Zero to the zero power: Difference between revisions

m
m (Added the Sidef language)
(184 intermediate revisions by more than 100 users not shown)
Line 1:
{{task}}
[[Category:Simple]]
Some programming languages are not exactly consistent (with other programming languages) when raising zero to the zeroth power: <math>0^0</math>.
{{omit from|6502 Assembly|There is no built in multiplication, let alone exponentiation. Thus the outcome is decided by the programmer not the language.}}
;Task requirements
{{omit from|8080 Assembly|See 6502 Assembly.}}
Show the results of raising zero to the zeroth power.
{{omit from|Computer/zero Assembly|See 6502 Assembly.}}
{{omit from|Z80 Assembly|See 6502 Assembly.}}
{{omit from|68000 Assembly|There is no built-in exponentiation so the programmer's implementation decides the outcome.}}
{{omit from|8086 Assembly|There is no built-in exponentiation so the programmer's implementation decides the outcome.}}
{{omit from|MIPS Assembly|There is no built-in exponentiation so the programmer's implementation decides the outcome.}}
{{omit from|ARM Assembly|See 8086 Assembly.}}
Some computer programming languages are not exactly consistent &nbsp; (with other computer programming languages) &nbsp;
<br>when &nbsp; ''raising zero to the zeroth power'': &nbsp; &nbsp; <b><big>0<sup>0</sup></big></b>
 
 
;Task:
Show the results of raising &nbsp; zero &nbsp; to the &nbsp; zeroth &nbsp; power.
 
 
If your computer language objects to &nbsp; &nbsp; <big> '''0**0''' </big> &nbsp; &nbsp; or &nbsp; &nbsp; <big> '''0^0''' </big> &nbsp; &nbsp; at compile time, &nbsp; you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
 
If your computer language objects to <code>0**0</code> at compile time,
you may also try something like:
<lang rexx>x = 0
y = 0
z = x**y
 
say 'z=' z</lang>
'''Show the result here.'''<br>
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
 
 
;See also:
* The Wiki entry: [[wp:Exponentiation#Zero_to_the_power_of_zero#History|Zero to the power of zero]].
* The Wiki entry: [[wp:ExponentiationZero_to_the_power_of_zero#History_of_differing_points_of_view|History|Zero ofto differingthe pointspower of viewzero: History]].
* The MathWorld™ entry: [http://mathworld.wolfram.com/ExponentLaws.html exponent laws].
** Also, in the above MathWorld™ entry, see formula ('''9'''): <math>x^0=1</math>.
* The OEIS entry: [https://oeis.org/wiki/The_special_case_of_zero_to_the_zeroth_power The special case of zero to the zeroth power]
<br><br>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">print(0 ^ 0)</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
=={{header|8th}}==
<langsyntaxhighlight lang="forth">
0 0 ^ .
</syntaxhighlight>
</lang>
{{out}}
1
{{omit from|AArch64 Assembly}}
=={{header|AutoHotkey}}==
 
<lang AutoHotkey>MsgBox % 0 ** 0</lang>
{{omit from|ARM Assembly}}
 
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
 
PROC Main()
REAL z,res
 
Put(125) PutE() ;clear the screen
 
IntToReal(0,z)
Power(z,z,res)
 
PrintR(z) Print("^")
PrintR(z) Print("=")
PrintRE(res)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Zero_to_the_zero_power.png Screenshot from Atari 8-bit computer]
<pre>1</pre>
<pre>
0^0=.9999999998
</pre>
 
=={{header|Ada}}==
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO, Ada.Integer_Text_IO, Ada.Long_Integer_Text_IO,
Ada.Long_Long_Integer_Text_IO, Ada.Float_Text_IO, Ada.Long_Float_Text_IO,
Ada.Long_Long_Float_Text_IO;
Line 64 ⟶ 108:
Put (LLF ** Zero); New_Line;
end Test5;
</syntaxhighlight>
</lang>
{{out}}
<pre>Integer 0^0 = 1
Line 76 ⟶ 120:
=={{header|ALGOL 68}}==
{{works with|ALGOL 68G|Any - tested with release 2.6.win32}}
<langsyntaxhighlight lang="algol68">print( ( 0 ^ 0, newline ) )
</syntaxhighlight>
</lang>
{{out}}
<pre>
+1
</pre>
 
=={{header|APL}}==
<syntaxhighlight lang="apl"> 0*0
1</syntaxhighlight>
 
=={{header|AppleScript}}==
<syntaxhighlight lang="applescript"> return 0 ^ 0</syntaxhighlight>
 
{{output}}
<syntaxhighlight lang="applescript">1.0</syntaxhighlight>
 
=={{header|Applesoft BASIC}}==
<pre>]? 0^0
1</pre>
 
{{omit from|ARM Assembly}}
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">print 0 ^ 0
print 0.0 ^ 0</syntaxhighlight>
 
{{out}}
 
<pre>1
1.0</pre>
 
=={{header|Asymptote}}==
<syntaxhighlight lang="asymptote">write("0 ^ 0 = ", 0 ** 0);</syntaxhighlight>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">MsgBox % 0 ** 0</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">
<lang AWK>
# syntax: GAWK -f ZERO_TO_THE_ZERO_POWER.AWK
BEGIN {
Line 93 ⟶ 168:
exit(0)
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 99 ⟶ 174:
</pre>
 
=={{header|BcBaCon}}==
<syntaxhighlight lang="freebasic">PRINT POW(0, 0)</syntaxhighlight>
<pre>0 ^ 0
 
{{out}}
<pre>prompt$ ./zerotothezero
1</pre>
 
=={{header|BASIC}}==
==={{header|BASIC256}}===
<syntaxhighlight lang="basic256">print "0 ^ 0 = "; 0 ^ 0</syntaxhighlight>
 
==={{header|Chipmunk Basic}}===
<syntaxhighlight lang="qbasic">10 print "0 ^ 0 = ";0^0</syntaxhighlight>
 
==={{header|MSX Basic}}===
<syntaxhighlight lang="qbasic">10 PRINT "0 ^ 0 = "; 0 ^ 0</syntaxhighlight>
 
==={{header|QBasic}}===
{{works with|QBasic|1.1}}
{{works with|QuickBasic|4.5}}
<syntaxhighlight lang="qbasic">PRINT "0 ^ 0 ="; 0 ^ 0</syntaxhighlight>
 
==={{header|Run BASIC}}===
{{works with|Just BASIC}}
{{works with|Liberty BASIC}}
<syntaxhighlight lang="lb">print "0 ^ 0 = "; 0 ^ 0</syntaxhighlight>
 
==={{header|True BASIC}}===
{{works with|QBasic}}
<syntaxhighlight lang="qbasic">PRINT "0 ^ 0 ="; 0 ^ 0
END</syntaxhighlight>
 
==={{header|XBasic}}===
{{works with|Windows XBasic}}
<syntaxhighlight lang="xbasic">PROGRAM "progname"
VERSION "0.0000"
 
IMPORT "xma" 'required for POWER
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
PRINT "0 ^ 0 = "; 0 ** 0
PRINT "0 ^ 0 = "; POWER(0, 0)
END FUNCTION
END PROGRAM</syntaxhighlight>
 
==={{header|ZX Spectrum Basic}}===
<syntaxhighlight lang="zxbasic">PRINT 0↑0</syntaxhighlight>
 
{{out}}
<pre>
1
 
0 OK, 0:1
</pre>
 
=={{header|BBC BASIC}}==
<syntaxhighlight lang="bbcbasic"> PRINT 0^0</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
=={{header|Bc}}==
<syntaxhighlight lang="bc">
0 ^ 0
</syntaxhighlight>
{{out}}
1
 
=={{header|Befunge}}==
Line 108 ⟶ 251:
Note that the result is potentially dependent on the underlying language of the interpreter, but all those tested so far have returned 1. Interpreters that don't support '''Befunge-98''', or don't support this fingerprint, should just terminate (possibly with a warning).
 
<langsyntaxhighlight lang="befunge">"PDPF"4#@(0F0FYP)@</langsyntaxhighlight>
 
{{out}}
<pre>1.000000</pre>
 
=={{header|Binary Lambda Calculus}}==
 
In lambda calculus, <code>\n. n n</code> is a function mapping a Church numeral n to the Church numeral n^n. The following BLC program computes this for n=0 by using its empty input as a Church numeral (since nil coincides with Church numeral 0), and outputting in unary (i.e as a string of 0^0 1s), as generated from https://github.com/tromp/AIT/blob/master/rosetta/exp00.lam :
 
<pre>0001010110100000010110111011010</pre>
 
Output:
 
<pre>1</pre>
 
=={{header|BQN}}==
BQN doesn't specify the details of arithmetic functions; existing implementations use IEEE doubles and the <code>pow</code> function, giving a result of 1.
<syntaxhighlight lang="bqn">0⋆0</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Bracmat}}==
<syntaxhighlight lang ="bracmat">0^0</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Burlesque}}==
<langsyntaxhighlight lang="blsq">
blsq ) 0.0 0.0?^
1.0
blsq ) 0 0?^
1
</syntaxhighlight>
</lang>
 
=={{header|BBC BASIC}}==
<lang bbcbasic> PRINT 0^0</lang>
 
{{out}}
<pre>
1
</pre>
 
=={{header|C}}==
Line 138 ⟶ 289:
This example uses the standard <code>pow</code> function in the math library.
0^0 is given as 1.
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <math.h>
#include <complex.h>
Line 148 ⟶ 299:
printf("0+0i ^ 0+0i = %f+%fi\n", creal(c), cimag(c));
return 0;
}</langsyntaxhighlight>
 
{{out}}
Line 154 ⟶ 305:
0 ^ 0 = 1.000000
0+0i ^ 0+0i = nan+nani
</pre>
 
=={{header|C sharp|C#}}==
<syntaxhighlight lang="csharp">using System;
 
namespace ZeroToTheZeroeth
{
class Program
{
static void Main(string[] args)
{
double k = Math.Pow(0, 0);
Console.Write("0^0 is {0}", k);
}
}
}</syntaxhighlight>
 
{{out}}
<pre>
0^0 is 1
</pre>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">#include <iostream>
#include <cmath>
#include <complex>
Line 167 ⟶ 338:
std::pow(std::complex<double>(0),std::complex<double>(0)) << std::endl;
return 0;
}</langsyntaxhighlight>
 
{{out}}
Line 175 ⟶ 346:
</pre>
 
=={{header|CCaché sharp|C#ObjectScript}}==
<syntaxhighlight lang="caché objectscript">ZEROPOW
<lang csharp>using System;
// default behavior is incorrect:
set (x,y) = 0
w !,"0 to the 0th power (wrong): "_(x**y) ; will output 0
// if one or both of the values is a double, this works
set (x,y) = $DOUBLE(0)
w !,"0 to the 0th power (right): "_(x**y)
quit</syntaxhighlight>
 
{{out}}<pre>SAMPLES>do ^ZEROPOW
namespace ZeroToTheZeroeth
{
class Program
{
static void Main(string[] args)
{
double k = Math.Pow(0, 0);
Console.WriteLine("0^0");
Console.WriteLine(k.ToString());
}
}
}</lang>
 
0 to the 0th power (wrong): 0
{{out}}
0 to the 0th power (right): 1 </pre>
<pre>
0^0
1
</pre>
 
=={{header|Clojure}}==
Line 207 ⟶ 373:
1.0
</pre>
 
=={{header|CLU}}==
The CLU reference manual doesn't mention the issue, so the fact that it returns
1 in my case could just be an implementation detail.
 
<syntaxhighlight lang="clu">start_up = proc ()
zz_int: int := 0 ** 0
zz_real: real := 0.0 ** 0.0
po: stream := stream$primary_output()
stream$putl(po, "integer 0**0: " || int$unparse(zz_int))
stream$putl(po, "real 0**0: " || f_form(zz_real, 1, 1))
end start_up</syntaxhighlight>
{{out}}
<pre>integer 0**0: 1
real 0**0: 1.0</pre>
 
=={{header|COBOL}}==
<syntaxhighlight lang="cobol">identification division.
program-id. zero-power-zero-program.
data division.
working-storage section.
77 n pic 9.
procedure division.
compute n = 0**0.
display n upon console.
stop run.</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|ColdFusion}}==
=== Classic tag based CFML ===
<syntaxhighlight lang="cfm">
<cfset zeroPowerTag = 0^0>
<cfoutput>"#zeroPowerTag#"</cfoutput>
</syntaxhighlight>
{{Output}}
<pre>
"1"
</pre>
 
=== Script Based CFML ===
<syntaxhighlight lang="cfm"><cfscript>
zeroPower = 0^0;
writeOutput( zeroPower );
</cfscript></syntaxhighlight>
{{Output}}
<pre>
1
</pre>
 
=={{header|Commodore BASIC}}==
 
Commodore computers use the up arrow key <span style="font-size: 140%; line-height: 50%;">&uarr;</span> as the exponent operator.
 
{{out}}
<pre>ready.
print 0&uarr;0
1
 
ready.
&#9608;</pre>
 
 
=={{header|Common Lisp}}==
<pre>> (expt 0 0)
1</pre>
 
=={{header|Crystal}}==
<syntaxhighlight lang="crystal">puts "Int32: #{0_i32**0_i32}"
puts "Negative Int32: #{-0_i32**-0_i32}"
puts "Float32: #{0_f32**0_f32}"
puts "Negative Float32: #{-0_f32**-0_f32}"</syntaxhighlight>
 
{{Output}}
<pre>Int32: 1
Negative Int32: 1
Float32: 1.0
Negative Float32: 1.0</pre>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">void main() {
import std.stdio, std.math, std.bigint, std.complex;
 
Line 224 ⟶ 465:
writeln("BigInt: ", 0.BigInt ^^ 0);
writeln("Complex: ", complex(0.0, 0.0) ^^ 0);
}</langsyntaxhighlight>
{{out}}
<pre>Int: 1
Line 234 ⟶ 475:
BigInt: 1
Complex: 1+0i</pre>
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">import 'dart:math';
 
void main() {
var resul = pow(0, 0);
print("0 ^ 0 = $resul");
}</syntaxhighlight>
{{out}}
<pre>0 ^ 0 = 1</pre>
 
=={{header|Dc}}==
<syntaxhighlight lang="dc">0 0^p
</syntaxhighlight>
{{Output}}
<pre>
1
</pre>
 
=={{header|Delphi}}==
See [https://www.rosettacode.org/wiki/Zero_to_the_zero_power#Pascal Pascal].
 
=={{header|EasyLang}}==
 
<syntaxhighlight lang="text">print pow 0 0</syntaxhighlight>
 
=={{header|EchoLisp}}==
<langsyntaxhighlight lang="scheme">
;; trying the 16 combinations
;; all return the integer 1
Line 244 ⟶ 510:
(for* ((z1 zeroes) (z2 zeroes)) (write (expt z1 z2)))
→ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
</syntaxhighlight>
</lang>
 
=={{header|Eiffel}}==
<syntaxhighlight lang Eiffel="eiffel">print (0^0)</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Elena}}==
ELENA 6.x
<syntaxhighlight lang="elena">import extensions;
public program()
{
console.printLine("0^0 is ",0.power(0))
}</syntaxhighlight>
{{out}}
<pre>
0^0 is 0
</pre>
 
=={{header|Elixir}}==
Elixir uses Erlang's <code>:math</code> for power operations and can handle zero to the zero power.
<syntaxhighlight lang="elixir">
<lang Elixir>
:math.pow(0,0)
</syntaxhighlight>
</lang>
 
{{out}}
1.0
=={{header|Emacs Lisp}}==
<syntaxhighlight lang="lisp">(expt 0 0)</syntaxhighlight>
{{out}}
1
 
=={{header|EMal}}==
<syntaxhighlight lang="emal">
writeLine(0 ** 0) # an integer
writeLine(0.0 ** 0.0) # a real
</syntaxhighlight>
{{out}}
<pre>
1
1.0
</pre>
 
=={{header|ERRE}}==
<syntaxhighlight lang="erre">
<lang ERRE>
.....
PRINT(0^0)
.....
</syntaxhighlight>
</lang>
{{out}}
<pre> 1
</pre>
 
=={{header|F_Sharp|F#}}==
In the REPL:
<pre>> let z = 0.**0.;;
 
val z : float = 1.0</pre>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: math.functions.private ; ! ^complex
0 0 ^
C{ 0 0 } C{ 0 0 } ^complex</langsyntaxhighlight>
{{out}}
<pre>--- Data stack:
NAN: 8000000000000
C{ NAN: 8000000000000 NAN: 8000000000000 }</pre>
 
=={{header|Falcon}}==
'''VBA/Python programmer's approach not sure if it's the most falconic way'''
<syntaxhighlight lang="falcon">
/* created by Aykayayciti Earl Lamont Montgomery
April 9th, 2018 */
 
x = 0
y = 0
z = x**y
> "z=", z
 
</syntaxhighlight>
{{out}}
<pre>
z=1
[Finished in 0.2s]
</pre>
 
=={{header|Fermat}}==
<syntaxhighlight lang="fermat">0^0</syntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|Forth}}==
<syntaxhighlight lang ="forth">0e 0e f** f.</langsyntaxhighlight>
 
{{out}}
<pre>1.</pre>
 
Of course in an embedded program we would be tempted to "pre-calculate" the answer :-)
 
<syntaxhighlight lang="forth">: ^0 DROP 1 ;</syntaxhighlight>
 
{{Output}}
<pre>
0 ^0 . 1 ok
</pre>
 
=={{header|Fortran}}==
 
<syntaxhighlight lang="fortran">
<lang Fortran>
program zero
double precision :: i, j
Line 299 ⟶ 630:
write(*,*) 'When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ', z1**z2
end program
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 306 ⟶ 637:
When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ( NaN, NaN)
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
Print "0 ^ 0 ="; 0 ^ 0
Sleep</syntaxhighlight>
 
{{out}}
<pre>
0 ^ 0 = 1
</pre>
 
=={{header|Frink}}==
<syntaxhighlight lang="frink">println[0^0]</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
 
=={{header|FutureBasic}}==
<syntaxhighlight lang="futurebasic">window 1
 
print 0^0
 
HandleEvents</syntaxhighlight>
Output:
<pre>
1
</pre>
 
=={{header|Gambas}}==
'''[https://gambas-playground.proko.eu/?gist=7d505dbe89227e9b4423f92ef12d6829 Click this link to run this code]'''
<syntaxhighlight lang="gambas">Public Sub Main()
 
Print 0 ^ 0
 
End</syntaxhighlight>
Output:
<pre>
1
</pre>
 
=={{header|GAP}}==
<syntaxhighlight lang="gap">0^0;</syntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|Go}}==
Go does not have an exponentiation operator but has functions in the standard library for three types, float64, complex128, and big.Int.
As of Go 1.3, all are documented to return 1.
<langsyntaxhighlight lang="go">package main
 
import (
Line 324 ⟶ 702:
fmt.Println("big integer:", b.Exp(&b, &b, nil))
fmt.Println("complex: ", cmplx.Pow(0, 0))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 331 ⟶ 709:
complex: (1+0i)
</pre>
 
=={{header|Golfscript}}==
<syntaxhighlight lang="golfscript">0 0?</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Groovy}}==
{{trans|Java}}
Test:
<syntaxhighlight lang ="groovy">println 0**0</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|GW-BASIC}}==
<syntaxhighlight lang="gwbasic">PRINT 0^0</syntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Data.Complex ( Complex((:+)) )
 
main =:: doIO ()
main = mapM_ print $ 0 ^ 0[
print $ 0. 0 ^ 0,
print $ 0.0 ^^ 0,
print $ 0 **^^ 0,
print $ (0 :+ 0) ^** 0,
print $ (0 :+ 0) **^ (0 :+ 0)</lang>,
(0 :+ 0) ** (0 :+ 0)
]</syntaxhighlight>
{{out}}
<pre>1
1
1.0
1.0
1.0
1.0 :+ 0.0
NaN1.0 :+ NaN0.0</pre>
 
=={{header|HolyC}}==
<syntaxhighlight lang="holyc">F64 a = 0 ` 0;
Print("0 ` 0 = %5.3f\n", a);</syntaxhighlight>
 
{{out}}
<pre>
0 ` 0 = 1.000
</pre>
 
Line 362 ⟶ 758:
 
"Works" in both languages:
<langsyntaxhighlight lang="unicon">procedure main()
write(0^0)
end</langsyntaxhighlight>
 
{{out}}
Line 380 ⟶ 776:
 
=={{header|J}}==
<langsyntaxhighlight lang="j"> 0 ^ 0
1</langsyntaxhighlight>
 
Note also that this is the multiplicative identity (which means that it's consistent with <code>1*0</code> representing <code>0^1</code> and with <code>1*0*0</code> representing <code>0^2</code> and with <code>1*0*0*0</code> representing <code>0^3</code> and with <code>1*2*2*2</code> representing <code>2^3</code> and so on. Also, this is the result of finding the product of an empty list:
 
<syntaxhighlight lang="J"> */''
1</syntaxhighlight>
 
(In <code><nowiki>*/''</nowiki></code> we're finding the product of a list which contains no characters. This is, of course, the same as the product of a list which contains no numbers when both lists contain neither. That said, characters are outside the domain of multiplication in J, so if the list had contained any characters the product would have been an error rather than a result.)
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">System.out.println(Math.pow(0, 0));</langsyntaxhighlight>
{{out}}
<pre>1.0</pre>
 
=={{header|JavaScript}}==
===Math.pow===
{{Works with|Node.js}}
In interactive mode:
<langsyntaxhighlight lang="javascript">> Math.pow(0, 0);
1</langsyntaxhighlight>
===exponentiation operator (**)===
<syntaxhighlight lang="javascript">> 0**0
1</syntaxhighlight>
 
=={{header|jq}}==
{{works with|jq|1.5}}
jq version 1.4 does not have a builtin "power" function. If it were to be defined
'''Also works with gojq and fq'''
using the exp and log builtins as 'log * y | exp', then 0 | power(0) would yield null, and therefore
<pre>
a definition that makes a special case of 0^0 should be considered, e.g.
$ jq -n 'pow(0;0)'
along the following lines:
1
<lang jq>def power(y): y as $y | if $y == 0 then 1 elif . == 0 then 0 else log * $y | exp end;</lang>
</pre>
It is also worth noting that in jq, gojq, and fq, `pow(0; infinite)` yields 0.
 
=={{header|Jsish}}==
This definition will however be unsatisfactory for many purposes
<syntaxhighlight lang="javascript">puts(Math.pow(0,0));</syntaxhighlight>
because it does not maintain precision for integer values of the input (.) and y.
{{out}}
<pre>1</pre>
 
=={{header|Julia}}==
Try all combinations of complex, float, rational, integer and boolean.
<syntaxhighlight lang="julia">using Printf
<lang Julia>
zs = Any[zero(Complex),
zero(FloatingPoint),
zero(Rational),
zero(Integer),
zero(Bool)]
 
const types = (Complex, Float64, Rational, Int, Bool)
for i in zs, j in zs
 
println(i, "^", j, " = ", i^j, " (", typeof(i^j), ")")
for Tb in types, Te in types
end
zb, ze = zero(Tb), zero(Te)
</lang>
r = zb ^ ze
Note that if <code>zs</code> is not annotated as being of type <code>Any</code> all of the zeros will be promoted to complex when <code>zs</code> is constructed.
@printf("%10s ^ %-10s = %7s ^ %-7s = %-12s (%s)\n", Tb, Te, zb, ze, r, typeof(r))
end</syntaxhighlight>
 
{{out}}
<pre> Complex ^ Complex = 0 + 0im ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64})
Complex ^ Float64 = 0 + 0im ^ 0.0 = 1.0 + 0.0im (Complex{Float64})
Complex ^ Rational = 0 + 0im ^ 0//1 = 1.0 + 0.0im (Complex{Float64})
Complex ^ Int64 = 0 + 0im ^ 0 = 1 + 0im (Complex{Int64})
Complex ^ Bool = 0 + 0im ^ false = 1 + 0im (Complex{Int64})
Float64 ^ Complex = 0.0 ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64})
Float64 ^ Float64 = 0.0 ^ 0.0 = 1.0 (Float64)
Float64 ^ Rational = 0.0 ^ 0//1 = 1.0 (Float64)
Float64 ^ Int64 = 0.0 ^ 0 = 1.0 (Float64)
Float64 ^ Bool = 0.0 ^ false = 1.0 (Float64)
Rational ^ Complex = 0//1 ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64})
Rational ^ Float64 = 0//1 ^ 0.0 = 1.0 (Float64)
Rational ^ Rational = 0//1 ^ 0//1 = 1.0 (Float64)
Rational ^ Int64 = 0//1 ^ 0 = 1//1 (Rational{Int64})
Rational ^ Bool = 0//1 ^ false = 1//1 (Rational{Int64})
Int64 ^ Complex = 0 ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64})
Int64 ^ Float64 = 0 ^ 0.0 = 1.0 (Float64)
Int64 ^ Rational = 0 ^ 0//1 = 1.0 (Float64)
Int64 ^ Int64 = 0 ^ 0 = 1 (Int64)
Int64 ^ Bool = 0 ^ false = 1 (Int64)
Bool ^ Complex = false ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64})
Bool ^ Float64 = false ^ 0.0 = 1.0 (Float64)
Bool ^ Rational = false ^ 0//1 = 1.0 (Float64)
Bool ^ Int64 = false ^ 0 = true (Bool)
Bool ^ Bool = false ^ false = true (Bool)</pre>
 
=={{header|K}}==
<syntaxhighlight lang="k">
0^0
1.0
</syntaxhighlight>
 
=={{header|Klingphix}}==
<syntaxhighlight lang="klingphix">:mypower
dup not (
[ drop sign dup 0 equal [ drop 1 ] if ]
[ power ]
) if
;
0 0 mypower print nl
 
"End " input</syntaxhighlight>
{{out}}
<pre>1
End</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="kotlin">import kotlin.math.pow
 
fun main() {
println(0.0.pow(0))
}</syntaxhighlight>
 
{{out}}
<pre>
1.0
</pre>
 
=={{header|Lambdatalk}}==
<syntaxhighlight lang="scheme">
{pow 0 0}
-> 1
{exp 0 0}
-> 1
</syntaxhighlight>
 
=={{header|LDPL}}==
<syntaxhighlight lang="ldpl">data:
x is number
 
procedure:
raise 0 to 0 in x
display x lf
</syntaxhighlight>
{{out}}
<pre>
1
</pre>
 
=={{header|Liberty BASIC}}==
<syntaxhighlight lang="lb">
'********
print 0^0
'********
</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Locomotive Basic}}==
 
<syntaxhighlight lang="locobasic">print 0🠅0</syntaxhighlight>
{{out}}
<pre> 1</pre>
 
=={{header|Lua}}==
No need to try different data types or with / without decimal points as all numbers in Lua are stored in double-precision floating-point format.
<syntaxhighlight lang="lua">print(0^0)</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|M2000 Interpreter}}==
M2000 use ** and ^ for power.
<syntaxhighlight lang="m2000 interpreter">
Module Checkit {
x=0
y=0
Print x**y=1, x^y=1 ' True True
}
Checkit
</syntaxhighlight>
 
=={{header|Maple}}==
<syntaxhighlight lang Maple="maple">0^0</langsyntaxhighlight>
{{out}}
<pre>1</pre>
 
However, for consistency with IEEE-754 numerics, we also have a NaN result for the equivalent floating-point exponentiation:
<syntaxhighlight lang Maple="maple">0^0.0</langsyntaxhighlight>
{{out}}
<pre>Float(undefined)</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang Mathematica="mathematica">0^0</langsyntaxhighlight>
{{out}}
<pre>Indeterminate</pre>
 
=={{header|MATLAB}} / {{header|Octave}}==
<syntaxhighlight lang Matlab="matlab">0^0</lang>
complex(0,0)^0</syntaxhighlight>
{{out}}
<pre>1</pre>
1</pre>
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">0^0;</syntaxhighlight>
{{out}}<pre> 0
expt: undefined: 0</pre>
 
=={{header|Mercury}}==
<langsyntaxhighlight Mercurylang="mercury">:- module zero_to_the_zero_power.
:- interface.
 
Line 485 ⟶ 984:
io.format(" float.pow(0.0, 0) = %.1f\n", [f(pow(0.0, 0))], !IO).
 
:- end_module zero_to_the_zero_power.</langsyntaxhighlight>
{{out}}
<pre> int.pow(0, 0) = 1
integer.pow(zero, zero) = 1
float.pow(0.0, 0) = 1.0</pre>
 
=={{header|Microsoft Small Basic}}==
<syntaxhighlight lang="smallbasic">TextWindow.WriteLine(Math.Power(0,0))</syntaxhighlight>
{{out}}<pre>1</pre>
 
=={{header|min}}==
{{works with|min|0.19.3}}
<syntaxhighlight lang="min">0 0 pow puts</syntaxhighlight>
{{out}}
<pre>
1.0
</pre>
 
=={{header|MiniScript}}==
<syntaxhighlight lang="miniscript">print "The result of zero to the zero power is " + 0^0</syntaxhighlight>
{{out}}
<pre>
The result of zero to the zero power is 1
</pre>
 
=={{header|МК-61/52}}==
<syntaxhighlight lang="text">Сx ^ x^y С/П</langsyntaxhighlight>
 
The result is error message.
 
=={{header|Nanoquery}}==
<syntaxhighlight lang="nanoquery">println 0^0</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Neko}}==
Neko uses the C math library for exponentiation, Zero to the zero in math.pow(x, y) is treated as being 1.
 
<syntaxhighlight lang="actionscript">/**
Zero to the zeroth power, in Neko
*/
 
var math_pow = $loader.loadprim("std@math_pow", 2)
 
$print(math_pow(0, 0), "\n")</syntaxhighlight>
 
{{out}}
<pre>prompt$ nekoc zero-to-the-zero.neko
prompt$ neko zero-to-the-zero.n
1</pre>
 
=={{header|NetRexx}}==
<langsyntaxhighlight lang="netrexx">x=0
Say '0**0='||x**x</langsyntaxhighlight>
{{out}}
<pre>0**0=1</pre>
 
=={{header|NewLISP}}==
<syntaxhighlight lang="newlisp">(pow 0 0)</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Nial}}==
 
Create an exponentiation table for all type combinations (of integer <code>0</code>, float <code>0.0</code> and boolean <code>o</code>):
 
<syntaxhighlight lang="nial"> 0 0.0 o outer power 0 0.0 o
+--+--+--+
| 1|1.| 1|
+--+--+--+
|1.|1.|1.|
+--+--+--+
| 1|1.| 1|
+--+--+--+</syntaxhighlight>
 
=={{header|Nim}}==
<langsyntaxhighlight lang="nim">import math
 
echo pow(0.0, 0.0)</lang> # Floating point exponentiation.
echo 0 ^ 0 # Integer exponentiation.</syntaxhighlight>
{{out}}
<pre>1.0000000000000000e+00</pre>0
1</pre>
 
=={{header|OCaml}}==
Line 524 ⟶ 1,083:
=={{header|Oforth}}==
 
<syntaxhighlight lang Oforth="oforth">0 0 pow println</langsyntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
=={{header|Ol}}==
<syntaxhighlight lang="scheme">
(print "0^0: " (expt 0 0))
(print "0.0^0: " (expt (inexact 0) 0))
</syntaxhighlight>
{{out}}
<pre>
0^0: 1
0.0^0: 1
</pre>
 
=={{header|ooRexx}}==
<langsyntaxhighlight lang="oorexx">/**********************************************************************
* 21.04.2014 Walter Pachl
**********************************************************************/
Say 'rxCalcpower(0,0) ->' rxCalcpower(0,0)
Say '0**0 ->' 0**0
::requires rxmath library</langsyntaxhighlight>
{{out}}
<pre>
Line 543 ⟶ 1,113:
0**0 -> 1
</pre>
 
 
=={{header|Openscad}}==
<syntaxhighlight lang="openscad">echo (0^0);</syntaxhighlight>
 
 
=={{header|PARI/GP}}==
0 raised to the power of exact 0 is 1, but 0 cannot be raised to the power of an inexact 0:
<lang parigp>0^0</lang>
<syntaxhighlight lang="parigp">0^0
0.^0
0^0.</syntaxhighlight>
{{out}}
<pre>%1 = 1</pre>
%2 = 1
*** at top-level: 0^0.
*** ^---
*** _^_: domain error in gpow(0,n): n <= 0
*** Break loop: type 'break' to go back to GP prompt</pre>
 
=={{header|Pascal}}==
{{works with|Free Pascal}} {{Libheader|math}}
<langsyntaxhighlight Pascallang="pascal">program ZToZ;
uses
math;
Line 556 ⟶ 1,140:
write('0.0 ^ 0 :',IntPower(0.0,0):4:2);
writeln(' 0.0 ^ 0.0 :',Power(0.0,0.0):4:2);
end.</langsyntaxhighlight>
;output:
<pre>0.0 ^ 0 :1.00 0.0 ^ 0.0 :1.00</pre>
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">print 0 ** 0, "\n";
 
use Math::Complex;
 
print cplx(0,0) ** cplx(0,0), "\n";</langsyntaxhighlight>
{{out}}
<pre>
Line 572 ⟶ 1,156:
</pre>
 
=={{header|Perl 6Phix}}==
{{libheader|Phix/basics}}
Translation of REXX.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang perl 6>say '0 ** 0 (zero to the zeroth power) ───► ', 0**0</lang>{{out}}
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">requires</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"0.8.4"</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- (now fixed/crashes on earlier versions)</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">complex</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">complex</span> <span style="color: #000000;">a</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_new</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">b</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">sa</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #004600;">true</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">sb</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #004600;">true</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%s ^ %s = %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">sa</span><span style="color: #0000FF;">,</span><span style="color: #000000;">sa</span><span style="color: #0000FF;">,</span><span style="color: #000000;">sb</span><span style="color: #0000FF;">})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
1
0 ** 0 (zero to the zeroth power) ───► 1
0+0i ^ 0+0i = 1+0i
</pre>
 
=={{header|PHPPhixmonti}}==
<syntaxhighlight lang="phixmonti">def mypower
<lang PHP><?php
dup not if
echo pow(0,0);</lang>
. sign dup 0 == if . 1 endif
else
power
endif
enddef
 
0 0 mypower print</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|PHP}}==
<syntaxhighlight lang="php"><?php
echo pow(0,0);
echo 0 ** 0; // PHP 5.6+ only
?></syntaxhighlight>
{{out}}
<pre>
1
1
</pre>
 
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">
<lang PicoLisp>
(** 0 0)
</syntaxhighlight>
</lang>
{{out}}
1
 
=={{header|Pike}}==
<syntaxhighlight lang="pike">write( pow(0, 0) +"\n" );</syntaxhighlight>
{{Out}}
<pre>
1
</pre>
 
=={{header|PL/I}}==
<langsyntaxhighlight lang="pli"> zhz: Proc Options(Main);
Dcl a dec float(10) Init(1);
Dcl b dec float(10) Init(0);
Line 597 ⟶ 1,219:
Put skip list('0**1=',b**a);
Put skip list('0**0=',b**b);
End;</langsyntaxhighlight>
{{out}}
<pre>
Line 606 ⟶ 1,228:
At offset +0000025B in procedure with entry ZHZ
</pre>
 
=={{header|Plain English}}==
<syntaxhighlight lang="plainenglish">To run:
Start up.
Put 0 into a number.
Raise the number to 0.
Convert the number to a string.
Write the string to the console.
Wait for the escape key.
Shut down.</syntaxhighlight>
{{out}}
<pre>
1
</pre>
 
=={{header|PowerShell}}==
 
<lang PowerShell>[math]::pow(0,0)</lang>
<syntaxhighlight lang="powershell">Write-Host "0 ^ 0 = " ([math]::pow(0,0))</syntaxhighlight>
 
Output :
 
<pre>
0 ^ 0 = 1
</pre>
 
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">
If OpenConsole()
PrintN("Zero to the zero power is " + Pow(0,0))
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf
</syntaxhighlight>
 
{{out}}
<pre>
Zero to the zero power is 1
</pre>
 
=={{header|Pyret}}==
<syntaxhighlight lang="pyret">num-expt(0, 0)</syntaxhighlight>
{{out}}
1
 
=={{header|Python}}==
===Python3===
<lang python>from decimal import Decimal
<syntaxhighlight lang="python">from decimal import Decimal
from fractions import Fraction
from itertools import product
 
zeroes = [0, 0.0, 0j, Decimal(0), Fraction(0, 1), -0.0, -0.0j, Decimal(-0.0)]
for i, j in product(zeroes, repeat=2):
try:
ans = i**j
except:
ans = '<Exception raised>'
print(f'{i!r:>15} ** {j!r:<15} = {ans!r}')</syntaxhighlight>
{{out}}
<pre> 0 ** 0 = 1
0 ** 0.0 = 1.0
0 ** 0j = (1+0j)
0 ** Decimal('0') = '<Exception raised>'
0 ** Fraction(0, 1) = 1
0 ** -0.0 = 1.0
0 ** (-0-0j) = (1+0j)
0 ** Decimal('-0') = '<Exception raised>'
0.0 ** 0 = 1.0
0.0 ** 0.0 = 1.0
0.0 ** 0j = (1+0j)
0.0 ** Decimal('0') = '<Exception raised>'
0.0 ** Fraction(0, 1) = 1.0
0.0 ** -0.0 = 1.0
0.0 ** (-0-0j) = (1+0j)
0.0 ** Decimal('-0') = '<Exception raised>'
0j ** 0 = (1+0j)
0j ** 0.0 = (1+0j)
0j ** 0j = (1+0j)
0j ** Decimal('0') = '<Exception raised>'
0j ** Fraction(0, 1) = (1+0j)
0j ** -0.0 = (1+0j)
0j ** (-0-0j) = (1+0j)
0j ** Decimal('-0') = '<Exception raised>'
Decimal('0') ** 0 = '<Exception raised>'
Decimal('0') ** 0.0 = '<Exception raised>'
Decimal('0') ** 0j = '<Exception raised>'
Decimal('0') ** Decimal('0') = '<Exception raised>'
Decimal('0') ** Fraction(0, 1) = '<Exception raised>'
Decimal('0') ** -0.0 = '<Exception raised>'
Decimal('0') ** (-0-0j) = '<Exception raised>'
Decimal('0') ** Decimal('-0') = '<Exception raised>'
Fraction(0, 1) ** 0 = Fraction(1, 1)
Fraction(0, 1) ** 0.0 = 1.0
Fraction(0, 1) ** 0j = (1+0j)
Fraction(0, 1) ** Decimal('0') = '<Exception raised>'
Fraction(0, 1) ** Fraction(0, 1) = Fraction(1, 1)
Fraction(0, 1) ** -0.0 = 1.0
Fraction(0, 1) ** (-0-0j) = (1+0j)
Fraction(0, 1) ** Decimal('-0') = '<Exception raised>'
-0.0 ** 0 = 1.0
-0.0 ** 0.0 = 1.0
-0.0 ** 0j = (1+0j)
-0.0 ** Decimal('0') = '<Exception raised>'
-0.0 ** Fraction(0, 1) = 1.0
-0.0 ** -0.0 = 1.0
-0.0 ** (-0-0j) = (1+0j)
-0.0 ** Decimal('-0') = '<Exception raised>'
(-0-0j) ** 0 = (1+0j)
(-0-0j) ** 0.0 = (1+0j)
(-0-0j) ** 0j = (1+0j)
(-0-0j) ** Decimal('0') = '<Exception raised>'
(-0-0j) ** Fraction(0, 1) = (1+0j)
(-0-0j) ** -0.0 = (1+0j)
(-0-0j) ** (-0-0j) = (1+0j)
(-0-0j) ** Decimal('-0') = '<Exception raised>'
Decimal('-0') ** 0 = '<Exception raised>'
Decimal('-0') ** 0.0 = '<Exception raised>'
Decimal('-0') ** 0j = '<Exception raised>'
Decimal('-0') ** Decimal('0') = '<Exception raised>'
Decimal('-0') ** Fraction(0, 1) = '<Exception raised>'
Decimal('-0') ** -0.0 = '<Exception raised>'
Decimal('-0') ** (-0-0j) = '<Exception raised>'
Decimal('-0') ** Decimal('-0') = '<Exception raised>'</pre>
 
===Python2===
<syntaxhighlight lang="python">from decimal import Decimal
from fractions import Fraction
for n in (Decimal(0), Fraction(0, 1), complex(0), float(0), int(0)):
Line 622 ⟶ 1,365:
except:
n2 = '<Raised exception>'
print('%8s: ** -> %r; pow -> %r' % (n.__class__.__name__, n1, n2))</langsyntaxhighlight>
{{out}}
<pre>
Line 631 ⟶ 1,374:
int: ** -> 1; pow -> 1
</pre>
 
=={{header|QB64}}==
<syntaxhighlight lang="qb64">Print 0 ^ 0</syntaxhighlight>
{{out}}
<pre>1</pre>
Alternatively:
<syntaxhighlight lang="qb64">i% = 0 'Integer
l& = 0 'Long integer
s! = 0.0 'Single precision floating point
d# = 0.0 'Double precision floating point
b` = 0 '_Bit
bb%% = 0 '_Byte
isf&& = 0 '_Integer64
 
Print i% ^ i%
Print l& ^ l&
Print s! ^ s!
Print d# ^ d#
Print b` ^ b`
Print bb%% ^ bb%%
Print isf&& ^ isf&&</syntaxhighlight>
{{out}}
NB: Values with 0 decimals are trimmed by Print's casting from number value to String.
<pre> 1
1
1
1
1
1
1</pre>
 
=={{header|Quackery}}==
As a dialogue in the Quackery shell.
 
<syntaxhighlight lang="quackery">/O> 0 0 **
...
 
Stack: 1
</syntaxhighlight>
 
=={{header|R}}==
<syntaxhighlight lang="rsplus">print(0^0)</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Racket}}==
 
<langsyntaxhighlight lang="racket">#lang racket
;; as many zeros as I can think of...
(define zeros (list
Line 647 ⟶ 1,434:
(printf "(~a)^(~a) = ~s~%" z p
(with-handlers [(exn:fail:contract:divide-by-zero? exn-message)]
(expt z p))))</langsyntaxhighlight>
 
{{out}}
Line 686 ⟶ 1,473:
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0+0.0i) = +nan.0+nan.0i</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
 
{{works with|Rakudo|2018.03}}
<syntaxhighlight lang="raku" line>say ' type n n**n exp(n,n)';
say '-------- -------- -------- --------';
 
for 0, 0.0, FatRat.new(0), 0e0, 0+0i {
printf "%8s %8s %8s %8s\n", .^name, $_, $_**$_, exp($_,$_);
}</syntaxhighlight>
 
{{out}}
<pre>
type n n**n exp(n,n)
-------- -------- -------- --------
Int 0 1 1
Rat 0 1 1
FatRat 0 1 1
Num 0 1 1
Complex 0+0i 1+0i 1+0i
</pre>
 
=={{header|Red}}==
Shown using the operator, the function, and the <code>math</code> mini-DSL that uses the order of operations from mathematics:
<syntaxhighlight lang="rebol">Red[]
print 0 ** 0
print power 0 0
print math [0 ** 0]</syntaxhighlight>
{{out}}
<pre>
1
1
1
</pre>
 
=={{header|Relation}}==
<syntaxhighlight lang="relation">
echo pow(0,0)
// 1
</syntaxhighlight>
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program shows the results of raising zero to the zeroth power.*/
say '0 ** 0 (zero to the zeroth power) ───► ' 0**0</langsyntaxhighlight>
<br>using PC/REXX
<br>using Personal REXX
Line 718 ⟶ 1,546:
Statement context: C:\ZERO_TO0.REX, procedure: ZERO_TO0
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
x = 0
y = 0
z = pow(x,y)
see "z=" + z + nl # z=1
</syntaxhighlight>
 
=={{header|RPL}}==
0 0 ^
====Output for HP-48G and older models====
1: 1
====Output for HP-49 and newer models====
1: ?
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">require 'bigdecimal'
 
[0, 0.0, Complex(0), Rational(0), BigDecimal.new("0")].each do |n|
printf "%10s: ** -> %s\n" % [n.class, n**n]
end</langsyntaxhighlight>
{{out}}
<pre>
FixnumInteger: ** -> 1
Float: ** -> 1.0
Complex: ** -> 1+0i
Rational: ** -> 1/1
BigDecimal: ** -> 0.1E11e1
</pre>
 
=={{header|Rust}}==
<langsyntaxhighlight Rustlang="rust">fn main() {
println!("{}",0u32.pow(0));
}</langsyntaxhighlight>
 
{{out}}
<pre>1</pre>
 
=={{header|S-lang}}==
<syntaxhighlight lang="s-lang">print(0^0);</syntaxhighlight>
{{out}}
<pre>1.0</pre>
 
=={{header|Scala}}==
{{libheader|Scala}}<langsyntaxhighlight Scalalang="scala"> assert(math.pow(0, 0) == 1, "Scala blunder, should go back to school !")</langsyntaxhighlight>
 
=={{header|Scheme}}==
<langsyntaxhighlight lang="scheme">(display (expt 0 0)) (newline)
(display (expt 0.0 0.0)) (newline)
(display (expt 0+0i 0+0i)) (newline)</langsyntaxhighlight>
{{out}}
<pre>1
Line 755 ⟶ 1,603:
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "float.s7i";
include "complex.s7i";
Line 766 ⟶ 1,614:
writeln("0.0+0i ** 0 = " <& complex(0.0) ** 0);
end func;
</syntaxhighlight>
</lang>
 
{{out}}
Line 775 ⟶ 1,623:
0.0+0i ** 0 = 1.0+0.0i
</pre>
 
=={{header|SenseTalk}}==
<syntaxhighlight lang="sensetalk">set a to 0
set b to 0
 
put a to the power of b
// Prints: 1</syntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">[0, Complex(0, 0)].each {|n|
say n**n
}</langsyntaxhighlight>
{{out}}
<pre>
Line 785 ⟶ 1,640:
1
</pre>
 
Taking the 0'th root of a number and raising it back to the zero power, we also get a 1:
 
<syntaxhighlight lang="ruby">say 0.root(0).pow(0) # => 1
say ((0**(1/0))**0) # => 1</syntaxhighlight>
 
=={{header|Sinclair ZX81 BASIC}}==
<syntaxhighlight lang="basic">PRINT 0**0</syntaxhighlight>
{{out}}
<pre>1</pre>
 
=={{header|Smalltalk}}==
 
<langsyntaxhighlight lang="smalltalk">
0 raisedTo: 0
0.0 raisedTo: 0.0
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 798 ⟶ 1,663:
</pre>
 
=={{header|SQLsmart BASIC}}==
<syntaxhighlight lang="qbasic">PRINT 0^0</syntaxhighlight>
 
{{out}}
<lang SQL>
<pre>
1
</pre>
 
 
=={{header|SNOBOL4}}==
<syntaxhighlight lang="snobol4"> OUTPUT = (0 ** 0)
END</syntaxhighlight>
 
 
=={{header|SQL}}==
<syntaxhighlight lang="sql">
SQL> select power(0,0) from dual;
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 816 ⟶ 1,694:
val it = 1.0 : real
</pre>
 
=={{header|Stata}}==
<syntaxhighlight lang="stata">. display 0^0
1</syntaxhighlight>
 
=={{header|Swift}}==
<langsyntaxhighlight lang="swift">import Darwin
printlnprint(pow(0.0,0.0))</langsyntaxhighlight>
{{out}}
<pre>1.0</pre>
 
=={{header|Symsyn}}==
<syntaxhighlight lang="symsyn">
(0^0) []
</syntaxhighlight>
{{out}}
<pre> 1 </pre>
 
=={{header|Tcl}}==
Interactively…
<langsyntaxhighlight lang="tcl">% expr 0**0
1
% expr 0.0**0.0
1.0</langsyntaxhighlight>
 
=={{header|TI SR-56}}==
<syntaxhighlight lang="text">0 Yx 0 =</syntaxhighlight>
 
{{out}}
<pre> 1 </pre>
 
=={{header|TI-83_BASIC}}==
<syntaxhighlight lang="tibasic">0^0</syntaxhighlight>
{{out}}
<pre>ERROR:DOMAIN</pre>
 
=={{header|uBasic/4tH}}==
<syntaxhighlight lang="text">Print 0^0</syntaxhighlight>
{{out}}
<pre>1
 
0 OK, 0:9</pre>
 
=={{header|Ursa}}==
Cygnus/X Ursa is written in Java, and as a result returns 1.0 when raising 0 to the 0.
<syntaxhighlight lang="ursa">> out (pow 0 0) endl console
1.0</syntaxhighlight>
 
=={{header|VBA}}==
<syntaxhighlight lang="vb">Public Sub zero()
x = 0
y = 0
z = 0 ^ 0
Debug.Print "z ="; z
End Sub</syntaxhighlight>{{out}}
<pre>z = 1</pre>
 
=={{header|VBScript}}==
<syntaxhighlight lang ="vb">WScript.Echo 0 ^ 0</langsyntaxhighlight>
{{Out}}
<pre>1</pre>
 
 
=={{header|Verilog}}==
<syntaxhighlight lang="verilog">module main;
initial begin
$display("0 ^ 0 = ", 0**0);
$finish ;
end
endmodule</syntaxhighlight>
{{out}}
<pre>0 ^ 0 = 1</pre>
 
 
=={{header|Visual Basic .NET}}==
<syntaxhighlight lang="vbnet">Module Program
Sub Main()
Console.Write(0^0)
End Sub
End Module</syntaxhighlight>
 
{{out}}
<pre>1</pre>
 
=={{header|V (Vlang)}}==
<syntaxhighlight lang="go">// Zero to the zero power, in V
// Tectonics: v run zero-to-the-zero-power.v
module main
import math
 
// starts here
// V does not include an exponentiation operator, but uses a math module
pub fn main() {
println(math.pow(0, 0))
}</syntaxhighlight>
{{out}}<pre>prompt$ v run rosetta/zero-to-the-zero-power.v
1.</pre>
 
=={{header|Wren}}==
<syntaxhighlight lang="wren">System.print(0.pow(0))</syntaxhighlight>
 
{{out}}
<pre>
1
</pre>
 
=={{header|XLISP}}==
<syntaxhighlight lang="scheme">XLISP 3.3, September 6, 2002 Copyright (c) 1984-2002, by David Betz
[1] (expt 0 0)
 
1
[2] </syntaxhighlight>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">RlOut(0, Pow(0., 0.))</syntaxhighlight>
{{out}}
<pre> 1.00000</pre>
 
=={{header|Zig}}==
<syntaxhighlight lang="zig">const std = @import("std");
 
pub fn main() !void {
const stdout = std.io.getStdOut().writer();
try stdout.print("0^0 = {d:.8}\n", .{std.math.pow(f32, 0, 0)});
}</syntaxhighlight>
{{out}}
<pre>0^0 = 1.00000000</pre>
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">(0.0).pow(0) //--> 1.0
var BN=Import("zklBigNum"); // big ints
BN(0).pow(0) //--> 1</langsyntaxhighlight>
56

edits