Tarjan: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Wren}}: Now uses new core library method.)
Line 622: Line 622:
[7]
[7]
</pre>
</pre>

=={{header|jq}}==
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''

In this adaptation of the [[#Kotlin]]/[[#Wren]] implementations:
* a Node is represented by JSON object with .n being its id;
* a DirectedGraph is represented by a JSON object {vs, es} where vs is an array of Nodes and es is an array of integer ids;
* a Stack is reprsented by an array, with .[-1] as the active point;
* the output of `tarjan` is an array each item of which is an array of Node ids.
<br>
<lang jq># Input: an integer
def Node:
{ n: .,
index: -1, # -1 signifies undefined
lowLink: -1,
onStack: false
} ;

# Input: a DirectedGraph
# Output: a stream of Node ids
def successors($vn): .es[$vn][];

# Input: a DirectedGraph
# Output: an array of integer arrays
def tarjan:
. + { sccs: [], # strongly connected components
index: 0,
s: [] # Stack
}
# input: {es, vs, sccs, index, s}
| def strongConnect($vn):
# Set the depth index for v to the smallest unused index
.vs[$vn].index = .index
| .vs[$vn].lowLink = .index
| .index += 1
| .s += [ $vn ]
| .vs[$vn].onStack = true
# consider successors of v
| reduce successors($vn) as $wn (.;
if .vs[$wn].index < 0
then
# Successor w has not yet been visited; recurse on it
strongConnect($wn)
| .vs[$vn].lowLink = ([.vs[$vn].lowLink, .vs[$wn].lowLink] | min )
elif .vs[$wn].onStack
then
# Successor w is in stack s and hence in the current SCC
.vs[$vn].lowLink = ([.vs[$vn].lowLink, .vs[$wn].index] | min )
else .
end
)
# If v is a root node, pop the stack and generate an SCC
| if .vs[$vn] | (.lowLink == .index)
then .scc = []
| .stop = false
| until(.stop;
.s[-1] as $wn
| .s |= .[:-1] # pop
| .vs[$wn].onStack = false
| .scc += [$wn]
| if $wn == $vn then .stop = true else . end )
| .sccs += [.scc]
else .scc = []
end
;
reduce .vs[].n as $vn (.;
if .vs[$vn].index < 0
then strongConnect($vn)
else . end
)
| .sccs
;

# Vertices
def vs: [range(0;8) | Node ];

# Edges
def es:
[ [1],
[2],
[0],
[1, 2, 4],
[5, 3],
[2, 6],
[5],
[4, 7, 6]
]
;

{ vs: vs, es: es }
| tarjan</lang>
{{out}}
<pre>
[[2,1,0],[6,5],[4,3],[7]]
</pre>



=={{header|Julia}}==
=={{header|Julia}}==

Revision as of 10:26, 19 December 2021

Task
Tarjan
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at Graph. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)


Tarjan's algorithm is an algorithm in graph theory for finding the strongly connected components of a graph.

It runs in linear time, matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm.

Tarjan's Algorithm is named for its discoverer, Robert Tarjan.


References



11l

Translation of: Python: As class

<lang 11l>T Graph

  String name
  [Char = [Char]] graph
  Int _order
  [Char = Int] disc
  [Char = Int] low
  [Char] stack
  Char scc
  F (name, connections)
     .name = name
     DefaultDict[Char, [Char]] g
     L(n) connections
        V (n1, n2) = (n[0], n[1])
        I n1 != n2
           g[n1].append(n2)
        E
           g[n1]
        g[n2]
     .graph = Dict(move(g))
     .tarjan_algo()
  F _visitor(this) -> N
     ‘
       Recursive function that finds SCC's
       using DFS traversal of vertices.
       Arguments:
           this        --> Vertex to be visited in this call.
           disc{}      --> Discovery order of visited vertices.
           low{}       --> Connected vertex of earliest discovery order
           stack       --> Ancestor node stack during DFS.
     ’
     .disc[this] = .low[this] = ._order
     ._order++
     .stack.append(this)
     L(neighbr) .graph[this]
        I neighbr !C .disc
           ._visitor(neighbr)
           .low[this] = min(.low[this], .low[neighbr])
        E I neighbr C .stack
           .low[this] = min(.low[this], .disc[neighbr])
     I .low[this] == .disc[this]
        [Char] new
        L
           V top = .stack.pop()
           new.append(top)
           I top == this
              L.break
        .scc.append(new)
  F tarjan_algo()
     ‘
       Recursive function that finds strongly connected components
       using the Tarjan Algorithm and function _visitor() to visit nodes.
     ’
     ._order = 0
     L(vertex) sorted(.graph.keys())
        I vertex !C .disc
           ._visitor(vertex)

L(n, m) [(‘Tx1’, ‘10 02 21 03 34’.split(‘ ’)),

        (‘Tx2’, ‘01 12 23’.split(‘ ’)),
        (‘Tx3’, ‘01 12 20 13 14 16 35 45’.split(‘ ’)),
        (‘Tx4’, ‘01 03 12 14 20 26 32 45 46 56 57 58 59 64 79 89 98 AA’.split(‘ ’)),
        (‘Tx5’, ‘01 12 23 24 30 42’.split(‘ ’))
        ]
  print("\n\nGraph('#.', #.):\n".format(n, m))
  V g = Graph(n, m)
  print(‘               :  ’sorted(g.disc.keys()).map(v -> String(v)).join(‘  ’))
  print(‘    DISC of ’(g.name‘:’)‘ ’sorted(g.disc.items()).map((_, v) -> v))
  print(‘     LOW of ’(g.name‘:’)‘ ’sorted(g.low.items()).map((_, v) -> v))
  V scc = (I !g.scc.empty {String(g.scc).replace(‘'’, ‘’).replace(‘,’, ‘’)[1 .< (len)-1]} E ‘’)
  print("\n   SCC's of "(g.name‘:’)‘ ’scc)</lang>
Output:


Graph('Tx1', [10, 02, 21, 03, 34]):

               :  0  1  2  3  4
    DISC of Tx1: [0, 2, 1, 3, 4]
     LOW of Tx1: [0, 0, 0, 3, 4]

   SCC's of Tx1: [4] [3] [1 2 0]


Graph('Tx2', [01, 12, 23]):

               :  0  1  2  3
    DISC of Tx2: [0, 1, 2, 3]
     LOW of Tx2: [0, 1, 2, 3]

   SCC's of Tx2: [3] [2] [1] [0]


Graph('Tx3', [01, 12, 20, 13, 14, 16, 35, 45]):

               :  0  1  2  3  4  5  6
    DISC of Tx3: [0, 1, 2, 3, 5, 4, 6]
     LOW of Tx3: [0, 0, 0, 3, 5, 4, 6]

   SCC's of Tx3: [5] [3] [4] [6] [2 1 0]


Graph('Tx4', [01, 03, 12, 14, 20, 26, 32, 45, 46, 56, 57, 58, 59, 64, 79, 89, 98, AA]):

               :  0  1  2  3  4  5  6  7  8  9  A
    DISC of Tx4: [0, 1, 2, 9, 4, 5, 3, 6, 8, 7, 10]
     LOW of Tx4: [0, 0, 0, 2, 3, 3, 3, 6, 7, 7, 10]

   SCC's of Tx4: [8 9] [7] [5 4 6] [3 2 1 0] [A]


Graph('Tx5', [01, 12, 23, 24, 30, 42]):

               :  0  1  2  3  4
    DISC of Tx5: [0, 1, 2, 3, 4]
     LOW of Tx5: [0, 0, 0, 0, 2]

   SCC's of Tx5: [4 3 2 1 0]

C

<lang c>#include <stddef.h>

  1. include <stdlib.h>
  2. include <stdbool.h>
  1. ifndef min
  2. define min(x, y) ((x)<(y) ? (x) : (y))
  3. endif

struct edge { void *from; void *to; };

struct components { int nnodes; void **nodes; struct components *next; };

struct node { int index; int lowlink; bool onStack; void *data; };

struct tjstate { int index; int sp; int nedges; struct edge *edges; struct node **stack; struct components *head; struct components *tail; };

static int nodecmp(const void *l, const void *r) { return (ptrdiff_t)l -(ptrdiff_t)((struct node *)r)->data; }

static int strongconnect(struct node *v, struct tjstate *tj) { struct node *w;

/* Set the depth index for v to the smallest unused index */ v->index = tj->index; v->lowlink = tj->index; tj->index++; tj->stack[tj->sp] = v; tj->sp++; v->onStack = true;

for (int i = 0; i<tj->nedges; i++) { /* Only consider nodes reachable from v */ if (tj->edges[i].from != v) { continue; } w = tj->edges[i].to; /* Successor w has not yet been visited; recurse on it */ if (w->index == -1) { int r = strongconnect(w, tj); if (r != 0) return r; v->lowlink = min(v->lowlink, w->lowlink); /* Successor w is in stack S and hence in the current SCC */ } else if (w->onStack) { v->lowlink = min(v->lowlink, w->index); } }

/* If v is a root node, pop the stack and generate an SCC */ if (v->lowlink == v->index) { struct components *ng = malloc(sizeof(struct components)); if (ng == NULL) { return 2; } if (tj->tail == NULL) { tj->head = ng; } else { tj->tail->next = ng; } tj->tail = ng; ng->next = NULL; ng->nnodes = 0; do { tj->sp--; w = tj->stack[tj->sp]; w->onStack = false; ng->nnodes++; } while (w != v); ng->nodes = malloc(ng->nnodes*sizeof(void *)); if (ng == NULL) { return 2; } for (int i = 0; i<ng->nnodes; i++) { ng->nodes[i] = tj->stack[tj->sp+i]->data; } } return 0; }

static int ptrcmp(const void *l, const void *r) { return (ptrdiff_t)((struct node *)l)->data - (ptrdiff_t)((struct node *)r)->data; }

/**

* Calculate the strongly connected components using Tarjan's algorithm:
* en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
*
* Returns NULL when there are invalid edges and sets the error to:
* 1 if there was a malformed edge
* 2 if malloc failed
*
* @param number of nodes
* @param data of the nodes (assumed to be unique)
* @param number of edges
* @param data of edges
* @param pointer to error code
*/

struct components *tarjans( int nnodes, void *nodedata[], int nedges, struct edge *edgedata[], int *error) { struct node nodes[nnodes]; struct edge edges[nedges]; struct node *stack[nnodes]; struct node *from, *to; struct tjstate tj = {0, 0, nedges, edges, stack, NULL, .tail=NULL};

// Populate the nodes for (int i = 0; i<nnodes; i++) { nodes[i] = (struct node){-1, -1, false, nodedata[i]}; } qsort(nodes, nnodes, sizeof(struct node), ptrcmp);

// Populate the edges for (int i = 0; i<nedges; i++) { from = bsearch(edgedata[i]->from, nodes, nnodes, sizeof(struct node), nodecmp); if (from == NULL) { *error = 1; return NULL; } to = bsearch(edgedata[i]->to, nodes, nnodes, sizeof(struct node), nodecmp); if (to == NULL) { *error = 1; return NULL; } edges[i] = (struct edge){.from=from, .to=to}; }

//Tarjan's for (int i = 0; i < nnodes; i++) { if (nodes[i].index == -1) { *error = strongconnect(&nodes[i], &tj); if (*error != 0) return NULL; } } return tj.head; } </lang>

C#

<lang csharp>using System; using System.Collections.Generic;

class Node {

   public int LowLink { get; set; }
   public int Index { get; set; }
   public int N { get; }
   public Node(int n)
   {
       N = n;
       Index = -1;
       LowLink = 0;
   }

}

class Graph {

   public HashSet<Node> V { get; }
   public Dictionary<Node, HashSet<Node>> Adj { get; }
   /// <summary>
   /// Tarjan's strongly connected components algorithm
   /// </summary>
   public void Tarjan()
   {
       var index = 0; // number of nodes
       var S = new Stack<Node>();
       Action<Node> StrongConnect = null;
       StrongConnect = (v) =>
       {
           // Set the depth index for v to the smallest unused index
           v.Index = index;
           v.LowLink = index;
           index++;
           S.Push(v);
           // Consider successors of v
           foreach (var w in Adj[v])
               if (w.Index < 0)
               {
                   // Successor w has not yet been visited; recurse on it
                   StrongConnect(w);
                   v.LowLink = Math.Min(v.LowLink, w.LowLink);
               }
               else if (S.Contains(w))
                   // Successor w is in stack S and hence in the current SCC
                   v.LowLink = Math.Min(v.LowLink, w.Index);
           // If v is a root node, pop the stack and generate an SCC
           if (v.LowLink == v.Index)
           {
               Console.Write("SCC: ");
               Node w;
               do
               {
                   w = S.Pop();
                   Console.Write(w.N + " ");
               } while (w != v);
               Console.WriteLine();
           }
       };
       foreach (var v in V)
           if (v.Index < 0)
               StrongConnect(v);
   }

}</lang>

C++

<lang cpp>// // C++ implementation of Tarjan's strongly connected components algorithm // See https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm //

  1. include <algorithm>
  2. include <iostream>
  3. include <list>
  4. include <string>
  5. include <vector>

struct noncopyable {

   noncopyable() {}
   noncopyable(const noncopyable&) = delete;
   noncopyable& operator=(const noncopyable&) = delete;

};

template <typename T> class tarjan;

template <typename T> class vertex : private noncopyable { public:

   explicit vertex(const T& t) : data_(t) {}
   void add_neighbour(vertex* v) {
       neighbours_.push_back(v);
   }
   void add_neighbours(const std::initializer_list<vertex*>& vs) {
       neighbours_.insert(neighbours_.end(), vs);
   }
   const T& get_data() {
       return data_;
   }

private:

   friend tarjan<T>;
   T data_;
   int index_ = -1;
   int lowlink_ = -1;
   bool on_stack_ = false;
   std::vector<vertex*> neighbours_;

};

template <typename T> class graph : private noncopyable { public:

   vertex<T>* add_vertex(const T& t) {
       vertexes_.emplace_back(t);
       return &vertexes_.back();
   }

private:

   friend tarjan<T>;
   std::list<vertex<T>> vertexes_;

};

template <typename T> class tarjan  : private noncopyable { public:

   using component = std::vector<vertex<T>*>;
   std::list<component> run(graph<T>& graph) {
       index_ = 0;
       stack_.clear();
       strongly_connected_.clear();
       for (auto& v : graph.vertexes_) {
           if (v.index_ == -1)
               strongconnect(&v);
       }
       return strongly_connected_;
   }

private:

   void strongconnect(vertex<T>* v) {
       v->index_ = index_;
       v->lowlink_ = index_;
       ++index_;
       stack_.push_back(v);
       v->on_stack_ = true;
       for (auto w : v->neighbours_) {
           if (w->index_ == -1) {
               strongconnect(w);
               v->lowlink_ = std::min(v->lowlink_, w->lowlink_);
           }
           else if (w->on_stack_) {
               v->lowlink_ = std::min(v->lowlink_, w->index_);
           }
       }
       if (v->lowlink_ == v->index_) {
           strongly_connected_.push_back(component());
           component& c = strongly_connected_.back();
           for (;;) {
               auto w = stack_.back();
               stack_.pop_back();
               w->on_stack_ = false;
               c.push_back(w);
               if (w == v)
                   break;
           }
       }
   }
   int index_ = 0;
   std::list<vertex<T>*> stack_;
   std::list<component> strongly_connected_;

};

template <typename T> void print_vector(const std::vector<vertex<T>*>& vec) {

   if (!vec.empty()) {
       auto i = vec.begin();
       std::cout << (*i)->get_data();
       for (++i; i != vec.end(); ++i)
           std::cout << ' ' << (*i)->get_data();
   }
   std::cout << '\n';

}

int main() {

   graph<std::string> g;
   auto andy = g.add_vertex("Andy");
   auto bart = g.add_vertex("Bart");
   auto carl = g.add_vertex("Carl");
   auto dave = g.add_vertex("Dave");
   auto earl = g.add_vertex("Earl");
   auto fred = g.add_vertex("Fred");
   auto gary = g.add_vertex("Gary");
   auto hank = g.add_vertex("Hank");
   andy->add_neighbour(bart);
   bart->add_neighbour(carl);
   carl->add_neighbour(andy);
   dave->add_neighbours({bart, carl, earl});
   earl->add_neighbours({dave, fred});
   fred->add_neighbours({carl, gary});
   gary->add_neighbour(fred);
   hank->add_neighbours({earl, gary, hank});
   tarjan<std::string> t;
   for (auto&& s : t.run(g))
       print_vector(s);
   return 0;

}</lang>

Output:
Carl Bart Andy
Gary Fred
Earl Dave
Hank

Go

<lang go>package main

import (

   "fmt"
   "math/big"

)

// (same data as zkl example) var g = [][]int{

   0: {1},
   2: {0},
   5: {2, 6},
   6: {5},
   1: {2},
   3: {1, 2, 4},
   4: {5, 3},
   7: {4, 7, 6},

}

func main() {

   tarjan(g, func(c []int) { fmt.Println(c) })

}

// the function calls the emit argument for each component identified. // each component is a list of nodes. func tarjan(g [][]int, emit func([]int)) {

   var indexed, stacked big.Int
   index := make([]int, len(g))
   lowlink := make([]int, len(g))
   x := 0
   var S []int
   var sc func(int) bool
   sc = func(n int) bool {
       index[n] = x
       indexed.SetBit(&indexed, n, 1)
       lowlink[n] = x
       x++
       S = append(S, n)
       stacked.SetBit(&stacked, n, 1)
       for _, nb := range g[n] {
           if indexed.Bit(nb) == 0 {
               if !sc(nb) {
                   return false
               }
               if lowlink[nb] < lowlink[n] {
                   lowlink[n] = lowlink[nb]
               }
           } else if stacked.Bit(nb) == 1 {
               if index[nb] < lowlink[n] {
                   lowlink[n] = index[nb]
               }
           }
       }
       if lowlink[n] == index[n] {
           var c []int
           for {
               last := len(S) - 1
               w := S[last]
               S = S[:last]
               stacked.SetBit(&stacked, w, 0)
               c = append(c, w)
               if w == n {
                   emit(c)
                   break
               }
           }
       }
       return true
   }
   for n := range g {
       if indexed.Bit(n) == 0 && !sc(n) {
           return
       }
   }

}</lang>

Output:
[2 1 0]
[6 5]
[4 3]
[7]

jq

Works with: jq

Works with gojq, the Go implementation of jq

In this adaptation of the #Kotlin/#Wren implementations:

  • a Node is represented by JSON object with .n being its id;
  • a DirectedGraph is represented by a JSON object {vs, es} where vs is an array of Nodes and es is an array of integer ids;
  • a Stack is reprsented by an array, with .[-1] as the active point;
  • the output of `tarjan` is an array each item of which is an array of Node ids.


<lang jq># Input: an integer def Node:

 { n: .,
   index: -1,    # -1 signifies undefined
   lowLink: -1,
   onStack: false
 } ; 
  1. Input: a DirectedGraph
  2. Output: a stream of Node ids

def successors($vn): .es[$vn][];

  1. Input: a DirectedGraph
  2. Output: an array of integer arrays

def tarjan:

 . + { sccs: [],    # strongly connected components
       index: 0,
       s: []        # Stack
     }
 # input: {es, vs, sccs, index, s}      
 | def strongConnect($vn):
     # Set the depth index for v to the smallest unused index
       .vs[$vn].index = .index
     | .vs[$vn].lowLink = .index
     | .index += 1
     | .s += [ $vn ]
     | .vs[$vn].onStack = true
     
     # consider successors of v
     | reduce successors($vn) as $wn (.;
           if .vs[$wn].index < 0

then

               # Successor w has not yet been visited; recurse on it
               strongConnect($wn)
               | .vs[$vn].lowLink = ([.vs[$vn].lowLink, .vs[$wn].lowLink] | min )
           elif .vs[$wn].onStack

then

               # Successor w is in stack s and hence in the current SCC
               .vs[$vn].lowLink = ([.vs[$vn].lowLink, .vs[$wn].index] | min )

else .

           end
       )
     # If v is a root node, pop the stack and generate an SCC
     | if .vs[$vn] | (.lowLink == .index)
       then .scc = []

| .stop = false

           | until(.stop;
               .s[-1] as $wn

| .s |= .[:-1] # pop

               | .vs[$wn].onStack = false
               | .scc += [$wn]
               | if $wn == $vn then .stop = true else . end )
       | .sccs += [.scc]
       else .scc = []

end

   ; 

   reduce .vs[].n as $vn (.;
     if .vs[$vn].index < 0
     then strongConnect($vn)
     else . end
   )
   | .sccs
  1. Vertices

def vs: [range(0;8) | Node ];

  1. Edges

def es:

 [ [1],
   [2],
   [0],
   [1, 2, 4],
   [5, 3],
   [2, 6],
   [5],
   [4, 7, 6]
 ]

{ vs: vs, es: es } | tarjan</lang>

Output:
[[2,1,0],[6,5],[4,3],[7]]


Julia

LightGraphs uses Tarjan's algorithm by default. The package can also use Kosaraju's algorithm with the function strongly_connected_components_kosaraju(). <lang julia>using LightGraphs

edge_list=[(1,2),(3,1),(6,3),(6,7),(7,6),(2,3),(4,2),(4,3),(4,5),(5,6),(5,4),(8,5),(8,8),(8,7)]

grph = SimpleDiGraph(Edge.(edge_list))

tarj = strongly_connected_components(grph)

inzerobase(arrarr) = map(x -> sort(x .- 1, rev=true), arrarr)

println("Results in the zero-base scheme: $(inzerobase(tarj))")

</lang>

Output:
Results in the zero-base scheme: Array{Int64,1}[[2, 1, 0], [6, 5], [4, 3], [7]]

Kotlin

<lang scala>// version 1.1.3

import java.util.Stack

typealias Nodes = List<Node>

class Node(val n: Int) {

   var index   = -1  // -1 signifies undefined
   var lowLink = -1
   var onStack = false
   override fun toString()  = n.toString()

}

class DirectedGraph(val vs: Nodes, val es: Map<Node, Nodes>)

fun tarjan(g: DirectedGraph): List<Nodes> {

   val sccs = mutableListOf<Nodes>()
   var index = 0
   val s = Stack<Node>()
   fun strongConnect(v: Node) {
       // Set the depth index for v to the smallest unused index
       v.index = index
       v.lowLink = index
       index++
       s.push(v)
       v.onStack = true
       // consider successors of v
       for (w in g.es[v]!!) {
           if (w.index < 0) {
               // Successor w has not yet been visited; recurse on it
               strongConnect(w)
               v.lowLink = minOf(v.lowLink, w.lowLink)
           }
           else if (w.onStack) {
               // Successor w is in stack s and hence in the current SCC
               v.lowLink = minOf(v.lowLink, w.index)
           }
       }
       // If v is a root node, pop the stack and generate an SCC
       if (v.lowLink == v.index) {
           val scc = mutableListOf<Node>()
           do {
               val w = s.pop()
               w.onStack = false
               scc.add(w)
           }
           while (w != v)
           sccs.add(scc)
       }
   }
   for (v in g.vs) if (v.index < 0) strongConnect(v)
   return sccs

}

fun main(args: Array<String>) {

   val vs = (0..7).map { Node(it) }
   val es = mapOf(
       vs[0] to listOf(vs[1]),
       vs[2] to listOf(vs[0]),
       vs[5] to listOf(vs[2], vs[6]),
       vs[6] to listOf(vs[5]),
       vs[1] to listOf(vs[2]),
       vs[3] to listOf(vs[1], vs[2], vs[4]),
       vs[4] to listOf(vs[5], vs[3]),
       vs[7] to listOf(vs[4], vs[7], vs[6])
   )
   val g = DirectedGraph(vs, es)
   val sccs = tarjan(g)
   println(sccs.joinToString("\n"))

}</lang>

Output:
[2, 1, 0]
[6, 5]
[4, 3]
[7]

Nim

Translation of: Kotlin

<lang Nim>import sequtils, strutils, tables

type

 Node = ref object
   val: int
   index: int
   lowLink: int
   onStack: bool
 Nodes = seq[Node]
 DirectedGraph = object
   nodes: seq[Node]
   edges: Table[int, Nodes]


func initNode(n: int): Node =

 Node(val: n, index: -1, lowLink: -1, onStack: false)


func `$`(node: Node): string = $node.val


func tarjan(g: DirectedGraph): seq[Nodes] =

 var index = 0
 var s: seq[Node]
 var sccs: seq[Nodes]


 func strongConnect(v: Node) =
   # Set the depth index for "v" to the smallest unused index.
   v.index = index
   v.lowLink = index
   inc index
   s.add v
   v.onStack = true
   # Consider successors of "v".
   for w in g.edges[v.val]:
     if w.index < 0:
       # Successor "w" has not yet been visited; recurse on it.
       w.strongConnect()
       v.lowLink = min(v.lowLink, w.lowLink)
     elif w.onStack:
       # Successor "w" is in stack "s" and hence in the current SCC.
       v.lowLink = min(v.lowLink, w.index)
   # If "v" is a root node, pop the stack and generate an SCC.
   if v.lowLink == v.index:
     var scc: Nodes
     while true:
       let w = s.pop()
       w.onStack = false
       scc.add w
       if w == v: break
     sccs.add scc


 for v in g.nodes:
   if v.index < 0:
     v.strongConnect()
 result = move(sccs)


when isMainModule:

 let vs = toSeq(0..7).map(initNode)
 let es = {0: @[vs[1]],
           1: @[vs[2]],
           2: @[vs[0]],
           3: @[vs[1], vs[2], vs[4]],
           4: @[vs[5], vs[3]],
           5: @[vs[2], vs[6]],
           6: @[vs[5]],
           7: @[vs[4], vs[7], vs[6]]}.toTable
 var g = DirectedGraph(nodes: vs, edges: es)
 let sccs = g.tarjan()
 echo sccs.join("\n")</lang>
Output:
@[2, 1, 0]
@[6, 5]
@[4, 3]
@[7]

Perl

Translation of: Raku

<lang perl>use strict; use warnings; use feature <say state current_sub>; use List::Util qw(min);

sub tarjan {

   my (%k) = @_;
   my (%onstack, %index, %lowlink, @stack, @connected);
   my sub strong_connect {
       my ($vertex, $i) = @_;
       $index{$vertex}   = $i;
       $lowlink{$vertex} = $i + 1;
       $onstack{$vertex} = 1;
       push @stack, $vertex;
       for my $connection (@{$k{$vertex}}) {
           if (not defined $index{$connection}) {
               __SUB__->($connection, $i + 1);
               $lowlink{$vertex} = min($lowlink{$connection}, $lowlink{$vertex});
           }
           elsif ($onstack{$connection}) {
               $lowlink{$vertex} = min($index{$connection}, $lowlink{$vertex});
           }
       }
       if ($lowlink{$vertex} eq $index{$vertex}) {
           my @node;
           do {
               push @node, pop @stack;
               $onstack{$node[-1]} = 0;
           } while $node[-1] ne $vertex;
           push @connected, [@node];
       }
   }
   for (sort keys %k) {
       strong_connect($_, 0) unless $index{$_};
   }
   @connected;

}

my %test1 = (

            0 => [1],
            1 => [2],
            2 => [0],
            3 => [1, 2, 4],
            4 => [3, 5],
            5 => [2, 6],
            6 => [5],
            7 => [4, 6, 7]
           );

my %test2 = (

            'Andy' => ['Bart'],
            'Bart' => ['Carl'],
            'Carl' => ['Andy'],
            'Dave' => [qw<Bart Carl Earl>],
            'Earl' => [qw<Dave Fred>],
            'Fred' => [qw<Carl Gary>],
            'Gary' => ['Fred'],
            'Hank' => [qw<Earl Gary Hank>]
           );

print "Strongly connected components:\n"; print join(', ', sort @$_) . "\n" for tarjan(%test1); print "\nStrongly connected components:\n"; print join(', ', sort @$_) . "\n" for tarjan(%test2);</lang>

Output:
Strongly connected components:
0, 1, 2
5, 6
3, 4
7

Strongly connected components:
Andy, Bart, Carl
Fred, Gary
Dave, Earl
Hank

Phix

Translation of: Go

Same data as other examples, but with 1-based indexes. <lang Phix>constant g = {{2}, {3}, {1}, {2,3,5}, {6,4}, {3,7}, {6}, {5,8,7}}

sequence index, lowlink, stacked, stack integer x

function strong_connect(integer n, r_emit)

   index[n] = x
   lowlink[n] = x
   stacked[n] = 1
   stack &= n
   x += 1
   for b=1 to length(g[n]) do
       integer nb = g[n][b]
       if index[nb] == 0 then
           if not strong_connect(nb,r_emit) then
               return false
           end if
           if lowlink[nb] < lowlink[n] then
               lowlink[n] = lowlink[nb]
           end if
       elsif stacked[nb] == 1 then
           if index[nb] < lowlink[n] then
               lowlink[n] = index[nb]
           end if
       end if
   end for
   if lowlink[n] == index[n] then
       sequence c = {}
       while true do
           integer w := stack[$]
           stack = stack[1..$-1]
           stacked[w] = 0
           c = prepend(c, w)
           if w == n then
               call_proc(r_emit,{c})
               exit
           end if
       end while
   end if
   return true

end function

procedure tarjan(sequence g, integer r_emit)

   index   = repeat(0,length(g))
   lowlink = repeat(0,length(g))
   stacked = repeat(0,length(g))
   stack = {}
   x := 1
   for n=1 to length(g) do
       if index[n] == 0
       and not strong_connect(n,r_emit) then
           return
       end if
   end for

end procedure

procedure emit(object c) -- called for each component identified. -- each component is a list of nodes.

   ?c

end procedure

tarjan(g,routine_id("emit"))</lang>

Output:
{1,2,3}
{6,7}
{4,5}
{8}

Python

Python: As function

<lang python>from collections import defaultdict

def from_edges(edges):

   translate list of edges to list of nodes
   class Node:
       def __init__(self):
           # root is one of:
           #   None: not yet visited
           #   -1: already processed
           #   non-negative integer: what Wikipedia pseudo code calls 'lowlink'
           self.root = None
           self.succ = []
   nodes = defaultdict(Node)
   for v,w in edges:
       nodes[v].succ.append(nodes[w])
   for i,v in nodes.items(): # name the nodes for final output
       v.id = i
   return nodes.values()

def trajan(V):

   def strongconnect(v, S):
       v.root = pos = len(S)
       S.append(v)
       for w in v.succ:
           if w.root is None:  # not yet visited
               yield from strongconnect(w, S)
           if w.root >= 0:  # still on stack
               v.root = min(v.root, w.root)
       if v.root == pos:  # v is the root, return everything above
           res, S[pos:] = S[pos:], []
           for w in res:
               w.root = -1
           yield [r.id for r in res]
   for v in V:
       if v.root is None:
           yield from strongconnect(v, [])


tables = [ # table 1

           [(1,2), (3,1), (3,6), (6,7), (7,6), (2,3), (4,2),
            (4,3), (4,5), (5,6), (5,4), (8,5), (8,7), (8,6)],
           # table 2
           [('A', 'B'), ('B', 'C'), ('C', 'A'), ('A', 'Other')]]

for table in (tables):

   for g in trajan(from_edges(table)):
       print(g)
   print()</lang>
Output:
[6, 7]
[1, 2, 3]
[4, 5]
[8]

['Other']
['A', 'B', 'C']

Python: As class

This takes inspiration from the Geeks4Geeks explanation and uses its five examples.


Tx1
+---+     +---+     +---+     +---+
| 1 | --> | 0 | --> | 3 | --> | 4 |
+---+     +---+     +---+     +---+
  ^         |
  |         |
  |         v
  |       +---+
  +------ | 2 |
          +---+
Tx2
+---+     +---+     +---+     +---+
| 0 | --> | 1 | --> | 2 | --> | 3 |
+---+     +---+     +---+     +---+
Tx3

  +----------------------------------+
  v                                  |
+---+     +---+     +---+     +---+  |
| 0 | --> |   | --> | 3 | --> | 5 |  |
+---+     |   |     +---+     +---+  |
          |   |                 ^    |
          | 1 |                 |    |
          |   |                 |    |
+---+     |   |     +---+       |    |
| 6 | <-- |   | --> | 2 | ------+----+
+---+     +---+     +---+       |
            |                   |
            |                   |
            v                   |
          +---+                 |
          | 4 | ----------------+
          +---+
Tx4

  +-----------------------------+
  |                             |
  |       +---+                 |
  |       | A |                 |         +-------------------+
  |       +---+                 |         |                   |
  |                             |         |                   |
  |                   +---------+---------+---------+         |                   +---------+
  |                   |         v         v         v         |                   v         |
+---+     +---+     +---+     +---+     +---+     +---+     +---+     +---+     +---+     +---+
| 3 | <-- | 0 | --> | 1 | --> | 2 | --> | 6 | --> | 4 | --> |   | --> | 7 | --> | 9 | --> | 8 |
+---+     +---+     +---+     +---+     +---+     +---+     |   |     +---+     +---+     +---+
            ^                   |         ^         |       |   |                 ^         ^
            +-------------------+         +---------+       | 5 | ----------------+         |
                                                            |   |                           |
                                                            |   |                           |
                                                            |   | --------------------------+
                                                            +---+
Tx5

                      +--------------+
                      |              |
                      |              |
  +-------------------+---------+    |
  v                   v         |    |
+---+     +---+     +---+     +---+  |
| 0 | --> | 1 | --> | 2 | --> | 3 |  |
+---+     +---+     +---+     +---+  |
                      |              |
                      |              |
                      v              |
                    +---+            |
                    | 4 | -----------+
                    +---+
Code

<lang python>from collections import defaultdict


class Graph:

   "Directed Graph Tarjan's strongly connected components algorithm"
   def __init__(self, name, connections):
       self.name = name
       self.connections = connections
       g = defaultdict(list)  # map node vertex to direct connections
       for n1, n2 in connections:
           if n1 != n2:
               g[n1].append(n2)
           else:
               g[n1]
       for _, n2 in connections:
           g[n2]   # For leaf nodes having no edges from themselves
       self.graph = dict(g)
       self.tarjan_algo()
   def _visitor(self, this, low, disc, stack):
       
       Recursive function that finds SCC's
       using DFS traversal of vertices.
       Arguments:
           this        --> Vertex to be visited in this call.
           disc{}      --> Discovery order of visited vertices.
           low{}       --> Connected vertex of earliest discovery order
           stack       --> Ancestor node stack during DFS.
       
       disc[this] = low[this] = self._order
       self._order += 1
       stack.append(this)
       for neighbr in self.graph[this]:
           if neighbr not in disc:
               # neighbour not visited so do DFS recurrence.
               self._visitor(neighbr, low, disc, stack)
               low[this] = min(low[this], low[neighbr])  # Prior connection?
           elif neighbr in stack:
               # Update low value of this only if neighbr in stack
               low[this] = min(low[this], disc[neighbr])
       if low[this] == disc[this]:
           # Head node found of SCC
           top, new = None, []
           while top != this:
               top = stack.pop()
               new.append(top)
           self.scc.append(new)
   def tarjan_algo(self):
       
       Recursive function that finds strongly connected components
       using the Tarjan Algorithm and function _visitor() to visit nodes.
       
       self._order = 0         # Visitation order counter
       disc, low = {}, {}
       stack = []
       self.scc = []           # SCC result accumulator
       for vertex in sorted(self.graph):
           if vertex not in disc:
               self._visitor(vertex, low, disc, stack)
       self._disc, self._low = disc, low


if __name__ == '__main__':

   for n, m in [('Tx1', '10 02 21 03 34'.split()),
                ('Tx2', '01 12 23'.split()),
                ('Tx3', '01 12 20 13 14 16 35 45'.split()),
                ('Tx4', '01 03 12 14 20 26 32 45 46 56 57 58 59 64 79 89 98 AA'.split()),
                ('Tx5', '01 12 23 24 30 42'.split()),
                ]:
       print(f"\n\nGraph({repr(n)}, {m}):\n")
       g = Graph(n, m)
       print("               : ", '  '.join(str(v) for v in sorted(g._disc)))
       print("    DISC of", g.name + ':', [v for _, v in sorted(g._disc.items())])
       print("     LOW of", g.name + ':', [v for _, v in sorted(g._low.items())])
       scc = repr(g.scc if g.scc else ).replace("'", ).replace(',', )[1:-1]
       print("\n   SCC's of", g.name + ':', scc)</lang>
Output:
Graph('Tx1', ['10', '02', '21', '03', '34']):

               :  0  1  2  3  4
    DISC of Tx1: [0, 2, 1, 3, 4]
     LOW of Tx1: [0, 0, 0, 3, 4]

   SCC's of Tx1: [4] [3] [1 2 0]


Graph('Tx2', ['01', '12', '23']):

               :  0  1  2  3
    DISC of Tx2: [0, 1, 2, 3]
     LOW of Tx2: [0, 1, 2, 3]

   SCC's of Tx2: [3] [2] [1] [0]


Graph('Tx3', ['01', '12', '20', '13', '14', '16', '35', '45']):

               :  0  1  2  3  4  5  6
    DISC of Tx3: [0, 1, 2, 3, 5, 4, 6]
     LOW of Tx3: [0, 0, 0, 3, 5, 4, 6]

   SCC's of Tx3: [5] [3] [4] [6] [2 1 0]


Graph('Tx4', ['01', '03', '12', '14', '20', '26', '32', '45', '46', '56', '57', '58', '59', '64', '79', '89', '98', 'AA']):

               :  0  1  2  3  4  5  6  7  8  9  A
    DISC of Tx4: [0, 1, 2, 9, 4, 5, 3, 6, 8, 7, 10]
     LOW of Tx4: [0, 0, 0, 2, 3, 3, 3, 6, 7, 7, 10]

   SCC's of Tx4: [8 9] [7] [5 4 6] [3 2 1 0] [A]


Graph('Tx5', ['01', '12', '23', '24', '30', '42']):

               :  0  1  2  3  4
    DISC of Tx5: [0, 1, 2, 3, 4]
     LOW of Tx5: [0, 0, 0, 0, 2]

   SCC's of Tx5: [4 3 2 1 0]

Racket

Manual implementation

Translation of: Kotlin

<lang racket>#lang racket

(require syntax/parse/define

        fancy-app
        (for-syntax racket/syntax))

(struct node (name index low-link on?) #:transparent #:mutable

 #:methods gen:custom-write
 [(define (write-proc v port mode) (fprintf port "~a" (node-name v)))])

(define-syntax-parser change!

 [(_ x:id f) #'(set! x (f x))]
 [(_ accessor:id v f)
  #:with mutator! (format-id this-syntax "set-~a!" #'accessor)
  #'(mutator! v (f (accessor v)))])

(define (tarjan g)

 (define sccs '())
 (define index 0)
 (define s '())
 (define (dfs v)
   (set-node-index! v index)
   (set-node-low-link! v index)
   (set-node-on?! v #t)
   (change! s (cons v _))
   (change! index add1)
   (for ([w (in-list (hash-ref g v '()))])
     (match-define (node _ index low-link on?) w)
     (cond
       [(not index) (dfs w)
                    (change! node-low-link v (min (node-low-link w) _))]
       [on? (change! node-low-link v (min index _))]))
   (when (= (node-low-link v) (node-index v))
     (define-values (scc* s*) (splitf-at s (λ (w) (not (eq? w v)))))
     (set! s (rest s*))
     (define scc (cons (first s*) scc*))
     (for ([w (in-list scc)]) (set-node-on?! w #f))
     (change! sccs (cons scc _))))
 (for* ([(u _) (in-hash g)] #:when (not (node-index u))) (dfs u))
 sccs)

(define (make-graph xs)

 (define store (make-hash))
 (define (make-node v) (hash-ref! store v (thunk (node v #f #f #f))))
 ;; it's important that we use hasheq instead of hash so that we compare
 ;; reference instead of actual value. Had we use the actual value,
 ;; the key would be a mutable value, which causes undefined behavior
 (for/hasheq ([vs (in-list xs)]) (values (make-node (first vs)) (map make-node (rest vs)))))

(tarjan (make-graph '([0 1]

                     [2 0]
                     [5 2 6]
                     [6 5]
                     [1 2]
                     [3 1 2 4]
                     [4 5 3]
                     [7 4 7 6])))</lang>
Output:
'((7) (3 4) (5 6) (2 1 0))

With the graph library

<lang racket>#lang racket

(require graph)

(define g (unweighted-graph/adj '([0 1]

                                 [2 0]
                                 [5 2 6]
                                 [6 5]
                                 [1 2]
                                 [3 1 2 4]
                                 [4 5 3]
                                 [7 4 7 6])))

(scc g)</lang>

Output:
'((7) (3 4) (5 6) (1 0 2))

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.09

<lang perl6>sub tarjan (%k) {

   my %onstack;
   my %index;
   my %lowlink;
   my @stack;
   my @connected;
   sub strong-connect ($vertex) {
        state $index      = 0;
        %index{$vertex}   = $index;
        %lowlink{$vertex} = $index++;
        %onstack{$vertex} = True;
        @stack.push: $vertex;
        for |%k{$vertex} -> $connection {
            if not %index{$connection}.defined {
                strong-connect($connection);
                %lowlink{$vertex} min= %lowlink{$connection};
            }
            elsif %onstack{$connection} {
                %lowlink{$vertex} min= %index{$connection};
            }
       }
       if %lowlink{$vertex} eq %index{$vertex} {
           my @node;
           repeat {
               @node.push: @stack.pop;
               %onstack{@node.tail} = False;
           } while @node.tail ne $vertex;
           @connected.push: @node;
       }
   }
   .&strong-connect unless %index{$_} for %k.keys;
   @connected

}

  1. TESTING

-> $test { say "\nStrongly connected components: ", |tarjan($test).sort».sort } for

  1. hash of vertex, edge list pairs

(((1),(2),(0),(1,2,4),(3,5),(2,6),(5),(4,6,7)).pairs.hash),

  1. Same layout test data with named vertices instead of numbered.

%(:Andy<Bart>,

 :Bart<Carl>,
 :Carl<Andy>,
 :Dave<Bart Carl Earl>,
 :Earl<Dave Fred>,
 :Fred<Carl Gary>,
 :Gary<Fred>,
 :Hank<Earl Gary Hank>

)</lang>

Output:
Strongly connected components: (0 1 2)(3 4)(5 6)(7)

Strongly connected components: (Andy Bart Carl)(Dave Earl)(Fred Gary)(Hank)

REXX

<lang rexx>/* REXX - Tarjan's Algorithm */ /* Vertices are numbered 1 to 8 (instead of 0 to 7) */ g='[2] [3] [1] [2 3 5] [4 6] [3 7] [6] [5 7 8]' gg=g Do i=1 By 1 While gg>

 Parse Var gg '[' g.i ']' gg
 name.i=i-1
 End

g.0=i-1 index.=0 lowlink.=0 stacked.=0 stack.=0 x=1 Do n=1 To g.0

 If index.n=0 Then
   If strong_connect(n)=0 Then
     Return
 End

Exit

strong_connect: Procedure Expose x g. index. lowlink. stacked. stack. name. Parse Arg n index.n = x lowlink.n = x stacked.n = 1 Call stack n x=x+1 Do b=1 To words(g.n)

 Call show_all
 nb=word(g.n,b)
 If index.nb=0 Then Do
   If strong_connect(nb)=0 Then
     Return 0
   If lowlink.nb < lowlink.n Then
     lowlink.n = lowlink.nb
   End
 Else Do
   If stacked.nb = 1 Then
     If index.nb < lowlink.n Then
       lowlink.n = index.nb
   end
 end

if lowlink.n=index.n then Do

 c=
 Do z=stack.0 By -1
   w=stack.z
   stacked.w=0
   stack.0=stack.0-1
   c=name.w c
   If w=n Then Do
     Say '['space(c)']'
     Return 1
     End
   End
 End

Return 1

stack: Procedure Expose stack. Parse Arg m z=stack.0+1 stack.z=m stack.0=z Return

/* The following were used for debugging (and understanding) */

show_all: Return ind='Index ' low='Lowlink' sta='Stacked' Do z=1 To g.0

 ind=ind index.z
 low=low lowlink.z
 sta=sta stacked.z
 End

Say ind Say low Say sta Return

show_stack: ol='Stack' Do z=1 To stack.0

 ol=ol stack.z
 End

Say ol Return</lang>

Output:
[0 1 2]
[5 6]
[3 4]
[7]

Rust

<lang Rust>use std::collections::{BTreeMap, BTreeSet};

// Using a naked BTreeMap would not be very nice, so let's make a simple graph representation

  1. [derive(Clone, Debug)]

pub struct Graph {

   neighbors: BTreeMap<usize, BTreeSet<usize>>,

}

impl Graph {

   pub fn new(size: usize) -> Self {
       Self {
           neighbors: (0..size).fold(BTreeMap::new(), |mut acc, x| {
               acc.insert(x, BTreeSet::new());
               acc
           }),
       }
   }
   pub fn edges<'a>(&'a self, vertex: usize) -> impl Iterator<Item = usize> + 'a {
       self.neighbors[&vertex].iter().cloned()
   }
   pub fn add_edge(&mut self, from: usize, to: usize) {
       assert!(to < self.len());
       self.neighbors.get_mut(&from).unwrap().insert(to);
   }
   pub fn add_edges(&mut self, from: usize, to: impl IntoIterator<Item = usize>) {
       let limit = self.len();
       self.neighbors
           .get_mut(&from)
           .unwrap()
           .extend(to.into_iter().filter(|x| {
               assert!(*x < limit);
               true
           }));
   }
   pub fn is_empty(&self) -> bool {
       self.neighbors.is_empty()
   }
   pub fn len(&self) -> usize {
       self.neighbors.len()
   }

}

  1. [derive(Clone)]

struct VertexState {

   index: usize,
   low_link: usize,
   on_stack: bool,

}

// The easy way not to fight with Rust's borrow checker is moving the state in // a structure and simply invoke methods on that structure.

pub struct Tarjan<'a> {

   graph: &'a Graph,
   index: usize,
   stack: Vec<usize>,
   state: Vec<VertexState>,
   components: Vec<BTreeSet<usize>>,

}

impl<'a> Tarjan<'a> {

   // Having index: Option<usize> would look nicer, but requires just
   // some unwraps and Vec has actual len limit isize::MAX anyway, so
   // we can reserve this large value as the invalid one.
   const INVALID_INDEX: usize = usize::MAX;
   pub fn walk(graph: &'a Graph) -> Vec<BTreeSet<usize>> {
       Self {
           graph,
           index: 0,
           stack: Vec::new(),
           state: vec![
               VertexState {
                   index: Self::INVALID_INDEX,
                   low_link: Self::INVALID_INDEX,
                   on_stack: false
               };
               graph.len()
           ],
           components: Vec::new(),
       }
       .visit_all()
   }
   fn visit_all(mut self) -> Vec<BTreeSet<usize>> {
       for vertex in 0..self.graph.len() {
           if self.state[vertex].index == Self::INVALID_INDEX {
               self.visit(vertex);
           }
       }
       self.components
   }
   fn visit(&mut self, v: usize) {
       let v_ref = &mut self.state[v];
       v_ref.index = self.index;
       v_ref.low_link = self.index;
       self.index += 1;
       self.stack.push(v);
       v_ref.on_stack = true;
       for w in self.graph.edges(v) {
           let w_ref = &self.state[w];
           if w_ref.index == Self::INVALID_INDEX {
               self.visit(w);
               let w_low_link = self.state[w].low_link;
               let v_ref = &mut self.state[v];
               v_ref.low_link = v_ref.low_link.min(w_low_link);
           } else if w_ref.on_stack {
               let w_index = self.state[w].index;
               let v_ref = &mut self.state[v];
               v_ref.low_link = v_ref.low_link.min(w_index);
           }
       }
       let v_ref = &self.state[v];
       if v_ref.low_link == v_ref.index {
           let mut component = BTreeSet::new();
           loop {
               let w = self.stack.pop().unwrap();
               self.state[w].on_stack = false;
               component.insert(w);
               if w == v {
                   break;
               }
           }
           self.components.push(component);
       }
   }

}

fn main() {

   let graph = {
       let mut g = Graph::new(8);
       g.add_edge(0, 1);
       g.add_edge(2, 0);
       g.add_edges(5, vec![2, 6]);
       g.add_edge(6, 5);
       g.add_edge(1, 2);
       g.add_edges(3, vec![1, 2, 4]);
       g.add_edges(4, vec![5, 3]);
       g.add_edges(7, vec![4, 7, 6]);
       g
   };
   for component in Tarjan::walk(&graph) {
       println!("{:?}", component);
   }

}</lang>

Output:
{0, 1, 2}
{5, 6}
{3, 4}
{7}

Sidef

Translation of: Raku

<lang ruby>func tarjan (k) {

   var(:onstack, :index, :lowlink, *stack, *connected)
   func strong_connect (vertex, i=0) {
        index{vertex}   = i
        lowlink{vertex} = i+1
        onstack{vertex} = true
        stack << vertex
        for connection in (k{vertex}) {
            if (index{connection} == nil) {
                strong_connect(connection, i+1)
                lowlink{vertex} `min!` lowlink{connection}
            }
            elsif (onstack{connection}) {
                lowlink{vertex} `min!` index{connection}
            }
       }
       if (lowlink{vertex} == index{vertex}) {
           var *node
           do {
               node << stack.pop
               onstack{node.tail} = false
           } while (node.tail != vertex)
           connected << node
       }
   }
   { strong_connect(_) if !index{_} } << k.keys
   return connected

}

var tests = [

   Hash(
        0 => <1>,
        1 => <2>,
        2 => <0>,
        3 => <1 2 4>,
        4 => <3 5>,
        5 => <2 6>,
        6 => <5>,
        7 => <4 6 7>,
   ),
   Hash(
       :Andy => <Bart>,
       :Bart => <Carl>,
       :Carl => <Andy>,
       :Dave => <Bart Carl Earl>,
       :Earl => <Dave Fred>,
       :Fred => <Carl Gary>,
       :Gary => <Fred>,
       :Hank => <Earl Gary Hank>,
   )

]

tests.each {|t|

   say ("Strongly connected components: ", tarjan(t).map{.sort}.sort)

}</lang>

Output:
Strongly connected components: [["0", "1", "2"], ["3", "4"], ["5", "6"], ["7"]]
Strongly connected components: [["Andy", "Bart", "Carl"], ["Dave", "Earl"], ["Fred", "Gary"], ["Hank"]]

Wren

Translation of: Kotlin
Library: Wren-seq
Library: Wren-dynamic

<lang ecmascript>import "/seq" for Stack import "/dynamic" for Tuple

class Node {

   construct new(n) {
       _n = n
       _index = -1   // -1 signifies undefined
       _lowLink = -1
       _onStack = false
   }
   n           { _n }
   index       { _index }
   index=(v)   { _index = v }
   lowLink     { _lowLink }
   lowLink=(v) { _lowLink = v }
   onStack     { _onStack }
   onStack=(v) { _onStack = v }
   toString    { _n.toString }

}

var DirectedGraph = Tuple.create("DirectedGraph", ["vs", "es"])

var tarjan = Fn.new { |g|

   var sccs = []
   var index = 0
   var s = Stack.new()
   var strongConnect // recursive closure
   strongConnect = Fn.new { |v|
       // Set the depth index for v to the smallest unused index
       v.index = index
       v.lowLink = index
       index = index + 1
       s.push(v)
       v.onStack = true
       // consider successors of v
       for (w in g.es[v.n]) {
           if (w.index < 0) {
               // Successor w has not yet been visited; recurse on it
               strongConnect.call(w)
               v.lowLink = v.lowLink.min(w.lowLink)
           } else if (w.onStack) {
               // Successor w is in stack s and hence in the current SCC
               v.lowLink = v.lowLink.min(w.index)
           }
       }
       // If v is a root node, pop the stack and generate an SCC
       if (v.lowLink == v.index) {
           var scc = []
           while (true) {
               var w = s.pop()
               w.onStack = false
               scc.add(w)
               if (w == v) break
           }
           sccs.add(scc)
       }
   }
   for (v in g.vs) if (v.index < 0) strongConnect.call(v)
   return sccs

}

var vs = (0..7).map { |i| Node.new(i) }.toList var es = {

   0: [vs[1]],
   2: [vs[0]],
   5: [vs[2], vs[6]],
   6: [vs[5]],
   1: [vs[2]],
   3: [vs[1], vs[2], vs[4]],
   4: [vs[5], vs[3]],
   7: [vs[4], vs[7], vs[6]]

} var g = DirectedGraph.new(vs, es) var sccs = tarjan.call(g) System.print(sccs.join("\n"))</lang>

Output:
[2, 1, 0]
[6, 5]
[4, 3]
[7]

zkl

<lang zkl>class Tarjan{

  // input: graph G = (V, Es)
  // output: set of strongly connected components (sets of vertices)
  // Ick: class holds global state for strongConnect(), otherwise inert
  const INDEX=0, LOW_LINK=1, ON_STACK=2;
  fcn init(graph){
     var index=0, stack=List(), components=List(),
         G=List.createLong(graph.len(),0);
     // convert graph to ( (index,lowlink,onStack),(id,links)), ...)
     // sorted by id
     foreach v in (graph){ G[v[0]]=T( L(Void,Void,False),v) }
     foreach v in (G){ if(v[0][INDEX]==Void) strongConnect(v) }
     println("List of strongly connected components:");
     foreach c in (components){ println(c.reverse().concat(",")) }
     returnClass(components);  // over-ride return of class instance
  }
  fcn strongConnect(v){  // v is ( (index,lowlink,onStack), (id,links) )
     // Set the depth index for v to the smallest unused index
     v0:=v[0]; v0[INDEX]=v0[LOW_LINK]=index;
     index+=1;
     v0[ON_STACK]=True;
     stack.push(v);
      // Consider successors of v
     foreach idx in (v[1][1,*]){  // links of v to other vs
        w,w0 := G[idx],w[0];   // well, that is pretty vile
    if(w[0][INDEX]==Void){
       strongConnect(w); // Successor w not yet visited; recurse on it
       v0[LOW_LINK]=v0[LOW_LINK].min(w0[LOW_LINK]);
    }
    else if(w0[ON_STACK])
       // Successor w is in stack S and hence in the current SCC
       v0[LOW_LINK]=v0[LOW_LINK].min(w0[INDEX]);
     }
     // If v is a root node, pop the stack and generate an SCC
     if(v0[LOW_LINK]==v0[INDEX]){
        strong:=List();  // start a new strongly connected component
    do{
       w,w0 := stack.pop(), w[0];
       w0[ON_STACK]=False;
       strong.append(w[1][0]); // add w to strongly connected component
    }while(w.id!=v.id);
    components.append(strong); // output strongly connected component
     }
  }

}</lang> <lang zkl> // graph from https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

  // with vertices id zero based (vs 1 based in article)
  // ids start at zero and are consecutive (no holes), graph is unsorted

graph:= // ( (id, links/Edges), ...)

  T( T(0,1), T(2,0),     T(5,2,6), T(6,5),
     T(1,2), T(3,1,2,4), T(4,5,3), T(7,4,7,6) );

Tarjan(graph);</lang>

Output:
0,1,2
5,6
3,4
7