Summarize primes: Difference between revisions

New post.
(Added BASIC256, Chipmunk Basic, Gambas, PureBasic and Yabasic)
(New post.)
 
(9 intermediate revisions by 5 users not shown)
Line 660:
</pre>
 
=={{header|EasyLang}}==
<syntaxhighlight lang="easylang">
func prime n .
if n mod 2 = 0 and n > 2
return 0
.
i = 3
while i <= sqrt n
if n mod i = 0
return 0
.
i += 2
.
return 1
.
for i = 2 to 999
if prime i = 1
ind += 1
sum += i
if prime sum = 1
print ind & ": " & sum
.
.
.
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
Line 814 ⟶ 839:
 
=={{header|Fōrmulæ}}==
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation &mdash;i.e. XML, JSON&mdash; they are intended for storage and transfer purposes more than visualization and edition.
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Summarize_primes}}
Programs in Fōrmulæ are created/edited online in its [https://formulae.org website], However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.
 
'''Solution'''
In '''[https://formulae.org/?example=Summarize_primes this]''' page you can see the program(s) related to this task and their results.
 
[[File:Fōrmulæ - Summarize primes 01.png]]
 
[[File:Fōrmulæ - Summarize primes 02.png]]
 
=={{header|Go}}==
Line 933 ⟶ 961:
│162 953 70241│
└─────────────┘</pre>
 
=={{header|Java}}==
<syntaxhighlight lang="java">
public final class SummarizePrimes {
 
public static void main(String[] args) {
final int start = 1;
final int finish = 1_000;
 
int sum = 0;
int count = 0;
int summarizedCount = 0;
 
for ( int p = start; p < finish; p++ ) {
if ( isPrime(p) ) {
count += 1;
sum += p;
if ( isPrime(sum) ) {
String word = ( count == 1 ) ? " prime" : " primes";
System.out.println(
"The sum of " + count + word + " in [2, " + p + "] is " + sum + ", which is also prime.");
summarizedCount++;
}
}
}
System.out.println(System.lineSeparator() +
"There are " + summarizedCount + " summarized primes in [" + start + ", " + finish + "].");
}
private static boolean isPrime(int number) {
if ( number < 2 ) {
return false;
}
if ( number % 2 == 0 ) {
return number == 2;
}
if ( number % 3 == 0 ) {
return number == 3;
}
 
int test = 5;
while ( test * test <= number ) {
if ( number % test == 0 ) {
return false;
}
test += 2;
if ( number % test == 0 ) {
return false;
}
test += 4;
}
return true;
}
 
}
</syntaxhighlight>
{{ out }}
<pre>
The sum of 1 prime in [2, 2] is 2, which is also prime.
The sum of 2 primes in [2, 3] is 5, which is also prime.
The sum of 4 primes in [2, 7] is 17, which is also prime.
The sum of 6 primes in [2, 13] is 41, which is also prime.
The sum of 12 primes in [2, 37] is 197, which is also prime.
The sum of 14 primes in [2, 43] is 281, which is also prime.
The sum of 60 primes in [2, 281] is 7699, which is also prime.
The sum of 64 primes in [2, 311] is 8893, which is also prime.
The sum of 96 primes in [2, 503] is 22039, which is also prime.
The sum of 100 primes in [2, 541] is 24133, which is also prime.
The sum of 102 primes in [2, 557] is 25237, which is also prime.
The sum of 108 primes in [2, 593] is 28697, which is also prime.
The sum of 114 primes in [2, 619] is 32353, which is also prime.
The sum of 122 primes in [2, 673] is 37561, which is also prime.
The sum of 124 primes in [2, 683] is 38921, which is also prime.
The sum of 130 primes in [2, 733] is 43201, which is also prime.
The sum of 132 primes in [2, 743] is 44683, which is also prime.
The sum of 146 primes in [2, 839] is 55837, which is also prime.
The sum of 152 primes in [2, 881] is 61027, which is also prime.
The sum of 158 primes in [2, 929] is 66463, which is also prime.
The sum of 162 primes in [2, 953] is 70241, which is also prime.
 
There are 21 summarized primes in [1, 1000].
</pre>
 
=={{header|jq}}==
Line 1,359 ⟶ 1,476:
158 -> 66463
162 -> 70241</pre>
 
=={{header|Quackery}}==
 
<code>isprime</code> is defined at [[Primality by trial division#Quackery]].
 
<syntaxhighlight lang="Quackery"> [ number$
space 6 of swap join
-7 split nip echo$ ] is rjust ( n --> )
 
say " index prime sum" cr
say " ----- ----- ---" cr
[] 1000 times
[ i^ isprime if [ i^ join ] ]
0 swap
witheach
[ dup dip +
over isprime iff
[ i^ 1+ rjust
rjust
dup rjust
cr ]
else drop ]
drop
</syntaxhighlight>
 
{{out}}
 
<pre> index prime sum
----- ----- ---
1 2 2
2 3 5
4 7 17
6 13 41
12 37 197
14 43 281
60 281 7699
64 311 8893
96 503 22039
100 541 24133
102 557 25237
108 593 28697
114 619 32353
122 673 37561
124 683 38921
130 733 43201
132 743 44683
146 839 55837
152 881 61027
158 929 66463
162 953 70241</pre>
 
=={{header|Raku}}==
Line 1,576 ⟶ 1,743:
Found 21 numbers
done...
</pre>
 
=={{header|RPL}}==
{{works with|HP|49g}}
≪ { } 0 0 → display length sum
≪ 1
'''WHILE''' DUP 1000 < '''REPEAT'''
NEXTPRIME
DUP 'sum' STO+
1 'length' STO+
'''IF''' sum ISPRIME? '''THEN'''
length OVER sum 3 →LIST 1 →LIST 'display' SWAP STO+ '''END'''
'''END'''
DROP display
≫ ≫ '<span style="color:blue">TASK</span>' STO
{{out}}
<pre>
1: {{1 2 2} {2 3 5} {3 7 17} {4 13 41} {5 37 197} {6 43 281} {7 281 7699} {8 311 8893} {9 503 22039} {10 541 24133} {11 557 25237} {12 593 28697} {13 619 32353} {14 673 37561} {15 683 38921} {16 733 43201} {17 743 44683} {18 839 55837} {19 881 61027} {20 929 66463} {21 953 70241}}
</pre>
 
Line 1,781 ⟶ 1,966:
{{libheader|Wren-math}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="ecmascriptwren">import "./math" for Int
import "./fmt" for Fmt
 
var primes = Int.primeSieve(999)
871

edits