Twelve statements: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Ada}}: added Ada solution)
Line 21: Line 21:


Extra credit: also print out a table of near misses, that is, solutions that are contradicted by only a single statement.
Extra credit: also print out a table of near misses, that is, solutions that are contradicted by only a single statement.
=={{header|Ada}}==
{{works with|Ada 2012}}

Here is the main program, using a generic package Logic. The expression function introduced by the new standard Ada 2012 are very handy for this task.

<lang Ada>with Ada.Text_IO, Logic;

procedure Twelve_Statements is
package L is new Logic(Number_Of_Statements => 12); use L;
-- formally define the 12 statements as expression function predicates
function P01(T: Table) return Boolean is (T'Length = 12); -- list of 12 statements
function P02(T: Table) return Boolean is (Sum(T(7 .. 12)) = 3); -- three of last six
function P03(T: Table) return Boolean is (Sum(Half(T, Even)) = 2); -- two of the even
function P04(T: Table) return Boolean is (if T(5) then T(6) and T(7)); -- if 5 is true, then ...
function P05(T: Table) return Boolean is
( (not T(2)) and (not T(3)) and (not T(4)) ); -- none of preceding three
function P06(T: Table) return Boolean is (Sum(Half(T, Odd)) = 4); -- four of the odd
function P07(T: Table) return Boolean is (T(2) xor T(3)); -- either 2 or 3, not both
function P08(T: Table) return Boolean is (if T(7) then T(5) and T(6)); -- if 7 is true, then ...
function P09(T: Table) return Boolean is (Sum(T(1 .. 6)) = 3); -- three of first six
function P10(T: Table) return Boolean is (T(11) and T(12)); -- next two
function P11(T: Table) return Boolean is (Sum(T(7..9)) = 1); -- one of 7, 8, 9
function P12(T: Table) return Boolean is (Sum(T(1 .. 11)) = 4); -- four of the preding
-- define a global list of statements
Statement_List: constant Statements :=
(P01'Access, P02'Access, P03'Access, P04'Access, P05'Access, P06'Access,
P07'Access, P08'Access, P09'Access, P10'Access, P11'Access, P12'Access);
-- try out all 2^12 possible choices for the table
procedure Try(T: Table; Fail: Natural; Idx: Indices'Base := Indices'First) is
procedure Print_Table(T: Table) is
use Ada.Text_IO;
begin
Put(" ");
if Fail > 0 then
Put("(wrong at");
for J in T'Range loop
if Statement_List(J)(T) /= T(J) then
Put(Integer'Image(J) & (if J < 10 then ") " else ") "));
end if;
end loop;
end if;
if T = (1..12 => False) then
Put_Line("All false!");
else
Put("True are");
for J in T'Range loop
if T(J) then
Put(Integer'Image(J));
end if;
end loop;
New_Line;
end if;
end Print_Table;
Wrong_Entries: Natural := 0;
begin
if Idx <= T'Last then
Try(T(T'First .. Idx-1) & False & T(Idx+1 .. T'Last), Fail, Idx+1);
Try(T(T'First .. Idx-1) & True & T(Idx+1 .. T'Last), Fail, Idx+1);
else -- now Index > T'Last and we have one of the 2^12 choices to test
for J in T'Range loop
if Statement_List(J)(T) /= T(J) then
Wrong_Entries := Wrong_Entries + 1;
end if;
end loop;
if Wrong_Entries = Fail then
Print_Table(T);
end if;
end if;
end Try;
begin
Ada.Text_IO.Put_Line("Exact hits:");
Try(T => (1..12 => False), Fail => 0);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put_Line("Near Misses:");
Try(T => (1..12 => False), Fail => 1);
end Twelve_Statements;</lang>

{{out}}

<pre>Exact hits:
True are 1 3 4 6 7 11

Near Misses:
(wrong at 1) True are 5 8 11
(wrong at 1) True are 5 8 10 11 12
(wrong at 1) True are 4 8 10 11 12
(wrong at 8) True are 1 5
(wrong at 11) True are 1 5 8
(wrong at 12) True are 1 5 8 11
(wrong at 12) True are 1 5 8 10 11 12
(wrong at 8) True are 1 5 6 9 11
(wrong at 8) True are 1 4
(wrong at 12) True are 1 4 8 10 11 12
(wrong at 6) True are 1 4 6 8 9
(wrong at 7) True are 1 3 4 8 9
(wrong at 9) True are 1 3 4 6 7 9
(wrong at 12) True are 1 2 4 7 9 12
(wrong at 10) True are 1 2 4 7 9 10
(wrong at 8) True are 1 2 4 7 8 9</pre>

Here is the definition the package Logic:

<lang Ada>generic
Number_Of_Statements: Positive;
package Logic is
--types
subtype Indices is Natural range 1 .. Number_Of_Statements;
type Table is array(Indices range <>) of Boolean;
type Predicate is access function(T: Table) return Boolean;
type Statements is array(Indices) of Predicate;
type Even_Odd is (Even, Odd);
-- convenience functions
function Sum(T: Table) return Natural;
function Half(T: Table; Which: Even_Odd) return Table;
end Logic;</lang>

And here is the implementation of the "convenience functions" in Logic:

<lang Ada>package body Logic is
function Sum(T: Table) return Natural is
Result: Natural := 0;
begin
for I in T'Range loop
if T(I) then
Result := Result + 1;
end if;
end loop;
return Result;
end Sum;
function Half(T: Table; Which: Even_Odd) return Table is
Result: Table(T'Range);
Last: Natural := Result'First - 1;
begin
for I in T'Range loop
if I mod 2 = (if (Which=Odd) then 1 else 0) then
Last := Last+1;
Result(Last) := T(I);
end if;
end loop;
return Result(Result'First .. Last);
end Half;

end Logic;</lang>

=={{header|D}}==
=={{header|D}}==
{{trans|Python}}
{{trans|Python}}

Revision as of 11:05, 25 September 2012

Task
Twelve statements
You are encouraged to solve this task according to the task description, using any language you may know.

This puzzle is borrowed from here.

Given the following twelve statements, which of them are true?

1.  This is a numbered list of twelve statements.
2.  Exactly 3 of the last 6 statements are true.
3.  Exactly 2 of the even-numbered statements are true.
4.  If statement 5 is true, then statements 6 and 7 are both true.
5.  The 3 preceding statements are all false.
6.  Exactly 4 of the odd-numbered statements are true.
7.  Either statement 2 or 3 is true, but not both.
8.  If statement 7 is true, then 5 and 6 are both true.
9.  Exactly 3 of the first 6 statements are true.
10.  The next two statements are both true.
11.  Exactly 1 of statements 7, 8 and 9 are true.
12.  Exactly 4 of the preceding statements are true.

When you get tired of trying to figure it out in your head, write a program to solve it, and print the correct answer or answers.

Extra credit: also print out a table of near misses, that is, solutions that are contradicted by only a single statement.

Ada

Works with: Ada 2012

Here is the main program, using a generic package Logic. The expression function introduced by the new standard Ada 2012 are very handy for this task.

<lang Ada>with Ada.Text_IO, Logic;

procedure Twelve_Statements is

  package L is new Logic(Number_Of_Statements => 12); use L;
  
  -- formally define the 12 statements as expression function predicates
  function P01(T: Table) return Boolean is (T'Length = 12);              -- list of 12 statements
  function P02(T: Table) return Boolean is (Sum(T(7 .. 12)) = 3);        -- three of last six 
  function P03(T: Table) return Boolean is (Sum(Half(T, Even)) = 2);     -- two of the even
  function P04(T: Table) return Boolean is (if T(5) then T(6) and T(7)); -- if 5 is true, then ...
  function P05(T: Table) return Boolean is 
     ( (not T(2)) and (not T(3)) and (not T(4)) );                       -- none of preceding three
  function P06(T: Table) return Boolean is (Sum(Half(T, Odd)) = 4);      -- four of the odd 
  function P07(T: Table) return Boolean is (T(2) xor T(3));              -- either 2 or 3, not both
  function P08(T: Table) return Boolean is (if T(7) then T(5) and T(6)); -- if 7 is true, then ...
  function P09(T: Table) return Boolean is (Sum(T(1 .. 6)) = 3);         -- three of first six 
  function P10(T: Table) return Boolean is (T(11) and T(12));            -- next two 
  function P11(T: Table) return Boolean is (Sum(T(7..9)) = 1);           -- one of 7, 8, 9
  function P12(T: Table) return Boolean is (Sum(T(1 .. 11)) = 4);        -- four of the preding
  
  -- define a global list of statements
  Statement_List: constant Statements :=
    (P01'Access, P02'Access, P03'Access, P04'Access, P05'Access, P06'Access, 
     P07'Access, P08'Access, P09'Access, P10'Access, P11'Access, P12'Access);
  
  -- try out all 2^12 possible choices for the table
  procedure Try(T: Table; Fail: Natural; Idx: Indices'Base := Indices'First) is
     
     procedure Print_Table(T: Table) is

use Ada.Text_IO;

     begin

Put(" "); if Fail > 0 then Put("(wrong at"); for J in T'Range loop if Statement_List(J)(T) /= T(J) then Put(Integer'Image(J) & (if J < 10 then ") " else ") ")); end if; end loop; end if; if T = (1..12 => False) then Put_Line("All false!"); else Put("True are"); for J in T'Range loop if T(J) then Put(Integer'Image(J)); end if; end loop; New_Line; end if;

     end Print_Table;
     
     Wrong_Entries: Natural := 0; 
  begin
     if Idx <= T'Last then 

Try(T(T'First .. Idx-1) & False & T(Idx+1 .. T'Last), Fail, Idx+1); Try(T(T'First .. Idx-1) & True & T(Idx+1 .. T'Last), Fail, Idx+1);

     else -- now Index > T'Last and we have one of the 2^12 choices to test

for J in T'Range loop if Statement_List(J)(T) /= T(J) then Wrong_Entries := Wrong_Entries + 1; end if; end loop; if Wrong_Entries = Fail then Print_Table(T); end if;

     end if;
  end Try;

begin

  Ada.Text_IO.Put_Line("Exact hits:");
  Try(T => (1..12 => False), Fail => 0);
  Ada.Text_IO.New_Line;
  Ada.Text_IO.Put_Line("Near Misses:");
  Try(T => (1..12 => False), Fail => 1);

end Twelve_Statements;</lang>

Output:
Exact hits:
    True are 1 3 4 6 7 11

Near Misses:
    (wrong at 1)  True are 5 8 11
    (wrong at 1)  True are 5 8 10 11 12
    (wrong at 1)  True are 4 8 10 11 12
    (wrong at 8)  True are 1 5
    (wrong at 11) True are 1 5 8
    (wrong at 12) True are 1 5 8 11
    (wrong at 12) True are 1 5 8 10 11 12
    (wrong at 8)  True are 1 5 6 9 11
    (wrong at 8)  True are 1 4
    (wrong at 12) True are 1 4 8 10 11 12
    (wrong at 6)  True are 1 4 6 8 9
    (wrong at 7)  True are 1 3 4 8 9
    (wrong at 9)  True are 1 3 4 6 7 9
    (wrong at 12) True are 1 2 4 7 9 12
    (wrong at 10) True are 1 2 4 7 9 10
    (wrong at 8)  True are 1 2 4 7 8 9

Here is the definition the package Logic:

<lang Ada>generic

  Number_Of_Statements: Positive;

package Logic is

  --types
  subtype Indices is Natural range 1 .. Number_Of_Statements;
  type Table is array(Indices range <>) of Boolean;
  type Predicate is access function(T: Table) return Boolean;
  type Statements is array(Indices) of Predicate;
  type Even_Odd is (Even, Odd);
  
  -- convenience functions
  function Sum(T: Table) return Natural; 
  function Half(T: Table; Which: Even_Odd) return Table;
  

end Logic;</lang>

And here is the implementation of the "convenience functions" in Logic:

<lang Ada>package body Logic is

  function Sum(T: Table) return Natural is
     Result: Natural := 0;
  begin
     for I in T'Range loop
        if T(I) then 
           Result := Result + 1;
        end if;
     end loop;
     return Result;
  end Sum;
  
  function Half(T: Table; Which: Even_Odd) return Table is
     Result: Table(T'Range);
     Last: Natural := Result'First - 1;
  begin
     for I in T'Range loop
        if I mod 2 = (if (Which=Odd) then 1 else 0) then
           Last := Last+1;
           Result(Last) := T(I);
        end if;
     end loop;
     return Result(Result'First .. Last);
  end Half;

end Logic;</lang>

D

Translation of: Python

<lang d>import std.stdio, std.typecons, std.algorithm, std.range,

      std.array, std.functional;

immutable texts = [

   "this is a numbered list of twelve statements",
   "exactly 3 of the last 6 statements are true",
   "exactly 2 of the even-numbered statements are true",
   "if statement 5 is true, then statements 6 and 7 are both true",
   "the 3 preceding statements are all false",
   "exactly 4 of the odd-numbered statements are true",
   "either statement 2 or 3 is true, but not both",
   "if statement 7 is true, then 5 and 6 are both true",
   "exactly 3 of the first 6 statements are true",
   "the next two statements are both true",
   "exactly 1 of statements 7, 8 and 9 are true",
   "exactly 4 of the preceding statements are true"];

alias curry!(reduce!q{a + b}, 0) sumi;

immutable bool function(in bool[])[] funcs = [

   s => s.length == 12,
   s => sumi(s[$-6 .. $]) == 3,
   s => sumi(s[1 .. $].stride(2)) == 2,
   s => s[4] ? (s[5] && s[6]) : true,
   s => sumi(s[1 .. 4]) == 0,
   s => sumi(s[0 .. $].stride(2)) == 4,
   s => sumi(s[1 .. 3]) == 1,
   s => s[6] ? (s[4] && s[5]) : true,
   s => sumi(s[0 .. 6]) == 3,
   s => s[10] && s[11],
   s => sumi(s[6 .. 9]) == 1,
   s => sumi(s[0 .. 11]) == 4];

void show(in bool[] st, in bool[] matches, in bool isPartial) {

   if (isPartial) {
       immutable pos = matches.countUntil(false);
       writefln(`Missed by statement %d: "%s"`, pos + 1, texts[pos]);
   } else
       writeln("Solution:");
   write("  ");
   foreach (i, t; st)
       writef("%d:%s  ", i + 1, t ? "T" : "F");
   writeln();

}

void main() {

   enum nStats = 12;
   assert(texts.length == nStats);
   assert(funcs.length == nStats);
   Tuple!(const bool[], const bool[])[] full, partial;
   foreach (n; 0 .. 2 ^^ nStats) {
       const st = iota(nStats).map!(i => !!(n & (2 ^^ i)))().array();
       auto truths = funcs.map!(f => f(st))();
       const matches = zip(st, truths)
                       .map!(s_t => s_t[0] == s_t[1])()
                       .array();
       immutable mCount = matches.sumi();
       if (mCount == nStats)
           full ~= tuple(st, matches);
       else if (mCount == nStats - 1)
           partial ~= tuple(st, matches);
   }
   foreach (stm; full)
       show(stm.tupleof, false);
   foreach (stm; partial)
       show(stm.tupleof, true);

}</lang>

Output:
Solution:
  1:T  2:F  3:T  4:T  5:F  6:T  7:T  8:F  9:F  10:F  11:T  12:F  
Missed by statement 8: "if statement 7 is true, then 5 && 6 are both true"
  1:T  2:F  3:F  4:T  5:F  6:F  7:F  8:F  9:F  10:F  11:F  12:F  
Missed by statement 8: "if statement 7 is true, then 5 && 6 are both true"
  1:T  2:F  3:F  4:F  5:T  6:F  7:F  8:F  9:F  10:F  11:F  12:F  
Missed by statement 11: "exactly 1 of statements 7, 8 && 9 are true"
  1:T  2:F  3:F  4:F  5:T  6:F  7:F  8:T  9:F  10:F  11:F  12:F  
Missed by statement 9: "exactly 3 of the first 6 statements are true"
  1:T  2:F  3:T  4:T  5:F  6:T  7:T  8:F  9:T  10:F  11:F  12:F  
Missed by statement 7: "either statement 2 or 3 is true, but not both"
  1:T  2:F  3:T  4:T  5:F  6:F  7:F  8:T  9:T  10:F  11:F  12:F  
Missed by statement 6: "exactly 4 of the odd-numbered statements are true"
  1:T  2:F  3:F  4:T  5:F  6:T  7:F  8:T  9:T  10:F  11:F  12:F  
Missed by statement 8: "if statement 7 is true, then 5 && 6 are both true"
  1:T  2:T  3:F  4:T  5:F  6:F  7:T  8:T  9:T  10:F  11:F  12:F  
Missed by statement 10: "the next two statements are both true"
  1:T  2:T  3:F  4:T  5:F  6:F  7:T  8:F  9:T  10:T  11:F  12:F  
Missed by statement 1: "this is a numbered list of twelve statements"
  1:F  2:F  3:F  4:F  5:T  6:F  7:F  8:T  9:F  10:F  11:T  12:F  
Missed by statement 12: "exactly 4 of the preceding statements are true"
  1:T  2:F  3:F  4:F  5:T  6:F  7:F  8:T  9:F  10:F  11:T  12:F  
Missed by statement 8: "if statement 7 is true, then 5 && 6 are both true"
  1:T  2:F  3:F  4:F  5:T  6:T  7:F  8:F  9:T  10:F  11:T  12:F  
Missed by statement 12: "exactly 4 of the preceding statements are true"
  1:T  2:T  3:F  4:T  5:F  6:F  7:T  8:F  9:T  10:F  11:F  12:T  
Missed by statement 1: "this is a numbered list of twelve statements"
  1:F  2:F  3:F  4:T  5:F  6:F  7:F  8:T  9:F  10:T  11:T  12:T  
Missed by statement 12: "exactly 4 of the preceding statements are true"
  1:T  2:F  3:F  4:T  5:F  6:F  7:F  8:T  9:F  10:T  11:T  12:T  
Missed by statement 1: "this is a numbered list of twelve statements"
  1:F  2:F  3:F  4:F  5:T  6:F  7:F  8:T  9:F  10:T  11:T  12:T  
Missed by statement 12: "exactly 4 of the preceding statements are true"
  1:T  2:F  3:F  4:F  5:T  6:F  7:F  8:T  9:F  10:T  11:T  12:T  

Go

<lang go>package main

import "fmt"

// its' not too much more work to check all the permutations concurrently var solution = make(chan int) var nearMiss = make(chan int) var done = make(chan bool)

func main() {

   // iterate and use the bits as the permutation
   for i := 0; i < 4096; i++ {
       go checkPerm(i)
   }
   // collect the misses and list them after the complete solution(s)
   var ms []int
   for i := 0; i < 4096; {
       select {
       case <-done:
           i++
       case s := <-solution:
           print12("solution", s)
       case m := <-nearMiss:
           ms = append(ms, m)
       }
   }
   for _, m := range ms {
       print12("near miss", m)
   }

}

func print12(label string, bits int) {

   fmt.Print(label, ":")
   for i := 1; i <= 12; i++ {
       if bits&1 == 1 {
           fmt.Print(" ", i)
       }
       bits >>= 1
   }
   fmt.Println()

}

func checkPerm(tz int) {

   // closure returns true if tz bit corresponding to
   // 1-based statement number is 1.
   ts := func(n uint) bool {
       return tz>>(n-1)&1 == 1
   }
   // variadic closure returns number of statements listed as arguments
   // which have corresponding tz bit == 1.
   ntrue := func(xs ...uint) int {
       nt := 0
       for _, x := range xs {
           if ts(x) {
               nt++
           }
       }
       return nt
   }
   // a flag used on repeated calls to test.
   // set to true when first contradiction is found.
   // if another is found, this function (checkPerm) can "short circuit"
   // and return immediately without checking additional statements.
   var con bool
   // closure called to test each statement
   test := func(statement uint, b bool) {
       switch {
       case ts(statement) == b:
       case con:
           panic("bail")
       default:
           con = true
       }
   }
   // short circuit mechanism
   defer func() {
       if x := recover(); x != nil {
           if msg, ok := x.(string); !ok && msg != "bail" {
               panic(x)
           }
       }
       done <- true
   }()
   // 1. This is a numbered list of twelve statements.
   test(1, true)
   // 2. Exactly 3 of the last 6 statements are true.
   test(2, ntrue(7, 8, 9, 10, 11, 12) == 3)
   // 3. Exactly 2 of the even-numbered statements are true.
   test(3, ntrue(2, 4, 6, 8, 10, 12) == 2)
   // 4. If statement 5 is true, then statements 6 and 7 are both true.
   test(4, !ts(5) || ts(6) && ts(7))
   // 5. The 3 preceding statements are all false.
   test(5, !ts(4) && !ts(3) && !ts(2))
   // 6. Exactly 4 of the odd-numbered statements are true.
   test(6, ntrue(1, 3, 5, 7, 9, 11) == 4)
   // 7. Either statement 2 or 3 is true, but not both.
   test(7, ts(2) != ts(3))
   // 8. If statement 7 is true, then 5 and 6 are both true.
   test(8, !ts(7) || ts(5) && ts(6))
   // 9. Exactly 3 of the first 6 statements are true.
   test(9, ntrue(1, 2, 3, 4, 5, 6) == 3)
   
   // 10. The next two statements are both true.
   test(10, ts(11) && ts(12))
   
   // 11. Exactly 1 of statements 7, 8 and 9 are true.
   test(11, ntrue(7, 8, 9) == 1)
   
   // 12. Exactly 4 of the preceding statements are true.
   test(12, ntrue(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) == 4)
   // no short circuit? send permutation as either near miss or solution
   if con {
       nearMiss <- tz
   } else {
       solution <- tz
   }

}</lang>

Output:
solution: 1 3 4 6 7 11
near miss: 1 4
near miss: 1 5
near miss: 1 5 8
near miss: 1 3 4 6 7 9
near miss: 1 3 4 8 9
near miss: 1 4 6 8 9
near miss: 1 2 4 7 8 9
near miss: 1 2 4 7 9 10
near miss: 5 8 11
near miss: 1 5 8 11
near miss: 1 5 6 9 11
near miss: 1 2 4 7 9 12
near miss: 1 4 8 10 11 12
near miss: 4 8 10 11 12
near miss: 5 8 10 11 12
near miss: 1 5 8 10 11 12

Haskell

Shows answers with 1 for true, followed by list of indices of contradicting elements in each set of 1/0s (index is 0-based).

<lang haskell>import Data.List (findIndices)

tf = mapM (\_ -> [1,0])

wrongness b = findIndices id . zipWith (/=) b . map (fromEnum . ($ b))

statements = [ (==12) . length, 3 ⊂ [length statements-6..], 2 ⊂ [1,3..], 4 → [4..6], 0 ⊂ [1..3], 4 ⊂ [0,2..], 1 ⊂ [1,2], 6 → [4..6], 3 ⊂ [0..5], 2 ⊂ [10,11], 1 ⊂ [6,7,8], 4 ⊂ [0..10] ] where (s ⊂ x) b = s == (sum . map (b!!) . takeWhile (< length b)) x (a → x) b = (b!!a == 0) || all ((==1).(b!!)) x

testall s n = [(b, w) | b <- tf s, w <- [wrongness b s], length w == n]

main = let t = testall statements in do putStrLn "Answer" mapM_ print $ t 0 putStrLn "Near misses" mapM_ print $ t 1</lang>

Output:
Answer
([1,0,1,1,0,1,1,0,0,0,1,0],[])
Near misses
([1,1,0,1,0,0,1,1,1,0,0,0],[7])
([1,1,0,1,0,0,1,0,1,1,0,0],[9])
([1,1,0,1,0,0,1,0,1,0,0,1],[11])
([1,0,1,1,0,1,1,0,1,0,0,0],[8])
([1,0,1,1,0,0,0,1,1,0,0,0],[6])
([1,0,0,1,0,1,0,1,1,0,0,0],[5])
([1,0,0,1,0,0,0,1,0,1,1,1],[11])
([1,0,0,1,0,0,0,0,0,0,0,0],[7])
([1,0,0,0,1,1,0,0,1,0,1,0],[7])
([1,0,0,0,1,0,0,1,0,1,1,1],[11])
([1,0,0,0,1,0,0,1,0,0,1,0],[11])
([1,0,0,0,1,0,0,1,0,0,0,0],[10])
([1,0,0,0,1,0,0,0,0,0,0,0],[7])
([0,0,0,1,0,0,0,1,0,1,1,1],[0])
([0,0,0,0,1,0,0,1,0,1,1,1],[0])
([0,0,0,0,1,0,0,1,0,0,1,0],[0])

J

In the following 'apply' is a foreign conjunction: <lang j> apply 128!:2

NB. example

  '*:' apply 1 2 3

1 4 9</lang> This enables us to apply strings (left argument) being verbs to the right argument, mostly a noun. <lang j>S=: <;._2 (0 :0) 12&=@# 3=+/@:{.~&_6 2= +/@:{~&1 3 5 7 9 11 4&{=*./@:{~&4 5 6 0=+/@:{~&1 2 3 4=+/@:{~&0 2 4 6 8 10 1=+/@:{~&1 2 6&{=*./@:{~&4 5 6 3=+/@:{.~&6 2=+/@:{~&10 11 1=+/@:{~&6 7 8 4=+/@:{.~&11 )

testall=: (];"1 0<@I.@:(]~:(apply&><))"1) #:@i.@(2&^)@#</lang>

All true <lang j> (#~0=#@{::~&_1"1) testall S ┌───────────────────────┬┐ │1 0 1 1 0 1 1 0 0 0 1 0││ └───────────────────────┴┘</lang> Near misses <lang j> (#~1=#@{::~&_1"1) testall S ┌───────────────────────┬──┐ │0 0 0 0 1 0 0 1 0 0 1 0│0 │ ├───────────────────────┼──┤ │0 0 0 0 1 0 0 1 0 1 1 1│0 │ ├───────────────────────┼──┤ │0 0 0 1 0 0 0 1 0 1 1 1│0 │ ├───────────────────────┼──┤ │1 0 0 0 1 0 0 0 0 0 0 0│7 │ ├───────────────────────┼──┤ │1 0 0 0 1 0 0 1 0 0 0 0│10│ ├───────────────────────┼──┤ │1 0 0 0 1 0 0 1 0 0 1 0│11│ ├───────────────────────┼──┤ │1 0 0 0 1 0 0 1 0 1 1 1│11│ ├───────────────────────┼──┤ │1 0 0 0 1 1 0 0 1 0 1 0│7 │ ├───────────────────────┼──┤ │1 0 0 1 0 0 0 0 0 0 0 0│7 │ ├───────────────────────┼──┤ │1 0 0 1 0 0 0 1 0 1 1 1│11│ ├───────────────────────┼──┤ │1 0 0 1 0 1 0 1 1 0 0 0│5 │ ├───────────────────────┼──┤ │1 0 1 1 0 0 0 1 1 0 0 0│6 │ ├───────────────────────┼──┤ │1 0 1 1 0 1 1 0 1 0 0 0│8 │ ├───────────────────────┼──┤ │1 1 0 1 0 0 1 0 1 0 0 1│11│ ├───────────────────────┼──┤ │1 1 0 1 0 0 1 0 1 1 0 0│9 │ ├───────────────────────┼──┤ │1 1 0 1 0 0 1 1 1 0 0 0│7 │ └───────────────────────┴──┘</lang>

Iterative for all true <lang j> (-N)&{. #: S <:@]^:((]-.@-:(apply&><)"1) (-N)&{.@#:@])^:(_) 2^N=.#S 1 0 1 1 0 1 1 0 0 0 1 0</lang>

Perl 6

<lang perl6>sub infix:<→> ($protasis,$apodosis) { !$protasis or $apodosis }

my @tests = { True }, # (there's no 0th statement)

   { all(.[1..12]) === any(True, False) },
   { 3 == [+] .[7..12] },
   { 2 == [+] .[2,4...12] },
   { .[5] → all .[6,7] },
   { none .[2,3,4] },
   { 4 == [+] .[1,3...11] },
   { one .[2,3] },
   { .[7] → all .[5,6] },
   { 3 == [+] .[1..6] },
   { all .[11,12] },
   { one .[7,8,9] },
   { 4 == [+] .[1..11] };

my @good; my @bad; my @ugly;

for reverse 0 ..^ 2**12 -> $i {

   my @b = $i.fmt("%012b").comb;
   my @assert = True, @b.map: { .so }
   my @result = @tests.map: { .(@assert).so }
   my @s = ( $_ if $_ and @assert[$_] for 1..12 );
   if @result eqv @assert {

push @good, "<{@s}> is consistent.";

   }
   else {

my @cons = gather for 1..12 { if @assert[$_] !eqv @result[$_] { take @result[$_] ?? $_ !! "¬$_"; } } my $mess = "<{@s}> implies {@cons}."; if @cons == 1 { push @bad, $mess } else { push @ugly, $mess }

   }

}

.say for @good; say "\nNear misses:"; .say for @bad;</lang>

Output:
<1 3 4 6 7 11> is consistent.

Near misses:
<1 2 4 7 8 9> implies ¬8.
<1 2 4 7 9 10> implies ¬10.
<1 2 4 7 9 12> implies ¬12.
<1 3 4 6 7 9> implies ¬9.
<1 3 4 8 9> implies 7.
<1 4 6 8 9> implies ¬6.
<1 4 8 10 11 12> implies ¬12.
<1 4> implies 8.
<1 5 6 9 11> implies 8.
<1 5 8 10 11 12> implies ¬12.
<1 5 8 11> implies 12.
<1 5 8> implies 11.
<1 5> implies 8.
<4 8 10 11 12> implies 1.
<5 8 10 11 12> implies 1.
<5 8 11> implies 1.

Python

Note: we choose to adapt the statement numbering to zero-based indexing in the constraintinfo lambda expressions but convert back to one-based on output.

The program uses brute force to generate all possible boolean values of the twelve statements then checks if the actual value of the statements matches the proposed or matches apart from exactly one deviation. Python's boolean type boolis a subclass of int, so boolean values True, False can be used as integers (1, 0, respectively) in numerical contexts. This fact is used in the lambda expressions that use function sum. <lang python> from itertools import product

  1. from pprint import pprint as pp

constraintinfo = (

 (lambda st: len(st) == 12                 ,(1, 'This is a numbered list of twelve statements')),
 (lambda st: sum(st[-6:]) == 3             ,(2, 'Exactly 3 of the last 6 statements are true')),
 (lambda st: sum(st[1::2]) == 2            ,(3, 'Exactly 2 of the even-numbered statements are true')),
 (lambda st: (st[5]&st[6]) if st[4] else 1 ,(4, 'If statement 5 is true, then statements 6 and 7 are both true')),
 (lambda st: sum(st[1:4]) == 0             ,(5, 'The 3 preceding statements are all false')),
 (lambda st: sum(st[0::2]) == 4            ,(6, 'Exactly 4 of the odd-numbered statements are true')),
 (lambda st: sum(st[1:3]) == 1             ,(7, 'Either statement 2 or 3 is true, but not both')),
 (lambda st: (st[4]&st[5]) if st[6] else 1 ,(8, 'If statement 7 is true, then 5 and 6 are both true')),
 (lambda st: sum(st[:6]) == 3              ,(9, 'Exactly 3 of the first 6 statements are true')),
 (lambda st: (st[10]&st[11])               ,(10, 'The next two statements are both true')),
 (lambda st: sum(st[6:9]) == 1             ,(11, 'Exactly 1 of statements 7, 8 and 9 are true')),
 (lambda st: sum(st[0:11]) == 4            ,(12, 'Exactly 4 of the preceding statements are true')),

)

def printer(st, matches):

   if False in matches:
       print('Missed by one statement: %i, %s' % docs[matches.index(False)])
   else:
       print('Full match:')
   print('  ' + ', '.join('%i:%s' % (i, 'T' if t else 'F') for i, t in enumerate(st, 1)))

funcs, docs = zip(*constraintinfo)

full, partial = [], []

for st in product( *([(False, True)] * 12) ):

   truths = [bool(func(st)) for func in funcs]
   matches = [s == t for s,t in zip(st, truths)]
   mcount = sum(matches)
   if mcount == 12:
       full.append((st, matches))
   elif mcount == 11:
       partial.append((st, matches))

for stm in full + partial:

   printer(*stm)</lang>
Output:
Full match:
  1:T, 2:F, 3:T, 4:T, 5:F, 6:T, 7:T, 8:F, 9:F, 10:F, 11:T, 12:F
Missed by one statement: 1, This is a numbered list of twelve statements:
  1:F, 2:F, 3:F, 4:F, 5:T, 6:F, 7:F, 8:T, 9:F, 10:F, 11:T, 12:F
Missed by one statement: 1, This is a numbered list of twelve statements:
  1:F, 2:F, 3:F, 4:F, 5:T, 6:F, 7:F, 8:T, 9:F, 10:T, 11:T, 12:T
Missed by one statement: 1, This is a numbered list of twelve statements:
  1:F, 2:F, 3:F, 4:T, 5:F, 6:F, 7:F, 8:T, 9:F, 10:T, 11:T, 12:T
Missed by one statement: 8, If statement 7 is true, then 5 and 6 are both true:
  1:T, 2:F, 3:F, 4:F, 5:T, 6:F, 7:F, 8:F, 9:F, 10:F, 11:F, 12:F
Missed by one statement: 11, Exactly 1 of statements 7, 8 and 9 are true:
  1:T, 2:F, 3:F, 4:F, 5:T, 6:F, 7:F, 8:T, 9:F, 10:F, 11:F, 12:F
Missed by one statement: 12, Exactly 4 of the preceding statements are true:
  1:T, 2:F, 3:F, 4:F, 5:T, 6:F, 7:F, 8:T, 9:F, 10:F, 11:T, 12:F
Missed by one statement: 12, Exactly 4 of the preceding statements are true:
  1:T, 2:F, 3:F, 4:F, 5:T, 6:F, 7:F, 8:T, 9:F, 10:T, 11:T, 12:T
Missed by one statement: 8, If statement 7 is true, then 5 and 6 are both true:
  1:T, 2:F, 3:F, 4:F, 5:T, 6:T, 7:F, 8:F, 9:T, 10:F, 11:T, 12:F
Missed by one statement: 8, If statement 7 is true, then 5 and 6 are both true:
  1:T, 2:F, 3:F, 4:T, 5:F, 6:F, 7:F, 8:F, 9:F, 10:F, 11:F, 12:F
Missed by one statement: 12, Exactly 4 of the preceding statements are true:
  1:T, 2:F, 3:F, 4:T, 5:F, 6:F, 7:F, 8:T, 9:F, 10:T, 11:T, 12:T
Missed by one statement: 6, Exactly 4 of the odd-numbered statements are true:
  1:T, 2:F, 3:F, 4:T, 5:F, 6:T, 7:F, 8:T, 9:T, 10:F, 11:F, 12:F
Missed by one statement: 7, Either statement 2 or 3 is true, but not both:
  1:T, 2:F, 3:T, 4:T, 5:F, 6:F, 7:F, 8:T, 9:T, 10:F, 11:F, 12:F
Missed by one statement: 9, Exactly 3 of the first 6 statements are true:
  1:T, 2:F, 3:T, 4:T, 5:F, 6:T, 7:T, 8:F, 9:T, 10:F, 11:F, 12:F
Missed by one statement: 12, Exactly 4 of the preceding statements are true:
  1:T, 2:T, 3:F, 4:T, 5:F, 6:F, 7:T, 8:F, 9:T, 10:F, 11:F, 12:T
Missed by one statement: 10, The next two statements are both true:
  1:T, 2:T, 3:F, 4:T, 5:F, 6:F, 7:T, 8:F, 9:T, 10:T, 11:F, 12:F
Missed by one statement: 8, If statement 7 is true, then 5 and 6 are both true:
  1:T, 2:T, 3:F, 4:T, 5:F, 6:F, 7:T, 8:T, 9:T, 10:F, 11:F, 12:F