Sum and product puzzle

Revision as of 19:01, 21 November 2016 by Walterpachl (talk | contribs) (fix tag)

Solve the "Impossible Puzzle":

Task
Sum and product puzzle
You are encouraged to solve this task according to the task description, using any language you may know.

X and Y are two different whole numbers greater than 1. Their sum is no greater than 100, and Y is greater than X. S and P are two mathematicians (and consequently perfect logicians); S knows the sum X+Y and P knows the product X*Y. Both S and P know all the information in this paragraph.

The following conversation occurs:

  • S says "P does not know X and Y."
  • P says "Now I know X and Y."
  • S says "Now I also know X and Y!"

What are X and Y?

Guidance

It can be hard to wrap one's head around what the three lines of dialog between S (the "sum guy") and P (the "product guy") convey about the values of X and Y.
So for your convenience, here's a break-down:

Quote Implied fact
1) S says "P does not know X and Y." For every possible sum decomposition of the number X+Y, the product has in turn more than one product decomposition.
2) P says "Now I know X and Y." The number X*Y has only one product decomposition for which fact 1 is true.
3) S says "Now I also know X and Y." The number X+Y has only one sum decomposition for which fact 2 is true.

Terminology:

  • "sum decomposition" of a number = Any pair of positive integers (A, B) so that A+B equals the number. Here, with the additional constraint 2 ≤ A < B.
  • "product decomposition" of a number = Any pair of positive integers (A, B) so that A*B equals the number. Here, with the additional constraint 2 ≤ A < B.


Your program can solve the puzzle by considering all possible pairs (X, Y) in the range 2 ≤ X < Y ≤ 98, and then successively eliminating candidates based on the three facts. It turns out only one solution remains!
See the Python example for an implementation that uses this approach with a few optimizations.

See also

AWK

<lang AWK>

  1. syntax: GAWK -f SUM_AND_PRODUCT_PUZZLE.AWK

BEGIN {

   for (s=2; s<=100; s++) {
     if ((a=satisfies_statement3(s)) != 0) {
       printf("%d (%d+%d)\n",s,a,s-a)
     }
   }
   exit(0)

} function satisfies_statement1(s, a) { # S says: P does not know the two numbers.

  1. Given s, for all pairs (a,b), a+b=s, 2 <= a,b <= 99, true if at least one of a or b is composite
   for (a=2; a<=int(s/2); a++) {
     if (is_prime(a) && is_prime(s-a)) {
       return(0)
     }
   }
   return(1)

} function satisfies_statement2(p, i,j,winner) { # P says: Now I know the two numbers.

  1. Given p, for all pairs (a,b), a*b=p, 2 <= a,b <= 99, true if exactly one pair satisfies statement 1
   for (i=2; i<=int(sqrt(p)); i++) {
     if (p % i == 0) {
       j = int(p/i)
       if (!(2 <= j && j <= 99)) { # in range
         continue
       }
       if (satisfies_statement1(i+j)) {
         if (winner) {
           return(0)
         }
         winner = 1
       }
     }
   }
   return(winner)

} function satisfies_statement3(s, a,b,winner) { # S says: Now I know the two numbers.

  1. Given s, for all pairs (a,b), a+b=s, 2 <= a,b <= 99, true if exactly one pair satisfies statements 1 and 2
   if (!satisfies_statement1(s)) {
     return(0)
   }
   for (a=2; a<=int(s/2); a++) {
     b = s - a
     if (satisfies_statement2(a*b)) {
       if (winner) {
         return(0)
       }
       winner = a
     }
   }
   return(winner)

} function is_prime(x, i) {

   if (x <= 3) {
     return(1)
   }
   for (i=2; i<=int(sqrt(x)); i++) {
     if (x % i == 0) {
       return(0)
     }
   }
   return(1)

} </lang>

Output:

17 (4+13)

C#

<lang csharp>using System; using System.Linq; using System.Collections.Generic;

public class Program {

   public static void Main()
   {
       const int maxSum = 100;
       var pairs = (
           from X in 2.To(maxSum / 2 - 1)
           from Y in (X + 1).To(maxSum - 2).TakeWhile(y => X + y <= maxSum)
           select new { X, Y, S = X + Y, P = X * Y }
           ).ToHashSet();
       Console.WriteLine(pairs.Count);
       
       var uniqueP = pairs.GroupBy(pair => pair.P).Where(g => g.Count() == 1).Select(g => g.Key).ToHashSet();
       
       pairs.ExceptWith(pairs.GroupBy(pair => pair.S).Where(g => g.Any(pair => uniqueP.Contains(pair.P))).SelectMany(g => g));
       Console.WriteLine(pairs.Count);
       
       pairs.ExceptWith(pairs.GroupBy(pair => pair.P).Where(g => g.Count() > 1).SelectMany(g => g));
       Console.WriteLine(pairs.Count);
       
       pairs.ExceptWith(pairs.GroupBy(pair => pair.S).Where(g => g.Count() > 1).SelectMany(g => g));
       Console.WriteLine(pairs.Count);
       
       foreach (var pair in pairs) Console.WriteLine(pair);
   }

}

public static class Extensions {

   public static IEnumerable<int> To(this int start, int end) {
       for (int i = start; i <= end; i++) yield return i;
   }
   
   public static HashSet<T> ToHashSet<T>(this IEnumerable<T> source) => new HashSet<T>(source);

}</lang>

Output:
2352
145
86
1
{ X = 4, Y = 13, S = 17, P = 52 }

D

Translation of: Scala

<lang d>void main() {

   import std.stdio, std.algorithm, std.range, std.typecons;
   const s1 = cartesianProduct(iota(1, 101), iota(1, 101))
              .filter!(p => 1 < p[0] && p[0] < p[1] && p[0] + p[1] < 100)
              .array;
   alias P = const Tuple!(int, int);
   enum add   = (P p) => p[0] + p[1];
   enum mul   = (P p) => p[0] * p[1];
   enum sumEq = (P p) => s1.filter!(q => add(q) == add(p));
   enum mulEq = (P p) => s1.filter!(q => mul(q) == mul(p));
   const s2 = s1.filter!(p => sumEq(p).all!(q => mulEq(q).walkLength != 1)).array;
   const s3 = s2.filter!(p => mulEq(p).setIntersection(s2).walkLength == 1).array;
   s3.filter!(p => sumEq(p).setIntersection(s3).walkLength == 1).writeln;

}</lang>

Output:
[const(Tuple!(int, int))(4, 13)]

With an older version of the LDC2 compiler replace the cartesianProduct line with: <lang d>

   const s1 = iota(1, 101).map!(x => iota(1, 101).map!(y => tuple(x, y))).joiner

</lang> The .array turn the lazy ranges into arrays. This is a necessary optimization because D lazy Ranges aren't memoized as Haskell lazy lists.

Run-time: about 0.43 seconds with dmd, 0.08 seconds with ldc2.

Elixir

Translation of: Ruby

<lang elixir>defmodule Puzzle do

 def sum_and_product do
   s1 = for x <- 2..49, y <- x+1..99, x+y<100, do: {x,y}
   s2 = Enum.filter(s1, fn p ->
     Enum.all?(sumEq(s1,p), fn q -> length(mulEq(s1,q)) != 1 end)
   end)
   s3 = Enum.filter(s2, fn p -> only1?(mulEq(s1,p), s2) end)
   Enum.filter(s3, fn p -> only1?(sumEq(s1,p), s3) end) |> IO.inspect 
 end
 
 defp add({x,y}), do: x + y
 
 defp mul({x,y}), do: x * y
 
 defp sumEq(s, p), do: Enum.filter(s, fn q -> add(p) == add(q) end)
 
 defp mulEq(s, p), do: Enum.filter(s, fn q -> mul(p) == mul(q) end)
 
 defp only1?(a, b) do
   MapSet.size(MapSet.intersection(MapSet.new(a), MapSet.new(b))) == 1
 end

end

Puzzle.sum_and_product</lang>

Output:
[{4, 13}]

Go

<lang go>package main

import "fmt"

type pair struct{ x, y int }

func main() { //const max = 100 // Use 1685 (the highest with a unique answer) instead // of 100 just to make it work a little harder :). const max = 1685 var all []pair for a := 2; a < max; a++ { for b := a + 1; b < max-a; b++ { all = append(all, pair{a, b}) } } fmt.Println("There are", len(all), "pairs where a+b <", max, "(and a<b)") products := countProducts(all)

// Those for which no sum decomposition has unique product to are // S mathimatician's possible pairs. var sPairs []pair pairs: for _, p := range all { s := p.x + p.y // foreach a+b=s (a<b) for a := 2; a < s/2+s&1; a++ { b := s - a if products[a*b] == 1 { // Excluded because P would have a unique product continue pairs } } sPairs = append(sPairs, p) } fmt.Println("S starts with", len(sPairs), "possible pairs.") //fmt.Println("S pairs:", sPairs) sProducts := countProducts(sPairs)

// Look in sPairs for those with a unique product to get // P mathimatician's possible pairs. var pPairs []pair for _, p := range sPairs { if sProducts[p.x*p.y] == 1 { pPairs = append(pPairs, p) } } fmt.Println("P then has", len(pPairs), "possible pairs.") //fmt.Println("P pairs:", pPairs) pSums := countSums(pPairs)

// Finally, look in pPairs for those with a unique sum var final []pair for _, p := range pPairs { if pSums[p.x+p.y] == 1 { final = append(final, p) } }

// Nicely show any answers. switch len(final) { case 1: fmt.Println("Answer:", final[0].x, "and", final[0].y) case 0: fmt.Println("No possible answer.") default: fmt.Println(len(final), "possible answers:", final) } }

func countProducts(list []pair) map[int]int { m := make(map[int]int) for _, p := range list { m[p.x*p.y]++ } return m }

func countSums(list []pair) map[int]int { m := make(map[int]int) for _, p := range list { m[p.x+p.y]++ } return m }

// not used, manually inlined above func decomposeSum(s int) []pair { pairs := make([]pair, 0, s/2) for a := 2; a < s/2+s&1; a++ { pairs = append(pairs, pair{a, s - a}) } return pairs }</lang>

Output:

For x + y < 100 (max = 100):

There are 2304 pairs where a+b < 100 (and a<b)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4 and 13

For x + y < 1685 (max = 1685):

There are 706440 pairs where a+b < 1685 (and a<b)
S starts with 50485 possible pairs.
P then has 17485 possible pairs.
Answer: 4 and 13

Run-time ~1 msec and ~600 msec respectively. Could be slightly faster if the slices and maps were given an estimated capacity to start (e.g. (max/2)² for all pairs) to avoid re-allocations (and resulting copies).

Haskell

Translation of: D

<lang haskell>import Data.List (intersect)

s1, s2, s3, s4 :: [(Int, Int)] s1 = [(x, y) | x <- [1 .. 100], y <- [1 .. 100], 1 < x && x < y && x + y < 100]

add, mul :: (Int, Int) -> Int add (x, y) = x + y mul (x, y) = x * y

sumEq, mulEq :: (Int, Int) -> [(Int, Int)] sumEq p = filter (\q -> add q == add p) s1 mulEq p = filter (\q -> mul q == mul p) s1

s2 = filter (\p -> all (\q -> (length $ mulEq q) /= 1) (sumEq p)) s1 s3 = filter (\p -> length (mulEq p `intersect` s2) == 1) s2 s4 = filter (\p -> length (sumEq p `intersect` s3) == 1) s3

main = print s4</lang>

Output:
[(4,13)]

Run-time: about 1.97 seconds.


JavaScript

ES5

Translation of: Haskell

<lang JavaScript>(function () {

   'use strict';
   // GENERIC FUNCTIONS
   // concatMap :: (a -> [b]) -> [a] -> [b]
   var concatMap = function concatMap(f, xs) {
           return [].concat.apply([], xs.map(f));
       },
       // curry :: ((a, b) -> c) -> a -> b -> c
       curry = function curry(f) {
           return function (a) {
               return function (b) {
                   return f(a, b);
               };
           };
       },
       // intersectBy :: (a - > a - > Bool) - > [a] - > [a] - > [a]
       intersectBy = function intersectBy(eq, xs, ys) {
           return xs.length && ys.length ? xs.filter(function (x) {
               return ys.some(curry(eq)(x));
           }) : [];
       },
       // range :: Int -> Int -> Maybe Int -> [Int]
       range = function range(m, n, step) {
           var d = (step || 1) * (n >= m ? 1 : -1);
           return Array.from({
               length: Math.floor((n - m) / d) + 1
           }, function (_, i) {
               return m + i * d;
           });
       };
   // PROBLEM FUNCTIONS
   // add, mul :: (Int, Int) -> Int
   var add = function add(xy) {
           return xy[0] + xy[1];
       },
       mul = function mul(xy) {
           return xy[0] * xy[1];
       };
   // sumEq, mulEq :: (Int, Int) -> [(Int, Int)]
   var sumEq = function sumEq(p) {
           var addP = add(p);
           return s1.filter(function (q) {
               return add(q) === addP;
           });
       },
       mulEq = function mulEq(p) {
           var mulP = mul(p);
           return s1.filter(function (q) {
               return mul(q) === mulP;
           });
       };
   // pairEQ :: ((a, a) -> (a, a)) -> Bool
   var pairEQ = function pairEQ(a, b) {
       return a[0] === b[0] && a[1] === b[1];
   };
   // MAIN
   // xs :: [Int]
   var xs = range(1, 100);
   // s1 s2, s3, s4 :: [(Int, Int)]
   var s1 = concatMap(function (x) {
           return concatMap(function (y) {
               return 1 < x && x < y && x + y < 100 ? [
                   [x, y]
               ] : [];
           }, xs);
       }, xs),
       s2 = s1.filter(function (p) {
           return sumEq(p).every(function (q) {
               return mulEq(q).length > 1;
           });
       }),
       s3 = s2.filter(function (p) {
           return intersectBy(pairEQ, mulEq(p), s2).length === 1;
       }),
       s4 = s3.filter(function (p) {
           return intersectBy(pairEQ, sumEq(p), s3).length === 1;
       });
   return s4;

})(); </lang>

Output:

<lang JavaScript>4, 13</lang> (Finished in 0.69s)


ES6

Translation of: Haskell

<lang JavaScript>(() => {

   'use strict';
   // GENERIC FUNCTIONS
   // concatMap :: (a -> [b]) -> [a] -> [b]
   let concatMap = (f, xs) => [].concat.apply([], xs.map(f)),
       // curry :: ((a, b) -> c) -> a -> b -> c
       curry = f => a => b => f(a, b),
       // intersectBy :: (a - > a - > Bool) - > [a] - > [a] - > [a]
       intersectBy = (eq, xs, ys) => (xs.length && ys.length) ?
       xs.filter(x => ys.some(curry(eq)(x))) : [],
       // range :: Int -> Int -> Maybe Int -> [Int]
       range = (m, n, step) => {
           let d = (step || 1) * (n >= m ? 1 : -1);
           return Array.from({
               length: Math.floor((n - m) / d) + 1
           }, (_, i) => m + (i * d));
       };
   // PROBLEM FUNCTIONS
   // add, mul :: (Int, Int) -> Int
   let add = xy => xy[0] + xy[1],
       mul = xy => xy[0] * xy[1];
   // sumEq, mulEq :: (Int, Int) -> [(Int, Int)]
   let sumEq = p => {
           let addP = add(p);
           return s1.filter(q => add(q) === addP);
       },
       mulEq = p => {
           let mulP = mul(p)
           return s1.filter(q => mul(q) === mulP);
       };
   // pairEQ :: ((a, a) -> (a, a)) -> Bool
   let pairEQ = (a, b) => (a[0] === b[0]) && (a[1] === b[1]);


   // MAIN
   // xs :: [Int]
   let xs = range(1, 100);
   // s1 s2, s3, s4 :: [(Int, Int)]
   let s1 = concatMap(x =>
           concatMap(y =>
               ((1 < x) && (x < y) && (x + y) < 100) ? [
                   [x, y]
               ] : [],
               xs), xs),
       s2 = s1.filter(
           p => sumEq(p)
           .every(
               q => mulEq(q)
               .length > 1
           )
       ),
       s3 = s2.filter(
           p => intersectBy(
               pairEQ, mulEq(p), s2
           )
           .length === 1
       );
   return s3.filter(
       p => intersectBy(
           pairEQ, sumEq(p), s3
       )
       .length === 1
   );

})();</lang>

Output:

<lang JavaScript>4, 13</lang> (Finished in 0.77s)

ooRexx

version 1

Translation of: REXX

for comments see REXX version 4. <lang oorexx>all =.set~new Call time 'R' cnt.=0 do a=2 to 100

 do b=a+1 to 100-2
   p=a b
   if a+b>100 then leave b
   all~put(p)
   prd=a*b
   cnt.prd+=1
   End
 End

Say "There are" all~items "pairs where X+Y <=" max "(and X<Y)"

spairs=.set~new Do Until all~items=0

 do p over all
   d=decompositions(p)
   If take Then
     spairs=spairs~union(d)
   dif=all~difference(d)
   Leave
   End
 all=dif
 end

Say "S starts with" spairs~items "possible pairs."

sProducts.=0 Do p over sPairs

 Parse Var p x y
 prod=x*y
 sProducts.prod+=1
 End

pPairs=.set~new Do p over sPairs

 Parse Var p xb yb
 prod=xb*yb
 If sProducts.prod=1 Then
   pPairs~put(p)
 End

Say "P then has" pPairs~items "possible pairs."

Sums.=0 Do p over pPairs

 Parse Var p xc yc
 sum=xc+yc
 Sums.sum+=1
 End

final=.set~new Do p over pPairs

 Parse Var p x y
 sum=x+y
 If Sums.sum=1 Then
   final~put(p)
 End

si=0 Do p Over final

 si+=1
 sol.si=p
 End

Select

 When final~items=1 Then Say "Answer:" sol.1
 When final~items=0 Then Say "No possible answer."
 Otherwise Do;            Say final~items "possible answers:"
                          Do p over final
                            Say p
                            End
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit

decompositions: Procedure Expose cnt. take spairs

 epairs=.set~new
 Use Arg p
 Parse Var p aa bb
 s=aa+bb
 take=1
 Do xa=2 To s/2
   ya=s-xa
   pp=xa ya
   epairs~put(pp)
   prod=xa*ya
   If cnt.prod=1 Then
     take=0
   End
 return epairs</lang>
Output:
There are 2352 pairs where X+Y <= MAX (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4 13
Elapsed time: 0.016000 seconds

version 2

Uses objects for storing the number pairs. Note the computed hash value and the == mathod (required to make the set difference work) <lang oorexx>all =.set~new Call time 'R' cnt.=0 do a=2 to 100

 do b=a+1 to 100-2
   p=.pairs~new(a,b)
   if p~sum>100 then leave b
   all~put(p)
   prd=p~prod
   cnt.prd+=1
   End
 End

Say "There are" all~items "pairs where X+Y <=" max "(and X<Y)"

spairs=.set~new Do Until all~items=0

 do p over all
   d=decompositions(p)
   If take Then
     spairs=spairs~union(d)
   dif=all~difference(d)
   Leave
   End
 all=dif
 end

Say "S starts with" spairs~items "possible pairs."

sProducts.=0 Do p over sPairs

 prod=p~prod
 sProducts.prod+=1
 End

pPairs=.set~new Do p over sPairs

 prod=p~prod
 If sProducts.prod=1 Then
   pPairs~put(p)
 End

Say "P then has" pPairs~items "possible pairs."

Sums.=0 Do p over pPairs

 sum=p~sum
 Sums.sum+=1
 End

final=.set~new Do p over pPairs

 sum=p~sum
 If Sums.sum=1 Then
   final~put(p)
 End

si=0 Do p Over final

 si+=1
 sol.si=p
 End

Select

 When final~items=1 Then Say "Answer:" sol.1~string
 When final~items=0 Then Say "No possible answer."
 Otherwise Do;            Say final~items "possible answers:"
                          Do p over final
                            Say p~string
                            End
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit

decompositions: Procedure Expose cnt. take spairs

 epairs=.set~new
 Use Arg p
 s=p~sum
 take=1
 Do xa=2 To s/2
   ya=s-xa
   pp=.pairs~new(xa,ya)
   epairs~put(pp)
   prod=pp~prod
   If cnt.prod=1 Then
     take=0
   End
 return epairs
class pairs
attribute a -- allow access to attribute
attribute b -- allow access to attribute
attribute sum -- allow access to attribute
attribute prod -- allow access to attribute

-- only the strict equality form is needed for the collection classes,

method "=="
 expose a b
 use strict arg other
 return a == other~a & b == other~b

-- not needed to make the set difference work, but added for completeness

method "\=="
 expose a b
 use strict arg other
 return a \== other~a | b \== other~b
method hashCode
 expose hash
 return hash
method init -- create pair, calculate sum, product
                    -- and index (blank delimited values)
 expose hash a b sum prod oid
 use arg a, b
 hash = a~hashCode~bitxor(b~hashCode) -- create hash value
 sum =a+b           -- sum
 prod=a*b           -- product
method string -- this creates the string to be shown
 expose a b
 return "[x="||a",y="||b"]"</lang>
Output:
There are 2352 pairs where X+Y <= MAX (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: [x=4,y=13]
Elapsed time: 0.079000 seconds

Perl 6

Translation of: Python
Works with: Rakudo version 2016.07

<lang perl6>sub grep-unique (&by, @list) { @list.classify(&by).values.grep(* == 1).map(*[0]) } sub sums ($n) { ($_, $n - $_ for 2 .. $n div 2) } sub sum ([$x, $y]) { $x + $y } sub product ([$x, $y]) { $x * $y }

my @all-pairs = (|($_ X $_+1 .. 98) for 2..97);

  1. Fact 1:

my %p-unique := Set.new: map ~*, grep-unique &product, @all-pairs; my @s-pairs = @all-pairs.grep: { none (%p-unique{~$_} for sums sum $_) };

  1. Fact 2:

my @p-pairs = grep-unique &product, @s-pairs;

  1. Fact 3:

my @final-pairs = grep-unique &sum, @p-pairs;

printf "X = %d, Y = %d\n", |$_ for @final-pairs;</lang>

Output:
X = 4, Y = 13

Python

Based on the Python solution from Wikipedia: <lang python>#!/usr/bin/env python

from collections import Counter

def decompose_sum(s):

   return [(a,s-a) for a in range(2,int(s/2+1))]
  1. Generate all possible pairs

all_pairs = set((a,b) for a in range(2,100) for b in range(a+1,100) if a+b<100)

  1. Fact 1 --> Select pairs for which all sum decompositions have non-unique product

product_counts = Counter(c*d for c,d in all_pairs) unique_products = set((a,b) for a,b in all_pairs if product_counts[a*b]==1) s_pairs = [(a,b) for a,b in all_pairs if

   all((x,y) not in unique_products for (x,y) in decompose_sum(a+b))]
  1. Fact 2 --> Select pairs for which the product is unique

product_counts = Counter(c*d for c,d in s_pairs) p_pairs = [(a,b) for a,b in s_pairs if product_counts[a*b]==1]

  1. Fact 3 --> Select pairs for which the sum is unique

sum_counts = Counter(c+d for c,d in p_pairs) final_pairs = [(a,b) for a,b in p_pairs if sum_counts[a+b]==1]

print(final_pairs)</lang>

Output:
[(4, 13)]

Racket

Translation of: D

To calculate the results faster this program use memorization. So it has a modified version of sum= and mul= to increase the chances of reusing the results.

<lang Racket>#lang racket (define-syntax-rule (define/mem (name args ...) body ...)

 (begin
   (define cache (make-hash))
   (define (name args ...)
     (hash-ref! cache (list args ...) (lambda () body ...)))))

(define (sum p) (+ (first p) (second p))) (define (mul p) (* (first p) (second p)))

(define (sum= p s) (filter (lambda (q) (= p (sum q))) s)) (define (mul= p s) (filter (lambda (q) (= p (mul q))) s))

(define (puzzle tot)

 (printf "Max Sum: ~a\n" tot)
 (define s1 (for*/list ([x (in-range 2 (add1 tot))]
                        [y (in-range (add1 x) (- (add1 tot) x))])
              (list x y)))
 (printf "Possible pairs: ~a\n" (length s1))
 (define/mem (sumEq/all p) (sum= p s1))
 (define/mem (mulEq/all p) (mul= p s1))
 (define s2 (filter (lambda (p) (andmap (lambda (q)
                                          (not (= (length (mulEq/all (mul q))) 1)))
                                        (sumEq/all (sum p))))
                    s1))
 (printf "Initial pairs for S: ~a\n" (length s2))
 (define s3 (filter (lambda (p) (= (length (mul= (mul p) s2)) 1))
                  s2))
 (displayln (length s3))
 (printf "Pairs for P: ~a\n" (length s3))
 (define s4 (filter (lambda (p) (= (length (sum= (sum p) s3)) 1))
                    s3))
 (printf "Final pairs for S: ~a\n" (length s4))
 (displayln s4))

(puzzle 100)</lang>

Output:
Max Sum: 100
Possible pairs: 2352
Initial pairs for S: 145
Pairs for P: 86
Final pairs for S: 1
((4 13))

REXX

version 1

I tried hard to understand/translate the algorithms shown so far (16 Oct 2016) Unfortunately to no avail (not knowing the semantics of the used languages). Finally I was successful by implementing the rules referred to in Wikipedia http://www.win.tue.nl/~gwoegi/papers/freudenthal1.pdf which had a very clear description. <lang rexx>debug=0 If debug Then Do

 oid='sppn.txt'; 'erase' oid
 End

Call time 'R' all_pairs= cnt.=0 i=0 /* first take all possible pairs 2<=x<y with x+y<=100 */ /* and compute the respective sums and products */ /* count the number of times a sum or product occurs */ Do x=2 To 98

 Do y=x+1 To 100-x
   x=right(x,2,0)
   y=right(y,2,0)
   all_pairs=all_pairs x'/'y
   i=i+1
   x.i=x
   y.i=y
   sum=x+y
   prd=x*y
   cnt.0s.sum=cnt.0s.sum+1
   cnt.0p.prd=cnt.0p.prd+1
   End
 End

n=i /* now compute the possible pairs for each sum sum_d.sum */ /* and product prd_d.prd */ /* also the list of possible sums and products suml, prdl*/ sum_d.= prd_d.= suml= prdl= Do i=1 To n

 x=x.i
 y=y.i
 x=right(x,2,0)
 y=right(y,2,0)
 sum=x+y
 prd=x*y
 cnt.0s.x.y=cnt.0s.sum
 cnt.0p.x.y=cnt.0p.prd
 sum_d.sum=sum_d.sum x'/'y
 prd_d.prd=prd_d.prd x'/'y
 If wordpos(sum,suml)=0 Then suml=suml sum
 If wordpos(prd,prdl)=0 Then prdl=prdl prd
 End

Say n 'possible pairs' Call o 'SUM' suml=wordsort(suml) prdl=wordsort(prdl) sumlc=suml si=0 pi=0 Do While sumlc>

 Parse Var sumlc sum sumlc
 si=si+1
 sum.si=sum
 si.sum=si
 If sum=17 Then sx=si
 temp=prdl
 Do While temp>
   Parse Var temp prd temp
   If si=1 Then Do
     pi=pi+1
     prd.pi=prd
     pi.prd=pi
     If prd=52 Then px=pi
     End
   A.prd.sum='+'
   End
 End

sin=si pin=pi Call o 'SUM' Do si=1 To sin

 Call o f5(si) f3(sum.si)
 End

Call o 'PRD' Do pi=1 To pin

 Call o f5(pi) f6(prd.pi)
 End

a.='-' Do pi=1 To pin

 prd=prd.pi
 Do si=1 To sin
   sum=sum.si
   Do sj=1 To words(sum_d.sum)
     If wordpos(word(sum_d.sum,sj),prd_d.prd)>0 Then
       Parse Value word(sum_d.sum,sj) with x '/' y
       prde=x*y
       sume=x+y
       pa=pi.prde
       sa=si.sume
       a.pa.sa='+'
     End
   End
 End

Call show '1'

Do pi=1 To pin

 prow=
 cnt=0
 Do si=1 To sin
   If a.pi.si='+' Then Do
     cnt=cnt+1
     pj=pi
     sj=si
     End
   End
 If cnt=1 Then
   a.pj.sj='1'
 End

Call show '2'

Do si=1 To sin

 Do pi=1 To pin
   If a.pi.si='1' Then Leave
   End
 If pi<=pin Then Do
   Do pi=1 To pin
     If a.pi.si='+' Then
       a.pi.si='2'
     End
   End
 End

Call show '3'

Do pi=1 To pin

 prow=
 Do si=1 To sin
   prow=prow||a.pi.si
   End
 If count('+',prow)>1 Then Do
   Do si=1 To sin
     If a.pi.si='+' Then
       a.pi.si='3'
     End
   End
 End

Call show '4'

Do si=1 To sin

 scol=
 Do pi=1 To pin
   scol=scol||a.pi.si
   End
 If count('+',scol)>1 Then Do
   Do pi=1 To pin
     If a.pi.si='+' Then
       a.pi.si='4'
     End
   End
 End

Call show '5'

sol=0 Do pi=1 To pin

 Do si=1 To sin
   If a.pi.si='+' Then Do
     Say sum.si prd.pi
     sum=sum.si
     prd=prd.pi
     sol=sol+1
     End
   End
 End

Say sol 'solution(s)' Say ' possible pairs' Say 'Product='prd prd_d.52 Say ' Sum='sum sum_d.17 Say 'The only pair in both lists is 04/13.' Say 'Elapsed time:' time('E') 'seconds' Exit show: If debug Then Do

 Call o 'show' arg(1)
 Do pi=1 To 60
   ol=
   Do si=1 To 60
     ol=ol||a.pi.si
     End
   Call o ol
   End
 Say 'a.'px'.'sx'='a.px.sx
 End

Return

Exit o: Return lineout(oid,arg(1)) f3: Return format(arg(1),3) f4: Return format(arg(1),4) f5: Return format(arg(1),5) f6: Return format(arg(1),6)

count: Procedure

 Parse Arg c,s
 s=translate(s,c,c||xrange('00'x,'ff'x))
 s=space(s,0)
 Return length(s)</lang>
Output:
2352 possible pairs
17 52
1 solution(s)
            possible pairs
Product=52  02/26 04/13
    Sum=17  02/15 03/14 04/13 05/12 06/11 07/10 08/09
The only pair in both lists is 04/13.
Elapsed time: 4.891000 seconds

version 2

Translation of: AWK

<lang rexx>Call time 'R' Do s=2 To 100

 a=satisfies_statement3(s)
 If a>0 Then Do
   p=a*(s-a)
   Say a'/'||(s-a) 's='s 'p='p
   End
 End

Say 'Elapsed time:' time('E') 'seconds' Exit

satisfies_statement1: Procedure

 Parse Arg s
 Do a=2 To s/2
   If is_prime(a) & is_prime(s-a) Then
     Return 0
   End
 Return 1

satisfies_statement2: Procedure

 Parse Arg p
 winner=0
 Do i=2 By 1 While i**2<p
   If p//i=0 Then Do
     j=p%i
     If 2<=j & j<=99 Then Do
       if satisfies_statement1(i+j) Then Do
         if winner Then
           Return 0
         winner=1
         End
       End
     End
   End
 Return winner

satisfies_statement3: Procedure

 Parse Arg s
 winner=0
 If satisfies_statement1(s)=0 Then
   Return 0
 Do a=2 To s/2
   b=s-a
   If satisfies_statement2(a*b) Then Do
     If winner>0 Then
       Return 0
     winner=a
     End
   End
 Return winner

is_prime: Procedure

 call Trace 'O'
 Parse Arg x
 If x<=3 Then Return 1
 i=2
 Do i=2 By 1 While i**2<=x
   If datatype(x/i,'W') Then Return 0
   End
 Return 1</lang>
Output:
4/13 s=17 p=52
Elapsed time: 0.078000 seconds

version 3

Translation of: GO

<lang rexx>/*---------------------------------------------------------------------

  • X and Y are two different whole numbers greater than 1.
  • Their sum is no greater than 100, and Y is greater than X.
  • S and P are two mathematicians (and consequently perfect logicians);
  • S knows the sum X+Y and P knows the product X*Y.
  • Both S and P know all the information in this paragraph.
  • The following conversation occurs:
  • * S says "P does not know X and Y."
  • * P says "Now I know X and Y."
  • * S says "Now I also know X and Y!"
  • What are X and Y?
  • --------------------------------------------------------------------*/

Call time 'R' max=100 Products.=0 all= Do x=2 To max

 Do y=x+1 To max-2
   If x+y<=100 Then Do
     all=all x'/'y
     prod=x*y; Products.prod=Products.prod+1
     End
   End
 End

Say "There are" words(all) "pairs where X+Y <=" max "(and X<Y)" /*---------------------------------------------------------------------

  • First eliminate all pairs where the product is unique:
  • For each pair we look at the decompositions of the sum (x+y).
  • If for any of these decompositions (xa/ya) the product is unique
  • then x/y cannot be the solution of the puzzle and we eliminate it
  • from the list of possible pairs
  • --------------------------------------------------------------------*/

sPairs= Do i=1 To words(all)

 xy=word(all,i)
 Parse Var xy x '/' Y
 Parse Var xy xx '/' Yy
 s=x+y
 take=1
 Do xa=2 To s/2
   ya=s-xa
   prod=xa*ya
   If products.prod=1 Then Do
     take=0
     Iterate i
     End
   End
 If take Then
   sPairs=sPairs xy
 End

Say "S starts with" words(sPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the REMAINING pairs take only these where the product is unique:
  • For each pair we look at the decompositions of the known product.
  • If for any of these decompositions (xb/yb) the product is unique
  • then xb/yb can be the solution of the puzzle and we add it
  • to the list of possible pairs.
  • --------------------------------------------------------------------*/

sProducts.=0 Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy x '/' y
 prod=x*y
 sProducts.prod=sProducts.prod+1
 End

pPairs= Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy x '/' y
 prod=x*y
 If sProducts.prod=1 Then
   pPairs=pPairs xy
 End

Say "P then has" words(pPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the now REMAINING pairs take only these where the sum is unique
  • Now we look at all possible pairs and find the one (xc/yc)
  • with a unique sum which must be the sum we knew from the beginning.
  • The pair xc/yc is then the solution
  • --------------------------------------------------------------------*/

Sums.=0 Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy x '/' y
 sum=x+y
 Sums.sum=Sums.sum+1
 End

final= Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy x '/' y
 sum=x+y
 If Sums.sum=1 Then
   final = final xy
 End

Select

 When words(final)=1 Then Say "Answer:" strip(final)
 When words(final)=0 Then Say "No possible answer."
 Otherwise Do;            Say words(final) "possible answers:"
                          Say strip(final)
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit</lang>

Output:
There are 2352 pairs where X+Y <= 100 (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4/13
Elapsed time: 0.045000 seconds

version 4

Now that I have understood the logic (I am neither S nor P) I have created an alternative to verion 3. <lang rexx>/*---------------------------------------------------------------------

  • X and Y are two different whole numbers greater than 1.
  • Their sum is no greater than 100, and Y is greater than X.
  • S and P are two mathematicians (and consequently perfect logicians);
  • S knows the sum X+Y and P knows the product X*Y.
  • Both S and P know all the information in this paragraph.
  • The following conversation occurs:
  • * S says "P does not know X and Y."
  • * P says "Now I know X and Y."
  • * S says "Now I also know X and Y!"
  • What are X and Y?
  • --------------------------------------------------------------------*/

Call time 'R' max=100 Products.=0 all= Do x=2 To max

 Do y=x+1 To max-2
   If x+y<=100 Then Do
     all=all x'/'y
     prod=x*y; Products.prod=Products.prod+1
     End
   End
 End

Say "There are" words(all) "pairs where X+Y <=" max "(and X<Y)" /*---------------------------------------------------------------------

  • First eliminate all pairs where the product is unique:
  • For each pair we look at the decompositions of the sum (x+y).
  • If for any of these decompositions (xa/ya) the product is unique
  • then the given sum cannot be the sum of the pair we are looking for
  • Otherwise all pairs in the sum's decompositions are eligible.
  • --------------------------------------------------------------------*/

sPairs= done.=0 Do i=1 To words(all)

 xy=word(all,i)
 If done.xy Then Iterate
 Parse Var xy x '/' y
 s=x+y
 take=1
 el=
 Do xa=2 To s/2
   ya=s-xa
   m=xa'/'ya
   done.m=1
   el=el m
   prod=xa*ya
   If products.prod=1 Then
     take=0
   End
 If take Then
   sPairs=sPairs el
 End

Say "S starts with" words(sPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the REMAINING pairs take only these where the product is unique:
  • For each pair we look at the decompositions of the known product.
  • If for any of these decompositions (xb/yb) the product is unique
  • then xb/yb can be the solution of the puzzle and we add it
  • to the list of possible pairs.
  • --------------------------------------------------------------------*/

sProducts.=0 Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy x '/' y
 prod=x*y
 sProducts.prod=sProducts.prod+1
 End

pPairs= Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy xb '/' yb
 prod=xb*yb
 If sProducts.prod=1 Then
   pPairs=pPairs xy
 End

Say "P then has" words(pPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the now REMAINING pairs take only these where the sum is unique
  • Now we look at all possible pairs and find the one (xc/yc)
  • with a unique sum which must be the sum we knew from the beginning.
  • The pair xc/yc is then the solution
  • --------------------------------------------------------------------*/

Sums.=0 Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy xc '/' yc
 sum=xc+yc
 Sums.sum=Sums.sum+1
 End

final= Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy x '/' y
 sum=x+y
 If Sums.sum=1 Then
   final = final xy
 End

Select

 When words(final)=1 Then Say "Answer:" strip(final)
 When words(final)=0 Then Say "No possible answer."
 Otherwise Do;            Say words(final) "possible answers:"
                          Say strip(final)
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit</lang>

Output:
There are 2352 pairs where X+Y <= 100 (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4/13
Elapsed time: 0.032000 seconds

Ruby

Translation of: D

<lang ruby>def add(x,y) x + y end def mul(x,y) x * y end

def sumEq(s,p) s.select{|q| add(*p) == add(*q)} end def mulEq(s,p) s.select{|q| mul(*p) == mul(*q)} end

s1 = (a = *2...100).product(a).select{|x,y| x<y && x+y<100} s2 = s1.select{|p| sumEq(s1,p).all?{|q| mulEq(s1,q).size != 1} } s3 = s2.select{|p| (mulEq(s1,p) & s2).size == 1} p s3.select{|p| (sumEq(s1,p) & s3).size == 1}</lang>

Output:
[[4, 13]]

Scala

<lang scala>object ImpossiblePuzzle extends App {

 type XY = (Int, Int)
 val step0 = for {
   x <- 1 to 100
   y <- 1 to 100
   if 1 < x && x < y && x + y < 100
 } yield (x, y)

 def sum(xy: XY) = xy._1 + xy._2
 def prod(xy: XY) = xy._1 * xy._2
 def sumEq(xy: XY) = step0 filter { sum(_) == sum(xy) }
 def prodEq(xy: XY) = step0 filter { prod(_) == prod(xy) }

 val step2 = step0 filter { sumEq(_) forall { prodEq(_).size != 1 }}
 val step3 = step2 filter { prodEq(_).intersect(step2).size == 1 }
 val step4 = step3 filter { sumEq(_).intersect(step3).size == 1 }
 println(step4)

}</lang>

Output:
Vector((4,13))

Run-time: about 3.82 seconds.

Sidef

Translation of: Perl 6

<lang ruby>func grep_uniq(a, by) { a.group_by{ .(by) }.values.grep{.len == 1}.map{_[0]} } func sums (n) { 2 .. n//2 -> map {|i| [i, n-i] } }

var pairs = (2..97 -> map {|i| ([i] ~X (i+1 .. 98))... })

var p_uniq = Hash() p_uniq{grep_uniq(pairs, :prod).map { .to_s }...} = ()

var s_pairs = pairs.grep {|p| sums(p.sum).all { !p_uniq.contains(.to_s) } } var p_pairs = grep_uniq(s_pairs, :prod) var f_pairs = grep_uniq(p_pairs, :sum)

f_pairs.each { |p| printf("X = %d, Y = %d\n", p...) }</lang>

Output:
X = 4, Y = 13

zkl

Damn it Jim, I'm a programmer, not a logician. So I translated the python code found in https://qmaurmann.wordpress.com/2013/08/10/sam-and-polly-and-python/ but I don't understand it. It does seem quite a bit more efficient than the Scala code, on par with the Python code. <lang zkl>mul:=Utils.Helpers.summer.fp1('*,1); //-->list.reduce('*,1), multiply list items var allPairs=[[(a,b); [2..100]; { [a+1..100] },{ a+b<100 }; ROList]]; // 2,304 pairs

sxys,pxys:=D(),D(); // hashes of allPairs sums and products: 95,1155 foreach xy in (allPairs){ sxys.appendV(xy.sum(),xy); pxys.appendV(xy:mul(_),xy) }

sOK:= 'wrap(s){ (not sxys[s].filter1('wrap(xy){ pxys[xy:mul(_)].len()<2 })) }; pOK:= 'wrap(p){ 1==pxys[p].filter('wrap([(x,y)]){ sOK(x+y) }).len() }; sOK2:='wrap(s){ 1==sxys[s].filter('wrap(xy){ pOK(xy:mul(_)) }).len() }; allPairs.filter('wrap([(x,y)]){ sOK(x+y) and pOK(x*y) and sOK2(x+y) }) .println();</lang> [[ ]] denotes list comprehension, filter1 returns (and stops at) the first thing that is "true", 'wrap creates a closure so the "wrapped" code/function can see local variables (read only). In a [function] prototype, the "[(x,y)]xy]" notation says xy is a list like thing, assign the parts to x & y (xy is optional), used here to just to do it both ways. The ":" says take the LHS and stuff it into the "_".

Output:
L(L(4,13))