Weather routing: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 1,187: Line 1,187:
sequence sj = s[j]
sequence sj = s[j]
for k=1 to length(sj) do
for k=1 to length(sj) do
object sjk = sj[k]
SurfaceParameters p = sj[k][2]
SurfaceParameters p = sjk[2]
p.windvelocity = p.windvelocity * (1+0.002*i)
p.windvelocity = p.windvelocity * (1+0.002*i)
end for
end for

Revision as of 12:12, 22 May 2020

Weather routing is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The weather routing problem has the following parts:

  • a predicted surface wind direction and speed, at increments of longitude, latitude, and time
  • an expected surface current direction and speed, at increments of longitude, latitude, and time
  • 'polar data' describing maximum speed of a sailboat at points of sail for a given speed of wind over water
  • regions for sailing (the open ocean) and not (the land, shallows, restricted areas, etc.)
  • a starting location and time, and a destination

Given the above information and a specific path, progress and arrival time are determined. The weather routing problem, conversely, is to determine the path which results in the earliest arrival time.


Go

Translation of: Julia

This runs in only 37 seconds which is surprisingly quick compared to Julia. However, I've just noticed that I'm using an out of date version of Julia (1.0.4) so hopefully the latest version will be able to close the gap. <lang go>package main

import (

   "fmt"
   "io/ioutil"
   "log"
   "math"
   "strconv"
   "strings"

)

type matrixF = [][]float64 type pred = func(float64) bool

/*

  Structure that represents a polar CSV file's data.
  Note 0 degrees is directly into the wind, 180 degrees is directly downwind.
  • /

type SailingPolar struct {

   winds   []float64 // vector of windspeeds
   degrees []float64 // vector of angles in degrees of direction relative to the wind
   speeds  matrixF   // matrix of sailing speeds indexed by wind velocity and angle of boat to wind

}

/*

  Structure that represents wind and surface current direction and velocity for a given position.
  Angles in degrees, velocities in knots.
  • /

type SurfaceParameters struct{ windDeg, windKts, currentDeg, currentKts float64 }

// Checks for fatal errors. func check(err error) {

   if err != nil {
       log.Fatal(err)
   }

}

// Reads a sailing polar CSV file and returns a SailingPolar struct containing the file data. // A sailing polar file is a CSV file, with ';' used as the comma separator instead of a comma. // The first line of file contains labels for the wind velocities that make up columns, and // the first entry of each row makes up a column of angle of sailing direction from wind in degrees. func getPolarData(fileName string) *SailingPolar {

   content, err := ioutil.ReadFile(fileName)
   check(err)
   lines := strings.Split(string(content), "\n")
   line0 := strings.TrimSpace(lines[0])
   header := strings.Split(line0, ";")
   var winds, degrees []float64
   var speeds matrixF
   for _, col := range header[1:] {
       t, err := strconv.ParseFloat(col, 64)
       check(err)
       winds = append(winds, t)
   }
   for _, line := range lines[1:] {
       line = strings.TrimSpace(line)
       if line == "" {
           break // ignore final blank line if there is one
       }
       cols := strings.Split(line, ";")
       f, err := strconv.ParseFloat(cols[0], 64)
       check(err)
       degrees = append(degrees, f)
       var temp []float64
       for _, col := range cols[1:] {
           t, err := strconv.ParseFloat(col, 64)
           check(err)
           temp = append(temp, t)
       }
       speeds = append(speeds, temp)
   }
   return &SailingPolar{winds, degrees, speeds}

}

const R = 6372800.0 // Earth's approximate radius in meters

/* various helper methods which work with degrees rather than radians. */

// Converts degrees to radians. func deg2Rad(deg float64) float64 { return math.Mod(deg*math.Pi/180+2*math.Pi, 2*math.Pi) }

// Converts radians to degrees. func rad2Deg(rad float64) float64 { return math.Mod(rad*180/math.Pi+360, 360) }

// Trig functions. func sind(d float64) float64 { return math.Sin(deg2Rad(d)) } func cosd(d float64) float64 { return math.Cos(deg2Rad(d)) } func asind(d float64) float64 { return rad2Deg(math.Asin(d)) } func atand(x, y float64) float64 { return rad2Deg(math.Atan2(x, y)) }

// Calculates the haversine function for two points on the Earth's surface. // Given two latitude, longitude pairs in degrees for a point on the Earth, // get distance in meters and the initial direction of travel in degrees for // movement from point 1 to point 2. func haversine(lat1, lon1, lat2, lon2 float64) (float64, float64) {

   dlat := lat2 - lat1
   dlon := lon2 - lon1
   a := math.Pow(sind(dlat/2), 2) + cosd(lat1)*cosd(lat2)*math.Pow(sind(dlon/2), 2)
   c := 2 * asind(math.Sqrt(a))
   theta := atand(sind(dlon)*cosd(lat2), cosd(lat1)*sind(lat2)-sind(lat1)*cosd(lat2)*cosd(dlon))
   theta = math.Mod(theta+360, 360)
   return R * c * 0.5399565, theta

}

// Returns the index of the first element of 'a' for which 'p' returns true or -1 otherwise. func findFirst(a []float64, p pred) int {

   for i, e := range a {
       if p(e) {
           return i
       }
   }
   return -1

}

// Returns the index of the last element of 'a' for which 'p' returns true or -1 otherwise. func findLast(a []float64, p pred) int {

   for i := len(a) - 1; i >= 0; i-- {
       if p(a[i]) {
           return i
       }
   }
   return -1

}

// Calculate the expected sailing speed in a specified direction in knots, // given sailing polar data, a desired point of sail in degrees, and wind speed in knots. func boatSpeed(sp *SailingPolar, pointOfSail, windSpeed float64) float64 {

   winds := sp.winds
   degrees := sp.degrees
   speeds := sp.speeds
   udeg := findLast(degrees, func(t float64) bool { return t <= pointOfSail })
   odeg := findFirst(degrees, func(t float64) bool { return t >= pointOfSail })
   uvel := findLast(winds, func(t float64) bool { return t <= windSpeed })
   ovel := findFirst(winds, func(t float64) bool { return t >= windSpeed })
   if udeg == -1 || odeg == -1 || uvel == -1 || ovel == -1 {
       return -1
   }
   var frac float64
   switch {
   case odeg == udeg && uvel == ovel:
       frac = 1
   case odeg == udeg:
       frac = (windSpeed - winds[uvel]) / (winds[ovel] - winds[uvel])
   case uvel == ovel:
       frac = (pointOfSail - degrees[udeg]) / (degrees[odeg] - degrees[udeg])
   default:
       frac = ((pointOfSail-degrees[udeg])/(degrees[odeg]-degrees[udeg]) +
           (windSpeed-winds[uvel])/(winds[ovel]-winds[uvel])) / 2
   }
   return speeds[udeg][uvel] + frac*(speeds[odeg][ovel]-speeds[udeg][uvel])

}

// Calculates the expected net boat speed in a desired direction versus the wind ('azimuth'). // This is generally different from the actual boat speed in its actual direction. // Directions are in degrees ('pointos' is point of sail the ship direction from the wind), // and velocity of wind ('ws') is in knots. func sailingSpeed(sp *SailingPolar, azimuth, pointos, ws float64) float64 {

   return boatSpeed(sp, pointos, ws) * cosd(math.Abs(pointos-azimuth))

}

// Calculates the net direction and velocity of a sailing ship. // Arguments are sailing polar data, direction of travel in degrees from north, wind direction in // degrees from north, wind velocity in knots, surface current direction in degrees, and // current velocity in knots. func bestVectorSpeed(sp *SailingPolar, dirTravel, dirWind, windSpeed, dirCur, velCur float64) (float64, float64) {

   azimuth := math.Mod(dirTravel-dirWind, 360)
   if azimuth < 0 {
       azimuth += 360
   }
   if azimuth > 180 {
       azimuth = 360 - azimuth
   }
   vmg := boatSpeed(sp, azimuth, windSpeed)
   other := -1.0
   idx := -1
   for i, d := range sp.degrees {
       ss := sailingSpeed(sp, azimuth, d, windSpeed)
       if ss > other {
           other = ss
           idx = i
       }
   }
   if other > vmg {
       azimuth = sp.degrees[idx]
       vmg = other
   }
   dirChosen := deg2Rad(dirWind + azimuth)
   wx := vmg * math.Sin(dirChosen)
   wy := vmg * math.Cos(dirChosen)
   curX := velCur * math.Sin(deg2Rad(dirCur))
   curY := velCur * math.Cos(deg2Rad(dirCur))
   return rad2Deg(math.Atan2(wy+curY, wx+curX)), math.Sqrt(math.Pow(wx+curX, 2) + math.Pow(wy+curY, 2))

}

// Calculates the trip time in minutes from (lat1, lon1) to the destination (lat2, lon2). // Uses the data in SurfaceParameters for wind and current velocity and direction. func sailSegmentTime(sp *SailingPolar, p SurfaceParameters, lat1, lon1, lat2, lon2 float64) float64 {

   distance, dir := haversine(lat1, lon1, lat2, lon2)
   _, vel := bestVectorSpeed(sp, dir, p.windDeg, p.windKts, p.currentDeg, p.currentKts)
   // minutes/s * m / (knots * (m/s / knot)) = minutes
   return (1.0 / 60.0) * distance / (vel * 1.94384)

}

/* Structure that represents a point in 2-D space. */ type Point2 struct{ x, y int }

func (p Point2) add(p2 Point2) Point2 { return Point2{p.x + p2.x, p.y + p2.y} } func (p Point2) equals(p2 Point2) bool { return p.x == p2.x && p.y == p2.y } func (p Point2) String() string { return fmt.Sprintf("[%d, %d]", p.x, p.y) }

/*

  Structure that consists of a tuple of latitude and longitude in degrees.
  NB: This uses latitude (often considered to be y) first then longitude (often considered to be x).
  This latitude, then longitude ordering is as per ISO 6709 (en.wikipedia.org/wiki/ISO_6709).
  • /

type Position struct{ lat, lon float64 }

/* Structure that represents a Position with the SurfaceParameters of wind and current at the Position. */ type GridPoint struct {

   pt Position
   sp SurfaceParameters

} type MatrixG = [][]*GridPoint

/*

  Type alias for a matrix of GridPoints, each Position point with their SurfaceParameters.
  A Vector of TimeSlice can give the surface characteristics for an ocean region over time.
  • /

type TimeSlice = MatrixG

/* Structure that represents a routing problem. */ type RoutingProblem struct {

   timeInterval    float64     // the minutes duration for each TimeSlice
   timeFrame       []TimeSlice // a vector of sequential timeslices for the ocean region
   obstacleIndices []Point2    // the Cartesian indices in each TimeSlice for
   // obstacles, such as land or shoals, where the ship may not go
   startIndex        int    // the TimeSlice position for time of starting
   start             Point2 // starting location on grid of GridPoints
   finish            Point2 // destination / finish location on grid of GridPoints
   allowRepeatVisits bool   // whether the vessel may overlap its prior path, usually false

}

/* Structure that represents a timed path. */ type TimedPath struct {

   duration float64  // minutes total to travel the path
   path     []Point2 // vector of Cartesian indices of points in grid for path to travel

}

func (t TimedPath) String() string { return fmt.Sprintf("%g %v", t.duration, t.path) } func (t TimedPath) equals(t2 TimedPath) bool { return t.String() == t2.String() }

func findMin(a []float64) (float64, int) {

   min := a[0]
   idx := 0
   for i, e := range a[1:] {
       if e < min {
           min = e
           idx = i + 1
       }
   }
   return min, idx

}

var ntuples = [][2]int{{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}} var neighbors = make([]Point2, len(ntuples))

func init() {

   for i := 0; i < len(ntuples); i++ {
       neighbors[i] = Point2{ntuples[i][0], ntuples[i][1]}
   }

}

func contains(points []Point2, point Point2) bool {

   for _, p := range points {
       if p.equals(point) {
           return true
       }
   }
   return false

}

// Returns a list of points surrounding 'p' which are not otherwise excluded. func surround(p Point2, mat TimeSlice, excluded []Point2) []Point2 {

   xmax := len(mat)
   ymax := len(mat[0])
   var res []Point2
   for _, x := range neighbors {
       q := x.add(p)
       if (0 <= q.x && q.x < xmax) && (0 <= q.y && q.y < ymax) && !contains(excluded, q) {
           res = append(res, q)
       }
   }
   return res

}

// Get the route (as a TimedPath) that minimizes time from start to finish for a given // RoutingProblem (sea parameters) given sailing polar data (ship parameters). func minimumTimeRoute(rp *RoutingProblem, sp *SailingPolar, verbose bool) *TimedPath {

   timedPaths := []*TimedPath{&TimedPath{0, []Point2{rp.start}}}
   completed := false
   minPath := &TimedPath{1000, []Point2{}}
   for i := 0; i < 1000; i++ {
       var newPaths []*TimedPath
       if verbose {
           fmt.Printf("Checking %d paths of length %d\n", len(timedPaths), len(timedPaths[0].path))
       }
       for _, tpath := range timedPaths {
           le := len(tpath.path)
           if tpath.path[le-1] == rp.finish {
               completed = true
               newPaths = append(newPaths, tpath)
           } else {
               p1 := tpath.path[le-1]
               num := int(math.Round(tpath.duration))
               den := int(math.Round(rp.timeInterval))
               slice := rp.timeFrame[(num/den)%len(rp.timeFrame)]
               for _, p2 := range surround(p1, slice, rp.obstacleIndices) {
                   if !rp.allowRepeatVisits && contains(tpath.path, p2) {
                       continue
                   }
                   gp1 := slice[p1.x][p1.y]
                   gp2 := slice[p2.x][p2.y]
                   lat1 := gp1.pt.lat
                   lon1 := gp1.pt.lon
                   lat2 := gp2.pt.lat
                   lon2 := gp2.pt.lon
                   t := sailSegmentTime(sp, gp1.sp, lat1, lon1, lat2, lon2)
                   path := make([]Point2, len(tpath.path))
                   copy(path, tpath.path)
                   path = append(path, p2)
                   newPaths = append(newPaths, &TimedPath{tpath.duration + t, path})
               }
           }
       }
       set := make(map[string]*TimedPath)
       for _, np := range newPaths {
           set[np.String()] = np
       }
       timedPaths = timedPaths[:0]
       for k := range set {
           timedPaths = append(timedPaths, set[k])
       }
       if completed {
           var durations []float64
           for _, x := range timedPaths {
               durations = append(durations, x.duration)
           }
           minDur, _ := findMin(durations)
           var finished []*TimedPath
           for _, x := range timedPaths {
               le := len(x.path)
               if x.path[le-1] == rp.finish {
                   finished = append(finished, x)
               }
           }
           durations = durations[:0]
           for _, x := range finished {
               durations = append(durations, x.duration)
           }
           minFinDur, idx := findMin(durations)
           if verbose {
               fmt.Printf("Current finished minimum: %v, others %v\n", finished[idx], minDur)
           }
           if minDur == minFinDur {
               minPath = finished[idx]
               break
           }
       }
   }
   return minPath

}

/*

  The data is selected so the best time path is slightly longer than the
  shortest length path. The forbidden regions are x, representing land or reef.
  The allowed sailing points are . and start and finish are S and F.
  x  .  .  F  .  .  x  .  x
  .  .  .  .  .  .  .  x  x
  x  .  .  x  x  x  .  .  .
  .  .  x  x  x  x  .  x  x
  x  .  .  .  x  x  .  x  .
  x  .  .  .  x  x  .  x  .
  .  .  .  .  x  .  .  x  .
  x  .  .  .  .  .  .  x  .
  .  .  .  S  .  .  .  .  .
  • /

// These need to be changed to 0-based for Go. var ftuples = [][2]int{

   {1, 8}, {2, 1}, {2, 8}, {3, 5}, {3, 8}, {4, 1}, {4, 5}, {4, 6}, {4, 8}, {5, 1},
   {5, 5}, {5, 6}, {5, 8}, {6, 3}, {6, 4}, {6, 5}, {6, 6}, {6, 8}, {6, 9}, {7, 1},
   {7, 4}, {7, 5}, {7, 6}, {8, 8}, {8, 9}, {9, 1}, {9, 7}, {9, 9},

}

var forbidden = make([]Point2, len(ftuples))

func init() {

   for i := 0; i < len(ftuples); i++ {
       forbidden[i] = Point2{ftuples[i][0] - 1, ftuples[i][1] - 1}
   }

}

// Create regional wind patterns on the map. func surfaceByLongitude(lon float64) SurfaceParameters {

   switch {
   case lon < -155.03:
       return SurfaceParameters{-5, 8, 150, 0.5}
   case lon < -155.99:
       return SurfaceParameters{-90, 20, 150, 0.4}
   default:
       return SurfaceParameters{180, 25, 150, 0.3}
   }

}

// Vary wind speeds over time. func mutateTimeSlices(slices []TimeSlice) {

   i := 1
   for _, slice := range slices {
       for j := 0; j < len(slice); j++ {
           for k := 0; k < len(slice[j]); k++ {
               x := slice[j][k]
               x.sp = SurfaceParameters{x.sp.windDeg, x.sp.windKts * (1 + 0.002*float64(i)),
                   x.sp.currentDeg, x.sp.currentKts}
           }
       }
       i++
   }

}

func main() {

   startPos := Point2{0, 3} // 0-based
   endPos := Point2{8, 3}   // ditto
   slices := make([]MatrixG, 200)
   for s := 0; s < 200; s++ {
       gpoints := make([][]*GridPoint, 9)
       for i := 0; i < 9; i++ {
           gpoints[i] = make([]*GridPoint, 9)
           for j := 0; j < 9; j++ {
               pt := Position{19.78 - 1.0/60.0 + float64(i)/60, -155.0 - 5.0/60.0 + float64(j)/60}
               gpoints[i][j] = &GridPoint{pt, surfaceByLongitude(pt.lon)}
           }
       }
       slices[s] = gpoints
   }
   mutateTimeSlices(slices)
   routeProb := &RoutingProblem{10, slices, forbidden, 0, startPos, endPos, false}
   fileName := "polar.csv"
   sp := getPolarData(fileName)
   tp := minimumTimeRoute(routeProb, sp, false)
   fmt.Println("The route taking the least time found was:\n", tp.path, "\nwhich has duration",
       int(tp.duration/60), "hours,", int(math.Round(math.Mod(tp.duration, 60))), "minutes.")

}</lang>

Output:
The route taking the least time found was:
 [[0, 3] [0, 4] [1, 5] [2, 6] [3, 6] [4, 6] [5, 6] [6, 6] [7, 5] [7, 4] [8, 3]] 
which has duration 4 hours, 44 minutes.

Julia

Brute force optimization search, practical for shorter path lengths, but would require a better algorithm for paths over twice this size. <lang julia>module SailingPolars

using DelimitedFiles

export SailingPolar, SurfaceParameters, getpolardata, deg2rad, rad2deg, cartesian2polar export polar2cartesian, haversine, inverse_haversine, boatspeed, bestvectorspeed export sailingspeed, sailsegmenttime

"""

   Structure to represent a polar CSV file's data.

Contains a matrix, speeds, of sailing speeds indexed by wind velocity and angle of boat to wind winds is a list of wind speeds degrees is a list of angles in degrees of direction relative to the wind Note 0.0 degrees is directly into the wind, 180 degrees is directly downwind. """ struct SailingPolar

   winds::Vector{Float32}
   degrees::Vector{Float32}
   speeds::Matrix{Float32} # speeds[wind direction degrees, windspeed knots]

end

"""

   struct SurfaceParameters

Structure that represents wind and surface current direction and velocity for a given position Angles in degrees, velocities in knots """ struct SurfaceParameters

   winddeg::Float32
   windkts::Float32
   currentdeg::Float32
   currentkts::Float32

end

""" function getpolardata(filename)

Read a sailing polar CSV file and return a SailingPolar containing the file data.

A sailing polar file is a CSV file, with ';' used as the comma separator instead of a comma. The first line of file contains labels for the wind velocities that make up columns, and the first entry of each row makes up a column of angle of sailing direction from wind in degrees """ function getpolardata(filename)

   datacells, headercells = readdlm(filename, ';', header=true)
   winds = map(x -> parse(Float32, x), headercells[2:end])
   degrees = datacells[:, 1]
   speeds = datacells[:, 2:end]
   return SailingPolar(winds, degrees, speeds)

end


const R = 6372800 # Earth's approximate radius in meters

"""

   deg2rad(deg)

Convert degrees to radians """ deg2rad(deg) = (deg * π / 180.0 + 2π) % 2π

"""

   rad2deg(rad)

Convert radians to degrees """ rad2deg(rad) = (rad * (180.0 / π) + 360.0) % 360.0

"""

   cartesian2polard(x, y)

Convert x, y coordinates to polar coordinates with angle in degrees """ cartesian2polard(x, y) = sqrt(x * x + y * y), atand(x, y)

"""

   polard2cartesian(r, deg)

Convert polar coordinates in degrees to cartesian x, y coordinates """ polard2cartesian(r, deg) = r .* sincosd(deg)

"""

   function haversine(lat1, lon1, lat2, lon2)

Calculate the haversine function for two points on the Earth's surface.

Given two latitude, longitude pairs in degrees for a point on the Earth, get distance in meters and the initial direction of travel in degrees for movement from point 1 to point 2. """ function haversine(lat1, lon1, lat2, lon2)

   dlat = lat2 - lat1
   dlon = lon2 - lon1
   a = sind(dlat / 2)^2 + cosd(lat1) * cosd(lat2) * sind(dlon / 2)^2
   c = 2.0 * asind(sqrt(a))
   theta = atand(sind(dlon) * cosd(lat2),
       cosd(lat1) * sind(lat2) - sind(lat1) * cosd(lat2) * cosd(dlon))
   theta = (theta + 360) % 360
   return R * c * 0.5399565, theta

end

"""

   function inverse_haversine(lat1, lon1, distance, direction)

Calculate an inverse haversine function.

Takes the point of origin in degrees (latitude, longitude), distance in meters, and initial direction in degrees, and returns the latitude and longitude of the endpoint in degrees after traveling the specified distance. """ function inverse_haversine(lat1, lon1, distance, direction)

   lat2 = asind(sind(lat1) * cos(distance / R) + cosd(lat1) * sin(distance / R) * cosd(direction))
   lon2 = lon1 + atand(sind(direction) * sin(distance / R) * cosd(lat1),
                      cos(distance / R) - sind(lat1) * sind(lat2))
   return lat2, lon2

end

"""

   function boatspeed(sp::SailingPolar, pointofsail, windspeed)

Calculate the expected sailing speed in a specified direction in knots, given sailing polar data, a desired point of sail in degrees, and wind speed in knots """ function boatspeed(sp::SailingPolar, pointofsail, windspeed)

   winds, degrees, speeds = sp.winds, sp.degrees, sp.speeds
   udeg = findlast(t -> t <= pointofsail, degrees)
   odeg = findfirst(t -> t >= pointofsail, degrees)
   uvel = findlast(t -> t <= windspeed, winds)
   ovel = findfirst(t -> t >= windspeed, winds)
   if any(t -> t == nothing, [udeg, odeg, uvel, ovel])
       return -1.0
   end
   frac = (odeg == udeg && uvel == ovel) ? 1.0 :
           (odeg == udeg) ? (windspeed - winds[uvel]) / (winds[ovel] - winds[uvel]) :
           (uvel == ovel) ? (pointofsail - degrees[udeg]) / (degrees[odeg] - degrees[udeg]) :
           ((pointofsail - degrees[udeg]) / (degrees[odeg] - degrees[udeg]) +
           (windspeed - winds[uvel]) / (winds[ovel] - winds[uvel])) / 2
   return speeds[udeg, uvel] + frac * (speeds[odeg, ovel] - speeds[udeg, uvel])

end


"""

   sailingspeed(sp::SailingPolar, azimuth, pointos, ws)

Calculate the expected net boat speed in a desired direction versus the wind (azimuth). This is generally different from the actual boat speed in its actual direction. Directions are in degrees (pointos is point of sail, the ship direction from wind), and velocity of wind (ws) is in knots. """ sailingspeed(sp, azimuth, pointos, ws) = boatspeed(sp, pointos, ws) * cosd(abs(pointos - azimuth))


"""

   function bestvectorspeed(sp::SailingPolar, dirtravel, dirwind, windspeed, dircur, velcur)

Calculate the net direction and velocity of a sailing ship.

Arguments are sailing polar data, direction of travel in degrees from north, wind direction in degrees from north, wind velocity in knots, surface current direction in degrees, and current velocity in knots. """ function bestvectorspeed(sp::SailingPolar, dirtravel, dirwind, windspeed, dircur, velcur)

   azimuth = (dirtravel - dirwind) % 360.0
   azimuth = azimuth < 0 ? azimuth + 360.0 : azimuth
   azimuth = azimuth > 180.0 ? 360.0 - azimuth : azimuth
   VMG = boatspeed(sp, azimuth, windspeed)
   other, idx = findmax([sailingspeed(sp, azimuth, x, windspeed) for x in sp.degrees])
   if other > VMG
       azimuth = sp.degrees[idx]
       VMG = other
   end
   dirchosen = deg2rad(dirwind + azimuth)
   wx, wy = VMG * sin(dirchosen), VMG * cos(dirchosen)
   curx, cury = velcur * sin(deg2rad(dircur)), velcur * cos(deg2rad(dircur))
   return rad2deg(atan(wy + cury, wx + curx)), sqrt((wx + curx)^2 + (wy + cury)^2)

end

"""

   function sailsegmenttime(sp::SailingPolar, p::SurfaceParameters, lat1, lon1, lat2, lon2)

Calculate the trip time in minutes from (lat1, lon1) to the destination (lat2, lon2). Uses the data in SurfaceParameters for wind and current velocity and direction. """ function sailsegmenttime(sp::SailingPolar, p::SurfaceParameters, lat1, lon1, lat2, lon2)

   distance, dir = haversine(lat1, lon1, lat2, lon2)
   dir2, vel = bestvectorspeed(sp, dir, p.winddeg, p.windkts, p.currentdeg, p.currentkts)
   # minutes/s * m / (knots * (m/s / knot)) = minutes
   return (1 / 60) * distance / (vel * 1.94384)

end


end # module


module SailingNavigation

export Position, lat, lon, GridPoint, TimeSlice, TimedPath, closestpoint, surround export RoutingProblem, minimumtimeroute

using GeometryTypes using ..SailingPolars

  1. NB: This uses latitude (often considered to be y) first then longitude (often considered to be x).
  2. This latitude, then longitude ordering is as per ISO 6709 (en.wikipedia.org/wiki/ISO_6709)
  1. Position is a Float32 2-tuple of latitude and longitude in degrees

Position = Point2f0

  1. latitude from Position

lat(p::Position) = p[1]

  1. longitude from Position

lon(p::Position) = p[2]

  1. A GridPoint is a Position with the SurfaceParameters of wind and current at the Position

mutable struct GridPoint

   pt::Position
   sp::SurfaceParameters

end

"""

   TimeSlice

A TimeSlice is a matrix of GridPoints, each Position point with their SurfaceParameters A Vector of TimeSlice can give the surface characteristics for an ocean region over time. """ TimeSlice = Matrix{GridPoint}

"""

   mutable struct RoutingProblem

timeinterval: the minutes duration for each TimeSlice timeframe: a vector of sequential timeslices for the ocean region obstacleindices: the Cartesian indices in each timeslice for

   obstacles, such as land or shoals, where the ship may not go

startindex: the timeslice position for time of starting start: starting location on grid of GridPoints finish: destination / finish location on grid of GridPoints allowrepeatvisits: whether the vessel may overlap its prior path, usually false """ mutable struct RoutingProblem

   timeinterval::Float64 # minutes between timeframe slices
   timeframe::Vector{TimeSlice}
   obstacleindices::Vector{Point2{Int}}
   startindex::Int
   start::Point2{Int}
   finish::Point2{Int}
   allowrepeatvisits::Bool

end

"""

   mutable struct TimedPath

duration: minutes total to travel the path path: vector of Cartesian indices of points in grid for path to travel """ mutable struct TimedPath

   duration::Float64
   path::Vector{Point2{Int}}

end

"""

   closestpoint(p, mat)

Get the closest GridPoint in matrix mat to a given position p. p: Cartesian indices of a Position (latitude, longitude in degrees) in grid of GridPoints mat: matrix of Gridpoints """ closestpoint(p, mat) = findmin(gp -> haversine(p[1], p[2], gp.pt[1], gp.pt[2])[1], mat)[2]

function surround(p, mat, excluded)

   neighbors = Point2{Int}[(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]
   (xmax, ymax) = size(mat)
   return filter(q -> 1 <= q[1] <= xmax && 1 <= q[2] <= ymax && !(q in excluded),
       [x + p for x in neighbors])

end

"""

   function minimumtimeroute(rp::RoutingProblem, sp::SailingPolar, verbose=false)

Get the route (as a TimedPath) that minimizes time from start to finish for a given RoutingProblem (sea parameters) given sailing polar data (ship parameters). """ function minimumtimeroute(rp::RoutingProblem, sp::SailingPolar, verbose=false)

   timedpaths = [TimedPath(0.0, [rp.start])]
   completed, mintime, minpath = false, 1000.0, TimedPath(1000.0, [])
   for i in 1:1000
       newpaths = TimedPath[]
       verbose && println("Checking ", length(timedpaths), " paths of length ",
           length(timedpaths[1].path) - 1)
       for tpath in timedpaths
           if tpath.path[end] == rp.finish
               completed = true
               push!(newpaths, tpath)
           else
               p1 = tpath.path[end]
               slice = rp.timeframe[div(Int(round(tpath.duration)),
                                    Int(round(rp.timeinterval))) %
                                    length(rp.timeframe) + 1]
               for p2 in surround([p1[1], p1[2]], slice, rp.obstacleindices)
                   !rp.allowrepeatvisits && p2 in tpath.path && continue
                   gp1, gp2 = slice[p1[1], p1[2]], slice[p2[1], p2[2]]
                   lat1, lon1, lat2, lon2 = gp1.pt[1], gp1.pt[2], gp2.pt[1], gp2.pt[2]
                   t = sailsegmenttime(sp, gp1.sp, lat1, lon1, lat2, lon2)
                   path = deepcopy(tpath.path)
                   push!(path, p2)
                   push!(newpaths, TimedPath(tpath.duration + t, path))
               end
           end
       end
       timedpaths = unique(newpaths)
       if completed
           mindur = minimum(map(x -> x.duration, timedpaths))
           finished = filter(x -> x.path[end] == rp.finish, timedpaths)
           minfindur, idx = findmin(map(x -> x.duration, finished))
           verbose && println("Current finished minimum: ", finished[idx], ", others $mindur")
           if mindur == minfindur
               minpath = finished[idx]
               break
           end
       end
   end
   return minpath

end

end # module

using GeometryTypes using .SailingNavigation, .SailingPolars

  1. =

The data is selected so the best time path is slightly longer than the shortest length path. The forbidden regions are x, representing land or reef. The allowed sailing points are . and start and finish are S and F.

x . . F . . x . x . . . . . . . x x x . . x x x . . . . . x x x x . x x x . . . x x . x . x . . . x x . x . . . . . x . . x . x . . . . . . x . . . . S . . . . . =# const forbidden = Point2{Int}.([

   [1, 8], [2, 1], [2, 8], [3, 5], [3, 8], [4, 1], [4, 5], [4, 6], [4, 8], [5, 1],
   [5, 5], [5, 6], [5, 8], [6, 3], [6, 4], [6, 5], [6, 6], [6, 8], [6, 9], [7, 1],
   [7, 4], [7, 5], [7, 6], [8, 8], [8, 9], [9, 1], [9, 7], [9, 9],

])

  1. Create regional wind patterns on the map.

function surfacebylongitude(lon)

   return lon < -155.03 ? SurfaceParameters(-5.0, 8, 150, 0.5) :
          lon < -155.99 ? SurfaceParameters(-90.0, 20, 150, 0.4) :
                          SurfaceParameters(180.0, 25, 150, 0.3)

end

  1. Vary wind speeds over time.

function mutatetimeslices!(slices)

   for (i, slice) in enumerate(slices), x in slice
       x.sp = SurfaceParameters(x.sp.winddeg, x.sp.windkts * (1 + 0.002 * i),
           x.sp.currentdeg, x.sp.currentkts)
   end

end


const startpos = Point2{Int}(1, 4) const endpos = Point2{Int}(9, 4) const pmat = [Position(19.78 - 1/60 + i/60, -155.0 - 5/60 + j/60) for i in 0:8, j in 0:8] const gpoints = map(pt -> GridPoint(pt, surfacebylongitude(lon(pt))), pmat) const slices = [deepcopy(gpoints) for _ in 1:200] mutatetimeslices!(slices)

const routeprob = RoutingProblem(10.0, slices, forbidden, 1, startpos, endpos, false) const filename = "polar.csv" const sp = getpolardata(filename) const tp = minimumtimeroute(routeprob, sp)

println("The route taking the least time found was:\n ", tp.path,

   "\nwhich has duration $(div(tp.duration, 60)) hours, $(rem(tp.duration, 60)) minutes.")

</lang> The polar CSV file used for this solution, named polar.csv, is as follows. Note that this is a very detailed polar, chosen to stress the testing of the code. Most polar files are far smaller, with fewer choices for angle and wind speed.

TWA\TWS;0;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;35;40;60;70
40;0;0.53;0.54;0.49;0.4;0.31;0.21;0.16;0.11;0.08;0.05;0.03;0.02;0.01;0;0;0;0;0;0;0;0;0;0;0;0;0;0;-0.01;-0.05;-0.1;-0.11
41;0;0.61;0.62;0.56;0.47;0.36;0.25;0.19;0.14;0.1;0.07;0.04;0.02;0.01;0.01;0;0;0;0;0;0;0;0;0;0;0;0;0;0;-0.04;-0.09;-0.1
44;0;0.89;0.91;0.82;0.69;0.56;0.42;0.33;0.24;0.18;0.13;0.08;0.05;0.03;0.02;0.01;0.01;0;0;0;0;0;0;0;0;0;0;0;0;-0.02;-0.06;-0.06
45;0;0.99;1.02;0.92;0.78;0.64;0.49;0.39;0.29;0.22;0.15;0.1;0.07;0.04;0.02;0.01;0.01;0;0;0;0;0;0;0;0;0;0;0;0;-0.01;-0.05;-0.05
46;0;1.11;1.14;1.02;0.87;0.73;0.57;0.45;0.35;0.26;0.18;0.13;0.08;0.05;0.03;0.02;0.01;0.01;0;0;0;0;0;0;0;0;0;0;0;-0.01;-0.04;-0.05
47;0;1.23;1.25;1.14;0.97;0.82;0.66;0.53;0.41;0.31;0.22;0.15;0.1;0.07;0.04;0.02;0.02;0.01;0.01;0;0;0;0;0;0;0;0;0;0;-0.01;-0.03;-0.04
48;0;1.37;1.37;1.26;1.08;0.93;0.76;0.61;0.48;0.36;0.26;0.19;0.13;0.08;0.05;0.03;0.02;0.01;0.01;0.01;0;0;0;0;0;0;0;0;0;0;-0.02;-0.03
49;0;1.5;1.5;1.39;1.2;1.05;0.87;0.71;0.56;0.42;0.31;0.22;0.15;0.1;0.07;0.04;0.03;0.02;0.01;0.01;0;0;0;0;0;0;0;0;0;0;-0.02;-0.02
50;0;1.65;1.64;1.52;1.33;1.18;1;0.81;0.65;0.49;0.37;0.26;0.19;0.13;0.08;0.05;0.04;0.03;0.02;0.01;0.01;0;0;0;0;0;0;0;0;0;-0.01;-0.02
51;0;1.79;1.77;1.67;1.46;1.32;1.13;0.92;0.74;0.57;0.43;0.31;0.22;0.15;0.1;0.07;0.05;0.03;0.02;0.02;0.01;0.01;0;0;0;0;0;0;0;0;-0.01;-0.02
53;0;2.1;2.07;1.99;1.76;1.62;1.4;1.14;0.95;0.74;0.57;0.43;0.31;0.22;0.16;0.1;0.08;0.06;0.04;0.03;0.02;0.01;0.01;0.01;0;0;0;0;0;0;-0.01;-0.01
54;0;2.26;2.22;2.16;1.92;1.78;1.55;1.28;1.06;0.84;0.65;0.5;0.37;0.27;0.19;0.13;0.1;0.07;0.06;0.04;0.03;0.02;0.01;0.01;0;0;0;0;0;0;0;-0.01
55;0;2.43;2.39;2.34;2.09;1.95;1.7;1.42;1.18;0.95;0.74;0.57;0.43;0.32;0.23;0.16;0.12;0.09;0.07;0.05;0.04;0.03;0.02;0.01;0.01;0;0;0;0;0;0;-0.01
60;0;3.29;3.33;3.33;3.08;2.93;2.64;2.29;1.98;1.66;1.36;1.1;0.88;0.68;0.53;0.39;0.32;0.26;0.21;0.17;0.13;0.1;0.07;0.05;0.04;0.03;0.02;0.01;0;0;0;0
70;0;5.2;5.53;5.74;5.59;5.5;5.22;4.84;4.46;3.94;3.51;3.08;2.65;2.26;1.9;1.55;1.38;1.22;1.06;0.92;0.78;0.66;0.55;0.46;0.37;0.3;0.24;0.18;0.03;0;0;0
80;0;6.8;7.43;7.97;8.02;8.23;8.34;8.2;7.9;7.37;6.91;6.43;5.9;5.32;4.72;4.12;3.83;3.55;3.25;2.96;2.67;2.4;2.13;1.88;1.65;1.43;1.22;1.04;0.37;0.09;0.01;0
90;0;7.59;8.5;9.4;9.73;10.4;11.16;11.53;11.56;11.3;11.05;10.77;10.44;9.83;9.07;8.34;8;7.65;7.27;6.88;6.46;6.04;5.61;5.15;4.74;4.33;3.88;3.51;1.72;0.67;0.12;0.03
100;0;7.34;8.25;9.16;9.86;10.5;11.95;12.79;13.5;14.02;14.4;14.37;14.5;14.4;13.92;13.52;13.19;12.79;12.51;12.1;11.66;11.22;10.77;10.26;9.72;9.2;8.58;8.01;4.87;2.51;0.7;0.23
110;0;7.09;7.97;8.84;9.74;10.09;11.85;12.75;13.84;14.99;16.02;16.33;17.1;17.83;17.99;18.32;18.14;17.81;17.84;17.6;17.3;17.05;16.83;16.53;16.03;15.59;15.03;14.37;10.26;6.41;2.32;0.86
120;0;6.59;7.42;8.3;9.1;9.56;10.83;11.6;13.1;13.87;14.66;15.75;16.67;17.63;18.43;19.62;20.17;20.6;21.12;21.55;21.75;21.91;22.07;21.9;21.58;21.29;20.92;20.29;16.47;12.03;5.49;2.26
129;0;6.14;6.93;7.83;8.52;9.09;9.89;10.57;12.42;12.87;13.43;15.23;16.16;17.08;18.07;19.48;20.35;21.22;21.93;22.85;23.44;23.98;24.55;24.59;24.55;24.51;24.46;24;21.56;17.75;9.64;4.25
130;0;6.07;6.87;7.76;8.44;9.02;9.8;10.48;12.29;12.73;13.27;15.08;16.03;16.97;17.96;19.36;20.25;21.15;21.88;22.82;23.44;24.03;24.6;24.66;24.68;24.67;24.64;24.24;22;18.33;10.11;4.5
135;0;5.72;6.57;7.36;8.02;8.65;9.38;10.11;11.52;11.97;12.55;13.85;15.31;16.31;17.33;18.54;19.48;20.35;21.28;22.3;23.08;24.09;24.63;24.69;24.78;24.79;24.91;24.82;23.74;20.98;12.39;5.78
136;0;5.66;6.5;7.28;7.93;8.57;9.3;10.04;11.34;11.82;12.42;13.62;15.06;16.17;17.2;18.35;19.29;20.15;21.12;22.15;22.96;24.07;24.6;24.67;24.76;24.75;24.85;24.81;23.98;21.45;12.8;6.03
139;0;5.42;6.31;6.92;7.67;8.34;9.08;9.86;10.86;11.32;12.03;12.99;14.3;15.73;16.76;17.76;18.71;19.53;20.6;21.66;22.54;23.92;24.44;24.53;24.64;24.58;24.65;24.67;24.47;22.68;13.79;6.73
140;0;5.35;6.22;6.79;7.59;8.26;9;9.8;10.72;11.16;11.89;12.79;14.06;15.5;16.62;17.57;18.51;19.32;20.43;21.49;22.4;23.84;24.36;24.46;24.58;24.51;24.57;24.61;24.56;23.02;14.08;6.96
141;0;5.29;6.12;6.67;7.48;8.18;8.93;9.74;10.57;11.02;11.77;12.62;13.82;15.26;16.47;17.38;18.32;19.04;20.28;21.31;22.07;23.53;24;24.21;24.29;24.43;24.48;24.55;24.61;23.33;14.31;7.18
142;0;5.23;6.02;6.57;7.39;8.1;8.86;9.67;10.43;10.88;11.64;12.45;13.59;15.03;16.24;17.14;18.06;18.77;19.98;21.01;21.75;23.18;23.65;23.86;23.95;24.34;24.39;24.48;24.61;23.61;14.54;7.4
143;0;5.16;5.93;6.45;7.3;8;8.78;9.54;10.27;10.75;11.5;12.28;13.36;14.8;16.01;16.9;17.81;18.5;19.69;20.72;21.43;22.84;23.31;23.52;23.61;24.05;24.27;24.41;24.57;23.85;14.8;7.6
144;0;5.09;5.83;6.33;7.23;7.92;8.66;9.41;10.13;10.62;11.39;12.13;13.13;14.57;15.78;16.65;17.56;18.24;19.41;20.43;21.12;22.5;22.97;23.19;23.28;23.73;24.08;24.33;24.49;24.04;15;7.8
145;0;5.02;5.73;6.23;7.15;7.85;8.55;9.28;9.98;10.51;11.27;11.98;12.92;14.35;15.56;16.42;17.31;17.97;19.13;20.14;20.82;22.17;22.64;22.87;22.96;23.42;23.81;24.23;24.41;24.19;15.14;7.98
146;0;4.96;5.64;6.12;7.07;7.77;8.43;9.15;9.84;10.38;11.16;11.83;12.71;14.12;15.35;16.19;17.07;17.72;18.86;19.86;20.51;21.84;22.31;22.56;22.65;23.12;23.48;23.94;24.33;24.3;15.3;8.16
148;0;4.82;5.45;5.91;6.9;7.59;8.21;8.89;9.55;10.14;10.89;11.55;12.29;13.7;14.92;15.74;16.6;17.23;18.32;19.3;19.91;21.2;21.67;21.95;22.05;22.53;22.87;23.38;24.13;24.39;15.52;8.46
149;0;4.76;5.35;5.81;6.78;7.49;8.09;8.78;9.42;10.01;10.76;11.41;12.1;13.48;14.71;15.52;16.36;16.98;18.06;19.03;19.63;20.89;21.37;21.67;21.77;22.26;22.61;23.12;23.98;24.37;15.57;8.58
150;0;4.69;5.26;5.7;6.67;7.37;7.96;8.64;9.26;9.86;10.6;11.24;11.89;13.26;14.48;15.29;16.11;16.73;17.79;18.74;19.33;20.55;21.04;21.37;21.48;21.98;22.34;22.83;23.69;24.11;15.6;8.67
155;0;4.33;4.74;5.16;6.16;6.79;7.33;7.96;8.51;9.15;9.81;10.4;10.85;12.14;13.37;14.1;14.87;15.48;16.42;17.3;17.8;18.88;19.39;19.86;20;20.54;20.97;21.45;22.25;22.77;15.38;8.89
160;0;4.09;4.41;4.83;5.77;6.39;6.94;7.55;8.04;8.67;9.28;9.83;10.24;11.46;12.69;13.39;14.11;14.73;15.6;16.41;16.87;17.85;18.4;18.97;19.15;19.72;20.2;20.65;21.35;21.84;14.95;8.74
162;0;4;4.29;4.69;5.62;6.23;6.77;7.38;7.86;8.48;9.07;9.6;10;11.18;12.42;13.1;13.81;14.43;15.27;16.06;16.5;17.43;18;18.62;18.81;19.39;19.89;20.33;20.99;21.48;14.76;8.61
168;0;3.74;3.93;4.35;5.15;5.75;6.31;6.93;7.34;7.92;8.45;8.95;9.35;10.44;11.68;12.32;12.99;13.63;14.39;15.11;15.5;16.31;16.94;17.7;17.92;18.53;19.08;19.49;19.99;20.46;14.34;8.3
170;0;3.69;3.85;4.27;5.04;5.65;6.22;6.82;7.23;7.8;8.31;8.8;9.22;10.27;11.51;12.15;12.81;13.45;14.19;14.9;15.28;16.06;16.7;17.51;17.73;18.34;18.91;19.31;19.77;20.22;14.24;8.24
174;0;3.57;3.69;4.11;4.83;5.43;6.01;6.62;7;7.55;8.03;8.5;8.93;9.95;11.19;11.81;12.45;13.11;13.81;14.48;14.84;15.57;16.24;17.11;17.35;17.98;18.57;18.95;19.33;19.77;14.03;8.13
180;0;3.51;3.6;4.03;4.71;5.31;5.91;6.51;6.88;7.41;7.88;8.33;8.79;9.78;11.02;11.63;12.26;12.93;13.61;14.26;14.61;15.31;15.99;16.9;17.15;17.79;18.39;18.77;19.09;19.52;13.87;8.07
Output:
The route taking the least time found was:
    Point{2,Int64}[[1, 4], [1, 5], [2, 6], [3, 7], [4, 7], [5, 7], [6, 7], [7, 7], [8, 6], [8, 5], [9, 4]]
which has duration 4.0 hours, 43.697879668707344 minutes.

Phix

<lang Phix>-- demo/rosetta/Weather_Routing.exw function to_numbers(sequence s)

   for i=1 to length(s) do
       s[i] = to_number(s[i])
   end for
   return s

end function

function getpolardata(string s) -- -- A sailing polar file is a CSV file, with ';' used as the comma separator instead of a comma. -- The first line of the file contains labels for the wind velocities that make up columns, and -- the first entry of each row makes up a column of angle of sailing direction from wind in degrees --

   sequence lines = split_any(s,"\r\n",no_empty:=true),
            winds = to_numbers(split(lines[1],";")[2..$]),
            degrees = {}, speeds = {}
   for i=2 to length(lines) do
       sequence l = to_numbers(split(lines[i],";"))
       if length(l)!=length(winds)+1 then ?9/0 end if
       degrees = append(degrees,l[1])
       speeds = append(speeds,l[2..$])
   end for
   return {winds, degrees, speeds}

end function

-- -- winds is a list of wind speeds -- degrees is a list of angles in degrees of direction relative to the wind -- (note 0 degrees is directly into the wind, 180 degrees is directly downwind) -- each speeds[i] is an array of length(winds) for each degrees[i] -- constant {winds, degrees, speeds} = getpolardata(get_text("polar.csv"))

-- (note the distributed version uses a literal string constant instead)

constant R = 6372800 -- Earth's approximate radius in meters constant timeinterval = 10 -- the minutes duration for each TimeSlice

function deg2rad(atom deg) return remainder(deg*PI/180+2*PI,2*PI) end function function rad2deg(atom rad) return remainder (rad*(180/PI)+360,360) end function function sind(atom deg) return sin(deg2rad(deg)) end function function cosd(atom deg) return cos(deg2rad(deg)) end function function asind(atom deg) return rad2deg(arcsin(deg)) end function function atand(atom x,y) return rad2deg(atan2(x,y)) end function

function haversine(atom lat1, lon1, lat2, lon2) -- -- Calculate the haversine function for two points on the Earth's surface. -- -- Given two latitude, longitude pairs in degrees for a point on the Earth, -- get distance in meters and the initial direction of travel in degrees for -- movement from point 1 to point 2. --

   atom dlat = lat2 - lat1,
        dlon = lon2 - lon1,
        a = power(sind(dlat/2),2) + cosd(lat1)*cosd(lat2)*power(sind(dlon/2),2),
        c = 2.0 * asind(sqrt(a)),
        theta = atand(sind(dlon)*cosd(lat2),
                      cosd(lat1)*sind(lat2) - sind(lat1)*cosd(lat2)*cosd(dlon))
   theta = remainder(theta+360, 360)
   return {R*c*0.5399565, theta}

end function

function findfirst(atom v, sequence s) -- Returns the index of the first element of s >= v

   for i=1 to length(s) do
       if s[i]>=v then return i end if
   end for
   return -1

end function

function findlast(atom v, sequence s) -- Returns the index of the last element of s <= v

   for i=length(s) to 1 by -1 do
       if s[i]<=v then return i end if
   end for
   return -1

end function

function boatspeed(atom pointofsail, windspeed) -- -- Calculate the expected sailing speed in a specified direction in knots, -- given a desired point of sail in degrees, and wind speed in knots (for -- the previously loaded sailing polar data) --

   integer udeg = findlast(pointofsail, degrees),
           odeg = findfirst(pointofsail, degrees),
           uvel = findlast(windspeed, winds),
           ovel = findfirst(windspeed, winds)
   if find(-1,{udeg, odeg, uvel, ovel}) then return -1 end if
   atom wu = winds[uvel],
        wh = winds[ovel],
        du = degrees[udeg],
        dh = degrees[odeg],
        f
   if odeg==udeg then
       f = iff(uvel==ovel?1:(windspeed-wu)/(wh-wu))
   elsif uvel==ovel then
       f = (pointofsail-du)/(dh-du)
   else
       f = ((pointofsail-du)/(dh-du)+(windspeed-wu)/(wh-wu))/2
   end if
   atom su = speeds[udeg,uvel],
        sh = speeds[odeg,ovel],
        res = su + f*(sh-su)
   return res

end function

function sailingspeed(atom azimuth, pointofsail, ws) -- -- Calculate the expected net boat speed in a desired direction versus the wind (azimuth). -- This is generally different from the actual boat speed in its actual direction. -- Directions are in degrees (pointofsail is the ship direction from wind), -- and velocity of wind (ws) is in knots. --

   return boatspeed(pointofsail, ws) * cosd(abs(pointofsail-azimuth))

end function

struct SurfaceParameters -- -- wind and surface current, direction and velocity, for a given position -- directions are in degrees from north, and velocities are in knots. --

   public atom winddirection,
               windvelocity,
               currentdirection,
               currentvelocity

end struct

function bestvectorspeed(atom dirtravel, SurfaceParameters p) -- -- Calculate the net direction and velocity of a sailing ship. --

   atom wd = p.winddirection,
        wv = p.windvelocity,
        cd = p.currentdirection,
        cv = p.currentvelocity,
        azimuth = remainder(dirtravel-wd,360)
   if azimuth<0 then azimuth += 360 end if
   if azimuth>180 then azimuth = 360-azimuth end if
   atom vmg = boatspeed(azimuth, wv),
        other = -1
   integer idx = -1
   for i=1 to length(degrees) do
       atom ss = sailingspeed(azimuth, degrees[i], wv)
       if ss>other then {other,idx} = {ss,i} end if
   end for
   if other>vmg then
       azimuth = degrees[idx]
       vmg = other
   end if
   atom dirchosen = deg2rad(wd + azimuth),
        dircurrent = deg2rad(cd),
        wx = vmg * sin(dirchosen),
        wy = vmg * cos(dirchosen),
        curx = cv * sin(dircurrent),
        cury = cv * cos(dircurrent)
   return sqrt(power(wx+curx,2) + power(wy+cury,2))

end function

function sailsegmenttime(SurfaceParameters p, atom lat1, lon1, lat2, lon2) -- -- Calculate the trip time in minutes from (lat1, lon1) to the destination (lat2, lon2). -- Uses the data in SurfaceParameters p for wind and current velocity and direction. --

   atom {distance, direction} = haversine(lat1, lon1, lat2, lon2),
        velocity = bestvectorspeed(direction, p)
   -- minutes/s * m / (knots * (m/s / knot)) = minutes
   atom res = (1/60) * distance / (velocity * 1.94384)
   return res

end function

-- -- The data is selected so the best time path is slightly longer than the -- shortest length path. The forbidden regions are x, representing land or reef. -- The allowed sailing points are . and start and finish are S and F. -- constant chart = split(""" ...S..... x......x. ....x..x. x...xx.x. x...xx.x. ..xxxx.xx x..xxx... .......xx x..F..x.x""",'\n')

function minimum_time_route(sequence timeframe, start, finish) -- -- Get the fastest route from start to finish for some detailed sea/ship parameters. -- timeframe is a massive 200 * 9x9 * {pt,SurfaceParameters} -- note that polar data (ie winds, degrees, speeds) is static here, for simplicity. --

   atom t0 = time(),
        mintime = 1000.0
   integer xmax = length(chart[1]),
           ymax = length(chart),
           {py,px} = start
   sequence todo = {start},
            costs = repeat(repeat(-1,xmax),ymax),  -- (lowest durations)
            paths = repeat(repeat(0,xmax),ymax),   -- (single backlinks)
            minpath = {}
   costs[py,px] = 0
   while length(todo) do
       {py,px} = todo[1]
       todo = todo[2..$]
       atom duration = costs[py,px]
       integer sdx = remainder(floor(round(duration)/timeinterval),length(timeframe))+1
       sequence s = timeframe[sdx]
       for nx=px-1 to px+1 do
           for ny=py-1 to py+1 do
               if (nx!=px or ny!=py) 
               and nx>=1 and nx<=xmax
               and ny>=1 and ny<=ymax 
               and chart[ny,nx]!='x' then
                   sequence gp1 = s[py,px],    -- {pt,SurfaceParameters}
                            gp2 = s[ny,nx]     --          ""
                   atom {lat1, lon1} = gp1[1],
                        {lat2, lon2} = gp2[1]
                   SurfaceParameters sp = gp1[2]
                   atom nt = duration + sailsegmenttime(sp, lat1, lon1, lat2, lon2)
                   if costs[ny,nx]=-1 or nt<costs[ny,nx] then
                       costs[ny,nx] = nt
                       paths[ny,nx] = {py,px}
                       if not find({ny,nx},todo) then
                           todo = append(todo,{ny,nx})
                       end if
                   elsif nt==costs[ny,nx] then
                       -- (Should multiple same-time routes exist, we could store 
                       --  multiple back-links and whip up a simple [recursive]
                       --  routine to rebuild them all. Or just ignore them.)
                       ?9/0 
                   end if
               end if
           end for
       end for
       s = {} -- (simplify debugging)
   end while
   timeframe = {} -- (simplify debugging)
   {py,px} = finish
   mintime = costs[py,px]
   minpath = {finish}
   while true do
       object pyx = paths[py,px]
       if pyx=0 then exit end if
       minpath = prepend(minpath,pyx)
       paths[py,px] = 0
       {py,px} = pyx
   end while
   if minpath[1]!=start then ?9/0 end if
   return {minpath,elapsed(mintime*60),elapsed(time()-t0)}

end function

function surfacebylongitude(atom lon) -- Create regional wind patterns on the map.

   sequence p = iff(lon < -155.03 ? { -5.0,  8, 150, 0.5} :
                iff(lon < -155.99 ? {-90.0, 20, 150, 0.4} :
                                    {180.0, 25, 150, 0.3}))
   SurfaceParameters res = new(p)
   return res

end function

procedure mutatetimeslices(sequence slices) -- Vary wind speeds over time.

   for i=1 to length(slices) do
       sequence s = slices[i]
       for j=1 to length(s) do
           sequence sj = s[j]
           for k=1 to length(sj) do
               SurfaceParameters p = sj[k][2]
               p.windvelocity = p.windvelocity * (1+0.002*i)
           end for
       end for
   end for

end procedure

sequence slices = repeat(null,200) for s=1 to length(slices) do

   sequence gpoints = repeat(null,9)
   for i=1 to 9 do
       atom lat = 19.78 - 2/60 + i/60
       gpoints[i] = repeat(null,9)
       for j=1 to 9 do
           atom lon = -155.0 - 6/60 + j/60
           gpoints[i][j] = {{lat,lon}, surfacebylongitude(lon)}
       end for
   end for
   slices[s] = gpoints

end for mutatetimeslices(slices) constant fmt = """ The route taking the least time found was:

   %v

which has duration %s [route found in %s] """ printf(1,fmt,minimum_time_route(slices,{1,4},{9,4}))</lang>

Output:
The route taking the least time found was:
    {{1,4},{1,5},{2,6},{3,7},{4,7},{5,7},{6,7},{7,7},{8,6},{8,5},{9,4}}
which has duration 4 hours, 43 minutes and 41s [route found in 0.0s]

Wren

Translation of: Julia

A reasonably faithful translation though I haven't bothered to split the code up into modules (which would mean separate files in Wren) and have dispensed altogether with four functions which aren't actually called.

As Wren uses 0-based indexing the points in the minimum path have coordinates one less than those in the Julia results.

As you'd expect, this takes many times longer than Julia to run (about 24.5 minutes versus 3 minutes 20 seconds) but gets there in the end :) <lang ecmascript>import "io" for File

/*

   Class that represents a polar CSV file's data.
   Contains a matrix, 'speeds', of sailing speeds indexed by wind velocity and angle of boat to wind.
   'winds' is a list of wind speeds.
   'degrees' is a list of angles in degrees of direction relative to the wind.
   Note 0 degrees is directly into the wind, 180 degrees is directly downwind.
  • /

class SailingPolar {

   construct new(winds, degrees, speeds) {
       _winds = winds
       _degrees = degrees
       _speeds = speeds // speeds[wind direction degrees, windspeed knots]
   }
   winds { _winds }
   degrees { _degrees }
   speeds {_speeds }

}

/*

   Class that represents wind and surface current direction and velocity for a given position.
   Angles in degrees, velocities in knots.
  • /

class SurfaceParameters {

   construct new(windDeg, windKts, currentDeg, currentKts) {
       _windDeg = windDeg
       _windKts = windKts
       _currentDeg = currentDeg
       _currentKts = currentKts
   }
   windDeg { _windDeg }
   windKts { _windKts }
   currentDeg { _currentDeg }
   currentKts { _currentKts }

}

// Reads a sailing polar CSV file and returns a SailingPolar object containing the file data. // A sailing polar file is a CSV file, with ';' used as the comma separator instead of a comma. // The first line of file contains labels for the wind velocities that make up columns, and // the first entry of each row makes up a column of angle of sailing direction from wind in degrees. var getPolarData = Fn.new { |fileName|

   var lines = File.read(fileName).split("\n")
   var header = lines[0].trim().split(";")
   var winds = header[1..-1].map { |x| Num.fromString(x) }.toList
   var degrees = []
   var speeds = []
   for (line in lines[1..-1]) {
       line = line.trim()
       if (line == "") break // ignore final blank line if there is one
       var cols = line.split(";")
       degrees.add(Num.fromString(cols[0]))
       speeds.add(cols[1..-1].map{ |x| Num.fromString(x) }.toList)
   }
   return SailingPolar.new(winds, degrees, speeds)

}

var R = 6372800 // Earth's approximate radius in meters

/* Class containing various helper methods which work with degrees rather than radians. */ class D {

   // Converts degrees to radians.
   static deg2Rad(deg) { (deg*Num.pi/180 + 2*Num.pi) % (2*Num.pi) }
   // Converts radians to degrees.
   static rad2Deg(rad) { (rad*180/Num.pi + 360) % 360 }
   // Trig functions.
   static sin(d) { deg2Rad(d).sin }
   static cos(d) { deg2Rad(d).cos }
   static asin(d) { rad2Deg(d.asin) }
   static atan(x, y) { rad2Deg(x.atan(y)) }

}

// Calculates the haversine function for two points on the Earth's surface. // Given two latitude, longitude pairs in degrees for a point on the Earth, // get distance in meters and the initial direction of travel in degrees for // movement from point 1 to point 2. var haversine = Fn.new { |lat1, lon1, lat2, lon2|

   var dlat = lat2 - lat1
   var dlon = lon2 - lon1
   var a = D.sin(dlat/2).pow(2) + D.cos(lat1) * D.cos(lat2) * (D.sin(dlon/2).pow(2))
   var c = 2 * D.asin(a.sqrt)
   var theta = D.atan(D.sin(dlon) * D.cos(lat2), 
         D.cos(lat1)*D.sin(lat2) - D.sin(lat1) * D.cos(lat2) * D.cos(dlon))
   theta = (theta + 360) % 360
   return [R * c * 0.5399565, theta]

}

// Returns the index of the first element of 'a' for which 'pred' returns true or -1 otherwise. var findFirst = Fn.new { |a, pred|

   for (i in 0...a.count) if (pred.call(a[i])) return i
   return -1

}

// Returns the index of the last element of 'a' for which 'pred' returns true or -1 otherwise. var findLast = Fn.new { |a, pred|

   for (i in a.count-1..0) if (pred.call(a[i])) return i
   return -1

}

// Calculate the expected sailing speed in a specified direction in knots, // given sailing polar data, a desired point of sail in degrees, and wind speed in knots. var boatSpeed = Fn.new { |sp, pointOfSail, windSpeed|

   var winds = sp.winds
   var degrees = sp.degrees
   var speeds = sp.speeds
   var udeg = findLast.call(degrees)  { |t| t <= pointOfSail }
   var odeg = findFirst.call(degrees) { |t| t >= pointOfSail }
   var uvel = findLast.call(winds)    { |t| t <= windSpeed }
   var ovel = findFirst.call(winds)   { |t| t >= windSpeed }
   if ([udeg, odeg, uvel, ovel].any { |t| t == -1 }) return -1
   var frac = (odeg == udeg && uvel == ovel) ? 1 :
              (odeg == udeg) ? (windSpeed - winds[uvel])/(winds[ovel] - winds[uvel]) :
              (uvel == ovel) ? (pointOfSail - degrees[udeg])/(degrees[odeg] - degrees[udeg]) :
              ((pointOfSail - degrees[udeg])/(degrees[odeg] - degrees[udeg]) +
              (windSpeed - winds[uvel])/(winds[ovel] - winds[uvel]))/2
   return speeds[udeg][uvel] + frac * (speeds[odeg][ovel] - speeds[udeg][uvel])

}

// Calculates the expected net boat speed in a desired direction versus the wind ('azimuth'). // This is generally different from the actual boat speed in its actual direction. // Directions are in degrees ('pointos' is point of sail the ship direction from the wind), // and velocity of wind ('ws') is in knots. var sailingSpeed = Fn.new { |sp, azimuth, pointos, ws|

   return boatSpeed.call(sp, pointos, ws) * D.cos((pointos - azimuth).abs)

}

// Calculates the net direction and velocity of a sailing ship. // Arguments are sailing polar data, direction of travel in degrees from north, wind direction in // degrees from north, wind velocity in knots, surface current direction in degrees, and // current velocity in knots. var bestVectorSpeed = Fn.new { |sp, dirTravel, dirWind, windSpeed, dirCur, velCur|

   var azimuth = (dirTravel - dirWind) % 360
   azimuth = (azimuth < 0) ? azimuth + 360 : azimuth
   azimuth = (azimuth > 180) ? 360 - azimuth : azimuth
   var VMG = boatSpeed.call(sp, azimuth, windSpeed)
   var other = -1
   var idx = -1
   for (i in 0...sp.degrees.count) {
       var ss = sailingSpeed.call(sp, azimuth, sp.degrees[i], windSpeed)
       if (ss > other) {
            other = ss
            idx = i
       }
   }
   if (other > VMG) {
       azimuth = sp.degrees[idx]
       VMG = other
   }
   var dirChosen = D.deg2Rad(dirWind + azimuth)
   var wx = VMG * (dirChosen.sin)
   var wy = VMG * (dirChosen.cos)
   var curX = velCur * (D.deg2Rad(dirCur).sin)
   var curY = velCur * (D.deg2Rad(dirCur).cos)
   return [D.rad2Deg((wy + curY).atan(wx + curX)), ((wx + curX).pow(2) + (wy + curY).pow(2)).sqrt]

}

// Calculates the trip time in minutes from (lat1, lon1) to the destination (lat2, lon2). // Uses the data in SurfaceParameters for wind and current velocity and direction. var sailSegmentTime = Fn.new { |sp, p, lat1, lon1, lat2, lon2|

   var h = haversine.call(lat1, lon1, lat2, lon2)
   var distance = h[0]
   var dir = h[1]
   var vel = bestVectorSpeed.call(sp, dir, p.windDeg, p.windKts, p.currentDeg, p.currentKts)[1]
   // minutes/s * m / (knots * (m/s / knot)) = minutes
   return (1 / 60) * distance / (vel * 1.94384)

}

/* Class that represents a point in 2-D space. Need value type semantics for comparisons etc. */ class Point2 {

   construct new(x, y) {
       _x = x
       _y = y
   }
   x { _x }
   y { _y }
   + (other) { Point2.new(x + other.x, y + other.y) }
   == (other) { x == other.x && y == other.y }
   != (other) { !(this == other) }
   toString { "[%(_x), %(_y)]" }

}

/*

   Class that consists of a tuple of latitude and longitude in degrees.
   NB: This uses latitude (often considered to be y) first then longitude (often considered to be x).
   This latitude, then longitude ordering is as per ISO 6709 (en.wikipedia.org/wiki/ISO_6709).
  • /

class Position {

   construct new(lat, lon) {
       _lat = lat
       _lon = lon
   }
   lat { _lat }
   lon { _lon }

}

/* Class that represents a Position with the SurfaceParameters of wind and current at the Position. */ class GridPoint {

   construct new(pt, sp) {
       _pt = pt
       _sp = sp
   }
   pt { _pt }
   pt=(value) { _pt = value }
   sp { _sp }
   sp=(value) { _sp = value }

}

/*

   Class that consists of a matrix of GridPoints, each Position point with their SurfaceParameters.
   A Vector of TimeSlice can give the surface characteristics for an ocean region over time.
  • /

class TimeSlice {

   construct new(gridPoints) {
     _gridPoints = gridpoints
   }
   gridPoints { _gridPoints }

}

/*

   Class that represents a routing problem and requiring the following parameters:
   * timeinterval: the minutes duration for each TimeSlice
   * timeframe: a vector of sequential timeslices for the ocean region
   * obstacleindices: the Cartesian indices in each timeslice for
       obstacles, such as land or shoals, where the ship may not go
   * startindex: the timeslice position for time of starting
   * start: starting location on grid of GridPoints
   * finish: destination / finish location on grid of GridPoints
   * allowrepeatvisits: whether the vessel may overlap its prior path, usually false.
  • /

class RoutingProblem {

   construct new(timeInterval, timeFrame, obstacleIndices, startIndex, start, finish, allowRepeatVisits) {
       _timeInterval = timeInterval // minutes between timeFrame slices
       _timeFrame = timeFrame
       _obstacleIndices = obstacleIndices
       _startIndex = startIndex
       _start = start
       _finish = finish
       _allowRepeatVisits = allowRepeatVisits
   }
   timeInterval { _timeInterval }
   timeFrame  { _timeFrame }
   obstacleIndices { _obstacleIndices }
   startIndex { _startIndex }
   start { _start }
   finish { _finish }
   allowRepeatVisits { _allowRepeatVisits }

}

/*

   Class that represents a timed path and requires the following parameters:
   * duration: minutes total to travel the path
   * path: vector of Cartesian indices of points in grid for path to travel.
  • /

class TimedPath {

   construct new(duration, path) {
       _duration = duration
       _path = path
   }
   duration { _duration }
   path { _path }
   toString { "%(_duration) %(_path)" }
   == (other) { this.toString == other.toString }
   != (other) { this.toString != other.toString }

}

var findMin = Fn.new { |a|

   var min = a[0]
   var idx = 0
   for (i in 1...a.count) {
       if (a[i] < min) {
           min = a[i]
           idx = i
       }
   }
   return [min, idx]

}

var ntuples = [ [-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1] ] var neighbors = List.filled(ntuples.count, null) (0...ntuples.count).each { |i| neighbors[i] = Point2.new(ntuples[i][0], ntuples[i][1]) }

// Returns a list of points surrounding 'p' which are not otherwise excluded. var surround = Fn.new { |p, mat, excluded|

   var xmax = mat.count
   var ymax = mat[0].count
   return neighbors.map { |x| x + p }.where { |q|
       return (0 <= q.x && q.x < xmax) && (0 <= q.y && q.y < ymax) && !excluded.contains(q)
   }.toList

}

// Get the route (as a TimedPath) that minimizes time from start to finish for a given // RoutingProblem (sea parameters) given sailing polar data (ship parameters). var minimumTimeRoute = Fn.new { |rp, sp, verbose|

   var timedPaths = [TimedPath.new(0, [rp.start])]
   var completed = false
   var minPath = TimedPath.new(1000, [])
   for (i in 0...1000) {
       var newPaths = []
       verbose && System.print("Checking %(timedPaths.count) paths of length %(timedPaths[0].path.count)")
       for (tpath in timedPaths) {
           if (tpath.path[-1] == rp.finish) {
               completed = true
               newPaths.add(tpath)
           } else {
               var p1 = tpath.path[-1]
               var num = tpath.duration.round
               var den = rp.timeInterval.round
               var slice = rp.timeFrame[(num/den).truncate % rp.timeFrame.count]
               for (p2 in surround.call(p1, slice, rp.obstacleIndices)) {
                   if (rp.allowRepeatVisits || !tpath.path.contains(p2)) {
                       var gp1 = slice[p1.x][p1.y]
                       var gp2 = slice[p2.x][p2.y]
                       var lat1 = gp1.pt.lat
                       var lon1 = gp1.pt.lon
                       var lat2 = gp2.pt.lat
                       var lon2 = gp2.pt.lon
                       var t = sailSegmentTime.call(sp, gp1.sp, lat1, lon1, lat2, lon2)
                       var path = tpath.path.toList
                       path.add(p2)
                       newPaths.add(TimedPath.new(tpath.duration + t, path))
                   }
               }
           }
       }
       var set = {}
       for (np in newPaths) set[np.toString] = np
       timedPaths = set.values.toList
       if (completed) {
           var minDur = findMin.call(timedPaths.map { |x| x.duration }.toList)[0]
           var finished = timedPaths.where { |x| x.path[-1] == rp.finish }.toList
           var mi = findMin.call(finished.map { |x| x.duration }.toList)
           var minFinDur = mi[0]
           var idx = mi[1]
           if (verbose) {
               System.print("Current finished minimum: %(finished[idx]), others %(minDur)")
           }
           if (minDur == minFinDur) {
               minPath = finished[idx]
               break
           }
       }
   }
   return minPath

}

/*

   The data is selected so the best time path is slightly longer than the
   shortest length path. The forbidden regions are x, representing land or reef.
   The allowed sailing points are . and start and finish are S and F.
   x  .  .  F  .  .  x  .  x
   .  .  .  .  .  .  .  x  x
   x  .  .  x  x  x  .  .  .
   .  .  x  x  x  x  .  x  x
   x  .  .  .  x  x  .  x  .
   x  .  .  .  x  x  .  x  .
   .  .  .  .  x  .  .  x  .
   x  .  .  .  .  .  .  x  .
   .  .  .  S  .  .  .  .  .
  • /

// These need to be changed to 0-based for Wren. var ftuples = [

   [1, 8], [2, 1], [2, 8], [3, 5], [3, 8], [4, 1], [4, 5], [4, 6], [4, 8], [5, 1],
   [5, 5], [5, 6], [5, 8], [6, 3], [6, 4], [6, 5], [6, 6], [6, 8], [6, 9], [7, 1],
   [7, 4], [7, 5], [7, 6], [8, 8], [8, 9], [9, 1], [9, 7], [9, 9]

]

var forbidden = List.filled(ftuples.count, null) (0...ftuples.count).each { |i| forbidden[i] = Point2.new(ftuples[i][0]-1, ftuples[i][1]-1) }

// Create regional wind patterns on the map. var surfaceByLongitude = Fn.new { |lon|

   return (lon < -155.03) ? SurfaceParameters.new(-5, 8, 150, 0.5) :
          (lon < -155.99) ? SurfaceParameters.new(-90, 20, 150, 0.4) :
                            SurfaceParameters.new(180, 25, 150, 0.3)

}

// Vary wind speeds over time. var mutateTimeSlices = Fn.new { |slices|

   var i = 1
   for (slice in slices) {
       for (j in 0...slice.count) {
           for (k in 0...slice[j].count) {
               var x = slice[j][k]
               x.sp = SurfaceParameters.new(x.sp.windDeg, x.sp.windKts * (1 + 0.002 * i),
                   x.sp.currentDeg, x.sp.currentKts)
            }
       }
       i = i + 1
   }

}

var startPos = Point2.new(0, 3) // 0-based var endPos = Point2.new(8, 3) // ditto var slices = List.filled(200, null) for (s in 0...200) {

   var gpoints = List.filled(9, null)
   for (i in 0..8) {
       gpoints[i] = List.filled(9, null)
       for (j in 0..8) {
           var pt = Position.new(19.78 - 1/60 + i/60, -155.0 - 5/60 + j/60)
           gpoints[i][j] = GridPoint.new(pt, surfaceByLongitude.call(pt.lon))
       }
   }
   slices[s] = gpoints

} mutateTimeSlices.call(slices) var routeProb = RoutingProblem.new(10, slices, forbidden, 0, startPos, endPos, false) var fileName = "polar.csv" var sp = getPolarData.call(fileName) var tp = minimumTimeRoute.call(routeProb, sp, false) System.print("The route taking the least time found was:\n  %(tp.path) \nwhich has duration " +

  "%((tp.duration/60).truncate) hours, %((tp.duration%60).round) minutes.")</lang>
Output:
The route taking the least time found was:
    [[0, 3], [0, 4], [1, 5], [2, 6], [3, 6], [4, 6], [5, 6], [6, 6], [7, 5], [7, 4], [8, 3]] 
which has duration 4 hours, 44 minutes.