Tree datastructures: Difference between revisions

From Rosetta Code
Content added Content deleted
(Add nest task "hint" and notes)
m (→‎{{header|Haskell}}: Tidied one function.)
Line 552: Line 552:
import Data.Aeson
import Data.Aeson
import Data.Aeson.Text
import Data.Aeson.Text
import Control.Arrow ((***))


-- TREES <-> LIST OF LEVELS <-> TREES -----------------------
-- TREES <-> LIST OF LEVELS <-> TREES -----------------------
Line 566: Line 567:
let go [] = []
let go [] = []
go ((n, s):xs) =
go ((n, s):xs) =
let (firstTreeLines, rest) = span ((n <) . fst) xs
uncurry (:) $ (Node s . go *** go) (span ((n <) . fst) xs)
in Node s (go firstTreeLines) : go rest
in go pairs
in go pairs



Revision as of 14:15, 17 October 2019

Tree datastructures is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The following shows a tree of data with nesting denoted by visual levels of indentation:

RosettaCode
    rocks
        code
        comparison
        wiki
    mocks
        golfing

A common datastructure for trees is to define node structures having a name and a, (possibly empty), list of child nodes. The nesting of nodes captures the indentation of the tree. Lets call this the nest form.

# E.g. if child nodes are surrounded by brackets
#      and separated by commas then:
RosettaCode(rocks(code, ...), ...)
# But only an _example_

Another datastructure for trees is to construct from the root an ordered list of the nodes level of indentation and the name of that node. The indentation for the root node is zero; node 'rocks is indented by one level from the left, and so on. Lets call this the indent form.

0 RosettaCode
1 rocks
2 code
...
Task
  1. Create/use a nest datastructure format and textual representation for arbitrary trees.
  2. Create/use an indent datastructure format and textual representation for arbitrary trees.
  3. Create methods/classes/proceedures/routines etc to:
    1. Change from a nest tree datastructure to an indent one.
    2. Change from an indent tree datastructure to a nest one
  4. Use the above to encode the example at the start into the nest format, and show it.
  5. transform the initial nest format to indent format and show it.
  6. transform the indent format to final nest format and show it.
  7. Compare initial and final nest formats which should be the same.
Note
  • It's all about showing aspects of the contrasting datastructures as they hold the tree.
  • The word "golfing" may be substituted by "trolling" in the tree as golfing can be friendly fun! (just not for RC examples).
  • Comparing nested datastructures is secondary - saving formatted output as a string then a string compare would suffice for this task, if its easier.


Show all output on this page.

AppleScript

This example is incorrect. Please fix the code and remove this message.

Details: "Strayed" from task example

The 'mocking' task example seems a little unpleasant. Perhaps an alternative ? <lang applescript>use AppleScript version "2.4" use framework "Foundation" use scripting additions

on run

   set strOutline to ¬
       "The Rosetta stone\n" & ¬
       "    is a granodiorite stele\n" & ¬
       "        engraved\n" & ¬
       "            with Greek and Egyptian texts\n" & ¬
       "        in different scripts.\n" & ¬
       "    which, in the 19c, shed new light\n" & ¬
       "        on various homologies."
   
   set forestA to ¬
       forestFromNestLevels(indentLevelsFromLines(paragraphs of strOutline))
   set indentLevels to nestLevelsFromForest(forestA)
   set forestB to forestFromNestLevels(indentLevels)
   
   -- Logged to Messages panel of macOS Script Editor
   log intercalate(linefeed & linefeed, {¬
       "Outline:", ¬
       strOutline, ¬
       "Forest from outline:", ¬
       forestJSON(forestA), ¬
       "Nesting levels from forest:", ¬
       toJSON(indentLevels), ¬
       "Forest rebuilt from nesting levels", ¬
       forestJSON(forestB), ¬
       "Equality test:", ¬
       "(forestA = forestB) -> " & (forestA = forestB)})

end run

-- TREES ⇄ LEVEL TUPLES ----------------------------------

-- forestFromNestLevels :: [(Int, a)] -> [Tree a] on forestFromNestLevels(tuples)

   -- A list of trees derived from a list of values paired
   -- with integers giving their levels of indentation.
   script go
       on |λ|(xs)
           if 0 < length of xs then
               set lineOne to item 1 of xs
               set {intIndent, v} to {fst(lineOne), snd(lineOne)}
               set {firstTreeLines, remainingLines} to ¬
                   listFromTuple(|λ|(rest of xs) of ¬
                       span(compose(lt(intIndent), my fst)))
               {Node(v, |λ|(firstTreeLines) of go)} & |λ|(remainingLines) of go
           else
               {}
           end if
       end |λ|
   end script
   |λ|(tuples) of go

end forestFromNestLevels


-- nestLevelsFromForest :: [Tree a] -> [(Int, a)] on nestLevelsFromForest(trees)

   -- A flat list of (nest level, value) tuples,
   -- representing a series of trees.
   script go
       on |λ|(level)
           script
               on |λ|(tree)
                   Template:Level, root of tree & ¬
                       concatMap(|λ|(1 + level) of go, nest of tree)
               end |λ|
           end script
       end |λ|
   end script
   concatMap(|λ|(0) of go, trees)

end nestLevelsFromForest


-- INDENT LEVELS FROM OUTLINE ----------------------------

--indentLevelsFromLines :: [String] -> [(Int, String)] on indentLevelsFromLines(xs)

   set tuples to map(compose(firstArrow(my |length|), ¬
       span(my isSpace)), xs)
   
   script minimumIndent
       on |λ|(a, tpl)
           set n to fst(tpl)
           bool(a, n, n < a and 0 < n)
       end |λ|
   end script
   set indentUnit to foldl(minimumIndent, 100, tuples)
   
   map(firstArrow(flipDiv(indentUnit)), tuples)

end indentLevelsFromLines


-- JSON SERIALISATIONS ------------------------------------

-- forestJSON :: [Tree a] -> JSON String on forestJSON(trees)

   toJSON(forestAsNestedPairs(trees))

end forestJSON

-- forestAsNestedPairs :: [Tree a] -> NestedPair [(a, [NestedPair])] on forestAsNestedPairs(xs)

   --A simple nested pair representation of a tree.
   script go
       on |λ|(tree)
           {root of tree, map(go, nest of tree)}
       end |λ|
   end script
   map(go, xs)

end forestAsNestedPairs

-- toJSON :: Show a => a -> String on toJSON(a)

   set blnAtom to {list, record} does not contain class of a
   if blnAtom then
       set obj to {a}
   else
       set obj to a
   end if
   set ca to current application
   try
       set {v, e} to ca's NSJSONSerialization's ¬
           dataWithJSONObject:obj options:0 |error|:(reference)
   on error
       return ("(Not representatable as JSON)")
   end try
   
   set strJSON to ca's NSString's alloc()'s initWithData:v ¬
       encoding:(ca's NSUTF8StringEncoding)
   if blnAtom then
       text 2 thru -2 of (strJSON as string)
   else
       strJSON as string
   end if
   

end toJSON


-- GENERIC ------------------------------------------------

-- Node :: a -> [Tree a] -> Tree a on Node(v, xs)

   {type:"Node", root:v, nest:xs}

end Node


-- Tuple (,) :: a -> b -> (a, b) on Tuple(a, b)

   -- Constructor for a pair of values, possibly of two different types.
   {type:"Tuple", |1|:a, |2|:b, length:2}

end Tuple


-- bool :: a -> a -> Bool -> a on bool(f, t, p)

   if p then
       set v to t
   else
       set v to f
   end if
   -- Delayed evaluation, if needed.
   if handler is class of v then
       |λ|() of mReturn(v)
   else
       v
   end if

end bool

-- compose (<<<) :: (b -> c) -> (a -> b) -> a -> c on compose(f, g)

   script
       property mf : mReturn(f)
       property mg : mReturn(g)
       on |λ|(x)
           mf's |λ|(mg's |λ|(x))
       end |λ|
   end script

end compose

-- concatMap :: (a -> [b]) -> [a] -> [b] on concatMap(f, xs)

   set lng to length of xs
   set acc to {}
   tell mReturn(f)
       repeat with i from 1 to lng
           set acc to acc & (|λ|(item i of xs, i, xs))
       end repeat
   end tell
   return acc

end concatMap


-- flipDiv:: Int -> Int -> Int on flipDiv(a)

   -- Integer division, with arguments reversed
   script
       on |λ|(b)
           b div a
       end |λ|
   end script

end flipDiv

-- Lift a simple function to one which applies to a tuple, -- transforming only the first item of the tuple -- firstArrow :: (a -> b) -> ((a, c) -> (b, c)) on firstArrow(f)

   script
       on |λ|(xy)
           Tuple(mReturn(f)'s |λ|(|1| of xy), |2| of xy)
       end |λ|
   end script

end firstArrow

-- foldl :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs)

   tell mReturn(f)
       set v to startValue
       set lng to length of xs
       repeat with i from 1 to lng
           set v to |λ|(v, item i of xs, i, xs)
       end repeat
       return v
   end tell

end foldl

-- fst :: (a, b) -> a on fst(tpl)

   if class of tpl is record then
       |1| of tpl
   else
       item 1 of tpl
   end if

end fst


-- intercalate :: String -> [String] -> String on intercalate(delim, xs)

   set {dlm, my text item delimiters} to ¬
       {my text item delimiters, delim}
   set str to xs as text
   set my text item delimiters to dlm
   str

end intercalate

-- isSpace :: Char -> Bool on isSpace(c)

   set i to id of c
   32 = i or (9 ≤ i and 13 ≥ i)

end isSpace

-- length :: [a] -> Int on |length|(xs)

   set c to class of xs
   if list is c or string is c then
       length of xs
   else
       (2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite)
   end if

end |length|

-- listFromTuple :: (a, a ...) -> [a] on listFromTuple(tpl)

   items 2 thru -2 of (tpl as list)

end listFromTuple

-- lt :: Ord a => a -> a -> Bool on lt(x)

   script
       on |λ|(y)
           x < y
       end |λ|
   end script

end lt

-- map :: (a -> b) -> [a] -> [b] on map(f, xs)

   -- The list obtained by applying f
   -- to each element of xs.
   tell mReturn(f)
       set lng to length of xs
       set lst to {}
       repeat with i from 1 to lng
           set end of lst to |λ|(item i of xs, i, xs)
       end repeat
       return lst
   end tell

end map

-- minimum :: Ord a => [a] -> a on minimum(xs)

   set lng to length of xs
   if lng < 1 then return missing value
   set m to item 1 of xs
   repeat with x in xs
       set v to contents of x
       if v < m then set m to v
   end repeat
   return m

end minimum

-- mReturn :: First-class m => (a -> b) -> m (a -> b) on mReturn(f)

   -- 2nd class handler function lifted into 1st class script wrapper. 
   if script is class of f then
       f
   else
       script
           property |λ| : f
       end script
   end if

end mReturn

-- snd :: (a, b) -> b on snd(tpl)

   if class of tpl is record then
       |2| of tpl
   else
       item 2 of tpl
   end if

end snd

-- span :: (a -> Bool) -> [a] -> ([a], [a]) on span(f)

   -- The longest (possibly empty) prefix of xs
   -- that contains only elements satisfying p,
   -- tupled with the remainder of xs.
   -- span(p, xs) eq (takeWhile(p, xs), dropWhile(p, xs)) 
   script
       on |λ|(xs)
           set lng to length of xs
           set i to 0
           tell mReturn(f)
               repeat while i < lng and |λ|(item (i + 1) of xs)
                   set i to i + 1
               end repeat
           end tell
           splitAt(i, xs)
       end |λ|
   end script

end span


-- splitAt :: Int -> [a] -> ([a], [a]) on splitAt(n, xs)

   if n > 0 and n < length of xs then
       if class of xs is text then
           Tuple(items 1 thru n of xs as text, ¬
               items (n + 1) thru -1 of xs as text)
       else
           Tuple(items 1 thru n of xs, items (n + 1) thru -1 of xs)
       end if
   else
       if n < 1 then
           Tuple({}, xs)
       else
           Tuple(xs, {})
       end if
   end if

end splitAt</lang>

Output:
Outline:

The Rosetta stone
    is a granodiorite stele
        engraved
            with Greek and Egyptian texts
        in different scripts.
    which, in the 19c, shed new light
        on various homologies.

Forest from outline:

[["The Rosetta stone",[["is a granodiorite stele",[["engraved",[["with Greek and Egyptian texts",[]]]],["in different scripts.",[]]]],["which, in the 19c, shed new light",[["on various homologies.",[]]]]]]]

Nesting levels from forest:

[[0,"The Rosetta stone"],[1,"is a granodiorite stele"],[2,"engraved"],[3,"with Greek and Egyptian texts"],[2,"in different scripts."],[1,"which, in the 19c, shed new light"],[2,"on various homologies."]]

Forest rebuilt from nesting levels

[["The Rosetta stone",[["is a granodiorite stele",[["engraved",[["with Greek and Egyptian texts",[]]]],["in different scripts.",[]]]],["which, in the 19c, shed new light",[["on various homologies.",[]]]]]]]

Equality test:

(forestA = forestB) -> true

Go

<lang go>package main

import (

   "fmt"
   "strings"

)

type nNode struct {

   name     string
   children []nNode

}

type iNode struct {

   level int
   name  string

}

func printNest(n nNode, level int) {

   if level == 0 {
       fmt.Println("\n==Nest form==\n")
   }
   fmt.Printf("%s%s\n", strings.Repeat("  ", level), n.name)
   for _, c := range n.children {
       fmt.Printf("%s", strings.Repeat("  ", level+1))
       printNest(c, level+1)
   }

}

func toNest(iNodes []iNode, start, level int, n *nNode) {

   if level == 0 {
       n.name = iNodes[0].name
   }
   for i := start + 1; i < len(iNodes); i++ {
       if iNodes[i].level == level+1 {
           c := nNode{iNodes[i].name, nil}
           toNest(iNodes, i, level+1, &c)
           n.children = append(n.children, c)
       } else if iNodes[i].level <= level {
           return
       }
   }

}

func printIndent(iNodes []iNode) {

   fmt.Println("\n==Indent form==\n")
   for _, n := range iNodes {
       fmt.Printf("%d %s\n", n.level, n.name)
   }

}

func toIndent(n nNode, level int, iNodes *[]iNode) {

   *iNodes = append(*iNodes, iNode{level, n.name})
   for _, c := range n.children {
       toIndent(c, level+1, iNodes)
   }

}

func main() {

   n1 := nNode{"RosettaCode", nil}
   n2 := nNode{"rocks", []nNode{{"code", nil}, {"comparison", nil}, {"wiki", nil}}}
   n3 := nNode{"mocks", []nNodeTemplate:"golfing", nil}
   n1.children = append(n1.children, n2, n3)
   printNest(n1, 0)
   var iNodes []iNode
   toIndent(n1, 0, &iNodes)
   printIndent(iNodes)
   var n nNode
   toNest(iNodes, 0, 0, &n)
   printNest(n, 0)

}</lang>

Output:
==Nest form==

RosettaCode
    rocks
        code
        comparison
        wiki
    mocks
        golfing

==Indent form==

0 RosettaCode
1 rocks
2 code
2 comparison
2 wiki
1 mocks
2 golfing

==Nest form==

RosettaCode
    rocks
        code
        comparison
        wiki
    mocks
        golfing

Haskell

Using the rose tree constructor in the standard Data.Tree module.


Parses the initial tree from outline text, and writes out the flat and nested structures in a JSON format: <lang haskell>{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text.Lazy.Encoding as E import qualified Data.Text.Lazy.IO as T import qualified Data.Text.Lazy as T import Control.Arrow (first) import Data.Char (isSpace) import Data.Bool (bool) import Data.Tree import Data.Aeson import Data.Aeson.Text import Control.Arrow ((***))

-- TREES <-> LIST OF LEVELS <-> TREES ----------------------- nestLevelsFromForest :: [Tree a] -> [(Int, a)] nestLevelsFromForest xs =

 let go level node =
       (level, rootLabel node) : (subForest node >>= go (succ level))
 in xs >>= go 0

forestFromNestLevels

 :: Ord t
 => [(t, a)] -> Forest a

forestFromNestLevels pairs =

 let go [] = []
     go ((n, s):xs) =
       uncurry (:) $ (Node s . go *** go) (span ((n <) . fst) xs)
 in go pairs

-- INITIAL PARSE TREE OF OUTLINE -------------------------- nestLevelsFromLines xs =

 let pairs = T.span isSpace <$> xs
     indentUnit =
       foldr
         (\x a ->
             let w = (T.length . fst) x
             in bool a w (w < a && 0 < w))
         maxBound
         pairs
 in first (flip div indentUnit . T.length) <$> pairs

-- DISPLAY OF JSON SERIALISATION -------------------------- showJSON

 :: ToJSON a
 => a -> T.Text

showJSON = E.decodeUtf8 . encode . toJSON

-- TEST --------------------------------------------------- forestA :: Forest T.Text forestA = (forestFromNestLevels . nestLevelsFromLines) (T.lines outline)

nestLevels :: [(Int, T.Text)] nestLevels = nestLevelsFromForest forestA

forestB :: [Tree T.Text] forestB = forestFromNestLevels nestLevels

main :: IO () main = do

 mapM_
   T.putStrLn
   [ "Initial parse tree from outline:\n"
   , showJSON forestA
   , "\nFlat list of nesting levels from parse tree:\n"
   , showJSON nestLevels
   , "\nTree rebuilt from nest levels:\n"
   , showJSON forestB
   ]
 putStrLn $
   "\n\n(Reconstructed tree == parsed tree) -> " ++ show (forestA == forestB)

outline :: T.Text outline =

 "RosettaCode\n\
       \    rocks\n\
       \        code\n\
       \        comparison\n\
       \        wiki\n\
       \    knocks\n\
       \        golfing"</lang>
Output:
Initial parse tree from outline:

[["RosettaCode",[["rocks",[["code",[]],["comparison",[]],["wiki",[]]]],["knocks",[["golfing",[]]]]]]]

Flat list of nesting levels from parse tree:

[[0,"RosettaCode"],[1,"rocks"],[2,"code"],[2,"comparison"],[2,"wiki"],[1,"knocks"],[2,"golfing"]]

Tree rebuilt from nest levels:

[["RosettaCode",[["rocks",[["code",[]],["comparison",[]],["wiki",[]]]],["knocks",[["golfing",[]]]]]]]


(Reconstructed tree == parsed tree) -> True

JavaScript

Parses the initial tree from outline text, and writes out the flat and nested structures in a minimal JSON format: <lang javascript>(() => {

   'use strict';
   // main :: IO ()
   const main = () => {
       // (INDENT, STRING) PAIRS FROM OUTLINE ------------
       const
           indentLevelTuplesA = indentLevelsFromLines(
               lines(strOutlineB)
           );
       // LIST OF TREES FROM LIST OF (INDENT, STRING) PAIRS
       const
           forestA = forestFromIndentLevels(
               indentLevelTuplesA
           );
       // (INDENT, STRING) PAIRS FROM LIST OF TREES ------
       const
           indentLevelTuplesB = indentLevelsFromForest(forestA);
       // LIST OF TREES FROM SECONDARY (INDENT, STRING) PAIRS
       const forestB = forestFromIndentLevels(
           indentLevelTuplesB
       );
       // JSON OUTPUT OF FORESTS AND INDENT TUPLES -------
       console.log('Tree structure from outline:\n')
       console.log(jsonFromForest(forestA));
       console.log('\n\nIndent levels from tree structure:\n')
       console.log(jsonFromIndentLevels(indentLevelTuplesB));
       console.log('\nTree structure from indent levels:\n')
       console.log(jsonFromForest(forestB));
       console.log(
           '(Reconstructed tree === parsed tree) -> ' +
           Boolean(eq(forestA)(forestB))
       );
   };
   // CONVERSIONS BETWEEN OUTLINES, TREES, AND (LEVEL, VALUE) PAIRS
   // indentLevelsFromLines :: [String] -> [(Int, String)]
   const indentLevelsFromLines = xs => {
       const
           indentTextPairs = xs.map(compose(
               firstArrow(length), span(isSpace)
           )),
           indentUnit = minimum(indentTextPairs.flatMap(pair => {
               const w = fst(pair);
               return 0 < w ? [w] : [];
           }));
       return indentTextPairs.map(
           firstArrow(flip(div)(indentUnit))
       );
   };
   // forestFromIndentLevels :: [(Int, String)] -> [Tree String]
   const forestFromIndentLevels = tuples => {
       const go = xs =>
           0 < xs.length ? (() => {
               const [n, s] = Array.from(xs[0]);
               // Lines indented under this line,
               // tupled with all the rest.
               const [firstTreeLines, rest] = Array.from(
                   span(x => n < x[0])(xs.slice(1))
               );
               // This first tree, and then the rest.
               return [Node(s)(go(firstTreeLines))]
                   .concat(go(rest));
           })() : [];
       return go(tuples);
   };
   // indentLevelsFromForest :: [Tree a] -> [(Int, a)]
   const indentLevelsFromForest = trees => {
       const go = n => node => [
               [n, node.root]
           ]
           .concat(node.nest.flatMap(go(1 + n)))
       return trees.flatMap(go(0));
   };
   // JSON RENDERING OF NESTED LINES AND (LEVEL, VALUE) PAIRS
   // jsonFromForest :: [Tree a] -> JSON String
   const jsonFromForest = trees =>
       JSON.stringify(
           nestedListsFromForest(trees),
           null, 2
       );


   // nestedListsFromForest :: [Tree a] -> NestedList a
   const nestedListsFromForest = xs => {
       const go = node => [node.root, node.nest.map(go)];
       return xs.map(go);
   };
   // jsonFromIndentLevels :: [(Int, String)] -> JSON String
   const jsonFromIndentLevels = xs =>
       JSON.stringify(
           xs.map(x => Array.from(x)),
           null, 2
       );


   // GENERIC FUNCTIONS ----------------------------
   // Node :: a -> [Tree a] -> Tree a
   const Node = v => xs => ({
       type: 'Node',
       root: v, // any type of value (consistent across tree)
       nest: xs || []
   });
   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = a => b => ({
       type: 'Tuple',
       '0': a,
       '1': b,
       length: 2
   });
   // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
   const compose = (...fs) =>
       x => fs.reduceRight((a, f) => f(a), x);
   // div :: Int -> Int -> Int
   const div = x => y => Math.floor(x / y);
   // eq (==) :: Eq a => a -> a -> Bool
   const eq = a => b => {
       const t = typeof a;
       return t !== typeof b ? (
           false
       ) : 'object' !== t ? (
           'function' !== t ? (
               a === b
           ) : a.toString() === b.toString()
       ) : (() => {
           const kvs = Object.entries(a);
           return kvs.length !== Object.keys(b).length ? (
               false
           ) : kvs.every(([k, v]) => eq(v)(b[k]));
       })();
   };
   // firstArrow :: (a -> b) -> ((a, c) -> (b, c))
   const firstArrow = f => xy => Tuple(f(xy[0]))(
       xy[1]
   );
   // flip :: (a -> b -> c) -> b -> a -> c
   const flip = f =>
       1 < f.length ? (
           (a, b) => f(b, a)
       ) : (x => y => f(y)(x));
   // foldl1 :: (a -> a -> a) -> [a] -> a
   const foldl1 = f => xs =>
       1 < xs.length ? xs.slice(1)
       .reduce(uncurry(f), xs[0]) : xs[0];
   // fst :: (a, b) -> a
   const fst = tpl => tpl[0];
   // isSpace :: Char -> Bool
   const isSpace = c => /\s/.test(c);
   // Returns Infinity over objects without finite length.
   // This enables zip and zipWith to choose the shorter
   // argument when one is non-finite, like cycle, repeat etc
   // length :: [a] -> Int
   const length = xs =>
       (Array.isArray(xs) || 'string' === typeof xs) ? (
           xs.length
       ) : Infinity;
   // lines :: String -> [String]
   const lines = s => s.split(/[\r\n]/);
   // minimum :: Ord a => [a] -> a
   const minimum = xs =>
       0 < xs.length ? (
           foldl1(a => x => x < a ? x : a)(xs)
       ) : undefined;
   // span :: (a -> Bool) -> [a] -> ([a], [a])
   const span = p => xs => {
       const iLast = xs.length - 1;
       return splitAt(
           until(i => iLast < i || !p(xs[i]))(
               succ
           )(0)
       )(xs);
   };
   // splitAt :: Int -> [a] -> ([a], [a])
   const splitAt = n => xs =>
       Tuple(xs.slice(0, n))(
           xs.slice(n)
       );
   // succ :: Enum a => a -> a
   const succ = x => 1 + x;
   // uncurry :: (a -> b -> c) -> ((a, b) -> c)
   const uncurry = f =>
       (x, y) => f(x)(y);
   // until :: (a -> Bool) -> (a -> a) -> a -> a
   const until = p => f => x => {
       let v = x;
       while (!p(v)) v = f(v);
       return v;
   };
   // SAMPLE OUTLINES ------------------------------------
   const strOutlineA = `Heilmeier catechism
   Objectives and benefits
       What are you trying to do?
           Articulate your objectives using absolutely no jargon.
           What are the problems you address ?
               How is it done today,
               and what are the limits of current practice?
           What is your solution ?
               What is new in your approach
               and why do you think it will be successful?
       Who cares? If you are successful, what difference will it make?
   Costs
       What are the risks?
       How much will it cost?
       How long will it take?
   Indicators
       What are the mid-term and final “exams” to check for success?`;
   const strOutlineB = `Rosetta stone
   is a granodiorite stele
       engraved
           with Greek and Egyptian texts
       in different scripts.
   which shed new light
       on various homologies.`;
   // MAIN ---
   return main();

})();</lang>

Output:
Tree structure from outline:

[
  [
    "Rosetta stone",
    [
      [
        "is a granodiorite stele",
        [
          [
            "engraved",
            [
              [
                "with Greek and Egyptian texts",
                []
              ]
            ]
          ],
          [
            "in different scripts.",
            []
          ]
        ]
      ],
      [
        "which shed new light",
        [
          [
            "on various homologies.",
            []
          ]
        ]
      ]
    ]
  ]
]

Indent levels from tree structure:

[
  [
    0,
    "Rosetta stone"
  ],
  [
    1,
    "is a granodiorite stele"
  ],
  [
    2,
    "engraved"
  ],
  [
    3,
    "with Greek and Egyptian texts"
  ],
  [
    2,
    "in different scripts."
  ],
  [
    1,
    "which shed new light"
  ],
  [
    2,
    "on various homologies."
  ]
]

Tree structure from indent levels:

[
  [
    "Rosetta stone",
    [
      [
        "is a granodiorite stele",
        [
          [
            "engraved",
            [
              [
                "with Greek and Egyptian texts",
                []
              ]
            ]
          ],
          [
            "in different scripts.",
            []
          ]
        ]
      ],
      [
        "which shed new light",
        [
          [
            "on various homologies.",
            []
          ]
        ]
      ]
    ]
  ]
]
(Reconstructed tree === parsed tree) -> true

Python

Procedural

Just arranges the standard lists and tuples for the datastructures allowing pprint to show the different arrangement of storage.

<lang python>from pprint import pprint as pp from collections import namedtuple

def to_indent(node, depth=0, flat=None):

   if flat is None:
       flat = []
   if node:
       flat.append((depth, node[0]))
   for child in node[1]:
       to_indent(child, depth + 1, flat)
   return flat

def to_nest(lst, depth=0, level=None):

   if level is None:
       level = []
   while lst:
       d, name = lst[0]
       if d == depth:
           children = []
           level.append((name, children))
           lst.pop(0)
       elif d > depth:  # down
           to_nest(lst, d, children)
       elif d < depth:  # up
           return
   return level[0] if level else None
                   

if __name__ == '__main__':

   print('Start Nest format:')
   nest = ('RosettaCode', [('rocks', [('code', []), ('comparison', []), ('wiki', [])]), 
                           ('mocks', [('golfing', [])])])
   pp(nest, width=25)
   print('\n... To Indent format:')
   as_ind = to_indent(nest)
   pp(as_ind, width=25)
   print('\n... To Nest format:')
   as_nest = to_nest(as_ind)
   pp(as_nest, width=25)
   if nest != as_nest:
       print("Whoops round-trip issues")</lang>
Output:
Start Nest format:
('RosettaCode',
 [('rocks',
   [('code', []),
    ('comparison', []),
    ('wiki', [])]),
  ('mocks',
   [('golfing', [])])])

... To Indent format:
[(0, 'RosettaCode'),
 (1, 'rocks'),
 (2, 'code'),
 (2, 'comparison'),
 (2, 'wiki'),
 (1, 'mocks'),
 (2, 'golfing')]

... To Nest format:
('RosettaCode',
 [('rocks',
   [('code', []),
    ('comparison', []),
    ('wiki', [])]),
  ('mocks',
   [('golfing', [])])])

Functional

Using a Node constructor with root and nest keys for the value and sub-forest of each tree node, and serialising both trees and nesting-level lists to JSON-compatible formats.

Functional composition, as an alternative to .append() and .pop() mutations.

(Initial tree constructed as the parse of an outline text)

Works with: Python version 3.7

<lang python>Tree data structures

from itertools import chain, takewhile import json


  1. Node :: a -> [Tree a] -> Tree a

def Node(v):

   Constructor for a Tree node which connects a
      value of some kind to a list of zero or
      more child trees.
   
   return lambda xs: {'type': 'Tree', 'root': v, 'nest': xs}


  1. forestFromNestLevels :: [(Int, a)] -> [Tree a]

def forestFromNestLevels(tuples):

   A list of trees derived from a list of values paired
      with integers giving their levels of indentation.
   
   def go(xs):
       if xs:
           (intIndent, v) = xs[0]
           (firstTreeLines, rest) = span(
               lambda x: intIndent < x[0]
           )(xs[1:])
           return [Node(v)(go(firstTreeLines))] + go(rest)
       else:
           return []
   return go(tuples)


  1. nestLevelsFromForest :: [Tree a] -> [(Int, a)]

def nestLevelsFromForest(xs):

   A flat list of (nest level, value) tuples,
      representing a series of trees.
   
   def go(level):
       return lambda node: [(level, node['root'])] + concatMap(
           go(1 + level)
       )(node['nest'])
   return concatMap(go(0))(xs)


  1. TEST ----------------------------------------------------
  2. main :: IO ()

def main():

   Conversion from trees to flat lists of nest levels,
      and back again, with each stage shown as a JSON
      string.
   
   forestA = forestFromNestLevels(
       indentLevelsFromLines(OUTLINE.splitlines())
   )
   nestLevels = nestLevelsFromForest(forestA)
   forestB = forestFromNestLevels(nestLevels)
   for x in [
           'Parse tree from outline text:\n',
           forestJSON(forestA),
           '\nNesting level list from tree:\n',
           json.dumps(nestLevels, indent=2),
           '\nTree rebuilt from nesting level list:\n',
           forestJSON(forestB),
   ]:
       print(x)
   print(
       '(Reconstructed forest == parsed forest) -> ' +
       str(forestA == forestB)
   )


  1. INITIAL TREE FROM PARSE OF OUTLINE TEXT -----------------
  1. indentLevelsFromLines :: [String] -> [(Int, String)]

def indentLevelsFromLines(xs):

   Each input line stripped of leading
      white space, and tupled with a preceding integer
      giving its level of indentation from 0 upwards.
   
   indentTextPairs = [
       (n, s[n:]) for (n, s)
       in ((len(list(takewhile(isSpace, x))), x) for x in xs)
   ]
   indentUnit = min(concatMap(
       lambda x: [x[0]] if x[0] else []
   )(indentTextPairs))
   return [
       (x[0] // indentUnit, x[1])
       for x in indentTextPairs
   ]


  1. JSON SERIALISATION --------------------------------------
  1. forestJSON :: [Tree a] -> JSON String

def forestJSON(trees):

   A simple JSON serialisation of a list of trees, with
      each tree node represented as a [value, nodes] pair.
   
   return json.dumps(
       forestAsNestedPairs(trees),
       indent=2
   )


  1. forestAsNestedPairs :: [Tree a] -> NestedPair [(a, [NestedPair])]

def forestAsNestedPairs(xs):

   A simple nested pair representation of a tree.
   def go(node):
       return [node['root'], [go(x) for x in node['nest']]]
   return [go(x) for x in xs]


  1. GENERIC -------------------------------------------------
  1. concatMap :: (a -> [b]) -> [a] -> [b]

def concatMap(f):

   A concatenated list or string over which a function f
      has been mapped.
      The list monad can be derived by using an (a -> [b])
      function which wraps its output in a list (using an
      empty list to represent computational failure).
   
   return lambda xs: (.join if isinstance(xs, str) else list)(
       chain.from_iterable(map(f, xs))
   )


  1. isSpace :: Char -> Bool
  2. isSpace :: String -> Bool

def isSpace(s):

   True if s is not empty, and
      contains only white space.
   
   return s.isspace()


  1. span :: (a -> Bool) -> [a] -> ([a], [a])

def span(p):

   The longest (possibly empty) prefix of xs
      that contains only elements satisfying p,
      tupled with the remainder of xs.
      span p xs is equivalent to (takeWhile p xs, dropWhile p xs).
   
   def go(xs):
       prefix = list(takewhile(p, xs))
       return (prefix, xs[len(prefix):])
   return lambda xs: go(xs)


  1. MAIN ---

if __name__ == '__main__':

   OUTLINE = Rosetta stone
   is a granodiorite stele
       engraved
           with Greek and Egyptian texts
       in different scripts.
   which shed new light
       on various homologies.
   main()</lang>
Output:
Parse tree from outline text:

[
  [
    "Rosetta stone",
    [
      [
        "is a granodiorite stele",
        [
          [
            "engraved",
            [
              [
                "with Greek and Egyptian texts",
                []
              ]
            ]
          ],
          [
            "in different scripts.",
            []
          ]
        ]
      ],
      [
        "which shed new light",
        [
          [
            "on various homologies.",
            []
          ]
        ]
      ]
    ]
  ]
]

Nesting level list from tree:

[
  [
    0,
    "Rosetta stone"
  ],
  [
    1,
    "is a granodiorite stele"
  ],
  [
    2,
    "engraved"
  ],
  [
    3,
    "with Greek and Egyptian texts"
  ],
  [
    2,
    "in different scripts."
  ],
  [
    1,
    "which shed new light"
  ],
  [
    2,
    "on various homologies."
  ]
]

Tree rebuilt from nesting level list:

[
  [
    "Rosetta stone",
    [
      [
        "is a granodiorite stele",
        [
          [
            "engraved",
            [
              [
                "with Greek and Egyptian texts",
                []
              ]
            ]
          ],
          [
            "in different scripts.",
            []
          ]
        ]
      ],
      [
        "which shed new light",
        [
          [
            "on various homologies.",
            []
          ]
        ]
      ]
    ]
  ]
]
(Reconstructed forest == parsed forest) -> True