Talk:Untouchable numbers: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
m (→‎Number of untouchable numbers up to 1 million: added a comment concerning the REXX output.)
Line 22: Line 22:


According to [https://www.numbersaplenty.com/set/untouchable_number/ one of the OEIS links] there are 150,232 untouchable numbers up to 1e6 so it looks like the REXX result (150,233) is off by one here.
According to [https://www.numbersaplenty.com/set/untouchable_number/ one of the OEIS links] there are 150,232 untouchable numbers up to 1e6 so it looks like the REXX result (150,233) is off by one here.

:::<small>I've corrected the REXX output, &nbsp; the incorrect count was computed with an overreach of &nbsp; '''18''', &nbsp; not &nbsp; '''20'''. &nbsp; &nbsp; -- [[User:Gerard Schildberger|Gerard Schildberger]] ([[User talk:Gerard Schildberger|talk]]) 21:28, 11 February 2021 (UTC)</small>



By running the Go program with a limit of 1e6 and a sieve factor of 20 (up from 14 for 1e5), I was in fact able to verify the figure of 150,232. Factors of 18 and 19 both gave 150,233 so there must be an 'awkward' number within this range which takes some eliminating. --[[User:PureFox|PureFox]] ([[User talk:PureFox|talk]]) 09:36, 11 February 2021 (UTC)
By running the Go program with a limit of 1e6 and a sieve factor of 20 (up from 14 for 1e5), I was in fact able to verify the figure of 150,232. Factors of 18 and 19 both gave 150,233 so there must be an 'awkward' number within this range which takes some eliminating. --[[User:PureFox|PureFox]] ([[User talk:PureFox|talk]]) 09:36, 11 February 2021 (UTC)

Revision as of 21:29, 11 February 2021

1464

Unfortunately, the factors of 14641 are {1,11,121,1331} which sum to 1464.
According to https://oeis.org/A005114/b005114.txt
There are 1212 not 1,216 untouchable numbers <= 10,000
There are 13,863 not 13,886 untouchable numbers <= 100,000 --Pete Lomax (talk) 08:50, 9 February 2021 (UTC)

Yes, I see that I need to extend the search for each range of untouchable numbers.   A fix (hopefully) will be forthcoming.   Thanks for finding those errors in the REXX's output.     -- Gerard Schildberger (talk) 09:00, 9 February 2021 (UTC)
That certainly slowed up the search when I extended the search field.     -- Gerard Schildberger (talk) 09:14, 9 February 2021 (UTC)
To match up to 1e5 I increased the limit to 18*n, a tactic I would deem rather unsound. Note added to the Phix entry. --Pete Lomax (talk) 09:17, 9 February 2021 (UTC)


reduction in the number of (counting) ranges

I've reduced the number of ranges for counting untouchable numbers.     It seems the upper limit for searching for touchable numbers was far higher than I guesstimated.     -- Gerard Schildberger (talk) 09:28, 9 February 2021 (UTC)


Number of untouchable numbers up to 1 million

According to one of the OEIS links there are 150,232 untouchable numbers up to 1e6 so it looks like the REXX result (150,233) is off by one here.

I've corrected the REXX output,   the incorrect count was computed with an overreach of   18,   not   20.     -- Gerard Schildberger (talk) 21:28, 11 February 2021 (UTC)


By running the Go program with a limit of 1e6 and a sieve factor of 20 (up from 14 for 1e5), I was in fact able to verify the figure of 150,232. Factors of 18 and 19 both gave 150,233 so there must be an 'awkward' number within this range which takes some eliminating. --PureFox (talk) 09:36, 11 February 2021 (UTC)

I've managed to isolate the 'awkward' number which is 816,422. The (first) number whose proper divisors sum to this is 19,175,641 its divisors being [1, 29, 151, 841, 4379, 22801, 126991, 661229]. This explains why we need a sieve factor between 19 and 20 to catch it since neither 816,421 or 816,419 is prime. --PureFox (talk) 11:33, 11 February 2021 (UTC)

That's mighty good detective work   ...   and a true dedicated ethic.     -- Gerard Schildberger (talk) 11:45, 11 February 2021 (UTC)
Yup, found that too, and wrote this before I saw your post: The factors of 19175641 aka 29*29*151*151 are {1,29,151,841,4379,22801,126991,661229}, aka {1,29,151,29*29,29*151,151*151,29*29*151,29*151*151}, which sum to 816422, in case that helps. Interestingly the "naughty boy" is a product of so few primes, and the original above, 14641 is 11*11*11*11. --Pete Lomax (talk) 11:50, 11 February 2021 (UTC)
Without something reliable to check against, I think that 1 million is probably as far as we can practically go. We could, of course, incrementally increase the sieve factor for higher limits until we appear to get a stable count but, judging by what it said in the Julia entry, there may still be the possibility of some outlier spoiling the party! --PureFox (talk) 14:23, 11 February 2021 (UTC)

Nice recursive solution

In a manner similar to Talk:Numbers_with_prime_digits_whose_sum_is_13#Nice_recursive_solution I present a scheme which requires no guessed maximums and ends when the candidate list N is empty. First I identify the primes less than the maximum value I am interested in (10 for this example) then I combine them as follows.

Important: The minimum value of Σ at level n is greater than the minimum value of Σ at level n-1. The value of Σ increase with depth along any path.

Level=root

Path=1

  Π=na
  Σ=na
Level=1 N=1..10 Untouchables=None
Path=1;2    Path=1;3    Path=1;5    Path=1;7
   Π=2         Π=3         Π=5         Π=7
   Σ=1         Σ=1         Σ=1         Σ=1
Level=2 N=2..10 Untouchables=None
Path=1;2;2  Path=1;2;3  Path=1;2;5  Path=1;2;7  Path=1;3;3  Path=1;3;5  Path=1;3;7  Path=1;5;5  Path=1;5;7  Path=1;7;7
   Π=4         Π=6         Π=10        Π=14        Π=9         Π=15        Π=21        Π=25        Π=35        Π=49
   Σ=3         Σ=6         Σ=8         Σ=10        Σ=4         Σ=9         Σ=11        Σ=6         Σ=13        Σ=8

I have not gained much yet. This elimates P+1s which I could have done by reading the task description. I have proven that 2 is untouchable. I remove 2 and the Σs found from N.

Level=3 N=5;7 Untouchables=2 (because 2 is less than minimum Σ at level 2)
Path=1;2;2;2  Path=1;2;2;3  Path=1;3;3;3
   Π=8           Π=12          Π=27
   Σ=7           Σ=14          Σ=13

Now I gain, there is no need to check i.e. Path=1;2;2;5 because this would add at least 5 to Σ[1;2;2] (3+5) which is greater than the max value in N (7).

Level=4 N=None Untouchables=5 (because 5 is less than minimum Σ at level 3)

N=None so I am done. 2 and 5 have been identified as untouchable. To find larger untouchables, probably time to turn to your poor long suffering computer. Where Talk:Numbers_with_prime_digits_whose_sum_is_13#Nice_recursive_solution may be considered 'Trees 101' This is more difficult to implement. It is described above as a breadth first search, but for for large values it may be better to use depth first. The main saving is in how well any implementation prunes the tree.--Nigel Galloway (talk) 14:55, 11 February 2021 (UTC)