Zero to the zero power: Difference between revisions

m
m (split some lines in the task's preamble, added some words for clarification, increased indentation.)
(97 intermediate revisions by 60 users not shown)
Line 1:
{{task}}
[[Category:Simple]]
{{omit from|6502 Assembly|There is no built in multiplication, let alone exponentiation. Thus the outcome is decided by the programmer not the language.}}
 
{{omit from|8080 Assembly|See 6502 Assembly.}}
{{omit from|Computer/zero Assembly|See 6502 Assembly.}}
{{omit from|Z80 Assembly|See 6502 Assembly.}}
{{omit from|68000 Assembly|There is no built-in exponentiation so the programmer's implementation decides the outcome.}}
{{omit from|8086 Assembly|There is no built-in exponentiation so the programmer's implementation decides the outcome.}}
{{omit from|MIPS Assembly|There is no built-in exponentiation so the programmer's implementation decides the outcome.}}
{{omit from|ARM Assembly|See 8086 Assembly.}}
Some computer programming languages are not exactly consistent   (with other computer programming languages)  
<br>when &nbsp; ''raising zero to the zeroth power'': &nbsp; &nbsp; <b><big>0<sup>0</sup></big></b>
Line 22 ⟶ 29:
 
;See also:
* The Wiki entry: [[wp:Exponentiation#Zero_to_the_power_of_zero#History|Zero to the power of zero]].
* The Wiki entry: [[wp:ExponentiationZero_to_the_power_of_zero#History_of_differing_points_of_view|History|Zero ofto differingthe pointspower of viewzero: History]].
* The MathWorld™ entry: [http://mathworld.wolfram.com/ExponentLaws.html exponent laws].
** Also, in the above MathWorld™ entry, see formula ('''9'''): <math>x^0=1</math>.
* The OEIS entry: [https://oeis.org/wiki/The_special_case_of_zero_to_the_zeroth_power The special case of zero to the zeroth power]
<br><br>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">print(0 ^ 0)</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
=={{header|8th}}==
<langsyntaxhighlight lang="forth">
0 0 ^ .
</syntaxhighlight>
</lang>
{{out}}
1
=={{headeromit from|ARMAArch64 Assembly}}==
 
{{omit from|ARM Assembly}}
 
=={{header|AutoHotkeyAction!}}==
{{libheader|Action! Tool Kit}}
<lang AutoHotkey>MsgBox % 0 ** 0</lang>
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
 
PROC Main()
REAL z,res
 
Put(125) PutE() ;clear the screen
 
IntToReal(0,z)
Power(z,z,res)
 
PrintR(z) Print("^")
PrintR(z) Print("=")
PrintRE(res)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Zero_to_the_zero_power.png Screenshot from Atari 8-bit computer]
<pre>1</pre>
<pre>
0^0=.9999999998
</pre>
 
=={{header|Ada}}==
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO, Ada.Integer_Text_IO, Ada.Long_Integer_Text_IO,
Ada.Long_Long_Integer_Text_IO, Ada.Float_Text_IO, Ada.Long_Float_Text_IO,
Ada.Long_Long_Float_Text_IO;
Line 75 ⟶ 108:
Put (LLF ** Zero); New_Line;
end Test5;
</syntaxhighlight>
</lang>
{{out}}
<pre>Integer 0^0 = 1
Line 87 ⟶ 120:
=={{header|ALGOL 68}}==
{{works with|ALGOL 68G|Any - tested with release 2.6.win32}}
<langsyntaxhighlight lang="algol68">print( ( 0 ^ 0, newline ) )
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 95 ⟶ 128:
 
=={{header|APL}}==
<langsyntaxhighlight lang="apl"> 0*0
1</langsyntaxhighlight>
 
=={{header|AppleScript}}==
<syntaxhighlight lang="applescript"> return 0 ^ 0</syntaxhighlight>
 
{{output}}
<syntaxhighlight lang="applescript">1.0</syntaxhighlight>
 
=={{header|Applesoft BASIC}}==
<pre>]? 0^0
1</pre>
 
{{omit from|ARM Assembly}}
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">print 0 ^ 0
print 0.0 ^ 0</syntaxhighlight>
 
{{out}}
 
<pre>1
1.0</pre>
 
=={{header|Asymptote}}==
<syntaxhighlight lang="asymptote">write("0 ^ 0 = ", 0 ** 0);</syntaxhighlight>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">MsgBox % 0 ** 0</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">
<lang AWK>
# syntax: GAWK -f ZERO_TO_THE_ZERO_POWER.AWK
BEGIN {
Line 109 ⟶ 168:
exit(0)
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 116 ⟶ 175:
 
=={{header|BaCon}}==
<syntaxhighlight lang ="freebasic">PRINT POW(0, 0)</langsyntaxhighlight>
 
{{out}}
<pre>prompt$ ./zerotothezero
1</pre>
 
=={{header|BASIC}}==
==={{header|BASIC256}}===
<syntaxhighlight lang="basic256">print "0 ^ 0 = "; 0 ^ 0</syntaxhighlight>
 
==={{header|Chipmunk Basic}}===
<syntaxhighlight lang="qbasic">10 print "0 ^ 0 = ";0^0</syntaxhighlight>
 
==={{header|MSX Basic}}===
<syntaxhighlight lang="qbasic">10 PRINT "0 ^ 0 = "; 0 ^ 0</syntaxhighlight>
 
==={{header|QBasic}}===
{{works with|QBasic|1.1}}
{{works with|QuickBasic|4.5}}
<syntaxhighlight lang="qbasic">PRINT "0 ^ 0 ="; 0 ^ 0</syntaxhighlight>
 
==={{header|Run BASIC}}===
{{works with|Just BASIC}}
{{works with|Liberty BASIC}}
<syntaxhighlight lang="lb">print "0 ^ 0 = "; 0 ^ 0</syntaxhighlight>
 
==={{header|True BASIC}}===
{{works with|QBasic}}
<syntaxhighlight lang="qbasic">PRINT "0 ^ 0 ="; 0 ^ 0
END</syntaxhighlight>
 
==={{header|XBasic}}===
{{works with|Windows XBasic}}
<syntaxhighlight lang="xbasic">PROGRAM "progname"
VERSION "0.0000"
 
IMPORT "xma" 'required for POWER
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
PRINT "0 ^ 0 = "; 0 ** 0
PRINT "0 ^ 0 = "; POWER(0, 0)
END FUNCTION
END PROGRAM</syntaxhighlight>
 
==={{header|ZX Spectrum Basic}}===
<syntaxhighlight lang="zxbasic">PRINT 0↑0</syntaxhighlight>
 
{{out}}
<pre>
1
 
0 OK, 0:1
</pre>
 
=={{header|BBC BASIC}}==
<syntaxhighlight lang="bbcbasic"> PRINT 0^0</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
=={{header|Bc}}==
<syntaxhighlight lang="bc">
<lang Bc>
0 ^ 0
</syntaxhighlight>
</lang>
{{out}}
1
Line 134 ⟶ 251:
Note that the result is potentially dependent on the underlying language of the interpreter, but all those tested so far have returned 1. Interpreters that don't support '''Befunge-98''', or don't support this fingerprint, should just terminate (possibly with a warning).
 
<langsyntaxhighlight lang="befunge">"PDPF"4#@(0F0FYP)@</langsyntaxhighlight>
 
{{out}}
<pre>1.000000</pre>
 
=={{header|Binary Lambda Calculus}}==
 
In lambda calculus, <code>\n. n n</code> is a function mapping a Church numeral n to the Church numeral n^n. The following BLC program computes this for n=0 by using its empty input as a Church numeral (since nil coincides with Church numeral 0), and outputting in unary (i.e as a string of 0^0 1s), as generated from https://github.com/tromp/AIT/blob/master/rosetta/exp00.lam :
 
<pre>0001010110100000010110111011010</pre>
 
Output:
 
<pre>1</pre>
 
=={{header|BQN}}==
BQN doesn't specify the details of arithmetic functions; existing implementations use IEEE doubles and the <code>pow</code> function, giving a result of 1.
<syntaxhighlight lang="bqn">0⋆0</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Bracmat}}==
<syntaxhighlight lang ="bracmat">0^0</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Burlesque}}==
<langsyntaxhighlight lang="blsq">
blsq ) 0.0 0.0?^
1.0
blsq ) 0 0?^
1
</syntaxhighlight>
</lang>
 
=={{header|BBC BASIC}}==
<lang bbcbasic> PRINT 0^0</lang>
 
{{out}}
<pre>
1
</pre>
 
=={{header|C}}==
Line 164 ⟶ 289:
This example uses the standard <code>pow</code> function in the math library.
0^0 is given as 1.
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <math.h>
#include <complex.h>
Line 174 ⟶ 299:
printf("0+0i ^ 0+0i = %f+%fi\n", creal(c), cimag(c));
return 0;
}</langsyntaxhighlight>
 
{{out}}
Line 180 ⟶ 305:
0 ^ 0 = 1.000000
0+0i ^ 0+0i = nan+nani
</pre>
 
=={{header|C++}}==
<lang cpp>#include <iostream>
#include <cmath>
#include <complex>
 
int main()
{
std::cout << "0 ^ 0 = " << std::pow(0,0) << std::endl;
std::cout << "0+0i ^ 0+0i = " <<
std::pow(std::complex<double>(0),std::complex<double>(0)) << std::endl;
return 0;
}</lang>
 
{{out}}
<pre>
0 ^ 0 = 1
0+0i ^ 0+0i = (nan,nan)
</pre>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
 
namespace ZeroToTheZeroeth
Line 214 ⟶ 320:
}
}
}</langsyntaxhighlight>
 
{{out}}
<pre>
0^0 is 1
</pre>
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">#include <iostream>
#include <cmath>
#include <complex>
 
int main()
{
std::cout << "0 ^ 0 = " << std::pow(0,0) << std::endl;
std::cout << "0+0i ^ 0+0i = " <<
std::pow(std::complex<double>(0),std::complex<double>(0)) << std::endl;
return 0;
}</syntaxhighlight>
 
{{out}}
<pre>
0 ^ 0 = 1
0+0i ^ 0+0i = (nan,nan)
</pre>
 
=={{header|Caché ObjectScript}}==
<langsyntaxhighlight Cachélang="caché ObjectScriptobjectscript">ZEROPOW
// default behavior is incorrect:
set (x,y) = 0
Line 231 ⟶ 356:
w !,"0 to the 0th power (right): "_(x**y)
quit</langsyntaxhighlight>
 
{{out}}<pre>SAMPLES>do ^ZEROPOW
Line 248 ⟶ 373:
1.0
</pre>
 
=={{header|CLU}}==
The CLU reference manual doesn't mention the issue, so the fact that it returns
1 in my case could just be an implementation detail.
 
<syntaxhighlight lang="clu">start_up = proc ()
zz_int: int := 0 ** 0
zz_real: real := 0.0 ** 0.0
po: stream := stream$primary_output()
stream$putl(po, "integer 0**0: " || int$unparse(zz_int))
stream$putl(po, "real 0**0: " || f_form(zz_real, 1, 1))
end start_up</syntaxhighlight>
{{out}}
<pre>integer 0**0: 1
real 0**0: 1.0</pre>
 
=={{header|COBOL}}==
<langsyntaxhighlight lang="cobol">identification division.
program-id. zero-power-zero-program.
data division.
Line 258 ⟶ 399:
compute n = 0**0.
display n upon console.
stop run.</langsyntaxhighlight>
{{out}}
<pre>1</pre>
Line 264 ⟶ 405:
=={{header|ColdFusion}}==
=== Classic tag based CFML ===
<langsyntaxhighlight lang="cfm">
<cfset zeroPowerTag = 0^0>
<cfoutput>"#zeroPowerTag#"</cfoutput>
</syntaxhighlight>
</lang>
{{Output}}
<pre>
Line 274 ⟶ 415:
 
=== Script Based CFML ===
<langsyntaxhighlight lang="cfm"><cfscript>
zeroPower = 0^0;
writeOutput( zeroPower );
</cfscript></langsyntaxhighlight>
{{Output}}
<pre>
1
</pre>
 
=={{header|Commodore BASIC}}==
 
Commodore computers use the up arrow key <span style="font-size: 140%; line-height: 50%;">&uarr;</span> as the exponent operator.
 
{{out}}
<pre>ready.
print 0&uarr;0
1
 
ready.
&#9608;</pre>
 
 
=={{header|Common Lisp}}==
<pre>> (expt 0 0)
1</pre>
 
=={{header|Crystal}}==
<syntaxhighlight lang="crystal">puts "Int32: #{0_i32**0_i32}"
puts "Negative Int32: #{-0_i32**-0_i32}"
puts "Float32: #{0_f32**0_f32}"
puts "Negative Float32: #{-0_f32**-0_f32}"</syntaxhighlight>
 
{{Output}}
<pre>Int32: 1
Negative Int32: 1
Float32: 1.0
Negative Float32: 1.0</pre>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">void main() {
import std.stdio, std.math, std.bigint, std.complex;
 
Line 299 ⟶ 465:
writeln("BigInt: ", 0.BigInt ^^ 0);
writeln("Complex: ", complex(0.0, 0.0) ^^ 0);
}</langsyntaxhighlight>
{{out}}
<pre>Int: 1
Line 309 ⟶ 475:
BigInt: 1
Complex: 1+0i</pre>
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">import 'dart:math';
 
void main() {
var resul = pow(0, 0);
print("0 ^ 0 = $resul");
}</syntaxhighlight>
{{out}}
<pre>0 ^ 0 = 1</pre>
 
=={{header|Dc}}==
<langsyntaxhighlight lang="dc">0 0^p
</syntaxhighlight>
</lang>
{{Output}}
<pre>
1
</pre>
 
=={{header|Delphi}}==
See [https://www.rosettacode.org/wiki/Zero_to_the_zero_power#Pascal Pascal].
 
=={{header|EasyLang}}==
 
<syntaxhighlight lang="text">print pow 0 0</syntaxhighlight>
 
=={{header|EchoLisp}}==
<langsyntaxhighlight lang="scheme">
;; trying the 16 combinations
;; all return the integer 1
Line 327 ⟶ 510:
(for* ((z1 zeroes) (z2 zeroes)) (write (expt z1 z2)))
→ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
</syntaxhighlight>
</lang>
 
=={{header|Eiffel}}==
<syntaxhighlight lang Eiffel="eiffel">print (0^0)</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Elena}}==
ELENA 46.x
<langsyntaxhighlight lang="elena">import extensions;
public program()
{
console.printLine("0^0 is ",0.power:(0))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 348 ⟶ 532:
=={{header|Elixir}}==
Elixir uses Erlang's <code>:math</code> for power operations and can handle zero to the zero power.
<syntaxhighlight lang="elixir">
<lang Elixir>
:math.pow(0,0)
</syntaxhighlight>
</lang>
 
{{out}}
1.0
=={{header|Emacs Lisp}}==
<syntaxhighlight lang="lisp">(expt 0 0)</syntaxhighlight>
{{out}}
1
 
=={{header|EMal}}==
<syntaxhighlight lang="emal">
writeLine(0 ** 0) # an integer
writeLine(0.0 ** 0.0) # a real
</syntaxhighlight>
{{out}}
<pre>
1
1.0
</pre>
 
=={{header|ERRE}}==
<syntaxhighlight lang="erre">
<lang ERRE>
.....
PRINT(0^0)
.....
</syntaxhighlight>
</lang>
{{out}}
<pre> 1
Line 372 ⟶ 571:
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: math.functions.private ; ! ^complex
0 0 ^
C{ 0 0 } C{ 0 0 } ^complex</langsyntaxhighlight>
{{out}}
<pre>--- Data stack:
NAN: 8000000000000
C{ NAN: 8000000000000 NAN: 8000000000000 }</pre>
 
 
=={{header|Falcon}}==
'''VBA/Python programmer's approach not sure if it's the most falconic way'''
<langsyntaxhighlight lang="falcon">
/* created by Aykayayciti Earl Lamont Montgomery
April 9th, 2018 */
Line 392 ⟶ 590:
> "z=", z
 
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 398 ⟶ 596:
[Finished in 0.2s]
</pre>
 
=={{header|Fermat}}==
<syntaxhighlight lang="fermat">0^0</syntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|Forth}}==
<syntaxhighlight lang ="forth">0e 0e f** f.</langsyntaxhighlight>
 
{{out}}
Line 407 ⟶ 609:
Of course in an embedded program we would be tempted to "pre-calculate" the answer :-)
 
<langsyntaxhighlight Forthlang="forth">: ^0 DROP 1 ;</langsyntaxhighlight>
 
{{Output}}
Line 416 ⟶ 618:
=={{header|Fortran}}==
 
<syntaxhighlight lang="fortran">
<lang Fortran>
program zero
double precision :: i, j
Line 428 ⟶ 630:
write(*,*) 'When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ', z1**z2
end program
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 437 ⟶ 639:
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
Print "0 ^ 0 ="; 0 ^ 0
Sleep</langsyntaxhighlight>
 
{{out}}
<pre>
0 ^ 0 = 1
</pre>
 
=={{header|Frink}}==
<syntaxhighlight lang="frink">println[0^0]</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
 
=={{header|FutureBasic}}==
<syntaxhighlight lang="futurebasic">window 1
 
print 0^0
 
HandleEvents</syntaxhighlight>
Output:
<pre>
1
</pre>
 
=={{header|Gambas}}==
'''[https://gambas-playground.proko.eu/?gist=7d505dbe89227e9b4423f92ef12d6829 Click this link to run this code]'''
<langsyntaxhighlight lang="gambas">Public Sub Main()
 
Print 0 ^ 0
 
End</langsyntaxhighlight>
Output:
<pre>
1
</pre>
 
=={{header|GAP}}==
<syntaxhighlight lang="gap">0^0;</syntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|Go}}==
Go does not have an exponentiation operator but has functions in the standard library for three types, float64, complex128, and big.Int.
As of Go 1.3, all are documented to return 1.
<langsyntaxhighlight lang="go">package main
 
import (
Line 476 ⟶ 702:
fmt.Println("big integer:", b.Exp(&b, &b, nil))
fmt.Println("complex: ", cmplx.Pow(0, 0))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 484 ⟶ 710:
</pre>
 
=={{header|FutureBasicGolfscript}}==
<syntaxhighlight lang="golfscript">0 0?</syntaxhighlight>
<lang futurebasic>
{{out}}
include "ConsoleWindow"
<pre>1</pre>
 
print 0^0
</lang>
Output:
<pre>
1
</pre>
 
=={{header|Groovy}}==
{{trans|Java}}
Test:
<syntaxhighlight lang ="groovy">println 0**0</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|GW-BASIC}}==
<syntaxhighlight lang="gwbasic">PRINT 0^0</syntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Data.Complex ( Complex((:+)) )
 
main =:: doIO ()
main = mapM_ print $ 0 ^ 0[
print $ 0. 0 ^ 0,
print $ 0.0 ^^ 0,
print $ 0 **^^ 0,
print $ (0 :+ 0) ^** 0,
print $ (0 :+ 0) **^ (0 :+ 0)</lang>,
(0 :+ 0) ** (0 :+ 0)
]</syntaxhighlight>
{{out}}
<pre>1
1
1.0
1.0
1.0
1.0 :+ 0.0
NaN1.0 :+ NaN0.0</pre>
</pre>
 
=={{header|HolyC}}==
<langsyntaxhighlight lang="holyc">F64 a = 0 ` 0;
Print("0 ` 0 = %5.3f\n", a);</langsyntaxhighlight>
 
{{out}}
Line 534 ⟶ 758:
 
"Works" in both languages:
<langsyntaxhighlight lang="unicon">procedure main()
write(0^0)
end</langsyntaxhighlight>
 
{{out}}
Line 552 ⟶ 776:
 
=={{header|J}}==
<langsyntaxhighlight lang="j"> 0 ^ 0
1</langsyntaxhighlight>
 
Note also that this is the multiplicative identity (which means that it's consistent with <code>1*0</code> representing <code>0^1</code> and with <code>1*0*0</code> representing <code>0^2</code> and with <code>1*0*0*0</code> representing <code>0^3</code> and with <code>1*2*2*2</code> representing <code>2^3</code> and so on. Also, this is the result of finding the product of an empty list:
 
<syntaxhighlight lang="J"> */''
1</syntaxhighlight>
 
(In <code><nowiki>*/''</nowiki></code> we're finding the product of a list which contains no characters. This is, of course, the same as the product of a list which contains no numbers when both lists contain neither. That said, characters are outside the domain of multiplication in J, so if the list had contained any characters the product would have been an error rather than a result.)
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">System.out.println(Math.pow(0, 0));</langsyntaxhighlight>
{{out}}
<pre>1.0</pre>
Line 564 ⟶ 795:
{{Works with|Node.js}}
In interactive mode:
<langsyntaxhighlight lang="javascript">> Math.pow(0, 0);
1</langsyntaxhighlight>
===exponentiation operator (**)===
<langsyntaxhighlight lang="javascript">> 0**0
1</langsyntaxhighlight>
 
=={{header|jq}}==
{{works with|jq|1.5}}
jq version 1.4 does not have a builtin "power" function. If it were to be defined
'''Also works with gojq and fq'''
using the exp and log builtins as 'log * y | exp', then 0 | power(0) would yield null, and therefore
<pre>
a definition that makes a special case of 0^0 should be considered, e.g.
$ jq -n 'pow(0;0)'
along the following lines:
1
<lang jq>def power(y): y as $y | if $y == 0 then 1 elif . == 0 then 0 else log * $y | exp end;</lang>
</pre>
 
It is also worth noting that in jq, gojq, and fq, `pow(0; infinite)` yields 0.
This definition will however be unsatisfactory for many purposes
because it does not maintain precision for integer values of the input (.) and y.
 
=={{header|Jsish}}==
<langsyntaxhighlight lang="javascript">puts(Math.pow(0,0));</langsyntaxhighlight>
{{out}}
<pre>1</pre>
Line 587 ⟶ 817:
=={{header|Julia}}==
Try all combinations of complex, float, rational, integer and boolean.
<syntaxhighlight lang="julia">using Printf
<lang Julia>const types = (Complex, Float64, Rational, Int, Bool)
 
const types = (Complex, Float64, Rational, Int, Bool)
 
for Tb in types, Te in types
Line 593 ⟶ 825:
r = zb ^ ze
@printf("%10s ^ %-10s = %7s ^ %-7s = %-12s (%s)\n", Tb, Te, zb, ze, r, typeof(r))
end</langsyntaxhighlight>
 
{{out}}
Line 623 ⟶ 855:
 
=={{header|K}}==
<syntaxhighlight lang="k">
<lang K>
0^0
1.0
</syntaxhighlight>
</lang>
 
=={{header|Klingphix}}==
<syntaxhighlight lang="klingphix">:mypower
dup not (
[ drop sign dup 0 equal [ drop 1 ] if ]
[ power ]
) if
;
0 0 mypower print nl
 
"End " input</syntaxhighlight>
{{out}}
<pre>1
End</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="kotlin">import kotlin.math.pow
<lang scala>// version 1.0.6
 
fun main(args: Array<String>) {
println("0 ^ .0 = ${Math.pow(0.0, 0.0)}")
}</langsyntaxhighlight>
 
{{out}}
<pre>
0 ^ 0 = 1.0
</pre>
 
=={{header|Lambdatalk}}==
<syntaxhighlight lang="scheme">
{pow 0 0}
-> 1
{exp 0 0}
-> 1
</syntaxhighlight>
 
=={{header|LDPL}}==
<syntaxhighlight lang="ldpl">data:
x is number
 
procedure:
raise 0 to 0 in x
display x lf
</syntaxhighlight>
{{out}}
<pre>
1
</pre>
 
=={{header|Liberty BASIC}}==
<syntaxhighlight lang="lb">
'********
print 0^0
'********
</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Locomotive Basic}}==
 
<syntaxhighlight lang="locobasic">print 0🠅0</syntaxhighlight>
{{out}}
<pre> 1</pre>
 
=={{header|Lua}}==
No need to try different data types or with / without decimal points as all numbers in Lua are stored in double-precision floating-point format.
<syntaxhighlight lang Lua="lua">print(0^0)</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|M2000 Interpreter}}==
M2000 use ** and ^ for power.
<syntaxhighlight lang="m2000 interpreter">
<lang M2000 Interpreter>
Module Checkit {
x=0
Line 654 ⟶ 938:
}
Checkit
</syntaxhighlight>
</lang>
 
 
=={{header|Maple}}==
<syntaxhighlight lang Maple="maple">0^0</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
However, for consistency with IEEE-754 numerics, we also have a NaN result for the equivalent floating-point exponentiation:
<syntaxhighlight lang Maple="maple">0^0.0</langsyntaxhighlight>
{{out}}
<pre>Float(undefined)</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang Mathematica="mathematica">0^0</langsyntaxhighlight>
{{out}}
<pre>Indeterminate</pre>
 
=={{header|MATLAB}} / {{header|Octave}}==
<syntaxhighlight lang="matlab">0^0
<lang Matlab>0^0
complex(0,0)^0</langsyntaxhighlight>
{{out}}
<pre>1
1</pre>
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">0^0;</syntaxhighlight>
{{out}}<pre> 0
expt: undefined: 0</pre>
 
=={{header|Mercury}}==
<langsyntaxhighlight Mercurylang="mercury">:- module zero_to_the_zero_power.
:- interface.
 
Line 697 ⟶ 984:
io.format(" float.pow(0.0, 0) = %.1f\n", [f(pow(0.0, 0))], !IO).
 
:- end_module zero_to_the_zero_power.</langsyntaxhighlight>
{{out}}
<pre> int.pow(0, 0) = 1
Line 704 ⟶ 991:
 
=={{header|Microsoft Small Basic}}==
<langsyntaxhighlight lang="smallbasic">TextWindow.WriteLine(Math.Power(0,0))</langsyntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|min}}==
{{works with|min|0.19.3}}
<syntaxhighlight lang ="min">0 0 pow puts</langsyntaxhighlight>
{{out}}
<pre>
1.0
</pre>
 
=={{header|MiniScript}}==
<syntaxhighlight lang="miniscript">print "The result of zero to the zero power is " + 0^0</syntaxhighlight>
{{out}}
<pre>
The result of zero to the zero power is 1
</pre>
 
=={{header|МК-61/52}}==
<syntaxhighlight lang="text">Сx ^ x^y С/П</langsyntaxhighlight>
 
The result is error message.
 
=={{header|Nanoquery}}==
<syntaxhighlight lang="nanoquery">println 0^0</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Neko}}==
Neko uses the C math library for exponentiation, Zero to the zero in math.pow(x, y) is treated as being 1.
 
<syntaxhighlight lang="actionscript">/**
<lang ActionScript>/**
Zero to the zeroth power, in Neko
*/
Line 729 ⟶ 1,028:
var math_pow = $loader.loadprim("std@math_pow", 2)
 
$print(math_pow(0, 0), "\n")</langsyntaxhighlight>
 
{{out}}
Line 737 ⟶ 1,036:
 
=={{header|NetRexx}}==
<langsyntaxhighlight lang="netrexx">x=0
Say '0**0='||x**x</langsyntaxhighlight>
{{out}}
<pre>0**0=1</pre>
 
=={{header|NewLISP}}==
<syntaxhighlight lang ="newlisp">(pow 0 0)</langsyntaxhighlight>
{{out}}
<pre>1</pre>
Line 751 ⟶ 1,050:
Create an exponentiation table for all type combinations (of integer <code>0</code>, float <code>0.0</code> and boolean <code>o</code>):
 
<langsyntaxhighlight lang="nial"> 0 0.0 o outer power 0 0.0 o
+--+--+--+
| 1|1.| 1|
Line 758 ⟶ 1,057:
+--+--+--+
| 1|1.| 1|
+--+--+--+</langsyntaxhighlight>
 
=={{header|Nim}}==
<langsyntaxhighlight lang="nim">import math
 
echo pow(0.0, 0.0)</lang> # Floating point exponentiation.
echo 0 ^ 0 # Integer exponentiation.</syntaxhighlight>
{{out}}
<pre>1.0</pre>
1</pre>
 
=={{header|OCaml}}==
Line 782 ⟶ 1,083:
=={{header|Oforth}}==
 
<syntaxhighlight lang Oforth="oforth">0 0 pow println</langsyntaxhighlight>
 
{{out}}
Line 790 ⟶ 1,091:
 
=={{header|Ol}}==
<langsyntaxhighlight lang="scheme">
(print "0^0: " (expt 0 0))
(print "0.0^0: " (expt (inexact 0) 0))
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 801 ⟶ 1,102:
 
=={{header|ooRexx}}==
<langsyntaxhighlight lang="oorexx">/**********************************************************************
* 21.04.2014 Walter Pachl
**********************************************************************/
Say 'rxCalcpower(0,0) ->' rxCalcpower(0,0)
Say '0**0 ->' 0**0
::requires rxmath library</langsyntaxhighlight>
{{out}}
<pre>
Line 812 ⟶ 1,113:
0**0 -> 1
</pre>
 
 
=={{header|Openscad}}==
<syntaxhighlight lang="openscad">echo (0^0);</syntaxhighlight>
 
 
=={{header|PARI/GP}}==
0 raised to the power of exact 0 is 01, but 0 cannot be raised to the power of an inexact 0:
<langsyntaxhighlight lang="parigp">0^0
0.^0
0^0.</langsyntaxhighlight>
{{out}}
<pre>%1 = 1
Line 828 ⟶ 1,134:
=={{header|Pascal}}==
{{works with|Free Pascal}} {{Libheader|math}}
<langsyntaxhighlight Pascallang="pascal">program ZToZ;
uses
math;
Line 834 ⟶ 1,140:
write('0.0 ^ 0 :',IntPower(0.0,0):4:2);
writeln(' 0.0 ^ 0.0 :',Power(0.0,0.0):4:2);
end.</langsyntaxhighlight>
;output:
<pre>0.0 ^ 0 :1.00 0.0 ^ 0.0 :1.00</pre>
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">print 0 ** 0, "\n";
 
use Math::Complex;
 
print cplx(0,0) ** cplx(0,0), "\n";</langsyntaxhighlight>
{{out}}
<pre>
Line 850 ⟶ 1,156:
</pre>
 
=={{header|Perl 6Phix}}==
{{libheader|Phix/basics}}
 
<!--<syntaxhighlight lang="phix">(phixonline)-->
{{works with|Rakudo|2018.03}}
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
<lang perl6>say ' type n n**n exp(n,n)';
<span style="color: #7060A8;">requires</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"0.8.4"</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- (now fixed/crashes on earlier versions)</span>
say '-------- -------- -------- --------';
<span style="color: #008080;">include</span> <span style="color: #004080;">complex</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
 
<span style="color: #004080;">complex</span> <span style="color: #000000;">a</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_new</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">),</span>
for 0, 0.0, FatRat.new(0), 0e0, 0+0i {
<span style="color: #000000;">b</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">)</span>
printf "%8s %8s %8s %8s\n", .^name, $_, $_**$_, exp($_,$_);
<span style="color: #004080;">string</span> <span style="color: #000000;">sa</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #004600;">true</span><span style="color: #0000FF;">),</span>
}</lang>
<span style="color: #000000;">sb</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #004600;">true</span><span style="color: #0000FF;">)</span>
 
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%s ^ %s = %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">sa</span><span style="color: #0000FF;">,</span><span style="color: #000000;">sa</span><span style="color: #0000FF;">,</span><span style="color: #000000;">sb</span><span style="color: #0000FF;">})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
1
type n n**n exp(n,n)
0+0i ^ 0+0i = 1+0i
-------- -------- -------- --------
Int 0 1 1
Rat 0 1 1
FatRat 0 1 1
Num 0 1 1
Complex 0+0i 1+0i 1+0i
</pre>
 
=={{header|PhixPhixmonti}}==
<syntaxhighlight lang="phixmonti">def mypower
Fair enough, I have no strong opinions on this matter, so I have just removed the test/error that was present in previous versions. Should you for any reason want to change it back, just edit builtins/VM/pPower.e, search for the two mods dated 3/11/15 (32 and 64 bit, both are two lines, test eax/rax; jz :e102cr0tple0), save and rebuild (run "p -c p"), which should take less than 10 seconds.
dup not if
<lang Phix>?power(0,0)</lang>
. sign dup 0 == if . 1 endif
else
power
endif
enddef
 
0 0 mypower print</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|PHP}}==
<langsyntaxhighlight PHPlang="php"><?php
echo pow(0,0);
echo 0 ** 0; // PHP 5.6+ only
?></langsyntaxhighlight>
{{out}}
<pre>
Line 889 ⟶ 1,199:
 
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">
<lang PicoLisp>
(** 0 0)
</syntaxhighlight>
</lang>
{{out}}
1
 
=={{header|Pike}}==
<syntaxhighlight lang="pike">write( pow(0, 0) +"\n" );</syntaxhighlight>
{{Out}}
<pre>
1
</pre>
 
=={{header|PL/I}}==
<langsyntaxhighlight lang="pli"> zhz: Proc Options(Main);
Dcl a dec float(10) Init(1);
Dcl b dec float(10) Init(0);
Line 901 ⟶ 1,219:
Put skip list('0**1=',b**a);
Put skip list('0**0=',b**b);
End;</langsyntaxhighlight>
{{out}}
<pre>
Line 910 ⟶ 1,228:
At offset +0000025B in procedure with entry ZHZ
</pre>
 
=={{header|Plain English}}==
<syntaxhighlight lang="plainenglish">To run:
Start up.
Put 0 into a number.
Raise the number to 0.
Convert the number to a string.
Write the string to the console.
Wait for the escape key.
Shut down.</syntaxhighlight>
{{out}}
<pre>
1
</pre>
 
=={{header|PowerShell}}==
 
<langsyntaxhighlight lang="powershell">Write-Host "0 ^ 0 = " ([math]::pow(0,0))</langsyntaxhighlight>
 
Output :
Line 922 ⟶ 1,254:
 
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">
<lang PureBasic>
If OpenConsole()
PrintN("Zero to the zero power is " + Pow(0,0))
Line 930 ⟶ 1,262:
CloseConsole()
EndIf
</syntaxhighlight>
</lang>
 
{{out}}
Line 936 ⟶ 1,268:
Zero to the zero power is 1
</pre>
 
=={{header|Pyret}}==
<syntaxhighlight lang="pyret">num-expt(0, 0)</syntaxhighlight>
{{out}}
1
 
=={{header|Python}}==
===Python3===
<langsyntaxhighlight lang="python">from decimal import Decimal
from fractions import Fraction
from itertools import product
Line 949 ⟶ 1,286:
except:
ans = '<Exception raised>'
print(f'{i!r:>15} ** {j!r:<15} = {ans!r}')</langsyntaxhighlight>
{{out}}
<pre> 0 ** 0 = 1
Line 1,017 ⟶ 1,354:
 
===Python2===
<langsyntaxhighlight lang="python">from decimal import Decimal
from fractions import Fraction
for n in (Decimal(0), Fraction(0, 1), complex(0), float(0), int(0)):
Line 1,028 ⟶ 1,365:
except:
n2 = '<Raised exception>'
print('%8s: ** -> %r; pow -> %r' % (n.__class__.__name__, n1, n2))</langsyntaxhighlight>
{{out}}
<pre>
Line 1,037 ⟶ 1,374:
int: ** -> 1; pow -> 1
</pre>
 
=={{header|QB64}}==
<syntaxhighlight lang="qb64">Print 0 ^ 0</syntaxhighlight>
{{out}}
<pre>1</pre>
Alternatively:
<syntaxhighlight lang="qb64">i% = 0 'Integer
l& = 0 'Long integer
s! = 0.0 'Single precision floating point
d# = 0.0 'Double precision floating point
b` = 0 '_Bit
bb%% = 0 '_Byte
isf&& = 0 '_Integer64
 
Print i% ^ i%
Print l& ^ l&
Print s! ^ s!
Print d# ^ d#
Print b` ^ b`
Print bb%% ^ bb%%
Print isf&& ^ isf&&</syntaxhighlight>
{{out}}
NB: Values with 0 decimals are trimmed by Print's casting from number value to String.
<pre> 1
1
1
1
1
1
1</pre>
 
=={{header|Quackery}}==
As a dialogue in the Quackery shell.
 
<syntaxhighlight lang="quackery">/O> 0 0 **
...
 
Stack: 1
</syntaxhighlight>
 
=={{header|R}}==
<syntaxhighlight lang ="rsplus">print(0^0)</langsyntaxhighlight>
{{out}}
<pre>1</pre>
Line 1,045 ⟶ 1,421:
=={{header|Racket}}==
 
<langsyntaxhighlight lang="racket">#lang racket
;; as many zeros as I can think of...
(define zeros (list
Line 1,058 ⟶ 1,434:
(printf "(~a)^(~a) = ~s~%" z p
(with-handlers [(exn:fail:contract:divide-by-zero? exn-message)]
(expt z p))))</langsyntaxhighlight>
 
{{out}}
Line 1,097 ⟶ 1,473:
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0+0.0i) = +nan.0+nan.0i</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
 
{{works with|Rakudo|2018.03}}
<syntaxhighlight lang="raku" line>say ' type n n**n exp(n,n)';
say '-------- -------- -------- --------';
 
for 0, 0.0, FatRat.new(0), 0e0, 0+0i {
printf "%8s %8s %8s %8s\n", .^name, $_, $_**$_, exp($_,$_);
}</syntaxhighlight>
 
{{out}}
<pre>
type n n**n exp(n,n)
-------- -------- -------- --------
Int 0 1 1
Rat 0 1 1
FatRat 0 1 1
Num 0 1 1
Complex 0+0i 1+0i 1+0i
</pre>
 
=={{header|Red}}==
Shown using the operator, the function, and the <code>math</code> mini-DSL that uses the order of operations from mathematics:
<syntaxhighlight lang="rebol">Red[]
print 0 ** 0
print power 0 0
print math [0 ** 0]</syntaxhighlight>
{{out}}
<pre>
1
1
1
</pre>
 
=={{header|Relation}}==
<syntaxhighlight lang="relation">
echo pow(0,0)
// 1
</syntaxhighlight>
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program shows the results of raising zero to the zeroth power.*/
say '0 ** 0 (zero to the zeroth power) ───► ' 0**0</langsyntaxhighlight>
<br>using PC/REXX
<br>using Personal REXX
Line 1,131 ⟶ 1,548:
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
x = 0
y = 0
z = pow(x,y)
see "z=" + z + nl # z=1
</syntaxhighlight>
</lang>
 
=={{header|RPL}}==
0 0 ^
====Output for HP-48G and older models====
1: 1
====Output for HP-49 and newer models====
1: ?
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">require 'bigdecimal'
 
[0, 0.0, Complex(0), Rational(0), BigDecimal.new("0")].each do |n|
printf "%10s: ** -> %s\n" % [n.class, n**n]
end</langsyntaxhighlight>
{{out}}
<pre>
FixnumInteger: ** -> 1
Float: ** -> 1.0
Complex: ** -> 1+0i
Rational: ** -> 1/1
BigDecimal: ** -> 0.1E11e1
</pre>
 
=={{header|Rust}}==
<langsyntaxhighlight lang="rust">fn main() {
println!("{}",0u32.pow(0));
}</langsyntaxhighlight>
 
{{out}}
<pre>1</pre>
 
 
=={{header|S-lang}}==
<syntaxhighlight lang S="s-lang">print(0^0);</langsyntaxhighlight>
{{out}}
<pre>1.0</pre>
 
=={{header|Scala}}==
{{libheader|Scala}}<langsyntaxhighlight Scalalang="scala"> assert(math.pow(0, 0) == 1, "Scala blunder, should go back to school !")</langsyntaxhighlight>
 
=={{header|Scheme}}==
<langsyntaxhighlight lang="scheme">(display (expt 0 0)) (newline)
(display (expt 0.0 0.0)) (newline)
(display (expt 0+0i 0+0i)) (newline)</langsyntaxhighlight>
{{out}}
<pre>1
Line 1,180 ⟶ 1,603:
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "float.s7i";
include "complex.s7i";
Line 1,191 ⟶ 1,614:
writeln("0.0+0i ** 0 = " <& complex(0.0) ** 0);
end func;
</syntaxhighlight>
</lang>
 
{{out}}
Line 1,200 ⟶ 1,623:
0.0+0i ** 0 = 1.0+0.0i
</pre>
 
=={{header|SenseTalk}}==
<syntaxhighlight lang="sensetalk">set a to 0
set b to 0
 
put a to the power of b
// Prints: 1</syntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">[0, Complex(0, 0)].each {|n|
say n**n
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,213 ⟶ 1,643:
Taking the 0'th root of a number and raising it back to the zero power, we also get a 1:
 
<langsyntaxhighlight lang="ruby">say 0.root(0).pow(0) # => 1
say ((0**(1/0))**0) # => 1</langsyntaxhighlight>
 
=={{header|Sinclair ZX81 BASIC}}==
<syntaxhighlight lang ="basic">PRINT 0**0</langsyntaxhighlight>
{{out}}
<pre>1</pre>
Line 1,223 ⟶ 1,653:
=={{header|Smalltalk}}==
 
<langsyntaxhighlight lang="smalltalk">
0 raisedTo: 0
0.0 raisedTo: 0.0
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,232 ⟶ 1,662:
1.0
</pre>
 
 
=={{header|smart BASIC}}==
<syntaxhighlight lang ="qbasic">PRINT 0^0</langsyntaxhighlight>
 
{{out}}
Line 1,242 ⟶ 1,671:
</pre>
 
=={{header|SQL}}==
 
=={{header|SNOBOL4}}==
<lang SQL>
<syntaxhighlight lang="snobol4"> OUTPUT = (0 ** 0)
END</syntaxhighlight>
 
 
=={{header|SQL}}==
<syntaxhighlight lang="sql">
SQL> select power(0,0) from dual;
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,262 ⟶ 1,696:
 
=={{header|Stata}}==
<langsyntaxhighlight lang="stata">. display 0^0
1</langsyntaxhighlight>
 
=={{header|Swift}}==
<langsyntaxhighlight lang="swift">import Darwin
print(pow(0.0,0.0))</langsyntaxhighlight>
{{out}}
<pre>1.0</pre>
 
=={{header|Symsyn}}==
<syntaxhighlight lang="symsyn">
(0^0) []
</syntaxhighlight>
{{out}}
<pre> 1 </pre>
 
=={{header|Tcl}}==
Interactively…
<langsyntaxhighlight lang="tcl">% expr 0**0
1
% expr 0.0**0.0
1.0</langsyntaxhighlight>
 
=={{header|TI SR-56}}==
<syntaxhighlight lang="text">0 Yx 0 =</syntaxhighlight>
 
{{out}}
<pre> 1 </pre>
 
=={{header|TI-83_BASIC}}==
<syntaxhighlight lang ="tibasic">0^0</langsyntaxhighlight>
{{out}}
<pre>ERROR:DOMAIN</pre>
 
=={{header|uBasic/4tH}}==
<syntaxhighlight lang="text">Print 0^0</langsyntaxhighlight>
{{out}}
<pre>1
Line 1,292 ⟶ 1,739:
=={{header|Ursa}}==
Cygnus/X Ursa is written in Java, and as a result returns 1.0 when raising 0 to the 0.
<langsyntaxhighlight lang="ursa">> out (pow 0 0) endl console
1.0</langsyntaxhighlight>
 
=={{header|VBA}}==
<langsyntaxhighlight lang="vb">Public Sub zero()
x = 0
y = 0
z = 0 ^ 0
Debug.Print "z ="; z
End Sub</langsyntaxhighlight>{{out}}
<pre>z = 1</pre>
 
=={{header|VBScript}}==
<syntaxhighlight lang ="vb">WScript.Echo 0 ^ 0</langsyntaxhighlight>
{{Out}}
<pre>1</pre>
 
 
=={{header|Verilog}}==
<syntaxhighlight lang="verilog">module main;
initial begin
$display("0 ^ 0 = ", 0**0);
$finish ;
end
endmodule</syntaxhighlight>
{{out}}
<pre>0 ^ 0 = 1</pre>
 
 
=={{header|Visual Basic .NET}}==
<langsyntaxhighlight lang="vbnet">Module Program
Sub Main()
Console.Write(0^0)
End Sub
End Module</langsyntaxhighlight>
 
{{out}}
<pre>1</pre>
 
=={{header|V (Vlang)}}==
<syntaxhighlight lang="go">// Zero to the zero power, in V
// Tectonics: v run zero-to-the-zero-power.v
module main
import math
 
// starts here
// V does not include an exponentiation operator, but uses a math module
pub fn main() {
println(math.pow(0, 0))
}</syntaxhighlight>
{{out}}<pre>prompt$ v run rosetta/zero-to-the-zero-power.v
1.</pre>
 
=={{header|Wren}}==
<syntaxhighlight lang="wren">System.print(0.pow(0))</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
=={{header|XLISP}}==
<langsyntaxhighlight lang="scheme">XLISP 3.3, September 6, 2002 Copyright (c) 1984-2002, by David Betz
[1] (expt 0 0)
 
1
[2] </langsyntaxhighlight>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">RlOut(0, Pow(0., 0.))</syntaxhighlight>
{{out}}
<pre> 1.00000</pre>
 
=={{header|Zig}}==
<syntaxhighlight lang="zig">const std = @import("std");
 
pub fn main() !void {
const stdout = std.io.getStdOut().writer();
try stdout.print("0^0 = {d:.8}\n", .{std.math.pow(f32, 0, 0)});
}</syntaxhighlight>
{{out}}
<pre>0^0 = 1.00000000</pre>
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">(0.0).pow(0) //--> 1.0
var BN=Import("zklBigNum"); // big ints
BN(0).pow(0) //--> 1</langsyntaxhighlight>
56

edits