with big image
58 x 18
..........................................................
..........................................................
....#.##########.......................#######............
.....##........#...................####.......#...........
.....#..........#.................##......................
.....#..........#................#........................
.....#..........#................#........................
.....#..........#................#........................
.....############...............#.........................
.....#..........#...............#.........................
.....#..........#................#........................
.....#..........#................#........................
.....#..........#................#........................
.....#............................##......................
.....#.............................############...........
.......................###..........................###...
..........................................................
..........................................................

D

This uses the module from the Bitmap Task. And it performs no heap allocations. <lang d>import std.stdio, std.algorithm, std.string, std.functional,

      std.typecons, std.typetuple, bitmap;

struct BlackWhite {

   ubyte c;
   alias c this;
   static immutable black = typeof(this)(0),
                    white = typeof(this)(1);

}

alias Neighbours = BlackWhite[9]; alias Img = Image!BlackWhite;

/// Zhang-Suen thinning algorithm. Img zhangSuen(Img image1, Img image2) pure nothrow @safe @nogc in {

   assert(image1.image.all!(x => x == Img.black || x == Img.white));
   assert(image1.nx == image2.nx && image1.ny == image2.ny);

} out(result) {

   assert(result.nx == image1.nx && result.ny == image1.ny);
   assert(result.image.all!(x => x == Img.black || x == Img.white));

} body {

   /// True if inf <= x <= sup.
   static inInterval(T)(in T x, in T inf, in T sup) pure nothrow @safe @nogc {
       return x >= inf && x <= sup;
   }
   /// Return 8-neighbours+1 of point (x,y) of given image, in order.
   static void neighbours(in Img I, in size_t x, in size_t y,
                          out Neighbours n) pure nothrow @safe @nogc {
       n = [I[x,y-1], I[x+1,y-1], I[x+1,y], I[x+1,y+1], // P2,P3,P4,P5
            I[x,y+1], I[x-1,y+1], I[x-1,y], I[x-1,y-1], // P6,P7,P8,P9
            I[x,y-1]];
   }
   if (image1.nx < 3 || image1.ny < 3) {
       image2.image[] = image1.image[];
       return image2;
   }
   immutable static zeroOne = [0, 1]; //**
   Neighbours n;
   bool hasChanged;
   do {
       hasChanged = false;
       foreach (immutable ab; TypeTuple!(tuple(2, 4), tuple(0, 6))) {
           foreach (immutable y; 1 .. image1.ny - 1) {
               foreach (immutable x; 1 .. image1.nx - 1) {
                   neighbours(image1, x, y, n);
                   if (image1[x, y] &&                    // Cond. 0
                       (!n[ab[0]] || !n[4] || !n[6]) &&   // Cond. 4
                       (!n[0] || !n[2] || !n[ab[1]]) &&   // Cond. 3
                       //n[].count([0, 1]) == 1 &&
                       n[].count(zeroOne) == 1 &&         // Cond. 2
                       // n[0 .. 8].sum in iota(2, 7)) {
                       inInterval(n[0 .. 8].sum, 2, 6)) { // Cond. 1
                       hasChanged = true;
                       image2[x, y] = Img.black;
                   } else
                       image2[x, y] = image1[x, y];
               }
           }
           image1.swap(image2);
       }
   } while (hasChanged);
   return image1;

}

void main() {

   immutable before_txt = "
   ##..###
   ##..###
   ##..###
   ##..###
   ##..##.
   ##..##.
   ##..##.
   ##..##.
   ##..##.
   ##..##.
   ##..##.
   ##..##.
   ######.
   .......";
   immutable small_rc = "
   ................................
   .#########.......########.......
   .###...####.....####..####......
   .###....###.....###....###......
   .###...####.....###.............
   .#########......###.............
   .###.####.......###....###......
   .###..####..###.####..####.###..
   .###...####.###..########..###..
   ................................";
   immutable rc = "
   ...........................................................
   .#################...................#############.........
   .##################...............################.........
   .###################............##################.........
   .########.....#######..........###################.........
   ...######.....#######.........#######.......######.........
   ...######.....#######........#######.......................
   ...#################.........#######.......................
   ...################..........#######.......................
   ...#################.........#######.......................
   ...######.....#######........#######.......................
   ...######.....#######........#######.......................
   ...######.....#######.........#######.......######.........
   .########.....#######..........###################.........
   .########.....#######.######....##################.######..
   .########.....#######.######......################.######..
   .########.....#######.######.........#############.######..
   ...........................................................";
   foreach (immutable txt; [before_txt, small_rc, rc]) {
       auto img = Img.fromText(txt);
       "From:".writeln;
       img.textualShow(/*bl=*/ '.', /*wh=*/ '#');
       "\nTo thinned:".writeln;
       img.zhangSuen(img.dup).textualShow(/*bl=*/ '.', /*wh=*/ '#');
       writeln;
   }

}</lang>

Output:
From:
##..###
##..###
##..###
##..###
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
######.
.......

To thinned:
##..###
#.....#
#.....#
#...###
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#####..
.......

From:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

To thinned:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

From:
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................

To thinned:
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................

Elena

ELENA 3.2 :

Translation of: Java

<lang elena>import system'collections. import system'routines. import extensions. import extensions'routines.

type charmatrix = matrix<CharValue>.

const image = (

       "                                                          ",
       " #################                   #############        ",
       " ##################               ################        ",
       " ###################            ##################        ",
       " ########     #######          ###################        ",
       "   ######     #######         #######       ######        ",
       "   ######     #######        #######                      ",
       "   #################         #######                      ",
       "   ################          #######                      ",
       "   #################         #######                      ",
       "   ######     #######        #######                      ",
       "   ######     #######        #######                      ",
       "   ######     #######         #######       ######        ",
       " ########     #######          ###################        ",
       " ########     ####### ######    ################## ###### ",
       " ########     ####### ######      ################ ###### ",
       " ########     ####### ######         ############# ###### ",
       "                                                          ").

nbrs = ((0, -1), (1, -1), (1, 0), (1, 1), (0, 1),

       (-1, 1), (-1, 0), (-1, -1), (0, -1)).

nbrGroups = (((0, 2, 4), (2, 4, 6)), ((0, 2, 6),

       (0, 4, 6))).

charmatrix extension zhangsuenOp {

   $proceed : r : c : toWhite : firstStep
   [
       if (self[r][c] != $35)
           [ ^ false ].
       
       int nn := self numNeighbors(r,c).
       
       if ((nn < 2) || (nn > 6))
           [ ^ false ].
           
       if(self numTransitions(r,c) != 1)
           [ ^ false ].
       ifnot (self atLeastOneIsWhite(r,c,firstStep iif(0,1)))
           [ ^ false ].
       toWhite append:{ x = c. y = r. }.
       
       ^ true.      
   ]
   
   numNeighbors :r : c
   [
       int count := 0.
       
       0 till(nbrs length - 1) do(:i)
       [
           if (self[r + nbrs[i][1]][c + nbrs[i][0]] == $35)
               [ count := count + 1. ].
       ].
               
       ^ count.
   ]
   numTransitions : r : c
   [
       int count := 0.
       
       0 till(nbrs length - 1) do(:i)
       [
           if (self[r + nbrs[i][1]][c + nbrs[i][0]] == $32)
           [
               if (self[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == $35)
               [
                   count := count + 1.
               ].
           ].
       ].
               
       ^ count.
   ]  
   
   atLeastOneIsWhite : r : c : step
   [
       int count := 0.
       var group := nbrGroups[step].
       0 till:2 do(:i)
       [            
           0 till(group[i] length) seek(:j)
           [
               var nbr := nbrs[group[i][j]].
               
               if (self[r + nbr[1]][c + nbr[0]] == $32)
                   [ count := count + 1. ^ true ].
                   
               ^ false.                    
           ].
       ].
       
       ^ count > 1.
   ]    
   
   thinImage
   [
       bool firstStep := false.
       bool hasChanged := true.
       var toWhite := List new.
       while (hasChanged || firstStep)
       [
           hasChanged := false.
           firstStep := firstStep not.
           1 till(self rows - 1) do(:r) 
           [
               1 till(self columns - 1) do(:c)
               [
                   if(self~zhangsuenOp $proceed(r,c,toWhite,firstStep))
                       [ hasChanged := true ].
               ].
           ].
           
           toWhite forEach(:p)[ self[p y][p x] := $32. ].                
           toWhite clear.
       ].
   ]
   
   print
   [
       var it := self enumerator.
       
       it forEach(:ch) [ console print(ch," ") ].
       while (it next)
       [
           console writeLine.
           
           it forEach(:ch) [ console print(ch," ") ].
       ].
   ]

}

program = [

   charmatrix grid := MatrixSpace::
   {
       rows = image length.
       
       columns = image[0] length.
       
       getAt int:i int:j
           = image[i][j].
   }.
   grid thinImage.
           
   grid print.
   
   console readChar.

].</lang>

Output:
                                                                                                                    
                                                                                                                  
      #   # # # # # # # # # #                                               # # # # # # #                         
        # #                 #                                       # # # #               #                       
        #                     #                                   # #                                             
        #                     #                                 #                                                 
        #                     #                                 #                                                 
        #                     #                                 #                                                 
        # # # # # # # # # # # #                               #                                                   
        #                     #                               #                                                   
        #                     #                                 #                                                 
        #                     #                                 #                                                 
        #                     #                                 #                                                 
        #                                                         # #                                             
        #                                                           # # # # # # # # # # # #                       
                                            # # #                                                     # # #       
                                                                                                                  
                                                                                                                  

Elixir

Translation of: Ruby

<lang elixir>defmodule ZhangSuen do

 @neighbours  [{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1}]  # 8 neighbours
 
 def thinning(str, black \\ ?#) do
   s0 = for {line, i} <- (String.split(str, "\n") |> Enum.with_index),
            {c, j}    <- (to_char_list(line) |> Enum.with_index),
            into: Map.new,
            do: {{i,j}, (if c==black, do: 1, else: 0)}
   {xrange, yrange} = range(s0)
   print(s0, xrange, yrange)
   s1 = thinning_loop(s0, xrange, yrange)
   print(s1, xrange, yrange)
 end
 
 defp thinning_loop(s0, xrange, yrange) do
   s1 = step(s0, xrange, yrange, 1)            # Step 1
   s2 = step(s1, xrange, yrange, 0)            # Step 2
   if Map.equal?(s0, s2), do: s2, else: thinning_loop(s2, xrange, yrange)
 end
 
 defp step(s, xrange, yrange, g) do
   for x <- xrange, y <- yrange, into: Map.new, do: {{x,y}, s[{x,y}] - zs(s,x,y,g)}
 end
 
 defp zs(s, x, y, g) do
   if get(s,x,y) == 0 or                                       # P1
     (get(s,x-1,y) + get(s,x,y+1) + get(s,x+g,y-1+g)) == 3 or  # P2, P4, P6/P8
     (get(s,x-1+g,y+g) + get(s,x+1,y) + get(s,x,y-1)) == 3 do  # P4/P2, P6, P8
     0
   else
     next = for {i,j} <- @neighbours, do: get(s, x+i, y+j)
     bp1 = Enum.sum(next)                                      # B(P1)
     if bp1 in 2..6 do
       ap1 = (next++[hd(next)]) |> Enum.chunk(2,1) |> Enum.count(fn [a,b] -> a " ", 1 => "#"}
 defp print(map, xrange, yrange) do
   Enum.each(xrange, fn x ->
     IO.puts (for y <- yrange, do: @display[map[{x,y}]])
   end)
 end

end

str = """ ........................................................... .#################...................#############......... .##################...............################......... .###################............##################......... .########.....#######..........###################......... ...######.....#######.........#######.......######......... ...######.....#######........#######....................... ...#################.........#######....................... ...###############...........#######....................... ...#################.........#######....................... ...######....########........#######....................... ...######.....#######........#######....................... ...######.....#######.........#######.......######......... .########.....#######..........###################......... .########.....#######..#####....##################.######.. .########.....#######..#####......################.######.. .########.....#######..#####.........#############.######.. ........................................................... """ ZhangSuen.thinning(str)

str = """ 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 """ ZhangSuen.thinning(str, ?1)</lang>

Output:
                                                           
 #################                   #############         
 ##################               ################         
 ###################            ##################         
 ########     #######          ###################         
   ######     #######         #######       ######         
   ######     #######        #######                       
   #################         #######                       
   ###############           #######                       
   #################         #######                       
   ######    ########        #######                       
   ######     #######        #######                       
   ######     #######         #######       ######         
 ########     #######          ###################         
 ########     #######  #####    ################## ######  
 ########     #######  #####      ################ ######  
 ########     #######  #####         ############# ######  
                                                           
                                                           
                                                           
    # ##########                       #######             
     ##        #                   ####       #            
     #          #                 ##                       
     #          #                #                         
     #          #                #                         
     #          #                #                         
     ############               #                          
     #          #               #                          
     #          #                #                         
     #          #                #                         
     #          #                #                         
     #                            ##                       
     #                             ############            
                        ##                          ###    
                                                           
                                                           
                                
 #########       ########       
 ###   ####     ####  ####      
 ###    ###     ###    ###      
 ###   ####     ###             
 #########      ###             
 ### ####       ###    ###      
 ###  ####  ### ####  #### ###  
 ###   #### ###  ########  ###  
                                
                                
  #######         ######        
  #     #        ##             
  #      #       #              
  #     #        #              
  ##### #        #              
       ##        #              
        #    #   ##    ##   #   
         #         ####         
                                

FreeBASIC

<lang freebasic>' version 08-10-2016 ' compile with: fbc -s console

Data "00000000000000000000000000000000" Data "01111111110000000111111110000000" Data "01110001111000001111001111000000" Data "01110000111000001110000111000000" Data "01110001111000001110000000000000" Data "01111111110000001110000000000000" Data "01110111100000001110000111000000" Data "01110011110011101111001111011100" Data "01110001111011100111111110011100" Data "00000000000000000000000000000000" Data "END"

' ------=< MAIN >=------

Dim As UInteger x, y, m, n Dim As String input_str

Do ' find out how big it is

 Read input_str
 If input_str = "END" Then Exit Do
 If x < Len(input_str) Then x = Len(input_str)
 y = y + 1

Loop

m = x -1 : n = y -1 ReDim As UByte old(m, n), new_(m, n)

y = 0 Restore ' restore data pointer Do ' put data in array

 Read input_str
 If input_str="END" Then Exit Do
 For x = 0 To Len(input_str) -1
   old(x,y) = input_str[x] - Asc("0")
   ' print image
   If old(x, y) = 0 Then Print "."; Else Print "#";
 Next
 Print
 y = y + 1

Loop

'corners and sides do not change For x = 0 To m

 new_(x, 0) = old(x, 0)
 new_(x, n) = old(x, n)

Next

For y = 0 To n

 new_(0, y) = old(0, y)
 new_(m, y) = old(m, y)

Next

Dim As UInteger tmp, change, stage = 1 Do

 change = 0
 For y = 1 To n -1
   For x = 1 To m -1
     ' -1-
     If old(x,y) = 0 Then ' first condition, p1 must be black
       new_(x,y) = 0
       Continue For
     End If
     ' -2-
     tmp = old(x, y -1) + old(x +1, y -1)
     tmp = tmp + old(x +1, y) + old(x +1, y +1) + old(x, y +1)
     tmp = tmp + old(x -1, y +1) + old(x -1, y) + old(x -1, y -1)
     If tmp < 2 OrElse tmp > 6 Then ' 2 <= B(p1) <= 6
       new_(x, y) = 1
       Continue For
     End If
     ' -3-
     tmp = 0
     If old(x   , y   ) = 0 And old(x   , y -1) = 1 Then tmp += 1  ' p1 > p2
     If old(x   , y -1) = 0 And old(x +1, y -1) = 1 Then tmp += 1  ' p2 > p3
     If old(x +1, y -1) = 0 And old(x +1, y   ) = 1 Then tmp += 1  ' p3 > p4
     If old(x +1, y   ) = 0 And old(x +1, y +1) = 1 Then tmp += 1  ' p4 > p5
     If old(x +1, y +1) = 0 And old(x   , y +1) = 1 Then tmp += 1  ' p5 > p6
     If old(x   , y +1) = 0 And old(x -1, y +1) = 1 Then tmp += 1  ' p6 > p7
     If old(x -1, y +1) = 0 And old(x -1, y   ) = 1 Then tmp += 1  ' p7 > p8
     If old(x -1, y   ) = 0 And old(x -1, y -1) = 1 Then tmp += 1  ' p8 > p9
     If old(x -1, y -1) = 0 And old(x   , y -1) = 1 Then tmp += 1  ' p9 > p2
     ' tmp = 1 ==> A(P1) = 1
     If tmp <> 1 Then
       new_(x, y) = 1
       Continue For
     End If
     If (stage And 1) = 1 Then
       ' step 1 -4- -5-
       If (old(x, y -1) + old(x +1, y) + old(x, y +1)) = 3 OrElse _
          (old(x +1, y) + old(x, y +1) + old(x -1, y)) = 3 Then
         new_(x, y) = 1
         Continue For
       End If
     Else
       ' step 2 -4- -5-
       If (old(x, y -1) + old(x +1, y) + old(x -1, y)) = 3 OrElse _
          (old(x, y -1) + old(x, y +1) + old(x -1, y)) = 3 Then
         new_(x, y) = 1
         Continue For
       End If
     End If
     ' all condition are met, make p1 white (0)
     new_(x, y) = 0
     change = 1 ' flag change
   Next
 Next
 ' copy new_() into old()
 For y = 0 To n
   For x = 0 To m
     old(x, y) = new_(x, y)
   Next
 Next
 stage += 1

Loop Until change = 0 ' stop when there are no changes made

Print ' print result Print "End result" For y = 0 To n

 For x = 0 To m
   If old(x, y) = 0 Then Print "."; Else Print "#";
 Next
 Print

Next


' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

End result
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

Fortran

With F90 came standardisation of a variety of array manipulation facilities. Since the image array is to be inspected as a whole then adjusted rather than adjusted step-by-step as it is inspected, the first thought was to employ the special facility of the FOR ALL statement, which is that in an expression such as <lang Fortarn>FOR ALL (i = 2:n - 1) A(i) = (A(i - 1) + A(i) + A(i + 1))/3</lang> all right-hand-side expressions will be evaluated with the original values of the array, while in the less special array assignment <lang Fortran>A(2:N - 1) = (A(1:N - 2) + A(2:N - 1) + A(3:N))/3</lang> as in the case of the equivalent DO-loop, the processing will be with a mixture of old and new values as the loop proceeds.

So, that suggests something like <lang Fortran> FOR ALL (I = 2:N - 1, J = 2:M - 1)

      WHERE(DOT(I,J) .NE. 0) DOT(I,J) = ADJUST(DOT,I,J)</lang>

This requires function ADJUST to be a "pure" function, and they are not supposed to perpetrate side effects, such as one reporting that any adjustment was made. Nor is it clear that array DOT must be presented as a parameter either as the entire array or as element DOT(i,j), or if not, that it can be global to function ADJUST - which would also be an impurity - and for that matter, variables I and J could be global also...

Instead, thought turned to more closely following the task specification, which involves producing a list of elements to be adjusted after an inspection pass. Given that array DOT is two-dimensional, it would be nice if an element could be indexed via an expression such as DOT(INDEX) where INDEX was an array of two elements with INDEX(1) = i, and INDEX(2) = j, so as to access DOT(i,j) If this were possible, then obviously one could hope that array INDEX could be extended so as to store the multiple elements of a list of such locations to access, with a view to DOT(INDEX(1:n)) = 0 adjusting the image.

Alas, such a syntax form is not accommodated. However, F90 also introduced the ability to define and use compound data types, such as the type PLACE as used below. It is not possible to define a type of a special, recognised form, such as say "SUBSCRIPT LIST" that can be used as dreamt of above, so the components are just ordinary variables. Two ordinary arrays could be used, one for each of the two subscripts, or a compound type could be devised in a hint towards self-documentation. Thus, <lang Fortran> DOT(WHACK(1:WHACKCOUNT).I,WHACK(1:WHACKCOUNT).J) = 0</lang>

But it doesn't work... After a fair amount of head scratching, not at all assisted by the woolly generalities and inane examples of the compiler's "help" collection, it became apparent that the expression did not work through a list of indices as anticipated, but instead, for each value of the first index, all the values of the second index were selected. Thus, instead of the first change being DOT(WHACK(1).I,WHACK(1).J) only, it was DOT(WHACK(1).I,WHACK(1:WHACKCOUNT).J) that were being cleared. Accordingly, the fancy syntax has to be abandoned in favour of a specific DO-loop.

<lang Fortran> MODULE ZhangSuenThinning !Image manipulation.

      CONTAINS
       SUBROUTINE ZST(DOT)	!Attempts to thin out thick lines.
        INTEGER DOT(:,:)	!The image in an array, rows down the page.
        TYPE PLACE		!This records an array location.
         INTEGER I			!Via its
         INTEGER J			!Indices.
         END TYPE PLACE	!A lot of baggage.
        TYPE(PLACE) WHACK(UBOUND(DOT,DIM = 1)*UBOUND(DOT,DIM = 2))	!Allow a whack for every dot.
        INTEGER WHACKCOUNT	!Counts up those to be wiped out.
        LOGICAL WHACKED	!Notes if any have been.
        INTEGER STEP,I,N,J,M	!Assistants.
        INTEGER D9(9)		!Holds a 3x3 portion.
        INTEGER HIT1(3,2),HIT2(3,2)	!Lists of elements to inspect for certain tests.
        PARAMETER (HIT1 = (/2,6,8, 4,2,6/))	!Two stages.
        PARAMETER (HIT2 = (/4,8,6, 2,4,8/))	!Each with two hit lists.
         N = UBOUND(DOT,DIM = 1)	!Number of rows.
         M = UBOUND(DOT,DIM = 2)	!Number of columns.

Commence a pass.

  10     WHACKED = .FALSE.	!No damage so far.
         DO STEP = 1,2		!Each pass is in two stages.
           WHACKCOUNT = 0	!No dots have been selected for whitewashing.
           DO I = 2,N - 1	!Scan down the rows.
             DO J = 2,M - 1	!And the columns. Interior dots only.
               IF (DOT(I,J).NE.0) THEN	!Rule 0: Is the dot black? Eight neighbours are present due to loop control.
                 D9(1:3) = DOT(I - 1,J - 1:J + 1)	!Yes. Form a 3x3 mesh.	1 2 3  not  9 2 3
                 D9(4:6) = DOT(I    ,J - 1:J + 1)	!As a 1-D array.	4 5 6       8 1 4
                 D9(7:9) = DOT(I + 1,J - 1:J + 1)	!For eased access.	7 8 9       7 6 5
                 CALL INSPECT(D9,HIT1(1,STEP),HIT2(1,STEP))	!Apply rules one to four, as specified.
               END IF			!So much for a black dot.
             END DO		!On to the next column.
           END DO		!On to the next row.
           IF (WHACKCOUNT.GT.0) THEN	!Are any to be wiped out?
             DO I = 1,WHACKCOUNT		!Yes!
               DOT(WHACK(I).I,WHACK(I).J) = 0		!One by one.
             END DO				!On to the next victim.

Can't use DOT(WHACK(1:WHACKCOUNT).I,WHACK(1:WHACKCOUNT).J) = 0

             WHACKED = .TRUE.			!There has been a change.
           END IF			!So much for changes.
         END DO		!On to the second stage.
         IF (WHACKED) GO TO 10	!If there had been changes, perhaps there will be more.
        CONTAINS	!Some helpers.
         SUBROUTINE INSPECT(BLOB,HIT1,HIT2)	!Inspect a 3x3 piece according to the four levels of tests as specified.
          INTEGER BLOB(9)		!The piece. BLOB(5) is DOT(I,J), and is expected to be 1.
          INTEGER HIT1(3),HIT2(3)	!Two hit lists.
          INTEGER TWIRL(9)		!traces the periphery of the piece.
          PARAMETER (TWIRL = (/2,3,6,9,8,7,4,1,2/))	!Cycle around the periphery.
          INTEGER B	!A counter.			!Rule:
           B = SUM(BLOB) - BLOB(5)			!1: Count the neighbours having one, not zero.
           IF (2 <= B .AND. B <= 6) THEN		!   The test. Can't have 2 <= B <= 6, alas.
             IF (COUNT(BLOB(TWIRL(1:8))		!2: Counting transitions.
    *              .LT.BLOB(TWIRL(2:9))) .EQ.1) THEN	!   The test of 0 --> positive.
               IF (ANY(BLOB(HIT1).EQ.0)) THEN		!3: At least one must be white.
                 IF (ANY(BLOB(HIT2).EQ.0)) THEN	!4: Of two sets of three.
                   WHACKCOUNT = WHACKCOUNT + 1			!Another one down!
                   WHACK(WHACKCOUNT) = PLACE(I,J)		!This is the place.
                 END IF				!Now back out of the nested IF-statements.
               END IF				!Since the tests must all be passed
             END IF			!Rather than say three out of four.
           END IF		!For the given method.
         END SUBROUTINE INSPECT!That was weird.
       END SUBROUTINE ZST	!But so it goes.
       SUBROUTINE SHOW(A)	!Display an image array on the standard output.
        INTEGER A(:,:)		!Values are expected to be zero and one.
        CHARACTER*1 HIC(0:1)	!But I don't want to look at wads of digits.
        PARAMETER (HIC = (/".","#"/))	!These offer better contrast.
        INTEGER I		!A stepper.
        DO I = 1,UBOUND(A,DIM = 1)	!Work down the given number of rows.
          WRITE (6,"(666A1)") HIC(A(I,:))	!Roll a translated line.
        END DO				!Hopefully, no more than 666 to a line.
       END SUBROUTINE SHOW	!That was straightforward.
     END MODULE ZhangSuenThinning
     PROGRAM POKE	!Just set up the example.
     USE ZhangSuenThinning
     INTEGER N,M		!Parameters for the example.
     PARAMETER (N = 10,M = 32)	!Rows and columns.
     CHARACTER*(M) CANVAS(N)	!Rather than some monster DATA statement,
     PARAMETER (CANVAS = (/	!It is easier to prepare a worksheet.
    1 "                                ",
    2 " 111111111       11111111       ",
    3 " 111   1111     1111  1111      ",
    4 " 111    111     111    111      ",
    5 " 111   1111     111             ",
    6 " 111111111      111             ",
    7 " 111 1111       111    111      ",
    8 " 111  1111  111 1111  1111 111  ",
    9 " 111   1111 111  11111111  111  ",
    o "                                "/))
      INTEGER IMAGE(N,M)	!The image array. Exactly the required size.
      INTEGER I		!A stepper.
      DO I = 1,N		!Read the rows.
        READ (CANVAS(I),"(666I1)") IMAGE(I,:)	!Presumably, 666 will suffice.
      END DO			!A blank is taken as a zero with formatted input.
      WRITE (6,*) "The initial image..."
      CALL SHOW(IMAGE)
      WRITE (6,*)
      CALL ZST(IMAGE)
      WRITE (6,*) "And after 'thinning'..."
      CALL SHOW(IMAGE)
     END PROGRAM POKE </lang>

Output:

 The initial image...
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

 And after 'thinning'...
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

Go

<lang go>package main

import (

   "bytes"
   "fmt"
   "strings"

)

var in = ` 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000`

func main() {

   b := wbFromString(in, '1')
   b.zhangSuen()
   fmt.Println(b)

}

const (

   white = 0
   black = 1

)

type wbArray [][]byte // elements are white or black.

// parameter blk is character to read as black. otherwise kinda rigid, // expects ascii, leading newline, no trailing newline, // takes color from low bit of character. func wbFromString(s string, blk byte) wbArray {

   lines := strings.Split(s, "\n")[1:]
   b := make(wbArray, len(lines))
   for i, sl := range lines {
       bl := make([]byte, len(sl))
       for j := 0; j < len(sl); j++ {
           bl[j] = sl[j] & 1
       }
       b[i] = bl
   }
   return b

}

// rigid again, hard coded to output space for white, # for black, // no leading or trailing newline. var sym = [2]byte{

   white: ' ',
   black: '#',

}

func (b wbArray) String() string {

   b2 := bytes.Join(b, []byte{'\n'})
   for i, b1 := range b2 {
       if b1 > 1 {
           continue
       }
       b2[i] = sym[b1]
   }
   return string(b2)

}

// neighbor offsets var nb = [...][2]int{

   2: {-1, 0}, // p2 offsets
   3: {-1, 1}, // ...
   4: {0, 1},
   5: {1, 1},
   6: {1, 0},
   7: {1, -1},
   8: {0, -1},
   9: {-1, -1}, // p9 offsets

}

func (b wbArray) reset(en []int) (rs bool) {

   var r, c int
   var p [10]byte
   readP := func() {
       for nx := 1; nx <= 9; nx++ {
           n := nb[nx]
           p[nx] = b[r+n[0]][c+n[1]]
       }
   }
   shiftRead := func() {
       n := nb[3]
       p[9], p[2], p[3] = p[2], p[3], b[r+n[0]][c+n[1]]
       n = nb[4]
       p[8], p[1], p[4] = p[1], p[4], b[r+n[0]][c+n[1]]
       n = nb[5]
       p[7], p[6], p[5] = p[6], p[5], b[r+n[0]][c+n[1]]
   }
   // returns "A", count of white->black transitions in circuit of neighbors
   // of an interior pixel b[r][c]
   countA := func() (ct byte) {
       bit := p[9]
       for nx := 2; nx <= 9; nx++ {
           last := bit
           bit = p[nx]
           if last == white {
               ct += bit
           }
       }
       return ct
   }
   // returns "B", count of black pixels neighboring interior pixel b[r][c].
   countB := func() (ct byte) {
       for nx := 2; nx <= 9; nx++ {
           ct += p[nx]
       }
       return ct
   }
   lastRow := len(b) - 1
   lastCol := len(b[0]) - 1
   mark := make([][]bool, lastRow)
   for r = range mark {
       mark[r] = make([]bool, lastCol)
   }
   for r = 1; r < lastRow; r++ {
       c = 1
       readP()
       for { // column loop
           m := false
           // test for failure of any of the five conditions,
           if !(p[1] == black) {
               goto markDone
           }
           if b1 := countB(); !(2 <= b1 && b1 <= 6) {
               goto markDone
           }
           if !(countA() == 1) {
               goto markDone
           }
           {
               e1, e2 := p[en[1]], p[en[2]]
               if !(p[en[0]]&e1&e2 == 0) {
                   goto markDone
               }
               if !(e1&e2&p[en[3]] == 0) {
                   goto markDone
               }
           }
           // no conditions failed, mark this pixel for reset
           m = true
           rs = true // and mark that image changes
       markDone:
           mark[r][c] = m
           c++
           if c == lastCol {
               break
           }
           shiftRead()
       }
   }
   if rs {
       for r = 1; r < lastRow; r++ {
           for c = 1; c < lastCol; c++ {
               if mark[r][c] {
                   b[r][c] = white
               }
           }
       }
   }
   return rs

}

var step1 = []int{2, 4, 6, 8} var step2 = []int{4, 2, 8, 6}

func (b wbArray) zhangSuen() {

   for {
       rs1 := b.reset(step1)
       rs2 := b.reset(step2)
       if !rs1 && !rs2 {
           break
       }
   }

}</lang>

Output:
                                
  #######         ######        
  #     #        ##             
  #      #       #              
  #     #        #              
  ##### #        #              
       ##        #              
        #    #   ##    ##   #   
         #         ####         
                                

Groovy

<lang groovy>def zhangSuen(text) {

   def image = text.split('\n').collect { line -> line.collect { it == '#' ? 1 : 0} }
   def p2, p3, p4, p5, p6, p7, p8, p9
   def step1 = { (p2 * p4 * p6 == 0) && (p4 * p6 * p8 == 0) }
   def step2 = { (p2 * p4 * p8 == 0) && (p2 * p6 * p8 == 0) }
   def reduce = { step ->
       def toWhite = []
       image.eachWithIndex{ line, y ->
           line.eachWithIndex{ pixel, x ->
               if (!pixel) return
               (p2, p3, p4, p5, p6, p7, p8, p9) = [image[y-1][x], image[y-1][x+1], image[y][x+1], image[y+1][x+1], image[y+1][x], image[y+1][x-1], image[y][x-1], image[y-1][x-1]]
               def a = [[p2,p3],[p3,p4],[p4,p5],[p5,p6],[p6,p7],[p7,p8],[p8,p9],[p9,p2]].collect { a1, a2 -> (a1 == 0 && a2 ==1) ? 1 : 0 }.sum()
               def b = [p2, p3, p4, p5, p6, p7, p8, p9].sum()
               if (a != 1 || b < 2 || b > 6) return
               if (step.call()) toWhite << [y,x]
           }
       }
       toWhite.each { y, x -> image[y][x] = 0 }
       !toWhite.isEmpty()
   }
   while (reduce(step1) | reduce(step2));
   image.collect { line -> line.collect { it ? '#' : '.' }.join() }.join('\n')

}</lang> Testing: <lang groovy>def small = """\

   ................................
   .#########.......########.......
   .###...####.....####..####......
   .###....###.....###....###......
   .###...####.....###.............
   .#########......###.............
   .###.####.......###....###......
   .###..####..###.####..####.###..
   .###...####.###..########..###..
   ................................""".stripIndent()

def large = """\

   ...........................................................
   .#################...................#############.........
   .##################...............################.........
   .###################............##################.........
   .########.....#######..........###################.........
   ...######.....#######.........#######.......######.........
   ...######.....#######........#######.......................
   ...#################.........#######.......................
   ...################..........#######.......................
   ...#################.........#######.......................
   ...######.....#######........#######.......................
   ...######.....#######........#######.......................
   ...######.....#######.........#######.......######.........
   .########.....#######..........###################.........
   .########.....#######.######....##################.######..
   .########.....#######.######......################.######..
   .########.....#######.######.........#############.######..
   ...........................................................""".stripIndent()

[small, large].each {

   println "From:"
   println it
   println "To:"
   println zhangSuen(it)
   println()

}</lang> Output:

From:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................
To:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

From:
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................
To:
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................

Haskell

<lang Haskell>import Data.Array import qualified Data.List as List

data BW = Black | White

       deriving (Eq, Show)

type Index = (Int, Int) type BWArray = Array Index BW

toBW :: Char -> BW toBW '0' = White toBW '1' = Black toBW ' ' = White toBW '#' = Black toBW _ = error "toBW: illegal char"

toBWArray :: [String] -> BWArray toBWArray strings = arr

 where
   height = length strings
   width  = minimum $ map length strings
   arr    = listArray ((0, 0), (width - 1, height - 1))
            . map toBW . concat . List.transpose $ map (take width) strings

toChar :: BW -> Char toChar White = ' ' toChar Black = '#'

chunksOf :: Int -> [a] -> a chunksOf _ [] = [] chunksOf n xs = take n xs : (chunksOf n $ drop n xs)

showBWArray :: BWArray -> String showBWArray arr =

 List.intercalate "\n" . List.transpose
 . chunksOf (height + 1) . map toChar $ elems arr
 where
   (_, (_, height)) = bounds arr

add :: Num a => (a, a) -> (a, a) -> (a, a) add (a, b) (x, y) = (a + x, b + y)

within :: Ord a => ((a, a), (a, a)) -> (a, a) -> Bool within ((a, b), (c, d)) (x, y) =

 a <= x && x <= c &&
 b <= y && y <= d

p2, p3, p4, p5, p6, p7, p8, p9 :: Index p2 = ( 0, -1) p3 = ( 1, -1) p4 = ( 1, 0) p5 = ( 1, 1) p6 = ( 0, 1) p7 = (-1, 1) p8 = (-1, 0) p9 = (-1, -1)

ixamap :: Ix i => ((i, a) -> b) -> Array i a -> Array i b ixamap f a = listArray (bounds a) $ map f $ assocs a

thin :: BWArray -> BWArray thin arr =

 if pass2 == arr then pass2 else thin pass2
 where
   (low, high)     = bounds arr
   lowB            = low `add` (1, 1)
   highB           = high `add` (-1, -1)
   isInner         = within (lowB, highB)
   offs p          = map (add p) [p2, p3, p4, p5, p6, p7, p8, p9]
   trans c (a, b)  = if a == White && b == Black then c + 1 else c
   zipshift xs     = zip xs (drop 1 xs ++ xs)
   transitions a   = (== (1 :: Int)) . foldl trans 0 . zipshift . map (a !) . offs
   within2to6 n    = 2 <= n && n <= 6
   blacks a p      = within2to6 . length . filter ((== Black) . (a !)) $ offs p
   oneWhite xs a p = any ((== White) . (a !) . add p) xs
   oneRight        = oneWhite [p2, p4, p6]
   oneDown         = oneWhite [p4, p6, p8]
   oneUp           = oneWhite [p2, p4, p8]
   oneLeft         = oneWhite [p2, p6, p8]
   precond a p     = (a ! p == Black) && isInner p && blacks a p && transitions a p
   stage1 a p      = precond a p && oneRight a p && oneDown a p
   stage2 a p      = precond a p && oneUp a p && oneLeft a p
   stager f (p, d) = if f p then White else d
   pass1           = ixamap (stager $ stage1 arr) arr
   pass2           = ixamap (stager $ stage2 pass1) pass1

sampleExA :: [String] sampleExA =

 ["00000000000000000000000000000000"
 ,"01111111110000000111111110000000"
 ,"01110001111000001111001111000000"
 ,"01110000111000001110000111000000"
 ,"01110001111000001110000000000000"
 ,"01111111110000001110000000000000"
 ,"01110111100000001110000111000000"
 ,"01110011110011101111001111011100"
 ,"01110001111011100111111110011100"
 ,"00000000000000000000000000000000"]

sampleExB :: [String] sampleExB =

 ["                                                          "
 ," #################                   #############        "
 ," ##################               ################        "
 ," ###################            ##################        "
 ," ########     #######          ###################        "
 ,"   ######     #######         #######       ######        "
 ,"   ######     #######        #######                      "
 ,"   #################         #######                      "
 ,"   ################          #######                      "
 ,"   #################         #######                      "
 ,"   ######     #######        #######                      "
 ,"   ######     #######        #######                      "
 ,"   ######     #######         #######       ######        "
 ," ########     #######          ###################        "
 ," ########     ####### ######    ################## ###### "
 ," ########     ####### ######      ################ ###### "
 ," ########     ####### ######         ############# ###### "
 ,"                                                          "]

main :: IO () main = mapM_ (putStrLn . showBWArray . thin . toBWArray) [sampleExA, sampleExB]</lang>

Output:
  #######         ######        
  #     #        ##             
  #      #       #              
  #     #        #              
  ##### #        #              
       ##        #              
        #    #   ##    ##   #   
         #         ####         
                                
                                                          
                                                          
    # ##########                       #######            
     ##        #                   ####       #           
     #          #                 ##                      
     #          #                #                        
     #          #                #                        
     #          #                #                        
     ############               #                         
     #          #               #                         
     #          #                #                        
     #          #                #                        
     #          #                #                        
     #                            ##                      
     #                             ############           
                       ###                          ###   
                                                          

J

Solution: <lang j>isBlackPx=: '1'&=;._2 NB. boolean array of black pixels toImage=: [: , LF ,.~ '01' {~ ] NB. convert to original representation frameImg=: 0 ,. 0 , >:@$ {. ] NB. adds border of 0's to image

neighbrs=: adverb define NB. applies verb u to neighbourhoods

 (1 1 ,: 3 3) u;._3 y

)

Bdry=: 1 2 5 8 7 6 3 0 1 NB. map pixel index to neighbour order getPx=: { , NB. get desired pixels from neighbourhood Ap1=: [: +/ 2 </\ Bdry&getPx NB. count 0->1 transitions Bp1=: [: +/ [: }. Bdry&getPx NB. count black neighbours

c11=: (2&<: *. <:&6)@Bp1 NB. step 1, condition 1 c12=: 1 = Ap1 NB. ... c13=: 0 e. 1 5 7&getPx c14=: 0 e. 5 7 3&getPx c23=: 0 e. 1 5 3&getPx NB. step2, condition 3 c24=: 0 e. 1 7 3&getPx

cond1=: c11 *. c12 *. c13 *. c14 NB. step1 conditions cond2=: c11 *. c12 *. c23 *. c24 NB. step2 conditions whiten=: [ * -.@:*. NB. make black pixels white step1=: whiten frameImg@(cond1 neighbrs) step2=: whiten frameImg@(cond2 neighbrs)

zhangSuen=: [: toImage [: step2@step1^:_ isBlackPx</lang> Alternative, explicit representation of last verb above <lang j>zhangSuenX=: verb define

 img=. isBlackPx y
 whilst. 0 < +/ , msk1 +.&-. msk2 do.
   msk1=. (-.@:*. [: frameImg cond1 neighbrs) img
   img=. msk1 * img
   msk2=. (-.@:*. [: frameImg cond2 neighbrs) img
   img=. msk2 * img
 end.
 toImage img

)</lang> Example Use: <lang j>toASCII=: ' #' {~ '1'&=;._2 NB. convert to ASCII representation

ExampleImg=: noun define 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 )

  toASCII zhangSuen ExampleImg
                               
 #######         ######        
 #     #        ##             
 #      #       #              
 #     #        #              
 ##### #        #              
      ##        #              
       #    #   ##    ##   #   
        #         ####         
                               </lang>

Java

Works with: Java version 7

<lang java>import java.awt.Point; import java.util.*;

public class ZhangSuen {

   final static String[] image = {
       "                                                          ",
       " #################                   #############        ",
       " ##################               ################        ",
       " ###################            ##################        ",
       " ########     #######          ###################        ",
       "   ######     #######         #######       ######        ",
       "   ######     #######        #######                      ",
       "   #################         #######                      ",
       "   ################          #######                      ",
       "   #################         #######                      ",
       "   ######     #######        #######                      ",
       "   ######     #######        #######                      ",
       "   ######     #######         #######       ######        ",
       " ########     #######          ###################        ",
       " ########     ####### ######    ################## ###### ",
       " ########     ####### ######      ################ ###### ",
       " ########     ####### ######         ############# ###### ",
       "                                                          "};
   final static int[][] nbrs = {{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1},
       {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}};
   final static int[][][] nbrGroups = {{{0, 2, 4}, {2, 4, 6}}, {{0, 2, 6},
       {0, 4, 6}}};
   static List<Point> toWhite = new ArrayList<>();
   static char[][] grid;
   public static void main(String[] args) {
       grid = new char[image.length][];
       for (int r = 0; r < image.length; r++)
           grid[r] = image[r].toCharArray();
       thinImage();
   }
   static void thinImage() {
       boolean firstStep = false;
       boolean hasChanged;
       do {
           hasChanged = false;
           firstStep = !firstStep;
           for (int r = 1; r < grid.length - 1; r++) {
               for (int c = 1; c < grid[0].length - 1; c++) {
                   if (grid[r][c] != '#')
                       continue;
                   int nn = numNeighbors(r, c);
                   if (nn < 2 || nn > 6)
                       continue;
                   if (numTransitions(r, c) != 1)
                       continue;
                   if (!atLeastOneIsWhite(r, c, firstStep ? 0 : 1))
                       continue;
                   toWhite.add(new Point(c, r));
                   hasChanged = true;
               }
           }
           for (Point p : toWhite)
               grid[p.y][p.x] = ' ';
           toWhite.clear();
       } while (firstStep || hasChanged);
       printResult();
   }
   static int numNeighbors(int r, int c) {
       int count = 0;
       for (int i = 0; i < nbrs.length - 1; i++)
           if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == '#')
               count++;
       return count;
   }
   static int numTransitions(int r, int c) {
       int count = 0;
       for (int i = 0; i < nbrs.length - 1; i++)
           if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == ' ') {
               if (grid[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == '#')
                   count++;
           }
       return count;
   }
   static boolean atLeastOneIsWhite(int r, int c, int step) {
       int count = 0;
       int[][] group = nbrGroups[step];
       for (int i = 0; i < 2; i++)
           for (int j = 0; j < group[i].length; j++) {
               int[] nbr = nbrs[group[i][j]];
               if (grid[r + nbr[1]][c + nbr[0]] == ' ') {
                   count++;
                   break;
               }
           }
       return count > 1;
   }
   static void printResult() {
       for (char[] row : grid)
           System.out.println(row);
   }

}</lang>

Output:

                                                          
    # ##########                       #######            
     ##        #                   ####       #           
     #          #                 ##                      
     #          #                #                        
     #          #                #                        
     #          #                #                        
     ############               #                         
     #          #               #                         
     #          #                #                        
     #          #                #                        
     #          #                #                        
     #                            ##                      
     #                             ############           
                       ###                          ###   

JavaScript

Translation of: Java

<lang javascript>function Point(x, y) {

   this.x = x;
   this.y = y;

} var ZhangSuen = (function () {

   function ZhangSuen() {
   }
   ZhangSuen.image = 
   ["                                                          ",
    " #################                   #############        ",
    " ##################               ################        ",
    " ###################            ##################        ",
    " ########     #######          ###################        ",
    "   ######     #######         #######       ######        ",
    "   ######     #######        #######                      ",
    "   #################         #######                      ",
    "   ################          #######                      ",
    "   #################         #######                      ",
    "   ######     #######        #######                      ",
    "   ######     #######        #######                      ",
    "   ######     #######         #######       ######        ",
    " ########     #######          ###################        ",
    " ########     ####### ######    ################## ###### ",
    " ########     ####### ######      ################ ###### ",
    " ########     ####### ######         ############# ###### ",
    "                                                          "];
   ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
   ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
   ZhangSuen.toWhite = new Array();
   ;
   ZhangSuen.main = function (args) {
       ZhangSuen.grid = new Array(ZhangSuen.image.length);
       for (var r = 0; r < ZhangSuen.image.length; r++)
           ZhangSuen.grid[r] = (ZhangSuen.image[r]).split();
       ZhangSuen.thinImage();
   };
   ZhangSuen.thinImage = function () {
       var firstStep = false;
       var hasChanged;
       do {
           hasChanged = false;
           firstStep = !firstStep;
           for (var r = 1; r < ZhangSuen.grid.length - 1; r++) {
               for (var c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
                   if (ZhangSuen.grid[r][c] !== '#')
                       continue;
                   var nn = ZhangSuen.numNeighbors(r, c);
                   if (nn < 2 || nn > 6)
                       continue;
                   if (ZhangSuen.numTransitions(r, c) !== 1)
                       continue;
                   if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1))
                       continue;
                   ZhangSuen.toWhite.push(new Point(c, r));
                   hasChanged = true;
               }
           }
           for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
               var p = ZhangSuen.toWhite[i];
               ZhangSuen.grid[p.y][p.x] = ' ';
           }
           ZhangSuen.toWhite = new Array();
       } while ((firstStep || hasChanged));
       ZhangSuen.printResult();
   };
   ZhangSuen.numNeighbors = function (r, c) {
       var count = 0;
       for (var i = 0; i < ZhangSuen.nbrs.length - 1; i++)
           if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#')
               count++;
       return count;
   };
   ZhangSuen.numTransitions = function (r, c) {
       var count = 0;
       for (var i = 0; i < ZhangSuen.nbrs.length - 1; i++)
           if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
               if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#')
                   count++;
           }
       return count;
   };
   ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
       var count = 0;
       var group = ZhangSuen.nbrGroups[step];
       for (var i = 0; i < 2; i++)
           for (var j = 0; j < group[i].length; j++) {
               var nbr = ZhangSuen.nbrs[group[i][j]];
               if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
                   count++;
                   break;
               }
           }
       return count > 1;
   };
   ZhangSuen.printResult = function () {
       for (var i = 0; i < ZhangSuen.grid.length; i++) {
           var row = ZhangSuen.grid[i];
           console.log(row.join());
       }
   };
   return ZhangSuen;

}()); ZhangSuen.main(null);</lang>

Output:

                                                          
    # ##########                       #######            
     ##        #                   ####       #           
     #          #                 ##                      
     #          #                #                        
     #          #                #                        
     #          #                #                        
     ############               #                         
     #          #               #                         
     #          #                #                        
     #          #                #                        
     #          #                #                        
     #                            ##                      
     #                             ############           
                       ###                          ###    


Julia

<lang julia> const pixelstring = "00000000000000000000000000000000" * "01111111110000000111111110000000" * "01110001111000001111001111000000" * "01110000111000001110000111000000" * "01110001111000001110000000000000" * "01111111110000001110000000000000" * "01110111100000001110000111000000" * "01110011110011101111001111011100" * "01110001111011100111111110011100" * "00000000000000000000000000000000" const pixels = reshape([UInt8(c- 48) for c in pixelstring], (32,10))'


function surroundtesting(px, i, j, step)

   if px[i,j] == 0
       return false
   end
   isize, jsize = size(px)
   if i < 1 || j < 1 || i == isize || j == jsize                         # criteria 0.both    
       return false
   end
   s = Array{Int,1}(9)
   s[1] = s[9] = px[i-1,j]; s[2] = px[i-1,j+1]; s[3] = px[i,j+1]; s[4] = px[i+1,j+1]
   s[5] = px[i+1,j]; s[6] = px[i+1,j-1]; s[7] = px[i,j-1]; s[8] = px[i-1,j-1]
   b = sum(s[1:8])
   if b < 2 || b > 6                                                     # criteria 1.both
       return false
   end
   if sum([(s[i] == 0 && s[i+1] == 1) for i in 1:length(s)-1]) != 1      # criteria 2.both
       return false
   end
   if step == 1
       rightwhite = s[1] == 0 || s[3] == 0 || s[5] == 0                  # 1.3
       downwhite = s[3] == 0 || s[5] == 0 || s[7] == 0                   # 1.4
       return rightwhite && downwhite
   end
   upwhite = s[1] == 0 || s[3] == 0 || s[7] == 0                         # 2.3
   leftwhite = s[1] == 0 || s[5] == 0 || s[7] == 0                       # 2.4
   return upwhite && leftwhite

end


function zsthinning(mat)

   retmat = copy(mat)
   testmat = zeros(Int, size(mat))
   isize, jsize = size(testmat)
   needredo = true
   loops = 0
   while(needredo)
       loops += 1
       println("loop number $loops")
       needredo = false
       for n in 1:2
           for i in 1:isize, j in 1:jsize
               testmat[i,j] = surroundtesting(retmat, i, j, n) ? 1 : 0
           end
           for i in 1:isize, j in 1:jsize
               if testmat[i,j] == 1
                   retmat[i,j] = 0
                   needredo = true
               end
           end
       end
   end
   retmat

end


function asciiprint(mat)

   for i in 1:size(mat)[1]
       println(join(map(i -> i == 1 ? '#' : ' ', mat[i,:])))
   end

end


asciiprint(zsthinning(pixels))</lang>

Output:

loop number 1 loop number 2 loop number 3

 #######         ######
 #     #        ##
 #      #       #
 #     #        #
 ##### #        #
      ##        #
       #    #   ##    ##   #
        #         ####

Kotlin

Translation of: Java

<lang scala>// version 1.1.2

class Point(val x: Int, val y: Int)

val image = arrayOf(

   "                                                          ",
   " #################                   #############        ",
   " ##################               ################        ",
   " ###################            ##################        ",
   " ########     #######          ###################        ",
   "   ######     #######         #######       ######        ",
   "   ######     #######        #######                      ",
   "   #################         #######                      ",
   "   ################          #######                      ",
   "   #################         #######                      ",
   "   ######     #######        #######                      ",
   "   ######     #######        #######                      ",
   "   ######     #######         #######       ######        ",
   " ########     #######          ###################        ",
   " ########     ####### ######    ################## ###### ",
   " ########     ####### ######      ################ ###### ",
   " ########     ####### ######         ############# ###### ",
   "                                                          " 

)

val nbrs = arrayOf(

   intArrayOf( 0, -1), intArrayOf( 1, -1), intArrayOf( 1,  0), 
   intArrayOf( 1,  1), intArrayOf( 0,  1), intArrayOf(-1,  1), 
   intArrayOf(-1,  0), intArrayOf(-1, -1), intArrayOf( 0, -1)

)

val nbrGroups = arrayOf(

   arrayOf(intArrayOf(0, 2, 4), intArrayOf(2, 4, 6)),
   arrayOf(intArrayOf(0, 2, 6), intArrayOf(0, 4, 6))

)

val toWhite = mutableListOf<Point>() val grid = Array(image.size) { image[it].toCharArray() }

fun thinImage() {

   var firstStep = false
   var hasChanged: Boolean
   do {
       hasChanged = false
       firstStep = !firstStep
       for (r in 1 until grid.size - 1) {
           for (c in 1 until grid[0].size - 1) {
               if (grid[r][c] != '#') continue
               val nn = numNeighbors(r, c)
               if (nn !in 2..6) continue 
               if (numTransitions(r, c) != 1) continue
               val step = if (firstStep) 0 else 1
               if (!atLeastOneIsWhite(r, c, step)) continue
               toWhite.add(Point(c, r))
               hasChanged = true
           }
       }
       for (p in toWhite) grid[p.y][p.x] = ' '
       toWhite.clear()
   }
   while (firstStep || hasChanged)
   for (row in grid) println(row)

}

fun numNeighbors(r: Int, c: Int): Int {

   var count = 0
   for (i in 0 until nbrs.size - 1) {
       if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == '#') count++
   }
   return count

}

fun numTransitions(r: Int, c: Int): Int {

   var count = 0
   for (i in 0 until nbrs.size - 1) {
       if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == ' ') {
           if (grid[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == '#') count++
       }
   }
   return count

}

fun atLeastOneIsWhite(r: Int, c: Int, step: Int): Boolean {

   var count = 0;
   val group = nbrGroups[step]
   for (i in 0..1) {
       for (j in 0 until group[i].size) {
           val nbr = nbrs[group[i][j]]
           if (grid[r + nbr[1]][c + nbr[0]] == ' ') {
               count++
               break
           }
       }
   }
   return count > 1

}

fun main(args: Array<String>) {

   thinImage()

}</lang>

Output:
                                                                                                                   
    # ##########                       #######            
     ##        #                   ####       #           
     #          #                 ##                      
     #          #                #                        
     #          #                #                        
     #          #                #                        
     ############               #                         
     #          #               #                         
     #          #                #                        
     #          #                #                        
     #          #                #                        
     #                            ##                      
     #                             ############           
                       ###                          ###   
                                                                                                     

Lua

<lang lua>function zhangSuenThin(img)

   local dirs={
       { 0,-1},
       { 1,-1},
       { 1, 0},
       { 1, 1},
       { 0, 1},
       {-1, 1},
       {-1, 0},
       {-1,-1},
       { 0,-1},
   }
   local black=1
   local white=0
   function A(x, y)
       local c=0
       local current=img[y+dirs[1][2]][x+dirs[1][1]]
       for i=2,#dirs do
           local to_compare=img[y+dirs[i][2]][x+dirs[i][1]]
           if current==white and to_compare==black then
               c=c+1
           end
           current=to_compare
       end
       return c
   end
   function B(x, y)
       local c=0
       for i=2,#dirs do
           local value=img[y+dirs[i][2]][x+dirs[i][1]]
           if value==black then
               c=c+1
           end
       end
       return c
   end
   function common_step(x, y)
       if img[y][x]~=black or x<=1 or x>=#img[y] or y<=1 or y>=#img then
           return false
       end
       local b_value=B(x, y)
       if b_value<2 or b_value>6 then
           return false
       end
       local a_value=A(x, y)
       if a_value~=1 then
           return false
       end
       return true
   end
   function step_one(x, y)
       if not common_step(x, y) then
           return false
       end
       local p2=img[y+dirs[1][2]][x+dirs[1][1]]
       local p4=img[y+dirs[3][2]][x+dirs[3][1]]
       local p6=img[y+dirs[5][2]][x+dirs[5][1]]
       local p8=img[y+dirs[7][2]][x+dirs[7][1]]
       if p4==white or p6==white or p2==white and p8==white then
           return true
       end
       return false
   end
   function step_two(x, y)
       if not common_step(x, y) then
           return false
       end
       local p2=img[y+dirs[1][2]][x+dirs[1][1]]
       local p4=img[y+dirs[3][2]][x+dirs[3][1]]
       local p6=img[y+dirs[5][2]][x+dirs[5][1]]
       local p8=img[y+dirs[7][2]][x+dirs[7][1]]
       if p2==white or p8==white or p4==white and p6==white then
           return true
       end
       return false
   end
   function convert(to_do)
       for k,v in pairs(to_do) do
           img[v[2]][v[1]]=white
       end
   end
   function do_step_on_all(step)
       local to_convert={}
       for y=1,#img do
           for x=1,#img[y] do
               if step(x, y) then
                   table.insert(to_convert, {x,y})
               end
           end
       end
       convert(to_convert)
       return #to_convert>0
   end
   local continue=true
   while continue do
       continue=false
       if do_step_on_all(step_one) then
           continue=true
       end
       if do_step_on_all(step_two) then
           continue=true
       end
   end
   for y=1,#img do
       for x=1,#img[y] do
           io.write(img[y][x]==black and '#' or ' ')
       end
       io.write('\n')
   end

end

local image = {

   {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
   {0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0},
   {0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0},
   {0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0},
   {0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
   {0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
   {0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0},
   {0,1,1,1,0,0,1,1,1,1,0,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,1,1,1,0,0},
   {0,1,1,1,0,0,0,1,1,1,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,0,0},
   {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

}

zhangSuenThin(image) </lang>

Output:

                                
  #######         ######        
  #     #        ##             
  #      #       #              
  #     #        #              
  ##### #        #              
       ##        #              
        #    #   ##    ##   #   
         #         ####         
                                

Mathematica

Mathematica supports directly the Thinning methods "Morphological" and "MedialAxis". The Zhang-Suen algorithm implementation could be done with: <lang Mathematica>nB[mat_] := Delete[mat // Flatten, 5] // Total;

nA[mat_] := Module[{l},

  l = Flatten[mat][[{2, 3, 6, 9, 8, 7, 4, 1, 2}]];
  Total[Map[If[#1 == 0 && #2 == 1, 1, 0] &, 
    Partition[l, 2, 1]]]
  ];

iW1[mat_] :=

 Module[{l = Flatten[mat]}, 
  If[Apply[Times, l[[{2, 6, 8}]]] + Apply[Times, l[[{4, 6, 8}]]] == 
    0, 0, 1]];

iW2[mat_] :=

 Module[{l = Flatten[mat]}, 
  If[Apply[Times, l[[{2, 6, 4}]]] + Apply[Times, l[[{4, 2, 8}]]] == 
    0, 0, 1]];

check[i_, j_, dat_, t_] := Module[{mat, d = Dimensions[dat], r, c},

  r = d1;
  c = d2;
  If[i > 1 && i < r && j > 1 && j < c,
   mat = dati - 1 ;; i + 1, j - 1 ;; j + 1;
   If[dati, j == 1 && nA[mat] == 1 && 2 <= nB[mat] <= 6 && 
     If[t == 1, iW1[mat], iW2[mat]] == 0, 0, dati, j],
   dati, j
   ]];

iter[dat_] :=

 Module[{i = 
    Flatten[Outer[List, Range[Dimensions[dat]1], 
      Range[Dimensions[dat]2]], 1], tmp},
  tmp = Partition[check[#1, #2, dat, 1] & /@ i, 
    Dimensions[dat]2];
  Partition[check[#1, #2, tmp, 2] & /@ i, 
   Dimensions[tmp]2]];


FixedPoint[iter, dat]</lang>

Which results in: (printMat is only defined to print an text output - the natural Mathemaica way would be to use ArrayPlot function, which create a graphic object which we can't paste into this wiki)


printMat[mat_] := 
  StringReplace[
   Riffle[Map[StringJoin, Map[ToString, mat, {2}]], "\n"] // 
    StringJoin, {"1" -> "#", "0" -> "."}];

dat1 = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
    0}, {0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 
    0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 0, 0, 1, 
    1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 
    0}, {0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0}, {0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
    0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 1, 1, 1, 
    1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 
    0}, {0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 
    1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0}};

printMat[dat1]
printMat[FixedPoint[iter, dat1]]

................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

dat2 = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 
    0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
    0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 
    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 
    1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 
    1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 
    0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 
    1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 
    0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 
    1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 
    1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 
    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 
    0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 
    1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 
    0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 
    1, 1, 1, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 
    1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 
    0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 
    1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0}, {0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

printMat[dat2]
printMat[FixedPoint[iter, dat2]]

...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................

Perl 6

Takes the original image from a file that may be based on any characters whose low bits are 0 or 1 (which conveniently includes . and #). <lang perl6>constant DEBUG = 1;

my @lines = ([.ords X+& 1] for lines); # The low bits Just Work. my \v = +@lines; my \h = +@lines[0]; my @black = flat @lines.map: *.values; # Flatten to 1-dimensional.

my \p8 = [-h-1, -h+0, -h+1, # Flatland distances to 8 neighbors.

          0-1,        0+1,
          h-1,  h+0,  h+1].[1,2,4,7,6,5,3,0];   # (in cycle order)
  1. Candidates have 8 neighbors and are known black

my @cand = grep { @black[$_] }, do

   for 1..v-2 X 1..h-2 -> (\y,\x) { y*h + x }

repeat while my @goners1 or my @goners2 {

   sub seewhite (\w1,\w2) {
       sub cycles (@neighbors) { [+] @neighbors Z< @neighbors[].rotate }
       sub blacks (@neighbors) { [+] @neighbors }
       my @prior = @cand; @cand = ();
       gather for @prior -> \p {
           my \n = @black[p8 X+ p];
           if cycles(n) == 1 and 2 <= blacks(n) <= 6 and n[w1].any == 0 and n[w2].any == 0
                { take p }
           else { @cand.push: p }
       }
   }
   @goners1 = seewhite (0,2,4), (2,4,6);
   @black[@goners1] = 0 xx *;
   say "Ping: {[+] @black} remaining after removing ", @goners1 if DEBUG;
   @goners2 = seewhite (0,2,6), (0,4,6);
   @black[@goners2] = 0 xx *;
   say "Pong: {[+] @black} remaining after removing ", @goners2 if DEBUG;

}

say @black.splice(0,h).join.trans('01' => '.#') while @black;</lang>

Output:
Ping: 66 remaining after removing 33 41 49 56 67 71 74 80 83 86 89 99 106 114 119 120 121 131 135 138 146 169 178 195 197 210 215 217 227 230 233 236 238 240 243 246 249 251 253 257 258 259 263 264 266 268 269 270 273 274 279 280 283 284 285
Pong: 47 remaining after removing 65 73 88 97 104 112 129 137 144 161 167 176 193 198 208 216 225 226 231
Ping: 45 remaining after removing 87 194
Pong: 45 remaining after removing 
Ping: 45 remaining after removing 
Pong: 45 remaining after removing 
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

Phix

<lang Phix>constant n = {{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1},{-1,0}};

function AB(sequence text, integer y, x, step) integer wtb = 0, bn = 0 integer prev = '#', next string p2468 = ""

   for i=1 to length(n) do
       next = text[y+n[i][1]][x+n[i][2]]
       wtb += (prev='.' and next<='#')
       bn += (i>1 and next<='#')   
       if and_bits(i,1)=0 then p2468 = append(p2468,prev) end if
       prev = next
   end for
   if step=2 then -- make it p6842
       p2468 = p2468[3..4]&p2468[1..2]
   end if
   return {wtb,bn,p2468}

end function

procedure Zhang_Suen(sequence text) integer wtb, bn, changed, changes string p2468 -- (p6842 for step 2)

   text = split(text,'\n')
   while 1 do
       changed = 0
       for step=1 to 2 do
           changes = 0
           for y=2 to length(text)-1 do
               for x=2 to length(text[y])-1 do
                   if text[y][x]='#' then
                       {wtb,bn,p2468} = AB(text,y,x,step)
                       if wtb=1 
                       and bn>=2 and bn<=6 
                       and find('.',p2468[1..3]) 
                       and find('.',p2468[2..4])then
                           changes = 1
                           text[y][x] = '!'    -- (logically still black)
                       end if
                   end if
               end for
           end for
           if changes then
               for y=2 to length(text)-1 do
                   text[y] = substitute(text[y],"!",".")
               end for
               changed = 1
           end if
       end for
       if not changed then exit end if
   end while
   puts(1,join(text,"\n"))

end procedure

string small_rc = """ ................................ .#########.......########....... .###...####.....####..####...... .###....###.....###....###...... .###...####.....###............. .#########......###............. .###.####.......###....###...... .###..####..###.####..####.###.. .###...####.###..########..###.. ................................""" Zhang_Suen(small_rc)</lang>

Output:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

PL/I

<lang>zhang: procedure options (main); /* 8 July 2014 */

  declare pic(10) bit(32) initial (
     '00000000000000000000000000000000'b,
     '01111111110000000111111110000000'b,
     '01110001111000001111001111000000'b,
     '01110000111000001110000111000000'b,
     '01110001111000001110000000000000'b,
     '01111111110000001110000000000000'b,
     '01110111100000001110000111000000'b,
     '01110011110011101111001111011100'b,
     '01110001111011100111111110011100'b,
     '00000000000000000000000000000000'b );
  declare image  (10,32) bit(1) defined pic;
  declare status (10,32) fixed decimal (1);
  declare changes bit(1);
  declare (i, j, k, m, n) fixed binary;
  m = hbound(image,1); n = hbound(image,2);
  call display; 
  /* Pixel labelling for pixels surrounding P1, co-ordinates (i,j). */
  /* P9 P2 P3 */
  /* P8 P1 P4 */
  /* P7 P6 P5 */
  do k = 1 to 10 until (^changes);
     changes = '0'b;
     /* Set conditions as follows: */
     /*   (0) The pixel is black and has eight neighbours */
     /*   (1) 2 < = B(P1) < = 6                           */
     /*   (2) A(P1) = 1                                   */
     /*   (3) At least one of P2 and P4 and P6 is white   */
     /*   (4) At least one of P4 and P6 and P8 is white   */
     status = -1;
     do i = 2 to m-1;
        do j = 2 to n-1;
           if image(i,j) then
              if B(i,j) >= 2 & B(i,j) <= 6 then
                 if A(i,j) = 1 then
                    if ^image(i-1,j) | ^image(i,j+1) | ^image(i+1,j) then
                       if ^image(i,j+1) | ^image(i+1,j) | ^image(i,j-1) then
                          status(i,j) = 4;
        end;
     end;
     /* Having determined a status for every bit in the image,   */
     /* change those bits to white.                              */
     do i = 2 to m-1;
        do j = 2 to n-1;
           if status(i,j) ^= -1 then do; image(i,j) = '0'b; changes = '1'b; end;
        end;
     end;
     /* Set conditions as follows: */
     /*   (0) The pixel is black and has eight neighbours */
     /*   (1) 2 < = B(P1) < = 6                           */
     /*   (2) A(P1) = 1                                   */
     /*   (3) At least one of P2 and P4 and P8 is white   */
     /*   (4) At least one of P2 and P6 and P8 is white   */
     status = -1;
     do i = 2 to m-1;
        do j = 2 to n-1;
           if image(i,j) then
              if B(i,j) >= 2 & B(i,j) <= 6 then
                 if A(i,j) = 1 then
                    if ^image(i-1,j) | ^image(i,j+1) | ^image(i,j-1) then
                       if ^image(i-1,j) | ^image(i+1,j) | ^image(i,j-1) then
                          status(i,j) = 4;
        end;
     end;
     /* Having determined a status for every bit in the image,   */
     /* change those bits to white.                              */
     do i = 2 to m-1;
        do j = 2 to n-1;
           if status(i,j) ^= -1 then do; image(i,j) = '0'b; changes = '1'b; end;
        end;
     end;
  end; /* of the "until" loop */
  put skip list ('Final image after ' || trim(k) || ' iterations:');
  call display;

display: procedure;

  declare (i, j) fixed binary;
  declare c character (1);
  do i = 1 to m;
     put skip edit ('row:', i) (A, F(3));
     do j = 1 to n;
        if image(i,j) then c = '.'; else c = ' ';
        put edit (c) (A);
     end;
  end;
  put skip;

end;

/* Returns the number of transitions from white to black from P2 through P9 and P2. */ A: procedure (i,j) returns (fixed binary);

  declare (i,j) fixed binary nonassignable;
  declare n(2:10) bit(1);
  n(2)  = image(i-1,j);  n(3) = image(i-1,j+1);
  n(4)  = image(i, j+1); n(5) = image(i+1,j+1);
  n(6)  = image(i+1,j);  n(7) = image(i+1,j-1);
  n(8)  = image(i,j-1);  n(9) = image(i-1,j-1);
  n(10) = image(i-1,j);
  
  return ( tally(string(n), '01'b) );

end A;

/* Count the pixel neighbors of P1 that are black */ B: procedure (i, j) returns (fixed binary);

  declare (i,j) fixed binary nonassignable;
  declare s fixed binary;
  s = image(i-1,j-1) + image(i-1,j) + image(i-1,j+1);
  s = s + image(i,j-1) + image(i,j+1);
  return ( s + image(i+1,j-1) + image(i+1,j) + image(i+1,j+1) );

end B;

end zhang;</lang>

[Initial configuration:]
row:  1                                
row:  2 .........       ........       
row:  3 ...   ....     ....  ....      
row:  4 ...    ...     ...    ...      
row:  5 ...   ....     ...             
row:  6 .........      ...             
row:  7 ... ....       ...    ...      
row:  8 ...  ....  ... ....  .... ...  
row:  9 ...   .... ...  ........  ...  
row: 10                                

[Intermeduiate "images" omitted]

Final image after 3 iterations: 
row:  1                                
row:  2  .......         ......        
row:  3  .     .        ..             
row:  4  .      .       .              
row:  5  .     .        .              
row:  6  ..... .        .              
row:  7       ..        .              
row:  8        .    .   ..    ..   .   
row:  9         .         ....         
row: 10

Second image:
Image to be thinned: 
row  1:                         
row  2:  ...............        
row  3: ..................      
row  4:  ..................     
row  5:     ....       .....    
row  6:     ....        .....   
row  7:     ....         .....  
row  8:     ....         .....  
row  9:     ....        ......  
row 10:     ....        .....   
row 11:     ....       .....    
row 12:     ....      .....     
row 13:     ....     .....      
row 14:     .............       
row 15:     ..............      
row 16:     ...............     
row 17:     ....      ......    
row 18:     ....       ......   
row 19:     ....        .....   
row 20:     ....        ......  
row 21:     ....         .....  
row 22:     ....         .....  
row 23:     ....        ......  
row 24:     ....       ......   
row 25:  ...................    
row 26: ...................     
row 27:  .................      
row 28:                         

Final image after 3 iterations: 
row  1:                         
row  2:                         
row  3:   ..............        
row  4:      .          .       
row  5:      .           .      
row  6:      .            .     
row  7:      .            .     
row  8:      .            .     
row  9:      .            .     
row 10:      .           ..     
row 11:      .           .      
row 12:      .          .       
row 13:      .          .       
row 14:      .         .        
row 15:      ...........        
row 16:      .          .       
row 17:      .          ..      
row 18:      .           .      
row 19:      .            .     
row 20:      .            .     
row 21:      .            .     
row 22:      .            .     
row 23:      .            .     
row 24:      .           ..     
row 25:      .          ..      
row 26:   ... ...........       
row 27:                         
row 28:

Python

Several input images are converted. <lang python># -*- coding: utf-8 -*-

  1. Example from this blog post.

beforeTxt = \ 1100111 1100111 1100111 1100111 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1111110 0000000\

  1. Thanks to this site and vim for these next two examples

smallrc01 = \ 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000\

rc01 = \ 00000000000000000000000000000000000000000000000000000000000 01111111111111111100000000000000000001111111111111000000000 01111111111111111110000000000000001111111111111111000000000 01111111111111111111000000000000111111111111111111000000000 01111111100000111111100000000001111111111111111111000000000 00011111100000111111100000000011111110000000111111000000000 00011111100000111111100000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111111111111110000000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000011111110000000111111000000000 01111111100000111111100000000001111111111111111111000000000 01111111100000111111101111110000111111111111111111011111100 01111111100000111111101111110000001111111111111111011111100 01111111100000111111101111110000000001111111111111011111100 00000000000000000000000000000000000000000000000000000000000\

def intarray(binstring):

   Change a 2D matrix of 01 chars into a list of lists of ints
   return [[1 if ch == '1' else 0 for ch in line] 
           for line in binstring.strip().split()]

def chararray(intmatrix):

   Change a 2d list of lists of 1/0 ints into lines of 1/0 chars
   return '\n'.join(.join(str(p) for p in row) for row in intmatrix)

def toTxt(intmatrix):

   Change a 2d list of lists of 1/0 ints into lines of '#' and '.' chars
   return '\n'.join(.join(('#' if p else '.') for p in row) for row in intmatrix)

def neighbours(x, y, image):

   Return 8-neighbours of point p1 of picture, in order
   i = image
   x1, y1, x_1, y_1 = x+1, y-1, x-1, y+1
   #print ((x,y))
   return [i[y1][x],  i[y1][x1],   i[y][x1],  i[y_1][x1],  # P2,P3,P4,P5
           i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1]]  # P6,P7,P8,P9

def transitions(neighbours):

   n = neighbours + neighbours[0:1]    # P2, ... P9, P2
   return sum((n1, n2) == (0, 1) for n1, n2 in zip(n, n[1:]))

def zhangSuen(image):

   changing1 = changing2 = [(-1, -1)]
   while changing1 or changing2:
       # Step 1
       changing1 = []
       for y in range(1, len(image) - 1):
           for x in range(1, len(image[0]) - 1):
               P2,P3,P4,P5,P6,P7,P8,P9 = n = neighbours(x, y, image)
               if (image[y][x] == 1 and    # (Condition 0)
                   P4 * P6 * P8 == 0 and   # Condition 4
                   P2 * P4 * P6 == 0 and   # Condition 3
                   transitions(n) == 1 and # Condition 2
                   2 <= sum(n) <= 6):      # Condition 1
                   changing1.append((x,y))
       for x, y in changing1: image[y][x] = 0
       # Step 2
       changing2 = []
       for y in range(1, len(image) - 1):
           for x in range(1, len(image[0]) - 1):
               P2,P3,P4,P5,P6,P7,P8,P9 = n = neighbours(x, y, image)
               if (image[y][x] == 1 and    # (Condition 0)
                   P2 * P6 * P8 == 0 and   # Condition 4
                   P2 * P4 * P8 == 0 and   # Condition 3
                   transitions(n) == 1 and # Condition 2
                   2 <= sum(n) <= 6):      # Condition 1
                   changing2.append((x,y))
       for x, y in changing2: image[y][x] = 0
       #print changing1
       #print changing2
   return image
           

if __name__ == '__main__':

   for picture in (beforeTxt, smallrc01, rc01):
       image = intarray(picture)
       print('\nFrom:\n%s' % toTxt(image))
       after = zhangSuen(image)
       print('\nTo thinned:\n%s' % toTxt(after))</lang>
Output:

Just the example asked for in the task:

From:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

To thinned:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

Racket

<lang racket>#lang racket (define (img-01string->vector str)

 (define lines (regexp-split "\n" str))
 (define h (length lines))
 (define w (if (zero? h) 0 (string-length (car lines))))
 (define v (for*/vector #:length (* w h)
             ((l (in-list lines)) (p (in-string l)))
             (match p (#\0 0) (#\1 1) (#\# 1) (#\. 0))))
 (values v h w))
Task (2) asks for "or an ASCII-art image of space/non-space characters."
Spaces don't really impress where the borders are, so we'll use a dot.

(define cell->display-char (match-lambda (0 ".") (1 "#") (else "?")))

(define (display-img v w)

 (for ((p (in-vector v)) (col (in-naturals)))
   (printf "~a" (cell->display-char p))
   (when (= (modulo col w) (sub1 w)) (newline))))
returns vector of ([P1's idx] P1 P2 ... P9)

(define (Pns v w r c)

 (define i (+ c (* r w)))
 (define-syntax-rule (vi+ x) (vector-ref v (+ i x)))
 (define-syntax-rule (vi- x) (vector-ref v (- i x)))
 (vector i (vi+ 0) (vi- w) (vi+ (- 1 w))
         (vi+ 1) (vi+ (+ w 1)) (vi+ w)
         (vi+ (- w 1)) (vi- 1) (vi- (+ w 1))))
Second argument to in-vector is the start offset;
We skip offset 0 (idx) and 1 (P1)

(define (B Ps) (for/sum ((Pn (in-vector Ps 2))) Pn))

(define (A Ps)

 (define P2 (vector-ref Ps 2))
 (define-values (rv _)
   (for/fold ((acc 0) (Pn-1 P2))
     ((Pn (in-sequences (in-vector Ps 3) (in-value P2))))
     (values (+ acc (if (and (= 0 Pn-1) (= 1 Pn)) 1 0)) Pn)))
 rv)

(define-syntax-rule (not-all-black? Pa Pb Pc) (zero? (* Pa Pb Pc))) (define (z-s-thin v h w)

 ; return idx when thin necessary, #f otherwise
 (define (thin? Ps n/bour-check-1 n/bour-check-2)
   (match-define (vector idx P1 P2 _ P4 _ P6 _ P8 _) Ps)
   (and (= P1 1) (<= 2 (B Ps) 6) (= (A Ps) 1)
        (n/bour-check-1 P2 P4 P6 P8)
        (n/bour-check-2 P2 P4 P6 P8)
        idx))
 
 (define (has-white?-246 P2 P4 P6 P8) (not-all-black? P2 P4 P6))
 (define (has-white?-468 P2 P4 P6 P8) (not-all-black? P4 P6 P8))
 (define (has-white?-248 P2 P4 P6 P8) (not-all-black? P2 P4 P8))
 (define (has-white?-268 P2 P4 P6 P8) (not-all-black? P2 P6 P8))
 (define (step-n even-Pn-check-1 even-Pn-check-2)
   (for*/list ((r (in-range 1 (- h 1)))
               (c (in-range 1 (- w 1)))
               (idx (in-value (thin? (Pns v w r c)
                                     even-Pn-check-1
                                     even-Pn-check-2)))
               #:when idx) idx))
 
 (define (step-1) (step-n has-white?-246 has-white?-468))
 (define (step-2) (step-n has-white?-248 has-white?-268))  
 (define (inner-z-s-thin)
   (define changed-list-1 (step-1))
   (for ((idx (in-list changed-list-1))) (vector-set! v idx 0))
   (define changed-list-2 (step-2))
   (for ((idx (in-list changed-list-2))) (vector-set! v idx 0))
   (unless (and (null? changed-list-1) (null? changed-list-2)) (inner-z-s-thin)))  
 (inner-z-s-thin))

(define (read-display-thin-display-image img-str)

 (define-values (v h w) (img-01string->vector img-str))
 (printf "Original image:~%") (display-img v w)
 (z-s-thin v h w)
 (printf "Thinned image:~%") (display-img v w))

(define e.g.-image #<<EOS 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 EOS

 )

(define e.g.-image/2 #<<EOS

    1. ..###
    2. ..###
    3. ..###
    4. ..###
    5. ..##.
    6. ..##.
    7. ..##.
    8. ..##.
    9. ..##.
    10. ..##.
    11. ..##.
    12. ..##.
            1. .

....... EOS

 )

(module+ main

 ; (read-display-thin-display-image e.g.-image/2)
 ; (newline)
 (read-display-thin-display-image e.g.-image))</lang>
Output:

Only the requested image is output:

Original image:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................
Thinned image:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

REXX

<lang rexx>/*REXX program thins a NxM character grid using the Zhang-Suen thinning algorithm.*/ parse arg iFID .; if iFID== then iFID='ZHANG_SUEN.DAT' white=' '; @.=white /* [↓] read the input character grid. */

          do row=1  while lines(iFID)\==0;  _=linein(iFID)
          _=translate(_,,.0);               cols.row=length(_)
              do col=1  for cols.row;  @.row.col=substr(_,col,1)
              end   /*col*/                     /* [↑]  assign whole row of characters.*/
          end       /*row*/

rows=row-1 /*adjust ROWS because of the DO loop. */ call show@ 'input file ' iFID " contents:" /*display show the input character grid*/

 do  until  changed==0;    changed=0            /*keep slimming until we're finished.  */
      do step=1  for 2                          /*keep track of  step one  or step two.*/
        do     r=1  for rows                    /*process all the  rows  and  columns. */
            do c=1  for cols.r;  !.r.c=@.r.c    /*assign an alternate grid.            */
            if r==1|r==rows|c==1|c==cols.r  then iterate             /*is this an edge?*/
            if @.r.c==white  then iterate       /*Is the character white?  Then skip it*/
            call Ps; b=b()                      /*define   Ps   and also   "b".        */
            if b<2 | b>6     then iterate       /*is   B   within the range ?          */
            if a()\==1       then iterate       /*count the number of transitions.     */    /*  ╔══╦══╦══╗  */
            if step==1       then if (p2 & p4 & p6)  |  p4 & p6 & p8  then iterate           /*  ║p9║p2║p3║  */
            if step==2       then if (p2 & p4 & p8)  |  p2 & p6 & p8  then iterate           /*  ╠══╬══╬══╣  */
            !.r.c=white                         /*set a grid character to  white.      */    /*  ║p8║p1║p4║  */
            changed=1                           /*indicate a character was changed.    */    /*  ╠══╬══╬══╣  */
            end   /*c*/                                                                      /*  ║p7║p6║p5║  */
        end       /*r*/                                                                      /*  ╚══╩══╩══╝  */
      call copy!                                /*copy the alternate to working grid.  */
      end         /*step*/
 end              /*until changed==0*/

call show@ 'slimmed output:' /*display the slimmed character grid. */ exit /*stick a fork in it, we're all done. */ /*─────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ a: return (\p2==p3&p3)+(\p3==p4&p4)+(\p4==p5&p5)+(\p5==p6&p6)+(\p6==p7&p7)+(\p7==p8&p8)+(\p8==p9&p9)+(\p9==p2&p2) b: return p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 copy!: do r=1 for rows; do c=1 for cols.r; @.r.c=!.r.c; end; end; return show@: say; say arg(1); say; do r=1 for rows; _=; do c=1 for cols.r; _=_ || @.r.c; end; say _; end; return /*──────────────────────────────────────────────────────────────────────────────────────*/ Ps: rm=r-1; rp=r+1; cm=c-1; cp=c+1 /*calculate some shortcuts.*/

    p2=@.rm.c\==white; p3=@.rm.cp\==white; p4=@.r.cp\==white; p5=@.rp.cp\==white
    p6=@.rp.c\==white; p7=@.rp.cm\==white; p8=@.r.cm\==white; p9=@.rm.cm\==white; return</lang>

output   when using the default input:

input file  ZHANG_SUEN.DAT  contents:


 #################                   #############
 ##################               ################
 ###################            ##################
 ########     #######          ###################
   ######     #######         #######       ######
   ######     #######        #######
   #################         #######
   ################          #######
   #################         #######
   ######     #######        #######
   ######     #######        #######
   ######     #######         #######       ######
 ########     #######          ###################
 ########     ####### ######    ################## ######
 ########     ####### ######      ################ ######
 ########     ####### ######         ############# ######


slimmed output:



    # ##########                       #######
     ##        #                   ####       #
     #          #                 ##
     #          #                #
     #          #                #
     #          #                #
     ############               #
     #          #               #
     #          #                #
     #          #                #
     #          #                #
     #                            ##
     #                             ############
                       ###                          ###

output   when using the default input:   zhang_suen2.dat

input file  zhang_suen2.dat  contents:


 111111111       11111111
 111   1111     1111  1111
 111    111     111    111
 111   1111     111
 111111111      111
 111 1111       111    111
 111  1111  111 1111  1111 111
 111   1111 111  11111111  111


slimmed output:


  1111111         111111
  1     1        11
  1      1       1
  1     1        1
  11111 1        1
       11        1
        1    1   11    11   1
         1         1111

Ruby

First I define a function zs which given a point and its eight neighbours returns 1 if the point may be culled, 0 otherwise. g indicates if this is step 1 or step 2 in the task description. zs may be changed to remember the step independently if the reader does not wish to explore the algorithm.

<lang ruby>class ZhangSuen

 NEIGHBOUR8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]  # 8 neighbors
 CIRCULARS = NEIGHBOUR8 + [NEIGHBOUR8.first]                       # P2, ... P9, P2
 def initialize(str, black="#")
   s1 = str.each_line.map{|line| line.chomp.each_char.map{|c| c==black ? 1 : 0}}
   s2 = s1.map{|line| line.map{0}}
   xrange = 1 ... s1.size-1
   yrange = 1 ... s1[0].size-1
   printout(s1)
   begin
     @r = 0
     xrange.each{|x| yrange.each{|y| s2[x][y] = s1[x][y] - zs(s1,x,y,1)}}  # Step 1
     xrange.each{|x| yrange.each{|y| s1[x][y] = s2[x][y] - zs(s2,x,y,0)}}  # Step 2
   end until @r == 0
   printout(s1)
 end
 def zs(ng,x,y,g)
   return 0 if ng[x][y] == 0 or                                    # P1
              (ng[x-1][y] + ng[x][y+1] + ng[x+g][y-1+g]) == 3 or   # P2, P4, P6/P8
              (ng[x-1+g][y+g] + ng[x+1][y] + ng[x][y-1]) == 3      # P4/P2, P6, P8
   bp1 = NEIGHBOUR8.inject(0){|res,(i,j)| res += ng[x+i][y+j]}     # B(P1)
   return 0 if bp1 < 2 or 6 < bp1
   ap1 = CIRCULARS.map{|i,j| ng[x+i][y+j]}.each_cons(2).count{|a,b| a<b}   # A(P1)
   return 0 if ap1 != 1
   @r = 1
 end
 def printout(image)
   puts image.map{|row| row.map{|col| " #"[col]}.join}
 end

end

str = <<EOS ........................................................... .#################...................#############......... .##################...............################......... .###################............##################......... .########.....#######..........###################......... ...######.....#######.........#######.......######......... ...######.....#######........#######....................... ...#################.........#######....................... ...################..........#######....................... ...#################.........#######....................... ...######.....#######........#######....................... ...######.....#######........#######....................... ...######.....#######.........#######.......######......... .########.....#######..........###################......... .########.....#######.######....##################.######.. .########.....#######.######......################.######.. .########.....#######.######.........#############.######.. ........................................................... EOS

ZhangSuen.new(str)

task_example = <<EOS 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 EOS

ZhangSuen.new(task_example, "1")</lang>

Output:

(only the requested result is shown here)

                                
  #######         ######        
  #     #        ##             
  #      #       #              
  #     #        #              
  ##### #        #              
       ##        #              
        #    #   ##    ##   #   
         #         ####         
                              

Sidef

Translation of: Ruby

<lang ruby>class ZhangSuen(str, black="1") {

 const NEIGHBOURS = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]  # 8 neighbors
 const CIRCULARS = (NEIGHBOURS + [NEIGHBOURS.first])                         # P2, ... P9, P2
 has r = 0
 has image = [[]]
 method init {
   var s1 = str.lines.map{|line| line.chars.map{|c| c==black ? 1 : 0 }}
   var s2 = s1.len.of { s1[0].len.of(0) }
   var xr = range(1, s1.end-1)
   var yr = range(1, s1[0].end-1)
   do {
       r = 0
       xr.each{|x| yr.each{|y| s2[x][y] = (s1[x][y] - self.zs(s1,x,y,1)) }}  # Step 1
       xr.each{|x| yr.each{|y| s1[x][y] = (s2[x][y] - self.zs(s2,x,y,0)) }}  # Step 2
   } while !r.is_zero
   image = s1
 }
 method zs(ng,x,y,g) {
      (ng[x][y] == 0)                                   ->
   || (ng[x-1][y] + ng[x][y+1] + ng[x+g][y+g - 1] == 3) ->
   || (ng[x+g - 1][y+g] + ng[x+1][y] + ng[x][y-1] == 3) ->
   && return 0
   var bp1 = NEIGHBOURS.map {|p| ng[x+p[0]][y+p[1]] }.sum  # B(P1)
   return 0 if ((bp1 < 2) || (6 < bp1))
   var ap1 = 0
   CIRCULARS.map {|p| ng[x+p[0]][y+p[1]] }.each_cons(2, {|a,b|
       ++ap1 if (a < b)                                    # A(P1)
   })
   return 0 if (ap1 != 1)
   r = 1
 }
 method display {
   image.each{|row| say row.map{|col| col ? '#' : ' ' }.join }
 }

}

var text = <<EOS 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 EOS

ZhangSuen.new(text, black: "1").display</lang>

Output:
                                
  #######         ######        
  #     #        ##             
  #      #       #              
  #     #        #              
  ##### #        #              
       ##        #              
        #    #   ##    ##   #   
         #         ####         
                                

Tcl

Only the single image is converted. <lang tcl># -*- coding: utf-8 -*-

set data { 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 } proc zhang-suen data {

   set data [string trim $data]
   while 1 {

set n 0 incr n [step 1 data] incr n [step 2 data] if !$n break

   }
   return $data

} proc step {number _data} {

   upvar 1 $_data data
   set xmax [string length [lindex $data 0]]
   set ymax [llength $data]
   switch -- $number {

1 {set cond {(!$P2 || !$P4 || !$P6) && (!$P4 || !$P6 || !$P8)}} 2 {set cond {(!$P2 || !$P4 || !$P8) && (!$P2 || !$P6 || !$P8)}}

   }
   set hits {}
   for {set x 1} {$x < $xmax-1} {incr x} {

for {set y 1} {$y < $ymax-1} {incr y} { if {[getpix $data $x $y] == 1} { set b [B $data $x $y] if {2 <= $b && $b <= 6} { if {[A $data $x $y] == 1} { set P2 [getpix $data $x [expr $y-1]] set P4 [getpix $data [expr $x+1] $y] set P6 [getpix $data $x [expr $y+1]] set P8 [getpix $data [expr $x-1] $y] if $cond {lappend hits $x $y} } } } }

   }
   foreach {x y} $hits {set data [setpix $data $x $y 0]}
   return [llength $hits]

} proc A {data x y} {

   set res 0
   set last [getpix $data $x [expr $y-1]]
   foreach {dx dy} {1 -1  1 0  1 1  0 1  -1 1  -1 0  -1 -1  0 -1} {

set this [getpix $data [expr $x+$dx] [expr $y+$dy]] if {$this > $last} {incr res} set last $this

   }
   return $res

} proc B {data x y} {

   set res 0
   foreach {dx dy} {1 -1  1 0  1 1  0 1  -1 1  -1 0  -1 -1  0 -1} {

incr res [getpix $data [expr $x+$dx] [expr $y+$dy]]

   }
   return $res

} proc getpix {data x y} {

   string index [lindex $data $y] $x

} proc setpix {data x y val} {

   set row [lindex $data $y]
   lset data $y [string replace $row $x $x $val]
   return $data

} puts [string map {1 @ 0 .} [join [zhang-suen $data] \n]]</lang>

Output:
................................
..@@@@@@@.........@@@@@@........
..@.....@........@@.............
..@......@.......@..............
..@.....@........@..............
..@@@@@.@........@..............
.......@@........@..............
........@....@...@@....@@...@...
.........@.........@@@@.........
................................