Sum and product puzzle: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 2,120: Line 2,120:
17 (4+13)
17 (4+13)
</pre>
</pre>
=={{header|Picat}}==
<lang Picat>
import cp.
main =>
N = 98,
PD = new_array(N*N), % PD[I] = no. of product decompositions of I
foreach(I in 1..N*N) PD[I] = 0 end,
foreach(X in 2..N-1, Y in X+1..N) PD[X * Y] := PD[X * Y] + 1 end,
% Fact 1: S says "P does not know X and Y.", i.e.
% For every possible sum decomposition of the number X+Y, the product has in turn more than one product decomposition:
Solutions1 = [[X,Y] : X in 2..N-1, Y in X+1..100-X, foreach(XX in 2..X+Y-3) PD[XX * (X+Y-XX)] #> 1 end],
% Fact 2: P says "Now I know X and Y.", i.e.
% The number X*Y has only one product decomposition for which fact 1 is true:
Solutions2 = [[X,Y] : [X,Y] in Solutions1, foreach([XX,YY] in Solutions1, XX * YY = X * Y) XX = X, YY = Y end],
% Fact 3: S says "Now I also know X and Y.", i.e.
% The number X+Y has only one sum decomposition for which fact 2 is true.
Solutions3 = [[X,Y] : [X,Y] in Solutions2, foreach([XX,YY] in Solutions2, XX + YY = X + Y) XX = X, YY = Y end],
println(Solutions3).
</lang>
Output:
<pre>[[4,13]]</pre>


=={{header|Python}}==
=={{header|Python}}==

Revision as of 08:18, 1 June 2022

Task
Sum and product puzzle
You are encouraged to solve this task according to the task description, using any language you may know.

Solve the "Impossible Puzzle":

X and Y are two different whole numbers greater than 1. Their sum is no greater than 100, and Y is greater than X. S and P are two mathematicians (and consequently perfect logicians); S knows the sum X+Y and P knows the product X*Y. Both S and P know all the information in this paragraph.

The following conversation occurs:

  • S says "P does not know X and Y."
  • P says "Now I know X and Y."
  • S says "Now I also know X and Y!"

What are X and Y?

Guidance

It can be hard to wrap one's head around what the three lines of dialog between S (the "sum guy") and P (the "product guy") convey about the values of X and Y.
So for your convenience, here's a break-down:

Quote Implied fact
1) S says "P does not know X and Y." For every possible sum decomposition of the number X+Y, the product has in turn more than one product decomposition.
2) P says "Now I know X and Y." The number X*Y has only one product decomposition for which fact 1 is true.
3) S says "Now I also know X and Y." The number X+Y has only one sum decomposition for which fact 2 is true.

Terminology:

  • "sum decomposition" of a number = Any pair of positive integers (A, B) so that A+B equals the number. Here, with the additional constraint 2 ≤ A < B.
  • "product decomposition" of a number = Any pair of positive integers (A, B) so that A*B equals the number. Here, with the additional constraint 2 ≤ A < B.


Your program can solve the puzzle by considering all possible pairs (X, Y) in the range 2 ≤ X < Y ≤ 98, and then successively eliminating candidates based on the three facts. It turns out only one solution remains!
See the Python example for an implementation that uses this approach with a few optimizations.

See also

11l

Translation of: Python

<lang 11l>F counter(arr)

  DefaultDict[Int, Int] d
  L(a) arr
     d[a]++
  R d

F decompose_sum(s)

  R (2 .< Int(s / 2 + 1)).map(a -> (a, @s - a))

Set[(Int, Int)] all_pairs_set L(a) 2..99

  L(b) a + 1 .< 100
     I a + b < 100
        all_pairs_set.add((a, b))

V all_pairs = Array(all_pairs_set)

V product_counts = counter(all_pairs.map((c, d) -> c * d)) V unique_products = Set(all_pairs.filter((a, b) -> :product_counts[a * b] == 1)) V s_pairs = all_pairs.filter((a, b) -> all(decompose_sum(a + b).map((x, y) -> (x, y) !C :unique_products)))

product_counts = counter(s_pairs.map((c, d) -> c * d)) V p_pairs = s_pairs.filter((a, b) -> :product_counts[a * b] == 1)

V sum_counts = counter(p_pairs.map((c, d) -> c + d)) V final_pairs = p_pairs.filter((a, b) -> :sum_counts[a + b] == 1)

print(final_pairs)</lang>

Output:
[(4, 13)]

AWK

<lang AWK>

  1. syntax: GAWK -f SUM_AND_PRODUCT_PUZZLE.AWK

BEGIN {

   for (s=2; s<=100; s++) {
     if ((a=satisfies_statement3(s)) != 0) {
       printf("%d (%d+%d)\n",s,a,s-a)
     }
   }
   exit(0)

} function satisfies_statement1(s, a) { # S says: P does not know the two numbers.

  1. Given s, for all pairs (a,b), a+b=s, 2 <= a,b <= 99, true if at least one of a or b is composite
   for (a=2; a<=int(s/2); a++) {
     if (is_prime(a) && is_prime(s-a)) {
       return(0)
     }
   }
   return(1)

} function satisfies_statement2(p, i,j,winner) { # P says: Now I know the two numbers.

  1. Given p, for all pairs (a,b), a*b=p, 2 <= a,b <= 99, true if exactly one pair satisfies statement 1
   for (i=2; i<=int(sqrt(p)); i++) {
     if (p % i == 0) {
       j = int(p/i)
       if (!(2 <= j && j <= 99)) { # in range
         continue
       }
       if (satisfies_statement1(i+j)) {
         if (winner) {
           return(0)
         }
         winner = 1
       }
     }
   }
   return(winner)

} function satisfies_statement3(s, a,b,winner) { # S says: Now I know the two numbers.

  1. Given s, for all pairs (a,b), a+b=s, 2 <= a,b <= 99, true if exactly one pair satisfies statements 1 and 2
   if (!satisfies_statement1(s)) {
     return(0)
   }
   for (a=2; a<=int(s/2); a++) {
     b = s - a
     if (satisfies_statement2(a*b)) {
       if (winner) {
         return(0)
       }
       winner = a
     }
   }
   return(winner)

} function is_prime(x, i) {

   if (x <= 1) {
     return(0)
   }
   for (i=2; i<=int(sqrt(x)); i++) {
     if (x % i == 0) {
       return(0)
     }
   }
   return(1)

} </lang>

Output:

17 (4+13)

C

Translation of: C#

<lang c>#include <stdbool.h>

  1. include <stdio.h>
  2. include <stdlib.h>

typedef struct node_t {

   int x, y;
   struct node_t *prev, *next;

} node;

node *new_node(int x, int y) {

   node *n = malloc(sizeof(node));
   n->x = x;
   n->y = y;
   n->next = NULL;
   n->prev = NULL;
   return n;

}

void free_node(node **n) {

   if (n == NULL) {
       return;
   }
   (*n)->prev = NULL;
   (*n)->next = NULL;
   free(*n);
   *n = NULL;

}

typedef struct list_t {

   node *head;
   node *tail;

} list;

list make_list() {

   list lst = { NULL, NULL };
   return lst;

}

void append_node(list *const lst, int x, int y) {

   if (lst == NULL) {
       return;
   }
   node *n = new_node(x, y);
   if (lst->head == NULL) {
       lst->head = n;
       lst->tail = n;
   } else {
       n->prev = lst->tail;
       lst->tail->next = n;
       lst->tail = n;
   }

}

void remove_node(list *const lst, const node *const n) {

   if (lst == NULL || n == NULL) {
       return;
   }
   if (n->prev != NULL) {
       n->prev->next = n->next;
       if (n->next != NULL) {
           n->next->prev = n->prev;
       } else {
           lst->tail = n->prev;
       }
   } else {
       if (n->next != NULL) {
           n->next->prev = NULL;
           lst->head = n->next;
       }
   }
   free_node(&n);

}

void free_list(list *const lst) {

   node *ptr;
   if (lst == NULL) {
       return;
   }
   ptr = lst->head;
   while (ptr != NULL) {
       node *nxt = ptr->next;
       free_node(&ptr);
       ptr = nxt;
   }
   lst->head = NULL;
   lst->tail = NULL;

}

void print_list(const list *lst) {

   node *it;
   if (lst == NULL) {
       return;
   }
   for (it = lst->head; it != NULL; it = it->next) {
       int sum = it->x + it->y;
       int prod = it->x * it->y;
       printf("[%d, %d] S=%d P=%d\n", it->x, it->y, sum, prod);
   }

}

void print_count(const list *const lst) {

   node *it;
   int c = 0;
   if (lst == NULL) {
       return;
   }
   for (it = lst->head; it != NULL; it = it->next) {
       c++;
   }
   if (c == 0) {
       printf("no candidates\n");
   } else    if (c == 1) {
       printf("one candidate\n");
   } else {
       printf("%d candidates\n", c);
   }

}

void setup(list *const lst) {

   int x, y;
   if (lst == NULL) {
       return;
   }
   // numbers must be greater than 1
   for (x = 2; x <= 98; x++) {
       // numbers must be unique, and sum no more than 100
       for (y = x + 1; y <= 98; y++) {
           if (x + y <= 100) {
               append_node(lst, x, y);
           }
       }
   }

}

void remove_by_sum(list *const lst, const int sum) {

   node *it;
   if (lst == NULL) {
       return;
   }
   it = lst->head;
   while (it != NULL) {
       int s = it->x + it->y;
       if (s == sum) {
           remove_node(lst, it);
           it = lst->head;
       } else {
           it = it->next;
       }
   }

}

void remove_by_prod(list *const lst, const int prod) {

   node *it;
   if (lst == NULL) {
       return;
   }
   it = lst->head;
   while (it != NULL) {
       int p = it->x * it->y;
       if (p == prod) {
           remove_node(lst, it);
           it = lst->head;
       } else {
           it = it->next;
       }
   }

}

void statement1(list *const lst) {

   short *unique = calloc(100000, sizeof(short));
   node *it, *nxt;
   for (it = lst->head; it != NULL; it = it->next) {
       int prod = it->x * it->y;
       unique[prod]++;
   }
   it = lst->head;
   while (it != NULL) {
       int prod = it->x * it->y;
       nxt = it->next;
       if (unique[prod] == 1) {
           remove_by_sum(lst, it->x + it->y);
           it = lst->head;
       } else {
           it = nxt;
       }
   }
   free(unique);

}

void statement2(list *const candidates) {

   short *unique = calloc(100000, sizeof(short));
   node *it, *nxt;
   for (it = candidates->head; it != NULL; it = it->next) {
       int prod = it->x * it->y;
       unique[prod]++;
   }
   it = candidates->head;
   while (it != NULL) {
       int prod = it->x * it->y;
       nxt = it->next;
       if (unique[prod] > 1) {
           remove_by_prod(candidates, prod);
           it = candidates->head;
       } else {
           it = nxt;
       }
   }
   free(unique);

}

void statement3(list *const candidates) {

   short *unique = calloc(100, sizeof(short));
   node *it, *nxt;
   for (it = candidates->head; it != NULL; it = it->next) {
       int sum = it->x + it->y;
       unique[sum]++;
   }
   it = candidates->head;
   while (it != NULL) {
       int sum = it->x + it->y;
       nxt = it->next;
       if (unique[sum] > 1) {
           remove_by_sum(candidates, sum);
           it = candidates->head;
       } else {
           it = nxt;
       }
   }
   free(unique);

}

int main() {

   list candidates = make_list();
   setup(&candidates);
   print_count(&candidates);
   statement1(&candidates);
   print_count(&candidates);
   statement2(&candidates);
   print_count(&candidates);
   statement3(&candidates);
   print_count(&candidates);
   print_list(&candidates);
   free_list(&candidates);
   return 0;

}</lang>

Output:
2352 candidates
145 candidates
86 candidates
one candidate
[4, 13] S=17 P=52

C++

Translation of: C

<lang cpp>#include <algorithm>

  1. include <iostream>
  2. include <map>
  3. include <vector>

std::ostream &operator<<(std::ostream &os, std::vector<std::pair<int, int>> &v) {

   for (auto &p : v) {
       auto sum = p.first + p.second;
       auto prod = p.first * p.second;
       os << '[' << p.first << ", " << p.second << "] S=" << sum << " P=" << prod;
   }
   return os << '\n';

}

void print_count(const std::vector<std::pair<int, int>> &candidates) {

   auto c = candidates.size();
   if (c == 0) {
       std::cout << "no candidates\n";
   } else if (c == 1) {
       std::cout << "one candidate\n";
   } else {
       std::cout << c << " candidates\n";
   }

}

auto setup() {

   std::vector<std::pair<int, int>> candidates;
   // numbers must be greater than 1
   for (int x = 2; x <= 98; x++) {
       // numbers must be unique, and sum no more than 100
       for (int y = x + 1; y <= 98; y++) {
           if (x + y <= 100) {
               candidates.push_back(std::make_pair(x, y));
           }
       }
   }
   return candidates;

}

void remove_by_sum(std::vector<std::pair<int, int>> &candidates, const int sum) {

   candidates.erase(std::remove_if(
       candidates.begin(), candidates.end(),
       [sum](const std::pair<int, int> &pair) {
           auto s = pair.first + pair.second;
           return s == sum;
       }
   ), candidates.end());

}

void remove_by_prod(std::vector<std::pair<int, int>> &candidates, const int prod) {

   candidates.erase(std::remove_if(
       candidates.begin(), candidates.end(),
       [prod](const std::pair<int, int> &pair) {
           auto p = pair.first * pair.second;
           return p == prod;
       }
   ), candidates.end());

}

void statement1(std::vector<std::pair<int, int>> &candidates) {

   std::map<int, int> uniqueMap;
   std::for_each(
       candidates.cbegin(), candidates.cend(),
       [&uniqueMap](const std::pair<int, int> &pair) {
           auto prod = pair.first * pair.second;
           uniqueMap[prod]++;
       }
   );
   bool loop;
   do {
       loop = false;
       for (auto &pair : candidates) {
           auto prod = pair.first * pair.second;
           if (uniqueMap[prod] == 1) {
               auto sum = pair.first + pair.second;
               remove_by_sum(candidates, sum);
               loop = true;
               break;
           }
       }
   } while (loop);

}

void statement2(std::vector<std::pair<int, int>> &candidates) {

   std::map<int, int> uniqueMap;
   std::for_each(
       candidates.cbegin(), candidates.cend(),
       [&uniqueMap](const std::pair<int, int> &pair) {
           auto prod = pair.first * pair.second;
           uniqueMap[prod]++;
       }
   );
   bool loop;
   do {
       loop = false;
       for (auto &pair : candidates) {
           auto prod = pair.first * pair.second;
           if (uniqueMap[prod] > 1) {
               remove_by_prod(candidates, prod);
               loop = true;
               break;
           }
       }
   } while (loop);

}

void statement3(std::vector<std::pair<int, int>> &candidates) {

   std::map<int, int> uniqueMap;
   std::for_each(
       candidates.cbegin(), candidates.cend(),
       [&uniqueMap](const std::pair<int, int> &pair) {
           auto sum = pair.first + pair.second;
           uniqueMap[sum]++;
       }
   );
   bool loop;
   do {
       loop = false;
       for (auto &pair : candidates) {
           auto sum = pair.first + pair.second;
           if (uniqueMap[sum] > 1) {
               remove_by_sum(candidates, sum);
               loop = true;
               break;
           }
       }
   } while (loop);

}

int main() {

   auto candidates = setup();
   print_count(candidates);
   statement1(candidates);
   print_count(candidates);
   statement2(candidates);
   print_count(candidates);
   statement3(candidates);
   print_count(candidates);
   std::cout << candidates;
   return 0;

}</lang>

Output:
2352 candidates
145 candidates
86 candidates
one candidate
[4, 13] S=17 P=52

C#

<lang csharp>using System; using System.Linq; using System.Collections.Generic;

public class Program {

   public static void Main()
   {
       const int maxSum = 100;
       var pairs = (
           from X in 2.To(maxSum / 2 - 1)
           from Y in (X + 1).To(maxSum - 2).TakeWhile(y => X + y <= maxSum)
           select new { X, Y, S = X + Y, P = X * Y }
           ).ToHashSet();
       Console.WriteLine(pairs.Count);
       
       var uniqueP = pairs.GroupBy(pair => pair.P).Where(g => g.Count() == 1).Select(g => g.Key).ToHashSet();
       
       pairs.ExceptWith(pairs.GroupBy(pair => pair.S).Where(g => g.Any(pair => uniqueP.Contains(pair.P))).SelectMany(g => g));
       Console.WriteLine(pairs.Count);
       
       pairs.ExceptWith(pairs.GroupBy(pair => pair.P).Where(g => g.Count() > 1).SelectMany(g => g));
       Console.WriteLine(pairs.Count);
       
       pairs.ExceptWith(pairs.GroupBy(pair => pair.S).Where(g => g.Count() > 1).SelectMany(g => g));
       Console.WriteLine(pairs.Count);
       
       foreach (var pair in pairs) Console.WriteLine(pair);
   }

}

public static class Extensions {

   public static IEnumerable<int> To(this int start, int end) {
       for (int i = start; i <= end; i++) yield return i;
   }
   
   public static HashSet<T> ToHashSet<T>(this IEnumerable<T> source) => new HashSet<T>(source);

}</lang>

Output:
2352
145
86
1
{ X = 4, Y = 13, S = 17, P = 52 }

Common Lisp

Version 1

<lang lisp>

Calculate all x's and their possible y's.

(defparameter *x-possibleys*

 (loop for x from 2 to 49
    collect (cons x (loop for y from (- 100 x) downto (1+ x)

collect y)))

 "For every x there are certain y's, with respect to the rules of the puzzle")

(defun xys-operation (op x-possibleys)

 "returns an alist of ((x possible-y) . (op x possible-y))"
 (let ((x (car x-possibleys))

(ys (cdr x-possibleys)))

   (mapcar #'(lambda (y) (cons (list x y) (funcall op x y))) ys)))

(defun sp-numbers (op x-possibleys)

 "generates all possible sums or products of the puzzle"
 (loop for xys in x-possibleys
      append (xys-operation op xys)))

(defun group-sp (sp-numbers)

 "sp: Sum or Product"
 (loop for sp-number in (remove-duplicates sp-numbers :key #'cdr)
    collect (cons (cdr sp-number)

(mapcar #'car (remove-if-not #'(lambda (sp) (= sp (cdr sp-number))) sp-numbers :key #'cdr)))))

(defun statement-1a (sum-groups)

 "remove all sums with a single possible xy"
 (remove-if
  #'(lambda (xys) (= (list-length xys) 1))
  sum-groups
  :key #'cdr))

(defun statement-1b (x-possibleys)

 "S says: P does not know X and Y."
 (let ((multi-xy-sums (statement-1a (group-sp (sp-numbers #'+ x-possibleys))))

(products (group-sp (sp-numbers #'* x-possibleys))))

   (flet ((sum-has-xy-which-leads-to-unique-prod (sum-xys)

 ;; is there any product with a single possible xy? (some #'(lambda (prod-xys) (= (list-length (cdr prod-xys)) 1))  ;; all possible xys of the sum's (* x ys) (mapcar #'(lambda (xy) (assoc (apply #'* xy) products)) (cdr sum-xys)))))

     ;; remove sums with even one xy which leads to a unique product
     (remove-if #'sum-has-xy-which-leads-to-unique-prod multi-xy-sums))))

(defun remaining-products (remaining-sums-xys)

 "P's number is one of these"
 (loop for sum-xys in remaining-sums-xys
    append (loop for xy in (cdr sum-xys)

collect (apply #'* xy))))

(defun statement-2 (remaining-sums-xys)

 "P says: Now I know X and Y."
 (let ((remaining-products (remaining-products remaining-sums-xys)))
   (mapcar #'(lambda (a-sum-unit)

(cons (car a-sum-unit) (mapcar #'(lambda (xy) (list (count (apply #'* xy) remaining-products) xy)) (cdr a-sum-unit)))) remaining-sums-xys)))

(defun statement-3 (remaining-sums-with-their-products-occurrences-info)

 "S says: Now I also know X and Y."
 (remove-if
  #'(lambda (sum-xys)
      ;; remove those sums which have more than 1 product, that 
      ;; appear only once amongst all remaining products
      (> (count 1 sum-xys :key #'car) 1))
  remaining-sums-with-their-products-occurrences-info
  :key #'cdr))

(defun solution (survivor-sum-and-its-xys)

 "Now we know X and Y too :-D"
 (let* ((sum (caar survivor-sum-and-its-xys))

(xys (cdar survivor-sum-and-its-xys)) (xy (second (find 1 xys :key #'car))))

   (pairlis '(x y sum product)

(list (first xy) (second xy) sum (apply #'* xy)))))


(solution

(statement-3
 (statement-2
  (statement-1b *x-possibleys*)))) ;; => ((PRODUCT . 52) (SUM . 17) (Y . 13) (X . 4))

</lang>

Version 2

<lang lisp>

Algorithm of Rosetta code
All possible pairs

(defparameter *all-possible-pairs*

 (loop for i from 2 upto 100
    append (loop for j from (1+ i) upto 100

if (<= (+ i j) 100) collect (list i j))))

(defun oncep (item list)

 (eql 1 (count item list)))
Terminology

(defun sum-decomp (n)

 (loop for x from 2 below (/ n 2)
    for y = (- n x)
    collect (list x y)))

(defun prod-decomp (n)

 (loop for x from 2 below (sqrt n)
    for y = (/ n x)   
    if (and (>= 100 (+ x y)) (zerop (rem n x)))
    collect (list x y)))
For every possible sum decomposition of the number X+Y, the product has in turn more than one product decomposition

(defun fact-1 (n)

 "n = x + y"
 (flet ((premise (pair)

(> (list-length (prod-decomp (apply #'* pair))) 1))) (every #'premise (sum-decomp n))))

The number X*Y has only one product decomposition for which fact 1 is true

(defun fact-2 (n)

 "n = x * y"
 (oncep t (mapcar (lambda (pair) (fact-1 (apply #'+ pair))) (prod-decomp n))))
The number X+Y has only one sum decomposition for which fact 2 is true

(defun fact-3 (n)

 "n = x + y"
 (oncep t (mapcar (lambda (pair) (fact-2 (apply #'* pair))) (sum-decomp n))))

(defun find-xy (all-possible-pairs)

 (remove-if-not
  #'(lambda (p) (fact-3 (apply #'+ p)))
  (remove-if-not
   #'(lambda (p) (fact-2 (apply #'* p)))
   (remove-if-not
    #'(lambda (p) (fact-1 (apply #'+ p)))
    all-possible-pairs))))

(find-xy *all-possible-pairs*) ;; => ((4 13)) </lang>

D

Translation of: Scala

<lang d>void main() {

   import std.stdio, std.algorithm, std.range, std.typecons;
   const s1 = cartesianProduct(iota(1, 101), iota(1, 101))
              .filter!(p => 1 < p[0] && p[0] < p[1] && p[0] + p[1] < 100)
              .array;
   alias P = const Tuple!(int, int);
   enum add   = (P p) => p[0] + p[1];
   enum mul   = (P p) => p[0] * p[1];
   enum sumEq = (P p) => s1.filter!(q => add(q) == add(p));
   enum mulEq = (P p) => s1.filter!(q => mul(q) == mul(p));
   const s2 = s1.filter!(p => sumEq(p).all!(q => mulEq(q).walkLength != 1)).array;
   const s3 = s2.filter!(p => mulEq(p).setIntersection(s2).walkLength == 1).array;
   s3.filter!(p => sumEq(p).setIntersection(s3).walkLength == 1).writeln;

}</lang>

Output:
[const(Tuple!(int, int))(4, 13)]

With an older version of the LDC2 compiler replace the cartesianProduct line with: <lang d>

   const s1 = iota(1, 101).map!(x => iota(1, 101).map!(y => tuple(x, y))).joiner

</lang> The .array turn the lazy ranges into arrays. This is a necessary optimization because D lazy Ranges aren't memoized as Haskell lazy lists.

Run-time: about 0.43 seconds with dmd, 0.08 seconds with ldc2.

Elixir

Translation of: Ruby

<lang elixir>defmodule Puzzle do

 def sum_and_product do
   s1 = for x <- 2..49, y <- x+1..99, x+y<100, do: {x,y}
   s2 = Enum.filter(s1, fn p ->
     Enum.all?(sumEq(s1,p), fn q -> length(mulEq(s1,q)) != 1 end)
   end)
   s3 = Enum.filter(s2, fn p -> only1?(mulEq(s1,p), s2) end)
   Enum.filter(s3, fn p -> only1?(sumEq(s1,p), s3) end) |> IO.inspect 
 end
 
 defp add({x,y}), do: x + y
 
 defp mul({x,y}), do: x * y
 
 defp sumEq(s, p), do: Enum.filter(s, fn q -> add(p) == add(q) end)
 
 defp mulEq(s, p), do: Enum.filter(s, fn q -> mul(p) == mul(q) end)
 
 defp only1?(a, b) do
   MapSet.size(MapSet.intersection(MapSet.new(a), MapSet.new(b))) == 1
 end

end

Puzzle.sum_and_product</lang>

Output:
[{4, 13}]

Factor

A loose translation of D. <lang factor>USING: combinators.short-circuit fry kernel literals math math.ranges memoize prettyprint sequences sets tools.time ; IN: rosetta-code.sum-and-product

CONSTANT: s1 $[

   2 100 [a,b] dup cartesian-product concat
   [ first2 { [ < ] [ + 100 < ] } 2&& ] filter

]

quot-eq ( pair quot -- seq )
   [ s1 ] 2dip tuck '[ @ _ @ = ] filter ; inline

MEMO: sum-eq ( pair -- seq ) [ first2 + ] quot-eq ; MEMO: mul-eq ( pair -- seq ) [ first2 * ] quot-eq ;

s2 ( -- seq )
   s1 [ sum-eq [ mul-eq length 1 = not ] all? ] filter ;
only-1 ( seq quot -- newseq )
   over '[ @ _ intersect length 1 = ] filter ; inline
sum-and-product ( -- )
   [ s2 [ mul-eq ] [ sum-eq ] [ only-1 ] bi@ . ] time ;

MAIN: sum-and-product</lang>

Output:
{ { 4 13 } }
Running time: 0.241637693 seconds

Go

<lang go>package main

import "fmt"

type pair struct{ x, y int }

func main() { //const max = 100 // Use 1685 (the highest with a unique answer) instead // of 100 just to make it work a little harder :). const max = 1685 var all []pair for a := 2; a < max; a++ { for b := a + 1; b < max-a; b++ { all = append(all, pair{a, b}) } } fmt.Println("There are", len(all), "pairs where a+b <", max, "(and a<b)") products := countProducts(all)

// Those for which no sum decomposition has unique product to are // S mathimatician's possible pairs. var sPairs []pair pairs: for _, p := range all { s := p.x + p.y // foreach a+b=s (a<b) for a := 2; a < s/2+s&1; a++ { b := s - a if products[a*b] == 1 { // Excluded because P would have a unique product continue pairs } } sPairs = append(sPairs, p) } fmt.Println("S starts with", len(sPairs), "possible pairs.") //fmt.Println("S pairs:", sPairs) sProducts := countProducts(sPairs)

// Look in sPairs for those with a unique product to get // P mathimatician's possible pairs. var pPairs []pair for _, p := range sPairs { if sProducts[p.x*p.y] == 1 { pPairs = append(pPairs, p) } } fmt.Println("P then has", len(pPairs), "possible pairs.") //fmt.Println("P pairs:", pPairs) pSums := countSums(pPairs)

// Finally, look in pPairs for those with a unique sum var final []pair for _, p := range pPairs { if pSums[p.x+p.y] == 1 { final = append(final, p) } }

// Nicely show any answers. switch len(final) { case 1: fmt.Println("Answer:", final[0].x, "and", final[0].y) case 0: fmt.Println("No possible answer.") default: fmt.Println(len(final), "possible answers:", final) } }

func countProducts(list []pair) map[int]int { m := make(map[int]int) for _, p := range list { m[p.x*p.y]++ } return m }

func countSums(list []pair) map[int]int { m := make(map[int]int) for _, p := range list { m[p.x+p.y]++ } return m }

// not used, manually inlined above func decomposeSum(s int) []pair { pairs := make([]pair, 0, s/2) for a := 2; a < s/2+s&1; a++ { pairs = append(pairs, pair{a, s - a}) } return pairs }</lang>

Output:

For x + y < 100 (max = 100):

There are 2304 pairs where a+b < 100 (and a<b)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4 and 13

For x + y < 1685 (max = 1685):

There are 706440 pairs where a+b < 1685 (and a<b)
S starts with 50485 possible pairs.
P then has 17485 possible pairs.
Answer: 4 and 13

Run-time ~1 msec and ~600 msec respectively. Could be slightly faster if the slices and maps were given an estimated capacity to start (e.g. (max/2)² for all pairs) to avoid re-allocations (and resulting copies).

Haskell

Translation of: D

<lang haskell>import Data.List (intersect)

s1, s2, s3, s4 :: [(Int, Int)] s1 = [(x, y) | x <- [1 .. 100], y <- [1 .. 100], 1 < x && x < y && x + y < 100]

add, mul :: (Int, Int) -> Int add (x, y) = x + y mul (x, y) = x * y

sumEq, mulEq :: (Int, Int) -> [(Int, Int)] sumEq p = filter (\q -> add q == add p) s1 mulEq p = filter (\q -> mul q == mul p) s1

s2 = filter (\p -> all (\q -> (length $ mulEq q) /= 1) (sumEq p)) s1 s3 = filter (\p -> length (mulEq p `intersect` s2) == 1) s2 s4 = filter (\p -> length (sumEq p `intersect` s3) == 1) s3

main = print s4</lang>

Output:
[(4,13)]

Run-time: about 1.97 seconds.

Or, to illustrate some of the available variants, it turns out that we can double performance by slightly rearranging the filters in sumEq and mulEq. It also proves fractionally faster to shed some of the of outer list comprehension sugaring, using >>= or concatMap directly.

For a further doubling of performance, we can redefine add and mul as uncurried versions of (+) and (*).

The y > x condition can usefully be moved upstream – dropping it from the test, and redefining the range of y as [x + 1 .. 100] from the start. (The 1 < x test can also be moved out of the test and into the initial generator).

Finally, as we expect and need only one solution, Haskell's lazy evaluation strategy will avoid wasted tests if we request only the first item from the possible solution stream. <lang Haskell>import Data.List (intersect)


SUM AND PRODUCT PUZZLE ----------------

s1, s2, s3, s4 :: [(Int, Int)] s1 =

 [2 .. 100]
   >>= \x ->
     [succ x .. 100]
       >>= \y ->
         [ (x, y)
           | x + y < 100
         ]

s2 = filter (all ((1 /=) . length . mulEq) . sumEq) s1

s3 = filter ((1 ==) . length . (`intersect` s2) . mulEq) s2

s4 = filter ((1 ==) . length . (`intersect` s3) . sumEq) s3

sumEq, mulEq :: (Int, Int) -> [(Int, Int)] sumEq p = filter ((add p ==) . add) s1 mulEq p = filter ((mul p ==) . mul) s1

add, mul :: (Int, Int) -> Int add = uncurry (+) mul = uncurry (*)


TEST -------------------------

main :: IO () main = print $ take 1 s4</lang>

Output:
[(4,13)]

Java

<lang Java>package org.rosettacode;

import java.util.ArrayList; import java.util.List;


/**

* This program applies the logic in the Sum and Product Puzzle for the value 
* provided by systematically applying each requirement to all number pairs in 
* range. Note that the requirements: (x, y different), (x < y), and 
* (x, y > MIN_VALUE) are baked into the loops in run(), sumAddends(), and 
* productFactors(), so do not need a separate test. Also note that to test a
* solution to this logic puzzle, it is suggested to test the condition with
* maxSum = 1685 to ensure that both the original solution (4, 13) and the
* additional solution (4, 61), and only these solutions, are found. Note
* also that at 1684 only the original solution should be found!
*/

public class SumAndProductPuzzle {

   private final long beginning;
   private final int maxSum;
   private static final int MIN_VALUE = 2;
   private List<int[]> firstConditionExcludes = new ArrayList<>();
   private List<int[]> secondConditionExcludes = new ArrayList<>();
   
   public static void main(String... args){
       
       if (args.length == 0){
           new SumAndProductPuzzle(100).run();
           new SumAndProductPuzzle(1684).run();
           new SumAndProductPuzzle(1685).run();
       } else {
           for (String arg : args){
               try{
                   new SumAndProductPuzzle(Integer.valueOf(arg)).run();
               } catch (NumberFormatException e){
                   System.out.println("Please provide only integer arguments. " +
                           "Provided argument " + arg + " was not an integer. " +
                           "Alternatively, calling the program with no arguments " +
                           "will run the puzzle where maximum sum equals 100, 1684, and 1865.");
               }
           }
       }
   }
   
   public SumAndProductPuzzle(int maxSum){
       this.beginning = System.currentTimeMillis();
       this.maxSum = maxSum;
       System.out.println("Run with maximum sum of " + String.valueOf(maxSum) + 
               " started at " + String.valueOf(beginning) + ".");
   }
   
   public void run(){
       for (int x = MIN_VALUE; x < maxSum - MIN_VALUE; x++){
           for (int y = x + 1; y < maxSum - MIN_VALUE; y++){
               
               if (isSumNoGreaterThanMax(x,y) &&
                   isSKnowsPCannotKnow(x,y) &&
                   isPKnowsNow(x,y) &&
                   isSKnowsNow(x,y)
                   ){
                   System.out.println("Found solution x is " + String.valueOf(x) + " y is " + String.valueOf(y) + 
                           " in " + String.valueOf(System.currentTimeMillis() - beginning) + "ms.");
               }
           }
       }
       System.out.println("Run with maximum sum of " + String.valueOf(maxSum) + 
               " ended in " + String.valueOf(System.currentTimeMillis() - beginning) + "ms.");
   }
   
   public boolean isSumNoGreaterThanMax(int x, int y){
       return x + y <= maxSum;
   }
   
   public boolean isSKnowsPCannotKnow(int x, int y){
       
       if (firstConditionExcludes.contains(new int[] {x, y})){
           return false;
       }
       
       for (int[] addends : sumAddends(x, y)){
           if ( !(productFactors(addends[0], addends[1]).size() > 1) ) {
               firstConditionExcludes.add(new int[] {x, y});
               return false;
           }
       }
       return true;
   }
   
   public boolean isPKnowsNow(int x, int y){
       
       if (secondConditionExcludes.contains(new int[] {x, y})){
           return false;
       }
       
       int countSolutions = 0;
       for (int[] factors : productFactors(x, y)){
           if (isSKnowsPCannotKnow(factors[0], factors[1])){
               countSolutions++;
           }
       }
       
       if (countSolutions == 1){
           return true;
       } else {
           secondConditionExcludes.add(new int[] {x, y});
           return false;
       }
   }
   
   public boolean isSKnowsNow(int x, int y){
       
       int countSolutions = 0;
       for (int[] addends : sumAddends(x, y)){
           if (isPKnowsNow(addends[0], addends[1])){
               countSolutions++;
           }
       }
       return countSolutions == 1;
   }
   
   public List<int[]> sumAddends(int x, int y){
       
       List<int[]> list = new ArrayList<>();
       int sum = x + y;
       
       for (int addend = MIN_VALUE; addend < sum - addend; addend++){
           if (isSumNoGreaterThanMax(addend, sum - addend)){
               list.add(new int[]{addend, sum - addend});
           }
       }
       return list;
   }
   
   public List<int[]> productFactors(int x, int y){
       
       List<int[]> list = new ArrayList<>();
       int product = x * y;
       
       for (int factor = MIN_VALUE; factor < product / factor; factor++){
           if (product % factor == 0){
               if (isSumNoGreaterThanMax(factor, product / factor)){
                   list.add(new int[]{factor, product / factor});
               }
           }
       }
       return list;
   }

}</lang>

Output:
Run with maximum sum of 100 started at 1492436207694.
Found solution x is 4 y is 13 in 7ms.
Run with maximum sum of 100 ended in 54ms.
Run with maximum sum of 1684 started at 1492436207748.
Found solution x is 4 y is 13 in 9084ms.
Run with maximum sum of 1684 ended in 8234622ms.
Run with maximum sum of 1685 started at 1492444442371.
Found solution x is 4 y is 13 in 8922ms.
Found solution x is 4 y is 61 in 8939ms.
Run with maximum sum of 1685 ended in 8013991ms.

JavaScript

ES5

Translation of: Haskell

<lang JavaScript>(function () {

   'use strict';
   // GENERIC FUNCTIONS
   // concatMap :: (a -> [b]) -> [a] -> [b]
   var concatMap = function concatMap(f, xs) {
           return [].concat.apply([], xs.map(f));
       },
       // curry :: ((a, b) -> c) -> a -> b -> c
       curry = function curry(f) {
           return function (a) {
               return function (b) {
                   return f(a, b);
               };
           };
       },
       // intersectBy :: (a - > a - > Bool) - > [a] - > [a] - > [a]
       intersectBy = function intersectBy(eq, xs, ys) {
           return xs.length && ys.length ? xs.filter(function (x) {
               return ys.some(curry(eq)(x));
           }) : [];
       },
       // range :: Int -> Int -> Maybe Int -> [Int]
       range = function range(m, n, step) {
           var d = (step || 1) * (n >= m ? 1 : -1);
           return Array.from({
               length: Math.floor((n - m) / d) + 1
           }, function (_, i) {
               return m + i * d;
           });
       };
   // PROBLEM FUNCTIONS
   // add, mul :: (Int, Int) -> Int
   var add = function add(xy) {
           return xy[0] + xy[1];
       },
       mul = function mul(xy) {
           return xy[0] * xy[1];
       };
   // sumEq, mulEq :: (Int, Int) -> [(Int, Int)]
   var sumEq = function sumEq(p) {
           var addP = add(p);
           return s1.filter(function (q) {
               return add(q) === addP;
           });
       },
       mulEq = function mulEq(p) {
           var mulP = mul(p);
           return s1.filter(function (q) {
               return mul(q) === mulP;
           });
       };
   // pairEQ :: ((a, a) -> (a, a)) -> Bool
   var pairEQ = function pairEQ(a, b) {
       return a[0] === b[0] && a[1] === b[1];
   };
   // MAIN
   // xs :: [Int]
   var xs = range(1, 100);
   // s1 s2, s3, s4 :: [(Int, Int)]
   var s1 = concatMap(function (x) {
           return concatMap(function (y) {
               return 1 < x && x < y && x + y < 100 ? [
                   [x, y]
               ] : [];
           }, xs);
       }, xs),
       s2 = s1.filter(function (p) {
           return sumEq(p).every(function (q) {
               return mulEq(q).length > 1;
           });
       }),
       s3 = s2.filter(function (p) {
           return intersectBy(pairEQ, mulEq(p), s2).length === 1;
       }),
       s4 = s3.filter(function (p) {
           return intersectBy(pairEQ, sumEq(p), s3).length === 1;
       });
   return s4;

})(); </lang>

Output:

<lang JavaScript>4, 13</lang> (Finished in 0.69s)


ES6

Translation of: Haskell

<lang JavaScript>(() => {

   "use strict";
   // ------------- SUM AND PRODUCT PUZZLE --------------
   // main :: IO ()
   const main = () => {
       const
           // xs :: [Int]
           xs = enumFromTo(1)(100),
           // s1 s2, s3, s4 :: [(Int, Int)]
           s1 = xs.flatMap(
               x => xs.flatMap(y =>
                   (1 < x) && (x < y) && 100 > (x + y) ? [
                       [x, y]
                   ] : []
               )
           ),
           s2 = s1.filter(
               p => sumEq(p, s1).every(
                   q => 1 < mulEq(q, s1).length
               )
           ),
           s3 = s2.filter(
               p => 1 === intersectBy(pairEQ)(
                   mulEq(p, s1)
               )(s2).length
           );
       return s3.filter(
           p => 1 === intersectBy(pairEQ)(
               sumEq(p, s1)
           )(s3).length
       );
   };
   // ---------------- PROBLEM FUNCTIONS ----------------
   // add, mul :: (Int, Int) -> Int
   const
       add = xy => xy[0] + xy[1],
       mul = xy => xy[0] * xy[1],
       // sumEq, mulEq :: (Int, Int) ->
       // [(Int, Int)] -> [(Int, Int)]
       sumEq = (p, s) => {
           const addP = add(p);
           return s.filter(q => add(q) === addP);
       },
       mulEq = (p, s) => {
           const mulP = mul(p);
           return s.filter(q => mul(q) === mulP);
       },
       // pairEQ :: ((a, a) -> (a, a)) -> Bool
       pairEQ = a => b => (
           a[0] === b[0]
       ) && (a[1] === b[1]);


   // ---------------- GENERIC FUNCTIONS ----------------
   // enumFromTo :: Int -> Int -> [Int]
   const enumFromTo = m =>
       n => Array.from({
           length: 1 + n - m
       }, (_, i) => m + i);


   // intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
   const intersectBy = eqFn =>
       // The intersection of the lists xs and ys
       // in terms of the equality defined by eq.
       xs => ys => xs.filter(
           x => ys.some(eqFn(x))
       );
   // MAIN ---
   return main();

})();</lang>

Output:

<lang JavaScript>4, 13</lang>

jq

Works with: jq

Works with: gojq (the Go implementation of jq)

A transcription from the problem statement, with these helper functions: <lang jq>

  1. For readability:

def collect(c): map(select(c));

  1. stream-oriented checks:

def hasMoreThanOne(s): [limit(2;s)] | length > 1;

def hasOne(s): [limit(2;s)] | length == 1;

def prod: .[0] * .[1];

    1. A stream of admissible [x,y] values

def xy:

 [range(2;50) as $x  # 1 < X < Y < 100
  | range($x+1; 101-$x) as $y
  | [$x, $y] ] ;

  1. The stream of [x,y] pairs matching "S knows the sum is $sum"

def sumEq($sum): select( $sum == add );

  1. The stream of [x,y] pairs matching "P knows the product is $prod"

def prodEq($p): select( $p == prod );

    1. The solver:

def solve:

 xy as $s0
  1. S says P does not know:
 | $s0
 | collect(add as $sum
     | all( $s0[]|sumEq($sum);
            prod as $p
            | hasMoreThanOne($s0[] | prodEq($p)))) as $s1
  1. P says: Now I know:
 | $s1
 | collect(prod as $prod | hasOne( $s1[]|prodEq($prod)) ) as $s2
  1. S says: Now I also know
 | $s2[]
 | select(add as $sum | hasOne( $s2[] | sumEq($sum)) ) ;

solve </lang>

Output:
[4,13]

Julia

From the awk/sidef version. It is also possible to use filters as in the Scala solution, but although less verbose, using filters would be much slower in Julia, which often favors fast for loops over lists for speed.

<lang julia> using Primes

function satisfy1(x::Integer)

   prmslt100 = primes(100)
   for i in 2:(x ÷ 2)
       if i ∈ prmslt100 && x - i ∈ prmslt100
           return false
       end
   end
   return true

end

function satisfy2(x::Integer)

   once = false
   for i in 2:isqrt(x)
       if x % i == 0
           j = x ÷ i
           if 2 < j < 100 && satisfy1(i + j)
               if once return false end
               once = true
           end
       end
   end
   return once

end

function satisfyboth(x::Integer)

   if !satisfy1(x) return 0 end
   found = 0
   for i in 2:(x ÷ 2)
       if satisfy2(i * (x - i))
           if found > 0 return 0 end
           found = i
       end
   end
   return found

end

for i in 2:99

   if (j = satisfyboth(i)) > 0
       println("Solution: ($j, $(i - j))")
   end

end</lang>

Output:
Solution: (4, 13)

Kotlin

<lang scala>// version 1.1.4-3

data class P(val x: Int, val y: Int, val sum: Int, val prod: Int)

fun main(args: Array<String>) {

val candidates = mutableListOf

() for (x in 2..49) { for (y in x + 1..100 - x) { candidates.add(P(x, y, x + y, x * y)) } } val sums = candidates.groupBy { it.sum } val prods = candidates.groupBy { it.prod } val fact1 = candidates.filter { sums[it.sum]!!.all { prods[it.prod]!!.size > 1 } } val fact2 = fact1.filter { prods[it.prod]!!.intersect(fact1).size == 1 } val fact3 = fact2.filter { sums[it.sum]!!.intersect(fact2).size == 1 } print("The only solution is : ") for ((x, y, _, _) in fact3) println("x = $x, y = $y") }</lang>

Output:
The only solution is : x = 4, y = 13

Lua

Translation of: C++

<lang lua>function print_count(t)

   local cnt = 0
   for k,v in pairs(t) do
       cnt = cnt + 1
   end
   print(cnt .. ' candidates')

end

function make_pair(a,b)

   local t = {}
   table.insert(t, a) -- 1
   table.insert(t, b) -- 2
   return t

end

function setup()

   local candidates = {}
   for x = 2, 98 do
       for y = x + 1, 98 do
           if x + y <= 100 then
               local p = make_pair(x, y)
               table.insert(candidates, p)
           end
       end
   end
   return candidates

end

function remove_by_sum(candidates, sum)

   for k,v in pairs(candidates) do
       local s = v[1] + v[2]
       if s == sum then
           table.remove(candidates, k)
       end
   end

end

function remove_by_prod(candidates, prod)

   for k,v in pairs(candidates) do
       local p = v[1] * v[2]
       if p == prod then
           table.remove(candidates, k)
       end
   end

end

function statement1(candidates)

   local unique = {}
   for k,v in pairs(candidates) do
       local prod = v[1] * v[2]
       if unique[prod] ~= nil then
           unique[prod] = unique[prod] + 1
       else
           unique[prod] = 1
       end
   end
   local done
   repeat
       done = true
       for k,v in pairs(candidates) do
           local prod = v[1] * v[2]
           if unique[prod] == 1 then
               local sum = v[1] + v[2]
               remove_by_sum(candidates, sum)
               done = false
               break
           end
       end
   until done

end

function statement2(candidates)

   local unique = {}
   for k,v in pairs(candidates) do
       local prod = v[1] * v[2]
       if unique[prod] ~= nil then
           unique[prod] = unique[prod] + 1
       else
           unique[prod] = 1
       end
   end
   local done
   repeat
       done = true
       for k,v in pairs(candidates) do
           local prod = v[1] * v[2]
           if unique[prod] > 1 then
               remove_by_prod(candidates, prod)
               done = false
               break
           end
       end
   until done

end

function statement3(candidates)

   local unique = {}
   for k,v in pairs(candidates) do
       local sum = v[1] + v[2]
       if unique[sum] ~= nil then
           unique[sum] = unique[sum] + 1
       else
           unique[sum] = 1
       end
   end
   local done
   repeat
       done = true
       for k,v in pairs(candidates) do
           local sum = v[1] + v[2]
           if unique[sum] > 1 then
               remove_by_sum(candidates, sum)
               done = false
               break
           end
       end
   until done

end

function main()

   local candidates = setup()
   print_count(candidates)
   statement1(candidates)
   print_count(candidates)
   statement2(candidates)
   print_count(candidates)
   statement3(candidates)
   print_count(candidates)
   for k,v in pairs(candidates) do
       local sum = v[1] + v[2]
       local prod = v[1] * v[2]
       print("a=" .. v[1] .. ", b=" .. v[2] .. "; S=" .. sum .. ", P=" .. prod)
   end

end

main()</lang>

Output:
2352 candidates
145 candidates
86 candidates
1 candidates
a=4, b=13; S=17, P=52

Nim

<lang Nim>import sequtils, sets, sugar, tables

var

 xycandidates = toSeq(2..98)
 sums = collect(initHashSet, for s in 5..100: {s})   # Set of possible sums.
 factors: Table[int, seq[(int, int)]]                # Mapping product -> list of factors.
  1. Build the factor mapping.

for i in 0..<xycandidates.high:

 let x = xycandidates[i]
 for j in (i + 1)..xycandidates.high:
   let y = xycandidates[j]
   factors.mgetOrPut(x * y, @[]).add (x, y)

iterator terms(n: int): (int, int) =

 ## Yield the possible terms (x, y) of a given sum.
 for x in 2..(n - 1) div 2:
   yield (x, n - x)
  1. S says "P does not know X and Y."
  2. => For every decomposition of S, there is no product with a single decomposition.

for s in toSeq(sums):

 for (x, y) in s.terms():
   let p = x * y
   if factors[p].len == 1:
     sums.excl s
     break
  1. P says "Now I know X and Y."
  2. => P has only one decomposition with sum in "sums".

for p in toSeq(factors.keys):

 var sums = collect(initHashSet):
              for (x, y) in factors[p]:
                if x + y in sums: {x + y}
 if card(sums) > 1: factors.del p
  1. S says "Now I also know X and Y."
  2. => S has only one decomposition with product in "factors".

for s in toSeq(sums):

 var prods = collect(initHashSet):
               for (x, y) in s.terms():
                 if x * y in factors: {x * y}
 if card(prods) > 1: sums.excl s
  1. Now, combine the sums and the products.

for s in sums:

 for (x, y) in s.terms:
   if x * y in factors: echo (x, y)</lang>
Output:
(4, 13)

ooRexx

version 1

Translation of: REXX

for comments see REXX version 4. <lang oorexx>all =.set~new Call time 'R' cnt.=0 do a=2 to 100

 do b=a+1 to 100-2
   p=a b
   if a+b>100 then leave b
   all~put(p)
   prd=a*b
   cnt.prd+=1
   End
 End

Say "There are" all~items "pairs where X+Y <=" max "(and X<Y)"

spairs=.set~new Do Until all~items=0

 do p over all
   d=decompositions(p)
   If take Then
     spairs=spairs~union(d)
   dif=all~difference(d)
   Leave
   End
 all=dif
 end

Say "S starts with" spairs~items "possible pairs."

sProducts.=0 Do p over sPairs

 Parse Var p x y
 prod=x*y
 sProducts.prod+=1
 End

pPairs=.set~new Do p over sPairs

 Parse Var p xb yb
 prod=xb*yb
 If sProducts.prod=1 Then
   pPairs~put(p)
 End

Say "P then has" pPairs~items "possible pairs."

Sums.=0 Do p over pPairs

 Parse Var p xc yc
 sum=xc+yc
 Sums.sum+=1
 End

final=.set~new Do p over pPairs

 Parse Var p x y
 sum=x+y
 If Sums.sum=1 Then
   final~put(p)
 End

si=0 Do p Over final

 si+=1
 sol.si=p
 End

Select

 When final~items=1 Then Say "Answer:" sol.1
 When final~items=0 Then Say "No possible answer."
 Otherwise Do;            Say final~items "possible answers:"
                          Do p over final
                            Say p
                            End
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit

decompositions: Procedure Expose cnt. take spairs

 epairs=.set~new
 Use Arg p
 Parse Var p aa bb
 s=aa+bb
 take=1
 Do xa=2 To s/2
   ya=s-xa
   pp=xa ya
   epairs~put(pp)
   prod=xa*ya
   If cnt.prod=1 Then
     take=0
   End
 return epairs</lang>
Output:
There are 2352 pairs where X+Y <= MAX (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4 13
Elapsed time: 0.016000 seconds

version 2

Uses objects for storing the number pairs. Note the computed hash value and the == method (required to make the set difference work) <lang oorexx>all =.set~new Call time 'R' cnt.=0 do a=2 to 100

 do b=a+1 to 100-2
   p=.pairs~new(a,b)
   if p~sum>100 then leave b
   all~put(p)
   prd=p~prod
   cnt.prd+=1
   End
 End

Say "There are" all~items "pairs where X+Y <=" max "(and X<Y)"

spairs=.set~new Do Until all~items=0

 do p over all
   d=decompositions(p)
   If take Then
     spairs=spairs~union(d)
   dif=all~difference(d)
   Leave
   End
 all=dif
 end

Say "S starts with" spairs~items "possible pairs."

sProducts.=0 Do p over sPairs

 prod=p~prod
 sProducts.prod+=1
 End

pPairs=.set~new Do p over sPairs

 prod=p~prod
 If sProducts.prod=1 Then
   pPairs~put(p)
 End

Say "P then has" pPairs~items "possible pairs."

Sums.=0 Do p over pPairs

 sum=p~sum
 Sums.sum+=1
 End

final=.set~new Do p over pPairs

 sum=p~sum
 If Sums.sum=1 Then
   final~put(p)
 End

si=0 Do p Over final

 si+=1
 sol.si=p
 End

Select

 When final~items=1 Then Say "Answer:" sol.1~string
 When final~items=0 Then Say "No possible answer."
 Otherwise Do;            Say final~items "possible answers:"
                          Do p over final
                            Say p~string
                            End
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit

decompositions: Procedure Expose cnt. take spairs

 epairs=.set~new
 Use Arg p
 s=p~sum
 take=1
 Do xa=2 To s/2
   ya=s-xa
   pp=.pairs~new(xa,ya)
   epairs~put(pp)
   prod=pp~prod
   If cnt.prod=1 Then
     take=0
   End
 return epairs
class pairs
attribute a -- allow access to attribute
attribute b -- allow access to attribute
attribute sum -- allow access to attribute
attribute prod -- allow access to attribute

-- only the strict equality form is needed for the collection classes,

method "=="
 expose a b
 use strict arg other
 return a == other~a & b == other~b

-- not needed to make the set difference work, but added for completeness

method "\=="
 expose a b
 use strict arg other
 return a \== other~a | b \== other~b
method hashCode
 expose hash
 return hash
method init -- create pair, calculate sum, product
                    -- and index (blank delimited values)
 expose hash a b sum prod oid
 use arg a, b
 hash = a~hashCode~bitxor(b~hashCode) -- create hash value
 sum =a+b           -- sum
 prod=a*b           -- product
method string -- this creates the string to be shown
 expose a b
 return "[x="||a",y="||b"]"</lang>
Output:
There are 2352 pairs where X+Y <= MAX (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: [x=4,y=13]
Elapsed time: 0.079000 seconds

Perl

Translation of: Raku

<lang perl>use List::Util qw(none);

sub grep_unique {

   my($by, @list) = @_;
   my @seen;
   for (@list) {
       my $x = &$by(@$_);
       $seen[$x]= defined $seen[$x] ? 0 : join ' ', @$_;
   }
   grep { $_ } @seen;

}

sub sums {

   my($n) = @_;
   my @sums;
   push @sums, [$_, $n - $_] for 2 .. int $n/2;
   @sums;

}

sub sum { $_[0] + $_[1] } sub product { $_[0] * $_[1] }

for $i (2..97) {

   push @all_pairs, map { [$i, $_] } $i + 1..98

}

  1. Fact 1:

%p_unique = map { $_ => 1 } grep_unique(\&product, @all_pairs); for my $p (@all_pairs) {

   push @s_pairs, [@$p] if none { $p_unique{join ' ', @$_} } sums sum @$p;

}

  1. Fact 2:

@p_pairs = map { [split ' ', $_] } grep_unique(\&product, @s_pairs);

  1. Fact 3:

@final_pair = grep_unique(\&sum, @p_pairs);

printf "X = %d, Y = %d\n", split ' ', $final_pair[0];</lang>

Output:
X = 4, Y = 13

Phix

Translation of: AWK

Runs in 0.03s

with javascript_semantics
function satisfies_statement1(integer s)
-- S says: P does not know the two numbers.
-- Given s, for /all/ pairs (a,b), a+b=s, 2<=a,b<=99, at least one of a or b is composite
    for a=2 to floor(s/2) do
        if is_prime(a) and is_prime(s-a) then
            return false
        end if
    end for
    return true
end function
 
function satisfies_statement2(integer p)
-- P says: Now I know the two numbers.
-- Given p, for /all/ pairs (a,b), a*b=p, 2<=a,b<=99, exactly one pair satisfies statement 1
    bool winner = false
    for i=2 to floor(sqrt(p)) do
        if mod(p,i)=0 then
            integer j = floor(p/i)
            if 2<=j and j<=99 then
                if satisfies_statement1(i+j) then
                    if winner then return false end if
                    winner = true
                end if
            end if
        end if
    end for
    return winner
end function
 
function satisfies_statement3(integer s)
-- S says: Now I know the two numbers.
-- Given s, for /all/ pairs (a,b), a+b=s, 2<=a,b<=99, exactly one pair satisfies statements 1 and 2
    integer winner = 0
    if satisfies_statement1(s) then
        for a=2 to floor(s/2) do
            if satisfies_statement2(a*(s-a)) then
                if winner then return 0 end if
                winner = a
            end if
        end for
    end if
    return winner
end function
 
for s=2 to 100 do
    integer a = satisfies_statement3(s)
    if a!=0 then
        printf(1,"%d (%d+%d)\n",{s,a,s-a})
    end if
end for
Output:
17 (4+13)

Picat

<lang Picat> import cp. main =>

   N = 98, 
   PD = new_array(N*N), % PD[I] = no. of product decompositions of I
   foreach(I in 1..N*N) PD[I] = 0 end, 
   foreach(X in 2..N-1, Y in X+1..N) PD[X * Y] := PD[X * Y] + 1 end, 
   % Fact 1: S says "P does not know X and Y.", i.e.
   % For every possible sum decomposition of the number X+Y, the product has in turn more than one product decomposition:
   Solutions1 = [[X,Y] : X in 2..N-1, Y in X+1..100-X, foreach(XX in 2..X+Y-3) PD[XX * (X+Y-XX)] #> 1 end], 
   % Fact 2: P says "Now I know X and Y.", i.e.
   % The number X*Y has only one product decomposition for which fact 1 is true: 
   Solutions2 = [[X,Y] : [X,Y] in Solutions1, foreach([XX,YY] in Solutions1, XX * YY = X * Y) XX = X, YY = Y end], 
   % Fact 3: S says "Now I also know X and Y.", i.e.
   % The number X+Y has only one sum decomposition for which fact 2 is true.
   Solutions3 = [[X,Y] : [X,Y] in Solutions2, foreach([XX,YY] in Solutions2, XX + YY = X + Y) XX = X, YY = Y end], 
   println(Solutions3).

</lang> Output:

[[4,13]]

Python

Based on the Python solution from Wikipedia: <lang python>#!/usr/bin/env python

from collections import Counter

def decompose_sum(s):

   return [(a,s-a) for a in range(2,int(s/2+1))]
  1. Generate all possible pairs

all_pairs = set((a,b) for a in range(2,100) for b in range(a+1,100) if a+b<100)

  1. Fact 1 --> Select pairs for which all sum decompositions have non-unique product

product_counts = Counter(c*d for c,d in all_pairs) unique_products = set((a,b) for a,b in all_pairs if product_counts[a*b]==1) s_pairs = [(a,b) for a,b in all_pairs if

   all((x,y) not in unique_products for (x,y) in decompose_sum(a+b))]
  1. Fact 2 --> Select pairs for which the product is unique

product_counts = Counter(c*d for c,d in s_pairs) p_pairs = [(a,b) for a,b in s_pairs if product_counts[a*b]==1]

  1. Fact 3 --> Select pairs for which the sum is unique

sum_counts = Counter(c+d for c,d in p_pairs) final_pairs = [(a,b) for a,b in p_pairs if sum_counts[a+b]==1]

print(final_pairs)</lang>

Output:
[(4, 13)]

Racket

Translation of: D

To calculate the results faster this program use memorization. So it has a modified version of sum= and mul= to increase the chances of reusing the results.

<lang Racket>#lang racket (define-syntax-rule (define/mem (name args ...) body ...)

 (begin
   (define cache (make-hash))
   (define (name args ...)
     (hash-ref! cache (list args ...) (lambda () body ...)))))

(define (sum p) (+ (first p) (second p))) (define (mul p) (* (first p) (second p)))

(define (sum= p s) (filter (lambda (q) (= p (sum q))) s)) (define (mul= p s) (filter (lambda (q) (= p (mul q))) s))

(define (puzzle tot)

 (printf "Max Sum: ~a\n" tot)
 (define s1 (for*/list ([x (in-range 2 (add1 tot))]
                        [y (in-range (add1 x) (- (add1 tot) x))])
              (list x y)))
 (printf "Possible pairs: ~a\n" (length s1))
 (define/mem (sumEq/all p) (sum= p s1))
 (define/mem (mulEq/all p) (mul= p s1))
 (define s2 (filter (lambda (p) (andmap (lambda (q)
                                          (not (= (length (mulEq/all (mul q))) 1)))
                                        (sumEq/all (sum p))))
                    s1))
 (printf "Initial pairs for S: ~a\n" (length s2))
 (define s3 (filter (lambda (p) (= (length (mul= (mul p) s2)) 1))
                  s2))
 (displayln (length s3))
 (printf "Pairs for P: ~a\n" (length s3))
 (define s4 (filter (lambda (p) (= (length (sum= (sum p) s3)) 1))
                    s3))
 (printf "Final pairs for S: ~a\n" (length s4))
 (displayln s4))

(puzzle 100)</lang>

Output:
Max Sum: 100
Possible pairs: 2352
Initial pairs for S: 145
Pairs for P: 86
Final pairs for S: 1
((4 13))

Raku

(formerly Perl 6)

Translation of: Python
Works with: Rakudo version 2016.07

<lang perl6>sub grep-unique (&by, @list) { @list.classify(&by).values.grep(* == 1).map(*[0]) } sub sums ($n) { ($_, $n - $_ for 2 .. $n div 2) } sub sum ([$x, $y]) { $x + $y } sub product ([$x, $y]) { $x * $y }

my @all-pairs = (|($_ X $_+1 .. 98) for 2..97);

  1. Fact 1:

my %p-unique := Set.new: map ~*, grep-unique &product, @all-pairs; my @s-pairs = @all-pairs.grep: { none (%p-unique{~$_} for sums sum $_) };

  1. Fact 2:

my @p-pairs = grep-unique &product, @s-pairs;

  1. Fact 3:

my @final-pairs = grep-unique &sum, @p-pairs;

printf "X = %d, Y = %d\n", |$_ for @final-pairs;</lang>

Output:
X = 4, Y = 13

REXX

version 1

I tried hard to understand/translate the algorithms shown so far (16 Oct 2016) Unfortunately to no avail (not knowing the semantics of the used languages). Finally I was successful by implementing the rules referred to in Wikipedia http://www.win.tue.nl/~gwoegi/papers/freudenthal1.pdf which had a very clear description. <lang rexx>debug=0 If debug Then Do

 oid='sppn.txt'; 'erase' oid
 End

Call time 'R' all_pairs= cnt.=0 i=0 /* first take all possible pairs 2<=x<y with x+y<=100 */ /* and compute the respective sums and products */ /* count the number of times a sum or product occurs */ Do x=2 To 98

 Do y=x+1 To 100-x
   x=right(x,2,0)
   y=right(y,2,0)
   all_pairs=all_pairs x'/'y
   i=i+1
   x.i=x
   y.i=y
   sum=x+y
   prd=x*y
   cnt.0s.sum=cnt.0s.sum+1
   cnt.0p.prd=cnt.0p.prd+1
   End
 End

n=i /* now compute the possible pairs for each sum sum_d.sum */ /* and product prd_d.prd */ /* also the list of possible sums and products suml, prdl*/ sum_d.= prd_d.= suml= prdl= Do i=1 To n

 x=x.i
 y=y.i
 x=right(x,2,0)
 y=right(y,2,0)
 sum=x+y
 prd=x*y
 cnt.0s.x.y=cnt.0s.sum
 cnt.0p.x.y=cnt.0p.prd
 sum_d.sum=sum_d.sum x'/'y
 prd_d.prd=prd_d.prd x'/'y
 If wordpos(sum,suml)=0 Then suml=suml sum
 If wordpos(prd,prdl)=0 Then prdl=prdl prd
 End

Say n 'possible pairs' Call o 'SUM' suml=wordsort(suml) prdl=wordsort(prdl) sumlc=suml si=0 pi=0 Do While sumlc>

 Parse Var sumlc sum sumlc
 si=si+1
 sum.si=sum
 si.sum=si
 If sum=17 Then sx=si
 temp=prdl
 Do While temp>
   Parse Var temp prd temp
   If si=1 Then Do
     pi=pi+1
     prd.pi=prd
     pi.prd=pi
     If prd=52 Then px=pi
     End
   A.prd.sum='+'
   End
 End

sin=si pin=pi Call o 'SUM' Do si=1 To sin

 Call o f5(si) f3(sum.si)
 End

Call o 'PRD' Do pi=1 To pin

 Call o f5(pi) f6(prd.pi)
 End

a.='-' Do pi=1 To pin

 prd=prd.pi
 Do si=1 To sin
   sum=sum.si
   Do sj=1 To words(sum_d.sum)
     If wordpos(word(sum_d.sum,sj),prd_d.prd)>0 Then
       Parse Value word(sum_d.sum,sj) with x '/' y
       prde=x*y
       sume=x+y
       pa=pi.prde
       sa=si.sume
       a.pa.sa='+'
     End
   End
 End

Call show '1'

Do pi=1 To pin

 prow=
 cnt=0
 Do si=1 To sin
   If a.pi.si='+' Then Do
     cnt=cnt+1
     pj=pi
     sj=si
     End
   End
 If cnt=1 Then
   a.pj.sj='1'
 End

Call show '2'

Do si=1 To sin

 Do pi=1 To pin
   If a.pi.si='1' Then Leave
   End
 If pi<=pin Then Do
   Do pi=1 To pin
     If a.pi.si='+' Then
       a.pi.si='2'
     End
   End
 End

Call show '3'

Do pi=1 To pin

 prow=
 Do si=1 To sin
   prow=prow||a.pi.si
   End
 If count('+',prow)>1 Then Do
   Do si=1 To sin
     If a.pi.si='+' Then
       a.pi.si='3'
     End
   End
 End

Call show '4'

Do si=1 To sin

 scol=
 Do pi=1 To pin
   scol=scol||a.pi.si
   End
 If count('+',scol)>1 Then Do
   Do pi=1 To pin
     If a.pi.si='+' Then
       a.pi.si='4'
     End
   End
 End

Call show '5'

sol=0 Do pi=1 To pin

 Do si=1 To sin
   If a.pi.si='+' Then Do
     Say sum.si prd.pi
     sum=sum.si
     prd=prd.pi
     sol=sol+1
     End
   End
 End

Say sol 'solution(s)' Say ' possible pairs' Say 'Product='prd prd_d.52 Say ' Sum='sum sum_d.17 Say 'The only pair in both lists is 04/13.' Say 'Elapsed time:' time('E') 'seconds' Exit show: If debug Then Do

 Call o 'show' arg(1)
 Do pi=1 To 60
   ol=
   Do si=1 To 60
     ol=ol||a.pi.si
     End
   Call o ol
   End
 Say 'a.'px'.'sx'='a.px.sx
 End

Return

Exit o: Return lineout(oid,arg(1)) f3: Return format(arg(1),3) f4: Return format(arg(1),4) f5: Return format(arg(1),5) f6: Return format(arg(1),6)

count: Procedure

 Parse Arg c,s
 s=translate(s,c,c||xrange('00'x,'ff'x))
 s=space(s,0)
 Return length(s)

wordsort: Procedure /**********************************************************************

  • Sort the list of words supplied as argument. Return the sorted list
                                                                                                                                            • /
 Parse Arg wl
 wa.=
 wa.0=0
 Do While wl<>
   Parse Var wl w wl
   Do i=1 To wa.0
     If wa.i>w Then Leave
     End
   If i<=wa.0 Then Do
     Do j=wa.0 To i By -1
       ii=j+1
       wa.ii=wa.j
       End
     End
   wa.i=w
   wa.0=wa.0+1
   End
 swl=
 Do i=1 To wa.0
   swl=swl wa.i
   End
 /* Say swl */
 Return strip(swl)</lang>
Output:
2352 possible pairs
17 52
1 solution(s)
            possible pairs
Product=52  02/26 04/13
    Sum=17  02/15 03/14 04/13 05/12 06/11 07/10 08/09
The only pair in both lists is 04/13.
Elapsed time: 4.891000 seconds

version 2

Translation of: AWK

<lang rexx>Call time 'R' Do s=2 To 100

 a=satisfies_statement3(s)
 If a>0 Then Do
   p=a*(s-a)
   Say a'/'||(s-a) 's='s 'p='p
   End
 End

Say 'Elapsed time:' time('E') 'seconds' Exit

satisfies_statement1: Procedure

 Parse Arg s
 Do a=2 To s/2
   If is_prime(a) & is_prime(s-a) Then
     Return 0
   End
 Return 1

satisfies_statement2: Procedure

 Parse Arg p
 winner=0
 Do i=2 By 1 While i**2<p
   If p//i=0 Then Do
     j=p%i
     If 2<=j & j<=99 Then Do
       if satisfies_statement1(i+j) Then Do
         if winner Then
           Return 0
         winner=1
         End
       End
     End
   End
 Return winner

satisfies_statement3: Procedure

 Parse Arg s
 winner=0
 If satisfies_statement1(s)=0 Then
   Return 0
 Do a=2 To s/2
   b=s-a
   If satisfies_statement2(a*b) Then Do
     If winner>0 Then
       Return 0
     winner=a
     End
   End
 Return winner

is_prime: Procedure

 call Trace 'O'
 Parse Arg x
 If x<=3 Then Return 1
 i=2
 Do i=2 By 1 While i**2<=x
   If datatype(x/i,'W') Then Return 0
   End
 Return 1</lang>
Output:
4/13 s=17 p=52
Elapsed time: 0.078000 seconds

version 3

Translation of: GO

<lang rexx>/*---------------------------------------------------------------------

  • X and Y are two different whole numbers greater than 1.
  • Their sum is no greater than 100, and Y is greater than X.
  • S and P are two mathematicians (and consequently perfect logicians);
  • S knows the sum X+Y and P knows the product X*Y.
  • Both S and P know all the information in this paragraph.
  • The following conversation occurs:
  • * S says "P does not know X and Y."
  • * P says "Now I know X and Y."
  • * S says "Now I also know X and Y!"
  • What are X and Y?
  • --------------------------------------------------------------------*/

Call time 'R' max=100 Products.=0 all= Do x=2 To max

 Do y=x+1 To max-2
   If x+y<=100 Then Do
     all=all x'/'y
     prod=x*y; Products.prod=Products.prod+1
     End
   End
 End

Say "There are" words(all) "pairs where X+Y <=" max "(and X<Y)" /*---------------------------------------------------------------------

  • First eliminate all pairs where the product is unique:
  • For each pair we look at the decompositions of the sum (x+y).
  • If for any of these decompositions (xa/ya) the product is unique
  • then x/y cannot be the solution of the puzzle and we eliminate it
  • from the list of possible pairs
  • --------------------------------------------------------------------*/

sPairs= Do i=1 To words(all)

 xy=word(all,i)
 Parse Var xy x '/' Y
 Parse Var xy xx '/' Yy
 s=x+y
 take=1
 Do xa=2 To s/2
   ya=s-xa
   prod=xa*ya
   If products.prod=1 Then Do
     take=0
     Iterate i
     End
   End
 If take Then
   sPairs=sPairs xy
 End

Say "S starts with" words(sPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the REMAINING pairs take only these where the product is unique:
  • For each pair we look at the decompositions of the known product.
  • If for any of these decompositions (xb/yb) the product is unique
  • then xb/yb can be the solution of the puzzle and we add it
  • to the list of possible pairs.
  • --------------------------------------------------------------------*/

sProducts.=0 Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy x '/' y
 prod=x*y
 sProducts.prod=sProducts.prod+1
 End

pPairs= Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy x '/' y
 prod=x*y
 If sProducts.prod=1 Then
   pPairs=pPairs xy
 End

Say "P then has" words(pPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the now REMAINING pairs take only these where the sum is unique
  • Now we look at all possible pairs and find the one (xc/yc)
  • with a unique sum which must be the sum we knew from the beginning.
  • The pair xc/yc is then the solution
  • --------------------------------------------------------------------*/

Sums.=0 Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy x '/' y
 sum=x+y
 Sums.sum=Sums.sum+1
 End

final= Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy x '/' y
 sum=x+y
 If Sums.sum=1 Then
   final = final xy
 End

Select

 When words(final)=1 Then Say "Answer:" strip(final)
 When words(final)=0 Then Say "No possible answer."
 Otherwise Do;            Say words(final) "possible answers:"
                          Say strip(final)
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit</lang>

Output:
There are 2352 pairs where X+Y <= 100 (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4/13
Elapsed time: 0.045000 seconds

version 4

Now that I have understood the logic (I am neither S nor P) I have created an alternative to version 3. <lang rexx>/*---------------------------------------------------------------------

  • X and Y are two different whole numbers greater than 1.
  • Their sum is no greater than 100, and Y is greater than X.
  • S and P are two mathematicians (and consequently perfect logicians);
  • S knows the sum X+Y and P knows the product X*Y.
  • Both S and P know all the information in this paragraph.
  • The following conversation occurs:
  • * S says "P does not know X and Y."
  • * P says "Now I know X and Y."
  • * S says "Now I also know X and Y!"
  • What are X and Y?
  • --------------------------------------------------------------------*/

Call time 'R' max=100 Products.=0 all= Do x=2 To max

 Do y=x+1 To max-2
   If x+y<=100 Then Do
     all=all x'/'y
     prod=x*y; Products.prod=Products.prod+1
     End
   End
 End

Say "There are" words(all) "pairs where X+Y <=" max "(and X<Y)" /*---------------------------------------------------------------------

  • First eliminate all pairs where the product is unique:
  • For each pair we look at the decompositions of the sum (x+y).
  • If for any of these decompositions (xa/ya) the product is unique
  • then the given sum cannot be the sum of the pair we are looking for
  • Otherwise all pairs in the sum's decompositions are eligible.
  • --------------------------------------------------------------------*/

sPairs= done.=0 Do i=1 To words(all)

 xy=word(all,i)
 If done.xy Then Iterate
 Parse Var xy x '/' y
 s=x+y
 take=1
 el=
 Do xa=2 To s/2
   ya=s-xa
   m=xa'/'ya
   done.m=1
   el=el m
   prod=xa*ya
   If products.prod=1 Then
     take=0
   End
 If take Then
   sPairs=sPairs el
 End

Say "S starts with" words(sPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the REMAINING pairs take only these where the product is unique:
  • For each pair we look at the decompositions of the known product.
  • If for any of these decompositions (xb/yb) the product is unique
  • then xb/yb can be the solution of the puzzle and we add it
  • to the list of possible pairs.
  • --------------------------------------------------------------------*/

sProducts.=0 Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy x '/' y
 prod=x*y
 sProducts.prod=sProducts.prod+1
 End

pPairs= Do i=1 To words(sPairs)

 xy=word(sPairs,i)
 Parse Var xy xb '/' yb
 prod=xb*yb
 If sProducts.prod=1 Then
   pPairs=pPairs xy
 End

Say "P then has" words(pPairs) "possible pairs."

/*---------------------------------------------------------------------

  • From the now REMAINING pairs take only these where the sum is unique
  • Now we look at all possible pairs and find the one (xc/yc)
  • with a unique sum which must be the sum we knew from the beginning.
  • The pair xc/yc is then the solution
  • --------------------------------------------------------------------*/

Sums.=0 Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy xc '/' yc
 sum=xc+yc
 Sums.sum=Sums.sum+1
 End

final= Do i=1 To words(pPairs)

 xy=word(pPairs,i)
 Parse Var xy x '/' y
 sum=x+y
 If Sums.sum=1 Then
   final = final xy
 End

Select

 When words(final)=1 Then Say "Answer:" strip(final)
 When words(final)=0 Then Say "No possible answer."
 Otherwise Do;            Say words(final) "possible answers:"
                          Say strip(final)
   End
 End

Say "Elapsed time:" time('E') "seconds" Exit</lang>

Output:
There are 2352 pairs where X+Y <= 100 (and X<Y)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4/13
Elapsed time: 0.032000 seconds

version 5, fast

This REXX version is over   ten   times faster than the previous REXX version. <lang rexx>/*REXX program solves the Sum and Product Puzzle (also known as the Impossible Puzzle).*/ @.= 0; h= 100; @.3= 1 /*assign array default; assign high P.*/

            do j=5  by 2  to h                  /*find all odd primes  ≤  1st argument.*/
              do k=3  while k*k<=j;   if j//k==0  then iterate j          /*J ÷ by K ? */
              end  /*k*/;             @.j= 1    /*found a net prime number: J          */
            end    /*j*/

@.2=1 /*assign the even prime, ex post facto.*/

    do s=2  for h-1;  if C1(s)==0  then iterate /*find and display the puzzle solution.*/
    $= 0;                do m=2  for  s%2 -1    /* [↓]  check for uniqueness of product*/
                         if C2(m * (s-m))  then do;  if $>0  then iterate s;  $= m;   end
                         end   /*m*/
    if $>0  then say  'The numbers are:  '         $            " and "           s-$
    end   /*s*/

if $==0 then say 'No solution found.' exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ C1: procedure expose @.; parse arg s /*validate the first puzzle condition. */

     do a=2  for s%2-1;        if @.a  then do;   _= s - a;   if @._  then return 0;  end
     end;  /*a*/;              return 1

/*──────────────────────────────────────────────────────────────────────────────────────*/ C2: procedure expose @. h; parse arg p; $= 0 /*validate the second puzzle condition.*/

do j=2 while j*j

=2 then if q<=h then if C1(j+q) then if $ then return 0 else $= 1 end end /*j*/; return $</lang>

output   when using the default internal input:
The numbers are:   4  and  13

Ruby

Translation of: D

<lang ruby>def add(x,y) x + y end def mul(x,y) x * y end

def sumEq(s,p) s.select{|q| add(*p) == add(*q)} end def mulEq(s,p) s.select{|q| mul(*p) == mul(*q)} end

s1 = (a = *2...100).product(a).select{|x,y| x<y && x+y<100} s2 = s1.select{|p| sumEq(s1,p).all?{|q| mulEq(s1,q).size != 1} } s3 = s2.select{|p| (mulEq(s1,p) & s2).size == 1} p s3.select{|p| (sumEq(s1,p) & s3).size == 1}</lang>

Output:
[[4, 13]]

Scala

<lang scala>object ImpossiblePuzzle extends App {

 type XY = (Int, Int)
 val step0 = for {
   x <- 1 to 100
   y <- 1 to 100
   if 1 < x && x < y && x + y < 100
 } yield (x, y)

 def sum(xy: XY) = xy._1 + xy._2
 def prod(xy: XY) = xy._1 * xy._2
 def sumEq(xy: XY) = step0 filter { sum(_) == sum(xy) }
 def prodEq(xy: XY) = step0 filter { prod(_) == prod(xy) }

 val step2 = step0 filter { sumEq(_) forall { prodEq(_).size != 1 }}
 val step3 = step2 filter { prodEq(_).intersect(step2).size == 1 }
 val step4 = step3 filter { sumEq(_).intersect(step3).size == 1 }
 println(step4)

}</lang>

Output:
Vector((4,13))

Run-time: about 3.82 seconds.

Scheme

<lang scheme> (import (scheme base)

       (scheme cxr)
       (scheme write)
       (srfi 1))
utility method to find unique sum/product in given list

(define (unique-items lst key)

 (let ((all-items (map key lst)))
   (filter (lambda (i) (= 1 (count (lambda (p) (= p (key i)))
                                   all-items)))
           lst)))
list of all (x y x+y x*y) combinations with y > x

(define *xy-pairs*

 (apply append
        (map (lambda (i)
               (map (lambda (j)
                      (list i j (+ i j) (* i j)))
                    (iota (- 98 i) (+ 1 i))))
             (iota 96 2))))
 
S says "P does not know X and Y"

(define *products* ; get products which have multiple decompositions

 (let ((all-products (map fourth *xy-pairs*)))
   (filter (lambda (p) (> (count (lambda (i) (= i p)) all-products) 1))
           all-products)))

(define *fact-1* ; every x+y has x*y in *products*

 (filter (lambda (i) 
           (every (lambda (p) (memq (fourth p) *products*))
                  (filter (lambda (p) (= (third i) (third p))) *xy-pairs*)))
         *xy-pairs*))
P says "Now I know X and Y"

(define *fact-2* ; find the unique X*Y

 (unique-items *fact-1* fourth))
S says "Now I also know X and Y"

(define *fact-3* ; find the unique X+Y

 (unique-items *fact-2* third))

(display (string-append "Initial pairs: " (number->string (length *xy-pairs*)) "\n")) (display (string-append "After S: " (number->string (length *fact-1*)) "\n")) (display (string-append "After P: " (number->string (length *fact-2*)) "\n")) (display (string-append "After S: " (number->string (length *fact-3*)) "\n")) (display (string-append "X: "

                       (number->string (caar *fact-3*))
                       " Y: "
                       (number->string (cadar *fact-3*))
                       "\n"))

</lang>

Output:
Initial pairs: 4656
After S: 145
After P: 86
After S: 1
X: 4 Y: 13

Sidef

Translation of: Raku

<lang ruby>func grep_uniq(a, by) { a.group_by{ .(by) }.values.grep{.len == 1}.map{_[0]} } func sums (n) { 2 .. n//2 -> map {|i| [i, n-i] } }

var pairs = (2..97 -> map {|i| ([i] ~X (i+1 .. 98))... })

var p_uniq = Hash() p_uniq{grep_uniq(pairs, :prod).map { .to_s }...} = ()

var s_pairs = pairs.grep {|p| sums(p.sum).all { !p_uniq.contains(.to_s) } } var p_pairs = grep_uniq(s_pairs, :prod) var f_pairs = grep_uniq(p_pairs, :sum)

f_pairs.each { |p| printf("X = %d, Y = %d\n", p...) }</lang>

Output:
X = 4, Y = 13

Wren

Translation of: Kotlin
Library: Wren-dynamic
Library: Wren-seq

<lang ecmascript>import "/dynamic" for Tuple import "/seq" for Lst

var P = Tuple.create("P", ["x", "y", "sum", "prod"])

var intersect = Fn.new { |l1, l2|

   var l3 = (l1.count < l2.count) ? l1 : l2
   var l4 = (l3 == l1) ? l2 : l1
   var l5 = []
   for (e in l3) if (l4.contains(e)) l5.add(e)
   return l5

}

var candidates = [] for (x in 2..49) {

   for (y in x + 1..100 - x) {
       candidates.add(P.new(x, y, x + y, x * y))
   }

}

var sumGroups = Lst.groups(candidates) { |c| c.sum } var prodGroups = Lst.groups(candidates) { |c| c.prod } var sumMap = {} for (sumGroup in sumGroups) {

   sumMap[sumGroup[0]] = sumGroup[1].map { |l| l[0] }.toList

} var prodMap = {} for (prodGroup in prodGroups) {

   prodMap[prodGroup[0]] = prodGroup[1].map { |l| l[0] }.toList

} var fact1 = candidates.where { |c| sumMap[c.sum].all { |c| prodMap[c.prod].count > 1 } }.toList var fact2 = fact1.where { |c| intersect.call(prodMap[c.prod], fact1).count == 1 }.toList var fact3 = fact2.where { |c| intersect.call(sumMap[c.sum], fact2).count == 1 }.toList System.write("The only solution is : ") for (p in fact3) System.print("x = %(p.x), y = %(p.y)")</lang>

Output:
The only solution is : x = 4, y = 13

zkl

Damn it Jim, I'm a programmer, not a logician. So I translated the python code found in https://qmaurmann.wordpress.com/2013/08/10/sam-and-polly-and-python/ but I don't understand it. It does seem quite a bit more efficient than the Scala code, on par with the Python code. <lang zkl>mul:=Utils.Helpers.summer.fp1('*,1); //-->list.reduce('*,1), multiply list items var allPairs=[[(a,b); [2..100]; { [a+1..100] },{ a+b<100 }; ROList]]; // 2,304 pairs

sxys,pxys:=Dictionary(),Dictionary(); // hashes of allPairs sums and products: 95,1155 foreach xy in (allPairs){ sxys.appendV(xy.sum(),xy); pxys.appendV(xy:mul(_),xy) }

sOK:= 'wrap(s){ (not sxys[s].filter1('wrap(xy){ pxys[xy:mul(_)].len()<2 })) }; pOK:= 'wrap(p){ 1==pxys[p].filter('wrap([(x,y)]){ sOK(x+y) }).len() }; sOK2:='wrap(s){ 1==sxys[s].filter('wrap(xy){ pOK(xy:mul(_)) }).len() }; allPairs.filter('wrap([(x,y)]){ sOK(x+y) and pOK(x*y) and sOK2(x+y) }) .println();</lang> [[ ]] denotes list comprehension, filter1 returns (and stops at) the first thing that is "true", 'wrap creates a closure so the "wrapped" code/function can see local variables (read only). In a [function] prototype, the "[(x,y)]xy]" notation says xy is a list like thing, assign the parts to x & y (xy is optional), used here to just to do it both ways. The ":" says take the LHS and stuff it into the "_".

Output:
L(L(4,13))